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Abstract

Contemporary society is in constant demand for faster and more reliable
communications. This leads to an exponential increase in the load upon the
communications infrastructure, which starts to suffer from physical limitations
imposed by the supporting medium. Optical fibers, which have so far been able
to sustain the growing demand, are in fact reaching their theoretical maximum
capacity. These new challenges require innovative solutions and different
approaches.

In this dissertation, we propose the use of coherence as information carrier.
The standard encoding scheme achieved by modulating amplitude and phase of
the single electric field is replaced by the encoding of information in the mutual
coherence of each pair of a set of fields, thus generating a number of signals
that scales quadratically with the number of transmitted beams. We provide a
description of the resulting communication system, followed by the analysis
of the dependence of the figures of merit (signal-to-noise ratio, maximum bit-
rate, and spectral efficiency) on the number of transmitted fields. In addition
to a potential advantage in terms of transmission capacity, we discuss how a
coherence-based communication system can find application in cryptography.

The system relies on the ability to independently control the coherence
between each pair of fields. To this end, we demonstrate experimentally
that this control can be achieved by implementing a linear port combining
several mutually incoherent fields. The experimental setup is based on a system
consisting of a spatial light modulator and an optical complex medium.

In conclusion, the present work offers for the first time a method, and
its experimental realization, to simultaneously control the coherence between
several pairs of fields. It also demonstrates how such control can be effec-
tively exploited to provide a new solution to the challenges present in optical
communication.
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Abstract

Nella società contemporanea la richiesta continua di comunicazioni più rapide
e ricche di informazioni comporta un aumento esponenziale del carico sulle
infrastrutture di comunicazione, le quali cominciano ad intravedere limiti fisici
legati ai supporti utilizzati; le fibre ottiche, che finora hanno sostenuto questa
crescente domanda, stanno raggiungendo la capacità massima loro teoricamente
consentita. Queste nuove sfide necessitano di soluzioni innovative e punti di
vista differenti.

Nella seguente dissertazione si prospetta l’utilizzo della coerenza come
veicolo di informazione: l’uso dell’ampiezza e della fase del singolo campo
elettrico viene sostituito dalla codificazione dell’informazione nella coerenza
della coppia di campi, generando così un numero di segnali che scala con il
quadrato del numero di campi trasmessi. Per prima cosa si offre una descrizione
del sistema di comunicazione e un’analisi della dipendenza dal numero di campi
trasmessi delle figure di merito (rapporto segnale/rumore, bit rate massimo e
efficienza spettrale). Da questa nasce una discussione circa la possibilità da parte
di un sistema di comunicazione, basato sulla coerenza, di offrire un potenziale
vantaggio in termini di capacità di trasmissione, e di trovare applicazione nella
crittografia dei dati.

Il sistema di comunicazione proposto si fonda sulla capacità di controllare
in maniera indipendente la coerenza tra ogni coppia di campi. Si dimostra che il
suddetto controllo può essere ottenuto mediante l’implementazione di una porta
lineare che combini diversi campi tra loro incoerenti. L’apparato sperimentale
realizzato è centrato su di un sistema costituito da un modulatore spaziale di
luce e un mezzo ottico complesso.

In conclusione, il presente lavoro propone un metodo innovativo e la prova
empirica del controllo simultaneo della coerenza tra diverse coppie di campi, e
dimostra come il controllo presentato possa essere efficacemente sfruttato per
fornire una nuova soluzione alle sfide presenti nella comunicazione ottica.
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1
Introduction

Our contemporary society is undoubtedly centered around fast and reliable
exchange of information. The support of advanced communication systems
is nowadays necessary in any social and economic environment, from the
operation of industry and finance, to the global flow of news and knowledge,
to personal entertainment. Looking into the near future, numerous emerging
technologies, such as autonomous vehicles or the so-called “internet of things”,
will place even greater overhead demands on current communication infrastruc-
ture (see predicted data trend in Fig. 1.1). As a prime technological example,
virtual reality promises the establishment of an alternative platform that will
allow people to meet and network, without the need of energy consuming
transportation, thereby contributing to a more sustainable environment. This,
however, entails the need for very high quality, real-time, three-dimensional
virtual environments available simultaneously to countless users, thus calling
for unprecedented network capacity. The ever-growing demand has been so far
sustained by optical fibers, which provide the backbone of our communications
infrastructure. The age of fiber optics started in 1966 with the work conducted
by Charles Kao and George Hockham on ultra-low loss silica glass [2] and
with the first demonstration of < 20 dB/km optical fiber loss in 1970 [3].
Since then, the capacity of a single fiber has been boosted by several orders
of magnitude, from a few Gb/s [4] to hundreds of Tb/s today [5]. This
result has been achieved making full use of four degrees of freedom (time,
polarization, frequency, and coding scheme), deploying complex quadrature
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1 Introduction

Figure 1.1: Volume of data/information created, captured, copied, and
consumed worldwide from 2010 to 2020, with forecasts from 2021 to 2025
(in Zettabytes). The data is taken from Ref. [1].

modulation formats, polarization multiplexing, coherent detection, optical
superchannels and multi-band optical transport [6–8]. However, even when
efficiently exploiting the full low-loss spectral window available, a single optical
fiber could not have a capacity higher than approximately 100 Tbit/s, due to the
so-called “non-linear Shannon limit” [9]. Even if remarkable, this bit-rate would
not be enough to satisfy the extrapolated need for 1 Pbit/s system capacity
expected for the present decade [10]. The forthcoming inability to meet the
growing bit-rate demand is known as “capacity crunch” [11]. The only viable
solution seems to be to resort to new types of fibers that can support multiple
transmission paths, thus taking advantage of the spatial degree of freedom. This
approach is known as space-division multiplexing (SDM) [5]. We sketch some
of the possible implementation of SDM in Fig. 1.2. The most straightforward
option is to use a single-core thin fiber array, i.e., a fiber bundle (see Fig. 1.2a),
with the disadvantage of not being cost-effective. Another solution involves
embedding multiple uncoupled cores in the same glass filament (multi-core
fiber, Fig. 1.2b). Employing this technology, it is currently possible to achieve
up to 32 independent single-mode beams in a single fiber [12]. Finally, a third
approach is to multiplex the information into different propagating transverse
modes in the same core. For this purpose, one uses a few-mode fiber [13], i.e., a
fiber that supports an appropriately small number of modes (see Fig. 1.2c). All
of these solutions, alone or in combination, are now intensively researched for
use in practical scenarios [12]. Efficiently employing another degree of freedom
(space) promises a further increase of the system capacity, posing SDM as a
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Figure 1.2: Different types of fiber for space-division multiplexing. (a) An
array of single-core thin fibers (fiber bundle). (b) A multi-core fiber. (c) A
few-mode fiber, i.e., a fiber that supports a designed number of modes.

practical solution to address the capacity crunch in the short term (see Fig. 1.3).

Capacity is not the only challenge that the next-generation communication
network has to overcome. For instance, Internet access around the world is not
uniform. The internet penetration, i.e., the percentage of total population that
has access to the network, spans from an average of 89.7% in Europe [14], down
to an average of 39.3% in Africa [15]. Even in the most developed countries,
similar issues affect less densely populated areas that are generally close to
the fiber backbone but do not have access to it. This problem is known as

Figure 1.3: Capacity trend of communication systems over the years. SDM
provides a solution to increase the capacity of communication systems beyond
the limits imposed by the single fiber. Data is taken from Ref. [5].
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1 Introduction

“last mile access” [16]. Ideally, everyone should gain access to the optical
fiber-based network, which grants maximum data rates. However, due to the
high installation costs, this is not feasible, especially in less populated or hard-
to-reach areas [17]. Radio frequency (RF) and microwave connectivity are the
most common solutions to this problem. However, the main disadvantage is
that they are severely limited in bandwidth and cannot support high throughput
for multiple users [18]. An alternative solution is represented by free-space
optical communications (FSO). FSO involves sending information through an
unguided propagation medium using optical frequencies ranging from infrared
to ultraviolet light. FSO offers various attractive features [19]:

• very large bandwidth;

• no license fee, since the optical spectrum is not covered by the telecom-
munications regulations;

• lower cost of installation and maintenance;

• lower power consumption;

• inherent security, thanks to the high directionality of the laser beams
carrying the signals;

• immunity to RF electromagnetic interference;

• compatibility with the fiber optics network;

• straightforward implementation of SDM to increase the system capacity
(array of laser beams).

The main challenge in FSO lies in atmospheric effects, such as absorption, scat-
tering, and atmospheric turbulence [20]. In particular, atmospheric turbulence
introduces intensity scintillation, phase distortion, and modal coupling. To
reduce the impact of atmospheric effects, the use partially coherent light has
been proposed. Relying on partial coherence significantly reduces the bit-error
rate, compared to its coherent counterpart [21].

It is clear from this overview that the science of communication will face
major challenges in the coming years. To meet these challenges, simply
improving existing technologies will most likely not be sufficient. We need to
assume a new perspective that goes beyond traditional communication systems,
and dare to explore innovative platforms. In this light, we took inspiration from
existing solutions (SDM and partial coherence for FSO) to envision a potential
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new route. Let us consider the four fibers in Fig. 1.4, that can be collected in a
fiber bundle or a multi-core fiber, taking advantage of the platforms developed
for SDM. Standard communication techniques would maximize the capacity
of each single fiber, treating each transmitted field as an independent signal.
However, we can also imagine a different scenario. Instead of employing each
transmitted beam as an independent carrier, we assume that we can encode the
information in the correlation between each pair of fields (mutual coherence).
In this case, the number of signals would not be given by the number of fields
(N f = 4), but by the number of field pairs Np = 6, thus effectively increasing
the number of transmitted signals without modifying the physical transmission
line. This promising improvement becomes more relevant when we generalize
this principle to an arbitrary number of fibers N f , obtaining a quadratic scaling
of the number of signals Np with the number of transmitted fields:

Np =
(

N f

2

)
= N f (N f −1)

2
. (1.1)

This observation leads to the central question of this thesis: can we effectively
use mutual coherence to increase the capacity of a communication system? We
develop our answer in three main points, which we can summarize as follows:

• we theoretically present a technique to independently control the mutual
coherence of a set of fields through a linear transformation (Ch. 2);

• we analyze the performance of a communication system which encodes
the data in the mutual coherences of a set of transmitted fields (Ch. 3);

Figure 1.4: Encoding information in the mutual coherence of spatially
separated fields. The number of signals scales quadratically with the number
of transmitted fields.
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1 Introduction

• we experimentally realize the control of the mutual coherences of several
fields, employing a spatial light modulator and a complex medium to
implement a linear port (Ch. 4).
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2
Coherence control: theoretical background

Coherence is a fundamental notion in the science of light and offers a central
degree of freedom to manipulate electromagnetic radiation of diverse physical
character [22]. It accounts for the statistical properties of the electromagnetic
radiation [23]. Not only has the study of optical coherence been crucial
to the foundations and development of modern optics [24], but it has also
found countless applications in optical technology, e.g., in imaging [25, 26],
tomography [27–29], beam propagation [30], nanophotonics [31, 32], trapping
[33–36], and free-space optical communications [21, 37].

In this chapter, we will provide the background concepts needed to un-
derstand the theory of optical coherence. Moreover, we present a method to
generate a set of n fields with precisely controlled mutual coherences through
an n ×n linear transformation.

2.1 Basic definitions

Here, we introduce two ways of treating the polychromatic fields analytically:
the real field, which is the actual electric field as given by Maxwell’s equations
in time domain, and the complex representation, which is a convenient and
powerful tool that simplifies many calculations. We then show that the two
representations are equivalent, allowing us to work with complex fields for
the rest of the document. We continue defining important quantities, such as
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2 Coherence control: theoretical background

the autocorrelation of the fields, the power spectral density, the power and
the first-order coherence. We then introduce the concept of mutual coherence
and present two methods to experimentally measure it. Finally, we define the
coherence matrix, highlighting its most relevant properties.

2.1.1 Non-monochromatic fields

In the field of optics, we commonly deal with monochromatic fields, which,
at a given point P , are characterized by a constant amplitude and a phase that
varies linearly with time [23]. This important approximation often well applies
to the analysis of phenomena involving laser light, due to its narrow linewidth.
However, even the sharpest spectral line has a finite width. Thus, for a general
treatment of light field, we need to consider polychromatic fields [23]. In this
section, we will derive a set of mathematical tools and properties that will be
useful in the investigation of non-monochromatic light.

Let us restrict ourselves to a Cartesian component of the electric field,
represented by the real signal F (r )(t ). This non-monochromatic field can
be decomposed in a sum of monochromatic components, each with relative
amplitude a(ν) and phase φ(ν), and expressed through a Fourier integral,

F (r )(t ) =
∫ ∞

0
a(ν)cos

[
φ(ν)−2πνt

]
dν . (2.1)

We now introduce the complex representation of the field, associating to F (r )(t )
a complex function of the form [23]

F (t ) =
∫ ∞

0
a(ν)e iφ(ν)−i 2πνt dν . (2.2)

We will refer to this function as the complex field. Because F (r )(t ) is the real
part of F (t ), it is convenient (due to the mathematical properties of complex
exponentials) to calculate the effect of linear systems considering F (t ), and
only at the end of the calculations take its real part to derive the expression of
the real field.

We can derive another relation between the real and complex fields by
expressing F (r )(t ) through its Fourier transform

F (r )(t ) =
∫ ∞

−∞
v(ν)e−i 2πνt dν . (2.3)

For a real signal we have v(−ν) = v∗(ν), so we retain the total spectral informa-
tion if we consider only the positive frequencies. If we then recast the complex
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2.1 Basic definitions

variable v(ν) with explicit amplitude and phase

v(ν) = 1

2
a(ν)e iφ(ν) with ν≥ 0 , (2.4)

we realize that it is possible to express F (t ) in terms of the Fourier coefficients
of F (r )(t ):

F (t ) = 2
∫ ∞

0
v(ν)e−i 2πνt dν . (2.5)

This result tells us that the complex field can be derived from the real one, setting
to zero the amplitudes belongings to the negative frequencies, and multiplying
by two the amplitudes associated to the positive frequencies. As we have already
point out, thanks to the symmetry of the spectrum of real signals, F (t ) and
F (r )(t ) carry the same information, confirming that the complex representation
of the field is to be considered equivalent to the real one.

Next, we define some properties of polychromatic fields, namely the auto-
correlation, the power spectral density, the power and the first-order coherence.
We highlight that we always consider stationary and ergodic fields. Stationarity
implies that the ensemble average is independent of the origin of time, while
ergodicity entails the equivalence between ensemble average and time average
involving a single realization of the random process. The field autocorrelation
RF (t1, t2) is defined as

RF (t1, t2) = F (t1)F∗(t2) , (2.6)

where the overline stands for ensemble average. Under the stationarity condition,
the autocorrelation only depends on the difference τ= t1 − t2, and not on the
particular values of t1 and t2. Thus, we can write

RF (τ) = F (t +τ)F∗(t ) , (2.7)

The power spectral density can be derived from the expression of the autocorre-
lation, through the Wiener-Khinchin theorem [23], which states that the power
spectral density S(ν) and the autocorrelation RF (τ) form a Fourier transform
pair:

S(ν) =
∫ ∞

−∞
RF (τ)e−2πiντdν . (2.8)

We then define a fundamental quantity in optics, which is the power PF of the
field*:

PF = 〈
F (t )F∗(t )

〉
, (2.9)

*We will equivalently use the term intensity IF to refer to this quantity.
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2 Coherence control: theoretical background

where the angle brackets stand for an infinite-time average, i.e.,

〈X (t )〉 = lim
T→∞

1

T

∫ T /2

−T /2
X (t )d t . (2.10)

Since we are dealing with ergodic and stationary fields, we can write the power
in terms of the autocorrelation and the power spectral density:

PF = 〈
F (t )F∗(t )

〉= F (t )F∗(t ) =RF (0) =
∫ ∞

−∞
S(ν)dν . (2.11)

The normalized version of the autocorrelation is known as first-order coherence
g (1)(τ) = RF (τ)/PF [38]. In this thesis we will assume light fields with a
Lorentzian power spectral density, characterized by linewidth ∆ν and central
frequency ν0 [38], i.e.,

S(ν) = 1

π

∆ν

(ν−ν0)2 + (∆ν)2 , (2.12)

which results in a g (1)(τ) of the form †:

g (1)(τ) = e−i 2πν0τ−2π∆ν|τ| . (2.13)

Finally, we introduce the concept of narrow-band field. Until now we
considered a general polychromatic field, while in most practical cases (and for
the entirety of this thesis) we are interested in narrow-band fields, i.e., fields
that are characterized by a power spectral density whose amplitudes are non-
negligible only in a spectral window much smaller than the central frequency
ν0. We can express a narrow-band field F (t ) with an explicit dependence on
the oscillation frequency ν0, and characterized by real and time-dependent
amplitude A(t ) and phase Φ(t ):

F (t ) = A(t )e iΦ(t )−i 2πν0t . (2.14)

The field F (t ) – similarly to a monochromatic field – is characterized by
fast oscillations at the central frequency ν0, with A(t ) and Φ(t ) that can be
considered constant over many oscillation cycles. On top of the monochromatic
behavior, however, amplitude and phase undergo random fluctuations, with a
rate that is given by the inverse of the spectral linewidth (1/∆ν). For this reason,
narrow-band fields are also known as quasi-monochromatic fields.

†Note that in Ref. [39], we used g (1)(τ) = exp(−i 2πν0τ−∆ν|τ|). In this thesis, we added the
factor 2π to the linewidth to be more consistent with the literature.
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2.1 Basic definitions

2.1.2 Mutual coherence

The term mutual coherence‡ quantifies the correlation between a pair of stochas-
tic fields. The mutual coherence can be defined with respect to any degree of
freedom, e.g., space (spatial coherence), time (temporal coherence), polarization
(degree of polarization [40]), and transverse modes [41]. Most of this work
deals with the special case of spatially separated optical beams. We represent
two random, statistically stationary and ergodic, narrow-band scalar optical
fields at two different points in space, but evaluated at the same time, by the
complex signals Fi and F j . The mutual coherence (also known as equal-time
degree of coherence [23]) γi j between Fi and F j is defined as

γi j =
〈Fi F∗

j 〉√〈|Fi |2
〉 〈|F j |2

〉 . (2.15)

The mutual coherence is a normalized quantity, spanning from full incoherence
(|γi j | = 0) to partial (0 < |γi j | < 1) to full coherence (|γi j | = 1).

There are many ways to experimentally measure the mutual coherence, two
of which are relevant to our treatment and will therefore be described below.
In both cases we consider two quasi-monochromatic fields X1 and X2, which
propagate as collimated fundamental Gaussian modes, and are characterized by
mutual coherence γ12, and input powers P1 = 〈|X1|2〉 and P2 = 〈|X2|2〉. In the
first method, we direct the two beams towards a beam splitter, as depicted in
Fig. 2.1. We then measure the intensities of the two output ports with a pair of
photodetectors. The two fields Y+ and Y− at the output ports are

Y± = Xi ±X jp
2

, (2.16)

while the power measured by each photodetector is

P± = 〈|Y±|2
〉= 1

2

[〈|X1|2
〉+〈|X2|2

〉±2
√〈|X1|2

〉〈|X2|2
〉

Re
(
γ12

)]
. (2.17)

Measuring the input powers Pi = 〈|Xi |2〉, with i = {1,2}, and the difference
between P+ and P−, we can calculate the real part of the mutual coherence γ12

as
Re

(
γ12

)= P+−P−
4
p

P1P2
. (2.18)

‡Note that throughout the thesis, we will indifferently use the terms mutual coherence, mutual
degree of coherence or simply degree of coherence.
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2 Coherence control: theoretical background

Figure 2.1: First method for the measurement of the mutual coherence. Two
beams X1 and X2 are mixed with a beam splitter, resulting in the output fields
Y+ and Y−. Two photodetectors measure the output power, which is used to
reconstruct the value of the mutual coherence between X1 and X2.

In the second method, we measure the mutual coherence by interfering X1 and
X2 at the focal plane of a low-NA lens. We sketch in Fig. 2.2a the optical setup
considered, and the reference systems at the back and front focal planes of the
lens. The total input field at the back focal plane Fin is given by the sum of X1

and X2, which are collimated fundamental Gaussian modes centered at x =±x0,
respectively, and y = 0, with a beam waist w0 ≪ x0:

Fin = X1(t )p
2πw0

e
− (x−x0)2+y2

2w2
0 + X2(t )p

2πw0
e
− (x+x0)2+y2

2w2
0

+iφ
, (2.19)

where φ is the relative phase difference between X1 and X2, that we assume
controllable. We calculate the focal field F f through a 2D-Fourier transform
with respect to the spatial variables x and y [42], obtaining a focal intensity

CAM

Lens

Figure 2.2: Second method for the measurement of the mutual coherence.
(a) Two Gaussian beams are focused by a low-NA lens. We then measure the
focal plane intensity with a camera. (b) Normalized intensity I f measured in
the focal plane. Here we have assumed 〈|X1|2〉 = 〈|X2|2〉, φ= 0 and γ12 = 1.
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2.1 Basic definitions

I f = 〈|F f |2〉 equal to

I f = w2
0e

−
(

f 2
x + f 2

y

)
w 2

0

[〈|X1|2
〉+〈|X2|2

〉+2Re
(〈

X1X ∗
2

〉
e2 fx x0−φ

)]
, (2.20)

where fx and fy are the spatial frequencies at the focal plane. In Eq. (2.20), we
recognize the Gaussian envelope, modulated by the interference fringes arising
from the cosine term. The intensity I f is depicted in Fig. 2.2b, in the case of
mutually coherent beams with same intensity, and relative phase φ= 0.

We can recast Eq. (2.20) highlighting the role of the mutual coherence γ12:

I f ∝
〈|X1|2

〉+〈|X2|2
〉+2

√〈|X1|2
〉 〈|X2|2

〉 |γ12| cos
(
∠(γ12)+2 fx x0 −φ

)
,

(2.21)
where ∠(γ12) is the phase of γ12. It is then evident that the mutual coherence
alters the interference fringes. In Figs. 2.3a and 2.3b, we show the intensity
profile along fx for different values of mutual coherence (we consider fy = 0,
〈|X1|2〉 = 〈|X2|2〉 = Iin, and we set the value of the relative phase to φ = 0).
In Fig. 2.3a we modulate the magnitude of the mutual coherence, keeping
constant its phase. Reducing the absolute value, the contrast of the interference
fringes reduces, until we remain only with the Gaussian envelope for |γ12| =
0. In Fig. 2.3b we instead keep constant the absolute value of the mutual
coherence (|γ12| = 1), while we change its phase. This results in a shift of
the interference fringes with respect to the Gaussian envelope. We obtain the
same result modulating the relative phase φ between X1 and X2, as we can see
from Eq. (2.21). We can use the dependence of the intensity I f on the control
parameter φ to measure the degree of coherence. We choose a point in the
camera plane, e.g., fx = fy = 0, and we modulate φ from 0 to 2π, measuring
the resulting intensity (see Fig. 2.3c). We then select the maximum I f ,max and
minimum I f ,min intensities

I f ,max =
〈|X1|2

〉+〈|X2|2
〉+2

√〈|X1|2
〉 〈|X2|2

〉 |γ12|

I f ,max =
〈|X1|2

〉+〈|X2|2
〉−2

√〈|X1|2
〉 〈|X2|2

〉 |γ12|
(2.22)

and we derive the visibility V , defined as

V = I f ,max − I f ,min

I f ,max + I f ,min
=

2
√〈|X1|2

〉 〈|X2|2
〉〈|X1|2

〉+〈|X2|2
〉 |γ12| . (2.23)

From the measurement of the visibility, and the single intensities of X1 and X2,
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2 Coherence control: theoretical background

Figure 2.3: Interference fringes for different values of mutual coherence.
(a,b) Intensity dependence on the spatial frequency fx in the focal plane.
(a) Changing the magnitude of γ12, the contrast of the interference fringes
reduces accordingly. (b) If we change the phase of the mutual coherence
keeping the absolute value constant (|γ12| = 1), we measure a shift of the
maxima and minima with respect to the Gaussian envelope. (c) Dependence
of the intensity in a single point of the focal plane ( fx = fy = 0) on the relative
phase difference φ between the two interfering fields X1 and X2.

we can calculate the magnitude of γ12:

|γ12| = V

〈|X 2
1 |

〉+〈|X 2
2 |

〉
2
√〈|X 2

1 |
〉 〈|X 2

2 |
〉 . (2.24)

The phase of the mutual coherence ∠(γ12), instead, can be directly measured
from the initial phase of the cosine modulation of I f .

2.1.3 Coherence matrix

Let us generalize the concept of mutual coherence to a set of n fields Fi , with
i = 1,2, . . . ,n, located at n different points in space. We start collecting the n
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2.1 Basic definitions

fields in a normalized column vector F = [
F1

/p
I1 , F2

/p
I2 , . . . , Fn

/p
In

]⊺,
where Ii = 〈|Fi |2〉 and the symbol ⊺ denotes the transpose of the vector. In
analogy with the definition of mutual coherence given in Eq. (2.15), we define
a new quantity K as

K= 〈FF †〉 , (2.25)

where the dagger denotes conjugate transpose, and the angle brackets a time
average. The matrix K is known as coherence matrix (or, more specifically,
spatial coherence matrix, since we are here dealing with spatially separated light
fields). The diagonal elements of the matrix are the self degrees of coherence
γi i , which are always equal to 1, and the off-diagonal terms are the values
of mutual coherence [Ki j ] = γi j . The coherence matrix is also known as a
statistical correlation matrix, which is a normalized covariance matrix, and
must be Hermitian and positive semi-definite [43]. These conditions make
the values of the degrees of coherence mutually dependent. We will now
analytically derive this dependence, and set a more strict condition that allows
us to independently choose the elements of the coherence matrix. Since K is
Hermitian, we have

γ j i = γ∗i j , (2.26)

while the condition for positive definite matrices is [44]

tr(K)2

tr(K2)
> n −1 , (2.27)

where tr stands for the matrix trace, and n is the dimension ofK, i.e., the number
of spatially separated fields in the system. Since we also want to include the
positive semi-definite matrices, we generalize the condition above to have§

tr(K)2

tr(K2)
≥ n −1 . (2.28)

The diagonal elements of K are all equal to 1, hence

tr(K)2 = n2 . (2.29)

The diagonal elements of K2 are

diag
(
K2)= n∑

j=1
γi jγ j i =

n∑
j=1

γi jγ
∗
i j , (2.30)

§Note, however, that there exists positive semi-definite matrices which do not satisfy
Eq. (2.28), which is a sufficient but not necessary condition. An example is given by the
fully coherent system, which is represented by a coherence matrix where all the elements are 1.

15



2 Coherence control: theoretical background

where in the last passage we used the Hermitian property of K [Eq. (2.26)].
Therefore we get that the trace is

tr(K2) =
n∑

i=1

n∑
j=1

|γi j |2 . (2.31)

Combining Eqs. (2.28), (2.29) and (2.31), we obtain a condition on the absolute
values of the degrees of coherence

n∑
i=1

n∑
j=1

|γi j |2 ≤ n2

n −1
. (2.32)

This condition ensures that the coherence matrix is physically meaningful. We
find a stricter condition choosing all mutual coherences with the same absolute
value, i.e., |γi j | = |γ| ∀ i , j , leading to

|γ| ≤ 1

n −1
. (2.33)

Equations (2.32) and (2.33) ensure that the coherence matrix is positive semi-
definite if we choose

|γi j | < 1

n −1
∀ i , j . (2.34)

The interest in this sufficient condition resides in the fact that, if satisfied, we
can choose the value of each mutual coherence independently of the others.

From the coherence matrix, we can also characterize the overall coherence
S of the system, employing the measure [45]

S = n

n −1

[
tr

(
K2

)
tr(K)2 − 1

n

]
, (2.35)

where tr stands for matrix trace. The overall coherence is normalized such that
0 ≤ S ≤ 1. The upper bound S = 1 is saturated exclusively when all fields
are mutually fully coherent (|γi j | = 1), hence corresponding to a completely
coherent system. The lower bound S = 0, on the other hand, is met only when
all fields are mutually fully incoherent (|γi j | = 0, for i ̸= j ), in which case
the whole system is fully incoherent and the coherence matrix is equal to the
identity matrix (K= I).

2.2 Coherence matrix control with linear
transformation

In this section, we will describe the important technique which allows us to con-
trol the coefficients of the coherence matrix employing a linear transformation.
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2.2 Coherence matrix control with linear transformation

2.2.1 Coherence control with mutually incoherent fields

We consider here n mutually incoherent input fields, which we can represent
with the column vector Fin. Since in this case all mutual degrees of coherence
are zero, whereupon the overall coherence of the whole system is also zero, the
input coherence matrix obeys

Kin = 〈FinF
†

in〉 = I . (2.36)

We combine the input fields via a linear transformation T̂ , according to

Fout = T̂Fin , (2.37)

where Fout is the vector describing the output fields. The output coherence
matrix is then given by

Kout = 〈FoutF
†

out〉 = 〈T̂FinF
†

inT̂ †〉 . (2.38)

Using the fact that T̂ is deterministic and time-independent and the inputs are
mutually incoherent, we obtain

Kout = T̂ 〈FinF
†

in〉T̂ † = T̂KinT̂ † = T̂ T̂ † . (2.39)

Therefore, it is possible to generate an arbitrary output coherence matrix upon
choosing a linear transformation which fulfills

T̂ =
√
Kout , (2.40)

where the square root is the principal square root of the matrix. The positive
semi-definiteness of the coherence matrix ensures the existence of such a linear
transformation [43]. We note that the assumption of mutually incoherent input
fields is not necessary to control the output coherence, yet it simplifies the
treatment, as indicated by Eqs. (2.39) and (2.40). In the next section, we will
derive the case of mutually partially coherent input fields.

Finally, we observe from Eq. (2.39) that, under unitary transformations, i.e.,
T̂ T̂ † = T̂ †T̂ = I, the output coherence matrix always obeys Kout =Kin = I for
an incoherent input system. The control of the output coherence thus relies
on the nonunitary character of the chosen transformation. We can prove that
unitary transformations cannot affect the overall coherence of a given system,
regardless the form of Kin. Demonstrating this general statement is the topic of
App. B.1.
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2 Coherence control: theoretical background

2.2.2 Coherence control with mutually partially coherent fields

Let us now consider input fields with a general coherence matrix Kin. Because
the input coherence matrix is positive semi-definite, we can diagonalize it, i.e.,

Kin =V
p
D
p
D

†
V† , (2.41)

where V is a unitary matrix and D is a diagonal matrix. Moreover, the positive
semi-definiteness implies that the eigenvalues are real and non-negative, allow-
ing us to take the square root of the diagonal matrix D. Applying the linear
transformation T̂ , we obtain the output coherence matrix

Kout = T̂KinT̂ † = T̂V
p
D
p
D

†
V†T̂ † =MM† . (2.42)

A relation analogous to Eq. (2.40) now applies to the matrix M= T̂V
p
D. Thus,

given a desired output coherence matrix, the linear transformation T̂ must take
the form

T̂ =
√
Kout

(p
D

)−1
V−1 . (2.43)

This form is more difficult to implement experimentally. In fact, it requires to
carefully characterize the input coherence matrix. On the other hand, obtaining
mutually incoherent inputs is straightforward, since it simply requires the use
of different lasers as input fields, or to split a single laser in multiple beams
and introduce a propagation delay between one another much longer than the
coherence time.
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3
Encoding information in the mutual coherence

Coherence has been used as a resource for optical communications since its
earliest days. In particular, a coherence-based multiplexing technique (known
as coherence multiplexing) has been proposed as the first coherent optical code-
division multiple access (CDMA) technique [46, 47]. Its appeal (in common
with other CDMA techniques [47]) lies in the fact that multiple users share the
same optical bandwidth, thus relaxing the requirements for wavelength control,
and transmit asynchronously to each other, allowing multiple access without
requiring any scheduling [48]. Coherence multiplexing, in all the proposed
configurations [46, 49, 50], makes use of optical coherence to discriminate one
pair of transmitted signal-reference beams from all the other pairs. Although
this CDMA technique uses coherence as a resource for multiplexing, its data
encoding scheme still relies on the relative optical path difference between two
fields, requiring each signal to have a dedicated reference. The presence of the
reference fields is detrimental for many reasons:

• it doubles the number of signals to be multiplexed, affecting the system
complexity and the noise performance [51–54];

This chapter is based on the article: Alfonso Nardi, Shawn Divitt, Massimiliano Rossi, Felix
Tebbenjohanns, Andrei Militaru, Martin Frimmer, and Lukas Novotny, Encoding information in
the mutual coherence of spatially separated light beams," Opt. Lett. 47, 4588-4591 (2022)
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3 Encoding information in the mutual coherence

• the losses associated to the beam splitting and recombination needed for
the reference are a limiting factor to the large-scale practical implementa-
tion of coherence multiplexing [55].

• the length of the delay lines employed to distinguish between different
reference fields scales exponentially with the number of multiplexed
signals [56].

The need of the reference field can be eliminated by encoding information
directly into the mutual coherence between pairs of transmitted light beams. In
Sec. 2.2, we showed that, implementing a suitable optical linear port, we can
independently control the mutual coherence between pairs of spatially separated
light beams. Using this technique, the transmitted fields would be mutually
referenced, without requiring the long delay lines and the lossy beam splitting
needed to generate the dedicated references. This reference-less, coherence-
based coding scheme is termed mutual coherence coding. Interestingly, by
encoding information in the mutual coherence between field pairs, we gain
a quadratic scaling of the number of transmitted signals with the number of
transmitted light beams. In fact, considering N f transmitted fields, the number
of signals equals the number of field pairs, that is Np = N f (N f −1)/2.

We open the chapter by introducing the basic theory to analyze a general
communication system. We then proceed describing the specific implemen-
tation of mutual coherence coding, and providing the dependence of relevant
figures of merit (signal-to-noise ratio, maximum bit-rate and spectral efficiency)
on the number of transmitted beams. We conclude with a discussion on the
benefit and limitations of the proposed communication scheme.

3.1 Optical communications

In this section, we provide an essential theoretical description of a communica-
tion system. We first present the general scheme which allows information to
flow from a sender to a receiver, describing each of the building blocks compos-
ing the system. We then continue illustrating the concept of multiplexing. We
conclude using the presented formalism to describe the coherence multiplexing
communication scheme.

3.1.1 General communication scheme

A general communication system is shown schematically in Fig. 3.1. It is
composed of five essential building blocks [57, 58]:

20



3.1 Optical communications

Figure 3.1: General scheme of a communication system. A binary word
(bbbn) is converted into a symbol sn through a bit-map (BMAP). The symbol
is then encoded into a physical signal, which is sent to the receiver through a
transmission line. The received signal is translated into the symbol s′n by a
decoder and finally translated to a binary word bbb′

n with an inverse bit-map
(IBMAP). If the received binary word bbb′

n is equal to the sent one bbbn , the
communication was successful.

1. Bit map (BMAP) – The goal of a communication system is to send a
message from the sender to the receiver. The message can be of various
types, from a sequence of letters or numbers, to a continuous function of
time [57]. Regardless the type, it is convenient to express the message as
a series of bits [57]

{. . . ,b−1,b0,b1,b2, . . . ,bl , . . . } . (3.1)

We call the coefficients bn symbols, while the set of values that they can
assume is named alphabet [58]. In case of bits, the symbols bn belong
to a binary alphabet (e.g., bn ∈ {0,1} or bn ∈ {−1,1}). While the abstract
representation of the message can always be expressed as a series of bits
without any drop in performance, it is convenient that the physical signal
to be transmitted assumes an arbitrary value inside a larger alphabet. In
fact, the larger the alphabet, the higher the amount of information that is
contained in each transmitted symbol. Let us consider a physical signal
that can assume M possible values, and that we use to encode a symbol sn .
Then, the symbol sn belongs to an M−ary alphabet (sn ∈ {v1, v2, . . . , vM }),
and carries a number of bits nb given by [57]

nb = log2(M) . (3.2)

A sequence of bits nb forms a binary word bbbn . We can define a BMAP,
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3 Encoding information in the mutual coherence

which maps one-to-one the binary word bbbn to a symbol sn :

bbbn = [b0,b1, . . . ,bnb ]
BMAP=====⇒ sn =BMAP(bbbn) . (3.3)

In this way, we translate the message, expressed in the binary word, in the
symbol to be encoded in the physical signal. We highlight that throughout
this work we will not assume any particular BMAP, in order to keep the
treatment as general as possible. We will instead work directly with a
symbol sn belonging to the largest alphabet allowed by the signal-to-noise
ratio (for more details, see Sec. 3.2.2).

2. Encoding – Once the binary word is mapped into the symbol, a physical
carrier is needed to transmit the information to the receiver. In optical
communications, the symbol is encoded in a specific degree of freedom of
the light field, e.g., amplitude, phase, frequency, or, in the case covered in
this thesis, mutual coherence. The modulator implementing the encoding
operation depends on the particular communication scheme chosen, thus
it must be independently analyzed for each case.

3. Transmission line – We refer to the physical channel connecting the
sender to the receiver as the transmission line. When the carrier is the light
field, the channel often involves the use of optical fibers, even though
free-space optical communications is emerging as an alternative [19].
Along the transmission line, the signal is perturbed by an additive white
Gaussian noise (AWGN) [57, 58]. More specifically, denoting as N (t )
the noise realization at time t , one has that N (t ) is:

• additive: it is simply added to the transmitted signal, i.e., if Y (t ) is
the transmitted signal at the sender side, the received signal Ỹ (t ) is

Ỹ (t ) = Y (t )+N (t ) . (3.4)

Moreover, the variance of the noise N (t ) does not depend on the
signal Y (t ).

• white: the power spectral density of the noise is constant over the
bandwidth of interest of the communication system. Considering
that the channel introduces a cut-off frequency ∆νN (much larger
than the bandwidth of detectors and modulators [10]) the noise
autocorrelation RN (τ) is

RN (τ) = N (t +τ)N∗(t ) = PN e−2π∆νN |τ| , (3.5)

where PN is the noise power. Moreover, white noise has zero mean;
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3.1 Optical communications

• Gaussian: the noise has a Gaussian probability density function.
This implies that it is fully specified by its mean (zero in case of
white noise) and its variance.

4. Decoding – The receiver gets the transmitted signal Ỹ (t ), from which
we want to extract the encoded symbol. The decoder has various imple-
mentations, depending on the encoding technique used. Nevertheless,
it always includes a photodetector, which is used to convert the optical
signal into an electronic one, that can be read digitally. We model the
operation of the detector D on the field F (t ) as:

D[F (t )] = 1

T

∫ T /2

−T /2
|F (t )|2d t = 〈|F (t )|2〉T , (3.6)

where T is the integration time of the detector. From the photodetector
measurement we can extract the perturbed symbol s′n . The relationship
between the symbol and the measurement depends on the particular
communication scheme. In absence of noise, we have that the decoded
value is equal to the encoded one (s′n = sn).

5. Inverse bit-map – the inverse bit-map (IBMAP) finally translates the
reconstructed symbol s′n into the binary word bbb′

n :

bbb′
n = [b′

0,b′
1, . . . ,b′

nb
] = IBMAP(s′n) . (3.7)

If bbb′
n =bbbn , the message is successfully sent.

3.1.2 Multiplexing

In the previous paragraph, we restricted ourselves to the case of a single
carrier, hence a single symbol per detection period T . Multiplexing serves
to maximize the information throughput by combining different signals into the
same transmission line. This can be done by encoding symbols into orthogonal
vectors of a given basis, allowing us to mix different fields and separate them
at the receiver side. The available bases cover all degrees of freedom of light,
the most commonly used of which are time [59], polarization [60], space [5],
orbital angular momentum [61, 62], and wavelength [63]. The selected basis
determines the particular multiplexing method.

For our treatment, two multiplexing methods are relevant. The first one is
space division multiplexing (which we have already illustrated in Ch. 1). In
the analysis of mutual coherence coding, in fact, we consider a transmission
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3 Encoding information in the mutual coherence

line composed of multiple, non-interacting transmission paths, that can be
implemented using fiber bundles or multi-core fibers [5]. The second method
relevant to our discussion is coherence multiplexing, which we will illustrate in
the following example.

3.1.3 Example: coherence multiplexing

Hereafter we outline the theory of coherence multiplexing and show how it
differs from mutual coherence coding. This also offers the opportunity to
summarize the concepts presented so far in a practical example.

Let us first focus on a single carrier, in order to understand the modulation
principle at the core of coherence multiplexing. The scheme is depicted in
Fig. 3.2. The binary message is translated through the BMAP into the symbol
an . A light source characterized by a short coherence time τc = 1/(2π∆ν) (e.g,
an LED), where ∆ν is the linewidth, feeds a Mach-Zender interferometer (MZI).
The symbol an is encoded by setting the phase of one of the two branches of the
MZI, while the other branch introduces a delay time τd much longer than the
coherence time τc . We translate the symbol an into a phase level φn , following

Figure 3.2: Coherence multiplexing with a single signal carrier. A BMAP
translates the binary word bbbn into the symbol an . A field X (t ) enters a MZI,
which produces a reference field that undergoes a delay τd and a signal field
passing through a phase modulator. The symbol an is encoded into the phase
φn of the signal field via the phase modulator. The output field of the MZI
Y (t ) comprising the signal and reference fields is then transmitted. At the
receiver side, another MZI and a balanced photodetector are used to measure
the encoded phase φn , from which we can extract the transmitted symbol an
and convert it back to the binary word bbbn . For the communication scheme to
work, the delay of the receiving MZI (τr ) and of the transmitting MZI (τd )
must be the same, i.e., τr = τd .
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3.1 Optical communications

the rule
φn = an

M −1
2π, an ∈ {0,1, . . . , M −1} . (3.8)

Therefore, if X (t ) is the field at the input of the MZI, the output beam Y (t ) is

Y (t ) = X (t +τd )+X (t )e iφn

2
. (3.9)

The field Y (t ) is then sent to the receiver, traveling through the transmission
line, where it adds up with a noise realization N (t ), leading to the received
signal Ỹ (t ) = Y (t )+N (t ). The decoder is again a MZI, with one of the two
arms introducing a delay τr . The output fields of the receiver MZI are

E± = Ỹ (t +τr )± Ỹ (t )

2
, (3.10)

and they are measured by a balanced photodetector [64]. The signals D[E±] of
the two detectors are

D[E±] = 〈|E±|2
〉

T = 1

4

[〈|Ỹ (t +τr )|2〉T +〈|Ỹ (t )|2〉T ±2Re
(〈

Ỹ (t +τr )Ỹ ∗(t )
〉

T

)]
,

(3.11)
leading to the measured value

Sn =D[E+]−D[E−] =Re
(〈

Ỹ (t +τr )Ỹ ∗(t )
〉

T

)
. (3.12)

Let us analyze the signal Sn . We consider here only the expectation value of Sn

(a thorough noise analysis of this scheme can be found in Refs. [51–54]), i.e.,

Sn =Re
(

1

T

∫ T /2

−T /2

[
Y (t +τr )+N (t +τr )

] [
Y ∗(t )+N∗(t )

]
d t

)
. (3.13)

Since the noise N (t ) and the signal Y (t ) are uncorrelated, and the correlation
time of the noise τN = 1/(2π∆νN ) is much smaller than the introduced delay
τr , we have that Y (t +τr )N∗(t ) = N (t +τr )Y ∗(t ) = N (t +τr )N∗(t ) = 0, hence

Sn =Re
(

1

T

∫ T /2

−T /2
Y (t +τr )Y ∗(t )d t

)
=Re

(
Y (t +τr )Y ∗(t )

)
, (3.14)

where in the last equality we used the fact that the autocorrelation R(τr ) =
Y (t +τr )Y ∗(t ) does not depend on the absolute time t , but only on the time
difference τr . Writing Eq. (3.14) in terms of the input field X , we get

Sn = 1

4
Re

{[
X (t +τd +τr )+X (t +τr )e iφn

] [
X ∗(t +τd )+X ∗(t )e−iφn

]}
,

(3.15)
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which contains many terms of the form

X (t1)X ∗(t2) = PX g (1)
X (t2 − t1) = PX e−i 2πν0(t2−t1)−|t2−t1|/τc , (3.16)

where PX is the input power. If the output delay matches the input one, i.e.,
τd = τr , and neglecting all the terms for which |t2 − t1|≫ τc , we get

Sn = 1

4
Re

[
X (t +τr )X ∗(t +τd )e iφn

]
= PX cosφn

4
. (3.17)

Therefore, from the signal measured by the balanced photodetector we can
extract the encoded phase φn . From the extracted phase level we can then infer
the transmitted symbol an , which is translated back into the binary word bbbn

with an IBMAP *.
So far we have outlined a communication system that is seemingly based on

phase modulation only, and where coherence plays a secondary role. However,
there is an important point to be noted. We considered a single-mode fiber in the
transmission line, but two beams traveling: the one carrying the signal and its
dedicated reference. Without the use of coherence, we would have to transmit
two separate fields: the reference X (t ) and the modulated version X (t )e iφn

(see Fig. 3.3). Instead, due to the long delay lines in the MZIs, the two beams
X (t +τd ) and X (t )e iφn are mutually incoherent, allowing us to incoherently
sum them in the same single-mode fiber. At the receiver side, an equally long
delay τr = τd is used to make the two beams X (t +τd ) and X (t +τr )e iφn again
perfectly mutually coherent, such that we are able to extract the phase φn from
an interference experiment. Therefore, coherence is used for multiplexing the

*In the rest of the document, the stages of BMAP and IBMAP will always be implicit.

Figure 3.3: Communication scheme based on phase modulation. The
reference field and the signal field (carrying the signal encoded in the phase
φn) are transmitted in two separate channels. The two transmitted fields are
then combined and measured by a balanced photodetector to extract the phase
φn .
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signal-reference pair, while the information is stored in the phase of the field.
This is important to keep in mind when we will analyze mutual coherence
coding (Sec. 3.3). In fact, in mutual coherence coding, coherence is used to
directly encode the information to be transmitted, while the multiplexing is
performed by other means (e.g., space division multiplexing).

Coherence multiplexing can also be extended to a set of N f fields, which
we modulate independently. The communication system is depicted in Fig. 3.4.
We consider a set of N f input beams, each one modulated by a dedicated MZI.
It is important to note that the delays of the MZIs are different and increasing
in length [56], such that

τc ≪ τ1 ≪ τ2 ≪ ... ≪ τN f . (3.18)

We thus obtain a set of mutually incoherent fields Y1,Y2, . . . ,YN f , that we can
combine in the same single-mode fiber. The multiplexed signal will then be

Z (t ) =
N f∑
i=1

Yi = 1

2

N f∑
i=1

[
Xi (t +τi )+Xi (t )e iφn,i

]
, (3.19)

where φn,i is the phase encoded by the i−th modulator. After the transmission
line, at the decoder, we split the received field and we feed another set of
MZIs with delays matching the input ones. Considering the i−th modulator (τi

delay), the output signal is the results of the sum of many terms of the form
of Eq. (3.16). Due to the condition in Eq. (3.18), all terms with non-matching
delays are averaged to zero. Therefore, the measured signal is equal to

Sn,i =Re

[
〈Z (t +τi )Z∗(t )〉T

N f

]
=Re

[
〈|Xi (t +τi )|2〉T e iφn,i

4N f

]
= Pin

4N f
cos(φn,i ) .

(3.20)
Therefore, by using a dual set of MZIs with matched delays, we are able to
encode and decode information in the phase N f input fields, transmitted through
a single-mode fiber. The cost of multiplexing is twofold: the power reaching
the detector is lower (1/N f ) and, more importantly, all the incoherent fields
will contribute to the detector noise [51–54]. This noise contribution is known
as optical beat noise. We will extensively discuss this noise in the treatment of
mutual coherence coding.

3.2 Figures of merit

To compare different communication systems, we need metrics that assess the
performance of a specific scheme. We have selected three figures of merit that
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Figure 3.4: Coherence multiplexing in the case of N f multiplexed fields. A
set of MZIs splits each input field into a signal-reference pair of fields. The
i−th reference field undergoes a delay τi , while a phase modulator adds a
phase φn,i to the signal field. Then, all the modulated fields gets mixed in the
transmission line. At the receiver side, the transmitted field is again split to
reach a set of MZIs, each with different delays matching the input ones, and
the outputs are measured by balanced photodetectors. The signal measured
by the i−th detector is given only by the signal-reference pair that matches
the i−th delay.

we believe are the most relevant for a general comparison that does not consider
a particular practical implementation: signal-to-noise ratio, maximum bit-rate,
and spectral efficiency.

3.2.1 Signal-to-noise ratio

The signal-to-noise ratio (SNR) is a key parameter for evaluating communi-
cation systems. A higher SNR reduces the probability of bit error [58] and
increases the channel capacity (see next subsection). As the name suggests, the
SNR is defined as the ratio of the signal power and the noise power. Let us
consider a received field S̃ affected by noise. In the definition of the SNR, we
denote by the term signal the expectation value of S̃. Regarding the noise, as
discussed in Sec. 3.1.1, we consider it a zero-mean Gaussian process, meaning
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that it is fully defined by the variance of S̃. Therefore, we derive the SNR as

SNR =
(
S̃
)2

Var
(
S̃
) . (3.21)

3.2.2 Channel capacity and maximum bit-rate

The channel capacity was first defined by Shannon in his seminal paper
“Communication in the presence of noise” [57]. In his article, beside the
rigorous demonstration, he gives an estimation of the channel capacity that has
a clear intuitive meaning. Here, we will revisit his reasoning to arrive at the
formal definition.

As we have seen in Sec. 3.1.1, we receive a symbol per carrier per inte-
gration time of the detector T . Considering a symbol belongings to a M−ary
alphabet, the number of bits per symbol are nb = log2(M). Thus, we can define
the bit-rate as

BR = NS
log2(M)

T
, (3.22)

where NS is the number of multiplexed carriers, i.e., symbols received per
sampling period T . One might ask what is the maximum number M that we
can have in the presence of noise. This is limited by the number of levels we
can distinguish, in turn limited by the stochastic fluctuations of the perturbed
signal. Let us consider a signal affected by noise S̃(t ) = S(t )+N (t ), measured
by a photodetector:

D[S̃] = 〈|S̃(t )|2〉T = 〈|S(t )|2〉T +〈|N (t )|2〉T ±2Re
(〈

S(t )N∗(t )
〉

T

)
. (3.23)

Because the signal and the noise are uncorrelated, the expectation value of the
detected signal is

D[S̃] = PS +PN , (3.24)

where PS = |S(t )|2 and PN = |N (t )|2. The variance is the sum of the variances
of the different noise contributions. For a perfectly deterministic signal, the
variance is

Var
{
D

(
S̃
)}= PN . (3.25)

Considering the ideal scenario of perfect error correction, an estimate of
the number of levels we can distinguish is given by the ratio between the
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3 Encoding information in the mutual coherence

expectation value of the detected amplitude and the standard deviation of the
measurement [57]:

Mmax =
√

PS +PN

PN
=
p

1+SNR . (3.26)

Finally, combining Eq. (3.22) and Eq. (3.26), the maximum bit-rate ideally
achievable without errors is

BRmax = NS
log2(Mmax)

T
= NS

log2

(
1+SNR

)
2T

= NS CSh . (3.27)

The parameter CSh is known as channel capacity (or Shannon capacity), and
it is the result of the Shannon-Hartley theorem [57]. We decided to use BRmax

as a figure of merit to provide a theoretical limit on the bit-rate of mutual
coherence coding, without being constrained by the number of levels that a
specific implementation can practically encode, or by the probability of bit error
that a particular application can accept [58].

The maximum channel capacity achievable in current communication
systems is 100 Tbit/s, due to nonlinearities of the fiber response [5].

3.2.3 Spectral efficiency

The third figure of merit we selected is the spectral efficiency (SE). It quantifies
how effectively a given communication system exploits the signal bandwidth.
We define it as maximum bit-rate per symbol per unit bandwidth (bit/s/Hz) †,
i.e.,

SE = BRmax

NS BWin
, (3.28)

where BWin is the bandwidth of the transmitted signal.
The spectral efficiency of current communication systems can reach

5 bit/s/Hz and above, employing advanced multilevel modulation tech-
niques [10].

3.3 Mutual coherence coding

In this final section, we apply the theory presented above to the analysis of
mutual coherence coding. We start by describing the encoding and decoding

†Note that other works [61, 65] define the spectral efficiency considering the totality of the
multiplexed signals, i.e., SE = BRmax/BWin, reaching values of SE on the order of 100 bit/s/Hz.
We find our normalized definition more appropriate for fair comparisons.
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3.3 Mutual coherence coding

schemes, followed by the dependence of the figures of merit on the number
of transmitted beams. We conclude by evaluating the advantages of using the
proposed technique in combination with coherence multiplexing and proposing
the generalization of coherence control to other degrees of freedom.

3.3.1 Implementation

A general implementation of mutual coherence coding is sketched in Fig. 3.5,
for the case of N f = 4. We omit the bit map and inverse bit map, which are
not peculiar in mutual coherence coding and can be freely chosen depending
on the particular application. We start from a set of incoherent input fields
X1, X2, . . . , XN f , with the same central frequency ν0, linewidth ∆ν and power
Pin. The light sources employed can be LEDs or laser diodes, characterized by
a large linewidth, but that can still be considered narrow-band, i.e., ∆ν≪ ν0.
Through a linear port, each input X j is connected to an output field Yi , with
i ∈ {1,2, . . . , N f }, through a complex coefficient ti j , i.e., Yi =∑N f

j=1 ti j X j . The
mutual coherence γi j between two output fields Yi and Y j takes the form

γi j =
Yi Y ∗

j

Pout
=

N f∑
n=1

ti n

N f∑
m=1

t∗j m
Xn X ∗

m

Pout
= Pin

Pout

N f∑
n=1

ti n t∗j n , (3.29)

where we used the condition of input mutual incoherence Xi X ∗
j = Pinδi j ,

and we assumed the output fields having the same power |Yi |2 = Pout = ηPin,

Figure 3.5: Implementation of mutual coherence coding. A set of broadband
light sources (here: 4) are fed into a linear port T̂ to control their mutual
coherences. Afterward, the fields reach the receiver through a transmission
line. The received fields are then split to recover the encoded signals. The
mutual coherence is reconstructed through pair-wise interference experiments,
which can be implemented using a beam splitter and a balanced detector.
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3 Encoding information in the mutual coherence

where η= Pout/Pin is the transmission efficiency. By tuning the values of the
modulation coefficients ti j , we can then control the values of γi j (see Sec. 2.2).
We note that the coherence matrix K, which collects the degrees of coherence
of all the pairs, must be positive semi-definite, which is always fulfilled if
|γi j | ≤ 1/(N f −1), for all i ̸= j (see Sec. 2.1.3). This choice, while allowing
us to independently choose the values of all the mutual coherences, restricts
the analysis to a subspace of possible coherence matrices. One could envision
a more general scenario where the value of γi j can exceed the mentioned
bound [e.g., using the less stringent condition given by Eq. (2.32)]. In this
way, it would be possible to find other values of mutual coherence which, for
instance, maximize the SNR. The output fields Yi are transmitted to the receiver
through a transmission line. The transmission line in the case of signals carried
by spatially separated light beams can be a bundle of single-mode fibers, or
a multi-core fiber, making use of the platform developed for space division
multiplexing (see Ch. 1 and Ref. [66]). At the receiver side, we reconstruct the
values of mutual coherences to decode the transmitted data. We divide each
received light beam into N f −1 copies, and subsequently perform N f (N f −1)/2
pair-wise interference experiments. The interference experiment is carried out
by mixing two fields via a beam splitter, and measuring the intensities of the
two output ports with a differential detector (see Sec. 2.1.2). The two fields E+

i j
and E−

i j at the output ports are

E±
i j =

Yi ±Y j√
2(N f −1)

, (3.30)

while the signal measured by the balanced detector is

Si j = 〈|E+
i j |2〉−〈|E−

i j |2〉 =
2 Re

(〈Yi Y ∗
j 〉T

)
N f −1

. (3.31)

The detected signal is a random process, which we can characterize by an mean
value and a variance. From the expectation value, we confirm that the designed
measurement corresponds indeed to an unbiased estimate of the real value of
the mutual coherence

Si j = 2

T (N f −1)

∫ T /2

−T /2
Re

(
Yi Y ∗

j

)
d t = 2Pout

N f −1
Re(γi j ) , (3.32)

where we used Eq. (3.29) for the definition of γi j . However, the stochastic
nature of the underlying fields leads to a non-zero variance even in the case
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where no noise is considered (for the derivation, see App. B.2)

Var(Si j ) = S2
i j −

(
Si j

)2 =
2P 2

out

[
1+Re

(
γ2

i j

)]
(N f −1)22π∆νT

. (3.33)

This variance is inversely proportional to the number of statistically independent
realizations that we sample during the measurement time T . Fields separated
by a time longer than the inverse of the linewidth are uncorrelated, hence
the number of independent realizations of the random process is given by
2π∆νT [38]. Moreover, in the limit of small mutual coherence |γi j |≪ 1, the
variance saturates to a non-zero value determined by the number of collected
samples. The variance in Eq. (3.33) gives a contribution to the total noise,
which is known in the literature as optical beat noise, and it is regarded as the
main limitation for the performance of traditional coherence multiplexing (see
Sec. 3.1.3 and Refs. [51–54, 67]).

3.3.2 Performance

We will now derive, for the case of mutual coherence coding, the figures of
merit discussed in Sec. 3.2. We focus on the maximum bit-rate allowed by the
channel capacity in the presence of additive white Gaussian noise [57] (note
that also the optical beat noise falls into this category [67]). Each of the Np

mutual coherences between the field pairs is an independent signal, leading to a
maximum bit-rate

BRmax = Np
log2 (1+SNR)

2T
= N f (N f −1)

2

log2 (1+SNR)

2T
. (3.34)

According to Eq. (3.21), the SNR is defined as

SNR =
(
S̃i j

)2

Var(S̃i j )
, (3.35)

where S̃i j is the detected signal resulting from the mutual coherence of the
pair of fields Yi and Y j in the presence of noise. For multiple, independent
noise sources the variance is the sum of the variances of the different noise
contributions (see App. B.3). Restricting ourselves to optical beat noise and
shot noise, the SNR can be expressed as

SNR =
[

1+Re(γ2
i j )

2Re(γi j )2 2π∆νT
+ hν0

ηPinRe(γi j )2 2πT

]−1

. (3.36)
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3 Encoding information in the mutual coherence

Figure 3.6: System performance. (a) SNR, (b) maximum bit-rate (BRmax)
and (c) spectral efficiency (SE) as a function of the number of transmitted
fields (N f ) and input power (Pin). The dashed lines correspond to (a) Eq. 3.37,
(b) Eq. 3.38 and (c) Eq. 3.39. The system parameters are: T = 1 ns, γmax =
1/(N f − 1), λ0 = 870 nm, ∆λ = 1 nm and η = 1%, where λ0 = c/ν0 and
∆λ = c∆ν/ν2

0 are the central wavelength and the linewidth expressed in
nanometer, respectively, while c is the speed of light.
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3.3 Mutual coherence coding

The first term is the optical beat noise highlighted in (3.33) and the second term
corresponds to shot noise. The derivation of Eq. (3.34) assumes a value of
Re(γi j ) = γmax that is at the extreme of the allowed range of values. In fact, with
this choice the SNR provides the maximum number of discretization steps of the
signal. We choose γmax = 1/(N f −1) to ensure the positive semi-definiteness of
the output coherence matrix. We then insert γmax into Eq. (3.36) for the SNR
and then into Eq. (3.34) to obtain the maximum bit-rate. In Figs. 3.6a and 3.6b,
we show the SNR and the BRmax, respectively, as a function of the number of
transmitted fields N f for different input powers. The SNR decays monotonically
with increasing N f , whereas the maximum bit-rate first increases quadratically
and then saturates at large N f values. The quadratic increase derives from the
number of field pairs, while the saturation is due to the low SNR. In the limit
of large N f and sufficient input power (to be limited by optical beat noise) the
SNR takes the expression

SNR ≈ 4π∆νT

(N f −1)2 , (3.37)

where the factor 2π∆νT can be understood as the number of independent
realizations of the light field within the time T . This expression is in line
with what has been previously reported for traditional coherence multiplexing
limited by optical beat noise [67]. When the SNR becomes smaller than 1, we
can Taylor expand Eq. (3.34) and the maximum bit-rate saturates at the value

BRmax ≈
N f (N f −1)

4T

[
4π∆νT

(N f −1)2 ln(2)

]
≈ π∆ν

ln(2)
. (3.38)

Therefore, the ultimate limit of the bit-rate is given by the input linewidth. The
saturation can be well understood considering the statistical nature of mutual
coherence, since the rate of field realizations needed to reconstruct the mutual
coherence is given by the linewidth.

Finally, we derive the expression of the spectral efficiency, which reads as

SE = BRmax

Np ∆ν
< π

Np ln(2)
= 2π

N f (N f −1) ln(2)
. (3.39)

The dependence of the SE on the number of transmitted fields N f is repre-
sented in Fig. 3.6c. With a value much smaller than one, mutual coherence
coding performs worse in terms of spectral efficiency than standard coding
techniques [68]. On the other hand, the bandwidth ∆ν of mutual coherence
coding is considerably larger than the bandwidth of other coding techniques,
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3 Encoding information in the mutual coherence

which are restricted by the bandwidth of optoelectronic components, such as
detectors and modulators (∼ 50 GHz). The large bandwidth associated with
mutual coherence coding is provided by the input sources, and it is used to build
the statistical ensemble required to achieve a quadratic scaling of the number of
transmitted signals on N f . Thanks to this quadratic scaling, mutual coherence
coding can achieve bit-rates on the order of ∆ν, hence very high for input with
large linewidth. Therefore, even if the spectral efficiency of mutual coherence
coding is much lower than in other coding schemes, we can gain technical
advantage in terms of bit-rate.

3.3.3 Discussion

Mutual coherence coding comes with a quadratic scaling of the bit-rate with the
number of transmitted fields, up to the point where it saturates. The saturation
value is given by the linewidth of the light sources employed. Selecting
broadband light sources, such as LEDs or laser diodes, can therefore lead
to remarkable data transmission rates. These light sources have the added
advantage of being inexpensive, thus facilitating the scalability. Furthermore,
the use of broadband light makes our proposal suitable for free-space com-
munications, where partially coherent sources have been reported to be more
robust to atmospheric turbulence [21]. Another advantage of the proposed
method is the absence of local oscillators at the receiver side, since in mutual
coherence coding the transmitted beams are mutually referenced, allowing for
a simpler implementation. However, the discussed implementation requires
an accurate control on the length difference between the transmitted fibers. In
fact, through the linear port we can control the equal-time mutual coherence,
which is conserved only as long as the optical path difference of the interfering
beams does not exceed the coherence length of the input source. This issue
becomes more severe for large input linewidths, as the coherence length is
reduced accordingly. A possible solution to this limitation is to combine mutual
coherence coding and coherence multiplexing, obtaining a fully coherence-
based communication system. A schematics of this solution is depicted in
Fig. 3.7. To do so, one would introduce, at the sender side, a different delay
for each output beam of the linear port. If the individual delays and their
differences are much longer than the coherence time of the light sources, the
fields do not interfere, even when combined in the same single-mode fiber. The
receiver then splits the transmitted field and compensates for the input delays
to reconstruct the multiplexed signals, before proceeding with the pair-wise
interference experiments. Besides allowing to perform the transmission with
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Figure 3.7: Combination of mutual coherence coding and coherence
multiplexing. We control the coherence matrix of a set of mutually incoherent
fields through a linear port T̂ . Each of the generated fields Yi undergoes a
delay τi , where τ1 ≪ τ2 ≪ τ3 ≪ τ4. The signals are then mixed in the same
fiber which transmits the fields to the receiver. At the receiver side, a set
of delays matches the input one. Analogously to coherence multiplexing,
the encoded coherence matrix is retrieved only for the field components that
undergo the same total delay.

a single fiber, this approach relaxes the requirement on the length difference
between the fibers. In fact, since the transmission line is common, any optical
path difference between the interfering beams can only originate from the
introduced delays. Interestingly, in this approach the delay lines are very short
(on the order of the coherence length) and embedded in a well controlled
environment. The needed calibration of the delay length can then make use of
the techniques developed for standard coherent detection schemes [69].

Moreover, having a coherence based communication system comes with
security benefits. Suppose the sender and the receiver have a pre-shared set of
delays (which can be frequently updated). An eavesdropper cannot record the
message encoded in the mutual coherence, because they are not able to record
the fluctuations of the light field in real time. An eavesdropper could measure
the mutual coherences only through interference experiments and only if they
knew the pre-shared delays. This security benefit is similar to that of traditional
coherence multiplexing [70].

As a concluding remark, we highlight that mutual coherence coding is not
limited to spatial coherence. Coherence based on any other degree of freedom
of light (temporal coherence, degree of polarization, correlations between
transverse modes, etc.) can be used to encode information, allowing for various
implementations. Moreover, resorting to mutual coherence between different
degrees of freedom [71] can lead to a great enhancement of the scaling with
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the number of transmitted fields. Considering for example n different beams
(spatial degree of freedom), each of them characterized by m transverse modes,
the number of mutual coherences that we can control is Np ≈ (n ×m)2/2. This
can be further generalized (e.g., including time and polarization) to greatly
improve the capacity of current communication systems.
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4
Coherence control with an optical complex
medium

The use of mutual coherence to encode information has the potential to increase
the capacity of optical communication systems. If, with a standard scheme, we
are able to multiplex N f fields, the pair-wise nature of mutual coherence allows
to simultaneously send ≈ N 2

f /2 independent signals. Obviously, being able to
control the mutual coherence of several, spatially separated beams is crucial for
the implementation of the communication scheme.

Efforts have been made in developing several methods to control mutual
coherence, either via active devices such as spinning phase diffusers [72], spatial
light modulators (SLMs) [73] and digital micromirror devices (DMDs) [74],
or via passive methods such as fine tuning of the optical path [75–77]. Yet, all
these techniques have limitations on the attainable speed or are limited to a
single pair of fields.

In Sec. 2.2, we have presented a method to control the coherence matrix of
a set of fields, based on a linear transformation. In optical communications, a
linear transformation must be implemented through a multi-port linear optical
device (or linear port). There are several ways to implement an optical

This chapter is based on the article: Alfonso Nardi, Felix Tebbenjohanns, Massimiliano
Rossi, Shawn Divitt, Andreas Norrman, Sylvain Gigan, Martin Frimmer, and Lukas Novotny,
Controlling spatial coherence with an optical complex medium, Opt. Express 29, 40831-40840
(2021)
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4 Coherence control with an optical complex medium

linear port. The earliest proposed method considered a free-space optical
setup, employing phase shifters and beam splitters with variable transmittance
[78]. However, as the number of ports increases, the use of discrete optical
components in free space rapidly becomes impractical. Thus, a straightforward
solution is to employ integrated optics [79–81]. Nonetheless, the number of
components still scales quadratically with the dimensionality of the linear
transformation. This is a major challenge when working with photonic in-
tegrated circuits, as any manufacturing variability results in an error in the
linear transformation produced. Furthermore, non-unitary transformations are
needed to control the coherence matrix (see App. B.1). While there exist
configurations that allow the implementation of non-unitary linear ports [82],
they involve the use of a complex network of interferometers, where a large part
of the components is used to introduce controlled losses [83]. An interesting
alternative emerged recently, that exploits the properties of optical complex
media when combined with wavefront shaping devices. A complex medium is
an optical system that mixes many degrees of freedom of an impinging field
(space, time, polarization, mode), resulting in a scrambled intensity distribution
at its output [84]. The extremely large number of internal degrees of freedom of
a complex medium makes the output intensity pattern disordered, yet it remains
deterministic. Therefore, it is possible to fully characterize the effect of the
propagation through the medium on an incident field with a linear transmission
matrix (TM) [85]. Knowledge of the TM allows complex media to be used
to perform a variety of tasks, once combined with programmable modulators.
Applications include the control of different properties of light, e.g., intensity
[86–88], polarization [89, 90] and spectrum [91–94]. In particular, complex
media have been proposed as a compact, highly-dimensional multi-port device
[95], e.g., to perform quantum operations [96, 97]. Interestingly, even though
both random diffusers and wavefront shaping devices, such as SLMs and DMDs,
have been used for the control of the spatial coherence [72–74], they have not
been employed in combination to overcome the previous limitations.

In this chapter, we show the control of the coherence matrix of a set of
fields in a single-shot fashion, based on a linear transformation applied to n
mutually incoherent input beams. The linear transformation is experimentally
implemented with a complex medium in combination with SLM-based wave-
front shaping. As a proof of principle, we report the realization of a 3×3−port
device and show that it generates any combination of mutual coherences, within
the technical limitations.
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4.1 Wavefront shaping in multi-scattering media

4.1 Wavefront shaping in multi-scattering media

Consider a room well lit by a lamp, enclosed between white walls, with a rose
in its center. A door, opened, leads to an adjoining room, also surrounded
by white walls. We sit comfortably in the center of the room, and we would
like to observe the rose. Since the walls of the entire structure are perfectly
white, there is no light absorption. So we would expect the light reflected by
the flower (hence containing the information of its shape) to propagate to the
second room, allowing us to see an image of the rose (see Fig. 4.1). Why does
this not happen? The physical phenomenon that prevents us from seeing around
corners (as well as through thick fog or clouds) is called multiple scattering.
To understand this phenomenon, we need to investigate what happens at the
microscopic level when the light is reflected from the wall (Fig. 4.2).

Let us consider a wall composed of numerous non-absorbing particles,
each of them scattering light in a random direction. The cumulative effect of
all the scattering events happening in the material (multiple scattering) is the
scrambling of the outgoing light. This hides the spatial information contained
in the light reflected by the rose, making it impossible for the naked eye to

Figure 4.1: Light propagation inside a completely white room. One would
expect that the light reflected by the rose (which then contains the information
of its shape) is in turn reflected by the non-absorbing walls until they reach
the observer sit in the adjacent room.
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Figure 4.2: Multi-scattering in the white paint. The white paint covering
the wall consists of many scattering particles. The light reflected by the rose
is scattered many times inside the material before reaching the observer in
the other room. This multiple-scattering scrambles the wavefront, hiding the
shape information.

reconstruct its shape. We refer to this class of multi-scattering, non-absorbing
materials as random or complex media (or, simply, as multi-scattering media).

Let us now assume that we have perfect knowledge of the effect of the
material on each incoming ray of light, and that we are equipped with a device
that can modify the incident beam at will. Then we would be able to pre-
compensate the beam impinging the wall, so to cancel its effect and retrieve the
spatial information that leads to the rose image (Fig. 4.3).

This simplified picture is intended to provide the reader with an intuitive
view of the basic principle of light propagation control in complex media.
Starting from this principle, this scientific field has progressed to develop
numerous methods for turning a random medium into a useful instrument, such
as a high-NA lens [87], a variable phase plate [98, 99], a spectral filter [100,
101], a high resolution spectrometer [102, 103], an optical simulator [104], or a
broadband second harmonic generator [105]. In particular, wavefront shaping
can be used in combination with a multi-scattering medium to construct an
arbitrary, programmable optical linear port. The rest of the chapter will be
devoted to the detailed description of how to realize such a device.

4.1.1 Transmission matrix

We have seen that a multi-scattering medium has the property of mixing the
input modes, to the extent that it generates a disordered intensity pattern at the
output, resulting from the complex interference of the propagating modes [84].
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Figure 4.3: Retrieving the image of the rose after the propagation inside the
white paint. The effect of the paint is seemingly random, yet it is deterministic.
Thus, knowing the effect of the wall to the input light, we can think of using
a device to pre-compensate for the multi-scattering phenomenon, such that
we are able to reconstruct the image of the rose after the propagation inside
the white medium.

An example of this random intensity distribution, known as speckle pattern,
is reported in Fig. 4.4. Different input modes produce different, seemingly
random, speckle patterns. However, as long as the input light and the position
of the scatterers in the material do not change in time, a given input mode
always leads to the same result. To use the complex medium as an optical
tool, we ideally want to fully characterize and control this input-output relation.
Since we are dealing with a linear medium, this relation can be expressed in
terms of the scattering matrix [106]. Let us refer to the scheme depicted in
Fig. 4.5. We consider a set of input modes, which we collect in a vector EinEinEin,

Figure 4.4: Camera image of a typical speckle pattern.
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Figure 4.5: Scattering matrix formalism. The scattering matrix relates the
input fields and the output fields scattered by the material. E+

in and E+
out are

the input and output right-propagating beams, respectively, while E−
in and

E−
out are the input and output left-propagating beams.

such as

EinEinEin =
[

E+
inE+
inE+
in

E−
inE−
inE−
in

]
, (4.1)

where E+
inE+
inE+
in and E−

inE−
inE−
in are the column vectors collecting the right-propagating and

the left-propagating modes, respectively. The scattering matrix S relates the
input vector to a set of output modes EoutEoutEout = [E+

outE+
outE+
out,E

−
outE−
outE−
out]

⊺, according to the
relation

EoutEoutEout =SEinEinEin −→
[

E+
outE+
outE+
out

E−
outE−
outE−
out

]
=

[
T R′

R T′
][

E+
inE+
inE+
in

E−
inE−
inE−
in

]
, (4.2)

where again EEE+
out and EEE−

out are the right-propagating and the left-propagating
output modes, respectively. Matrices R and R′ are known as reflection matrices,
while T and T′ are the transmission matrices. The scattering matrix S is unitary
in absence of loss (SS† = I, where I is the identity matrix). Experimentally,
measuring the entire scattering matrix of a 3D multiple scattering medium
is a goal that remains unattained to date, despite considerable efforts [107].
Still, even with only partial knowledge of the scattering matrix, we can access
enough information to have some control over the output speckle pattern. In
particular, we focus on a sub-matrix of S that connects the right-propagating
input and output modes. This is commonly known as the transmission matrix
(TM) of the medium, a concept that was first presented and measured by Popoff
et al. [85]. Due to the loss of information, the TM is a random matrix, and
contains only a subset of the total modes [108]. All the uncontrolled modes
count as lossy channels, thus allowing the TM to be non-unitary. Nonetheless,
for our purposes, the dimensionality of the TM is very large, being limited only
by the number of pixels of the devices we use to characterize it [106]. In this
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work, we use a phase-only, liquid crystal-based SLM and a camera, both with a
number of pixels typically on the order of one million. From the knowledge
of this large fixed random matrix, we can employ the SLM in combination
with the complex medium to implement a smaller but reconfigurable linear
transformation [95], as we will see in the following sections.

4.1.2 Characterization of the transmission matrix

Let us proceed describing how to characterize the TM of a random medium.
The principle is the following. We consider a set of N input E in

n (with n ∈
{1,2, . . . , N }) and M output Eout

m (with m ∈ {1,2, . . . , M }) orthogonal modes. The
transmission matrix relates each input and output field, i.e., Eout

m = tmnE in
n ,

where tmn is a complex element of the TM. To characterize the TM, we measure
for each input mode the resulting complex amplitudes of the output modes. The
measured amplitudes are the elements of the corresponding column of the TM
(injecting the n−th input mode results in the measurement of the n−th column).
Implementing sequentially all the modes of the input basis, one reconstructs
the entire TM.

Let us now discuss how this method can be implemented with the SLM, the
complex medium and the camera (see Fig. 4.6). An input field, characterized by
constant amplitude and phase, is modulated by N segments (i.e., group of pixels
of suitable size, see an example in Fig. 4.6) of the SLM, that we can consider
orthogonal spatial modes. At the output of the multi-scattering medium, we
record with a camera the speckle field resulting from the propagation. Through
appropriate magnification and binning, we ensure that the pixel size of the
camera corresponds to the speckle grain [85], thus we can consider the field at
each camera pixel as an independent output mode. Let us assume for now that
we are able to measure the complex field Eout

m at the m−th camera pixel (we
will describe how to extract the phase information later in the section). Each
complex element tmn of the TM relates the field at the n−th segment of the
SLM (E in

n ) with the field at the m−th camera pixel, i.e., Eout
mn = tmnE in

n (see
Fig. 4.6). Therefore, the most straightforward way to measure the TM would
be to switch off all the SLM segments except a single one, while recording the
M output speckles. This would give access to the elements of the n−th column
of the TM. Proceeding sequentially with all the other SLM segments, we will
be able to reconstruct the entire TM. However, this basis, which is commonly
regarded as canonical basis [85], has two main disadvantages:

• this basis is very sensitive to noise, since each vector of the basis consists
of a single SLM segment;
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4 Coherence control with an optical complex medium

Figure 4.6: Experimental setup for characterizing the TM. A laser beam is
expanded via a telescope (L1 and L2 lenses) to match the SLM aperture. We
collect the SLM pixels into segments (in the examples each segments contains
2×2 pixels), and we consider each segment as an independent input beam E in

i ,
with i = 1,2, . . . , N , where N is the total number of segments. The modulated
field is focused by a lens (L3) onto a multi-scattering medium (CM), and
the output light is then collimated by another lens (L4). Finally, a camera
measures the resulting speckle intensity. Through appropriate magnification
and binning, we make sure that the pixel size of the camera corresponds to
the speckle grain. Each pixel is then considered as an independent output
field Eout

i , with i = 1,2, . . . , M , where M is the total number of camera pixels.
The relationship between the input fields (collected in a column vector EEE in)
and the output fields (column vector EEEout) is determined by the transmission
matrix T̂CM.

• we would need to impose zero-intensity on all but one segment, which is
not easily achieved with phase-only SLMs.

Therefore, we can consider another approach, which is offered by the Hadamard
basis [85]. It consists of N orthogonal patterns (where N is also the number
of individually controlled SLM segments), wherein half of the pixels have a
π phase difference relative to the other half, while the amplitude is constant
everywhere. It offers the advantage of being composed by phase-only patterns
(easy to implement with the SLM), and it maximizes the intensity at the
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4.1 Wavefront shaping in multi-scattering media

output camera (all the SLM pixels contributes to the signal), decreasing the
experimental sensibility to noise [109]. Let us give an example considering an
SLM with NSLM = 2×2 segments. We choose a vector of the canonical basis,
e.g., ccc = [0,1,0,0]⊺. We can convert the vector ccc in a vector hhh of the Hadamard
basis via the product with a 4×4 Hadamard matrix H4 [110]:

hhh︷ ︸︸ ︷
1
1
−1
−1

=

H4︷ ︸︸ ︷
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


ccc︷︸︸︷
0
1
0
0

 . (4.3)

We then reshape the vector hhh into a 2×2 matrix and program the SLM with the
corresponding phase mask, that we use to measure the TM. In Fig. 4.7, we show
some exemplary patterns for the case of NSLM = 16×16 = 256 segments . Note
that we use the Hadamard basis only to reconstruct the TM. After characterizing
the TM in the Hadamard basis, we convert the measured TM in the canonical
basis by a product with the Hadamard matrix [110].

After choosing the appropriate basis, it remains only to outline a method
for measuring the output field. In fact, cameras are only able to measure the
field intensity, losing the phase information. To measure phase, we must resort
to an interferometric measurement. Typical interferometric measurements
require the use of an external reference field, usually in the form of a broad,
collimated Gaussian beam that approximates a plane wave. However, these
techniques, while possible to implement [111], suffer from stability issues.
Another approach is to use an internal reference [85]. This method relies on
dividing the SLM into two parts:

Figure 4.7: Examples of vectors of the Hadamard basis implemented with the
SLM. We consider a SLM with 16×16 = 256 segments. The initial column
vectors are reshaped in order to be encoded into the SLM. Note that the
vectors can only take values {1,−1}, which correspond to {0,π} phase, easily
implementable with the SLM.
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4 Coherence control with an optical complex medium

• one part of the SLM is used to implement the N phase-masks that
constitute the Hadamard basis. Each input E in

n generates an output
speckle field, and we indicate the output field at the m−th camera pixel
as Emn = |Emn |e iφmn ;

• the second part provides a reference field. It also generates a speckle
pattern, which remains the same for any input vector. We denote as
E ref

m = |E ref
m |e iφref

m the output reference field at the m−th camera pixel
(note that it does not depend on the particular input vector n, but it stays
the same during the whole process of TM reconstruction).

We highlight this division in Fig. 4.8 using two different colors. At the SLM
plane the two beams (which we can call reference and Hadamard beams) are
spatially separated, but they get mixed during the propagation through the
complex medium. Thus, the resulting speckle patterns spatially overlap, and
they interfere at the camera plane. The intensity of the m−th camera pixel

Figure 4.8: Internal reference for field reconstruction. The SLM is divided
into two parts, which we highlight for illustration purpose with two different
colors. A part of the SLM (in red) encodes the vectors of the Hadamard basis.
The other part (in violet/blue) is used as a static reference, i.e., it remains the
same for any vector of the basis. The resulting speckle patterns (reported
independently for clarity) are superimposed and interfering at the camera
plane. We measure the resulting intensity for different phases ϕ encoded in
the reference part of the SLM, in order to reconstruct the phase of the output
speckle pattern.
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4.1 Wavefront shaping in multi-scattering media

originating from the n−th SLM pattern is

Iϕmn =
∣∣∣Emn

∣∣∣2 +
∣∣∣E ref

m

∣∣∣2 +2
∣∣∣Emn

∣∣∣∣∣∣E ref
m

∣∣∣cos(φmn −φref
m +ϕ) , (4.4)

where ϕ is the global reference phase that we control. To reconstruct the
complex amplitude, we shift the global phase ϕ and we measure the resulting
intensity modulation. In our implementation, we choose to use "four phases
method" [85, 112], i.e., we shift the reference phase by 0, π/2, π and 3π/2, and
we use the measurements to compute the complex coefficient as

I 0
mn − Iπmn

4
+ i

I 3π/2
mn − Iπ/2

mn

4
= Emn

(
E ref

m

)∗ = t ′mn . (4.5)

From this method we obtain an effective TM, since the reconstructed coefficient
t ′mn also contains the information about the reference speckle. Nevertheless, it
is possible to measure the constant E ref

m , and use it to retrieve the original TM
from the effective one. The downside of using internal reference is that it is only
possible to characterize the TM in the camera pixels where the reference field is
non-zero. Because also the reference field is a speckle pattern, there are many
dark pixels where the phase cannot be measured. However, since our goal is to
focus most of the light in only few points, not having access to the whole area
of the camera is only a minor drawback compared to the significant advantage
of greater stability. In fact, since the reference and Hadamard beams are co-
propagating, their interference is not affected by the vibration and the drift of
the optical components. On the other hand, an external reference propagates
along a different optical path before recombining with the Hadamard beam.
Therefore, any instabilities in the optical components of the setup introduce a
phase noise which impairs the measurement of the phase of the TM.

4.1.3 Multi-port linear device

Suppose we have a single Gaussian input beam E in
1 . Through the system of

SLM and complex medium, we generate a set of m output modes Eout
i , with

i = 1, . . . ,m, according to the transformation
E out

1,1
E out

2,1
...

E out
m,1

=


t11

t21
...

tm1

E in
1 , (4.6)
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4 Coherence control with an optical complex medium

Our goal is to control the coefficients ti 1, with i = 1, . . . ,m. Let us analyze
the procedure. The input beam reaches a region of a phase-only SLM, where
N segments of the SLM modulate the field locally, effectively generating N
spatially separated modes with controlled phase. Thus, the input field E in

1
undergoes a transformation T̂SLM,1 with dimensions N ×1. Next, the set of N
modes enters the complex medium. We characterize the effect of the medium
with a transmission matrix T̂CM,1. The dimension of T̂CM,1 is M ×N , since it
connects N input modes to M output speckles. We want to control only few
modes out of the many ones at the output, and they should enclose the largest
amount of the output power. We thus apply a projection P̂ (of size m ×M ,
where m is the number of modes we want to control) to select only the output
speckles we are interested in, while zeroing out the intensity of the rest. The
overall operation transforms an input beam into m outputs, according to the
relation 

E out
1,1

E out
2,1
...

E out
m,1

= P̂ T̂CM,1T̂SLM,1E in
1 . (4.7)

Combining Eq. (4.6) and Eq. (4.7), we require that

P̂ T̂CM,1T̂SLM,1 =


t11

t21
...

tm1

 . (4.8)

To generate the output beams with the desired coefficients, we only need to
invert Eq. (4.8) to find the transformation to be implemented with the SLM
(note that we can freely choose P̂ , and T̂C M ,1 is fixed and well characterized).
In practice, we apply a phase conjugation, which has already been proven
successful to focus light into few speckles [109]. Finally, we get the following
relation:

T̂SLM,1 = T̂ †
CM,1P̂ †


t11

t21
...

tm1

 , (4.9)

which is the configuration that we encode into the SLM to implement the desired
transformation.

50



4.2 Coherence control: experimental realization

Let us now move to the case of a set of mutually incoherent input beams. For
the sake of concreteness, we focus on the case of 3 input and 3 output beams (a
linear 3×3−port device) which we implement experimentally. Three mutually
incoherent, non-overlapping beams E in

1 , E in
2 and E in

3 reach different regions of
the phase-only SLM, undergoing afterwards the same transformations described
previously. Being mutually incoherent, each input beam generates its speckle
pattern, which does not interfere with the others. Therefore, we can simply sum
the independent speckle patterns to get the final result:E out

1
E out

2
E out

3

=


∑3

i=1 E out
1,i∑3

i=1 E out
2,i∑3

i=1 E out
3,i

=
3∑

i=1
P̂ T̂CM,i T̂SLM,i E in

i =
t11 t12 t13

t21 t22 t23

t31 t32 t33

E in
1

E in
2

E in
3

 .

(4.10)
Knowing from Eq. (2.40) the target coefficients ti j , we only need to use
Eq. (4.9) to correctly program each individual region of the SLM and obtain the
desired output coherence matrix. Note that the required linear transformation
T̂ =∑3

i=1 P̂ T̂CM,i T̂SLM,i =
p
Kout is in general non-unitary (see App. B.1). This

is not an issue for our implementation, since, due to the non-unitary nature
of the TM, the overall transformation T̂ can be non-unitary. Interestingly, the
expression of T̂ is not constrained by any requirement other than the passive
modulation of the SLM [95].

4.2 Coherence control: experimental realization

In Fig. 4.9 we show the experimental setup, which comprises two main blocks.
The first one (preparation) generates three fields characterized by a programmed
coherence matrix, while the second block (verification) verifies that the encoded
degrees of coherence correspond to the desired ones.

We use two phase-only SLMs (Meadowlark Optics P512) with 512×512
pixels each. In the preparation stage, we use a first SLM (SLM1) to modu-
late three mutually incoherent input lasers (Thorlabs HRP050 and Meredith
Instruments 633nm HeNe lasers, and ≈ 650nm FOSCO BOB-VFL650-10, see
App. B.5). Next, we focus them onto an optical complex medium (ground glass
diffuser, Thorlabs DG10-1500). The SLM1 and the scattering medium together
form the programmable multi-port linear device. Through wavefront shaping,
the light scattered by the medium and collected by a lens forms three output
beams.

In the verification stage, we use a second SLM (SLM2) to modulate the
phase of the beams before a lens. This allows us to control which beam is
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4 Coherence control with an optical complex medium

Figure 4.9: Experimental setup. We employ three different lasers as mutually
incoherent inputs. The three lasers are modulated by a phase-only SLM, then
they are focused onto a complex medium (ground glass diffuser) by a lens.
The propagating beams are mixed by the complex medium and then collected
by another lens. Through wavefront shaping, we obtain three output beams
with the desired coherence matrix. The three output beams are focused by
a third lens and interfere in the camera plane. A second SLM is used to
characterize the degrees of coherence from the interference patterns. L1, L2,
L3: lenses; CM: complex medium; Cam: camera.

focused onto the camera plane and to which location. From the interference
patterns measured with the camera (Basler acA640-750um), we reconstruct
the mutual degree of coherence. In the following sections, we describe the
procedures used to encode and measure the coherence matrix of the output
fields.

4.2.1 Preparation

The transmission matrix of the complex medium must be characterized to
employ it as a part of the reconfigurable multi-port linear device. Each element
of the TM connects the field modulated by the nth pixel of SLM1 to the complex
field of the mth output mode (a camera pixel used for TM characterization).
We reconstruct the TM by configuring the SLM with each vector of a complete
basis of the input modes, and measuring the corresponding complex fields at
the output camera (see Sec. 4.1.2).

As discussed in Sec. 4.1.3, the speckle patterns generated by each input
field are mutually incoherent, thus they do not interfere. Therefore, we assign
a different transmission matrix T̂CM,i to each of the three non-overlapping
input beams. Each laser is spatially phase modulated by a different quadrant
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4.2 Coherence control: experimental realization

consisting of 256×256 pixels of SLM1, out of a total of 512×512 pixels. The
outer part of each quadrant is used as a static reference for the interference
measurement, while we use an area of 128× 128 pixels (divided into 4096
square segments of 4 pixels each) to encode the Hadamard basis employed in
the TM reconstruction (see Fig. 4.10). Once we have reconstructed the TM for
each input laser, we can implement any desired linear transformation according
to Eq. (4.9).

4.2.2 Linear port characterization

In this section we characterize the 3×3−port implemented with the system of
complex medium and SLM. Each input E in

i generates three outputs according
to E out

1 = t1i E in
i , E out

2 = t2i E in
i and E out

3 = t3i E in
i . Turning off two of the three

inputs, we can experimentally measure the coefficients t1i , t2i and t3i .
Let us consider the input E in

1 , and we measure the output intensities I1 =
|t11E in

1 |2, I2 = |t21E in
1 |2 and I3 = |t31E in

1 |2. We show an example of the resulting
intensity distributions in Fig. 4.11b. The output beams, resulting from a
speckle pattern, do not show a clean Gaussian profile. This is detrimental
for the reconstruction of the degree of coherence from the interference pattern.
Therefore, we introduce three small circular apertures (0.5mm in diameter,
spaced by roughly 2mm) before the second SLM (Fig. 4.11a). We show in

Figure 4.10: TM reconstruction with three mutually incoherent beams. The
SLM area is divided into four quadrant, three of which are used for the
independent modulation of the input beams (the fourth quadrant remains
unused in our case). Note that each beam only illuminates the correspondent
part of the SLM, without overlapping with the others. The central part of
each quadrant (128×128 pixels) is used to encode the Hadamard basis. The
outer part is used as internal reference for the reconstruction of the complex
coefficients of the TM.
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Fig. 4.11c the resulting spatially filtered beams.
We then characterize the output intensities when we modify the encoded

coefficients. Given the desired coefficients, we calculate the needed SLM
mask T̂SLM,i according to Eq. (4.9). We then increase the magnitudes of t21

and t31 from 0 to 1, keeping t11 constant and equal to 1 (Fig. 4.12a). We
measure that I1 decreases while we increase the intensities I2 and I3. This
happens mainly because the overall power distributed in the three outputs is
conserved between the transformations. Thus, if we increase the intensities of
the second and third output, then I1 must decrease accordingly. The linear port
we want to implement is always normalized to the intensity of one focus, thus
we are interested to the intensity ratios I2/I1 and I3/I1, reported in Fig. 4.12b.
We repeat the measurement 100 times (for a total time of about 30 minutes),
resulting in the reported error bars, which show the maximum deviation from
the mean value. From this characteristic, we can generate a look-up-table that
tells us which coefficients t21 and t31 correspond to the desired output intensity
ratio.

The next step is to characterize the cross-talk between the output beams. In
fact, if the outputs are not completely independent, changing the intensity of
one of them will affect the other two. In Fig. 4.12c we increase the intensity of
the output I2 (t21 from 0 to 1), while keeping I1 and I3 constant. We then repeat
the measurement increasing the magnitude of t31. We find that the fluctuations
of the intensity I3/I1 are within the error bar of I2/I1, which is comparable
to the typical error that we report in Fig. 4.12b. We then conclude that the
systematic cross-talk is below the statistical noise, hence not relevant.

Figure 4.11: Spatial filtering. (a) Picture of the three small aperture (placed
before SLM2) which are spatially filtering the generated beams. (b,c) Output
fields’ intensity distributions (b) before and (c) after the apertures.
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4.2 Coherence control: experimental realization

Figure 4.12: Linear port characterization. (a) Power conservation. If we
increase t21 and t31, keeping constant t11, the amplitude of the high intensity
output reduces, to conserve the overall power shared between the outputs.
(b) Intensity ratios. We measured the ratios I2/I1 and I3/I1 for increasing
t21 and t31. The error bars (which show the maximum deviation from the
mean value) are obtained repeating the measurement 100 times. (c) Cross-talk
analysis. We modulate t21 from 0 to 1, while keeping t31 constant. We repeat
the measurement changing the value of t31. The error bars on I2/I1 show the
maximum deviation from the mean value.
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4.2.3 Verification

The linear port described above is able to encode any desired coherence matrix.
To verify the correctness of the encoding, we measure each entry of the
coherence matrix, that is the mutual degree of coherence γi j of each field
pair. We follow the measurement procedure described in Sec. 2.1.2, employing
a focusing lens and a camera. The mutual coherence |γi j | can be derived from
the following relations [see Eq. (2.23) and Eq. (2.24)]

|γi j | =
Ii + I j

2
√

Ii I j
V , (4.11a)

V = Imax − Imin

Imax + Imin
, (4.11b)

where V is the visibility, Imax and Imin are the maximum and minimum of the
interference fringes, respectively, and Ii and I j are the single fields’ intensities.
We highlight that all the quantities are defined at a single point in the camera
plane, given that we can tune the relative phase of the interfering beams, as we
discuss later. Moreover, even if γi j is a complex quantity, we only consider its
magnitude, as a change in the phase results in a trivial shift of the interference
fringes. In the following, in writing degree of coherence γi j we will always
refer to its magnitude.

In Fig. 4.13 and Fig. 4.14, we summarize the procedure employed to
measure the degree of coherence. Firstly, we use SLM2 to apply a linear
phase grating to two of the three output beams [113]. In the focal plane, which
corresponds to the camera plane, the phase grating spatially displaces the two
beams, allowing us to measure the intensity of the remaining one. In Fig. 4.13a
and Fig. 4.13b, we show the intensity distribution of the first and the second
beam, respectively, when the other two are displaced. We then use the phase
grating to displace only one beam, and let the other two interfere, leading
to the typical sinusoidal modulation across the area of the camera, as shown
in Fig. 4.13c and Fig. 4.13d. In particular, Fig. 4.13c shows the intensity
distribution when the mutual degree of coherence of the two interfering beams
is low (γi j = 0.2), while Fig. 4.13d shows the case of high degree of coherence
(γi j = 0.8), as visible from the contrast of the interference fringes. Figure 4.14a
shows a cross-section of the interference fringes for three degrees of coherence
(γi j = 0.2,0.5,0.8). The modulation depth increases for higher degrees of
coherence, as expected. Next, we modulate the phase of one of the beams
(termed reference phase later) from 0 to 2π. This modulation results in a spatial
shift of the interference fringes. Thus, we are able to measure the visibility
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Figure 4.13: Reconstruction of the degree of coherence. (a, b) Intensity I
of the (a) first and the (b) second beam. (c, d) Interference patterns for the
degree of coherence (γ) equal to (c) 0.2 and (d) 0.8.

at each pixel of the camera. Figure 4.14b shows examples of the intensity at
a camera pixel with respect to the reference phase for three different degrees
of coherence (γi j = 0.2,0.5,0.8). From the visibility and the intensities of the
single beams, we reconstruct the degree of coherence at a specific location,
according to Eq. (4.11). As the reconstruction of the degree of coherence is
noisier for regions of low intensities, we choose to only consider pixels where
both the single-beam intensities are above 60% of their maximum value. We
perform the previous procedure in parallel for all the considered pixels, and
average the results to obtain the reconstructed degree of coherence γi j .

Inevitably, the encoding of a chosen coherence matrix is subject to errors,
mainly due to non-perfect phase response of the SLM and errors in the TM
characterization, leading to a discrepancy between the encoded and the recon-
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Figure 4.14: Modulation of the interference fringes. (a) Cross-sections of
the intensity distributions for different values of γ. (b) Normalized intensity
distribution at a fixed pixel as a function of the phase of one of the interfering
beams (reference phase), which is swept from 0 to 2π. The different colored
dots correspond to measurements taken for different degrees of coherence.
The solid lines are the cosine fits of the data points.

structed γi j . To minimize this discrepancy, we implement a gradient descent
algorithm to optimize the multi-port linear device for minimum error. We
illustrate this feedback mechanism considering a pair of fields Ei and E j . At the
nth iteration step, we encode the degree of coherence γenc

i j (n), and reconstruct
γrec

i j (n). We evaluate the encoding error ε(n) = γrec
i j (n)−γenc

i j (n) and, for the
next iteration, we correct the encoded value following the relation

γenc
i j (n +1) = γenc

i j (n)+ηε(n) , (4.12)

where η is the feedback strength, that we used for all the coherence matrices.
From the new values of γenc

i j (n +1) for each pair, we construct the corrected
linear port. We reiterate the process until we are satisfied with the final encoding
error (ε< 0.01 in our case). The gradient descent is performed a single time
in order to obtain the correct SLM phase mask that leads to the desired output
coherence matrix. The phase masks obtained with this final procedure would
generate the correct coherence matrix as long as the optical system is stable
(note that in the case of ground glass diffusers we are not limited by the stability
of the complex medium, but mainly by the pointing stability of the lasers
[95]). We illustrate the optimization procedure in Fig. 4.15. We want to encode
the values γ12 = 0.3, γ13 = 0.5 and γ23 = 0.6. At each iteration, we correct
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Figure 4.15: Feedback. (a) The encoded values γenc are iteratively corrected
using the error between the desired and the measured degrees of coherence.
(b) Consequently, the reconstructed degrees of coherence γrec converge to the
desired values, which in this case are γ12 = 0.3, γ13 = 0.5 and γ23 = 0.6. Note
that the encoded values do not start from the desired degrees of coherence
because there are few prior feedback iterations that are not shown in the
figure.

the encoded values (Fig. 4.15a), while the reconstructed degree of coherence
converge to the desired quantity (Fig. 4.15b).

Figure 4.16 shows an example of the achieved precision in the control of the
degree of coherence. Here, we report the reconstructed degrees of coherence
γrec, with respect to the encoded values γenc. We encoded coherence matrices
with identical degrees of coherence between each field pair, i.e., γenc

12 = γenc
13 =

γenc
23 , ranging from 0 to 1. The reconstructed and the encoded degrees of

coherence agree to within an average error of 0.004 in the region between 0.2
and 0.8. Outside this range, we observe deviations from the expected behavior.
For low coherence, the measurement of γi j is affected by the background
noise caused by the uncontrolled modes of the complex medium, whereas for
high coherence we are limited by the self-coherence of the input lasers (see
App. B.4).

4.2.4 Results

We now show the level of control over the coherence matrix achievable with
the presented implementation. The coherence matrix is completely defined
by its off-diagonal values, which are the mutual degrees of coherence of the
field-field pairs. We can therefore assign to each coherence matrix a vector
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Figure 4.16: Reconstruction of the degree of coherence. Example of degree
of coherence control. We show the reconstructed degrees of coherence (γrec)
with respect to the encoded ones (γenc). We choose the degrees of coherence
of the three pairs of fields (γ12, γ13 and γ23) to be equal.

γγγ = [γ12,γ13,γ23], and visualize all the possible vectors in a space where the
axes are the magnitudes of the mutual degrees of coherence. Note that the
positive semi-definiteness of the coherence matrix bounds the domain of allowed
vectors (see Sec. 2.1.3). We discretize the three-dimensional space in a cubic
grid with a step size of 0.1. In Fig. 4.17a, we show the experimentally achieved
coherence matrices. The blue (red) dots represent the measured (encoded)
vectors. We restrict ourselves to the region of degrees of coherence between
0.2 and 0.8, where the reconstructed coherence matrices do not have a large
deviation with respect to the encoded ones, caused by technical limitations
(see Fig. 4.16 and App. B.4). To graphically make more evident the typical
distance between encoded and reconstructed coherence matrices, we show in
Fig. 4.17b-d the orthographic projections of the three-dimensional space. The
blue dots represent the reconstructed vectors, while the red circles with a radius
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4.2 Coherence control: experimental realization

Figure 4.17: Coherence matrix control. (a) Coherence matrix space.
Each point of the space represents a different coherence matrix, for which
the off-diagonal elements are given by the three coordinates of the point
[γ12,γ13,γ23]. The blue and the red dots are the encoded and reconstructed
coherence matrices, respectively. The encoded degrees of coherence range
from 0.2 to 0.8, and the grid has a step size of 0.1. (b-d) Two-dimensional
orthographic projections of the three-dimensional space. The blue dots
represent the measured vectors, while the red circles with radius 0.025 are
centered on the encoded vectors.
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4 Coherence control with an optical complex medium

of 0.025 are centered on the encoded matrices, and provide a visual reference.
As a quantitative measure for the accuracy of our coherence matrix control

scheme, we define, for each measured point, the error ε as the root-mean-square
distance between the encoded and the reconstructed vector in the space of the
coherence matrices:

ε=
√∑

i
(γenc

i −γrec
i )2 . (4.13)

Here the subscript i indicates the field-field pairs i = {1,2}, {1,3}, {2,3}. Figure
4.18a shows the histogram of the errors. For the majority of the coherence
matrices, the error is below 0.01, which is the threshold value set in the gradient
descent optimization. The mean value of the error is 0.01.

Next, we characterize the statistical error associated with the measured
γγγ. To do so, we repeat the previously described reconstruction procedure 10
times for each vector of the space. We then estimate the statistical error σ as
the standard deviation of the measured ensemble. In Fig. 4.18b we plot the
histogram of σ. The average statistical error is 0.008. This justifies the chosen
threshold in the optimization algorithm.

Finally, we characterize the whole system of fields with a single quantity,
i.e., the overall coherence. The overall coherence S is a real number ranging
from 0 (full incoherence) to 1 (full coherence) and measures the coherence of
the whole system, independently of how it is shared between the degrees of

Figure 4.18: Systematic and statistical errors. (a) Histogram of the error
ε, i.e., the distance between the reconstructed and the encoded values. (b)
Histogram of the statistical error σ. For each encoded coherence matrix, we
repeat the reconstruction of the three degrees of coherence 10 times. The
statistical error σ is calculated as the standard deviation of each ensemble.
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coherence (see Sec. 2.1.3). In Fig. 4.19, we plot the reconstructed (Srec) versus
encoded (Senc) overall coherence, computed from all the measured vectors
shown in Fig. 4.19. The average error (defined as |Senc −Srec|) over all the
measurements is 0.003.

4.3 Conclusion

In summary, we have presented an experimental technique to program the
coherence matrix of a set of spatially separated fields, based on a 3×3-port linear
optical device, implemented with wavefront shaping of mutually incoherent
inputs that propagate through a complex medium. By sampling the set of
allowed coherence matrices, we have shown that we can encode and successfully
retrieve the majority of the matrices within an average error of 0.01. Remarkably,
to our best knowledge this is the first time that the spatial coherence of multiple
fields is controlled in a single-shot fashion. Single-shot means that, once
the correct phase mask is programmed into the SLM, the spatial coherence
modulation occurs after a single propagation through the system, in contrast
with previous works which rely on the collection of a large ensemble of phase
masks introduced by some active device [72–74].

Our work adds an important tool to the available methods for controlling
various attributes of light. In particular, our complex medium-based device can
be especially useful for the implementation of large-scale multi-port devices.
In fact, to increase the number of controlled fields with the same performance
in terms of coherence control, it is sufficient to maintain a constant background,

Figure 4.19: Encoded overall coherence Senc vs. reconstructed one Srec.
The blue dots are the measured values, while the dashed line represents the
ideal relation.
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4 Coherence control with an optical complex medium

which allows us to retain the same minimum coherence (see App. B.4). We
can achieve this by maintaining a constant number of SLM pixels per input
laser [109], for example by employing a larger SLM. Increasing the number
of SLM pixels (i.e., the active area) is a trivial task compared to stabilizing
a large interferometer, as needed in the case of photonic integrated circuits.
Finally, complex media may prove particularly useful when planning to extend
coherence control to other degrees of freedom of light. Indeed, a multi-
scattering medium is not limited to spatial modes, but mixes several other
degrees of freedom, such as time, polarization, and transverse mode. We can
exploit this property by generating a linear port that operates over multiple
degrees of freedom, thus opening up the control of a coherence matrix to
multiple degrees of freedom. We will elaborate on this topic in the outlook
section.
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5
Conclusions & Outlook

Optical coherence is a topic of fascinating depth, that continues to be rich
in phenomena to investigate even two centuries after Thomas Young’s first
experiments on the double-slit [114]. Already the interference fringes measured
in those experiments help us to appreciate the large influence that coherence
has on science. In fact, even though they constitute the foundation of coherence
theory, they are still essential for the study of particle-wave duality [24].
Regarding more recent findings, Wolf presented a unified theory of coherence
and polarization, highlighting the intimate relationship between these two
phenomena, and, consequently, the greater impact of coherence on statistical
optics [40, 115]. Since then, the concept of coherence matrix has evolved to
include other degrees of freedom [41, 116]. However, in terms of coherence
control, previous research was only able to control the properties of a single
light source or a pair of fields [72–77]. In this thesis, a technique and application
for controlling the coherence matrix of a set of fields are presented for the first
time. We hope that this work will serve as inspiration for further research on
the topic.

We will now summarize the findings and discuss their implications. In Ch. 2,
we presented a general technique that enables us to manipulate the coherence
matrix of a set of fields via a linear transformation. This is the first proposal
for a method that controls the mutual coherences between an arbitrary number
of fields, and it serves as the basis for the rest of the results presented in this
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work. We then proposed in Ch. 3 a communication system that encodes the
data to be transmitted in the coherence matrix. We analyzed the performance
of this communication scheme, so to compare it quantitatively with other
techniques, deriving the SNR, the maximum bit-rate and the spectral efficiency
with respect to the number of transmitted light beams. We concluded that the
maximum bit-rate increases quadratically with the number of transmitted fields,
until it saturates at approximately the value of the input sources linewidth,
thus leading to attractive data rates. As an example, a LED have a typical
bandwidth (full width at half maximum) of ≈ 25 THz [117], resulting in the
saturation of the maximum bit-rate at ≈ 27 THz (see Eq. (3.38)). However,
the quadratic gain in bit-rate occurs at the cost of spectral efficiency, which
instead decreases quadratically with the number of field pairs. As we have
seen in the introduction (Ch. 1), researchers are already squeezing the available
capacity of current fiber technology, trying to exploit the entire low-loss spectral
window with high spectral efficiency [5]. Without the ability to increase the
input linewidth because it is not supported by transmission fibers, the low
spectral efficiency renders mutual coherence coding unsuitable for long-haul
fiber communications. Nevertheless, this limitation is not present in FSO.
In fact, beams sent through the atmosphere are not restricted in linewidth:
we could use LEDs with bandwidth limited only by our technical ability to
compensate for dispersion and modulate broadband light. This could further
improve the maximum bit-rate, bringing FSO performance toward that reached
by fiber-based communications.

Finally, in Ch. 4, we experimentally realize an implementation of the
coherence matrix control based on wavefront shaping of light propagating
through a complex medium. Importantly, this is a passive implementation,
meaning that, once the SLM is programmed, the coherence modulation occurs
with a single pass through the device. This allows the technique to be much
faster than other previous implementations, that rely on the collection of a large
ensemble of phase masks introduced by some active device [72–74]. Currently,
employing SLMs does not appear as a winning option over integrated circuits
because of their very limited refresh rates (ranging from 10 to 100 Hz for
a liquid-crystal SLM to tens of kHz for DMDs [118]). It is worth noting,
however, that there are proposals to fabricate SLMs that operate in the GHz
range [119, 120], which would push our complex media-based linear port to
work at electronic frequencies, thus making it suitable for applications. On
the other hand, SLMs are very attractive because of the millions of degrees
of freedom they provide to modulate the light field, allowing us to control the
propagation through the complex medium to realize the desired linear port. The
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most interesting aspect is that to increase the number of fields involved, we
only need to increase the size of the SLM or use more than one. This is in stark
contrast to photonic integrated circuits, which require a complicated network
of interferometers to implement a linear port, that rapidly become impractical
with increasing number of input fields. This particular implementation based
on free-space optics is particularly suited for being employed in FSO. Using
broadband input light is favorable for FSO, where partially coherent beams are
less affected by atmospheric turbulence compared to the coherent counterpart
[21, 37]. In addition, the implementation would be much cheaper than the
high-capacity fiber-based systems. In fact, long-haul communication systems
need very stable lasers with countless narrow frequency bands that can be
addressed independently with fast modulators, and spectrometers that are used
to detect the complex quadrature modulated signals multiplexed in hundreds of
wavelengths. Our proposal for the implementation of mutual coherence coding,
in contrast, only need LEDs, SLMs and balanced photodetectors. This is in line
with the main advantages of FSO, including low installation and maintenance
costs. We can therefore conclude that our implementation has the promising
prospect of becoming a useful resource for free-space optical communications,
once SLM technology will provide modulators fast enough to be comparable to
driving electronics.

Outlook: combining degrees of freedom Throughout this thesis, we were
mainly concerned with the spatial degree of freedom (DoF). This is the most
extensively studied DoF in the field of complex media, as it is the most obviously
affected by multiple scattering. However, as it has been previously reported,
complex media also act on many other DoFs, such as polarization [121],
time [92] and transverse electromagnetic (TEM) modes [122]. We can exploit
this phenomenon to extend the linear port concept to other DoFs. Using
wavefront shaping and complex media provides a particularly compact im-
plementation that extends the control to additional DoFs without requiring other
dedicated components (e.g., birefringent materials for polarization and SLM or
phase plates for TEM modes). Having access to a multi-DoF linear port opens
up the possibility of manipulating a multi-DoF coherence matrix [41, 116]. To
illustrate the concept, let us consider the case of two light beams (spatial
positions s ∈ {1,2}), with two possible polarization states (horizontal and
vertical, p ∈ {H ,V }) and two TEM modes (e.g., orbital angular momenta (OAM)
ℓ ∈ {+,−}). We can collect all the orthogonal modes in a single vector

YYY =
[

Y +
1,H , Y −

1,H , Y +
1,V , Y −

1,V , Y +
2,H , Y −

2,H , Y +
2,V , Y −

2,V

]⊺
. (5.1)
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In analogy with Eq. (2.25), we then define a coherence matrix KYYY which
includes the three degrees of freedom

KYYY = 〈YYY YYY †〉 =


γ+,+

1,1,H ,H γ+,−
1,1,H ,H γ+,+

1,1,H ,V · · · γ+,−
1,2,H ,V

γ−,+
1,1,H ,H γ−,−

1,1,H ,H γ−,+
1,1,H ,V · · · γ−,−

1,2,H ,V
γ+,+

1,1,V ,H γ+,−
1,1,V ,H γ+,+

1,1,V ,V · · · γ+,−
1,2,V ,V

...
...

. . . . . .
...

γ−,+
2,1,V ,H γ−,−

2,1,V ,H γ−,+
2,1,V ,V · · · γ−,−

2,2,V ,V

 . (5.2)

where

γ
ℓ1,ℓ2
s1,s2,p1,p2

=
〈

Y ℓ1
s1,p1

(
Y ℓ2

s2,p2

)∗〉
√〈∣∣∣Y ℓ1

s1,p1

∣∣∣2
〉 〈∣∣∣Y ℓ2

s2,p2

∣∣∣2
〉 , (5.3)

with s1, s2 ∈ {1,2}, p1, p2 ∈ {H ,V } and ℓ1,ℓ2 ∈ {+,−}. This coherence matrix
contains all the correlations between the different orthogonal modes, thus pro-
viding a complete description of the statistical properties of the optical system.
We can show that the method explained in Sec. 2.2 and Sec. 4.1.3 remains valid
also in the case of different DoF, allowing us to control the coherence matrix
KYYY . Let us start from N f incoherent fields XXX = [X1, X2, . . . , XN f ]. Note that the
number of inputs is given by the product of the dimensionality of each DoF. For
instance, for n = 2 spatial positions, m = 2 TEM modes and r = 2 polarization
states, we get N f = n ×m × r = 8. Each field Xi is modulated by a region of an
SLM, applying a transformation T̂SLM,i . Then each field propagates through
the complex medium, which redistributes the field power to the orthogonal
modes in all the three DoFs through a transformation T̂CM,i . Finally, we apply
a projection P̂ that selects the fields at two spatial positions, two polarizations
and 2 TEM modes. The output field vector YYY is

YYY =


Y +

1,H
Y −

1,H
...

Y −
2,V

=
N f∑
i=1

P̂ T̂CM,i T̂SLM,i Xi = T̂ XXX . (5.4)

If we then consider the beams that need to be transmitted for communication
purposes, we only have two of them:

Y1 = Y +
1,H +Y −

1,H +Y +
1,V +Y −

1,V ,

Y2 = Y +
2,H +Y −

2,H +Y +
2,V +Y −

2,V .
(5.5)
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Formally, the relationship between the output coherence matrix KYYY and the
linear transformation T̂ is still the same as that derived in Eq. 2.39 and Eq. 2.40.
To control the output coherence matrix, it is then sufficient to program the SLM
with the amplitude and phase derived according to Eq. 4.9, analogously to the
case restricted to spatial coherence. The experimental challenge comes from the
characterization of the multi-DoF transmission matrix (MDoF-TM) T̂CM,i of
the multi-scattering medium. Note that this was already achieved in multi-mode
fibers with time, polarization and spatial degrees of freedom [123]. Let us
address the task one degree of freedom at a time. We have already explained in
Sec. 4.1.2 how to characterize the spatial-TM. Next step is the characterization
of the polarization-TM, which is a relatively easy task since it only involves two
orthogonal modes. The combination of spatial and polarization TM (PS-TM)
has already been reported [121, 124]. We also conducted a similar experiment,
the setup of which is illustrated in Fig. 5.1a. Our version is simpler than the ones
previously reported, because it only consider a vertically polarized input field,
which is the case we are interested in for the implementation of the linear port.
Manipulating only one input polarization state reduces the complexity of the
optical setup, at the cost of a reduced control over the output field. A gaussian
vertically polarized laser beam is modulated by an SLM and pass through a
complex medium. The resulting speckle pattern is divided into orthogonal
polarizations with a polarizing beam splitter (PBS), and then measured with
two independent cameras, which provide the spatial resolution. For each vector
of the input basis generated by the SLM (see Sec. 4.1.2), we measure the
spatially and polarization resolved output field, reconstructing a TM which
contains both spatial and polarization information. We then use the measured
PS-TM to generate foci with arbitrary polarization. We show in Figs. 5.1b-
d two generated foci at two desired positions, with orthogonal polarizations
(horizontal and vertical) and different intensity. The experimental verification
consists of measuring the intensity of the two foci after a linear polarizer
with different rotations (horizontal, vertical and diagonal, in Figs. 5.1b,c,d,
respectively). We also generated a single field with circular polarization, as
a superposition of two orthogonally polarized foci (Y H

1 and Y V
1 ) in the same

spatial position (1) and with π/2 phase difference, i.e.,

Y1 = Y H
1 + i Y Y

1 . (5.6)

We report in Fig. 5.2a the measured intensity for different rotation of the linear
polarizer. In Fig. 5.2b we show the dependence of the peak focus intensity on
the angle of the main axis of the linear polarizer. For a circularly polarized
beam, we would expect a constant intensity, independent of the angle of the
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Figure 5.1: Polarization and spatial transmission matrix (PS-TM). (a)
Experimental setup for the PS-TM reconstruction. A laser beam is expanded
to match the SLM aperture. After propagation through the complex medium,
a polarizing beam splitter is used to divide the resulting speckle patterns in
two orthogonal components. The two cameras measure the spatially and
polarization resolved speckle for the TM reconstruction. (b-d) Employing the
knowledge of the PS-TM, we generate two foci with orthogonal polarizations.
We use a linear polarizer to measure only one polarization component: (b)
vertical, (c) horizontal and (d) diagonal.
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Figure 5.2: Generating circularly polarized light after the complex medium.
(a) We generate a single focus with circular polarization, as a superposition
of horizontally and vertically polarized foci with a π/2 relative phase. The
focus is always in the same position, but we show it displaced for easier
visualization. The black arrow represents the angle of the main axis of the
linear polarizer. (b) Dependence of the peak focus intensity on the angle of
the LP. For circularly polarized light the intensity should remain constant.
The modulation is caused by residual ellipticity in the polarization of the
generated focus.

linear polarizer. The reported modulation is caused by residual ellipticity in the
generated focus.

The following step is to characterize the TEM-TM. This is a challenging
goal, which, to the best of our knowledge, has not yet been reported for the
case of a multi-scattering medium, while it has been achieved for multi-mode
fibers [123], whose working principle is based on TEM mode mixing. So far,
researchers used a Fourier filtering technique to control the TEM mode of a
single speckle [94, 122] or of the whole speckle pattern [111]. Reconstructing
the TEM-TM, though, requires to measure the mode content of each speckle.
We can propose the following experimental procedure. At the output of the
complex medium, we select a single speckle with an iris to disregard the spatial
degree of freedom. We then use a mode sorter, which redirects the energy
carried by each mode composing the speckle to a different spatial position. It
can be implemented using a SLM in combination with another optical element,
such as a mirror [125], or even a complex medium, like a multiple scattering
material [126] or a multi-mode fiber [127]. For each input vector (note that we
again restrict ourselves to controlling only the phase of the input), we use the
mode sorter to measure the mode content of the speckle (up to 55 simultaneous
modes [125]). We repeat the measurement for the whole input basis, until
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we reconstruct the TEM-TM of the complex medium. To combine also the
spatial information, we need to perform the mode sorting for more speckles,
which, although experimentally challenging, it is a straightforward extension
of the TEM-TM reconstruction. Finally, adding a PBS we can reconstruct
the 3DoF-TM. In order to use the system as a linear port, one would need to
reconstruct the 3DoF-TM for each incoherent input beam. We show in Fig. 5.3
the proposed setup in the case of a 3DoF-TM with two spatial positions, two
TEM modes and two polarization states.

Performing this experiment would lead to the following interesting results:

• characterizing a polarization-TEM-TM would allow to generate vector
fields after a multi-scattering medium (note that this was already achieved
in multi-mode fibers [123]), with potential applications in the area of
super-resolution microscopy [128];

• to the best of our knowledge, it would be the first implementation of a
linear port that operates with multiple degrees of freedom, adding an
interesting tool for photonics technology;

Figure 5.3: Multi-DoF linear port. The linear port controls the relationship
between 8 input mutually incoherent beams and 8 output modes, combinations
of spatial, polarization and TEM degrees of freedom. To realize the linear
port, we need to measure the 3DoF-TM of the complex medium for each
input field. To decouple the output modes, we use an iris to select two
speckles (spatial DoF), a mode sorter (composed of a SLM and a mirror) that
decompose each of the two speckles in its constituent TEM modes, and a PBS,
which separates the two orthogonal polarizations. Two cameras measure the
two resulting distributions, from which we can extract the information about
spatial, polarization and TEM degrees of freedom.
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• we can employ the obtained linear port to control a multiple DoFs
coherence matrix. This is relevant for the field of statistical optics, since it
would be the first demonstration of fine control of a multi-DoF coherence
matrix. Moreover, if applied to mutual coherence coding, it would lead
to an increased number of signals per transmission fiber. In fact, given
n fibers (or light beams in FSO), each carrying m transverse modes
(e.g., using few-modes fibers [5]) and p = 2 orthogonal polarizations, the
number of mutual coherences that we can control is Np ≈ (n×m×p)2/2.
The communication scheme is sketched in Fig. 5.4. Interestingly, this
new approach would not change the analysis reported in Sec. 3.3.2. In
fact, the detected signal Sℓ1,ℓ2

s1,s2,p1,p2
is

Sℓ1,ℓ2
s1,s2,p1,p2

∝
〈

Y ℓ1
s1,p1

(
Y ℓ2

s2,p2

)∗〉
=

〈
N f∑

n=1
ti n Xn

N f∑
m=1

t∗j m X ∗
m

〉
, (5.7)

and it still formed by N f (N f − 1) incoherent field pairs, which give
rise to the same optical beat noise, limiting factor of mutual coherence
coding. However, although resorting to more DoFs does not affect the
performance in terms of bit-rate, SNR and spectral efficiency, controlling
the multi-DoF coherence matrix adds the technical opportunity to increase
the number of signals sent, without increasing the number of transmission

Figure 5.4: Mutual coherence coding with multiple DoFs. A multi-DoF linear
port generates two fields Y1 and Y2 with controlled multi-DoF coherence
matrix, starting from a set of mutually incoherent fields. The two fields are
transmitted to the receiver side, which uses a set of mode sorters and PBS to
decouple the different DoFs, generating 8 fields with different combinations
of spatial position, polarization and TEM mode. Finally, after an appropriate
mode conversion, we use a net of interferometers to reconstruct the 28 mutual
coherences encoded with the multi-DoF linear port.
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paths. Finally, we also note that the receiver, illustrated in Fig. 5.4 with
discrete components, can also be implemented with a single system of
SLM and complex medium (similar to the linear port), greatly reducing
the number of components needed.

In conclusion, throughout this thesis, we have provided novel solutions to
address old problems in optical coherence and communication. Certainly a
company will not find mature engineering results that can have an immediate
impact on the market. Nevertheless, we hope that, from these pages, curious
scientists and engineers will find new inspirations and alternative perspectives,
allowing them to produce useful technologies that otherwise would not have
been considered.

74



A
Related project: towards a three-dimensional
quartic intensity

Light propagation is most commonly treated with the theoretical tools of Fourier
optics [42]. Under the assumptions of Fourier optics, techniques such as the
Gerchberg-Saxton algorithm allow the two-dimensional control of the focal
intensity through the shaping of the amplitude and phase of the field in the
back focal plane [129]. However, when a beam is strongly focused with a
high numerical aperture (NA) objective, the relationships of Fourier optics do
not apply, and we have to resort to a full vectorial treatment of the field [130].
Interestingly, thanks to the added degree of freedom given by polarization, our
control of the intensity distribution is not restricted to the focal plane. In fact, by
shaping amplitude, phase and polarization of the field in the back focal plane of
the objective, we gain control over the three-dimensional spatial distribution of
the focal intensity [131, 132]. Full control over the vector field in a given plane
has already been demonstrated using SLMs [133] and digital micro-mirror
devices [134]. In this chapter, we make use of the expertise acquired in the
use of SLMs (see Ch. 4) to build an experimental setup capable of generating
an complex vector field in the back focal plane of a high-NA lens. We plan
on employing this control to realize a three-dimensional quartic (3DQ) focal
intensity, i.e., an intensity distribution that has zero curvature along the three
Cartesian components. Generating a 3DQ intensity could find applications
in laser cutting of metals and microlitography [132]. Moreover, in the field
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of levitated nanoparticles, a non-quadratic intensity distribution represents an
exciting opportunity to reconstruct non-Gaussian quantum motional states [135].
A 3DQ intensity can also be of interest for Bose-Einstein condensates, where a
three-dimensional (quasi)uniform potential is desirable [136].

A.1 Theory

Let us consider the intensity distribution I , defined in the focal space whose
Cartesian coordinates are x, y (transverse) and z (longitudinal). The distribution
I is 3DQ if it has zero curvature along x, y and z, i.e.,

∂2I

∂i 2 = 0 , for i ∈ {x, y, z} . (A.1)

The paraxial beam (i.e., the field in the back focal plane) needed to generate
a 3DQ intensity distribution results from the superposition of an azimuthally
polarized (AP) field and a radially polarized (RP) field [132]. Even when
strongly focused, RP and AP fields maintain orthogonal local polarization
states, thus they do not interfere in the focal space. In addition, for a high
enough NA, the focus of a RP beam is characterized by a central maximum
(Fig. A.1c), whereas the focus of an AP beam assumes a doughnut shape
(Fig. A.1d). Given the aforementioned properties, it is possible to design a
recipe to derive the paraxial distributions which result in a 3DQ intensity when
strongly focused:

• we shape amplitude and phase distributions of the RP component, so as
to obtain a quartic distribution along z (Fig. A.1a). For this first step, we
can disregard the AP component, since it has zero intensity along the
optical axis (Fig. A.1b);

• then, we obtain a flat-top intensity in the focal plane by compensating the
RP intensity (Fig. A.1d) with the AP doughnut distribution (Fig. A.1c).

The resulting 3DQ intensity is reported in Figs. A.1e,f. A rigorous derivation
of the complex vector field that, strongly focused, results in a 3DQ intensity
can be found in Ref. [132]. We followed an alternative solution derived by R.
Gutiérrez-Cuevas and M. A. Alonso [137]. They provide the expressions of
amplitude, phase and polarization distributions to obtain a 3DQ intensity in
the focus. The amplitude and phase distributions of orthogonal polarization
components of the derived field are reported in Fig. A.2.
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Figure A.1: Radially polarized (RP) and azimuthally polarized (AP)
components of the 3DQ intensity. (a,b) xz−plane (y = 0) of the (a) RP
and (b) AP components of the 3DQ intensity. Note that the distribution is
symmetric around the z axis. (c,d) x y−plane (z = 0) of the (c) RP and (d)
AP components. (e,f) Total 3DQ distribution in the (e) x y−plane and (f)
xz−plane.

A.2 Experiment

For the experimental realization of the 3DQ intensity distribution we need to be
able to generate a desired distribution of phase, amplitude and polarization in
the back focal plane of a high-NA objective. To control the field distribution,
we make use of a pair of SLMs, one to control amplitude and phase of the
modulated field, and the second one to locally rotate the polarization. We
name this section of the setup generation part. We then strongly focus the
programmed beam with a high-NA oil-immersion objective. To measure
the intensity distribution in the focus, we resort to a nano-scatterer, which
is able to detect the local intensity with sub-wavelength resolution. This
reconstruction part of the setup allows us to measure the three-dimensional
intensity distribution in a spatial region around the focus.
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Figure A.2: Field distributions in the back focal plane of a high-NA objective
to obtain a 3DQ focus. (a,b) Total paraxial field divided into (a) radially
polarized component Erad and (b) azimuthally polarized component Eaz.
(c,d) Total paraxial field divided into (c) horizontally polarized component
Ex and (d) vertically polarized component Ey .

A.2.1 Generation setup

The generation part of the setup is sketched in Fig. A.3. A He-Ne laser (Thorlabs
HRP050, 633 nm) is coupled into a single mode fiber (SMF) to obtain a clean
fundamental Gaussian mode. Next, a telescope (lenses L1 and L2) is used to
obtain a nearly constant intensity across the SLM aperture. We also use a linear
polarizer (LP) to ensure vertical polarization, that matches the SLM phase
modulation axis. A beam splitter (BS) is used to redirect the light towards the
first SLM (SLM1), and to produce a reference beam that we can employ to
perform an interference measurement to detect the phase of the programmed
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Figure A.3: Generation part of the setup. A HeNe laser (633 nm) is coupled
into a single mode fiber (SMF) to obtain a clean fundamental Gaussian beam.
Then, the beam is expanded with a telescope (lenses L1 and L2) to get a nearly-
constant intensity illuminating the first SLM (SLM1). A linear polarizer (LP)
select the vertical polarization matching the SLM modulation axis. A beam
splitter (BS) redirects part of the light towards the SLM, while the rest is
used as a reference for the interference measurement. The modulated beam
is imaged with a 4 f −system (lenses L3 and L4) to the plane of the second
SLM (SLM2). We position an iris in the focal plane of lens L3 to select
only the first diffraction order. In front of SLM2 we place a quarter-wave
plate (QWP) to implement the polarization rotation. A second BS is used
to redirect the light towards the microscope (reconstruction part). A pair of
lenses in a 4 f −configuration (L5 and L6) images the SLM2 plane to the back
focal plane of the objective and to a camera. A final BS is used to mix the
modulated light with the reference field for interference measurements. To
avoid power losses, the two BSs in front of the SLMs can be replaced by
D-shaped mirrors.

field distribution. After the SLM1 phase modulation, the beam propagates again
through the BS and continues towards the second SLM (SLM2). A 4 f −system
(lenses L3 and L4) is used to image the SLM1 plane onto the SLM2 plane. An
iris is positioned in the focal plane of SLM1 to select the first diffraction order
and perform simultaneous amplitude and phase modulation with a single SLM
(see following section and Refs. [138–140]). Before reaching the second SLM,
the beam polarization is modified by a quarter-wave plate (QWP). The beam is
then modulated and reflected by SLM2. It passes again through the QWP, and
it gets redirected towards the microscope (reconstruction setup). The system of
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SLM and QWP is used to locally control the polarization angle [141, 142]. A
final pair of lenses (L5 and L6) generates the image of the SLM2 plane in the
back focal plane of the microscope objective. Another BS is added after L6,
redirecting the light towards a camera, to characterize the field distribution in
the back focal plane. In particular, to measure the phase distribution, we let the
aforementioned reference (nearly constant, unmodulated Gaussian beam) and
the generated field interfere in the camera plane. Note that, to avoid power loss,
the beam splitters can be eliminated, using a D-shaped mirror and a slight tilt in
the SLM to redirect the reflected light.

A.2.2 Field distribution control with two SLMs

Here, we will describe how to use a system of two SLMs to generate a controlled
field distribution in amplitude, phase and polarization. The first SLM is used to
control both amplitude and phase. There are various techniques that allow such
control [139]. The common trait of this class of methods is that they rely on
phase gratings, which allow to locally redirect a tunable portion of the field’s
power to the first diffraction order in the Fourier space of the SLM. A lens is
then placed at focal distance from the SLM to generate its Fourier image (lens
L3 in Fig. A.3). An iris positioned in the focal plane of L3 is finally used to
select only the first diffraction order. On top of the phase grating (which is used
for amplitude modulation), a slower phase envelope spatially modulates the
phase of the input beam. These powerful techniques allows to independently
control both amplitude and phase distributions with a single SLM, adding the
advantage of filtering out the unwanted portion of unmodulated light which is
reflected by the dead spaces between the pixels of the SLM [139].

The polarization control is instead achieved using a system of a QWP and
an SLM [141]. In Fig. A.4 we show the evolution of the polarization state
rotated through the interaction with the SLM and the QWP. We can analyze
the working principle with Jones calculus [143]. The vertically polarized input
beam (Ein = [0,1]⊺) is converted to circular polarization through a QWP with
its fast axis oriented +45◦ (counterclockwise) from the horizontal axis. The
beam is then modulated and reflected by the SLM, resulting in a change of sign
for the horizontally polarized component of the field, and a pixel-wise added
phase φx,y for the vertically polarized component, where {x, y} is position of
the considered pixel. Finally, the beam passes again through the QWP, but with
opposite propagation direction. Thus, effectively the QWP behaves as having
its fast axis oriented −45◦ (counterclockwise) from the horizontal axis. We
multiply the individual Jones matrices to find the combined operation T̂x,y for
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Figure A.4: Polarization modulation. (a) Experimental setup for the pixel-
wise polarization rotation. (b) Polarization state evolution. The vertically
polarized light is converted into right-hand circular by a QWP with its fast
axis oriented 45◦ counterclockwise with respect to the horizontal axis. Then
the pixel {x, y} SLM add a phase φx,y to the vertical component of the
field, resulting in an elliptical polarization (in this case φx,y =π/4), and the
reflection adds a π phase to the horizontal component. Finally, the second
pass through the QWP converts the light back to linear polarization, but with
its angle rotated by π/2−φx,y /2.

the {x, y} SLM pixel we get

T̂x,y = 1p
2
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2

) .

(A.2)

Therefore, the resulting effect is to rotate pixel-wise the polarization axis
counterclockwise by (π/2−φx,y /2). Moreover, we add an unwanted phase
(π/2+φx,y /2), which needs to be carefully compensated by the first SLM
(which controls the phase). Therefore, it is crucial to carefully align the two
SLMs, to avoid introducing phase distortions.

In Fig. A.5, we show an example of programmed field distribution, i.e., a ra-
dially polarized second order Laguerre-Gaussian beam. We show the simulated
and the measured distributions for the total intensity (Figs. A.5a and A.5d), and
the intensity of the horizontally polarized (Figs. A.5b and A.5e) and vertically
polarized components (Figs. A.5c and A.5f). In Figs. A.5g and A.5h we show
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Figure A.5: Generation of a radially polarized second order Laguerre-
Gaussian field. (a-c, g) Simulated and (d-f, h) measured distributions. (a,d)
Total intensity. (b,c,e,f) Intensity of the (b,e) horizontal and (c,f) vertical
component of the generated field. (g,h) Intensity distribution resulting
from the interference of the second order Laguerre-Gaussian field (linearly
polarized for this measurement) and a reference beam with constant amplitude
equal to the maximum amplitude of the generated field.

respectively the simulated and measured intensity distributions resulting from
the interference of the generated field and a plane reference field with same
peak intensity. Note that for this last measurement the generated beam was set
to linear polarization.

A.2.3 Field distribution correction

Mainly due to deviations from flatness of the reflective surfaces of the SLMs,
caused by production process [144], the fields generated with our system
deviates from the desired distributions. Many techniques are present in the
literature to correct for the non-ideal response of SLMs [144–146]. In the
following, we will explain the different strategies that we implemented to
correct each of the controlled degrees of freedom.

Amplitude correction: We use our system to generate a field with the
desired amplitude distribution Atarget. We first characterize the amplitude of the
generated beam from the intensity measured by the camera in Fig. A.3. Then,
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we subtract the desired intensity (Itarget = A2
target) and the measured one (Imeas)

to derive the pixel-wise error ε= Itarget−Imeas. Next, we use the measured error
to correct the encoded amplitude. Ideally, one iteration would be enough to
obtain the desired output intensity. However, we found it experimentally more
convenient to use an iterative approach. Therefore, for each iteration we encode

a new amplitude of the form An+1 =
√

A2
n +ηεn , where η is a suitable constant

(in our case η = 0.1). The protocol continues until the average error reaches
the desired value (in the order of 0.001 in our implementation). An example
of the measured intensity before and after amplitude correction is reported in
Figs. A.6a and A.6b.

Phase correction: Aberrations, i.e., phase distortions, are a severe problem af-
fecting any optical system. The need to compensate for aberrations in astronomy
initiated the field of adaptive optics [147], which later led to wavefront shaping
(see Ch. 4). Here, we choose to follow the method proposed in Ref. [144] to
correct for the aberrations introduced by the SLMs. The method makes use
of a Gerchberg-Saxton (GS) algorithm [129] to determine the phase errors
from the distorted shape of a focused Laguerre-Gaussian (LG) beam. To this
aim, we use our generation setup to obtain a first-order LG mode, i.e., a beam
with a spiral phase, constant amplitude and homogeneous linear polarization
(phase mask in Fig. A.7a). We then focus it with a lens and we record the focal
plane with a camera. In Fig. A.7c we show an example of a distorted intensity

Figure A.6: Amplitude correction. The target distribution is a disk with
constant amplitude. (a,b) Measured intensity (a) before and (b) after
performing amplitude correction.
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Figure A.7: Phase correction. (a,b) Phase masks implemented with the SLM.
(c,d) Intensity distribution recorded in the focal plane. The initial phase mask
(a) leads to a distorted focus (c). After the phase correction we obtain the
corrected phase mask (b), leading to the desired doughnut shape in the focus
(d).

distribution recorded in the focal plane. From the GS algorithm, we extract the
phase distortion that leads to the measured intensity, and we use it to correct the
SLM phase mask (see Fig. A.7b) and retrieve the target intensity distribution
(Fig. A.7d). Interestingly, the derived correction for the SLM mask is still valid
for different generated field distributions [144]. Moreover, this technique has
the added advantage of optimizing the entire optical setup, since the extracted
aberrations include the effect of optical elements other than the SLMs.

Polarization correction: In order to correct for polarization inhomogeneities,
we again make use of the camera image of the generated beam. Our polarization
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control consists of locally rotating the polarization, which remains linear.
Therefore, by simply adding a horizontal linear polarizer, we can measure from
the resulting intensity the polarization rotation introduced by each pixel. Given
a linearly polarized input with constant amplitude and phase (Ein = [0,1]⊺), the
pixel-wise intensity Ix,y dependence on the phase φx,y introduced by a pixel in
position {x, y} of SLM2 is

Ix,y =
∣∣T̂HLP T̂x,y Ein

∣∣2 = 1+cos(φx,y )

2
, (A.3)

where T̂HLP is the Jones matrix of the horizontally oriented linear polar-
izer [143], and T̂x,y represents the rotation of the polarization axis operated
by the system of SLM2 and QWP [see Eq. (A.2)]. We can then measure the
resulting intensity corresponding to a phase φx,y ranging from 0 to 2π, and
correct with a look-up table for any deviation from the ideal characteristics
expected from Eq. (A.3). In Fig. A.8, we show the intensity (measured after a
horizontal LP) of a beam programmed to have constant horizontal polarization,
before (Fig. A.8a) and after (Fig. A.8b) correction.

A.2.4 Reconstruction setup

The generation part of the setup allows us to obtain a desired complex vector
field distribution in a given plane. We make sure that this plane coincides with
the back focal plane of a high-NA, oil immersion objective (Plan Apo 100X,

Figure A.8: Polarization correction. (a,b) Recorded intensity of a beam
with constant amplitude and horizontal polarization after a horizontal linear
polarizer. (a) Before and (b) after correction. The circles are caused by dirt
present in the camera.
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Figure A.9: Reconstruction setup. The generated beam is focused by a
high-NA oil-immersion objective. The focused intensity is probed by a gold
nanoparticle (100 nm in diameter), which is moved in the transverse plane
by a 2D piezo stage, and along the optical axis by a stepper motor. Index-
matched oil is present between the objective and the coverslip and on top
of the coverslip, to minimize unwanted reflections of the laser. The light
back-scattered by the particle is collected by the objective, redirected by a
BS, focused by a tube lens and integrated by a camera. The back-scattered
power is directly proportional to the local intensity of the strongly focused
beam at the particle’s position.

NA= 1.4). We use a gold nanoparticle (NP) to probe the local intensity of the
strongly focused beam. The particle is mounted on a coverslip, which we can
freely move in the transverse plane (through a 2D piezo-stage) and along the
optical axis (using a stepper motor). We use index-matched oil (between the
objective and the coverslip, and on top of the coverslip) to minimize reflections.
The only back-reflected light is therefore caused by NP scattering. Finally, the
collected light is redirected by a BS, focused by a tube lens and imaged with a
camera. Integrating over the pixels of the camera, we obtain a measurement
of the scattered power. Importantly, the power of the back-scattered light is
proportional to the local intensity of the field at the particle’s position. Therefore,
employing the piezo-stage and the stepper motor to raster scan the focal area,
we reconstruct the three-dimensional focal intensity, with a resolution limited
by the NP size (100 nm in our case). The experimental setup described above
is sketched in Fig. A.9.

In Fig. A.10, we show as an example the 3D reconstruction of a linearly
polarized gaussian beam (note that we used an objective with NA = 1.3 in this
case). The full width at half maximum corresponds to 0.3336 µm along x and
0.3636 µm along y . This value deviates from the theoretical one [λ/(2NA) =
0.2435] by ≈ 40%, which is in line with what reported in literature [148].
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Considering the distribution along z, we recognize two lobes appearing at
negative z values, and a smearing in the opposite direction. This effect is well
known and is caused by spherical aberrations introduced by the objective [149].

A.3 Results: towards a 3DQ intensity

In this section, we show the results achieved so far towards the realization of a
3DQ focus. In Fig. A.2 we have already shown the field that we need to generate
in order to experimentally realize the 3DQ intensity. Using the generation
setup described in Sec. A.2.1, we can program the desired field distribution
in the back focal plane of the high-NA objective. We show in Fig. A.11 the
simulations and measurements of the generated intensity distribution when

Figure A.10: Focus reconstruction of a strongly focused linearly polarized
Gaussian beam. (a) Intensity distribution in the x y−plane (z = 0, i.e., focal
plane). (b) Intensity cross-sections at the center of the focus. (c) Intensity
distribution in the xz− plane (y = 0);
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filtered by a horizontally (Fig. A.11a and Fig. A.11c) or vertically (Fig. A.11b
and Fig. A.11d) oriented linear polarizer. The measurements are performed by
the camera in Fig. A.3.

After characterizing the field distribution in the back focal plane of the
objective, we moved to the reconstruction of the focal intensity. To address the
task in incremental steps, we first characterized the focus of a field modulated
only by the first SLM, i.e., with programmed amplitude and phase distributions,
but linear polarization. In particular, we programmed a field with amplitude
A given by A =

√
|Ex |2 +|Ey |2, where Ex and Ey are the distributions showed

in Fig. A.2, and the phase of the Ex component. We chose this combination
of amplitude and phase because it results in a peculiar intensity shape in the
focal plane, as reported from simulation in Fig. A.12a. The reconstructed
intensity (Fig. A.12b) is in good agreement with the simulated distribution. This
promising result shows the control achieved over the focal intensity distribution.
In the next section, we will discuss the experimental steps that we plan in order
to include the polarization distribution in the paraxial field to obtain the 3DQ
focus.

A.4 Outlook: including polarization

The next step towards the measurement of the 3DQ focus is to include the
polarization distribution in the paraxial field. To this aim, we propose the
following experimental steps:

• we independently generate the radially polarized (RP) and the azimuthally
polarized (AP) components of the paraxial beam (see Fig. A.2), and we
confirm that the intensity distributions in the focal plane correspond to
the simulated ones (Figs. A.1c and A.1d);

• next, we generate the superposition of the RP and AP components,
controlling their relative weight to obtain a flat-top intensity (Fig. A.1e).
This experimental approach allows us to compensate for eventual non-
idealities (e.g., lower effective NA) that modify the relative strength of
the two components;

• we then optimize the amplitude and phase distributions of the RP com-
ponent to obtain the quartic intensity along the optical axis (Fig. A.1a).
Next, we adjust the weight of the AP component accordingly to achieve
the quartic intensity in the focal plane. Finally, this would lead to the
generation of a 3DQ intensity distribution.
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Figure A.11: Paraxial beam generation. (a,b) Simulation of the intensity
of the (a) horizontally and (b) vertically polarized components. (c,d)
Measurement of the generated intensity when filtered with a (c) horizontally
and (d) vertically oriented linear polarizer.

A.5 Conclusion

A three-dimensional quartic intensity is given by an intensity distribution with
zero-curvature along the three Cartesian axis in the focal space. In this chapter,
we presented a recipe to obtain a 3DQ intensity, that relies on the generation of
the superposition of azimuthally and radially polarized fields in the back focal
plane of a high-NA objective. We then showed that we are able to generate a
desired complex vector field distribution in a given plane employing a system of
two SLMs. We use it to generate a paraxial beam that, when strongly focused,
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Figure A.12: Intensity distribution in the focal plane for a linearly polarized

paraxial field, with amplitude A =
√

|Ex |2 +|Ey |2 and phase φ = ∠(Ex ),
where Ex = |E x|exp(i ∠(Ex )) and Ey are the x and y polarized components
depicted in Fig. A.2. (a) Simulated and (b) measured intensity distributions.

results in the 3DQ intensity. Using a gold nanoparticle, we were able to probe
the local intensity, and reconstruct the three dimensional distribution around
the focus. As a benchmark, we reconstructed the three-dimensional focus of a
linearly polarized Gaussian beam. Moreover, to prove our system capability,
we measured the focus of a linearly polarized beam with the same amplitude
distribution as the 3DQ paraxial field, and the phase distribution of the x
component of the paraxial beam. Finally, we presented the experimental steps
planned to include the polarization distribution and achieve the 3DQ intensity.

In conclusion, we presented a setup which is able to generate a desired
complex vector field at a given plane, and a microscope system capable of
reconstructing the 3D intensity distribution in the focal space. We plan to use
it to generate a 3DQ intensity, which would provide an interesting tool for
applications in laser cutting [132], trapping of levitated nanoparticles [135],
and Bose-Einstein condensation [136].
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B.1 Unitarity of a linear transformation and overall
coherence

Let us consider a set of normalized input fields Fin, characterized by a coherence
matrix Kin = 〈FinF

†
in〉. We apply a unitary transformation Û to get the set

of output fields Fout = ÛFin, with coherence matrix Kout = 〈FoutF
†

out〉. By
definition, the unitary transformation Û satisfies the relation ÛÛ † = Û †Û = I.

We can demonstrate that the overall coherence S , defined in Eq. (2.35), is
invariant under unitary transformations. To prove it, we expand the traces

tr
(
K2

out

)= tr
(
〈FoutF

†
out〉2

)
= tr

[(
Û 〈FinF

†
in〉Û †

)2
]
= tr

[(
ÛKinÛ †

)2
]

, (B.1)

tr(Kout) = tr
(
〈FoutF

†
out〉

)
= tr

[
Û 〈FinF

†
in〉Û †

]
= tr

[
ÛKinÛ †

]
, (B.2)

and, using the definition of unitarity of the transformation and the cyclic property
of the trace, we obtain

tr
(
K2

out

)= tr
(
ÛKinÛ †ÛKinÛ †

)
= tr

(
KinÛ †ÛKinÛ †Û

)
= tr

(
K2

in

)
. (B.3)

This appendix is based on the supplemental documents of the articles: A. Nardi et al., Opt.
Express 29, 40831-40840 (2021), and A. Nardi et al., Opt. Lett. 47, 4588-4591 (2022).
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tr(Kout) = tr
(
ÛKinÛ †

)
= tr

(
KinÛ †Û

)
= tr(Kin) . (B.4)

We proved that tr
(
K2

out

)= tr
(
K2

in

)
and tr(Kout) = tr(Kin), thus confirming that

the overall coherence remains unaffected under unitary transformations.

B.2 Detected signal variance without added noise

In this appendix, we derive the expression of the variance of the detected signal
in mutual coherence coding. We highlight that the variance considered here
results from the stochastic nature of the mutual coherence: no noise is added
to the transmitted fields in this treatment. Let us consider the interference
experiment between a single pair of fields Yi and Y j . The signal Si j measured
by the balanced photodetector is [see Eq. (3.31)]

Si j = 2

T (N f −1)

∫ T /2

−T /2
Re

(
Yi Y ∗

j

)
d t , (B.5)

where T is the integration time of the detector, and N f is the number of
transmitted fields. The fields are stochastic variables, hence we characterize
the signal through its expectation value and its variance. The expectation value,
denoted with an overline, is

Si j = 2

T (N f −1)

∫ T /2

−T /2
Re

(
Yi Y ∗

j

)
d t = 2Pout

N f −1
Re(γi j ) , (B.6)

where we used the relation Poutγi j = Yi Y ∗
j . To derive the variance Var(Si j ) =

S2
i j −

(
Si j

)2
, we compute the second moment

S2
i j =

1

T 2(N f −1)2

Ï T /2

−T /2

[
Yi (t1)Y ∗

j (t1)+ c.c.
][

Yi (t2)Y ∗
j (t2)+ c.c.

]
d t1d t2

= 2

T 2(N f −1)2

Ï T /2

−T /2
Re

{ I︷ ︸︸ ︷[
Yi (t1)Y ∗

j (t1)+ c.c.
]

Yi (t2)Y ∗
j (t2)

}
d t1d t2 ,

(B.7)
where c.c. stands for complex conjugate. Recalling that the input fields Xn ,
with n ∈ {1,2, . . . , N f }, are related to the outputs of the linear port through the
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relation Yi =∑N f
n ti n Xn , we can express I as:

I =
[

Yi (t1)Y ∗
j (t1)+Y ∗

i (t1)Y j (t1)
]

Yi (t2)Y ∗
j (t2)

=
N f∑

n,m,p,q

(
t∗j n ti m + t∗i n t j m

)
t∗j p ti q X ∗

n (t1)Xm(t1)X ∗
p (t2)Xq (t2) .

(B.8)

To simplify this equation, we need to derive the expression for the second-order
correlation function Γ of the input fields, i.e.,

Γnmpq (t1 − t2) = X ∗
n (t1)Xm(t1)X ∗

p (t2)Xq (t2) . (B.9)

The input fields are independent and have a null expectation value, hence
Γnmpq (t1 − t2) is non-zero only if the values of the indexes are all equal, or
equal in pairs. Therefore, only for the following four, mutually exclusive cases,
the expression does not vanish. Firstly, if n = m ̸= p = q , we have

Γnnpp (t1 − t2) = |Xn(t1)|2 |Xp (t2)|2 = P 2
in. (B.10)

Secondly, if n = q ̸= m = p, we have

Γnmmn(t1 − t2) = X ∗
n (t1)Xn(t2) Xm(t1)X ∗

m(t2) . (B.11)

To solve this equation, we use the degree of first-order coherence g (1) (see
Sec. 2.1.1):

g (1)(t1 − t2) = X ∗
n (t1)Xn(t2)

Pin
. (B.12)

We can consider the process stationary, hence not dependent on the particular
value of t1 and t2, but only on their difference τ= t1− t2. For Lorentzian power
spectral density, the expression of g (1)(τ) is [see Eq. (2.13)]

g (1)(τ) = exp
(
− i 2πν0τ−2π∆ν|τ|

)
, (B.13)

where ν0 and ∆ν are the central frequency and the linewidth of the input light
fields, respectively. Thus, Γnmmn takes the form

Γnmmn(τ) = P 2
in

∣∣g (1)(τ)
∣∣2

. (B.14)

Thirdly, if n = p ̸= m = q , we have

Γnpnp (t1 − t2) = X ∗
n (t1)X ∗

n (t2) Xp (t1)Xp (t2) = 0 . (B.15)
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Finally, we have for n = m = p = q

Γnnnn(t1 − t2) = X ∗
n (t1)Xn(t1)X ∗

n (t2)Xn(t2) = P 2
ing (2)(τ), (B.16)

where we introduced the degree of second-order coherence g (2)(τ). With
classical chaotic light sources we have [150]

g (2)(τ) = 1+|g (1)(τ)|2 , (B.17)

which allows us to join the four cases into a single expression:

Γnmpq (τ) = P 2
in

[
δnmδpq +δnqδmp |g (1)(τ)|2] . (B.18)

Going back to the integral I of Eq. (B.8) we get

I = P 2
in

N f∑
n,p

[(
t∗j n ti n + t∗i n t j n

)
t∗j p ti p +

(
t∗j n ti p + t∗i n t j p

)
t∗j p ti n |g (1)(τ)|2

]
.

(B.19)
From our choice of the linear port, we have Poutγi j = Pin

∑N f
n ti n t∗j n [see

Eq. (3.29)], leading to

I = P 2
out

[(
γi j +γ∗i j

)
γi j +

(
γ2

i j +γi iγ j j

)
|g (1)(τ)|2

]
. (B.20)

Including the derived expression of I in the second moment of the signal and
recalling that γi i = 1 we get

S2
i j =

4P 2
outRe(γi j )2

(N f −1)2 +
2P 2

out

[
1+Re(γ2

i j )
]

T (N f −1)2

∫ T /2

−T /2
|g (1)(τ)|2 dτ . (B.21)

The integral can be analytically solved from the definition of g (1)(τ) given in
Eq. (B.13): ∫ T /2

−T /2
|g (1)(τ)|2 dτ= 1−exp(−2π∆νT )

2π∆ν
→ 1

2π∆ν
(B.22)

where we considered the limit of integration time T much longer than the
coherence time τc = 1/(2π∆ν) of the light sources. Finally, the variance of the
signal is

Var(Si j ) =
2P 2

out

[
1+Re

(
γ2

i j

)]
(N f −1)22π∆νT

. (B.23)
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B.3 Signal-to-noise ratio (SNR) derivation

In this section, we derive the expression of the SNR, defined as

SNR = S̃i j
2

Var(S̃i j )
, (B.24)

where i ̸= j and S̃i j is the signal measured by the balanced detector. Differently
than Sec. B.2, we consider here the presence of noise Ni (hence the different
symbol S̃i j ), which is added to the received signal Ỹi = Yi +Ni . Noise related to
different signals are uncorrelated, i.e., Ni N∗

j = 0, with i ̸= j , they are stationary
and all characterized by zero mean value and an autocorrelation RN (τ) =
Ni (t )∗Ni (t +τ) = PN exp(−2π∆νN |τ|), where ∆νN is the cut-off frequency of
the transmission channel, and PN is the noise power.

The expectation value of the detected signal in the presence of noise is

S̃i j =
∫ T /2

−T /2

2 Re
(
Ỹi Ỹ ∗

j

)
T (N f −1)

d t =
∫ T /2

−T /2

2 Re
(
Yi Y ∗

j +Yi N∗
j +Ni Y ∗

j +Ni N∗
j

)
T (N f −1)

d t .

(B.25)
Since the noise and the signals are uncorrelated (Yi N∗

j = Ni Y ∗
j = 0) and we

know that Ni N∗
j = 0, the expression simplifies to

S̃i j =
2PoutRe(γi j )

T (N f −1)
, (B.26)

which is the same expression obtained without the noise [see Eq. (B.6)].
As for the second moment of the detected signal, we have

S̃2
i j =

2

T 2(N f −1)2

∫
T 2

Re
{ Ĩ︷ ︸︸ ︷[

Ỹ ∗
i (t1)Ỹ j (t1)+ c.c.

]
Ỹ ∗

i (t2)Ỹ j (t2)
}

d t1d t2 .

(B.27)
We can analyze the two terms of I separately:

Ĩ =
η1︷ ︸︸ ︷

Ỹ ∗
i (t1)Ỹ j (t1)Ỹ ∗

i (t2)Ỹ j (t2)+
η2︷ ︸︸ ︷

Ỹi (t1)Ỹ ∗
j (t1)Ỹ ∗

i (t2)Ỹ j (t2) . (B.28)

Of the 16 terms obtained expanding the product in η1, the only non-zero term is

η1 = Y ∗
i (t1)Y j (t1)Y ∗

i (t2)Y j (t2) =
N∑

n,m,p,q
t∗i n t j m t∗i p t j qΓnmpq (t1 − t2) , (B.29)
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where we used the definition of the linear port Yi = ∑N f

n=1 ti n Xn and the defi-
nition of Γnmpq (t1 − t2) given in Eq. (B.9). Using the expression derived in
Eq. (B.18) we get

η1 = P 2
outγ

2
i j

(
1+|g (1)(τ)|2) . (B.30)

For η2, instead, more terms are non-zero:

η2 =
N f∑

n,m,p,q
t∗j n ti m t∗i p t j qΓnmpq (t1 − t2)+|RN (τ)|2+

+
N f∑

n,m
ti n t∗i m Xn(t1)X ∗

m(t2)R(−τ)+
N f∑

n,m
t∗j n t j m X ∗

n (t1)Xm(t2)R(τ) ,

(B.31)
where τ= t1 − t2. Using again Eq. (B.18) and considering that γi i = γ j j = 1 we
obtain

η2 = P 2
out

[|γi j |2 +|g (1)(τ)|2]+|RN (τ)|2 +PoutRe
[
g (1)(τ)RN (−τ)

]
. (B.32)

To solve the integral we need the following relations:

1

T

∫ T /2

−T /2
|g (1)(τ)|2dτ= 1−exp(−2π∆νT )

2π∆νT
≈ 1

2π∆νT
, (B.33)

1

T

∫ T /2

−T /2
|RN (τ)|2dτ= P 2

N

[
1−exp(−2π∆νN T )

]
2π∆νN T

≈ P 2
N

2π∆νN T
, (B.34)

1

T

∫ T /2

−T /2
Re

{
g (1)(τ)RN (−τ)

}
dτ≈ PN (∆ν+∆νN )

2πT
[
(∆ν+∆νN )2 +ν2

0

] → 0 . (B.35)

The approximate result comes from considering T ≫ 1/∆ν, T ≫ 1/∆νN and
ν0 ≫∆ν,∆νN . Therefore, going back to the expression of the second moment
with the approximate results of the integrals we get

S̃2
i j =

2P 2
out

(N f −1)2

Re
(
γ2

i j

)
+|γi j |2 +

1+Re
(
γ2

i j

)
2π∆νT

+ P 2
N

P 2
out2π∆νN T

 . (B.36)

Considering that |γi j |2 +Re(γ2
i j ) = 2Re(γi j )2, we finally derive the variance of

the detected signal:

Var(S̃i j ) = S̃2
i j −

(
S̃i j

)2 = 2P 2
out

(N f −1)2

1+Re
(
γ2

i j

)
2π∆νT

+ P 2
N

P 2
out2π∆νN T

 . (B.37)
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Finally, the expression of the SNR is the following

SNR = S̃i j
2

Var(S̃i j )
=

[
1+Re(γ2

i j )

2Re(γi j )2

1

2π∆νT
+ P 2

N

2P 2
outRe(γi j )2

1

2π∆νN T

]−1

.

(B.38)
In case we choose to consider only shot noise, the power spectral density for
a balanced detector is SN N = P 2

N /∆νN = 2hν0Pout. Moreover, considering a
transmission efficiency Pout/Pin = η, the final expression of the SNR is

SNR =
[

1+Re(γ2
i j )

2Re(γi j )2 2π∆νT
+ hν0

ηPinRe(γi j )2 2πT

]−1

. (B.39)

B.4 Technical limitations

In Sec. 4.2.3, we have seen that we encounter deviations between the encoded
and the reconstructed degree of coherence when we try to achieve very low
(approaching 0) or very high (approaching 1) values. In this section, we provide
more details on the origins of these limits.

Let us start investigating the case where we want to obtain mutually
incoherent outputs. According to Eq. (2.40), the linear transformation we
want to apply is the identity matrix, i.e., the inputs should be transmitted to the
outputs unaffected. However, since it is not feasible to control all the modes
supported by the scattering medium (see Sec. 4.1.1), the beams get mixed
during the propagation through the medium. The resulting background noise is
responsible for an unwanted contribution of each input field to every output.

We will now quantify the limitations to the minimum degree of coherence
imposed by the background noise. We start considering a coherence matrix
Kout of the form

Kout =


1 γ · · · γ

γ 1 · · · γ
...

. . . . . .
...

γ γ · · · 1

 , (B.40)

where, for simplicity, we set the off-diagonal terms to have the same constant
real value γ. To have mutually incoherent output fields, we want γ to tend to 0.
From Kout we extract the expression of the linear transformation T̂ [Eq. (2.40)],
which connects the mutually incoherent input fields Ein to the output fields
Eout with coherence matrix Kout. From the expression of Kout in Eq. (B.40),
the linear transformation T̂ can be completely described by two coefficients:
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t11 for the diagonal terms, which are all equal, and t21 for the off-diagonal
elements, which are again all equal. Note that the coefficients t11 and t21

associate the two outputs E out
1 and E out

2 with the single input E in
1 , according to

the relations E out
1 = t11E in

1 , and E out
2 = t21E in

1 . Ideally, we would like |t21| to
approach zero to get zero output degree of coherence, i.e., we want |E out

2 | = 0.
In practice, the background noise in the output intensity pattern poses a lower
bound to the intensity |E out

2 |2, hence to |t21|, which finally sets the minimum
degree of coherence different from zero. In Fig. B.1a, we show the scaling of
the absolute value of the ratio |t21/t11| as a function of the degree of coherence
γ. If we increase the number of inputs, i.e., the dimensionality of Kout, the
requirement is very similar (Fig. B.1). A desired minimum degree of coherence
translates into a minimum signal-to-noise ratio (SNR). In fact, considering the
single input E in

1 and assuming that the only contribution to E out
2 is given by

the background noise, |t11|2 is the maximum generated intensity and |t21|2 is
the noise intensity, thus the SNR is defined as |t11|2/|t21|2. In Fig. B.1b, we
show that low coherence values demand very high SNR, which is limited by the
number of SLM pixels modulating each input laser [109]. We expect a similar
argument to work for a coherence matrix Kout where the off-diagonal terms
assume various values. Following the reasoning described above, the limitation
would be given by the coefficient of the linear port T̂ =p

K with the minimum
absolute value, which requires a high enough SNR to be implemented. Note
that this conclusion is the result of a numerical analysis, since we do not have a
general analytical expression for T̂ .

Let us now consider the factors limiting the maximum degree of coherence.

Figure B.1: Minimum degree of coherence limitations. (a) Given two outputs
E out

1 = t11E in
1 and E out

2 = t21E in
1 , the degree of coherence γ depends on the

ratio |t21/t11|. (b) Minimum signal-to-noise ratio (SNR) needed to encode the
degree of coherence γ. In the case that |t21| is only given by the background
noise, the SNR is |t11|2/|t21|2 .
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To investigate this case, we turn on a single input (E in
1 ), and we consider a

single pair of output fields E out
1 and E out

2 , which are related to the input by the
coefficients t11 and t21, as discussed above. We compute the mutual degree of
coherence

γ= 〈E out
1

(
E out

2

)∗〉√
〈|E out

1 |2〉〈|E out
2 |2〉

= t11t∗21

〈|E in
1 |2〉

|t11t21|
〈|E in

1 |2〉 = t11t∗21

|t11t21|
, (B.41)

whose modulus |γ| is always equal to 1, regardless the values of the transfor-
mation coefficients. Nevertheless, the measurements deviate from this ideal
result. To show it, we use a single input laser to generate through our system
two output beams. We then let the output beams interfere and we reconstruct
the degree of coherence. We report the measured interference patterns for two
different input lasers in Fig. B.2a and Fig. B.2b. The reconstructed degrees of
coherence (γ1 = 0.86 for the first input and γ1 = 0.92 for the second) are lower
than the ideal value of 1. This discrepancy, in line with what is reported in
literature, is associated to the limited spatial coherence of the light source [151].
We show now that the maximum degree of coherence achievable with a single
laser is limiting the value obtainable by the whole system. Let us consider
two mutually incoherent inputs, both of them contributing to two output fields.
Since the components from the different inputs do not interfere, the resulting
interference pattern is given by the sum of the individual patterns. Thus, we
can write the visibility in terms of the maximum I max

1 , I max
2 and minimum I min

1 ,
I min

2 intensity given by the contributions from the two different inputs:

V = (I max
1 + I max

2 )− (I min
1 + I min

2 )

(I max
1 + I max

2 )+ (I min
1 + I min

2 )
. (B.42)

After few algebraic passages, we get

V = V1

1+ (I max
2 +I min

2 )

(I max
1 +I min

1 )

+ V2

1+ (I max
1 +I min

1 )

(I max
2 +I min

2 )

, (B.43)

where Vi = (I max
i −I min

i )/(I max
i +I min

i ) is the visibility of the interference pattern
given by the i th input. Considering I max

1 = I max
2 and I max

1,2 ≫ I min
1,2 , we obtain

V ≈ V1 +V2

2
. (B.44)

The last equation tells us that the maximum visibility obtainable by the whole
system [directly linked to the degree of coherence, see Eq. (4.11)] is limited by

99



B Supplementary information

the average visibility over each single input. Therefore, the maximum degree
of coherence achievable is limited by the spatial coherence of the light sources.
Figure B.2 shows the interference pattern when we turn on: (a) only the first
input, (b) only the second one, or (c) both of them. The measured degrees of
coherence resulting from the combination of the two inputs (γ12 = 0.89) is in
agreement with Eq. (B.44).

B.5 Mutual incoherence of the input fields

Our implementation relies on mutually incoherent inputs. To achieve this
condition, we used three red lasers (Thorlabs HRP050 and Meredith Instruments
633nm HeNe lasers, and ≈ 650nm pen-type visual fault locator FOSCO BOB-
VFL650-10), with a linewidth (HeNe ≈ 10MHz, VFL ≈ 1THz) much larger
than the bandwidth of the employed detector (Basler acA640-750um, bandwidth
≈ 10÷100Hz). This ensures that we can consider them mutually incoherent.
To confirm it, we focused the three laser beams into a single spot, checking that
no interference fringes are visible (see Fig. B.3).

Figure B.2: Interference patterns. We have two interfering output fields,
resulting from the superposition of two inputs. We show the interference
patterns when (a) the first, (b) the second or (c) both inputs contribute to the
outputs. Each case is associated to a measured degree of coherence γi , where
the subscript i indicates the contributing inputs.
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B.5 Mutual incoherence of the input fields

Figure B.3: Mutually incoherent inputs. (a) Characterization setup. Three
independent laser beams are modulated by a SLM before being focused onto
a camera. (b, c) Camera images. The SLM is used to (b) separate the beams
in the focal plane or to (c) focus them in the same point. No interference
fringes are present when the beams overlap, confirming that the three fields
are mutually incoherent.
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