
ETH Library

Distributed Gradient
Preconditioning for Training Large-
Scale Models

Master Thesis

Author(s):
Baumann, Noah Andrés

Publication date:
2023-05-02

Permanent link:
https://doi.org/10.3929/ethz-b-000615331

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000615331
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Distributed Gradient Preconditioning
for Training Large-Scale Models

Master Thesis

N. A. Baumann

May 2, 2023

Supervisors: Prof. Dr. T. Hoefler, Dr. K. Osawa, Dr. S. Li

Department of Computer Science, ETH Zürich

Acknowledgements

First of all, thank you Kazuki and Shigang for supervising me on this project.
It was a great project where I learned a lot about using deep learning and
distributed training, which is, in today’s world, a major skill to have. Special
thanks to Kazuki and Shigang, your knowledge on this topic is outstanding
and thank you for guiding me through it to the point where I am today. A
very big thank you goes to Professor Torsten Hoefler for giving constructive
feedback. Another thanks goes to my girlfriend Julia for reading my thesis.
Thanks to Grammarly for helping me write clear and correct sentences. Lastly
to my family, a big thank you for standing next to me and being there for me
when I needed you.

i

Abstract

Neural Networks (NNs) are getting deeper and more complicated to
the point where single accelerator training is no longer an option. Train-
ing today’s state-of-the-art NNs is done in parallel over thousands of
GPUs. Preconditioning-based optimizers are getting more attention in
distributed training as well. We conduct a literature review of existing
distributed second-order methods in training NNs. We thoroughly look
at two famous preconditioning methods called K-FAC and Shampoo
and describe the approaches on how to distribute additional computa-
tions across multiple GPUs. We implement distributed K-FAC (distr.
K-FAC) and distributed Shampoo (distr. Shampoo) in PyTorch. Based
on our analysis of the performance of both algorithms, we introduce
3D-Shampoo, an extension of Shampoo to training in 3D parallelism
settings (i.e. a combination of data, operator, and pipeline parallelism).
3D-Shampoo works with 3D parallelism from the DeepSpeed library
(Rasley et al. ,2020), a modified version of the Shampoo optimizer (Gupta
et al. ,2018), and is designed for very big language models such as
GPT-2 which support operator parallelism like Megatron-LM’s GPT-2
(Narayanan et al. ,2021). The final part of this thesis consists of a descrip-
tion of the 3D-Shampoo algorithm, how it works, and the results of its
performance on Megatron-LM’s GPT-2 for different levels of parallelism.
Further, our 3D-Shampoo has shown a competitive throughput (number
of tokens processed per second) with the SGD optimizer for all kinds of
parallelism (data parallelism, operator parallelism, pipeline parallelism,
and a combination of them) training GPT-2-like Transformer models.
The code used for our experiment is publicly available1.

1https://github.com/noabauma/3d-shampoo

ii

https://github.com/noabauma/3d-shampoo

Contents

Acknowledgements i

Contents iii

1 Introduction 1

2 Existing Distributed Preconditioning Methods 3

3 Distributed Kronecker-Factored Approximate Curvature 5
3.1 Concept and Computational Cost of K-FAC 6

3.1.1 K-FAC for Fully-Connected Layers 7
3.1.2 K-FAC for Convolutional Layers 9
3.1.3 K-FAC Unit-Wise Natural Gradient 9

3.2 Communication Cost of Distributed K-FAC 10
3.2.1 Communication Cost after the DP Part 10
3.2.2 Communication Cost after the MD Part 11

3.3 Computational and Communication Overlap of Distributed
K-FAC . 11

4 Distributed Shampoo 15
4.1 Computational Cost of Shampoo 16

4.1.1 Shampoo Algorithm: Matrix Case 16
4.1.2 Shampoo Algorithm: General Tensor Case 17
4.1.3 Shampoo Algorithm: Diagonal Version of Shampoo for

Matrix Case . 19
4.1.4 Matrix pth Root and its Inverse Algorithm 20

4.2 Communicational Cost of Shampoo 21
4.3 Computational and Communicational Overlap in Shampoo . 22

5 Comparison of Distributed K-FAC and Distributed Shampoo 23
5.1 Workload Balancing . 23

iii

Contents

5.2 Distributed K-FAC vs Distributed Shampoo Results 28

6 3D-Shampoo 37
6.1 Collective Communication and the Piz Daint Network 38
6.2 3D Parallelism . 40
6.3 DeepSpeed Library . 42
6.4 Megatron-LM’s GPT-2 . 42
6.5 3D-Shampoo’s Algorithm . 44
6.6 3D-Shampoo Implementation 48
6.7 3D-Shampoo Results . 49

7 Conclusion 61

A Appendix 63

Bibliography 67

iv

Chapter 1

Introduction

Deep neural networks (DNNs) are getting bigger and have revolutionized
the field of machine learning by achieving state-of-the-art performance on a
wide range of tasks, from image and speech recognition to natural language
processing, such as ChatGPT from OpenAI1. We have gotten to a point
where neural networks are the size of hundreds (or even thousands) of
Gigabytes (GBs) with current GPUs have memory capacity in the range
of 16 GB up to 80 GB with the new Nvidia A1002. Hence, distributed
training over multiple GPUs is a must-do to train the newest generations
of neural networks. Training those neural networks is computationally
expensive, particularly for large-scale problems with high-dimensional data.
This has motivated the development of more efficient optimization methods
to accelerate training while maintaining or improving performance.

One approach to improving optimization is to use second-order methods (or
preconditioning methods in particular), which take into account the curvature
of the loss function when updating the network parameters. Preconditioning
methods can potentially converge faster and generalize better than widely-
used first-order methods, but they can be computationally expensive, high
in memory cost, and difficult to scale to large datasets and deep neural
networks.

In recent years, there has been increasing interest in distributed optimization
methods that can leverage the power of multiple processors or GPUs to
accelerate training. However, existing distributed optimization methods for
deep neural networks have mostly focused on first-order methods, and the
use of second-order methods in a distributed environment remains an open
research field.

Our goal is to identify new research directions for improving the distributed

1https://chat.openai.com/
2https://www.nvidia.com/en-us/data-center/a100/

1

https://chat.openai.com/
https://www.nvidia.com/en-us/data-center/a100/

1. Introduction

training of deep neural networks and to gain a deeper understanding of
the advantages and limitations of preconditioning methods in a distributed
setting. We also want to show the potential of preconditioning methods in
large-scale models on high-performance computer clusters having multiple
GPUs. In this thesis, we investigate distributed preconditioning methods for
DNNs, focusing on the K-FAC [23] and Shampoo [15] algorithms. We also
propose a new method called 3D-Shampoo, which combines Shampoo with
DeepSpeed’s (ZeRO-style) data and pipeline parallelism [32] and Megatron-
LM’s language models [34, 25] supporting operator/tensor parallelism to
further accelerate training on multiple GPUs.

This thesis is organized as follows: Chapter 2 is a literature review of existing
distributed preconditioning methods. We discuss there what has been done
already and why this thesis came to be. Chapter 3 is about the distributed
Kronecker-Factored Approximate Curvature (distr. K-FAC) algorithm and
its computational and communications cost. In chapter 4 is about the dis-
tributed Shampoo (distr. Shampoo) algorithm and its computational and
communications cost. Chapter 5 we analyse the results of both the distr.
K-FAC and distr. Shampoo algorithm for different numbers of GPUs, NNs,
Batch sizes and more on the supercomputer Piz Daint from the Swiss Na-
tional Supercomputing Centre (CSCS) [3]. Chapter 6 is about 3D-Shampoo’s
algorithm, implementation, and throughput results on Piz Daint against the
SGD optimizer for various configurations.

2

Chapter 2

Existing Distributed Preconditioning
Methods

For this chapter, we conducted a literature review of all known distributed
preconditioning methods that have been tested on multiple GPUs (see ta-
ble 2.1). We have included every known paper that demonstrates a 2nd-order
method (or preconditioning) for updating the parameters of a network,
including some sort of distributed/multi-GPU setting. The goal of this lit-
erature review is to show what distributed preconditioning methods are
currently doing and how many GPUs their algorithms have been tested on.
Some algorithms, such as K-FAC and its similar counterparts (e.g. M-FAC,
HyLo), have been shown to work well on multi-GPU training, with Osawa et
al. [28] being the largest with results on 1024 GPUs. We see potential in Anil
et al. Shampoo optimizer [5] for its simplicity and scalability (see chapter 4
for more information on Shampoo) to work on very large models such as
GPT-based language models. Anil et al. only demonstrated their concept for
heterogeneous-based learning, where the p-root inverse computation of the
preconditioning matrices was done on a CPU because of its double precision
and the CPU being mostly stale during training. We see the potential of
using Shampoo in a distributed layer-wise fashion and the p-root inverse
computation done on GPUs and with some modification to work on 3D
parallelism (see chapter 6).

3

2. Existing Distributed Preconditioning Methods

Year Category Cited Authors Ref Algorithm Name Type of Parallelism #GPUs
2022 NG 0 Mu+ [24] HyLo DP & layer-wise MP 64
2022 NG 1 Yang+ [42] SENG DP & layer-wise MP 32
2021 NG 9 Pauloski+ [29] KAISA DP & layer-wise MP 128
2021 Newton 26 Islamov+ [19] NEWTON-STAR/-LEARN MP 0 (142 CPU cores)
2021 NG 5 Chen+ [8] THOR layer-wise MP Ascend 910 × 256
2021 NG / GN 5 Haider+ [16] NGHF DP 4
2020 adaptive grad 32 Anil+ [5] Shampoo Heterogenous training 1 TPU
2020 NG 26 Osawa+ [28] K-FAC DP & layer-wise MP 1024
2021 newton 5 Li+ [21] DN-ADMM MP 0
2020 newton 6 Fang+ [12] Newton-ADMM MP 30
2019 quasi-newton 4 Adya+ [2] Distributed NLCG DP 64
2019 quasi-newton 0 Liu+ [22] Distributed L-BFGS DP 1
2018 newton 31 Dunner+ [11] ADN DP & MP 0
2018 newton 113 Wang+ [41] GIANT own kind of DP 0 (480 CPU cores)
2021 NG 10 Tang+ [38] SKFAC DP 4
2018 newton 41 Yao+ [43] ABSA DP (in theory) 1
2021 NG 17 Frantar+ [13] M-FAC MP (in theory) 1
2020 NG 79 Singh+ [36] WoodFisher DP 4
2020 NG 19 Pauloski+ [30] Distributed K-FAC DP & layer-wise MP 256

Table 2.1: Table of existing papers on preconditioning distributed methods. ”Year” is the year
of publication. ”Category” indicates the type of algorithm it belongs to. NG stands for Natural
Gradient and GN for Gauss-Newton. ”Cited” is how many times the paper has been cited at
the time this thesis was written.”Type of Parallelism” indicates the type of distributed training
method used in the paper. ”DP” stands for data parallelism and ”MP” for model parallelism.
”#GPUs” indicates how many GPUs were used in their experimental results. If 0 or 1 is given,
they only have theoretical assumptions on how to run their algorithm in a distributed way. Some
papers only used CPUs, still in a parallel fashion.

4

Chapter 3

Distributed Kronecker-Factored
Approximate Curvature

This chapter explains our distributed K-FAC (distr. K-FAC) algorithm in
detail with the computational and communication cost. Kronecker-Factored
Approximate Curvature (K-FAC) [23] is a powerful deep-learning optimiza-
tion technique that uses the Kronecker factors of matrices to approximate
the curvature of the loss function. The main idea behind K-FAC is to use
a low-rank approximation of the inverse of the Fisher Information Matrix
(FIM), which captures the second-order derivatives of the loss function with
respect to the model parameters.

K-FAC can be implemented for different Fisher types and shapes. The
different types of Fisher can either be: exact, Monte-Carlo, or empirical, and
the possible shapes for Fisher are full, layer-wise, unit-wise, or element-wise.
In this project, we only consider computing the layer-wise computational and
communication costs of K-FAC because distributed gradient preconditioning
will be implemented for layer-wise K-FAC. When the FIM is approximated
with the layer-wise K-FAC, it has the shape of a block diagonal matrix. A
matrix that is of the shape of a block diagonal matrix can be inverted by
the independent blocks individually. Computing the inverse of the FIM is
the most expensive part of one training step, thanks to the block-diagonal
shape of the FIM with their Kronecker factored blocks. We can compute the
FIM in a parallel fashion over multiple GPUs. Depending on the level of
parallelism (i.e. number of GPUs), we split the workload evenly such that
only a certain GPU will compute the preconditioning matrix and precondition
the gradients of the given layers. This method of computing the FIM in a
parallel fashion falls into the category of the so-called model parallelism
(MP). Any method/algorithm that distributes a single model across multiple
devices can be referred to as MP. When implementing distributed K-FAC, we
use the concept from Osawa et al. [28], which is a mixture of data parallelism

5

3. Distributed Kronecker-Factored Approximate Curvature

Figure 3.1: An overview of one training step of the distributed K-FAC from Osawa et al. [28],
which they call Scalable and Practical Natural Gradient Descent (SP-NGD). To the right is a
reminder of the collective communications AllReduce, ReduceScatterV, and AllGatherV. The
figure is adopted from Osawa et al. [28].

(DP) and MP, named Scalable and Practical Natural Gradient Descent (SP-
NGD). For information about DP see section 6.2. To achieve great accuracy
of the empirical FIM, the SP-NGD algorithm from Osawa et al. [28] uses
multiple train batches (called mini-batches) in a DP fashion to approximate
the Kronecker factors. After the forward and backward pass, the individual
Kronecker factors and gradients from each mini-batch will be averaged and
distributed to the individual GPUs in a reduce scatter() fashion. After
computing the preconditioning matrices and preconditioned gradients, we
all gather() the gradients back to all the ranks to start over the training
again. Figure 3.1 gives a great overview of the distributed K-FAC algorithm.

Before we move on to the next sections, we would like to mention that all
of the notations in this chapter are adopted from the paper ”Scalable and
Practical Natural Gradient for Large-Scale Deep Learning” from Osawa et al.
[28].

3.1 Concept and Computational Cost of K-FAC

In this section, we go through the algorithm of K-FAC in detail as well
as what the computational cost for the different kinds of layers is: Fully-
connected (section 3.1.1), convolutional (section 3.1.2), and unit-wise layers
(section 3.1.3). Depending on the type of layer, K-FAC performs differently.

Consider a NN consisting of L-layers with l ∈ {1, 2, . . . , L} being the layer
index. At each layer, l and training step t, the updating step of K-FAC for the
parameters wl of the lth layer using the FIM preconditioned gradients are
defined as

w(t+1)
l ← w(t)

l − η(F̂(t)
l + λI)−1∇wlL(t) (3.1)

6

3.1. Concept and Computational Cost of K-FAC

with wl ∈ RNl being the set of parameters of a given layer l, Nl being
the number of parameters of the lth layer, ν ∈ R being the learning rate,
F̂l ∈ RNl×Nl being the empirical FIM, λ ∈ R+ being a dampening value,
I ∈ RNl×Nl being the identity matrix, and ∇wlL ∈ RNl being the gradient of
a scalar loss function.

This is done in an MP way, where each GPU updates only a certain number
of layers. We discuss the distribution of the layers over the available GPUs in
section 5.1.

At each layer l, we compute the inverse layer-wise FIM

(F̂l + λI)−1 ≈ (Gl +
1
πl

√
λI)−1 ⊗ (Al−1 + πl

√
λI)−1 (3.2)

with Gl , Al−1 being the so-called Kronecker factors, λ a dampening factor, and
π2

l being the average eigenvalue of Al−1 divided by the average eigenvalue
of Gl- πl > 0 because both Gl and Al−1 are PSD.

Preconditioning is the step where we compute the matrix-vector product of
the gradient ∇wlL with the preconditioning matrix (F̂l + λI)−1.

For K-FAC, we have to compute the inverse of both the left-hand-side
(LHS) and the right-hand-side (RHS) of the Kronecker product ⊗ using
torch.cholesky inverse.

To avoid computing the Kronecker product before preconditioning, we used
the identity

vec(BXAT) = (A⊗ B) vec(X), (3.3)

with

A = (Gl +
1
πl

√
λI)−1,

B = (Al−1 + πl
√

λI)−1,

X = ∇wlL (non-vectorized).

In the next sections, we show how we calculated the computational cost for
computing the Kronecker factors and the inverse FIM for the three different
kinds of NN layer types: Fully-connected (FC), convolutional (Conv) layers,
and unit-wise layers such as batch normalization (unitBN).

3.1.1 K-FAC for Fully-Connected Layers

For a fully-connected (FC) layer of a NN, the output sl is defined as

7

3. Distributed Kronecker-Factored Approximate Curvature

sl ←Wlal−1, (3.4)

where al−1 ∈ Rdl−1 is the input to this layer (the activation of the previous
layer), and Wl ∈ Rdl×dl−1 is the weight matrix. For simplicity, we ignored the
bias. The Kronecker factors for FC layers are defined as follows

Gl := E[∇sl log pθ(y|x)∇sl log pθ(y|x)T],

Al−1 := E[al−1aT
l−1],

(3.5)

with Gl ∈ Rdl×dl , Al−1 ∈ Rdl−1×dl−1 .

Computing Gl and Al−1 of each mini-batch of size M costs O(Md2
l) and

O(Md2
l−1), respectively. We assume a computing cost of ∇sl log pθ(y|x)

being equal to O(dl).

Each layer has to compute the eigenvalues of both matrix Gl and Al−1 to
calculate πl which costs: O(d3

l + d3
l−1 + dl + dl−1). The linear terms come

from averaging the eigenvalues of the matrices Gl and Al−1.

Computing the inverse of both the LHS and the RHS of the Kronecker
product costs: O(d3

l + dl) and O(d3
l−1 + dl−1), respectively. The linear term

comes from adding the identity matrices.

Preconditioning the gradients will be done with the use of eq. (3.3) with

A = (Gl +
1
πl

√
λI)−1 ∈ Rdl×dl ,

B = (Al−1 + πl
√

λI)−1 ∈ Rdl−1×dl−1 ,

X = ∇wlL (non-vectorized) ∈ Rdl−1×dl .

Hence, computing the preconditioning only costs O(d2
l−1dl + dl−1d2

l).

Updating the parameters of layer l costs O(Nl) = O(dl−1dl), if we consider
∇wlL = O(dl−1dl).

Normally, computing the Kronecker product directly and multiplying it with
the gradient would have a cost of O(d2

l d2
l−1), which would have been much

more expensive than using the trick with eq. (3.3).

In total, computing the fully-connected layer-wise inverse FIM costs:

O(d3
l + dl + d3

l−1 + dl−1︸ ︷︷ ︸
comp. of LHS & RHS of ⊗

+ d3
l + d3

l−1 + dl + dl−1︸ ︷︷ ︸
comp. πl

+ M(d2
l + d2

l−1)︸ ︷︷ ︸
comp. Gl & Al−1

)

= O(d3
l + d3

l−1 + M(d2
l + d2

l−1) + dl + dl−1),

8

3.1. Concept and Computational Cost of K-FAC

with updating the parameters:

O(d3
l + d3

l−1 + M(d2
l + d2

l−1) + dl + dl−1 + d2
l−1dl + dl−1d2

l︸ ︷︷ ︸
preconditioning

+ dl−1dl︸ ︷︷ ︸
upd. parameters

).

Normally we don’t have to update the FIM for each layer after every training
step. It is only needed for approximately every 100th step or so. Hence we
can store the LHS and RHS of ⊗ and use them with the next gradient update.
This will reduce the computational cost of such updates to

O(d2
l−1dl + dl−1d2

l︸ ︷︷ ︸
preconditioning

+ dl−1dl︸ ︷︷ ︸
upd. parameters

).

3.1.2 K-FAC for Convolutional Layers

Convolutional layers are a type of layer used in convolutional neural networks
that apply small filters to the input data. The filters slide over the input
tensor and compute dot products with local patches of the data. The output
of the convolution operation is a set of feature maps that capture the local
features and the spatial relationships between them.

For convolutional (Conv) layers, the Kronecker factors are defined as

Gl := E[∇MS l log pθ(y|x)∇MS l log pθ(y|x)T], (3.6)

Al−1 :=
1

hlwl
E[MAl−1 MT

Al−1
], (3.7)

and Gl ∈ Rcl×cl , Al−1 ∈ Rcl−1k2
l×cl−1k2

l . cl , cl−1, and kl are the number of
output channels, input channels, and kernel size (assuming square kernels
for simplicity), respectively. This means Gl and Al−1 are still square matrices
and will be the same operations of computing the LHS and RHS of the ⊗ like
for FC layers. This gives us the computational cost for Conv layer layer-wise
inverse FIM and updating the parameters:

O(c3
l + c3

l−1k6
l + M(c2

l + c2
l−1k4

l)+ cl + cl−1k2
l + c2

l−1k4
l cl + cl−1k2

l c2
l︸ ︷︷ ︸

preconditioning

+ cl−1k2
l cl︸ ︷︷ ︸

upd. parameters

).

3.1.3 K-FAC Unit-Wise Natural Gradient

For unit-wise layers such as batch normalisation (unitBN), we don’t have to
calculate the Kronecker factor as for the other type of layers. We directly
compute the FIM of those layers.

9

3. Distributed Kronecker-Factored Approximate Curvature

Fl ≈ F̂l (3.8)
= Fl,unitBN (3.9)

:= diag(F(1)
l . . . F(i)

l . . . F(cl−1)
l) ∈ R2cl−1×2cl−1 , (3.10)

where

F(i)
l = E

 ∇(i)2

γl ∇(i)
γl ∇

(i)
βl

∇(i)
βl
∇(i)

γl ∇(i)2

γl

 ∈ R2×2. (3.11)

∇(i)
γl , ∇(i)

βl
are the ith element of ∇γl log pθ(y|x), ∇βl log pθ(y|x), respectively.

Fl,unitBN being a cl−1 times 2 × 2 block diagonal matrix. Computing the
inverse (Fl,unitBN + λI)−1 can be done with little to no effort using the inverse
matrix formula

[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
. (3.12)

Hence the computational cost of Fl,unitBN is 6cl−1.

3.2 Communication Cost of Distributed K-FAC

In this section, we describe the communication cost of the SP-NGD algorithm
with the given Hardware properties of Piz Daint of the Swiss National
Supercomputing Center (CSCS). First, we go through the amount of data we
have to distribute after the data-parallel (DP) computation. Secondly, we go
through the calculation of the communication cost after the model parallelism
(MP). A great schematic overview of the different types of communication
happing in distr. K-FAC is shown in fig. 3.1.

3.2.1 Communication Cost after the DP Part

For distr. K-FAC, we need to communicate between different GPUs in
order to distribute and collect parameters, gradients and FIMs. The first
communication is done after the forward and backward pass. We need
to communicate Al−1, Gl , ∇wlL and Fl,unitBN for all layers l ∈ {1, . . . , L}
using reduce scatter(). Table 3.1 shows the number of parameters for the
different layers that we have to communicate. Al−1, Gl and Fl,unitBN are all
symmetric matrices. We could exploit this property to reduce the amount of
communication without loss of information, but it has been shown to have

10

3.3. Computational and Communication Overlap of Distributed K-FAC

Table 3.1: Number of parameters to distribute for different kinds of layers for distributed K-FAC
after the forward and backward pass.

type of layer non-symmetry-aware symmetry-aware
fully-connected d2

l−1 + d2
l + dldl−1

dl−1(dl−1+1)
2 + dl(dl+1)

2 + dldl−1

conv layer c2
l−1k4

l + c2
l + clcl−1k2

l
cl−1k2

l (cl−1k2
l +1)

2 + cl(cl+1)
2 + clcl−1k2

l
unitBN 4cl−1 3cl−1

varying effectiveness depending on the type of DNNs [29]. If symmetry-
aware communication was active, there would be a bigger overhead due
to packing and unpacking those matrices. One parameter can either be a
16-bit or 32-bit float. For simplicity, we don’t consider mixed precision in
our calculations. In the case of a network with L fully-connected layers
with non-symmetry-aware communication, we would have to communicate
L(d2

l−1 + d2
l + dldl−1) parameters. Table 3.2 consists of different known NN

types and the costs to communicate their parameters for both symmetry- and
non-symmetry-aware communication of distr. K-FAC. Some networks are
smaller and lead to smaller communication costs than others. One can use
Visual Geometry Group (VGG’s) [35] with or without Batch normalization
(BN). Without BN, there is no communication cost for Fl,unitBN , which is
noticeable in table 3.2. WideResNet’s [44] has a very big communication cost
for its very big Kronecker factors due to its wide layers.

3.2.2 Communication Cost after the MD Part

The second communication is done after the parameters of each layer have
been updated using the all gather() function. Here we have to commu-
nicate all of the preconditioned gradients ∇wlL over all GPUs before the
wanted optimizer updates the parameters of the model and starts over again
with the DP mini-batch forward and backward pass of the next training
step. This means we have a communication cost of dldl−1 for FC layers,
clcl−1k2

l for Conv layers and 2cl−1 for BN. Regarding from a perspective on
the communication cost for different types of DNNs, these are displayed in
the column ∇wlL of table 3.2.

3.3 Computational and Communication Overlap of Dis-
tributed K-FAC

For distr. K-FAC, computation and communication can, at some times,
overlap. Let’s consider having a single step of training, where we update
the preconditioning matrix and use the SP-NGD method from Osawa et al.
[28]. In this case, the first-ever communication already happens after the
forward pass in the DP part. There, we compute the Kronecker factor Al−1 of

11

3. Distributed Kronecker-Factored Approximate Curvature

DNN type Al−1 Gl Fl,unitBN ∇wlL ∑ ∑ in [MB]
ResNet152 320.5M 69.0M 0.6M 60.1M 450.2M 1800.9

160.4M 34.5M 0.5M 60.1M 255.5M 1021.8
ResNet101 230.6M 52.5M 0.4M 44.5M 328.0M 1312.0

115.4M 26.3M 0.3M 44.5M 186.4M 745.8
ResNet50 121.4M 32.4M 0.2M 25.5M 179.6M 718.4

60.7M 16.2M 0.2M 25.5M 102.7M 410.6
ResNet18 93.0M 2.0M 38400 11.7M 106.7M 426.9

46.5M 1.0M 28800 11.7M 59.2M 236.9
WideResNet101 814.0M 66.7M 0.6M 126.8M 1008.1M 4032.4

407.1M 33.4M 0.4M 126.8M 567.7M 2270.9
WideResNet50 430.8M 39.9M 0.3M 68.8M 539.9M 2159.4

215.4M 20.0M 0.2M 68.8M 304.5M 1217.9
EfficientNet-b4 77.1M 119.9M 0.5M 19.2M 216.8M 867.1

38.6M 60.0M 0.4M 19.2M 118.2M 472.8
EfficientNet-b0 16.4M 26.2M 0.2M 5.3M 48.0M 191.9

8.2M 13.1M 0.1M 5.3M 26.7M 106.7
VGG19-BN 207.7M 665.4M 44032 143.7M 1016.8M 4067.2

103.9M 332.7M 33024 143.7M 580.3M 2321.2
VGG19 207.7M 665.4M 0 143.7M 1016.8M 4067.0

103.9M 332.7M 0 143.7M 580.3M 2321.0
VGG16 160.0M 664.8M 0 138.3M 963.1M 3852.3

80.0M 332.4M 0 138.3M 550.8M 2203.0
VGG13 112.2M 664.2M 0 133.0M 909.4M 3637.6

56.1M 332.1M 0 133.0M 521.3M 2085.0
VGG11 110.5M 664.2M 0 132.9M 907.5M 3630.2

55.3M 332.1M 0 132.9M 520.2M 2080.9
MLP-Mixer 124.1M 123.7M 0.2M 59.8M 307.8M 1231.4

62.1M 61.9M 0.1M 59.8M 183.9M 735.7
ViT-Huge 681.1M 480.2M 0.4M 303.9M 1465.6M 5862.3

340.6M 240.2M 0.3M 303.9M 885.0M 3540.0
ViT-Base 192.7M 135.7M 0.2M 86.3M 414.8M 1659.3

96.4M 67.9M 0.1M 86.3M 250.7M 1002.7
ViT-Tiny 13.5M 8.5M 38400 5.7M 27.7M 110.8

6.8M 4.2M 28800 5.7M 16.7M 66.8

Table 3.2: Number of parameters to distribute after the forward and backward pass for K-FAC for
different kinds of NN architectures. The last column considers parameters of 32-bit precision. Each
DNN type has two rows. The first row shows the number of parameters for non-symmetry-aware
communication, and the second row for symmetry-aware communication. Al−1 and Gl are the
sums for all the Kronecker factors of each layer of layer type: Linear and Conv2d. Fl,unitBN
is unit-wise Fisher for the layers: BatchNorm1d, BatchNorm2d and LayerNorm. ResNet [17],
WideResNet [44], EfficientNet [25], VGG [35], MLP-Mixer [40], and ViT [9] are all examples of
different well known NNs.

12

3.3. Computational and Communication Overlap of Distributed K-FAC

each Conv and FC layer for each mini-batch on each GPU. While distributing
all A0:L−1 using reduce scatter(), the backward pass can already happen.
Unfortunately, this is the only overlap which we could do if we update
the preconditioner at the same training step as it is being computed. All
other communications have to be done in a blocking manner. If the update
of the preconditioning matrix is not part of the same training step (maybe
the updated preconditioning matrix will be used for the next timestep), we
could overlap the communication for Gl , ∇wlL and Fl,unitBN as well as for
reduce scatter(). In the end, we did not implement the communication
in an overlapping fashion with the computational parts. The Kronecker
factors and the FIM are all communicated to all the desired GPU ranks via a
reduce scatter(), and the all gather() is done after the preconditioning
step. There is no big benefit in doing the communication of the Kronecker
factors right away after the forward (i.e. backward) pass as shown in the
results chapter 5. This would also have been out of the scope of this thesis.

13

Chapter 4

Distributed Shampoo

This chapter explains our distributed Shampoo algorithm, how it works, and
its computational and communication cost calculation. Shampoo from Gupta
et al. [15] is an optimization algorithm that improves the convergence and
stability of first-order optimization using preconditioning matrices. Sham-
poo’s curvature-based preconditioner takes into account the second-order
information of the loss function, similar to the idea behind the popular quasi-
Newton methods [6]. However, unlike quasi-Newton methods, which store
and update a dense approximation of the Hessian matrix, Shampoo approxi-
mates the curvature matrix using a low-rank factorization (i.e. the Kronecker
factors of a given layer), reducing computational and memory requirements.
Shampoo is considered to be an adaptive gradient-based method and is
closely related to AdaGrad [10]. As stated by Gupta et al. [15]: Shampoo
can be viewed as an efficient, practical and provable optimizer using the full
AdaGrad preconditioner without falling back to diagonal matrices. Sham-
poo is also similar to K-FAC [23] due to also having (Kronecker) factored
preconditioning matrices. Overall, Shampoo has been shown to outperform
standard first-order methods in a variety of deep learning tasks, including im-
age classification, language modelling, and reinforcement learning [5, 15, 27].
Let’s discuss the three different kinds of Shampoo algorithms:

1. Shampoo for matrix case,

2. Shampoo for general tensor case,

3. Diagonal version of Shampoo for matrix case.

The first and third algorithm only works with 2D layers, such as FC (i.e.
Linear) layers. The second algorithm is meant for any k-dimensional tensors
(k ≥ 2), as well as for FC ones. We only implemented the distributed
preconditioning method of Shampoo in ASDL for the second algorithm due
to its generalized form for any tensor shape (k ≥ 2). Any one-dimensional
layers will not be preconditioned. But they will still be updated with any

15

4. Distributed Shampoo

wanted optimizer (e.g. SGD). For very big layers which don’t fit into the
memory of one GPU, we have two options. The first option is to use the
given BlockPartitioner method to further reduce the layer into smaller
blocks. The second option is to ignore layers of certain sizes. For example,
embedding layers like GPT-2, which can have vocabulary sizes of 50’000
or more, we just ignore the preconditioning step on those types of layers.
In the following section, we calculate the computational cost of all three
different kinds of Shampoo algorithms to demonstrate the cost-effectiveness
of each one. In the following section, whenever we mention the different
algorithms and their computational and communicational cost, the notations
are adopted from Gupta et al. [15].

4.1 Computational Cost of Shampoo

In this section, we explain the computational cost of the three different
available Shampoo algorithms as well as the computational cost of computing
the p-th root and inverse of a positive semi-definite (PSD) matrix. In the
original paper, algorithms 1 and 2 used the Singular Value Decomposition
(SVD) to compute the p-th root and inverse of the PSD matrix [15]. Anil et al.
[5] discovered a faster method to compute the p-th root and inverse using the
so-called coupled Newton iteration, which is based on the Schur–Newton
method from Guo et al. [14].

4.1.1 Shampoo Algorithm: Matrix Case

Algorithm 1 Shampoo Algorithm for the matrix case for one layer
Initialize: W1 = Rm×n ; L0 = εIm ; R0 = εIn
for t = 1, . . . , T do

Receive loss function ft : Rm×n → R

Compute gradient Gt = ∇ ft(Wt) {Gt ∈ Rm×n}
Update preconditioners:

Lt = Lt−1 + GtGT
t

Rt = Rt−1 + GT
t Gt

Precondition the gradient:
G̃t = L−1/4

t GtR−1/4
t

Update parameters:
Wt+1 = Wt − ηG̃t

end for

In this section, we discuss the Shampoo algorithm for the layers that must be
updated, those layers with parameters in the shape of a matrix (i.e. k = 2),
and those which include linear or embedding layers. Algorithm 1 shows the

16

4.1. Computational Cost of Shampoo

pseudo-code of the Shampoo algorithm for matrix-shaped layers. WtR
m×n

is the weight matrix of a given layer at the training step t that we want
to precondition. At time step t = 1, W1 should be initialized according to
the user’s desire (e.g. RNG, Zeros, or save State). L0 and R0 are the two
preconditioning matrices of a given layer. They are initialised by a diagonal
matrix filled with ε for some stabilizing. The difference between the Shampoo
algorithm and any first-order method lies in the ”Update preconditioners”
and the ”Precondition the gradient” steps. In the ”Update parameter” step,
the preconditioned gradients G̃t are used to update the parameters of the
given layer. In the following pseudo-code example, we demonstrate the
update of a simple SGD method. One could use a momentum-based method
to update the gradients like the current/improved version of Shampoo from
Anil et al. [5] shown in algorithm 5. Now, let’s get into the computational
cost of this algorithm.

Updating the preconditioners left Lt ∈ Rm×m and right Rt ∈ Rn×n precon-
ditioners costs O(m2n + m2) and O(n2m + n2), respectively. Computing the
−1/4 power of both the preconditioners costs O(m3 + n3). Updating the
parameters costs O(m2n + mn2 + mn), if we consider computing the gradient
as Gt = O(mn).

Hence, in total, we have the following computational cost:

O(m2n + n2m + m2 + n2︸ ︷︷ ︸
upd. Lt & Rt

+ m3 + n3︸ ︷︷ ︸
comp. L−1/4 & R−1/4

+m2n + mn2 + mn︸ ︷︷ ︸
upd. parameters

)

= O(m3 + n3 + m2n + n2m + m2 + n2 + mn).

(4.1)

If we don’t consider updating Lt and Rt at every training step, we only have
the computational cost of updating the parameters.

4.1.2 Shampoo Algorithm: General Tensor Case

In this section, we are going to show the actual Shampoo algorithm meant
for any layers with parameters of shape k ≥ 2 which also includes the matrix
shape layers. Algorithm 2 shows the pseudo-code for the Shampoo algorithm
for any tensor-shaped gradients. One can see new math notations like G(i)

t
and ×i. Those are newly defined tensor operations which are well described
in the original Shampoo paper of Gupta et al. [15]. We adopted the notations
from Gupta et al. and use them when we state the computational cost of this
algorithm.

For the Shampoo algorithm 2, the Gt ∈ Rn1×···×nk is the gradient at training
step t as a tensor of order k. ni is the size of i-th dimension with i ∈ {1, . . . , k}.
We also denote n = ∏k

i=1 ni and n−i = ∏j ̸=i nj where n−i is the product of

17

4. Distributed Shampoo

Algorithm 2 Shampoo Algorithm for a general tensor case for one layer

Initialize: W1 = Rn1×···×nk ; ∀i ∈ [k] : Hi
0 = εIni

for t = 1, . . . , T do
Receive loss function ft : Rn1×···×nk → R

Compute gradient Gt = ∇ ft(Wt) {Gt ∈ Rn1×···×nk}
G̃t ← Gt {G̃t is the preconditioned gradient}
for i = 1, . . . , k do

Hi
t = Hi

t−1 + G(i)
t

G̃t ← G̃t ×i (Hi
t)
− 1

2k

end for
Update: Wt+1 = Wt − ηG̃t

end for

all of the other dimensions except the i-th dimension. Note that n = nin−i.
For each dimension k, we have to compute the contraction of the gradient
G(i)

t which costs O(n2
i n−i + n2

i). The contraction can be seen as a slice of the
ith dimension of the gradient multiplied with itself (for example GtGT

t and
GT

t Gt from algorithm 1). After that, we compute 2k-th root and inverse of
preconditioning matrix (Hi

t)
−1/2k. Computing this will cost

O(max iter((⌈log2(2k)⌉+ 2)n3
i + n2

i + ni) + max iter(n2
i + ni))

= O(n3
i).

We calculated the computational cost of the matrix p-root and its inverse in
section 4.1.4. The next step is to compute the tensordot() of the precondi-
tioned gradient G̃t with preconditioning matrix (Hi

t)
−1/2k which is marked

in algorithm 2 with ×i. One can think of the tensordot() operation for any
dimensional tensor as a matrix-matrix multiplication in a certain dimension
in the gradient G̃t with the matrix (Hi

t)
−1/2k. This operation costs O(n2

i n−i).

Hence, for each dimension k, we compute:

O(n2
i n−i︸ ︷︷ ︸

upd. Hi
t

+ n3
i︸︷︷︸

comp. (Hi
t)
−1/2k

+ n2
i n−i︸ ︷︷ ︸

upd. G̃t

).

When including updating the parameters of the layer for each training step,
we have the following computational cost for algorithm 2:

O(
k

∑
i=1

(n2
i n−i + n3

i + n2
i n−i) +

k

∏
i=1

(ni)︸ ︷︷ ︸
upd. parameters

). (4.2)

18

4.1. Computational Cost of Shampoo

Note that for k = 2, the operational intensity is the same as for eq. (4.1) from
section 4.1.1 which is the operational intensity for two-dimensional (matrix)
layers.

Usually, we don’t update the curvature and preconditioner at every training
step. The preconditioning matrices (Hi

t)
−1/2k are usually staled for ∼100

steps. This gives us a new computational cost of

O(
k

∑
i=1

(n2
i n−i)︸ ︷︷ ︸

preconditioning

+
k

∏
i=1

(ni)︸ ︷︷ ︸
upd. parameters

)

= O(n
k

∑
i=1

ni︸ ︷︷ ︸
preconditioning

+ n︸︷︷︸
upd. parameters

).

We still use the staled preconditioners to precondition the gradients at every
training step.

4.1.3 Shampoo Algorithm: Diagonal Version of Shampoo for Matrix
Case

Algorithm 3 Shampoo Algorithm for the matrix case but diagonal version
Initialize: W1 = Rm×n ; L0 = εIm ; R0 = εIn
for t = 1, . . . , T do

Receive loss function ft : Rm×n → R

Compute gradient Gt = ∇ ft(Wt) {Gt ∈ Rm×n}
Update preconditioners:

Lt = Lt−1 + diag(GtGT
t)

Rt = Rt−1 + diag(GT
t Gt)

Precondition the gradient:
G̃t = L−1/4

t GtR−1/4
t

Update parameters:
Wt+1 = Wt − ηG̃t

end for

The algorithm 3 is built to be used for very large dimensional layers when
computing the p-th root of such matrices is too expensive or when the matri-
ces are too big to store in memory. We never implemented and tested this
algorithm. We only demonstrate the computational cost of this type of algo-
rithm because it is also another type of Shampoo algorithm. If we had to deal

19

4. Distributed Shampoo

with very big layers, another good method is to use the Blockpartitioner()

method of the improved Shampoo algorithm from Anil et al. . This block
partitioning further reduces the shapes of the preconditioning matrices into
smaller ones, but it will also make more of them (see fig. 6.4). One could also
just ignore preconditioning certain layers and only add a momentum-based
optimizer to reduce memory usage. Algorithm 3 is the same as algorithm 1,
the only difference is the diag() functions in the ”Update Preconditioners”
step. In this case, Lt and Rt are only diagonal matrices. Computing the
−1/4 power is done by taking the power over the element-wise diagonal en-
tries. This computation is of order O(m) and O(n). Computing diag(GtGT

t)
costs O(nm) and diag(GT

t Gt) = O(mn), respectively. Computing the matrix-
matrix multiplication with two diagonal matrices L−1/4

t GtR−1/4
t costs 2mn

multiplications, hence O(mn). This simplifies the computational cost to:

O(nm + mn + m + n︸ ︷︷ ︸
upd. Lt & Rt

+ m + n︸ ︷︷ ︸
comp. L−1/4 & R−1/4

+ 2mn + mn︸ ︷︷ ︸
upd. parameters

)

= O(4mn + 2m + 2n) = O(mn + m + n).
(4.3)

4.1.4 Matrix pth Root and its Inverse Algorithm

Anil et al. [5] uses a Schur-Newton iteration method to compute the p-th root
and its inverse of a matrix made by Guo et al. [14], which is a follow-up to
the Shampoo algorithm invented by Gupta et al. [15]. The p-root and inverse
computation is the most time-consuming part of Shampoo (for results see
fig. 6.11). Anil et al. improved the Shampoo algorithm by introducing it to
Guo et al. p-root and inverse algorithm. Let’s discuss this p-root and inverse
algorithm of Guo et al. and have a look at it because it is a major part of the
improved Shampoo algorithm from Anil et al. [5].

Assuming we have a preconditioning matrix H ∈ Rn×n, which is positive
semi-definite (PSD). The goal is to compute H−1/p. Anil et al. described the
algorithm very well in their paper, but in short, the Newton method iteratively
tries to solve X−p − H = 0 for some matrix X ∈ Rn×n. It is satisfied when
Xiter → H−1/p as iter→ ∞. We also wrote down the pseudo algorithm in
algorithm 4. This p-root inverse algorithm can be described in 3 steps.

The first step consists of computing the maximum eigenvalue of Hi
t using the

λmax ← PowerIter(Hi
t) function. This function does at mostO(max iter(n2 +

n)) computations, where the algorithm runs either until convergence or until
the maximum max iter is reached. max iter is normally kept at 100.

In the second step, X and M are computed with the calculated max eigen-
value from the first step. This costsO(n2 +n) due to computing the Frobenius
norm and adding a diagonal matrix to H.

20

4.2. Communicational Cost of Shampoo

Algorithm 4 pth root and its inverse algorithm from shampoo optimizer code
of Anil et al. [5]. The PowerIter function is in the appendix algorithm 6.

Require: H ← Hi
t; p = 2k; ε; max iter = 100; tolerance = 1e− 12

α = −1/p
λmax = PowerIter(H, max iter, tolerance)
ε = λmaxε
H = H + εI
z = 1+p

2∥H∥F

X = z1.0/p I
M = zH
error = max(|M− I|)
iter = 0
while error > tolerance and iter < max iter do

M̂ = (1− α)I + αM
X̂ = XM̂
M = M̂p M
errornew = max(|M− I|)
if errornew > 1.2error then

break
end if
X = X̂
error = errornew
iter = iter + 1

end while
return X

In the third step, we do Newton iteration until convergence or the maximum
max iter reached. For each iteration, we have to compute p-th power of
some matrix plus two other matrix-matrix multiplications, which gives us a
computational cost of max iter((⌈log2(p)⌉+ 2)n3 + 2n2 + n) operations.

Hence, in total we have a computational cost of

O(max iter((⌈log2(p)⌉+ 2)n3 +n2 +n)+max iter(n2 +n)+n2 +n). (4.4)

4.2 Communicational Cost of Shampoo

When implementing the DP and MP part for distr. Shampoo, we use the
same parallelization approach as for distr. K-FAC, which is described in
section 3.2. But in this case, we have to communicate less data than compared
to K-FAC. Instead of reduce scatter() for Al−1, Gl , ∇wlL and Fl,unitBN after
the forward and backward pass done in a DP fashion, we only have to

21

4. Distributed Shampoo

reduce scatter() ∇wlL for each layer. Each GPU computes the Shampoo
algorithm 2 for one layer l.

The MP part is the same as discussed in section 3.2.2. We only have to com-
municate the gradients ∇wlL of each layer l that have been preconditioned
back to all the available GPUs via all gather().

4.3 Computational and Communicational Overlap in
Shampoo

Compared to distr. K-FAC, for distr. Shampoo there is less information that
needs to be distributed. We only have to distribute ∇wlL after the DP part
using reduce scatter() and all gather() after updating all the weights
of each layer. If the preconditioning matrix is updated at the same time as
updating the weights for each layer, communication and computation cannot
overlap when we want to calculate the preconditioning matrix in the same
training step. If the preconditioning matrices are computed over multiple
training steps and staled between each step, one can achieve overlapping
computation and communication over a certain amount of time steps. This
has been demonstrated by the improved Shampoo algorithm of Anil et al.
[5]. In our case, we implemented distributed Shampoo without overlapping
computation and communication but included the option of staling a certain
amount of training steps. When a preconditioning step is needed, everything
is done in one training step.

22

Chapter 5

Comparison of Distributed K-FAC and
Distributed Shampoo

In this chapter, we go through our results of distr. K-FAC and distr. Shampoo
which we both implemented in the library of ASDL. Further, in section 5.1
we discuss how we balance the workload over the available GPUs depending
on the size of the model. Automatic Second-order Differentiation Library
(ASDL) is a PyTorch library created by Osawa et al. [27] which lets users use
the most known second-order methods (e.g. K-FAC, Shampoo, SENG [42],
PSGD [20], . . .) by adding three more lines to an existing PyTorch script. The
great thing about ASDL is its simplicity to use and easily switch between
other second-order methods. Not every second-order (or preconditioning
method in general) works in the same way. Some are better than others
at optimizing different types of problems. That is why this library exists,
to easily switch between the different types of second-order methods and
to find the most suitable ones for a given problem. Distributed K-FAC
and distributed Shampoo are both available on the ASDL library on the
dev-grad-maker branch1. However, be aware that distr. K-FAC and distr.
Shampoo are still prototypes.

5.1 Workload Balancing

In this section, we are going to talk about how we deal with balancing the
workload of distr. K-FAC and distr. Shampoo depending on the number of
available GPUs and the number of NN layers. Workload balance is a very
important and difficult task which we have to solve because if the workload
is very imbalanced, many GPUs would be idling, and one training step
will also take longer than wanted. Idling should be minimized to improve
throughput as well as reduce runtime for maximum efficiency. For both distr.

1https://github.com/kazukiosawa/asdl/tree/dev-grad-maker

23

https://github.com/kazukiosawa/asdl/tree/dev-grad-maker

5. Comparison of Distributed K-FAC and Distributed Shampoo

K-FAC and distr. Shampoo, we implemented an algorithm which computes
the distributed workload by the number of layers for all the available GPUs.
However, we only use this approach when there are more layers than available
GPUs. If we only have one GPU, no partitioning is needed and the single
GPU has to compute all the preconditioning. If there is an equal amount
of layers and GPUs, each GPU will be assigned one layer. In a situation
where there are more GPUs than layers, every GPU gets one layer, and the
remaining will be idling at the preconditioning step. The workload balancing
algorithm is shown in the appendix listing A.1. The workload balancing
(i.e. partitioning) algorithm only runs once at the initialization step of the
preconditioning method and can be divided into two major steps. In the
first step, the computational cost of each NN layer is estimated. For that,
we use a cost function to estimate the cost for computing each layer. This
cost function is not the same as the one we have estimated in section 3.2 for
K-FAC and for Shampoo section 4.1 due to other important factors such as
memory movement. But both the K-FAC and Shampoo cost function are
similar and still have much in common; the more parameters a layer has, the
longer it will take to precondition that layer. With a trial and error approach,
we found out that the cost function CK-FAC(wl) for K-FAC for one layer is
well estimated with

CK-FAC(wl) = (
k

∏
i=1

ni)
0.3 (5.1)

where wl ∈ Rn1×···×nk are the parameters if layer l ∈ {1, . . . , L}. For Shampoo
it is harder to predict the cost of computing certain layers due to having the
p-root and inverse algorithm consisting of a while-loop (see algorithm 4).
Depending on how ill-conditioned the preconditioning matrices are, the
longer the p-root and inverse algorithm takes to compute. Still, we found the
cost function for one layer CShampoo(wl) is appropriately estimated with

CShampoo(wl) =
k

∑
i=1

n0.4
k . (5.2)

Note that for both K-FAC and Shampoo, layers which don’t need precondi-
tioning (e.g. for K-FAC pooling layers and for Shampoo layers with k < 2)
are effectively ignored by ASDL and hence not counted.

This raises the question, why even bother to estimate the cost of precondi-
tioning each layer and not directly split the layers by the number of GPUs
instead? This is because not every layer has the same amount of parameters
or shapes and not every NN is the same type. Many NNs vary a lot in
the number of parameters per layer, for example, VGG11 [35]. One can see

24

5.1. Workload Balancing

Figure 5.1: The Visual Geometry Group 11 layer (VGG11) network [35] without batch normal-
ization represented in the number of parameters for each layer in a log-scale. The first eight
layers {1, . . . , 8} are Conv2D layers, and the last three layers are linear layers. Layer 9 is a
nn.Linear(in=25088, out=4096, bias=True) which has roughly ≈ 1.03e8 parameters.

the strong difference in the number of parameters per layer of the VGG11
network (see fig. 5.1). When we compare the actual runtimes of computing
the preconditioning matrices of each layer shown in fig. 5.2, one can see a sim-
ilarity of the two preconditioning methods K-FAC and Shampoo. Notice the
layers {6, 7, 8} in the Shampoo plot; they all belong to the same type of layer
Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1)),
still they have different runtimes. All the Conv2d layers from {1, . . . , 8} of
the Shampoo plot differ in runtime, and some like layer 3 are even taking
longer than the layers {6, 7, 8} because the while-loop in the p-root inverse
computation can finish computing earlier than for other layers. Whereas for
the K-FAC fig. 5.2, one can see a much better resemblance to the number of
parameters shown in fig. 5.1. Figure 5.3 shows our cost function estimate of
VGG11 for K-FAC and Shampoo combined in one. For Shampoo, we don’t
classify certain layers as heavy compared to the cost function of K-FAC due
to the uncertainty of the p-root inversion algorithm.

How we came up with those cost functions from eqs. (5.1) and (5.2)? Consider
the exponent in the equations, which is p = 0.3 for K-FAC and p = 0.4 for
Shampoo. The bigger the exponent is (e.g. p ∈ [1, 3]), the more it resembles
the actual computational cost of K-FAC (resp. Shampoo). If it is relatively
small p ∈ (0, 1), then the cost function considers the cost of actual data
movement on GPU memory. If p = 0, then the cost function splits the

25

5. Comparison of Distributed K-FAC and Distributed Shampoo

Figure 5.2: K-FAC and Shampoo algorithm on the VGG11 network runtime of computing the
preconditioning matrices of each layer. Both were running on one Tesla P100 16GB GPU on Piz
Daint and were averaged over three training steps with a batch size of 2. For Shampoo, we had
to activate Blockpartitioning=1024 to solve the memory capacity problems. The last three
layers of VGG11 are too big to store on one P100 GPU. When Blockpartitioning is active, it
further divides the Shampoo preconditioning shapes into smaller ones until they are at least the
size 1024. One can compare the runtime with the actual size of the layers shown in fig. 5.1.

26

5.1. Workload Balancing

Figure 5.3: The estimated costs of preconditioning of VGG11 for each layer with the cost
functions from eqs. (5.1) and (5.2).

workload by the number of preconditioning matrices. We ran tests with
p = 3 for both distr. K-FAC and distr. Shampoo, which is the actual
computational cost of computing the preconditioning matrix in O(n3), but
p = 3 leads to workload balance issues. By studying the performance of Piz
Daints Tesla P100 GPUs using Nvidia Nsight, we came up with the respective
exponent terms from eqs. (5.1) and (5.2). Note that VGG11 is an extreme
case with a very imbalanced number of parameters per layer. For example,
ResNet and DenseNet have better workload balances.

After we generated an approximated list of the cost of computing each of
the layers, we now go to the second step of our workload balance algorithm,
which is distributing the workload over all the available layers. We call this
step partitioning, and it is a simple and reliable algorithm (see listing A.1)
and works by setting the splits such that the sum of each partitioning is as
evenly distributed as possible. This creates a partitioning list containing all
the ranks of the GPUs in ascending order. This ascending order is important
because we have to Reduce scatter the gradients from the DP to the specified
ranks from the partitioning and All Gather them all back once the gradients
have been preconditioned. Before those collective communications happen,
we have to pack all the layers from the same partitioning rank into one
contiguous flatten tensor. Sorting the partitioning list in an ascending order
speeds up the packing of the layers into one flattened tensor.

We were not able to use dist.reduce scatter() and dist.all gather()

from the PyTorch’s distributed communication package because the tensors

27

5. Comparison of Distributed K-FAC and Distributed Shampoo

distr. K-FAC distr. Shampoo
Main computa-
tion

Matrix Inversion Matrix p-root and its inverse

Data to commu-
nicate

Kronecker Factors Al−1, Gl ,
Funit−wise & Gradients ∇L(w)

Gradients ∇L(w)

Disadvantages Higher communication cost,
scales by the batch size, and ex-
tra computations in the forward
and backward-pass due to the
Kronecker factors.

Computing the p-root inverse
is very expensive, and balanc-
ing the workload over multiple
GPUs is difficult.

Advantages K-FAC performs well on large
mini-batch sizes and has been
thoroughly tested in large-scale
training.

Doesn’t scale by batch size
and is flexible with precon-
ditioning shapes with the
BlockPartitioning method.

Communication
types

Reduce scatter(Al−1, Gl ,∇L(w))
& AllGather(∇L(w))

Reduce scatter(∇L(w)) &
AllGather(∇L(w))

Table 5.1: This table is a summary of the chapters 3 and 4 and comparison of distr. K-FAC and
distr. Shampoo what are the advantages and disadvantages of one and another.

have to be of the same size for those collective communications, which we
can’t guarantee with our partitioning algorithm. Some GPUs have more lay-
ers to precondition while there are smaller GPUs that have maybe only one
big layer to precondition. We opted for multiple non-blocking dist.reduce()

instead of dist.reduce scatter(). Instead of dist.all gather() we used
multiple non-blocking dist.broadcast(). One could have used the men-
tioned collective communicators dist.reduce scatter() and dist.all gather()

with padding in the flattened tensor to match the sizes of all the tensors
which have to be communicated. This could improve the overall runtime of
the communication parts. However, our results show that the communication
parts clearly do not have such big of an impact compared to other factors,
for example, computing the forward-/ and backward-pass or computing the
preconditioning matrices (see section 5.2).

5.2 Distributed K-FAC vs Distributed Shampoo Results

In this section, we are going to discuss the measured results of our imple-
mented version of distributed K-FAC and distributed Shampoo in PyTorch
which ran on Piz Daint for different models, batch sizes, and number of
GPUs and compare distr. K-FAC and distr. Shampoo to each other. Before
we go into the results of our measurements, we created this table 5.1 to
show a summary of both distr. K-FAC and distr. Shampoo measurements
side-by-side are also a summary of the chapters 3 and 4.

To measure our implementations of distr. K-FAC and distr. Shampoo, we
used Nvidia Nsight [7] which is a suite of tools for profiling, debugging,

28

5.2. Distributed K-FAC vs Distributed Shampoo Results

and optimizing CUDA applications. It provides a range of features for
analyzing performance metrics, inspecting memory usage, and identifying
bottlenecks in GPU-accelerated code. We used the nvtx.range() method
from torch.cuda to capture the runtime of specific functions such as: for-
ward, backward, collective communication, preconditioning, and more.

In section 5.1, we discussed our approach to achieving workload balance.
Now, let’s have a look at some runtime plots of different NN and the number
of GPUs.

One of the simplest cases we looked at first was when we had more GPUs
available than the number of layers of a NN which have to be preconditioned.
Figure 5.4 is a runtime plot for the case of 4 GPUs and a 3-layer multi-layer
perception consisting of linear layers with ReLU activation in between. In
this case, GPU 0 has the first linear layer, GPU 1 the second linear layer and
GPU 2 the last linear layer. GPU 3 does not have any layers to precondition
because this NN only consists of 3 layers. Hence GPU 3 will be idling at the
time when GPU 0, 1 and 2 will do the preconditioning. Still, GPU 3 has to
communicate its gradients from its training batch to the other available ranks.
All the linear layers are the same shape of 4× 4. Still, one can see the p-root
inverse and its non-deterministic number of iterations shows that for any
training step, sometimes it takes fewer steps to compute the preconditioning
matrices than at other steps, and it is also depending on the deepness of the
layer.

Another example we looked at was for a known NN such as ResNet18 [17]
how the workload balance looks like and how it scales by the number of
GPUs. In fig. 5.5, we show the runtime of ResNet18 for different numbers of
GPUs and ran for three training steps. We are satisfied with our distributed
workload for all three cases #GPUs = {2, 4, 8}. For ResNet18, the workload
is well-balanced.

But we also looked at other models to ensure that the workload balance
makes sense for other NNs for a fixed number of GPUs. In fig. 5.6, we
compared the workload balanced of 4 different known NNs, which are all
different from each other: ResNet18, DenseNet121 [18], VGG11 BN, and
MobileNetV2 [33]. For ResNet18 and DenseNet121, the workload balance is
very well. But for VGG11 and MobileNetV2 it could be better. VGG11 has
the problem of having very big linear layers at the end of the model, as we
have discussed as an extreme case in section 5.1. MobileNetV2 on the other
hand, is pretty similar to any other convolutional neural network. It does
not have a very imbalanced number of parameters per layer. In our case, the
distr. Shampoo cost function exponent p = 0.5 is too aggressive towards the
computational cost. Using a smaller exponent p ∈ [0.0, 0.3] would fix this
problem. This shows our cost function doesn’t work well for every case and
requires hyperparameter tuning in the exponent for specific networks. It is

29

5. Comparison of Distributed K-FAC and Distributed Shampoo

Figure 5.4: Runtime plot of the distributed Shampoo optimizer in ASDL running on 4 Tesla
P100 GPUs on Piz Daint (i.e. 4 Nodes) a 3-layer multi-layer perception (MLP) with ReLU
activations in between. The linear layers are of dimension 4× 4 (4 in- and 4 output dimensions).
We profiled three training steps after some warmup. forward is the forward pass and backward

is the backward pass. update curvature is the step from Shampoo updating matrix Hi
t (see

algorithm 2 first line in second for-loop). reduce scatter grads is the step where each GPU (i.e.
each DP dimension) reduces and scatters all the gradients to the specific GPU ranks, which have
to compute the preconditioning matrices. update preconditioner is the step when the p-root
inverse of matrix Hi

t (see algorithm 4). precondition is the step when the preconditioning
matrices are preconditioning the gradients (see algorithm 2 second line in second for-loop).
Last, all gather is the last step of one training step where the preconditioned gradients are
communicated back to all the GPUs such the available optimizer updates the parameters of the
NN. The 3-layer MLP was initialized randomly and the same was for the training batches.

30

5.2. Distributed K-FAC vs Distributed Shampoo Results

Figure 5.5: Three runtime plots of distributed K-FAC on the same ResNet18 NN with different
numbers of GPUs trained on Piz Daint. The top figure is for 2 GPUs, the middle figure is for 4
GPUs, and the last figure is for 8 GPUs. update curvature is the step where the Kronecker
factures for linear and convolutional layers and for unit-wise layers the FIM are computed.
forward and backward is the forward and backward pass. Note that the forward and backward

is inside the update curvature function call because the Kronecker factors are computed while
doing the forward and backward pass via functorch extension. That is also why when using
K-FAC, the forward and backward passes take longer than usual. reduce scatter curvature

is the step where we communicate the Kronecker factors for linear and convolutional layers,
FIM for unit-wise layers, and gradients to the GPU ranks, which have to compute their specific
layers. inv kron A B is the step where the inverse of the Kronecker factors Al−1 and Gl are
computed. precondition is the preconditioning step of the gradients. all gather grads is the
step where all the gradients which had been preconditioned are gathered back to all the GPUs.
inv unit wise is the inverse computation for unit-wise layers such as batch normalization (see
section 3.1.3 for information). update preconditioner is actually the main function for all the
inverse computation of the Kronecker factors and FIMs for unit-wise layers. This is also why it
can’t be seen on the plots because inv kron A B and inv unit wise are overlapping it.

31

5. Comparison of Distributed K-FAC and Distributed Shampoo

Figure 5.6: Runtime plots of distributed Shampoo on 4 known DNNs ResNet18 [17], VGG11
[35], DenseNet121 [18], and MobileNetV2 [33] with the Shampoo cost function eq. (5.2) and the
exponent set to p = 0.5. All four DNNs were run on Piz Daint, with each having 8 GPUs. The
runtime notations are described in fig. 5.4. The DNNs were measured with random numbers,
hence no real dataset.

also why we ended up using p = 0.4 in the final implementation in ASDL, to
be more conservative in balancing the workload.

One of the downsides of K-FAC is it scales by batch size. This is due to
its empirical method of approximating the Kronecker factors. Hence we
measured the performance of distr. K-FAC and distr. Shampoo on ResNet18
on a single GPU with different batch sizes and compare it to pure first-order
optimization methods SGD and Adam (see fig. 5.7). Note that distr. K-FAC
and distr. Shampoo are both implemented in ASDL, which means they can
be combined with any wanted optimizer. In fig. 5.7, we used basic SGD for
both distr. K-FAC and distr. Shampoo. One can see for all the methods
except K-FAC, the throughput stays relatively constant, whereas K-FAC
constantly increases, and the throughput stays the same. At a batch size of
512, K-FAC no longer fits on 16GB of GPU memory. Note the high runtime
of forward and backward passes of K-FAC. This is due to the computation of
the Kronecker factors whilst in the forward and backward pass via functorch.
When compared to Shampoo, one notices the major impact of computing the
Kronecker factors.

Finally, let’s compare distr. K-FAC and distr. Shampoo side-by-side with a

32

5.2. Distributed K-FAC vs Distributed Shampoo Results

Figure 5.7: Bar plots of ResNet18 ran on the optimizers SGD and Adam and the distributed
preconditioning methods K-FAC and Shampoo for different batch sizes of 128, 256, 384, 512. For
a batch size of 512, K-FAC no longer fit in 16GB of GPU memory. The preconditioning methods
were combined with the SGD optimizer in ASDL. Less is better. We measured the runtime of
each kernel for multiple training steps and averaged them. All were run on a single GPU. The
model was trained on random numbers, no real dataset. The definitions of update curvature,
precondition and update preconditioner for distr. K-FAC can be found in fig. 5.5 and for
distr. Shampoo in fig. 5.4 respectively.

known NN, fixed batch size, and different numbers of GPU. The first model
we tested was on DenseNet121 [18], which is a very deep NN consisting
of convolutional and batch normalization layers having in total 242 layers
when counting Batchnormalization and Convolutional layers individually.
This makes preconditioning the DenseNet121 network well-distributed over
many GPUs but very expensive for a small number of GPUs. In fig. 5.8 we
plotted the runtime of one training step for distr. K-FAC (left) and distr.
Shampoo (right) for different numbers of GPUs. Note that both y-axes
are not on the same scale. Shampoo is around seven times as expensive
as K-FAC for single GPU training. But when increasing the number of
GPUs, we see a super linear scaling in runtime for distr. Shampoo and
even surpassing in runtime at 16 GPUs (note the blue dashed line on the
Shampoo plot). For distr. K-FAC more than 64 GPUs is no longer beneficial,
and at this number of GPUs, one can already see the communication costs
all gather grad and reduce scatter curvature getting thicker. Whereas
for distr. Shampoo, we could have gone for even more GPUs. We also did

33

5. Comparison of Distributed K-FAC and Distributed Shampoo

Figure 5.8: Two bar plots of both the distr. K-FAC (left) and distr. Shampoo (right) with the
runtime of one training step averaged over multiple training steps. The y-axis is the runtime in
milliseconds, and the x-axis shows the number of GPUs used. The model we used was DenseNet121
[18] with a batch size of 64. We tested the distributed preconditioning methods with up to 64
GPUs. The network was trained with random numbers. The definitions of update curvature,
precondition, update preconditioner, and more for distr. K-FAC can be found in fig. 5.5
and for distr. Shampoo in fig. 5.4 respectively. The blue dashed line in the distr. Shampoo plot
is the lowest measured runtime of distr. K-FAC ≈ 2300ms for 64 GPUs.

the same experiment on another NN called the WideResNet50 [44], which
is the same as ResNet50 [17] but with wider layers which consist of more
parameters (see fig. 5.9. WideResNet50 has 107 individual layers, which is
twice as small as DenseNet121, which means less scalability. One can see
that at 32 GPUs we no longer benefit in runtime performance by increasing
the number of GPUs. Still, 32 GPUs training has double the throughput
compared to 16 GPUs due to the same runtime performance.

Both figs. 5.8 and 5.9 show great scaling in the number of GPUs, especially
when the NN is very deep. Distr. K-FAC is always capped at an already
lower amount of GPUs due to its cost of computing the Kronecker factors
during the forward and backward pass via functorch extensions. Runtime
(i.e. throughput) is not the most important factor. It has been shown that for
certain tasks, K-FAC performance is better than Shampoo in test accuracy
with real datasets [27]. This means having a training step which leads to a
greater step in accuracy can overcome the cost of being more expensive. This
thesis does not go into the accuracy performance. There are many papers
which compare the strength of second-order and first-order methods to one
another (see chapter 2 or ASDL [27]). Now that we have seen the great
distributed training performance of distr. Shampoo, in chapter 6, we are
going to discuss our new optimizer which we call ”3D-Shampoo” which is
distributed Shampoo for 3D parallelism.

34

5.2. Distributed K-FAC vs Distributed Shampoo Results

Figure 5.9: Two bar plots of both the distr. K-FAC (left) and distr. Shampoo (right) with the
runtime of one training step averaged over multiple training steps. The y-axis is the runtime
in milliseconds, and the x-axis shows the number of GPUs used. The model we used was
WideResNet50 [44] with a batch size of 64. We tested the distributed preconditioning methods
with up to 32 GPUs. The network was trained with random numbers. The definitions of
update curvature, precondition, update preconditioner, and more for distr. K-FAC can
be found in fig. 5.5 and for distr. Shampoo in fig. 5.4 respectively.

35

Chapter 6

3D-Shampoo

Figure 6.1: Little fun demonstration of the fusion between the three different libraries, making
it into 3D-Shampoo. Credits go to the available logos from Nvidia, Google, Microsoft, and
DeepSpeed as well as the little Pixel Goku image from ClipartMax.com [1].

In this chapter, we will describe our new optimizer which we call ”3D-
Shampoo”. This optimizer is a modified version of Google’s Shampoo opti-
mizer [5] (see chapter 4 for information about Shampoo). This new optimizer
adaptively works with the DeepSpeed library [32] and depending on the
level of parallelism changes its approach to computing the preconditioning
matrices of Shampoo. The ”3D” in the name comes from DeepSpeed, which
supports up to 3D parallelism, hence 3D-Shampoo. 3D parallelism is the

37

6. 3D-Shampoo

None ZeRO-DP

None

PP

OP

PP
+

OP

Table 6.1: Table of the different types of parallelism for NNs. (None) no parallelism. (ZeRO-DP)
ZeRO-style Data parallelism with Optimizer States, Gradients, and Parameters. (PP) Pipeline
parallelism. (OP) Operator parallelism. Combining all three parallelisms is known as 3D parallelism.
The colours indicate which GPU stores which information from the NN. For ZeRO-DP, grey
means not stored but dependent on which GPU it will be broadcasted and used as well. The
dotted red line as well as the red arrows indicate the communication splits. Everything in those
images is not for scale.

concept of combining the three different known deep learning parallelization
(data parallelism, pipeline parallelism, and operator-/tensor parallelism)
algorithms into one. We describe the concept of 3D parallelism in section 6.2.
3D-Shampoo is available on my GitHub reposetory1 but use on your own
risk. The code has been tested for some models and networks but not for all.
It will probably be further improved/cleaned to be more user-friendly.

6.1 Collective Communication and the Piz Daint Net-
work

In this section, we go through the communication cost of the Piz Daint
network with the different kinds of MPI collective communications [39].
Because we are working on the Piz Daint supercomputer from CSCS [3], we
need to understand its network for communicating between the GPUs for
training large models with different levels of parallelism. We use the known
measured communication cost of the Piz Daint network [4] to predict the

1https://github.com/noabauma/3d-shampoo

38

https://github.com/noabauma/3d-shampoo

6.1. Collective Communication and the Piz Daint Network

Type of Parallelism Computational Cost MLP
No Parallelism X{ f orw,back,upd} +Xprec 6612G f lops

ZeRO-DP X{ f orw,back,upd} +Xprec 6612G f lops
PP 1

NPP
(X{ f orw,back,upd} +Xprec) 3306G f lops

OP 1
NOP
X{ f orw,back,upd} +

1
N3

OP
Xprec 3304G f lops

ZeRO-DP + PP 1
NPP

(X{ f orw,back,upd} +Xprec) 3306G f lops
ZeRO-DP + OP 1

NOP
X{ f orw,back,upd} +

1
N3

OP
Xprec 3304G f lops

PP + OP 1
NPP NOP

X{ f orw,back,upd} +
1

NPP N3
OP
Xprec 1652G f lops

3D-Parallelism 1
NPP NOP

X{ f orw,back,upd} +
1

NPP N3
OP
Xprec 1652G f lops

Type of Parallelism Communication Cost MLP
No Parallelism 0 0 0

ZeRO-DP LTbroadcast(NDP, Ψ{p,g}/L) 1151ms 8598MB
PP TP2Puni(B(nin + nout)) 0.2ms 2MB
OP LTallgather(NOP, Bnout) + LT(all)reduce(NOP, Bnin) 221ms 2147MB

ZeRO-DP + PP LTbroadcast(NDP, Ψ{p,g}/L) + TP2Puni(B(nin + nout)) 1151ms 8600MB
ZeRO-DP + OP LTbroadcast(NDP, Ψ{p,g}/L) + LTallgather(NOP, Bnout) + LT(all)reduce(NOP, Bnin) 1371ms 11GB

PP + OP TP2Puni(B(nin + nout)) +
L

NPP
Tallgather(NOP, Bnout) +

L
NPP

T(all)reduce(NOP, Bnin) 111ms 1076MB

3D-Parallelism
LTbroadcast(NDP, Ψ{p,g}/L) + TP2Puni(B(nin + nout))

+ L
NPP

Tallgather(NOP, Bnout) +
L

NPP
T(all)reduce(NOP, Bnin)

1261ms 9674MB

Type of Parallelism Memory Consumption MLP
No Parallelism Ψ{p,g,opt} + Ψprec 17.2GB

ZeRO-DP 1
NDP

(Ψ{p,g,opt} + Ψprec) 8.6GB
PP 1

NPP
(Ψ{p,g,opt} + Ψprec) 8.6GB

OP 1
NOP

Ψ{p,g,opt} +
1

N2
OP

Ψprec 6.4GB

ZeRO-DP + PP 1
NDP NPP

(Ψ{p,g,opt} + Ψprec) 4.3GB
ZeRO-DP + OP 1

NDP NOP
Ψ{p,g,opt} +

1
NDP N2

OP
Ψprec 3.2GB

PP + OP 1
NPP NOP

Ψ{p,g,opt} +
1

NPP N2
OP

Ψprec 3.2GB

3D-Parallelism 1
NDP NPP NOP

Ψ{p,g,opt} +
1

NDP NPP N2
OP

Ψprec 1.6GB

Table 6.2: Table of different types of NN parallelizations with their approximated computational
cost, communication cost and memory consumption, everything based on per GPU. (ZeRO-DP)
stands for ZeRO-style data parallelism and depending on the level, you can use it on parameters
p, gradients g, optimizer states opt, and preconditioning matrices prec. Depending on the need,
it can be used on all four or only on specific ones. B is the batch size. nin and nout are the input
and output dimensions of some layers. L is the number of layers the whole NN has. Note that
for an MLP consisting of L similar layers without bias: Ψp = L(noutnin). Txx are the different
types of communication costs for the different types of communications xx shown in table 6.3.
(PP) stands for Pipeline Parallelism and (OP) for Operator Parallelism. N = NDP NPP NOP is the
number of GPUs. Nxx is the number of GPUs in the given parallelization dimension. Xxx is the
computational cost of a given task. f orw is the computational cost of computing the forward
pass, the same for back being the backward pass. upd is the cost of updating the parameters of a
given optimizer. prec is the cost of everything needed for the Shampoo algorithm, which includes
computing the preconditioning matrix as well as preconditioning the gradients. Ψxx are the size
in Bytes of a datatype xx. We also stated the communication cost in Bytes for the two examples
models. We made some assumptions with an MLP example. MLP is a multilayer perceptron
consisting of nin = nout = L = B = 1024, dtype = f loat, NDP = NPP = NOP = 2 with the SGD
optimizer and ran on Piz Daint.

39

6. 3D-Shampoo

Communication Algorithm function name Communication Cost
P2P (bidirectional) - TP2P(n) α + nβ

P2P (unidirectional) - TP2Puni(n) αuni + nβuni
ALLGATHER Recursive Doubling Tallgather(p, n) log(p)α + (p− 1) n

p β

BROADCAST van de Geijn Tbroadcast(p, n) (log(p) + p− 1)α + 2(p− 1) n
p β

ALL-TO-ALL Bruck Tall2all(p, n) log(p)α + n
2 log(p)β

REDUCE-SCATTER Long messages Tred−sca(p, n) (p− 1)α + (p− 1) n
p β + (p− 1) n

p γ

REDUCE & ALLREDUCE Rabenseifner T(all)reduce(p, n) 2 log(p)α + 2(p− 1) n
p β + (p− 1) n

p γ

Table 6.3: α is the latency (or startup time), β is the transfer time per byte, n is the number of
bytes transferred, p is the number of processes, γ is the computation cost per byte. P2P stands for
”Point-to-Point” communications, including block and non-blocking Send/Recv communications.
The notations and the calculations are based on Thakur et al. [39]. In Thakur et al. paper, they
demonstrated different types of algorithms for the same type of communication, depending on
the size of bytes n or the number of processors p and other factors, one is better than the other.
We chose the ones that are more suitable for distributed DNN training.

communication cost of our 3D-Shampoo algorithm for different NNs. The
notations are adopted from the work of Thakur et al. [39]. Table 6.3 gives an
overview of all the different types of communications with their respective
cost.

Piz Daint of CSCS uses the Cray Aries routing and communications ASIC
and Dragonfly network topology [4]. Given the table 6.3, we can construct
the measured communication costs from [4] for the different types of com-
munications. The following measurements are based on an Aries routing
using Intel Xeon E5 CPUs. The measured latency is α ≈ [1.3, 2.0]µm, depend-
ing on message size and the network’s quietness. Same goes for αuni = α.
The peak bandwidth for unidirectional traffic goes up to 10GB/s which is
βuni ≈ 0.067ns/B. The peak bandwidth in bidirectional traffic is 7.5GB/s in
both directions, which is β ≈ 0.133ns/B. Note that the peak bandwidth for
both uni- and bidirectional traffic is around 64KB, which is not unusual for
big DNNs with trillions of parameters. For example, a linear layer consisting
of floats (4 Bytes) of dimensions 128 ∗ 128 has a size of 65′536B. For the
computational cost per Byte γ, we use the peak performance of an Nvidia
Tesla P100 16GB GPU (single precision) of 9340GFLOPs, which is 37360GB/s
of computed Bytes per second. Hence γ ≈ 2.68e− 14s/B.

6.2 3D Parallelism

In this section, we describe what 3D parallelism is. Deepspeed’s 3D par-
allelism is a parallelization technique for training deep learning models
that exploit three dimensions of parallelism: data parallelism (DP), pipeline
parallelism (PP), and operator parallelism (OP).

Data Parallelism (DP) refers to the parallelization of distributing the training
data over multiple GPUs. One GPU gets a micro-batch size to compute its
gradients. Upon updating the parameters, the gradients of each micro-batch

40

6.2. 3D Parallelism

are then averaged via an all reduce(). This parallelization is the simplest
form of parallelization in deep learning. One has to copy the whole model
on all the GPUs and only the data will be split across the GPUs. It only
needs one collective communication if no ZeRO-style optimization [32] is
happening to improve the memory consumption further if dealing with very
big NNs. If ZeRO-style optimization is active, the communication cost will
get very big quickly (see table 6.2). In the case of 3D parallelism, DP can be
considered as the number of duplicates of the NN with the same set of OP
and PP, but each copy works with another micro-batch.

Operator Parallelism (OP) refers to the practice of splitting the model layer
weights. This is not a trivial task of splitting at a certain point of the model
as in PP. Depending on the type of layers, the splits for OP have to be done
individually for the specific layers such that they still achieve the desired
functionality. This is also up to the model designer how to split the layer
weights such as Megatron-LM’s GPT-2. Narayanan et al. [25] have a great
paper on how they achieve OP on GPT-2.

Pipeline Parallelism (PP) involves splitting the model into certain layers and
calling them stages. Each stage will then be stored at a certain GPU. This
technique is useful when dealing with big neural networks where the whole
model can’t fit into one GPU. An advantage of PP is having multiple splits
and at multiple GPUs, like the name ”pipeline” already indicates when
passing micro-batches through the stages one micro-batch will be handled by
one stage at a time in a pipeline fashion. The communication part happens
as point-to-point communication when passing the output of one stage to
another. This is done both independently for the forward pass as well as
for computing the gradients for the backward pass. Due to the concept of
the chain rule, the backward pass of the pipeline stage has to communicate
the gradients of its first layer to the previous stage such that the previous
stage can continue computing its gradients with the backward pass. PP
is the method with the least amount of communication. In the case of 3D
parallelism, PP works the same.

We created a simple visualization of the three different kind of parallelism
and their combinations on a simple four-layer feed-forward NN shown
in table 6.1. One can also see how the second-order information will be
split across multiple GPUs. especially when OP is active, the shapes of the
second-order information matrices will get smaller. Second-order information
does not represent the true shapes of the preconditioning matrices of the
Shampoo algorithm. They would be Kronecker factors of that second-order
information, with each layer having two of them (input size and output size).
Preconditioning matrices can’t be well represented in a full Hessian matrix,
which is why we opted for this visualization. Note the parameter matrices
and second-order information are not for scale. The figure should only guide

41

6. 3D-Shampoo

the viewer on how different types of parallelism are, which information it
holds, and where the communication happens.

We came up with mathematical formulas on how to calculate the computa-
tional cost, communication cost, and memory consumption of the different
kinds of parallelism and their combinations per GPU bases in table 6.2. It also
includes an example model with the assumed costs. The table demonstrates
the effect of increasing the number of parallelisms (i.e. number of GPUs)
decreases the computational and memory consumption but with the cost of
increasing the communication cost.

For more information about 3D parallelism, Microsoft Research has a great
blog post on this topic on their webpage2.

6.3 DeepSpeed Library

DeepSpeed is a popular open-source library developed by Microsoft for deep
learning on large-scale models with massive computational requirements.
It provides an efficient and scalable solution to the challenges of training
deep learning models that require massive amounts of data and computing
power. DeepSpeed optimizes training performance and memory efficiency
by implementing a range of techniques such as gradient accumulation, tensor
fusion, and memory optimization. DeepSpeed is known for the ZeRO-style
optimization to reduce the memory footprint on a neural network training
over multiple GPUs. It also supports distributed training on a wide range
of hardware, from a single GPU to thousands of nodes in a cluster. The
current version of the DeepSpeed library itself can handle data parallelism
and pipeline parallelism for any given model. It also supports models which
handle OP (e.g. Megatron-LM’s GPT-2). Hence, if we give DeepSpeed a
model which supports OP, we can achieve 3D parallelism. In our case, we
use DeepSpeed for its DP and PP without ZeRO optimization due to actually
updating and storing the preconditioning matrices. ZeRO-style optimization
is obsolete when combined with 3D-Shampoo.

6.4 Megatron-LM’s GPT-2

In this section, we go through the architecture of Megatron-LM’s GPT-2.
We do that to understand better how different levels of parallelism (DP,
PP, OP, and up to 3D parallelism) will affect Megatron-LM’s GPT-2 and
what 3D-Shampoo can precondition. Megatron-LM’s GPT-2 is a variant of
the popular GPT-2 language model developed by OpenAI, which has been
widely used for a variety of natural language processing tasks, including

2https://www.microsoft.com/en-us/research/blog/

deepspeed-extreme-scale-model-training-for-everyone

42

https://www.microsoft.com/en-us/research/blog/
deepspeed-extreme-scale-model-training-for-everyone

6.4. Megatron-LM’s GPT-2

text generation, question answering, and language translation. However,
Megatron-LM’s GPT-2 model is characterized by its ability to scale to very
large sizes, enabling it to process huge amounts of text and generate more
accurate and refined responses.

One of the key differences between Megatron-LM’s GPT-2 and other GPT-
2 models is its use of parallelism and distributed computing to speed up
training and improve performance. Designed to run on large-scale super-
computers with thousands of GPUs, Megatron-LM can train models with
billions of parameters in a fraction of the time required by traditional training
methods.

We use Megatron-LM’s because of its ability to parallelize their models in
operator parallelism style such that we can achieve 3D parallelism with
DeepSpeed.

The main building block of Megatron-LM’s GPT-2 is as follows:

1. Input embedding layer: This layer converts the input text into a se-
quence of vectors that can be processed by the model. Each token in
the input sequence is represented as a vector in a high-dimensional
space, where similar vectors correspond to similar tokens.

2. Positional coding layer: This layer adds information about the position
of each token in the input sequence. This allows the model to differ-
entiate between tokens that appear in different positions, even if they
have the same representation in the input embedding layer.

3. Transformer decoder layers: These layers are the core of the GPT-
2 model and consist of several transformer blocks that process the
input sequence in parallel by the number of attention heads. Each
transformer block consists of a self-attention mechanism that allows
the model to focus on different parts of the input sequence and has
an MLP with GeLU activations at the end. A graph is shown of those
layers’ parameters in fig. 6.3. This is where 3D-Shampoo will perform
preconditioning because these layers have parameters of the shape of
matrices.

4. Decoder Head Layer: This layer takes the output of the final transformer
block and generates a probability distribution over the vocabulary of
possible next tokens. This distribution is used to generate new text by
sampling tokens from it one at a time.

The OP of Megatron-LM will take place in the embedding layer as well as in
the transformer decoder layers of GPT-2. Megatron-LM will split those layers
by the number of parameters to reduce the memory in GPU and accelerate
training across multiple GPUs. The embedding layer is very huge due to its
vocabulary size of 50’304. 3D-Shampoo does not consider preconditioning

43

6. 3D-Shampoo

the embedding layer due to its sheer size. Still, the embedding layer will
be updated via a momentum-based optimizer (see algorithm 5). But the
transformer decoder layers are the ones in which 3D-Shampoo will perform
preconditioning (with or without OP active). The transformer decoder layers
consist of 4 matrix-shaped parameters: The query, key, and value parameters
concatenated into one matrix-shaped tensor, the linear layer at the ending
of the self-attention, and the two linear layers in the MLP. We visualized the
transformer decoder layer in fig. 6.3. Information about how Megatron-LM
performs OP on the transformer decoder layers can be read in Narayanan et
al. [25]. One thing to note is that the number of attention heads depends on
Megatron-LM’s OP level. This means the number of attention heads has to be
divisible by the level of OP. Every other layer which needs to be updated is
flat and can’t be preconditioned with Shampoo. Those layers will be updated
normally via an SGD or Momentum-based optimizer. When building GPT-2,
we consider using the number of transformer decoder layers to be the same
as the number of GPUs (or at least being divisible by the number of GPUs),
such that for any number of parallelism in DP, PP or OP, each GPU has
the same number of transformers. E.g. if we have eight GPUs, each GPU
would need one transformer decoder layer to perform optimization/precon-
ditioning. Hence in total, we would need eight transformer decoder layers.
We visualized such an example of Megatron-LM’s GPT-2 consisting of eight
transformer decoder layers for different levels of parallelism in fig. 6.2. With
the paper of Phuong et al: ”Formal Algorithms for Transformers” [31], we
were able to create a better understanding of how the GPT-2 transformer is
built and hence were able to visualize the GPT-2 for different parallel settings.

6.5 3D-Shampoo’s Algorithm

In this section, we discuss 3D-Shampoo’s algorithm and how it uses its
distributed preconditioning method for any combination of parallelism up to
3D parallelism from DeepSpeed to achieve maximum throughput.

We have discussed the approach on distributed Shampoo in chapter 4 which
works similarly for 3D-Shampoo when combined with DeepSpeed. Deep-
Speed has a feature called ProcessTopology3 to find out which GPU is
assigned which DP, PP, OP stages, how many GPUs are in which parallelism
NDP, NPP, NOP and which GPU is from which parallelism group groupDP,
groupPP, groupOP. This topology method is very handy for us in figuring
out how to distribute the preconditioning method over all available GPUs.
3D-Shampoo does distributed preconditioning method when DP is active
(i.e. NDP ≥ 2). For any other cases of parallelism and their combinations
without DP, there is no need to do distributed preconditioning because

3https://deepspeed.readthedocs.io/en/latest/pipeline.html#deepspeed.

runtime.pipe.ProcessTopology

44

https://deepspeed.readthedocs.io/en/latest/pipeline.html##deepspeed.runtime.pipe.ProcessTopology
https://deepspeed.readthedocs.io/en/latest/pipeline.html##deepspeed.runtime.pipe.ProcessTopology

6.5. 3D-Shampoo’s Algorithm

{𝑵𝑫𝑷 = 𝟐,𝑵𝑷𝑷 = 𝟐,𝑵𝑶𝑷 = 𝟐}{𝑵𝑫𝑷 = 𝟐,𝑵𝑷𝑷 = 𝟏,𝑵𝑶𝑷 = 𝟒}{𝑵𝑫𝑷 = 𝟒,𝑵𝑷𝑷 = 𝟏,𝑵𝑶𝑷 = 𝟐}{𝑵𝑫𝑷 = 𝟏,𝑵𝑷𝑷 = 𝟐,𝑵𝑶𝑷 = 𝟒}{𝑵𝑫𝑷 = 𝟏,𝑵𝑷𝑷 = 𝟒,𝑵𝑶𝑷 = 𝟐}

{𝑵𝑫𝑷 = 𝟖,𝑵𝑷𝑷 = 𝟏,𝑵𝑶𝑷 = 𝟏} {𝑵𝑫𝑷 = 𝟏,𝑵𝑷𝑷 = 𝟖,𝑵𝑶𝑷 = 𝟏} {𝑵𝑫𝑷 = 𝟏,𝑵𝑷𝑷 = 𝟏,𝑵𝑶𝑷 = 𝟖} {𝑵𝑫𝑷 = 𝟒,𝑵𝑷𝑷 = 𝟐,𝑵𝑶𝑷 = 𝟏} {𝑵𝑫𝑷 = 𝟐,𝑵𝑷𝑷 = 𝟒,𝑵𝑶𝑷 = 𝟏}

Figure 6.2: Visual demonstration of Megatron-LM’s GPT-2 model for different levels of 3D
parallelism. NDP states the number of data parallelism, NPP number of pipeline parallelism, and
NOP operator parallelism. N = NDP NPP NOP = 8 GPUs for all the graphs.The tokens start at
the word embedding layer and output at the last normalization layer. The Layer-X node is one
of the transformer decoder layers of GPT-2 and fig. 6.3 shows one of the layers in detail. The
labels of the edges show which rank passes through which node. When ranks are grouped into a
list, they are of the same operator parallelism group. [X]→ [Y] indicates the pass to the next
pipeline stage from the next GPU Y. Multiple edges directing into the same layers indicate the
number of data parallelism. For a certain level of parallelism, Megatron-LM uses multiple ranks
to parallelize the embedding layers, even if they are not of the same group of the pipeline stage.
The graphs were made with Graphviz.

45

6. 3D-Shampoo

first Normalization Layer

Multi-Head Self-Attention

second Normalization Layer

Feed-Forward Layer

Figure 6.3: One of the transformer decoder layer of Megatron-LM’s GPT-2. The first layer
is a normalization to improve the stability and efficiency of the model. The second layer is
the Multi-head self-attention layer. This layer allows the model to simultaneously attend to
different parts of the input sequence. It works by projecting the input sequence into multiple
attention heads, each of which computes an attention distribution over the entire sequence. The
outputs of each attention head are concatenated and passed through a linear projection layer.
The Multi-head self-attention layer holds the parameters of the Query, Key, and Value matrices
concatenated into one matrix-shaped tensor. The third layer is again a normalization. The fourth
and last layer is a feed-forward layer. This layer applies a non-linear transformation to the output
of the self-attention layer. It consists of two linear layers with a GeLU activation function in
between which are also preconditioned by 3D-Shampoo. This graph was made with Graphviz.

when 3D-Shampoo gets the set of parameters from the model to update,
the given parameters are already split accordingly to PP and OP by Deep-
Speed and Megatron-LM. When DP is active in DeepSpeed, we don’t have
to reduce scatter the parameters because DeepSpeed already all reduce

the parameters after the backward pass. Hence, we only have to distribute
the preconditioning across all the available GPUs of the given DP group.
For a quick summary of how distributed preconditioning is handled by 3D-
Shampoo, see table 6.4. Distributed Shampoo and 3D-Shampoo have minor
changes in the final all gather step. Distr. Shampoo does the all gather

step right after the given gradients have been preconditioned by the precon-
ditioning matrices, such that any wanted optimizer (e.g. SGD, Adam) will
update the parameters of the model, whereas 3D-Shampoo is an optimizer
itself. Hence, it does the all gather after it updates the parameters given
by DeepSpeed and Megatron-LM’s PP and OP splits. The all gather is
only done in the same DP groups. This means only the GPU ranks which
have the same layers given by DeepSpeed and Megatron-LM’s PP and OP
have to communicate back their distributed and updated parameters. This
means there are multiple all gather communications happening for each
DP group.

We made a pseudo-code of the 3D-Shampoo algorithm shown in algorithm 5.

46

6.5. 3D-Shampoo’s Algorithm

Algorithm 5 3D-Shampoo one optimization step for a given set of weights
Initialize: rank ∈ {0, . . . , N − 1}, partitioning, groupDP, groupPP, groupOP

Receive gradients G1:L and weights W1:L ∈ {groupPP ∩ groupOP}
for 1 = 1, . . . , L do

if rank == groupDP[partitioning[l − 1]] then
k← dim(Gl)
if k ≥ 2 then

Compute preconditioning matrices and precondition gradients via
algorithm 2:

G̃l ← Precondition(Gl)
else

Don’t precondition:
G̃l ← Gl

end if
Weight decay (if wanted):

G̃l ← G̃l + λWl
Update gradient with momentum (if wanted):

G̃l ← G̃l + µBl
Update parameters:

Wl ←Wl − ηG̃l
end if

end for
if NDP > 1 then
all gather(W1:L, groupDP)

end if

At the initialization of 3D-Shampoo, we need the global rank of the GPU
where N = NDPNPPNOP is the total number of GPUs. ”partitioning” is a
list of indexes which specifies which GPU from the DP group has to update
the parameters of the given layer. We discussed the method of partitioning
the workload in chapter 5 and the algorithm for that is shown in listing A.1.
groupDP, groupPP, groupOP are each list containing the ranks of the GPUs
from the same group. E.g. every GPU which has the first PP stage are on the
same list groupPP. When written {groupPP ∩ groupOP}, we effectively mean
only the intersection of these two groups. The gradients and parameters
(weights) of this intersection are automatically given by DeepSpeed with
the gradients all ready been all reduce in the same DP group. The layer
index 1, . . . , L is not necessarily the global index of the whole model. Our
3D-Shampoo algorithm has some additional steps after the preconditioning:
”Weight Decay” and ”Update gradient with momentum”. Those are directly
taken from the improved Shampoo algorithm from Anil et al. [5]. These extra
methods are useful not only for preconditioned layers but also for layers

47

6. 3D-Shampoo

Type of parallelism Shampoo distributed preconditioning method
dependent on the types of parallelism.

None None. We only have 1 GPU, which has to com-
pute all the preconditioning matrices of all the
layers.

DP Split layers by number of GPUs.
PP The Pipeline splits decide which GPU does com-

pute which preconditioning matrices.
OP OP split the weights accordingly to each GPU.

No distribution is needed.
DP + PP Each Pipeline split will be further split by NDP.
DP + OP Each OP split will be further split by NDP.
PP + OP The PP + OP splits decide which GPU does

compute which preconditioning matrices.
3D Parallelism Each PP + OP split will be further split by NDP.

Table 6.4: Table of our approach of distributing the preconditioning method of Shampoo over the
available GPUs to achieve maximum throughput with any given parallelism and their combinations.
DP stands for (ZeRO-style) Data Parallelism. The level of ZeRO memory optimization does
not impact our approach to computing a Shampoo optimization step. PP stands for Pipeline
Parallelism and OP for Operator/Tensor Parallelism. Nxx is the number of parallelism in a given
dimension xx ∈ {DP, PP, OP}. N = NDP NPP NOP is the total number of GPUs. Note that
if NDP > 1 (i.e. DP is active), we average all of the gradients of their parallel partner ranks
in an all reduce fashion before computing Shampoo’s preconditioning matrices. Consider the
example for DP + PP: NPP = 3, NDP = 2 → N = 6: 3 pipeline stages with 2 GPUs in each
pipeline stage do split their work of computing the preconditioning matrices.

which can’t be preconditioned. Lastly when the parameters of the layers have
been updated, when DP is active (i.e. NDP > 1), we have to all gather the
gradients back to ranks that are in the same groupDP.

6.6 3D-Shampoo Implementation

In this section, we will discuss how we implemented 3D-Shampoo and how
to run it on Piz Daint. The DeepSpeed library [32] provided by Microsoft
is used to perform ZeRO-style data parallelism (ZeRO-DP) and Pipeline
parallelism (PP). We combine DeepSpeed with Nvidia’s Megatron-LM library
[34] consisting of language models for Natural Language Processing (NLP)
such as BERT and GPT-2. These support operator parallelism (OP) to achieve
the desired 3D Parallelism. In the Megatron-LM library, OP is also known
there as model parallelism. With Megatron-LM’s GPT-2 is how DeepSpeed
demonstrated the concept of 3D Parallelism [37]. Shampoo [5] can be directly
taken from the Google research repository4. This Shampoo implementation

4https://github.com/google-research/google-research/tree/master/scalable_

shampoo/pytorch

48

https://github.com/google-research/google-research/tree/master/scalable_shampoo/pytorch
https://github.com/google-research/google-research/tree/master/scalable_shampoo/pytorch

6.7. 3D-Shampoo Results

inherits the base class of PyTorch optimizer, which makes it easy to use with
the DeepSpeed library. This is also the Shampoo version which 3D-Shampoo
inherits.

The first step was to introduce the DeepSpeed library on Piz Daint. We had
to minorly adapt the deepspeed.init distributed() method, such that it
can handle the TCP protocol system of Piz Daint’s Slurm system. This fix
was approved and added to the main DeepSpeed git repository as a pull
request (PR) and is now for all users available5. Another small fix we had to
do to the DeepSpeed library was the backward pass gradient of the pipeline
engine of DeepSpeed to deal with the masks of Megatron’s GPT-2. We fixed
this bug by ignoring the mask during the backward pass when passing the
gradients to the next PP stage. This bug probably happened due to some
changes in Megatron-LM’s GPT-2 model over the last 8 months. The current
version of DeepSpeed (version 0.8.0) had a similar hacky solution, but we
had to redo their hacky fix again. We had to install a PyTorch extension from
Nvidia called Apex [26] to use any of Megatron’s language models. To install
it on Piz Daint, one has to use a matching CUDA version of PyTorch and
CUDA itself on Piz Daint. In our case, we had to rely on PyTorch version
1.10.0+cu111 combined with Piz Daint’s CUDA version 11.1. Finally, we
were able to combine DeepSpeed ZeRO-DP and PP with Megatron’s GPT-2
OP to achieve 3D parallelism on Piz Daint. To use Shampoo for any model,
one has to add it as an optimizer.

6.7 3D-Shampoo Results

This section discusses our measured results of 3D-Shampoo on Piz Daint.
We tested 3D-Shampoo with many different settings and variables to have a
feel for how it behaves in different settings. As a note, every measurement
of the runtime and throughput has been done on random tokens. Hence
no real datasets. We ran measurements on the model of Megatron-LM
GPT-2 due to being the model OP, which has been run and tested on Deep-
Speed to achieve 3D parallelism. The hyperparameters of Megatron-LM’s
GPT-2 for all the different measurements have been: --hidden-size=1024,
--num-attention-heads=16, --seq-length=1024, --max-position-embeddings=1024,
--fp32, --seed=42, and --lr=1.5e-4. We used a reasonable learning rate
to simulate normal optimizer steps. We also decided to fix the float size to
32bit because the preconditioning matrices are also of this datatype. An-
other tunable hyperparameter of Megatron-LM’s GPT-2 is the --um-layer=X,
which specifies how many transformer decoder layers we want to have (see
section 6.4 for more information). For all the results, we did not precondition
the embedding layer because they are too big. We only preconditioned the

5https://github.com/microsoft/DeepSpeed/pull/2905

49

https://github.com/microsoft/DeepSpeed/pull/2905

6. 3D-Shampoo

transformer decoder feed-forward layers. We set up the model such that
one GPU has to precondition at least one transformer decoder layer or the
number of transformer decoder layers is divisible by the number total num-
ber of GPUs. This makes distributing the workload for preconditioning the
layers simple. In 3D-Shampoo, each GPU has a certain amount of transformer
decoder layers to precondition, depending on the total number of transformer
decoder layers and the total number of GPUs. Some GPUs from the first
PP stage also have to update the embedding layer with a momentum-based
optimizer built already inside 3D-Shampoo and some GPUs at the end of
the PP stages have an extra layer normalization at the ending. Those GPUs
have to do some extra work as well as communicate the updated parameters
of those extra layers back via all gather() to all the GPUs from the same
DP group. It is not that much work and is not as big an imbalance as the
actual precondition of the given transformer decoder layers. Like stated in
chapter 5, depending on how well-conditioned preconditioning matrices of
certain layers are and even if they are of the same size of the shape, some
take longer to compute the p-root and inverse. We used a vocabulary of size
50’304, and the tokens were generated with a uniform distribution in the
range [0, 5000]. Every throughput and runtime measurement was performed
after some warmup training steps and then at around 3-10 training steps
were measured. Depending on the runtime, we used fewer training steps
because some took at least 5 minutes. The shapes of the preconditioning
matrices of one transformer decoder layer with 16 attention heads and hid-
den size of 1024 are: 2× 40962, 1× 30722, and 5× 10242 which makes in
total eight preconditioning matrices for one transformer decoder layer. This
makes 48.2e7 32bit floats in total and multiplied by 2 ∗ 4 gives 385.9MB of
preconditioning memory used per transformer decoder layer. We multiply
by 2 because 3D-Shampoo stores the preconditioning matrices with and
without the p-root inverse computation. This makes 3D-Shampoo kinda big
per transformer decoder layer, but it the size can be further reduced by using
the block partitioning method from Anil et al. [5]. Block partitioning shrinks
the sizes of the preconditioning matrices into smaller desired shapes but
for the cost of increasing the number of preconditioning matrices. When
introducing the block partitioning method of 3D-Shampoo, we can further
reduce the memory cost by setting the shapes to a size of 1024, which gives
us a total of 24 preconditioning matrices per transformer decoder layer which
is in a total of 201.3MB. See fig. 6.4 for an overview of how the shapes of the
preconditioning matrices are changing for one transformer decoder layer by
changing the desired shapes in the block partitioning method.

The first thing we measured was to see how 3D-Shampoo performance
compared to the most simple/lightweight/known optimizer, the Stochastic
Gradient Descent (SGD) to give an expected runtime performance and mem-
ory consumption baseline. We compared both 3D-Shampoo and SGD to a

50

6.7. 3D-Shampoo Results

Figure 6.4: Figures of the different preconditioning matrices of one transformer decoder layer
of GPT-2 with different levels of BlockPartitioning. The colours indicate which preconditioning
matrices are for which layers. attention.query key value is red, attention.dense is green,
mlp.dense h to 4h is blue, and mlp.dense 4h to h is orange. To pack all the squares tight into
the rectangles we used a python package called rectangle-packer.

variety of different parallel configurations up to 3D parallelism. Figure 6.5
shows the different throughput and maximum memory allocation of the
different parallel configurations. Pura DP has the lead of having the highest
throughput and maximum memory consumption for both 3D-Shampoo and
SGD. On the opposite, pure OP is the slowest and takes the least amount of
memory. The only reason pure DP outperforms every other configuration
is that the GPT-2 model is big enough to fit on one GPU. If the model is
bigger, other configurations have to be considered. The throughput of SGD
is always higher or at least the height of 3D-Shampoo. The same pattern
occurs with the maximum memory consumption; 3D-Shampoo is on average
700MB higher than SGD. In my calculation stated in the figure description it
should be around 312.5MB, but this higher deviation could be of some more
allocation happening due to the p-root and inverse computation. In the end,
the figure should demonstrate that 3D-Shampoo did not have as much of an

51

6. 3D-Shampoo

impact on performance compared to SGD.

Figure 6.6 is the exact same measurements of fig. 6.5 but rewritten in runtime
per training step. This shows how 3D-Shampoo is slower than SGD, but for
the configuration NDP = 1, NPP = 2, and NOP = 4, 3D-Shampoo and SGD
have the same runtime performance. For certain parallel configurations, the
optimizer can be fully covered by the communication part of DeepSpeed.

But if we set the micro-batch size |b| and batch size |B| in a way such that
PP does only deal with one micro-batch, the runtime of the different parallel
configurations is the same at around ∼ 1500ms like shown in fig. 6.7. Here
again, the p-root inverse algorithm is fixed to 20 iterations, and each GPU
has to deal with the same shaped 64 preconditioning matrices. Normally,
one would not only use one micro-batch to train a model using PP.

We also made a case where we only changed to OP level from 1 to 16 to
see how 3D-Shampoo against SGD the throughput and maximum memory
allocation changes by the level of OP. We visualized it in fig. 6.8. One can
see that the throughput for both 3D-Shampoo and SGD is increasing pretty
much the same. The maximum memory allocation on the other hand, at
NOP = 1, 3D-Shampoo is ∼ 900MB higher than SGD but steadily decreases
to ∼ 100MB higher than SGD. This was expected. The higher the OP, the
smaller the layers are getting, and hence the preconditioning matrices are
getting smaller as well.

A more interesting comparison is when we only change the DP level. This
is where 3D-Shampoo should shine against any type of optimizer when
compared to weak-scaling efficiency. As discussed in section 6.5, 3D-Shampoo
will distribute the workload by the level of DP to maximize its efficiency and
hence throughput of the model. We plotted the throughput and maximum
memory of 3D-Shampoo and SGD as well as the weak-scaling speedup of
both of them in fig. 6.9. This time, the GPT-2 consists of 16 transformer
decoder layers such that when NDP = 16, each GPU has to deal with one
layer to precondition. One can see that both 3D-Shampoo and SGD are
increasing in throughput by increasing the level of DP. But the maximum
memory allocation of SGD stays constant at 7.3GB. 3D-Shampoo has a very
big memory consumption when NDP = 1 but decreases linearly up to a
point of having only ∼ 500MB more than SGD at NDP = 16. The top figure
is not really noticeable, but 3D-Shampoo scales in throughput better than
SGD. That is why we created the weak-scaling plot to show the scaling of
3D-Shampoo compared to SGD. One can also expect for certain models super
linear scaling for 3D-Shampoo which we already have demonstrated for distr.
Shampoo on DenseNet121 shown in fig. 5.8. From these two figures, one can
conclude that 3D-Shampoo is always performing better when increasing the
number of GPUs.

We also wanted to conduct tests on how the BlockPartition function performs

52

6.7. 3D-Shampoo Results

Figure 6.5: Figure of the throughput and maximum measured memory allocation of 3D-Shampoo
and SGD on GPT-2 on 8 nodes (8 GPUs) on Piz Daint with different combinations of parallelism.
The left y-axis is the maximum measured memory [GB] occupation, and the right y-axis is the
throughput in [tokens/s]. The x-axis indicates the type of parallelism and batch sizes. NXX
indicates the number of parallelisms in the given dimension XX, where XX ∈ {DP, PP, OP}.
Bold font indicates the level of parallelism with up to 3D when all three are bold. DP stands
for (ZeRO-style) Data-Parallelism. Note that in all measurements, we deactivate any ZeRO
optimization due to actually being able to update the preconditioning matrices of Shampoo
over multiple training steps. PP stands for Pipeline Parallelism and OP for Operator/Tensor
Parallelism (For Megatron-LM, it is called Model Parallelism). Note that N = NDP NPP NOP = 8
is applied for all the combinations of parallelism. |b| is the micro-batch size and |B| is the
batch size. The number of micro-batches for the PP is defined as #|b| = |B|/(NDP|b|).
Depending on the level of DP (i.e. NDP > 1), we have micro-batches trained on the
model. We used the GPT-2 model from Nvidia’s Megatron-LM with the hyperparameters:
--num-layers=8, --hidden-size=1024, --num-attention-heads=16, --seq-length=1024,
--max-position-embeddings=1024, --fp32, --seed=42, and --lr=1.5e-4. Even though the
tokens were uniformly random in the range [0, 5000], we still set a reasonable learning rate to
simulate the optimization step. We averaged over 10 training steps with 3 warmup steps before.
Depending on the level of parallelism in any dimension, Megatron-LM will build the model accord-
ingly (see fig. 6.2). We used --num-layers=8 such that we can achieve a balanced workload
for all different kinds of parallelisms. The vocabulary size is 50304, which makes the embedding
layer of GPT-2 very big. We ignore the embedding layer by not computing its preconditioning
matrices. Still, the gradients of the embedding layer are updated with a momentum-based
optimizer included by the Anil et al. Shampoo implementation [5]. In 3D-Shampoo, we fixed the
number of iterations of the p-root inverse algorithm to 20 for a fair comparison between all the
different parallel configurations. The same goes for the number and shapes of the preconditioning
matrices which is 64 per GPU which are: 8× 3842, 8× 1282, 16× 5122, and 32× 10242. This
makes 3D-Shampoo at least 312.5MB bigger in memory usage compared to pure SGD due to
the preconditioning matrices. ”max mem” states the measured maximum allocated memory on
a single GPU. For certain configuration of parallelism, we did not achieve maximum allocated
memory on the NVIDIA® Tesla® P100 GPU which have 16GB of memory.

53

6. 3D-Shampoo

Figure 6.6: Figure of the runtime of one training step of 3D-Shampoo and SGD on GPT-2 on
nodes (8 GPUs) on Piz Daint with different combinations of parallelism with the exact same
settings as fig. 6.5. Runtime is shown in milliseconds and was measured over multiple training
steps and averaged. |b| is the micro-batch size and |B| is the batch size. NXX indicates the
number of parallelisms in the given dimension XX, where XX ∈ {DP, PP, OP}. Bold font
indicates the level of parallelism with up to 3D when all three are bold.

for different shapes for GPT-2. Figure 6.10 shows our result of GPT-2 with
one transformer decoder layer run on one GPU for different block sizes of
the BlockPartition function. One can see a sweat spot of block shapes for
the transformer and decoder layer which is at 1024. At this shape, there
will be 1024 precondition matrices of this shape for one transformer decoder
layer. Decreasing the block partitioning shapes further will also increase
the number of preconditioning matrices (indicated in ”precs”). Smaller
preconditioning matrices are beneficial for the p-root inverse algorithm due
to its high intensity of matrix-matrix operations, but having too many of those
will make the whole 3D-Shampoo algorithm slower due to a lot of memory
movement. We made a visual representation of all the preconditioning
matrices with the different shapes of block partition in fig. 6.4. We measured
the number of flops and runtime of computing the p-root inverse of one
transformer decoder layer of GPT-2 for the different block shapes shown
in table 6.5. We used Nvidia’s nvprof to measure the flops. One can see
when we use the original preconditioning shapes; we reach the highest flops
per second performance at 7813 GigaFLOPS which is 84% of the theoretical
peak performance of a Tesla P100 GPU (9.3 TeraFLOPS). We also stated the
theoretical flops we got from our computational cost function from eq. (4.4)

54

6.7. 3D-Shampoo Results

Figure 6.7: Figure of the runtime of one training step of 3D-Shampoo and SGD on GPT-2 on
nodes (8 GPUs) on Piz Daint with different combinations of parallelism with the exact same
settings as fig. 6.5 but with different micro-batch sizes |b| and batch sizes |B|. Here the PP
only deals with one micro-batch instead of multiple micro-batches (#|b| = |B|/(NDP|b|) = 1).
Hence, the runtime of 3D-Shampoo is always ∼ 1500ms slower than SGD runtime for any parallel
configuration. Runtime is shown in milliseconds, measured over multiple training steps, and
averaged. |b| is the micro-batch size and |B| is the batch size. NXX indicates the number of
parallelisms in the given dimension XX, where XX ∈ {DP, PP, OP}. Bold font indicates the
level of parallelism with up to 3D when all three are bold.

to show that our approximated theoretical flops are close to the measured
one.

Lastly, we measured the performance of changing the number of fixed
iterations for the p-root inverse algorithm with different block partitioning
shapes shown in fig. 6.11. Normally, the number of iterations of the p-root
algorithm is not fixed but capped at 100 iterations. It is noted that the
expected runtime of this algorithm is roughly in the range of 10-30 iterations
depending on how big and well-conditioned the preconditioning matrices
are. But in fig. 6.4, we fixed the iteration to get a feeling of how it performs
for different settings. For any block partitioning shapes, more iteration in the
p-root inverse algorithm always makes the throughput smaller. The block
partitioning shape of 1024 is always the fastest as we already have seen in
fig. 6.10. From this figure, we want to show the impact of the number of
iterations by the Shampoo algorithm. It is a major computational time when
it comes to one training step.

55

6. 3D-Shampoo

Figure 6.8: Figure of the throughput and maximum measured memory allocation of 3D-Shampoo
and SGD on GPT-2 on Piz Daint with different levels of Operator Parallelism (OP) with the
exact same settings as fig. 6.5 but changing the --num-layers from 8 to 1. The left y-axis is the
memory allocation in Gigabytes, and the right y-axis is the throughput in the number of tokens
per second. |b| is the micro-batch size and |B| is the batch size. NXX indicates the number of
parallelisms in the given dimension XX, where XX ∈ {DP, PP, OP}. N = NDP NPP NOP is the
number of GPUs in parallel training. Hence, the most left plot is single GPU performance, and
the most right one is 16 GPUs in parallel.

Block sizes #precs theoretical flops measured flops avg runtime performance TPP%
Original 8 13746 Gflops 27510 Gflops 3.521s 7813 GFLOPS 84%

2048 14 4210 Gflops 8432 Gflops 1.324s 6369 GFLOPS 68%
1024 24 2063 Gflops 4136 Gflops 0.890s 4647 GFLOPS 50%
512 96 1032 Gflops 2102 Gflops 0.977s 2151 GFLOPS 23%
256 384 516 Gflops 1071 Gflops 3.004s 356 GFLOPS 4%
128 1536 259 Gflops 555 Gflops 12.060s 46 GFLOPS 0.5%
64 6144 130 Gflops 298 Gflops 48.416s 6 GFLOPS 0.06%

Table 6.5: Table of the theoretical and measured flops of computing the p-root and inverse of
one transformer decoder layer of GPT-2 for different block partitioning shapes. The theoretical
flops come from eq. (4.4) and the measured one from Nvidia’s nvprof. ”TPP%” stands for how
close the measured ”performance” is to the theoretical peak performance in per cent. ”flops”
stands for the number of floating point operations (single precision) and ”FLOPS” flops per
second. The theoretical peak performance of a Tesla P100 GPU is 9340 GFLOPS which makes
the performance for ”Original” shaped preconditioning matrices 84%. We used the exact same
settings as fig. 6.5 for the GPT-2 model but changed the --num-layers from 8 to 1. The p-root
inverse algorithm was fixed to max iter = num iter = 20 which means for while-loop breaking
for any preconditioning matrices. The shapes of the preconditioning matrices of one transformer
decoder layer for a different level of block partitioning are visualized in fig. 6.4.

56

6.7. 3D-Shampoo Results

Figure 6.9: The top figure shows the throughput and maximum measured memory allocation of
3D-Shampoo and SGD on GPT-2 on Piz Daint with different levels of Data Parallelism (DP) with
the exact same settings as fig. 6.5 but changing the --num-layers from 8 to 16. The bottom
plot shows the weak-scaling speedup of the top figure. The left y-axis is the memory allocation
in Gigabytes, and the right y-axis is the throughput in the number of tokens per second. |b| is
the micro-batch size and |B| is the batch size. NXX indicates the number of parallelisms in the
given dimension XX, where XX ∈ {DP, PP, OP}. N = NDP NPP NOP is the number of GPUs in
parallel training. Hence, the most left plot is single GPU performance, and the most right one is
16 GPUs in parallel.

57

6. 3D-Shampoo

Figure 6.10: Figure of the throughput and maximum measured memory allocation of 3D-
Shampoo on GPT-2 on Piz Daint with different settings of BlockPartitioning shapes with the
exact same settings as fig. 6.5 but changing the --num-layers from 8 to 1. For all the different
BlockPartitioning sizes, we fixed the number of iterations of the p-root and inverse algorithm
to 20 iterations. We used micro-batch size |b| = 4 and batch size |B| = 32. No parallelization
is happening in this figure. Everything ran on a single GPU. ”shape” indicates the level of
BlockPartitioning level with ”Original” meaning no BlockPartitioning with the original shapes
of preconditioning matrices of one transformer decoder layer. ”precs” shows the number of
preconditioning matrices that have to be computed and used to precondition the gradients. The
shapes of all the preconditioning matrices are shown in fig. 6.4.

58

6.7. 3D-Shampoo Results

Figure 6.11: Figure of the throughput depending on the number of fixed iterations used to
compute the p-root and inverse of the preconditioning matrices in 3D-Shampoo for on for different
sizes of block partitioned preconditioning matrices. We used the same settings for GPT-2 as
in fig. 6.5 but --num-layers from 8 to 1. We used micro-batch size |b| = 4 and batch size
|B| = 32. No parallelization is happening in this figure. Everything ran on a single GPU. ”shape”
indicates the level of BlockPartitioning level with ”Original” meaning no BlockPartitioning with
the original shapes of preconditioning matrices of one transformer decoder layer. Each line in the
figure represents a different shape level of BlockPartitioning. The shapes of the block partitioned
preconditioning matrices are visualized for one transformed decoder layered GPT-2 in fig. 6.4.
Normally the p-root and inverse algorithm is not fixed by a number of iterations but capped
at 100 iterations. It will end earlier when the error is small enough. See algorithm 4 for the
pseudo-code of the p-root and inverse algorithm.

59

Chapter 7

Conclusion

In this thesis, our goals are to understand the strengths and weaknesses of the
distributed preconditioning methods for training deep neural networks with
parallel devices and identify promising directions to scale preconditioning up
to today’s largest-scale networks. To this end, we first conducted a literature
review of the distributed preconditioning methods used in training deep
neural networks. We then targeted the most popular methods, i.e., distributed
(distr.) K-FAC and distr. Shampoo. We implemented them in PyTorch and
analysed the performance on different numbers of GPUs and sizes of deep
neural networks. Furthermore, based on our analysis, we introduced a new
optimizer, 3D-Shampoo, an extension of Shampoo for 3D-parallel (i.e., data-,
operator-, and pipeline-) training. We observed that 3D-Shampoo achieved
competitive throughput and memory usage with SGD when run on a multi-
GPU environment for different sizes of GPT-2-like Transformer models and
parallelism settings.

As for future work, it would be interesting to investigate the convergence
speed and scaling of 3D-Shampoo in training large models (e.g., Transform-
ers) on real-world tasks (e.g., language modelling) and for a higher number
of GPUs.

61

Appendix A

Appendix

Algorithm 6 The PowerIter function to compute the maximum eigenvalue
from algorithm 4

Require: H ← Hi
t; max iter = 100; tolerance = 1e− 6

v ∼ U (−1, 1) ∈ Rni

error = 1
iters = 0
singular val = 0
while error > tolerance and iters < max iter do

v = v/∥v∥2
ṽ = Hv
sing v = vT ṽ
error = |sing v− singular val|
v = ṽ
singular val = sing v
iters = iters+ 1

end while
return singular val

Listing A.1: model partitioning function of shampoo

1 def get_distr_prec_partition(self):

2 """

3 Distributes the workload by computational cost of each layer for

↪→ total number of GPUs

4 e.g.

5 1 GPU for ResNet18:

6 [0, 0]

7 3 GPUs for ResNet18:

8 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2]

9 8 GPUs for ResNet18:

10 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 3, 4, 5, 6, 7]

11 21 or more GPUs for ResNet18:

63

A. Appendix

12 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

↪→ 19, 20]

13 2 GPUs for 3 layers MLP (if first layer is bigger than 2nd and 3rd):

14 [0,1,1]

15 """

16
17 total_comp_cost = 0

18 comp_cost_layers = []

19 shapes_list = []

20 for p in self.model.parameters ():

21 if p.ndim > 1 and p.requires_grad:

22 _transformed_shape = _merge_small_dims(p.shape , self.

↪→ block_size)

23 _partitioner = BlockPartitioner(_transformed_shape , self.

↪→ block_size)

24 shapes = _partitioner.kronecker_factor_shapes ()

25
26 shapes_list.append(_transformed_shape)

27 comp_cost = self.computational_cost(shapes)

28 total_comp_cost += comp_cost

29 comp_cost_layers.append(comp_cost)

30
31 num_layers = len(comp_cost_layers)

32
33 partitions = [0]* num_layers

34 if self.world_size == 1:

35 return [], partitions

36 elif num_layers > self.world_size:

37 split_list = np.array ([0])

38
39 for rank in range(self.world_size -1):

40 if rank == 0:

41 split_list = np.append(split_list , self.next_split(

↪→ comp_cost_layers))

42 else:

43 sub_sums = []

44 for i in range(1, len(split_list)):

45
46 local_comp_cost = np.sum(comp_cost_layers[split_list

↪→ [i-1]: split_list[i]])

47 sub_sums.append(local_comp_cost)

48
49 if i == len(split_list) - 1:

50 local_comp_cost = np.sum(comp_cost_layers[

↪→ split_list[i]:])

51 sub_sums.append(local_comp_cost)

52
53 while(True):

54 i = np.argmax(sub_sums)

55 if i == len(sub_sums) - 1:

56 sub_comp_cost_layers = comp_cost_layers[

↪→ split_list[i]:]

57 shift = split_list[i]

58 else:

59 sub_comp_cost_layers = comp_cost_layers[

↪→ split_list[i]: split_list[i+1]]

60 shift = split_list[i]

61
62 if len(sub_comp_cost_layers) > 1:

63 break

64 else:

65 sub_sums[i] = -1

64

66
67
68 split_list = np.append(split_list , self.next_split(

↪→ sub_comp_cost_layers) + shift)

69 split_list = np.sort(split_list)

70
71 sub_sums = []

72 for i in range(1, len(split_list)):

73
74 local_comp_cost = np.sum(comp_cost_layers[split_list[i-1]:

↪→ split_list[i]])

75 sub_sums.append(local_comp_cost)

76
77 if i == len(split_list) - 1:

78 local_comp_cost = np.sum(comp_cost_layers[split_list[i

↪→]:])

79 sub_sums.append(local_comp_cost)

80
81 #if self.world_rank == 0:

82 # print(sub_sums , "\n")

83
84 next_split = split_list [1]

85 rank = 0

86 for i in range(len(partitions)):

87 if i == next_split:

88 rank += 1

89 if rank != self.world_size - 1:

90 next_split = split_list[rank +1]

91
92 partitions[i] = rank

93 return split_list [1:], partitions

94 else: #atm , we do not support multiple gpus for one layer

95 rank = 0

96 for i in range(num_layers):

97 partitions[i] = i

98
99 return partitions [1:], partitions

100
101
102 def computational_cost(self , shapes):

103 """

104 input: shape: [[x, x],[y, y],...] (Blockpartitioner.

↪→ kronecker_factor_shape)

105 output: returns the compuational cost of this Blockpartitioned

↪→ layers

106 """

107 tmp_cost = 0

108 for shape in shapes:

109 assert len(shape) == 2

110 assert shape [0] == shape [1]

111
112 tmp_cost += shape [0]**0.4 # ATM simple O(n^3) assumption (maybe

↪→ even less 0.4)

113
114 return tmp_cost

115
116 def next_split(self , subset_partitions):

117 """

118 deciding where the next split is happening

119
120 input: subset_partitions: [] is a subset of comp_cost_layers

121 output: index where to split (int)

65

A. Appendix

122 """

123 assert len(subset_partitions) > 1

124
125 x = np.array(subset_partitions)

126 y = np.sum(subset_partitions)/2

127
128 split_loc = len(x[np.cumsum(x) < y])

129
130 split_loc += 1

131
132 return split_loc

66

Bibliography

[1] Dragon ball-z - sangoku kamehameha pixel art. Clipartmax.com. Ac-
cessed: 17.4.2023.

[2] Saurabh Adya, Vinay Palakkode, and Oncel Tuzel. Nonlinear conjugate
gradients for scaling synchronous distributed dnn training. arXiv preprint
arXiv:1812.02886, 2018.

[3] Sadaf R Alam, Ladina Gilly, Colin J McMurtrie, and Thomas C
Schulthess. Cscs and the piz daint system. In Contemporary High Perfor-
mance Computing, pages 149–173. CRC Press, 2019.

[4] Bob Alverson, Edwin Froese, Larry Kaplan, and Duncan Roweth. Cray
xc series network. Cray Inc., White Paper WP-Aries01-1112, 2012.

[5] Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram
Singer. Scalable second order optimization for deep learning. arXiv
preprint arXiv:2002.09018, 2020.

[6] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods
for large-scale machine learning. SIAM review, 60(2):223–311, 2018.

[7] Thomas Bradley. Gpu performance analysis and optimisation. NVIDIA
Corporation, 2012.

[8] Mengyun Chen, Kaixin Gao, Xiaolei Liu, Zidong Wang, Ningxi Ni, Qian
Zhang, Lei Chen, Chao Ding, Zhenghai Huang, Min Wang, et al. Thor,
trace-based hardware-driven layer-oriented natural gradient descent
computation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 7046–7054, 2021.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,

67

Bibliography

Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale, 2021.

[10] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. Journal of
Machine Learning Research, 12(61):2121–2159, 2011.

[11] Celestine Dünner, Aurelien Lucchi, Matilde Gargiani, An Bian, Thomas
Hofmann, and Martin Jaggi. A distributed second-order algorithm
you can trust. In International Conference on Machine Learning, pages
1358–1366. PMLR, 2018.

[12] Chih-Hao Fang, Sudhir B Kylasa, Fred Roosta, Michael W Mahoney, and
Ananth Grama. Newton-admm: A distributed gpu-accelerated optimizer
for multiclass classification problems. In SC20: International Conference
for High Performance Computing, Networking, Storage and Analysis, pages
1–12. IEEE, 2020.

[13] Elias Frantar, Eldar Kurtic, and Dan Alistarh. M-fac: Efficient matrix-
free approximations of second-order information. Advances in Neural
Information Processing Systems, 34:14873–14886, 2021.

[14] Chun-Hua Guo and Nicholas John Higham. A schur–newton method
for the matrix pth root and its inverse. 2005.

[15] Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Precon-
ditioned stochastic tensor optimization. In International Conference on
Machine Learning, pages 1842–1850. PMLR, 2018.

[16] Adnan Haider, Chao Zhang, Florian L Kreyssig, and Philip C Wood-
land. A distributed optimisation framework combining natural gradient
with hessian-free for discriminative sequence training. Neural Networks,
143:537–549, 2021.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition, 2015.

[18] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Wein-
berger. Densely connected convolutional networks, 2018.

[19] Rustem Islamov, Xun Qian, and Peter Richtárik. Distributed second
order methods with fast rates and compressed communication. In
International conference on machine learning, pages 4617–4628. PMLR, 2021.

[20] Xi-Lin Li. Preconditioned stochastic gradient descent. IEEE transactions
on neural networks and learning systems, 29(5):1454–1466, 2017.

68

Bibliography

[21] Yichuan Li, Nikolaos M Freris, Petros Voulgaris, and Dušan Stipanović.
Dn-admm: Distributed newton admm for multi-agent optimization. In
2021 60th IEEE Conference on Decision and Control (CDC), pages 3343–3348.
IEEE, 2021.

[22] Jie Liu, Yu Rong, Martin Takáč, and Junzhou Huang. Accelerating
distributed stochastic l-bfgs by sampled 2nd order information. Beyond
First Order Methods in ML@ NeurIPS, 2019.

[23] James Martens and Roger Grosse. Optimizing neural networks with
kronecker-factored approximate curvature. In International conference on
machine learning, pages 2408–2417. PMLR, 2015.

[24] Baorun Mu, Saeed Soori, Bugra Can, Mert Gürbüzbalaban, and
Maryam Mehri Dehnavi. Hylo: a hybrid low-rank natural gradient
descent method. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, pages 1–16,
2022.

[25] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGres-
ley, Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. Efficient large-scale
language model training on gpu clusters using megatron-lm. In Pro-
ceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–15, 2021.

[26] NVIDIA Corporation. NVIDIA Apex. https://github.com/NVIDIA/

apex, 2019. A PyTorch Extension: Tools for easy mixed precision and
distributed training in PyTorch.

[27] Kazuki Osawa, Satoki Ishikawa, Rio Yokota, Shigang Li, and Torsten
Hoefler. Asdl: A unified interface for gradient preconditioning in
pytorch, 2023.

[28] Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Chuan-Sheng
Foo, and Rio Yokota. Scalable and practical natural gradient for large-
scale deep learning. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2020.

[29] J Gregory Pauloski, Qi Huang, Lei Huang, Shivaram Venkataraman,
Kyle Chard, Ian Foster, and Zhao Zhang. Kaisa: an adaptive second-
order optimizer framework for deep neural networks. In Proceedings of
the International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–14, 2021.

69

https://github.com/NVIDIA/apex
https://github.com/NVIDIA/apex

Bibliography

[30] J Gregory Pauloski, Zhao Zhang, Lei Huang, Weijia Xu, and Ian T
Foster. Convolutional neural network training with distributed k-fac. In
SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–12. IEEE, 2020.

[31] Mary Phuong and Marcus Hutter. Formal algorithms for transformers.
arXiv preprint arXiv:2207.09238, 2022.

[32] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He.
Deepspeed: System optimizations enable training deep learning models
with over 100 billion parameters. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages
3505–3506, 2020.

[33] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks, 2019.

[34] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-billion
parameter language models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[35] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014.

[36] Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order
approximation for neural network compression. Advances in Neural
Information Processing Systems, 33:18098–18109, 2020.

[37] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley,
Samyam Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye,
George Zerveas, Vijay Korthikanti, et al. Using deepspeed and megatron
to train megatron-turing nlg 530b, a large-scale generative language
model. arXiv preprint arXiv:2201.11990, 2022.

[38] Zedong Tang, Fenlong Jiang, Maoguo Gong, Hao Li, Yue Wu, Fan Yu,
Zidong Wang, and Min Wang. Skfac: Training neural networks with
faster kronecker-factored approximate curvature. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
13479–13487, 2021.

[39] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of
collective communication operations in mpich. The International Journal
of High Performance Computing Applications, 19(1):49–66, 2005.

70

Bibliography

[40] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer,
Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel
Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An all-mlp architecture for
vision. Advances in neural information processing systems, 34:24261–24272,
2021.

[41] Shusen Wang, Fred Roosta, Peng Xu, and Michael W Mahoney. Gi-
ant: Globally improved approximate newton method for distributed
optimization. Advances in Neural Information Processing Systems, 31, 2018.

[42] Minghan Yang, Dong Xu, Zaiwen Wen, Mengyun Chen, and Pengxiang
Xu. Sketch-based empirical natural gradient methods for deep learning.
Journal of Scientific Computing, 92(3):94, 2022.

[43] Zhewei Yao, Amir Gholami, Daiyaan Arfeen, Richard Liaw, Joseph Gon-
zalez, Kurt Keutzer, and Michael Mahoney. Large batch size training of
neural networks with adversarial training and second-order information.
arXiv preprint arXiv:1810.01021, 2018.

[44] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks, 2017.

71

