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M. Sc. in Electrical Engineering and Information Technology, ETH Zurich

born on 27.02.1991

citizen of Croatia

accepted on the recommendation of

Prof. Dr. Marco Hutter

Prof. Dr. Emilio Frazzoli

Dr. Steve Tonneau

2023



Robotic Systems Lab

Institute for Robotics and Intelligent Systems

ETH Zurich

Switzerland
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Abstract

While slowly finding their way into human-engineered environments, deploy-

ing robots in natural environments remains challenging today. Automation is

especially lacking for large-scale hydraulic machinery, which would be indis-

pensable for automating dangerous tasks such as natural disaster responses.

For robotic autonomy, motion planning plays an important role, especially in

the presence of obstacles. Overcoming obstacles requires adapting locomotion

strategy to the surrounding terrain, a pattern that can be observed in humans

and animals. Humans walk on two limbs but can use all four if the situa-

tion requires so. The terrain around the robot imposes constraints on limb

placement, stability, and contact timing, and accounting for all constraints in

a single motion planning problem is demanding. Traditionally, the problem is

decomposed into smaller subproblems using simplified models and heuristics,

which often cannot capture the coupled dynamics in the system. Hence they

often plan motions not fully utilizing the robot’s capabilities. Treating the

robot as a whole becomes especially important for complex systems such as

legged-wheeled robots.

This dissertation extends the locomotion capabilities of legged robots, empha-

sizing legged excavators. It develops motion planning algorithms utilizing all

degrees of freedom for overcoming challenging terrain. We formulate the mo-

tion planning problem in a general way for multiple robot types and explore

concepts for solving it. To this end, optimization and randomized sampling

play a central role in computing global, whole-body motions presented in this

thesis.

We work towards increasing legged robotic mobility in a series of five pub-

lications. We start by deploying a hydraulic 12-tonne-legged machine in a

natural forest for precision harvesting. The mapping, localization, planning,

and control systems have been proposed and integrated into an autonomous

harvesting solution. The whole-body planner developed later in the thesis is

inspired by the shortcomings of the planning system deployed in the forest.
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A local optimization-based planner is used to cope with many degrees of free-

dom on a legged excavator. The proposed terrain-aware planner can compute

efficient driving and stepping motion and utilize the arm for locomotion. To

allow more flexibility, we only command goal poses and do not stipulate what

to do in between, thus giving the optimizer complete freedom.

To cope with the non-convexity of the planning problem, we employ ran-

domized sampling. We shift some of the computation offline in the form of

pre-computed roadmaps, which help keep the planning times low. The initial

whole-body plan is found by randomized sampling; however, it may still violate

some physical system constraints (e.g., wheel rolling constraints). The initial

motion plan is then fed to the optimization for refinement. The optimization

ensures constraint satisfaction, while the initial plan keeps the optimizer away

from bad local minima. Together they compute smooth, global, whole-body

plans. We have tested this method on a legged excavator, a legged-wheeled

robot, and a legged robot with point feet.

Lastly, a control system for legged excavators is developed. Whole-body mo-

tion plan execution is a well-studied topic for more miniature robots such as

quadrupeds. However, hardware deployment on full-size hydraulic machinery

is lacking. We run the optimization in a receding horizon fashion, which helps

to combat drift and tracking errors. The terrain adaptive control system al-

lows the planner to plan on simplified geometries and then adapt to unseen

landscapes at execution time. Planning on simplified geometries is essential

for deployment since a very accurate map cannot be obtained with current

sensors. Small details like steps and roughness produce non-smooth gradients

that hamper the optimization convergence.

Keywords: Robotics, Legged Excavator, Motion Planning, Model Predic-

tive Control, Forestry, Sampling, Optimization, Whole-Body Planning.
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Zusammenfassung

Während sie langsam ihren Weg in von Menschenhand geschaffene Umgebun-

gen finden, bleibt der Einsatz von Robotern in natürlichen Umgebungen eine

Herausforderung. Vor allem bei großen hydraulischen Maschinen, die für die

Automatisierung gefährlicher Aufgaben, wie der Bewältigung von Naturkata-

strophen, unverzichtbar wären, fehlt es an Automatisierung.

Für die Autonomie von Robotern spielt die Bewegungsplanung eine wichtige

Rolle. Die Überwindung von Hindernissen erfordert eine Anpassung der Fort-

bewegungsstrategie an das umgebende Terrain, ein Muster, das bei Menschen

und Tieren beobachtet werden kann. Der Mensch geht auf zwei Gliedmaßen,

kann aber alle vier benutzen, wenn es die Situation erfordert. Die Umgebung

des Roboters stellt Anforderungen an die Positionierung der Gliedmaßen, die

Stabilität und das Timing des Kontakts, und die Berücksichtigung aller Anfor-

derungen in einem einzigen Bewegungsplanungsproblem ist anspruchsvoll. Tra-

ditionell wird das Problem in kleinere Teilprobleme zerlegt, wobei vereinfachte

Modelle verwendet werden, die die gekoppelte Dynamik des Systems oft nicht

erfassen können. Daher werden oft Bewegungen geplant, die die Fähigkeiten

des Roboters nicht voll ausschöpfen. Die Betrachtung des Roboters als Ganzes

ist vor allem bei komplexen Systemen wie Robotern mit Beinen und Rädern

wichtig.

Diese Dissertation erweitert die Fortbewegungsmöglichkeiten von Robotern

mit Beinen, wobei der Schwerpunkt auf Schreitbaggern liegt. Es werden Algo-

rithmen zur Bewegungsplanung entwickelt, die alle Freiheitsgrade nutzen, um

schwieriges Gelände zu überwinden. Es wird untersucht, wie das Bewegungs-

planungsproblem allgemein für mehrere Robotertypen formuliert werden kann

und welche Konzepte zur Lösung des Problems beitragen können. Optimie-

rung und zufälliges Sampling spielen eine zentrale Rolle bei der Berechnung

der in dieser Arbeit vorgestellten globalen Ganzkörperbewegungen.

Wir setzen eine hydraulische 12-Tonnen-Maschine mit Beinen in einem

natürlichen Wald zur Präzisionsernte ein. Die Systeme zur Kartierung, Lokali-
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sierung, Planung und Steuerung wurden entwickelt und in eine autonome Ern-

telösung integriert. Der später in dieser Arbeit entwickelte Ganzkörperplaner

wurde durch die Unzulänglichkeiten des im Wald eingesetzten Planungssy-

stems inspiriert.

Ein auf lokaler Optimierung basierender Planer wird verwendet, um mit den

vielen Freiheitsgraden eines Schreitbaggers fertig zu werden. Der vorgeschla-

gene geländeabhängige Planer kann effiziente Fahr- und Schrittbewegungen

berechnen und den Arm für die Fortbewegung nutzen. Um mehr Flexibilität

zu ermöglichen, geben wir nur Zielposen vor und legen nicht fest, was dazwi-

schen zu tun ist, so dass der Optimierer völlige Freiheit hat.

Um mit der Nicht-Konvexität des Planungsproblems umzugehen, verwenden

wir zufälliges Sampling. Wir verlagern einen Teil der Berechnungen offline in

Form von vorberechneten Roadmaps, die helfen, die Planungszeiten niedrig zu

halten. Der anfängliche Ganzkörperplan wird durch randomisiertes Sampling

gefunden; er kann jedoch immer noch einige Beschränkungen des physikali-

schen Systems verletzen (z. B. Radrollbeschränkungen). Der ursprüngliche Be-

wegungsplan wird dann zur Verfeinerung in die Optimierung eingespeist. Die

Optimierung stellt sicher, dass die Nebenbedingungen erfüllt werden, während

der ursprüngliche Plan den Optimierer von schlechten lokalen Minima fernhält.

Zusammen berechnen sie glatte, globale Ganzkörperpläne. Wir haben diese

Methode an einem Schreitbagger, einem Roboter mit Rädern auf Beinen und

einem Roboter mit Punktfüßen auf Beinen getestet.

Schließlich wird ein Steuerungssystem für Schreitbagger entwickelt. Die

Ausführung von Ganzkörper-Bewegungsplänen ist ein gut erforschtes The-

ma für kleinere Roboter wie Vierbeiner. Für hydraulische Maschinen in voller

Größe wurden diese bisher jedoch nicht auf Hardware eingesetzt. Wir führen

die Optimierung nach dem Prinzip des rückläufigen Horizonts durch, was da-

zu beiträgt, Drift- und Verfolgungsfehler zu bekämpfen. Das geländeadaptive

Steuersystem ermöglicht es dem Planer, auf vereinfachten Geometrien zu pla-

nen und sich dann zur Ausführungszeit an nicht gesehene Landschaften anzu-

passen. Die Planung auf der Grundlage vereinfachter Geometrien ist für den

Einsatz unerlässlich, da mit den derzeitigen Sensoren keine sehr genaue Karte

erstellt werden kann. Kleine Details wie Stufen und Unebenheiten erzeugen

nicht kontinuierliche Gradienten, die die Konvergenz der Optimierung beein-

trächtigen.
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Stichworte: Robotik, Schreitbagger, Bewegungsplanung, Modellprädiktive

Regelung, Forstwirtschaft, Stichproben, Optimierung, Ganzkörperplanung,

zufälliges Sampling.
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Edo Jelavić, Spring 2023

Financial Support

This thesis was supported by the Swiss National Science Foundation (SNSF)

as part of project No.188596, by the European Research Council (ERC) under

the European Union’s Horizon 2020 research and innovation programme grant

agreement No 852044 and through the SNSF National Centre of Competence

in Digital Fabrication (NCCR dfab). Additionally, this thesis has partly been

funded by Silvere, a Finnish company working in the forestry sector.

viii



Preface
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most relevant publications created by the author during his doctoral studies.

The thesis is organized as follows. Chapter 1 introduces the research topics,

provides an overview of the state of the art, outlines the technical approach,

and describes the contributions made in this thesis. Chapters 2 to 5 contain the

individual scientific articles published in peer-reviewed journals or conference

proceedings. Chapter 6 includes recently submitted work, which is under

review at the time of writing. Each article is accompanied by Lessons Learned

section offering developer insights. Chapter 7 summarize the achievements

and provides potential directions for future research.
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1
Introduction

We are witnessing increasing mobile robot usage in various areas, e.g., ware-

house and transportation automation. While successfully deployed in struc-

tured environments, operations in unstructured environments such as forests

or construction site operations largely remain nonautomated. Automating

deployments in unstructured environments is important since these environ-

ments often pose a danger to humans, e.g., natural disaster responses such as

landslides or avalanche cleanups. Large machines like legged excavators are

indispensable in these scenarios. However, the automation of large machines

like legged excavators has received very little attention from the community

compared to smaller platforms like quadrupeds, humanoids, or autonomous

cars. We try to bridge this automation gap in this thesis.

Wheels remain the dominant locomotion strategy, especially for long mission

times. While wheeled platforms can move fast, they cannot fundamentally

negotiate challenging terrain. If we want to send robots outside of human-

engineered environments, we should move away from purely wheeled robots

and start deploying more complex systems such as legged or legged-wheeled

robots (Bjelonic et al., 2019a; Hutter et al., 2016a). Legged-wheeled robots

are an attractive solution since they combine the ability to traverse obstacles

from legged systems with the efficiency of wheeled systems (Bjelonic et al.,

2019a; Jud et al., 2021b; Kashiri et al., 2019).

Among other aspects, motion planning is one of the critical functionalities

for autonomous operation. The motion planning system should be able to

overcome challenging terrain by utilizing all the Degrees of Freedoms (DoFs)

that a robot has to offer. On the other hand, we would like the planner to

compute energy-efficient motion plans when the terrain is easy. A similar

pattern can be observed in the natural world. Humans walk on two legs most
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1. Introduction

of the time, however we can use all four limbs to overcome steep terrain or

obstacles.

Part of the reason we still struggle to find motions utilizing all DoFs is the use

of simplified models (e.g., inverted pendulum). Simplified models constrain

the system to types of motions where the model is valid which can prevent the

planner from using the system’s capabilities effectively. In contrast, utilizing

whole-body planners often leads to discovering a richer set of motions as a

whole-body planner can better utilize coupled dynamics inside a more complex

model. Another culprit is using hierarchical structures, which often contain a

high-level planner with a simplified model and a local/planner controller. The

lower-level controller is often tracking base velocity twists. However, breaking

down the motion planning problem results in pipelines with many points of

failure (see Fig. 1.1a) and inherently limits the set of discoverable motions. A

more flexible solution would be to give the goal pose to the planner and let it

decide on the optimal trajectory, as shown in Fig. 1.1b.

Base 
Path Planner

Local
Guidance

Locomotion
Planner

Goal Pose

Waypoints Base
Twist

Whole-body
Trajectory

(a) Hierarchical Planner

Whole-Body
Planner

Goal Pose

Whole-body
Trajectory

(b) Whole-Body Planner

Figure 1.1: Left: Hierarchical planning structure often found in the literature. Right:
Whole body planner

Motion planning for legged-wheeled systems is particularly challenging.

Legged-wheeled robots combine the combinatorial nature of legged systems

(computing the contact schedule) with the non-holonomic nature of the

wheeled systems (rolling constraints). Introducing both legs and wheels in-

creases the amount of DoFs that a planner has to handle. To cope with all

DoFs and compute whole-body motion plans, we build a framework based on

different prediction horizons. In particular, a Numerical Optimization (NO)

technique is used for short-term planning with higher fidelity and randomized

sampling for long-term planning with lower fidelity. As a testing platform,

this thesis mainly uses a legged excavator, a legged machine with four wheeled

legs, and an arm without wheels. However, the developed algorithms are also

showcased on quadrupeds and wheeled quadrupeds.

The dominant strategy in the robotic community is to use NO for planning

since it scales very well with the number of DoFs and can be run at high fre-

quency. A great demonstration of NO capabilities are some of the acrobatic
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maneuvers performed by ANYmal robot over challenging terrains in Winkler

et al., 2018. NO produces motion plans involving jumps requiring precise

coordination between the torso and the legs. Such behavior would be im-

possible to discover using simplified models or human-engineered heuristics.

While an optimization-based planner can discover very complex motions (e.g.,

Mordatch, Todorov, and Popović, 2012), it typically is hard to utilize in the

real world. The optimization problem becomes non-convex, especially when

we introduce terrain constraints (e.g., collision constraints). Although NO

ensures constraint satisfaction and physical motions, it needs a good initial-

ization to avoid bad local minima. To provide a good initialization, roboticists

often manually choreograph simplified motions and then refine them with op-

timization to ensure feasibility and smoothness. We can then compute motion

libraries offline and track them at execution time. Bjelonic et al., 2022 is an

example of such an approach. A similar approach has also been used by robots

such as Spot or Atlas from Boston Dynamics (Boston Dynamics, 2022a,b,c)

at the time of writing this thesis.

Unlike optimization, planners based on randomized sampling can deal with

highly non-convex cost landscapes (Barraquand et al., 1997). Sampling Based

Plannings (SBPs) perform well on terrains encountered in the real world and

have been used with maps built from onboard sensory data (Wermelinger et

al., 2016). The randomized nature of SBP can be beneficial for Contact Sched-

ule (CS) discovery which is a complex combinatorial problem. However, SBPs

suffer from the curse of dimensionality (Bellman, 1966), which hinders direct

usage on systems with many DoFs. While successfully used in lower dimen-

sional spaces such as SE(2), achieving real-time planning for more complex

systems such as legged systems is still an open problem. At their core, SBPs

have two steps: sampling and connection of new sample to the tree. Efficiently

connecting new samples to the tree remains an active area of research. A new

sample connection is often made using simplified models to keep it compu-

tationally tractable Tonneau et al., 2018a. However, to use robots to their

fullest in challenging terrains, we need to compute whole-body motion plans.

This problem has been studied in the literature (e.g., Bretl, 2006; Escande,

Kheddar, and Miossec, 2013), and it often yields long computational times,

due to its complexity.

A widespread technique for motion planning is to break down the problem into

sub-problems. A sampling-based planner uses a simplified model for guiding

path computation; the local planner computes base velocities which are then

tracked using a locomotion controller. While enjoying significant success in
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field deployments with quadruped robots (e.g., Tranzatto et al., 2022a,b, such

a paradigm does not utilize the complete robot’s potential. We integrate higher

fidelity models into the planning pipelines and optimize both motions and con-

tact schedule. To summarize, this thesis aims to get the best of both worlds

(randomized sampling and optimization). Combining the two approaches al-

lows us to navigate complex terrains (thanks to SBP) and handle systems with

many DoFs (thanks to NO).

1.1 Motion planning problem

In general form, the Motion Planning Problem (MPP) can be summarized

with equations below:

min
xxx,ẋ,tFẋ,tFẋ,tF

∫ tF

0

f(xxx(t), ẋ̇ẋx(t), t) dt (1.1)

s.t. xxx(t = 0) = xxx0 xxx(t = tF ) = xxxF

ggg(xxx, ẋ̇ẋx) ≤ 0 hhh(xxx, ẋ̇ẋx) = 0

where f is a planning objective, ggg is a set of inequality constraints, hhh represents

the set of equality constraints. x(t) is a vector of decision variables, and tF
is the final time. The motion planning problem formulation is general enough

that any high-level task can be described with Eq. 1.1. Thus, if we can solve

Eq. 1.1 or report that a solution does not exist, we can solve motion planning

on a general level.

1.2 Related Work

This thesis focuses on motion planning. However, deploying a robot in the

field requires a great deal of work for building different submodules and in-

tegrating them into a fully functioning system, e.g., mapping, localization,

state estimation, motion planning, and control. The related work on motion

planning is divided into subsections. The first two subsections discuss differ-

ent robot models and terrain representations. Subsequently, we discuss using

NO for planning and then using SBP for planning. The last section describes

hybrid approaches combining optimization and sampling to solve the MPP.

Since contributions in some works are polyvalent, they are mentioned multiple

times and discussed from different points of view.

The presented work is centered around legged excavators that share some com-

mon characteristics with other legged robots. Hence, the related work includes
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many contributions from agile quadruped literature. We discuss motion plan-

ning for wheeled, legged, and legged-wheeled systems. Our contributions are

summarized in Sec. 1.3.

1.2.1 Robot Models

The robot model is a mathematical abstraction that predicts the motion given

control inputs and initial state. Models come in different levels of fidelity, e.g.,

simplified models like Zero Moment Point (ZMP), centroidal dynamics models,

and kinematic models. The chosen model is often tailored to the particular

robotic system under consideration. For example, for a legged excavator, there

is little need for a dynamic model since the machine operates in quasi-static

conditions. In this thesis, we rely on two open-source libraries implementing

kinematics and dynamics for robotics: Pinocchio (Carpentier et al., 2019) and

RBDL (Felis, 2017).

Simplified Models

For walking, one can abstract away the stance legs and the floating base of a

legged robot as an inverted pendulum. The model captures the system’s insta-

bility of bipeds and quadrupeds (Kajita et al., 2003; Kalakrishnan et al., 2010;

Sardain and Bessonnet, 2004; Winkler et al., 2017). In some cases, a simple

model has an analytical solution (Englsberger, Ott, and Albu-Schäffer, 2015).

Widely used model for legged robots is the ZMP (Vukobratović and Borovac,

2004) and its derivatives (Holmes et al., 2006; Poulakakis and Grizzle, 2009).

ZMP is an inverted pendulum model that accounts for contact legs position

via the support polygon. Similarly to the dynamics, one can approximate the

kinematics as well. For example, Sherikov, Dimitrov, and Wieber, 2015; Ton-

neau et al., 2018b; Winkler et al., 2018 approximates the robot’s workspace

with geometric shapes.

Simplified models allow for planning at high frequencies and simplify the MPP,

leading to faster development. However, they only capture the dominant dy-

namics, which can be problematic in the presence of obstacles or uneven ter-

rain. Furthermore, they do not allow full utilizing coupled dynamics that may

exist in the system.

Kinodynamic Models

The Kinodynamic model considers kinematics and simplified dynamics; it is

the model of choice in this thesis. Planning for a legged excavator uses a

5
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kinodynamic model with full kinematics and limb’s masses under quasi-static

conditions (Chapter 3, 4, 5, 6). Examples of kinodynamic models for legged

robots can be found in Farshidian et al., 2017a; Winkler et al., 2018. We

compute motion plans for a legged robot in Chapter 6 using a floating base

model with constant inertia (Farshidian et al., 2017a).

Another commonly used kinodynamic model is the centroidal dynamics model

(Orin, Goswami, and Lee, 2013), which describes dynamics with linear and

angular momentum equations while accounting for external torques and forces.

For example, Sleiman et al., 2021 uses this model for a legged robot with an

arm.

Full Rigid Body Dynamics

A full rigid body dynamics model treats each robot link as a separate rigid

body. The model considers torques acting on the link through actuated joints

and external forces. The full rigid body dynamics model has the highest

fidelity of all aforementioned models. In Sentis and Khatib, 2006, the full

rigid body has been used to compute optimal torques as a part of the feedback

controller for a humanoid robot. We follow the same approach in Chapter 4

and 6 where we use a full rigid body dynamics model inside the Whole Body

Controller (WBC) framework introduced in Bellicoso et al., 2016. Using the

full rigid body dynamics model for planning remains challenging because of the

computational cost associated with solving the Equations of Motion (EoM).

1.2.2 Environment Representation

Terrain information is essential in motion planning for any robot and directly

influences the difficulty of the MPP. A suitable terrain representation should

be easy to build from sensory data, robust to noise, and computationally cheap

to query.

A 2.5D elevation map is one of the map representations that fit the require-

ments, and it has been used widely for legged and legged wheeled robots,

notably in the early work Kweon et al., 1989. Examples shown in fig. 1.2.

Nowadays, open-source libraries build elevation maps from raw sensory data,

e.g., Fankhauser, Bloesch, and Hutter, 2018; Fankhauser and Hutter, 2016a;

Miki et al., 2022b. The elevation map is the terrain representation of choice

in this thesis. Adding raw elevation maps into the optimization-based plan-

ners can lead to a loss of convergence since raw data can have discontinuities.

In Chapter 5, we discuss how to incorporate it into an optimization problem
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(a) Forest map (b) Forest photo

(c) Hoenggerberg map (d) Hoenggerberg photo

Figure 1.2: Elevation maps and corresponding photos for forest environenment and our
testing field at Hönggerberg in Zürich.

and retain optimization convergence. Other examples of using an elevation

map with optimization-based planners can be found in Grandia et al., 2022;

Jenelten et al., 2022.

An elevation map can capture complex obstacles and is computationally cheap

to build and query. However, it cannot represent overhanging structures. In

Buchanan et al., 2021, the authors propose using a double elevation map (one

for ground, the other for overhanging structures) to overcome this problem.

Alternatively, when planning with a legged robot, Gaertner et al., 2021 uses

Signed Distance Function (SDF) to avoid the torso collision. While more ver-

satile than an elevation map, SDF does not offer as high resolution (with to-

day’s computing power). The right choice of terrain representation ultimately

depends on the application.

1.2.3 Numerical Optimization

This section reviews the use of NO for planning. We distinguish between

Trajectory Optimization (TO), typically done offline, and Model Predictive

Control (MPC) approaches where the system re-plans in the receding horizon

fashion.

Trajectory Optimization

Planning both motion and CS using optimization is challenging; in particular

CS optimization introduces lots of local minima. Hence, most planners pro-

posed in the literature rely on externally provided CS, either a fixed cyclic
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gait or a separate gait planner. This strategy is common for both legged

and legged-wheeled robots. Examples can be found in Geilinger et al., 2018;

Medeiros et al., 2020; Winkler et al., 2017, 2015. In Winkler et al., 2018, the

authors add CS timings into the optimization problem as continuous variables,

which is the approach we also explored for a legged excavator in Chapter 3.

Aceituno-Cabezas et al., 2017; Deits and Tedrake, 2014 formulated the MPP as

a Mixed-Integer Program (MIP) where integer variables correspond to contact

flags. Tonneau et al., 2020 experiments using L1 norm to approximate the in-

teger variables. Alternatively, in the presence of complementarity constraints,

the optimization can compute the CS without adding integer variables. Com-

plementarity constraints are constraints of the form fT d = 0, where f are

contact forces and d is limb distance to the terrain; Dai, Valenzuela, and

Tedrake, 2014; Posa, Cantu, and Tedrake, 2014 follow this approach. Mor-

datch, Todorov, and Popović, 2012 augments the optimization problem with

additional contact indicator variables, which are activated if the motion vio-

lates the physics too much. Contact constraints can be incorporated into the

system dynamics directly. In that case, the optimization does not need to

be aware of contact phases. Carius et al., 2018a, 2019 add contact dynamics

directly into the optimization.

While TO can optimize the motions, it struggles with optimizing the CS.

Adding the CS decision variables into the optimization introduces many local

minima, making the optimization problem vastly harder. In general, optimiz-

ing over the CS requires careful initialization or gradient shaping through cost

function (Neunert, Farshidian, and Buchli, 2016; Neunert et al., 2018).

Model Predictive Control

Re-planning in an MPC fashion introduces robustness at execution time and

helps combat model mismatch and state estimation drift. MPC with a sin-

gle step prediction horizon was used to implement active suspension in space

rovers (Cordes, Babu, and Kirchner, 2017; Giordano et al., 2009; Reid et al.,

2016). MPC has also found application for biped robots (Powell, Cousineau,

and Ames, 2015) or humanoids (Erez et al., 2013). In (Bellicoso et al., 2016,

2018b; Jenelten et al., 2020) legged robot continuously recomputes the motion

plan using ZMP as stability criterion. The authors decouple motion planning

for the robot’s base and limbs. Subsequently, a similar approach has been

extended to a legged wheeled robot (Bjelonic et al., 2019a; Sun et al., 2020;

Viragh et al., 2019). While decoupled motion planning enables re-planning at
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high frequencies (up to 200Hz), the planner cannot account for uneven terrain

and thus has reduced generality.

Early work of Farshidian et al., 2017c utilized differential dynamic program-

ming to simultaneously optimize for both base and limbs of the legged robot.

With more computing power available, more whole-body planners have been

proposed (Brasseur et al., 2015; Grandia et al., 2022; Ishihara, Itoh, and Mori-

moto, 2019; Koenemann et al., 2015; Sleiman et al., 2021). Whole-body plans

are beneficial since decoupling base and limb planning makes the motion plans

less stable (Bjelonic et al., 2020a).

Optimizing in the presence of terrain constraints was long reserved for TO

and offline planning methods. Recently, optimization problems with terrain

constraints can be solved online in the MPC fashion (Gaertner et al., 2021;

Grandia et al., 2021; Melon et al., 2021). The biggest challenge is keeping the

computation times low and avoiding local minima. Some authors introduce

offline motion libraries to aid the optimization at runtime (Bjelonic et al.,

2022; Hauser et al., 2008; Melon et al., 2021). While we follow the same idea

in Chapter 6 where we use MPC with terrain constraints to compute motion

plans, we find good initialization using a separate planner.

The vast majority of MPC planners do not optimize over contact schedule since

it introduces strong non-convexities. Instead, the contact schedule is either

fixed to be cyclic Di Carlo et al., 2018; Grandia et al., 2022 or is computed by

a separate gait planner (Bjelonic et al., 2020a). CS can be optimized to some

extent using the bi-level optimization (Farshidian et al., 2017c; Li andWensing,

2020). Bi-level optimization can refine the externally provided switching times

between contact modes, extending or shortening contact phases, effectively

changing the contact schedule. However, optimizing switching times can only

make limited adjustments to the CS since the order of modes is fixed.

1.2.4 Sampling Based Planning

The fundamental limitation of optimization-based planners is that they can

get trapped in bad local minima. Some researchers have tackled this problem

by employing stochastic optimization (Mastalli et al., 2020), which is compu-

tationally expensive. Another option is to use a planner based on randomized

sampling (Sampling Based Planning), which helps escape the local minima.

Majority of SBPs are based on Rapidly-Exploring Random Trees (RRTs)

(Karaman and Frazzoli, 2011; LaValle and Kuffner Jr, 2001), Probabilistic

Roadmaps (PRMs) (Kavraki et al., 1996) or Graph Based Planners (GBPs)
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(e.g. A∗ Hart, Nilsson, and Raphael, 1968). Most of the motion planners pro-

posed for legged robots (quadrupeds and humanoids) are based on RRTs (Geis-

ert et al., 2019; Short and Bandyopadhyay, 2017; Tonneau et al., 2018a,b).

Geisert et al., 2019; Tonneau et al., 2018a,b use RRT planner to sample base

poses and compute a guiding path based on kinematic reachability. Foothold

locations are computed by solving inverse kinematics, or failure is reported

in case the planner can find no footholds. Short and Bandyopadhyay, 2017

also rely on RRT planner to sample base poses and introduces Contact Dy-

namic Roadmap (CDRM) to compute feasible footholds rapidly. Almost all

related work plans statically stable motions for legged robots (humanoids or

quadrupeds), e.g., (Bretl, 2006; Escande, Kheddar, and Miossec, 2013; Fern-

bach, Tonneau, and Täıx, 2018; Hauser et al., 2008).

Enforcing non-holonomic constraints inside SBPs or GBPs is problematic be-

cause of the inherent discrete nature of the planner. Hence, planning for

legged-wheeled robots with SBPs or GBPs is relatively uncommon. In Chap-

ter 2, we use Reeds-Shepp (RS) curves (Reeds and Shepp, 1990) to enforce

minimal turning radius constraints. However, the planner presented in Chap-

ter 2 considers only the pure driving mode and does not attempt to step. An

A∗ algorithm was used in Klamt and Behnke, 2017, 2018 to navigate non-

convex environments. The world is discretized in a grid, and the robot plans

driving and stepping motions based on a carefully crafted cost function. Step-

ping relies on heuristics and is tailored for the Momaro robot, which can turn

the wheels in place and drive sideways. Hence, it is not suitable for robots

with minimal turning radius or non-steerable wheels in its current form.

Methods based on randomized sampling are much more suitable for CS discov-

ery compared to NO methods as noted in Carius et al., 2022 where path inte-

gral sampling was used to escape the local minima. In Tonneau et al., 2018a,

different contact schedules emerge based on which limb has to be grounded

or which limb has to break contact. Similarly, we compute CS by reasoning

about which limb is close to its kinematic limits.

1.2.5 Hybrid Methods

Hybrid methods combine different planners to gain the best of sampling and

optimization. We follow the hybrid approach in Chapter 5 and 6. Combining

sampling and optimization enables escaping local minima, computing global

plans, and enforcing kinodynamic constraints, all of which are hard inside the

SBP or SBP alone.

10



1.2. Related Work

A straightforward way to compute global plans is to use a sampling-based or

grid-search technique with reduced model order. Klamt and Behnke, 2017;

Wermelinger et al., 2016 combine a reduced order global planner with a con-

troller based on cyclic gait pattern. Tranzatto et al., 2022b; Wellhausen and

Hutter, 2021 add a neural network to predict the terrain difficulty for the un-

derlying tracking controller. Although this is a viable solution that has been

tested in the field, the global planner still does not compute whole-body plans,

and it cannot optimize over the contact schedule, thus possibly not utilizing

all DoFs.

One can also connect sampled states by solving the Boundary Value Problem

(BVP), which allows for whole-body planning. Ding et al., 2021; Fernbach,

Tonneau, and Täıx, 2018; Hwan Jeon, Karaman, and Frazzoli, 2011; Kim,

Kwon, and Yoon, 2018; Norby and Johnson, 2020; Xie et al., 2015 utilize such

a strategy. BVP can usually be solved (fast enough) only for systems with

few DoFs (e.g., a vehicle) or if the analytical solution exists. We follow the

same approach in Chapter 2, where we treat our robot as a vehicle. Fernbach,

Tonneau, and Täıx, 2018 compute transition feasibility between sampled for a

humanoid robot by approximating centroidal dynamics and reducing the feasi-

bility computation for solving a linear program. Similarly, Norby and Johnson,

2020 compute global plans for a quadruped by solving the BVP. Approaches

based on solving the BVP are generally not (yet) suitable for real-time plan-

ning and so far have been shown only in simplified scenarios. Hardware results

are generally lacking except in (Fernbach et al., 2020; Tonneau et al., 2018a).

SBP can be used to compute an initial plan which is then fed to the optimiza-

tion for refinement. We follow the same idea in this thesis. The two-stage

approach can be found in manipulation motion planning literature (Dai et

al., 2018; Leu, Wang, and Tomizuka, 2022; Leu et al., 2021), humanoid mo-

tion planning (Li, Long, and Gennert, 2016) and ground vehicle motion plan-

ning (Li et al., 2021a). In Leu et al., 2021; Li et al., 2021a, an initialization

is computed using grid-search and then optimized for a low number of DoFs

(car, mobile manipulator). Instead of computing the initial plan from scratch,

one can create an offline motion library (e.g., Bjelonic et al., 2022) and then

feed it to the optimization at runtime for tracking. However, Bjelonic et al.,

2022 is not a true hybrid planner since it relies on optimization to compute

the motion library. While still limited to toy problems, advanced methods

combining inference and second-order optimization (Layeghi, Tonneau, and

Mistry, 2022) could be a promising future direction.

11



1. Introduction

Using Reinforcement Learning (RL) policy instead of SBP has been proposed

in the literature for foothold planning. In Tsounis et al., 2020, RL is used

to plan footsteps which are then tracked by the RL based controller. On the

other hand, a model-based tracking controller can also follow the footsteps of

an RL planner (Gangapurwala et al., 2022), even if the tracking happens in the

latent space (Li et al., 2021b). RL planning methods still require retraining

for different types of terrains and cannot plan acyclic gait patterns. However,

they look promising to use in the future.

1.3 Technical Approach and Contribution

This thesis tries to solve the following problem:

Compute whole-body motion plans for legged and legged-wheeled systems given

the robot model, terrain information, starting point, and goal point.

We extend the capabilities of legged robots and heavy machines with legs

in multiple ways. Firstly, we showcase an autonomous deployment of a full-

size, 12-tonne heavy machine Hydraulic Excavator for Autonomous Purpose

(HEAP) (Jud et al., 2021b) for precision harvesting missions in natural forests.

Thus we open up the avenue for improving forestry efficiency, which is still

based on almost 300 years old principles Von Carlowitz and Rohr, 1732. Hav-

ing observed the forest deployment’s shortcomings, we propose extending the

locomotion capabilities with a new motion planner.

The proposed motion planner for legged excavators accounts for the machine’s

all DoFs. It precisely coordinates arm motions with the rest of the body,

matching what only very skilled human operators can do. Furthermore, the

planner has an intuitive behavior of driving whenever possible and stepping

over obstacles when needed, exactly as a human operator would. With the

newest planning developments, we bring heavy-legged machines closer to au-

tonomous deployment away from human-engineered environments.

While HEAP deployment has demonstrated a vast potential for autonomous

forestry work, it has also unveiled the limitations of hierarchical planning with

simplified models. In the rest of the thesis, we follow the idea of motion

planning with as few heuristics as possible and fully utilizing the robot’s capa-

bilities. This idea is reflected in the input to the system; we always command

a goal pose and offer the planner freedom to decide on the optimal motion be-

tween the start and goal pose (structure shown in Fig. 1.1b). In contrast, many

12
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proposed whole-body planners receive base velocities as input and require an-

other local planner or human operator in the loop. Using the kinodynamic

model, we compute whole-body motions, thus minimizing the usage of heuris-

tics (e.g., switching between stepping and driving Klamt and Behnke, 2017).

Furthermore, the calculated plans are global. All the complexity is offloaded to

randomized sampling and optimization, which are the main two components

in our approach.

The planner is divided into two steps. In the initialization step, the SBP com-

putes a contact schedule and a sequence of whole-body states (full generalized

coordinates and contact flags or all limbs). Subsequently, the optimization

refines the initial solution. Whole-body states from SBP act as attractors for

the optimization preventing it from falling into bad local minima. Thus, we

can handle both complex terrains (thanks to SBP), many DoFs, and complex

system dynamics (thanks to NO). Lastly, we showcase the generality of the

developed solution by computing motion plans for a quadruped, a wheeled

quadruped, and a legged excavator.

Lastly, motion planning using a very detailed map is problematic because

some terrain features (e.g., roughness, vegetation) can render the gradients

discontinuous. Hence it is desirable to plan on a simplified geometry and adapt

to the terrain during the maneuver execution. In this thesis, we design a whole-

body terrain-adaptive tracking controller for robots with heavy limbs. Unlike

many mobile robots, heavy machines have actuators with low bandwidth and

extremely non-linear behavior (hydraulics, friction). Thus choosing the control

strategy needs to be done carefully.

The research objectives of this thesis can be stated as three questions below:

Q1 (optimization): How can we formulate the motion planning problem into

a discrete optimization problem? What is the right environmental representa-

tion for this?

Q2 (initialization): How to compute a good initial solution for the optimiza-

tion? Can this be done quickly and efficiently?

Q3 (control): How can we execute motion plans on large machines with

low bandwidth actuators? How to stay robust in the presence of unobserved

terrain?

Each of the papers below answers a subset of questions (Q1-Q3). Each article

is accompanied by a summarizing paragraph putting it in the context with the

rest of the thesis. The rest of this dissertation is organized as described in the

Preface.
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Paper I

Jelavic, E., Jud, D., Egli, P., and Hutter, M. (2022a). “Robotic Precision Harvesting: Map-
ping, Localization, Planning and Control for a Legged Tree Harvester”. Field Robotics 2,
pp. 1386–1431

This publication addresses the deployment of a legged-wheeled robot for preci-

sion tree harvesting in a natural forest. Precision tree harvesting removes some

trees selectively while leaving neighboring trees intact. To our knowledge, this

was the first time a full-sized machine was deployed in a natural forest. The

robot operates in a confined, GPS-denied forest environment. As a result,

this publication covers an extensive scope; it proposes mapping, planning, and

control strategies and integrates them into a fully autonomous system. We

highlight the aspects most relevant to this thesis, namely the ones that answer

some of the questions listed above. Lessons from this deployment are used to

improve the locomotion capabilities in the following papers.

We choose a multi-layered elevation map as a terrain representation since the

minimal representation still enables us to carry out the mission, thus address-

ing parts of Q1. In every other paper that follows, we use the elevation map

representation. The article also follows the approach of letting the algorithm

synthesize motion plans instead of relying on heuristics. We merely give tree

locations to the planner, which searches for an approach pose and a viable

path in a single planning problem. The computed plan initializes the local

path-following controller based on the pure pursuit algorithm (question Q2 ).

Lastly, we consider how to execute motions on a full-scale hydraulic machine

(HEAP in our case) which falls under question Q3. To move the machine in the

natural forest, we combine the terrain adaptation controller (Hip Balancing

Controller (HBC)) with the path-following controller (pure pursuit). This

combination allowed us to track motion plans, overcome small unmodelled

obstacles (like stumps) and drive over muddy forest ground (thanks to even

force distribution). All subsequent hardware deployments on the machine were

equipped with a terrain adaptive controller.

In this paper, we do not compute whole-body motions; the machine merely

drives using the legs as an active suspension system. Even during our short

deployment, we saw that stepping and using an arm as support could be

beneficial. The following papers strive to utilize the machine better and extend

the locomotion capabilities.
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Paper II

Jelavic, E. and Hutter, M. (2019). “Whole-body motion planning for walking excavators”. In:
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,
pp. 2292–2299

This publication addresses the problem of computing smooth local plans for

a complex machine like a legged excavator. The platform of choice has 31

DoFs, legs, wheels, and an arm, making it a challenging test bed for the local

planner. Naturally, we chose the Numerical Optimization as the backbone

of our planner. We investigate how to formulate an optimization problem

(question Q1 ) for a legged-wheeled robot with an arm and propose a direct

method relying on Hermitian splines building on previous work Winkler et al.,

2018. The resulting planner can synthesize motions over gaps and obstacles

and discover efficient driving patterns. To the best of our knowledge, this

was the first time that motion plans in rough terrain were computed for a

legged-wheeled robot.

Lastly, we formulated a robust version of the well-known support polygon

constraint. Instead of explicitly computing halfspaces, like most related work,

we added a convex hull formulation with a tuning parameter ϵ between 0

and 1 to control how conservative the planner should be. We have used this

constraint inside every optimization-based planner following this work.

Paper III

Jelavic, E., Berdou, Y., Jud, D., Kerscher, S., and Hutter, M. (2020). “Terrain-adaptive
planning and control of complex motions for walking excavators”. In: 2020 IEEE/RSJ inter-
national conference on intelligent robots and systems (IROS). IEEE, pp. 2684–2691

This paper develops a controller capable of executing whole-body plans on

real hardware, thus addressing question Q3. The developed controller relies on

Hierarchical Optimization (HO) and uses a full-rigid body model to compute

instantaneous torques. It can be considered an inverse dynamics algorithm

with constraints. We encode the terrain adaptation into the controller through

task prioritization. By setting a higher priority on base tracking, we found that

the limbs adapt to the uneven terrain. The paper also considers allocating joint

control modes for HEAP since only some joints are torque controllable. We

demonstrated driving and stepping motions on a 12-tonne-legged excavator,

the first time that whole-body motions were executed on a full-size machine.
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Paper IV

Jelavic, E., Farshidian, F., and Hutter, M. (2021). “Combined sampling and optimization
based planning for legged-wheeled robots”. In: 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, pp. 8366–8372

This article extends the local planner presented in Paper II with global plan-

ning capabilities. The extension combines sampling and optimization, thus

introducing a hybrid planner. This work focuses on the development of the

sampling-based planner, therefore directly trying to answer question Q2. The

sampling-based stage computes a whole-body configuration and a contact

schedule, which speeds up the optimization convergence. The optimization-

based step ensures that all the system constraints, such as non-holonomic

rolling constraints, are satisfied. By virtue of the sampling-based planner,

we can navigate challenging terrain, and by virtue of the optimization, we can

produce smooth motions for high DoF systems. We achieve fast planning rates

by following the idea from Short and Bandyopadhyay, 2017 and moving some

computations offline. In addition, we relax the massless limb assumption from

Short and Bandyopadhyay, 2017 and extend the method to be applicable for

robots with heavy limbs (such as HEAP).

Paper II used an analytical elevation map (parametrized by functions) of lim-

ited applicability in the real world. Here, we incorporate a general-purpose

discretized elevation map into the optimization problem. Compared to their

legged counterparts, legged-wheeled robots keep their limbs in contact with

terrain over long distances. Hence more variables and constraints are affected

by rounding errors and discretization from the elevation map, which makes

the optimization more sensitive. This paper proposes a strategy to mitigate

these problems using gradient clipping and higher-order interpolations.
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Paper V

Jelavic, E., Qu, K., Farshidian, F., and Hutter, M. (2022c). “LSTP: Long Short-Term Motion
Planning for Legged and Legged-Wheeled Systems”. submitted to IEEE Transactions on
Robotics

The last paper improves the preceding work in all aspects of the questions listed

above. We extend the developed hybrid planner to handle a broader class of

robotic systems. In particular, the SBP is extended to handle legged robots

with point feet and legged-wheeled robots with non-steerable wheels. The

extension is non-trivial and requires revisiting the initialization step (question

Q2 ).

In this paper, we showcase some challenging maneuvers on real hardware,

which leads us to revisit questions Q1 and Q3. We reformulate the opti-

mization problem such that we can execute it in an MPC fashion. The most

significant change is that we move away from the collocation method formu-

lated in Paper II, which is very robust but does not run in real time. Instead,

we move towards shooting methods that better exploit the planning problem

structure (Eq. 1.1). This also gives us robustness when executing on hardware,

thus directly addressing question Q3. Furthermore, for the case of a legged

excavator, we revisit the control system designed in Paper III. With the new

design, the controller can execute more maneuvers, exhibits improved robust-

ness, and requires less tuning while retaining good qualities such as terrain

adaptation.

Lastly, we validate the improved planner on three different systems, a legged

excavator, a legged robot with point feet, and a legged-wheeled robot. With

the enhanced control system for the legged excavator, we can execute motions

on par with what the best human operators can do. The results show that

computing and executing hybrid locomotion plans is possible on hardware in

real-time.
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1.4 Robotic Platforms

The motion planner proposed in this thesis is generally conceived so that other

robotic systems can use it. Implementation was also designed to be general

by introducing relevant abstractions for robot-specific parts. Snapshots of the

planner in action are shown in Fig. 1.3. The focus lies on the legged excavator

HEAP introduced in Jud et al., 2021b. In Bjelonic et al., 2022; Jelavic et

al., 2022c, we test the sampling-based planner on ANYmal on wheels robot

(Bjelonic et al., 2019a). The proposed planner was also tested on the legged

robot ANYmal (Chapter 6). Table 1.1 shows the specifications for all the

robots.

(a) HEAP (b) ANYmal on Wheels (c) ANYmal

Figure 1.3: Different testing platforms used in this thesis. Left to right: legged excavator
HEAP, legged-wheeled robot ANYmal on Wheels and legged robot ANYmal.

Robot
Spec mass

[kg]
torso

length [m]
num
legs

num
wheels

num
arms

num
joints

toal
DoF

ANYmal C 156 2.5 4 0 0 12 18
ANYmal C
on wheels

60 2.45 4 4 0 16 22

HEAP 12300 6.19 4 4 1 25 31

Table 1.1: Datasheet for different robots used in this thesis.
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2
Robotic Precision Harvesting:

Mapping, Localization, Planning

and Control for a Legged Tree

Harvester

Jelavic, E., Jud, D., Egli, P., and Hutter, M. (2022a). “Robotic Precision Harvesting: Map-
ping, Localization, Planning and Control for a Legged Tree Harvester”. Field Robotics 2,
pp. 1386–1431

DOI: 10.55417/fr.2022046

Video: https://youtu.be/1FLD0djPFgU

This paper presents a system for autonomously conducting precision harvest-

ing missions using a legged harvester. Precision tree harvesting removes some

trees selectively, while leaving neighboring trees intact. Our robot performs

the challenging task of navigation and tree grabbing in a confined, GPS-denied

forest environment. We propose strategies for mapping, localization, planning,

and control and integrate them into a fully autonomous system. The mission

starts with a human mapping the area of interest using a detachable, custom

sensor module. Subsequently, a human expert selects the specific trees for

harvesting. The sensor module is then mounted on the machine and used for

localization within the created map. A planning algorithm searches for both

an approach-pose and a path in a single path planning problem. We design a

path-following controller exploiting the legged harvester’s capabilities for ne-

gotiating rough terrain. Upon reaching the approach-pose, the machine grabs

a tree with a general-purpose gripper. Our system has been tested in both
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emulated and natural forest settings. To the best of our knowledge, ours is the

first robot to demonstrate such a level of autonomy on a full-size, hydraulic

machine operating in a realistic environment.

2.1 Introduction

Efficient forest management is of interest to all humankind. Forests cover

roughly 30% of the world’s land surface United Nations Food and Agricultural

Organization, 2018. Trees provide the human population with renewable raw

materials and a significant source of both energy and oxygen. Besides, wood-

lands provide a habitat for animal wildlife and contribute to the fight against

climate change.

The forestry industry contributes 1.2% of the global Gross Domestic Product

(GDP) and employs about 30-45 million people Renner, Sweeney, and Kubit,

2008. In some countries forestry products have a significant share in the total

value of exported goods, e.g., Finland (18%) and Latvia (16%) Swedish Forest

Agency, 2014. Given the growing labor shortage Hawkinson, 2017 and the

classification of tree harvesting as a 3D job (dirty, difficult, and dangerous),

automating forestry operations deserves a high economic priority.

2.1.1 Automation in Forestry

Forestry mechanization has increased productivity to the point that human

operators have now become the critical bottleneck (Parker, Bayne, and Clin-

ton, 2016). Since modern harvesting machines have many Degrees of Freedoms

(DoFs), training efficient operators takes time and slows further productivity

gains. To mitigate the problem, researchers have developed semi-autonomous

modules employing Inverse Kinematics (IK) control for crane operation, such

as those in Fig. 2.1a and Fig. 2.1b. Examples of such work can be found in

Hellström et al., 2008; Hyyti, Lehtola, and Visala, 2018; Ortiz Morales et al.,

2014; Westerberg, 2014.

Another common forestry task is thinning, a process wherein stewards selec-

tively remove some trees to allow more space for others Forestry Focus, 2018.

Thinning requires negotiating tight spaces (as opposed to conventional clear-

cutting) and can be done with smaller machines that are remotely controlled

within the operator’s field of view. Fig. 2.2 shows two examples, Harveri and

eBeaver. Despite their lower cost and reduced damage to the forest ground

compared with large harvesters, machines such as Harveri are not very pop-

ular, since operators are reluctant to give up a cabin’s comfort and safety
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(a) Komatsu-895 forwarder (b) Komatsu-951 harvester

Figure 2.1: Different machines are typically used in modern forestry operations. They
all have operator cabins to increase the comfort level in a possibly wet and muddy forest
environment. Images were taken from Komatsu Corporation, 2019

(a) RCM Harveri harvester (b) eBeaver harvester

Figure 2.2: Smaller harvesters that are typically used for thinning operations. They do
not have a cabin for the operator and are remotely controlled within the operator’s line of
sight. Images taken from Jukka Hämekoski, 2016 and Magnus Gustavsson, 2016.

(personal communication with Silvere, 2017). Our system is developed to be

suitable for both conventional clear-cutting and thinning.

2.1.2 Precision Forestry

Traditional forestry operations are still primarily based on fundamentals de-

veloped about 300 years ago Von Carlowitz and Rohr, 1732. Nowadays, the

trend is to move towards precision forestry, which practice uses automated data

collection (versus manual measurement) and software-aided analysis to allow

site- and tree-specific husbandry. Instead of compartment-based management

relying on human experience and qualitative judgment, massive digital data

enables much more granular and quantitative forest management. With the
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newest sensing technologies (e.g. Light Detection And Ranging (LIDAR)),

precision forestry can even be done on the single tree level Choudhry and

O’Kelly, 2018, Holopainen, Vastaranta, and Hyyppä, 2014. Compared to the

traditional techniques, precision forestry diminishes the error in inventory es-

timates by 400 percent Choudhry and O’Kelly, 2018. Other benefits such

as granular fertilizing, fire monitoring, pest and disease monitoring increase

yields and labor productivity up to 10 times Silvere, 2017.

2.1.3 Scope

This article describes a robotic system, comprising modified commercial hard-

ware and custom software, designed specifically for tree-grabbing. We focus

on automating the workflow until the moment of cutting the tree. Cutting

and debranching are not investigated since there are existing harvesting tools

for this process. We focus on executing an autonomous mission (referred to

as harvesting in further text) and main aspects (other than cutting) that ex-

ecuting such a task entails, namely mapping, localization, planning, control,

and tool positioning. Autonomy modules developed in this work are not task

specific and could be used for either harvesting or thinning.

To this end, we develop a versatile sensor module for collecting data and

localizing the machine. We present our hardware platform, an automated

Menzi Muck M545 harvester Jud et al., 2021b augmented with custom sensors

and actuators (see Fig. 2.3), and describe our technical approach to executing

the critical, initial phase of a harvesting mission as specified by a human or

algorithmic expert. Lastly, we present experimental results emulating a real

harvesting mission in a forest and report our recommendations for integrating

and tuning the system.

High-level decisions on which trees to cut and how to manage the forest inven-

tory are beyond this article’s scope. Nowadays, companies can create forest

inventories and recommend future actions with aid from machine intelligence

(e.g., Silvere, 2017), and our pipeline assumes using such a service.

2.1.4 Contribution

To our knowledge, we here present the first report of successfully deploying

a large-scale, fully autonomous system for forest husbandry. Our approach

enables operations under the forest canopy, which are significantly harder than

clear cutting since the machine has to navigate among trees where Global
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Figure 2.3: Legged excavator navigating to a tree and performing a grab. Human is in the
cabin for safety reasons.

Positioning System (GPS) signal may be unreliable. In summary, our work

extends state of the art with the following contributions:

• Design of a portable sensor module with a sensor setup that enables map-

ping and localization. We test our sensor module in handheld operation,

and we deploy it on a robotic platform.

• Development of a robust algorithm for converting raw point clouds into

2.5D elevation maps. We demonstrated the algorithm’s applicability in

a real forest and in several other environments. Our implementation is

available as open-source1.

• We develop an approach-pose planning algorithm suited for tight spaces

and both structured and unstructured environments. The algorithm is

evaluated on synthetic data and maps produced from real data in a

planning scenario including large-scale harvesters.

• Development of a control procedure for driving a legged harvester in

rough terrain. The algorithm performs path tracking and chassis stabi-

lization at the same time.

1https://github.com/ANYbotics/grid_map/tree/master/grid_map_pcl
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• Both planning and path tracking algorithm implementations have been

made publicly available for the community2.

• We develop a lightweight method for tree detection based on LIDAR

scans of local forest patches. Our method is purely geometry-based and

operates directly on point clouds. It is suitable for online operation on

the robot and we make it available for the community 3

• We integrate all system components into a fully functioning autonomous

system. Experimental verification of our pipeline is done on a full-size

legged harvester in a realistic environment

• An evaluation of system components in the real-world scenario is pre-

sented. The evaluation includes chassis control, tree detection, approach-

pose planning, mapping, localizing, and point-cloud to elevation-map

conversion.

The rest of the paper is organized as follows: Chapter 2.2 introduces the re-

lated work. Chapter 2.3 describes the robotic platform and hardware used

in the experiments. In Chapter 2.4, we give a high-level overview of the pro-

posed harvesting system with brief explanations for each of the submodules.

Chapter 2.5 describes mapping and localization, while Chapter 2.6 describes

tree detection procedure. Control and planning are described in Chapters 2.7

and 2.8, respectively. Chapter 2.9 presents results and evaluation. Finally,

Chapter 2.10 summarizes the paper and Chapter 2.11 discusses conclusions

and future work.

2.2 Related Work

In this section, we give a brief overview of the work relevant for precision

harvesting missions; a more in-depth survey on forestry robotics can be found

in Oliveira, Moreira, and Silva, 2021. To the best of our four knowledge, no

autonomous system for thinning or harvesting missions has been presented in

the literature so far. The harvester presented in Rossmann et al., 2009 is the

closest to our work in the sense that developed methods are showcased on a

full-size machine. The authors develop a particle filter-based localization for

forest environments; however, no attempt to automate other machine parts

2https://github.com/leggedrobotics/se2_navigation
3https://github.com/leggedrobotics/tree_detection

24

https://github.com/leggedrobotics/se2_navigation
https://github.com/leggedrobotics/tree_detection


2.2. Related Work

was made. Similarly, in Li et al., 2020, a full-size harvester is fitted with a 3D

LIDAR the authors develop a place recognition algorithm based on tree stems.

To acquire an overview about the forest and plan for harvesting, maps are

typically first acquired by airborne surveying Naesset, 1997, Roßmann, Krah-

winkler, and Bücken, 2009. For mapping and localization, LIDAR sensors are a

popular choice. GPS based localization can be inaccurate under a tree canopy,

and vision-based sensors (cameras) can be sensitive to illumination changes in

outdoor environments. For LIDARs, Iterative closest point (ICP) is a popular

method for scan registration and has been used for mapping in forest surveying

Morita et al., 2018; Tsubouchi et al., 2014; Yue et al., 2018. In Babin et al.,

2019, ICP is fused with GPS for mapping subarctic forests with sparse canopy.

The ICP is also used for mapping in Tremblay et al., 2020 and the authors

propose a method for determining Diameter at Breast Height (DBH). Another

possibility is to use filtering with trees as landmarks. Rossmann, Krahwinkler,

and Schlette, 2010; Roßmann, Krahwinkler, and Bücken, 2009 build a map

using an airborne laser sensor and localize a harvester in SE(2) space using a

particle filter. In Miettinen et al., 2007, an Extended Kalman Filter (EKF)

based Simultaneous Localization and Mapping (SLAM) is used on a skid steer

robot to build a map and localize within it. The downside of relying on tree

landmarks is that it can be susceptible to false positives.

However, LIDAR mapping does not have to rely on tree landmarks. Thus,

mapping algorithms without tree stem detection can potentially handle the

most general forest types (sparse, dense, thick vegetation). Many researchers

have used LOAM (Zhang and Singh, 2014, 2015) for LIDAR mapping, and nu-

merous variants of LOAM have been tested in urban environments. LOAM is

a LIDAR odometry and accumulates drift which may be problematic for large

areas. Recently, loop closing has been added to LOAM (Shan and Englot,

2018; Shan et al., 2020), which enabled the algorithm to correct for the accu-

mulated drift. The loop closure mechanism is based on ICP to map matching

and cannot handle large drift. In Chen et al., 2020; Nevalainen et al., 2020

LOAM has also been used in a forest. An alternative to LOAM is Cartog-

rapher Hess et al., 2016 which has been shown to work well for large-scale

mapping. We use Cartographer as a mapping algorithm of choice.

Once in possession of a map, one typically wants to estimate the biomass or

classify the tree species, which requires segmentation of both the canopy and

the stems. The forestry community has extensively studied techniques for tree

segmentation and classification. Example of model-based approaches include

Zhang et al., 2019b, Burt, Disney, and Calders, 2019. Model-based approaches
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typically rely on pointcloud processing such as euclidean clustering, surface

normal computation, and RANSAC model fitting to segment out the trees.

On the other hand, learning-based approaches train networks end to end to

segment trees from point clouds Ayrey et al., 2017, Chen et al., 2021,Bryson,

2017. The need to accurately segment out whole trees in cluttered scenes

renders most of the approaches complicated and with many steps. Hence,

all algorithms are designed for offline operation, and some require powerful

computational resources. In this work, a lightweight model-based approach

operating online on the robot is used for tree detection.

A harvester can be treated as a big mobile manipulator. Planning and con-

trol for mobile manipulators is a well-studied problem in robotics. One can

either treat the robot in a whole-body fashion Gawel et al., 2019; Giftthaler

et al., 2017; Kim et al., 2019 or decouple the planning and control for the arm

and the base Carius et al., 2018b; Schwarz et al., 2017. The latter approach

has often been used for forestry automation. Controlling the harvester’s (or

forwarder’s) crane is an integral part of forestry operations. Examples can

be found in Kalmari, Backman, and Visala, 2014; La Hera et al., 2009; Lin-

droos et al., 2015; Westerberg, 2014. A major effort was put towards semi-

automating the crane operation since coordinating many DoFs is one of the

hardest tasks for a human operator. Most crane control algorithms are based

on IK or Inverse Dynamics (ID) Siciliano et al., 2010. Compared to classical

robotic manipulators, the biggest difference is that harvester cranes were sel-

dom designed with autonomous operations in mind. They often come without

sensing capabilities which means they have to be retrofitted with sensors to

estimate the end-effector position. Moreover, the sensors have to be robust to

withstand operation outdoors—such retrofitting results in increased automa-

tion effort. An additional difficulty is that hydraulic actuators are harder to

control than their electric motors counterparts (nonlinearities, valve overlap,

less bandwidth). To minimize the automation effort, Morales et al., 2011; Or-

tiz Morales et al., 2014 investigate possibilities for purely open-loop control.

More recently, an attempt has been made to develop arm motion planning for

a feller-buncher machine Song and Sharf, 2020, Song and Sharf, 2021. The

authors rely on Zero Moment Point (ZMP) to compute a stable trajectory

guaranteeing the machine’s (tipping over) stability. The stability of the har-

vester becomes essential as soon as one uses an actuated end-effector for tree

manipulation (as opposed to passive tools that let trees fall freely).

Little has been done to develop a fully autonomous system for forest envi-

ronment missions; the robotic community has mostly focused on urban envi-
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ronments. Mikhaylov and Lositskii, 2018 shows a very simplistic architecture

without any validation. In Georgsson et al., 2005, a GPS based tracking ap-

proach is presented and validated on a forwarder machine outside of a forest

environment. Tominaga, Eiji, and Mowshowitz, 2018 show experiments on

an All Terrain Vehicle (ATV) without an arm in a small scale environment

using GPS with Real-time Kinematic (RTK) correction. The authors use a

global graph-based mission planner and a local state space sampling planner.

A pure-pursuit algorithm is used for tracking. The proposed planning and

control strategy cannot handle backward driving, limiting its ability to nego-

tiate confined spaces. Zhang et al., 2019a presents an integrated system for

navigation in a forest. The authors present a planner and a path follower

that run on a small skid-steer robot without an arm. They show results in

a structured forest (a rubber tree farm) where trees form a grid. This is re-

flected in the path generation algorithm, which involves heuristics to exploit

the environment’s structure and generates only straight-line paths.

Wooden et al., 2010 develop a navigation system for the Big Dog robot; it was

tested in a forest, and it features a local planner based on a graph search A*

algorithm. Hellström et al., 2008 discusses different planning algorithms (A*,

elastic bands, potential fields) for forwarder machines; however, no results are

shown since it is a pre-study only. More examples of forest navigation using

graph search algorithms to compute paths can be found in Mowshowitz, Tom-

inaga, and Hayashi, 2018; Tanaka et al., 2017. Compared to the Unmanned

Ground Vehicles (UGVs), much more work has been done for Unmanned Aerial

Vehicle (UAV) path planning in forests, and examples can be found in, e.g.,

Cui et al., 2014; Liao et al., 2016; Pizetta, Brandao, and Sarcinelli-Filho, 2018.

There is a research gap for UGV path planning in natural environments, which

this article tries to bridge. We compute plans for a non-holonomic constrained

vehicle using RRT* Karaman and Frazzoli, 2011.
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2.3 Hardware

The Hardware section introduces the robot used and it describes the sensor

module we developed for the autonomous missions.

2.3.1 Platform

Our robotic platform is Hydraulic Excavator for Autonomous Purpose

(HEAP). It is based on a Menzi Muck M545 multi-purpose legged machine

often used for harvesting in challenging terrain. It is customized for teleoper-

ation and fully autonomous operations. Besides forestry work HEAP, can be

used for digging, landscaping and manipulation tasks as well (see Jud et al.,

2019,Johns et al., 2020) . We use the terms HEAP and harvester interchange-

ably in further text. Our machine is fitted with custom hydraulic actuators

with pressure sensors and a high-performance servo valve. The actuators allow

for precise force and position control, thus enabling active chassis balancing

and adaptation to the uneven ground (see Hutter et al., 2016b).

(a) Front sensors on the cabin (b) Localization sensor module in the
back

Figure 2.4: Left: two LIDAR sensors mounted on top of the cabin and used for scanning
the area in front of the machine. They are primarily used for tree detection. Right: The
localization module introduced in Sec. 2.3.2 mounted in the back of the machine.

Proprioceptive Sensing : Two SBG Ellipse2-A Inertial Measurement Unit

(IMU)’s (one in the cabin and one in the chassis) gather the inertial data

that are primarily used to determine the chassis’ roll and pitch angle. HEAP
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(a) Sensor module mounts (b) Sensor module packed

Figure 2.5: Left: Close-up photo of sensor module mounts. The module is mounted
onto the aluminum profiles (shown with arrows), clamped to the machine using the o-ring
clamps (encircled with dotted line). The lever fasteners are used to adjust the angle of the
module (encircled with full line). Right: The sensor module dismantled and packed after
deployment.

is equipped with a series of IMUs rigidly attached to each arm link. Measure-

ments from these IMUs are fused together to estimate end-effector pose and

joint angles in the machine frame. Note that, unlike in Jud et al., 2019, we

do not use externally mounted draw-wire encoders on the arm. This way, we

avoid a potential entanglement of draw wires with tree branches.

Exteroceptive Sensing: Two Velodyne Puck VLP-16 LIDAR’s are used for

tree detection. It is important to note that one of the Pucks is rotated by 90◦

around the rolling axis (see Figure 2.4a) in order to get a better resolution when

mapping the area in front of the machine. A sensor module (see Sec. 2.3.2)

is mounted on the back of the machine, as shown in Figure 2.4b. A close-

up image of the sensor mounts is shown in Fig. 2.5a. The sensor module is

mounted using aluminum profiles from itemitem, 2021, and lever hinges from

the same company. We attach it to the machine using o-ring clamps with

rubber to mitigate the effect of vibrations. The mounts are rigid; hence the

whole module does not move w.r.t to the cabin frame. Note that the module

is not mounted in the middle to reduce further engine vibrations (the engine

is just below the sensor module).

Trees can snap when manipulated, resulting in heavy debris falling on the

machine. Hence, for a tree felling application (as opposed to tree grabbing),

one needs to make the sensor module rugged and add mechanical protection

(e.g., bulletproof glass). Another option would be to place the sensors directly
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inside the cabin. It is important to place the module such that it has as

large Field of View (FOV) as possible which is beneficial for the localization.

Alternatively, one can use multiple synchronized sensors, each with a smaller

FOV. For HEAP, the sensor module placement in the back as seen in Fig. 2.4b

has an effective FOV of about 180◦ (instead of 360◦), which was enough for

localizing.

The planning, control, and tree detection software stack runs on one computer

(Intel i7-5820K, 6x3.60GHz, Ubuntu 18.04, 32 GB RAM) installed in the cabin.

The control loops work at 100Hz and are triggered by the Controller Area

Network (CAN) driver. All the algorithms presented are implemented using

C++ with Robot Operating System (ROS) as integration middleware. For

more details on HEAP, please refer to Jud et al., 2021b.

2.3.2 Sensor Module

We develop a sensor module for mapping and localization as displayed in Figure

2.6. The module can be used in the first step by a human to map the area

of interest (see Fig. 2.7a). In a second step, the system can be mounted on

HEAP (Fig. 2.4b) to localize the machine in the previously built map without

GPS information. The whole module can be dismantled and packed, as shown

in Fig. 2.5b.

(a) Sensor module (b) Backpack with power

Figure 2.6: Left: Head of the sensor module. The Central Processing Unit (CPU) and
the IMU are inside the grey box. Right: Power supply for the sensor module mounted on
the backpack.

We design the sensor module to be lightweight such that handheld operation

is possible. It has an integrated computer such that mission data can be
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collected and saved without an external laptop. Besides, one can run the

SLAM directly on the module in real-time. The module has a LIDAR, an

IMU, and two visual sensors. LIDAR is used as a primary sensing modality

with aid from visual and inertial sensors. This way, the motion distortion in

the point cloud can be corrected. Extrinsic calibration between the sensors is

obtained from Kalibr4 Furgale, Rehder, and Siegwart, 2013 and lidar align5,

both of which are available open-source. Lastly, all sensors installed on the

module are time-synchronized. Time synchronization is essential for state

estimation and mapping algorithms to function correctly.

(a) Sensor module in action

Camera

ImuRealsense

NUCPoints

PTP

Images

Pulse indicators

Odometry

 Inertial data

Lidar

Pulses

(b) Sensor module schematic

Figure 2.7: Left: Human operator mapping an area of interest. Right: Schematic of the
sensor module. It is composed of a camera, tracking camera (realsense), LIDAR and an
IMU.

The sensor module in operation is shown in Fig. 2.7a and sensor components in

Fig. 2.6a. We use an Ouster OS-1 LIDAR with 64 channels, an Intel Realsense

T265 tracking camera, and a FLIR camera model BFS-U3-04S2M-CS. Inside

the grey box in Fig. 2.6a, one can find a computing unit (Intel NUC with

i7-8650U processor) and an IMU (Xsens MTI-100). Total cost of our sensor

module is about 10500 USD. We implemented two complementary solutions

for Visual Inertial Odometry (VIO): FLIR camera synced with IMU and the

Intel Realsense T265 tracking camera. The FLIR camera has an excellent low

light performance, while the T265 has almost 180◦ FOV and higher frequency.

Hence, one can choose the VIO sensor used depending on the application. In

this work we use T265 because of large FOV and because higher frequency

odometry estimates were beneficial for the LIDAR based mapping.

4https://github.com/ethz-asl/kalibr
5https://github.com/ethz-asl/lidar_align
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The sensor module can be mounted on a stick shown in Figure 2.6a. In this

way, a human can walk around with the module and point it to the places

of interest to map it in sufficient detail. The sensor module is powered from

the backpack (shown in Fig. 2.6b), equipped with a 36V battery. We choose

to use a 300Wh e-bike lithium-ion battery (BiX Power BX3632H) with an

integrated battery management system. All smaller sensors like cameras and

the IMU are powered through Universal Serial Bus (USB).

The schematic of the sensor module is shown in Fig. 2.7b. The Intel Realsense

camera provides software-synchronized VIO at a frequency of 200Hz. The

FLIR camera (20Hz) and the IMU (400 Hz) are synced using customized soft-

ware. The LIDAR is connected directly to the computer, and it is configured

to use Precision Time Protocol (PTP) for time synchronization Eidson, 2006.

We modify the LIDAR’s driver to send the packets as soon as they are received

instead of batching them until the scan is completed. This way, the motion

distortion is mitigated. We use the TICsync package Harrison and Newman,

2011 to synchronize the IMU with computer’s clock. TICsync estimates the

bias and the drift between the IMU’s internal clock and the computer’s clock

to recover the exact time when the measurement happened. To increase the

robustness, it is beneficial to assign the real-time priority to the IMU driver

(minimizes the timestamp jitter).

2.4 Approach Overview

Fig. 2.8 presents an overview of the autonomous harvesting system and serves

as a visual outline for the chapters in this paper. We briefly describe each

subsystem and give a more detailed description in their respective chapters.

Mapping and Localization: We use a LIDAR based SLAM together with visual

and inertial measurements to correct for scan distortion. The map is built by

processing the data offline. At mission time, scans are registered against the

existing map to compute the sensor module’s pose.

Tree Detection: The LIDAR sensors mounted on the top of the cabin (see

Figure 2.4a) deliver point clouds at 20Hz. An intermediate node aggregates

them and passes them to the tree detection module. Detection is done purely

based on geometric features. The tree detection module forwards the detected

tree’s coordinates to the grasp pose planner and the approach-pose planner.

Control: The control subsystem is split into two parts. The arm controller en-

sures trajectory tracking by sending velocity commands to the arm joints (IK
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State machine

Figure 2.8: Overview of the system architecture deployed on HEAP. Components belong-
ing to the same subsystem are shown in the same color. Different subsystems are shown in
different colors. Arrows depict communication channels in the system, with some commu-
nication lines omitted for the sake of brevity.

controller). The base controller ensures path tracking, and it regulates con-

tact forces such that the base stays upright when driving over uneven terrain.

The low-level controller transcribes higher level references (velocity, torque,

positions) to the valve commands.

Motion Planning (Arm and Base): The planning stack comprises three plan-

ners. The base motion planner plans a path and an approach-pose for the base

of the harvester. The grasp pose planner computes a gripper pose in 3D space

that encompasses the tree trunk. Finally, the arm motion planner produces a

collision-free spline trajectory to move the gripper into the desired pose.

Mission Planner: This module determines which tree to grab next, and it

sends the target position to the state machine, which then sends it to the

approach-pose planner.

State Estimation: The state estimator uses the sensor module pose and pro-

prioceptive measurements (IMU, joint angles) to compute the complete state

of the system (6 DoF base pose + joint angles).

State Machine: The state machine coordinates the execution of different tasks.

It works on a handshaking principle where the state machine sends a request

to a subsystem, and the subsystem responds with an acknowledgment once the
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Table 2.1: Order of operations and subsystems involved to grab a single tree

Task order Task Description Subsystems responsible

1 Get the next tree position. Mission planner

2 Plan an approach-pose and a path. If it fails, go to step 1. Planning

3 Drive the machine to the approach-pose found in step 2. In
case tracking fails, go to step 2

Control

4 Retract the arm (in case it is not already retracted) Planning, Control

5 Scan the area around the expected tree location. Control

6 Run tree detection algorithm and plan a grasp pose Tree detection, Planning

7 Plan and track an arm trajectory to reach the grasp pose Planning, Control

8 Plan and track arm trajectory back to default position (arm
retracted all the way).

Planning, Control

9 Go to step 1. State Machine

task requested has been completed. Tasks that the state machine can request

and the order of operations to grab a single tree are shown in Tab. 2.1.

2.5 Mapping and Localization

Precision forestry requires precise and consistent 3D geometric information

about the forest. This data can be collected by a harvester itself, a smaller

UGV or by a human carrying the sensors. The collected information can then

be used for mission planning and forest inventory management. Moreover, the

map serves as a reference for the harvester to localize. To retain flexibility,

we would like to make no assumptions on the surroundings and allow the

harvester to work in different types of forests (e.g., sparse, with vegetation,

non-flat). Therefore we avoid using tree stems as landmarks (e.g., Roßmann,

Krahwinkler, and Bücken, 2009) since they can be hard to detect (vegetation)

or they may be scarce (e.g., a glade inside the forest).

We selected Google Cartographer Hess et al., 2016 as the backbone of our map-

ping and localization pipeline. Cartographer is a grid-based SLAM approach

that uses the scan to sub-map matching for loop closure detection and dis-

cards unlikely matches using the branch and bound method. At mission time,

localization can be achieved simply by scan to sub-map matching. Compared

to other SLAM systems available at the time, Cartographer has the advantage

that it is fully open source, can cover large spaces, features loop closures that

work robustly, and has a large community of users. Below we provide a brief

description of the working principle.

Cartographer divides the world into a raster of submaps where a number of

accumulated scans determines the size of the submap. The submaps are grids
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(3D) where each cell is assigned a probability of being occupied. Before in-

serting a scan into a submap, the scan is voxelized, and each grid cell inside

the scan is classified as occupied of free. Subsequently, the range scans is reg-

istered within the submap by solving a nonlinear least-squares problem which

maximizes the probabilities at the scan points in the submap. This local, grid-

based SLAM relies on a good initial guess which is achieved by extrapolating

the previous pose using the inertial/odometry data.

Cartographer follows the Sparse Pose Adjustment approach of optimizing all

scans, and submaps Konolige et al., 2010. Each range scan is associated with a

trajectory node in the pose graph. In the background, all scans are matched to

nearby submaps to create loop closure constraints. Suppose a sufficiently good

match (user-defined minimum score) is found in a search window around the

currently estimated pose. In that case, it is added as a loop closing constraint

to the global optimization problem. The constraint graph of submap and scan

poses is periodically optimized in the background (every few seconds). When

localizing in a known map, Cartographer keeps only the latest N submaps,

which are then considered for loop closures against the submaps in the known

map. The known map is not updated.

2.5.1 Mapping

Examples of maps generated with Cartographer are shown in Fig. 2.9.

The map in Fig. 2.9a shows a point cloud of a forest viewed from above. Blue

and green colors correspond to a lower elevation (ground), whereas yellow and

red colors correspond to a higher elevation (vertical structures like tree trunks

and canopy). The map is about 140m long and 60m wide, and it shows a part

of the forest where we conducted the experiments with HEAP. Another, larger

map (340m x 170m) is shown in Fig. 2.9b; the size of this map shows that

Cartographer can map areas sufficiently large for an autonomous harvesting

mission. Both maps have been processed offline and bundle adjusted. Com-

pared to online processing, building the maps offline allows us to use more

points from the LIDAR which results in denser maps, use finer resolution vox-

els, and sample for constraints between submaps more often. Furthermore,

we can increase the search radius for loop closures and run the scan matcher

optimization more often. All the changes above result in less drift and more

loop closures, which produce more consistent maps.

Once we have a consistent 3D map of the space, we use it for localization at

mission time. Since the planning is done in SE(2), we convert the 3D map into
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a 2.5D map which the planner then uses. The 3D map is first converted into

an elevation map, and from the elevation map, we compute a traversability

map. Both maps are functions f : (x, y) → R mapping the 2D coordinates

to height or traversability. Below, we detail the conversion of the point cloud

into an elevation map used by the planner.

A grid map data structure Fankhauser and Hutter, 2016a is used to store the

elevation map. From the raw point cloud in Fig. 2.9a, our algorithm builds a

2.5D elevation map of the area shown in Fig. 2.10. Conceptually, the algorithm

is similar to the one used in Fankhauser, Bloesch, and Hutter, 2018. In contrast

to Fankhauser, Bloesch, and Hutter, 2018, our algorithm can handle multiple

elevations in the cell, i.e., multiple points with the same (x, y) coordinates

and different z coordinates. Thus, it can filter out vegetation and clutter and

recover true ground elevation more robustly. We successfully used the point

cloud to elevation map conversion algorithm in both planar and non-planar

environments. Implementation is available as an open-source package6.

6https://github.com/ANYbotics/grid_map/tree/master/grid_map_pcl
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(a) Testing forest patch

(b) Large forest area

Figure 2.9: Bird view of forest maps. Both maps are represented as point clouds. Top:
Small forest patch where we conducted the experiments. Approximate size 140m x 60m
The area encircled with a black rectangle was converted to an elevation map (Fig. 2.10).
Bottom: Map of a larger forest area (top view), where range, odometry and inertial data
has been collected in multiple tours, concatenated and the processed with Cartographer,
data courtesy of Silvere, 2017. Approximate map dimensions: 340m x 170m.
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Figure 2.10: Elevation map of a forest patch encircled black in Fig. 2.9a. Purple color
corresponds to the lowest elevation and red to the highest. The resulting grid map size is
1419 by 1318 cells with a resolution of 10 cm. Note how tree trunks are clearly visible in the
elevation map.

The point cloud to elevation map conversion algorithm starts by removing the

outliers and downsampling the input point cloud (implementation based on

Rusu and Cousins, 2011). The main loop is parallelized to speed up compu-

tation. For each cell in the grid map, we pre-compute all the points contained

within that cell (this enables lookup in O(1) time), thus vastly speeding up the

algorithm. Each cell is a rectangle in x, y coordinates. Once we have fetched

the points inside the grid map cell, Euclidean clusters are computed. The

cluster size is regulated with a cluster tolerance parameter (see Rusu, 2010).

Any points withn the tolerance distance are considered the same cluster. After

clustering, we calculate the centroid of each cluster. Finally, the centroid with

the smallest z coordinate is deemed to be the ground elevation. Illustration of

the process is shown in Fig. 2.11. In Fig. 2.11, grid map cells are extended in

the z direction and form columns 1,2, and 3. Column 1 has one cluster which

contains only the ground points (shown in light green), and the algorithm cor-

rectly extracts the ground height. In column 3, the algorithm extracts at least

two clusters. The lower cluster is the ground (light green color), while branches

and leaves form the upper cluster (dark green). Clusters are disjoint, and the

algorithm correctly recovers the ground elevation as a mean value of the lower

cluster. Column 2 contains one large cluster composed of both ground and the

tree. In this case, we cannot recover ground information since the resolution

of the map is too coarse; the height of the tree trunk determines the height. In
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Figure 2.11: Generating a grid map from a raw point cloud. The grid is shown with black
lines, and the input point cloud is shown in blue color. Clusters of points that the conversion
algorithm might extract are shown in green. Note that image is not drawn to scale.

this work, we use the resolution of 10 cm for the grid. We analyze algorithm’s

behaviour in presence of vegetation and clutter in the Appendix 2.12.1.

Qualitative runtimes of our algorithm are shown in Table 2.2. The foreseen

use case is to run the algorithm once offline to construct a global elevation map

that can be used for planning. The times shown in Table 2.2 were obtained on

an Intel Xeon E3-1535M (2.9GHz, 4 cores). The algorithm is not limited to

application in forests only but also generalizes to non-forest environments (see

https://github.com/ANYbotics/grid_map/tree/master/grid_map_pcl).

Table 2.2: Qualitative runtimes of the point cloud to elevation map conversion. All the
conversions were done on the same map with the size of 1419 by 1318 cells at 10 cm resolution.

Point cloud size less than 10 million points 40-60 million points 100 - 140 million points

Algorithm runtime 1-2 minutes 5-15 minutes 30-60 min

2.5.2 Localization

Apart from mapping, the sensor module from Sec. 2.3.2 is used to localize

HEAP within the map. The localization pipeline consists of components en-

circled in red color in Figure 2.8. The sensor module is mounted on the ex-

cavator (as shown in Fig. 2.4b). The sensor module’s clock is synchronized
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to the harvester’s computer clock using Network Time Protocol (NTP). PTP

and NTP run on different networks. We forward all the measurements to the

main computer running Google Cartographer in the localization mode (see

Hess, 2017).

Cartographer gives a pose estimate of the sensor module in the map frame

used to compute the excavator’s entire state. Extrinsic calibration of the com-

plete sensor module mounted on HEAP is obtained from Computer Aided De-

sign (CAD) model and manual measurement. Accurately calibrating sensors

mounted on heavy machinery remains a challenging problem, and to increase

overall localization accuracy one should use more advanced methods (e.g. API,

2021). Note that sensors on the sensor module itself are calibrated w.r.t. each

other using techniques mentioned in Section 2.3.2. The setup with the sensor

module mounted in the back resulted in end-effector position accuracy (cou-

pled errors from sensor module localization and robot kinematics) of about

30 cm. For evaluation, we have asked the harvester to grab the same tree

blindly multiple times. Such a level of accuracy may not be enough for high

precision harvesting, and we mitigate the problem by detecting the grabbing

target in a locally built map (see Sec. 2.6).
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2.6 Tree Detection

The tree detection subsystem’s responsibility is to detect a tree trunk and

compute its position. n contrast to the methods mentioned in Chapter 2.2, our

method is lightweight, suitable for online operation, and can be implemented

in a dozen lines of code (available as open source7). While learning-based

methods can still be fast to evaluate, we opted for a model-based method to

avoid data labeling and for ease of implementation. Note that we are not

interested in complete tree segmentation like most of the related work, but

we are only interested in detecting a good grabbing spot. This circumstance

allows simplifying the detection algorithm. A schematic of the subsystem

with some intermediate processing steps is shown in Fig. 2.12. Once HEAP is

positioned close to a tree, the state machine initiates a scanning maneuver to

create a map of the scene in the local frame. Tree detection in the local frame

is less affected by inaccuracies in the global localization system. It is worth

noting that the tree detector also works on global maps and can be used to

aid mission planning; this is discussed in Sec. 2.9.3.1.

Velodyne

Point cloud 
aggregation

Clustering

Detection

Final 
selection

Local map Candidate locations

Raw scans

Clusters

Mission 
plan

Tree trunk 
(x,y,z)

Figure 2.12: Flowchart of the tree detection subsystem procedure.

Tree detection starts with a scanning maneuver by rotating the cabin while the

chassis is kept steady. The cabin is initially pointing in the direction where the

harvester expects the target tree to be (known from the mission planner). The

two LIDAR’s mounted on the front of the machine (see Fig. 2.4a) stream the

point clouds at 20Hz. Note that the harvester’s arm (or legs) might appear in

the point cloud which is undesired. We use the robot self filter package from

the ROS software stack to filter them out. The robot self filter uses robot’s

geometry (meshes or geometric primitives), state (joint angles, pose) and range

sensor’s extrinsic calibration to identify points belonging to robot’s links in the

point cloud. Subsequently, these points are filtered out.

7https://github.com/leggedrobotics/tree_detection
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A receiver node stitches filtered point clouds together into a local map. The

relative transformation between subsequent scans is recovered from the chas-

sis’s roll and pitch angle together with the cabin joint angle measurement.

Note that in the absence of joint angle measurements or odometry, once could

use point cloud registration methods (e.g. ICP). An example of a local map

is shown in Figure 2.13a. The area scanned in Fig. 2.13a is somewhat larger

than necessary to visualize steps in the tree detection algorithm better. We

turn the cabin in its yaw angle ±30◦ to scan the area and build a local map

during the deployment. This corresponds to double the horizontal FOV of the

tilted Velodyne LIDAR (see Fig. 2.4a) such that a dense local map can be

built. We found that vertical Velodyne was more important for building dense

maps, hence if one sensor is used, recommendation is to use it tilted.

(a) Uncropped local map (b) Cropped and gravity aligned

(c) Clusters in the scene (d) Trees and bounding ellipsoids

Figure 2.13: Intermediate results in the tree detection pipeline. Top Left: Scan of the
area, without any cropping. One can observe the large ground plane in the point cloud.
Top Right: Cropped point cloud after first and second cropping (red color). Bottom Left:
Clusters in the scene. Each of these clusters is considered by the tree detection module.
Bottom Right: Final tree detection with the resulting bounding ellipsoids.

The filtered scans from LIDARs are transformed into the cabin frame and

cropped to speed up the subsequent steps. We use a box filter to crop the point

clouds. The x − y limits are set to drop all the points farther than the arm

reach. Once cropped, the scans are transformed into a gravity-aligned frame

where they are concatenated. The maximal density of the concatenated cloud

is constrained to further speed up the computation. We use libpointmatcher
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library for cropping, density filtering and concatenation Pomerleau et al., 2013.

Point cloud assembled from cropped scans is shown in black in Fig. 2.13b

(black). The assembled cloud is then gravity aligned and cropped again to

filter out the ground plane and the tree crown (shown in red color, Fig. 2.13b).

Again, we use a box filter to remove all the that are lower than the center of

the highest wheel. The red point cloud is sent to the tree detection module,

which selects all prominent trees in the scan, as shown in Fig. 2.13d.

The tree detection algorithm first computes Euclidean clusters in the input

point cloud (shown in Fig. 2.13c). Euclidean clusters are searched using the

algorithm from Rusu, 2010. We discard the clusters with too few points. Since

most trees grow vertically, a point cloud of a tree trunk should have a majority

of the points spread out along the z axis. Hence, Principal Component Analysis

(PCA) is performed on each cluster, and we only keep clusters with a significant

principal component along the z axis. Note that we can exploit the verticality

assumption since our point cloud is gravity-aligned. The gravity alignment

score (∈ [0, 1]) is defined as the dot product of the largest principal component

with a [001]T vector. Lastly, we check for the minimum height of the tree. The

final detection result is shown in Fig. 2.13d. Sizes of bounding ellipsoids are

computed based on principal components’ eigenvalues in x and y direction.

The final tree location is the ellipsoid’s center. In the case of multiple tree

detection (such as in Fig. 2.13d), the algorithm extracts coordinates of the

tree closest to the expected tree position (from the mission planner).

2.7 Control

In this work, chassis control is responsible for locomotion and arm control for

tree grabbing (harvesting). The respective control subsystems (shown in blue,

Fig. 2.8) are described in more detail in this section.

2.7.1 Chassis Control

HEAP has four legs with wheels allowing it to drive and adapt to the terrain

(see Fig. 2.14.) Thereby, the goal is to optimally distribute the four wheels’

load to ensure traction and minimize terrain damage.

Terrain adaptation controller (also named Hip Balancing Controller (HBC))

is based on a virtual model control principle where the controller computes a

net force/torque on the chassis to achieve the desired orientation (roll, pitch)

and height. An optimal contact force distribution is computed from the net
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force/torque for all the legs. Contact force tracking is achieved via force track-

ing on the hydraulic actuator level. For more details, refer to Hutter et al.,

2016b. The described chassis controller can keep the base leveled while over-

coming large irregularities in the terrain without getting stuck. Terrain adapta-

tion is achieved using proprioceptive measurements only (joint sensing, IMU).

We have extensively tested HBC performance in our previous work (Hutter

et al., 2015, Hutter et al., 2016b). A video showing the machine overcoming

challenging terrain can be found online8.

(a) Chassis schematic (b) Chassis in action

Figure 2.14: Left: Illustration of the HEAP’s chassis. The cabin and the arm are not
shown for the sake of clarity. Steering joints axes are shown with blue arrows, flexion joint
axes with red, and abduction joint axes with green color arrows. The path following con-
troller actuates the steering joints while the HBC actuates the flexion joints. Abductions
joints are not used. Right: Chassis control system overcoming a stump during the deploy-
ment.

qsteer

qflex

R

𝜏, F𝜃 𝜑

Figure 2.15: System diagram of the chassis control module deployed on HEAP.

For path tracking, we use a pure pursuit controller similar to the one outlined

in Kuwata et al., 2008. The pure pursuit controller calculates the turning

radius (denoted with R) required to bring the machine on the path computed

by the planner. The Ackermann steering module then calculates steering joint

8https://youtu.be/5_Eq8CxKkvM
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angles for each leg. Steering angles are computed such that all four wheels

point to the same center of rotation with the radius R. The computation is

implemented as a quadratic optimization that satisfies all the joint limits and

finds a feasible center of rotation. For more details on the Ackermann steering

module, the reader is referred to Jud et al., 2021b.

The HBC and the pure pursuit controller are combined to locomote the har-

vester, as shown in Fig. 2.15. Both controllers close the feedback loop over

pose: HBC regulates the roll, pitch, and height, whereas pure pursuit ensures

that x, y, and yaw are tracked correctly. The Ackermann steering module com-

putes position reference for the steering joints (qsteer in Fig. 2.15), while the

force distribution module computes joint torques assuming quasi-static condi-

tions (qflex). The low-level controller translates the joint quantities (torques,

positions) into the valve commands. In Fig. 2.14b, the proposed controller is

driving over a stump. Note how the controller retracts the left hind leg to

maximize the traction. In parallel, the pure pursuit controller controls the

driving direction.

2.7.2 Arm Control

Reaching the end-effector target position determined from the tree detection

module is achieved by following a trajectory from the planner described in

Section 2.8.3. The trajectory following is done using an IK controller (see

Siciliano et al., 2010) which uses the Hierarchical Optimization (HO), based

on the implementation from Bellicoso et al., 2016. The main difference is

that we tailor the tasks for HEAP instead of a quadruped robot. Besides

tracking, HO computes joint velocities, enforces kinematic limits, and ensures

that all flow constraints for hydraulic actuators are satisfied. The set of tasks

optimized by the HO is given in Table 2.3, where 1 is the highest priority task.

Opening and closing the gripper is controlled directly by the state machine and

it is done in a purely open-loop fashion.

2.8 Planning

In this section we describe the mission planner and the motion planning stack

in more detail. The motion planing stack is divided into three components

shown in Fig. 2.8: base motion planner, grasp pose planner and the arm

motion planner.
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Table 2.3: Task priority inside the hierarchical optimization for the arm inverse kinematics
controller.

Priority Task

1 Equations of motion
2 Pump flow limit
3 Cylinder force limits
3 Cylinder velocity limits
3 Cylinder position limits
4 End-effector orientation
4 End-effector position

2.8.1 Mission planner

To conduct the experiments, we design a mission planner which determines

which tree to grab next. Before the mission, a human manually selects the

trees to be cut. Selection is accomplished using the Graphical User Interface

(GUI) shown in Fig. 2.16, thus mimicking an algorithm for tree inventory

management. When clicked on, a tree gets added to the tree list for harvesting

with position coordinates extracted in the map frame. The mission planner

passes the tree coordinates to the state machine in the same order as they

were selected. A mission planner for optimizing some user-given objective and

finding an optimal cutting order remains to be investigated in the future.

Figure 2.16: GUI used for mission planning. It is a panel in Rviz and it uses a Qt front-
end. An elevation map of previously mapped environment is shown in gray-scale. All points
higher than 2m are colored in yellow; hence, the yellow color corresponds to the tree trunks
and parts of the canopy. In this example, a total of five trees (marked with blue squares)
are selected to be cut.
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2.8.2 Base Pose Planning

We do not make any assumptions on the terrain properties; thus, our planner

accounts for irregular terrain. Path planning in rough terrain is a complex

problem, and in general, it has not been solved yet. In this work, we split it

into two more manageable subproblems: planning in SE(2) (instead of SE(3))

and traversability estimation.

2.8.2.1 Traversability Estimation

The traversability estimation module discerns which areas can be driven versus

which ones should be avoided. From the elevation map we compute a function

f : (x, y) → [0, 1] that tells us for each coordinate (x, y) where HEAP can

go (e.g. 1 - safe to drive, 0 - not safe). Traversability estimation has been

previously studied, and different approaches for various sensing modalities

exist. In this work, we use purely geometric traversability estimation, which

is directly applied to elevation maps without any additional processing. We

follow the approach presented in Wermelinger et al., 2016 that evaluates three

criteria: terrain slope, roughness, and step height for local terrain patches

(0.3m radius). The final result is a weighted sum of all three components. We

chose to mainly rely on step criterion (80%) since the chassis control system

introduced in Sec. 2.7.1 can overcome slopes and drive over rough terrain. The

remaining 20% was assigned to the slope criterion to prevent the harvester

from driving on very steep slopes, which could result in slipping.

For storing the traversability map we use the grid map Fankhauser and Hutter,

2016a data structure. Fig. 2.17a shows the traversability map, a 2.5D map

with a traversability layer; incorrectly classified areas (classified untraversable

while it is traversable) are encircled red. Thick vegetation that occludes the

ground from the LIDAR sensor during the mapping phase is the main culprit

for false negatives. Since the overall misclassified area is small, a human can

manually correct the errors. We used the GUI from Fig. 2.16 and the correction

lasted about 2 minutes. Fig. 2.17b shows the corrected traversability map;

note how the algorithm automatically classifies tree trunks as untraversable.

Presented traversability estimation has an upside that is easy to implement;

there is no need for elevation map processing or segmenting out the tree trunks

explicitly. Fully automating the proposed pipeline would require additional

work to eliminate the correction step and be implemented in future work.

The traversability map (see Fig. 2.17b) is converted into an occupancy map.

Any traversability value smaller than 0.5 is deemed an obstacle, and higher
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values are regarded as free space. Motion planners use the occupancy map, a

2.5D map with an occupancy layer.

(a) Traversability Classification errors (b) Corrected traversability

Figure 2.17: Traversability maps computed by our approach shown against gray back-
ground. The maps shown are 2.5D maps with different layers (traversability layer displayed).
White areas represent fully traversable terrain, whereas black areas represent terrain that is
not traversable. Left: Red areas have been incorrectly classified as untraversable by the al-
gorithm (false negatives). Right: Traversability map after applying the manual correction.

2.8.2.2 Base Approach-Pose and Path Planning

The planning subsystem (shown in yellow color in Fig. 2.8) gets a tree po-

sition from the mission planner. The tree position is an approximate target

location for the end-effector. The harvester should not reach the tree position

itself because this would result in a collision with the tree. To this end, we

develop an algorithm for joint path and approach-pose planning. We evaluate

the algorithm in both simulations and natural environments. Functionality

described in this subsection corresponds to blocks Approach-Pose Generation

and Base Motion Planner in Fig. 2.8.

Existing planning algorithms typically plan from starting pose to the goal

pose. However, in our case, we do not know the goal pose (only approximate

end-effector position in x and y). Hence, the proposed planning algorithm is

split into two stages: first, the planner generates candidate poses and checks

for their feasibility. Secondly, the planner attempts to compute a path to any

of the feasible candidates. Thus the approach-pose planning is reduced to a

common path planning problem, and we leverage a Rapidly-Exploring Ran-

dom Tree (RRT)* algorithm for a joint path and approach-pose computation.

Our implementation leverages Open Motion Planning Library (OMPL), Su-

can, Moll, and Kavraki, 2012. We chose the OMPL because it is available

as open-source and comes with efficient implementations of various sampling-

based planners. We do not rely on optimization-based planners since forests
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(a) Path planning footprint (b) Approach-pose planning
footprint

Figure 2.18: Top view of HEAP with the arm retracted with the footprint vertices shown
in blue. Note: not drawn to scale. Left: Footprint used for path planning (see Alg. 2).
Right: Footprint used for the approach-pose generation (see Alg. 1) is wider in the middle,
thus allowing for cabin turning.

are cluttered environments with many local minima, which present a challenge

for optimization.

The approach-pose generating subroutine is shown in Alg. 1. It starts by get-

ting a target/tree location xT ∈ R2 (line 1), and computing a set of approach-

poses around it (lines 18 - 31). We compute M×N approach positions in polar

coordinates around xT by pairing M different distances to the tree with N

uniformly distributed polar angles. Lastly, the approach positions are paired

with K yaw angles (lines 20-22) to generate a total of N ×M ×K candidate

approach-poses in SE(2). To be a valid candidate, an approach-pose must be

collision-free (lines 6-7), the harvester’s arm must be able to reach the target

(lines 6-9), and all heuristics must be satisfied (lines 10-11).

The blue points shown in Fig. 2.18 represent the harvester’s collision footprint.

The harvester is in a collision if there is an obstacle inside the blue points

convex hull. Collision checks inside the Alg. 1 use the footprint shown in

Fig. 2.18b. Note how the hull is wider in the middle to allow for cabin turns.

The real-world map is abstracted away from the planner, and it only sees the

obstacles computed by the traversability estimation step. Such a simplification

is warranted by using a control system able to overcome slopes and rough

terrain.

The target being reachable from an approach-pose means that the harvester

can safely extend the arm to reach the goal position (see Alg. 1, line 9). We

check whether there is a collision-free line of sight from the base to the target

goal. Because of HEAP’s kinematic structure, the arm always stays within a

slab in the x − z plane (in the cabin frame). Hence, we require no obstacles
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Algorithm 1 Candidate approach-pose generator

1: xT , yT ← getNextTargetLocation()
2: isUseHeuristic← readFromConfigFile()
3: procedure computeCandidateApproachPoses(xT , yT )
4: candidateApproachPoses← getApproachPosesAroundTarget(xT , yT )
5: for each pose in candidateApproachPoses do
6: if isInCollision(pose) then
7: candidateApproachPoses.delete(pose)
8: end if
9: if ¬isTargetReachableFrom(pose) then
10: candidateApproachPoses.delete(pose)
11: end if
12: if isUseHeuristic AND ¬isHeuristicValid(pose) then
13: candidateApproachPoses.delete(pose)
14: end if
15: end for
16: return candidateApproachPoses
17: end procedure
18: procedure getApproachPosesAroundTarget(xT , yT )
19: distances← {d1, d2, ..., dM}
20: polarAngles← {ϕ1, ϕ2, ..., ϕN}
21: headings← {ψ1, ψ2, ..., ψK}
22: approachPoses← ∅
23: for each di in distances do
24: for each ϕi in polarAngles do
25: (xi, yi)← (xT + d cos(ϕi), yT + d sin(ϕi))
26: for each ψi in headings do
27: approachPoses.ADD([xi, yi, ψi])
28: end for
29: end for
30: end for
31: return approachPoses
32: end procedure

inside the slab spanned by the target tree position and the base position.

Therefore, there is no need for more complicated algorithms that are popular

in mobile manipulation literature (e.g., Zucker et al., 2013). An example of

the approach-pose generation in a forest environment is shown in Fig. 2.19.

In the second stage, the planner checks whether the feasible approach-poses

are attainable, i.e., can the harvester drive to them. Note that a feasible

approach-poses such as the red one in Fig. 2.20 is not necessarily attainable.

The subroutine for attainability checking is summarized in Alg. 2. We build

upon a standard RRT* planner that grows a random tree, as described in

Karaman and Frazzoli, 2011. Instead of trying to connect the single goal pose

(as standard RRT*) to the rest of the tree, we attempt to connect every can-
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(a) All approach-poses (b) Goal target reachable (c) Goal reachable & no collision

Figure 2.19: Approach-pose generation in the forest environment. The elevation map with
the target tree (red cylinder) and candidate approach-poses are shown with blue arrows.
Some approach-poses have been omitted for the sake of clarity. Left: In total, 450 goal
approach-poses are generated. So far they have not been checked for feasibility and this
example we do not apply any heuristics. Middle: Out of 450 poses 155 do not satisfy the
target reachability criterion (line 8 in Algorithm 1). The arm can extend and grab the target
tree from 195 remaining poses. Right:. Out of 195 poses, 168 of them are in collision with
the environment (line 6 in Algorithm 1). The remaining 27 approach-poses both satisfy the
reachability criterion and are not in collision. These remaining 27 approach-poses are then
sampled inside the RRT* to determine which ones are attainable.

didate approach-pose. Planning terminates when the allotted planning time

runs out. We found 5 s to be an adequate compromise between computation

time vs mission progress time. The footprint used for collision checking inside

Alg. 2 is shown in Fig. 2.18a. As a steering function inside the RRT*, we

use the Reeds-Shepp (RS) curves Reeds and Shepp, 1990 which allows us to

respect the minimal turning radius constraint (just like any car, HEAP cannot

turn in place). The turning radius parameter was set to 8.3m.

The rationale behind the planner’s second stage is that an attainable approach-

pose has a high probability of having a collision-free connection to the rest of

the random tree. For example, the green pose is a better approach-pose com-

pared to the blue one in Fig. 2.20. The environment around the green pose

is less cluttered, so the probability of a successful connection is higher. A

beneficial feature of the described approach (Alg. 2) is outsourcing the final

approach-pose selection to the RRT*. Note that using the RRT* in its stan-

dard form would require the user to pick an approach-pose, a challenging task

since we do not know which ones are attainable a priori. Since fewer approach-

poses ensure faster convergence, the proposed framework allows the use of

heuristics for pruning the approach-pose candidate set. Pruning heuristics can
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Start

Figure 2.20: Example environment for approach-pose planning. All approach-poses are
feasible; however, the red pose is not reachable from the start. The green pose is better than
the blue pose since it is easier to reach.

be a wide array of constraints and rules, thus allowing for great flexibility (e.g.,

discard approach-poses where heading changes more than 90◦).

Algorithm 2 Path and approach-pose planner

1: procedure computePathAndApproachPoses(xT , yT )
2: xT , yT ← getNextTargetLocation()
3: ps ← startingPose
4: rrt.initialize(ps)
5: candidateApproachPoses← computeCandidateApproachPoses(xT , yT )
6: while tcpu < Tmax do
7: rrt.growTree()
8: for each pi in candidateApproachPoses do
9: rrt.connectToTree(pi)
10: end for
11: end while
12: end procedure
13: return

(
pi, rrt.getPath()

)

The proposed approach-pose planning takes into account almost all DoFs that

HEAP has to offer. It allows the machine to turn the arm and approach

trees from any angle. Furthermore, the harvester can utilize both driving

directions when navigating to the goal target. One could still improve the

approach-pose generation to anticipate the arm turning direction. Algorithm

1 uses collision footprint shown in Fig. 2.18b which is clearly conservative

since the arm doesn’t have to make a full 360◦ turn. Anticipating the turning

direction would allow shrinking the collision footprint, which is very beneficial

in cluttered environments such as one shown in Fig. 2.19. Another possible

improvement is to adapt the number of approach-pose candidates based on
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the environment. Generating too many approach-pose candidates slows down

the planning while marginally contributing to finding better solutions when

the obstacle density is low.

2.8.3 Arm Grasp Pose and Motion Planning

The grasp pose planner receives a tree position from the tree detection sub-

system and computes the desired gripper pose. Functionality in this section

corresponds to Approach-pose generation and Base motion planner blocks in

Fig. 2.8. Since for our demonstration, we use a gripper instead of a standard

tree cutting tool (such as Menzi Muck, 2020), we emulate the same behavior

by fixing the roll and pitch of the gripper and by computing the yaw angle

such that the cabin faces the tree. The kinematic properties of HEAP and

harvester machines in general with an arm that only moves in a plane allow us

to come up with a simple arm planning algorithm. To reach the desired grasp

pose, we design a three-stage maneuver that requires minimal space:

1. Retract the arm

2. Turn the cabin

3. Extend the arm

The approach-pose planner (see Sec. 2.8.2.2) ensures that there is enough space

for the whole arm maneuver. An exemplary arm plan is shown in Fig. 2.21

(stages of the maneuver are indicated with numbers). Intermediate poses

(waypoints) are visualized with coordinate systems. We compute Hermite

polynomials between the adjacent waypoints to form a trajectory, and we

limit the average linear and angular velocity along the spline. The Hermite

polynomial tracjecory is then tracked using the inverse kinematics controller,

as described in Section 2.7.2.

For tree felling, the proposed planning method would have to be augmented

to consider tree geometry when the harvester is holding one. This could be

achieved by adding visual sensors and tracking the falling tree such that the

planner can optimize the pulling direction. Besides, one could also estimate

the weight and adapt the arm controller tuning or add a feedforward command.

The current arm controller is robust concerning weight changes in the gripper.

We experimented with stone stacking in Johns et al., 2020 and we were able

to manipulate stones between 400 kg and 2400 kg (1040 kg on average) which

is enough to harvest a small tree. Lastly, one could extend approaches such as
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Figure 2.21: Plan for the arm end effector. Intermediate poses are visualized with coordi-
nate systems. Each axis (x, y, z) corresponds to a different color (red, green, blue). A thick
coordinate system and ”goal” sign denote the final desired pose. Numbers correspond to
different maneuver stages: 1) retract, 2) turn, 3) extend.

Song and Sharf, 2020 to prevent the machine from tipping over when holding

a tree.

2.9 Results

The presented system components are individually tested and evaluated for

complete harvesting missions in the forest and on our testing field. It is worth

noting that we implemented the whole system in simulation first to catch as

many mistakes as possible before field testing. As the simulation environment,

we use Gazebo (with ROS integration) which is based on the Open Dynamics

Engine (ODE) physics engine. For visualizing (e.g. trajectories, point clouds)

we rely on Rviz, a ROS tool for visualization.

2.9.1 Path Tracking

We evaluated the tracking performance of the proposed control approach in

Oberglatt (Switzerland), where HEAP was located for another project at the

time of writing this paper. The site is shown Fig. 2.22; it is a construction

site with a mix of concrete and gravel surfaces. We evaluate the tracking

performance using RTK GPS to measure HEAP’s position accurately. HEAP

was asked to track three different types of paths which consisted of: mostly

forward driving, mostly backward driving, and tight maneuvering. An example

of the forward driving path is shown in Fig. 2.23a, the backward driving path

is shown in Fig. 2.23b and tight maneuvering path is shown in Fig. 2.23c. The
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(a) Oberglatt site (b) Site map with overlaid paths

Figure 2.22: Testing site where tracking experiments were performed. The image and the
map were taken few weeks apart. Left: Photo of the testing site where HEAP was located
at the time of writing this paper. We were allowed to drive on the site to test the tracking
controller’s performance. Right: Map of the testing site with some example plans overlaid.
The green path corresponds to the one in Fig. 2.23a, the blue path can also be seen in
Fig. 2.23b and the purple one can be seen in Fig. 2.23c.

maneuvering scenarios require the machine to change its orientation in a tight

space. Hence, the planner comes up with paths containing cusps and tight

turns; we asked HEAP to change its orientation (heading) for either 90◦ or

180◦.
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(a) Forward driving
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(b) Reverse driving
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(c) Tight maneuvering

Figure 2.23: Example trajectories from tracking accuracy evaluation. Blue color shows
output from the planner; red color denotes the actual tracked path. HEAP’s initial orienta-
tion is shown in blue color and the final one in green. The size of the vehicle is not drawn
to scale. Left: HEAP achieved 9 cm average tracking error over 55m of forward driving dis-
tance. Middle: HEAP achieved 13 cm average error over 57m of backward driving distance.
Right: HEAP achieved an average error of 18 cm over 62m distance for tight maneuvering
scenario. In this particular example, HEAP does 7 cusps (changes of driving direction).

Our controller only tracks the path in x − y coordinates, and hence, all the

errors are computed in x − y coordinates. The controller does not track the

z coordinate since the planner plans in SE(2). The tracking performance was

evaluated over about 30 trials and about 1.5 km of driving. We summarize
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the tracking performance in Table 2.4. Across all trials, the path tracking

algorithm achieves the tracking error of about 17 cm. We note that the tracking

errors achieved in the Oberglatt site are somewhat optimistic since tests took

place on flat surfaces that have good traction. It is to be expected that the

tracking performance deteriorates as the surfaces get more slippery. This effect

we illustrate in a set of experiments conducted on our test field.

Table 2.4: Path tracking performance evaluation in Oberglatt site. All the errors are
transitional errors in x − y coordinates. Avg length fwd denotes the average distance trav-
eled forward during the maneuver (analogously for the backward distance, avg length bck).
Traveled total is the cumulative distance traveled across all trials.

scenario
num
trials

avg track
error [m]

standard
deviation [m]

avg length
fwd [m]

avg length
bck [m]

avg num
cusps

traveled
total [m]

fwd driving 10 0.23 0.04 56.05 0.52 0.6 565.84
bck driving 8 0.16 0.04 0.76 55.93 0.75 453.56
maneuvering 14 0.13 0.03 17.99 17.44 2.93 496.19

total 32 0.17 0.02 24.93 24.63 1.43 1515.59

(a) test field SE view (b) aerial view

Figure 2.24: Photos of our testing field, not all images were taken at the same time. Left:
View looking southeast with the machine parked. The area shown is flat. Right: Aerial
view of the field with different classes of terrain labeled. We overlay the planned (blue) and
executed (red) path from one tracking experiment (see Fig. 2.25a).

The testing field is shown in Fig. 2.24. HEAP was commanded to follow three

different paths shown in Fig. 2.25. Fig. 2.25a and Fig. 2.25b show tracking a

long path on an inclined terrain (see Fig. 2.24b). A combination of inclined

and wet terrain caused the HEAP to slide sideways. This can also be observed

in the path visualization: the heading is not tangential to the path. The

machine is pointing towards the slope to compensate for sliding to the side.

In Fig. 2.25c we asked HEAP to reorient itself on the flat part of the testing

field.
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(a) Forward on lateral slope
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(c) Turns and cups on even
ground

Figure 2.25: Experiments were conducted to determine the tracking accuracy of our chassis
control approach. In blue color, the planner’s desired plan has been shown; red color denotes
the actual tracked path. The initial orientation of the excavator is shown in blue color and
the final one in red. The size of the vehicle is not drawn to scale.

The chassis controller was able to achieve mean absolute tracking error of

0.461m over 34.1m distance for the run shown in Fig. 2.25a and for the run

shown in Fig. 2.25b the error was 0.684m over distance of 44.28m. While per-

forming reorientation on the flat terrain, the mean absolute error was 0.222m

over distance traveled of 44.48m (with all direction changes). One can observe

that inclined terrain presents a bigger challenge for the tracking controller than

direction changes. We note that the test field was fairly wet during the exper-

iments, which negatively affected the amount of traction available. Forestry

operations are typically performed when the ground is either dry or frozen,

which reduces these slipping issues. Hence, the set of results from our test

field presents a hard case scenario which is not often encountered in regular

harvesting operations.

2.9.2 Planning

We evaluate the approach-pose planning pipeline proposed in Sec. 2.8.2.2 in

simulated scenarios and in two experiments on different terrain: test field and

forest patch. We ask the planner to compute both path and an approach-pose

to grab the selected target trees. All the map visualizations in this section

have been created using Rviz.

We created a simulated forest by sampling the number of trees from a Poisson

distribution and their positions and radii from a uniform distribution. We

consider two scenarios: in the first one, there is a forest alley that can be used

for driving (see Fig. 2.26a). This resembles the situation encountered during

the field experiments. There is no forest alley in the second scenario, and the
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harvester has to navigate between the trees (see Fig. 2.27a). Such a scenario

is common when using a smaller machine such as one shown in Fig. 2.2a. For

each forest density, we run 10 planning trials and average the metrics. Within

one trial, we to compute plans for several target trees; the number of trials is

shown in Table 2.5.

For the forest alley scenario, we ensure the alley at least 2.8m wide. For

comparison, the harvester path planning footprint has a width of 2.4m and

the approach-pose planning footprint is 4.8m wide at its widest point. Note

that as the forest gets denser, there might not be enough space to turn the

cabin, and therefore no feasible approach-poses. We choose several trees (max

50) at random within the 6m distance from the forest alley middle (HEAP

has a reach of about 8m) to be the targets. Black dots represent trees while

target trees are colored red in Fig. 2.26a. Each target is deemed feasible if

we can find a path to it within 30 s of planning. An example path is shown

in green; the starting pose and the planned approach-pose are denoted with a

blue and red arrow, respectively. In this particular example, the plan requires

the harvester to drive forward and turn the cabin to grab the tree encircled

orange. Quantitative evaluations of the planner are shown in Fig. 2.26, we

compute the metrics only for feasible targets.

The percentage of feasible targets (see Fig. 2.26b) drops as the forest’s den-

sity grows. However, one can see that the planner maintains a high success

rate. Besides the success rate, we evaluate times required to generate candi-

date approach-poses tapproach, time until the first solution inside the RRT*

planner tinit and we show the total planning time ttotal (Fig. 2.26c). One can

observe that the RRT* planner finds the first solution rather quickly (worst

case in 700ms). The most expensive part of the pipeline is the approach-pose

generation which in the worst case takes about 7 s. Planning times tend to

shorten as the forest density (number of trees per m2) increases since many

approach-poses can be discarded in the early stage of collision checking (early

termination). In contrast, for low forest densities, almost all approach-pose

footprints have to be checked for collisions fully (no early termination).

For the experiments presented, the planner considers 14060 approach-pose

candidates in total (no pruning heuristics were applied to showcase the gener-

ality of the approach). In this work, we use single-threaded implementation;

however, the approach-pose generation can be easily paralleled to decrease

computation time. Lastly, we measured the distances between the starting

pose and the planned approach-poses (see Fig. 2.26d). We show the length of

the first found path dinit and the length of the optimized path dfinal (after
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(a) Simulated forest alley for tree density 0.1
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(d) Path lengths

Figure 2.26: Joint path and approach-pose planning for the forest alley scenario. Tree
density is defined as a number of trees per m2. Top Left: Top view of the random forest
with the path and approach-pose planned. The harvester starts from the blue arrow to
grab the tree encircled orange. Path is shown in green and the final approach-pose in red.
Black dots represent the trees and red dots are the remaining target trees. Top Right:
Percentage of feasible targets and the success rate as the forest density increases. Success
rate is calculated as number of successful planning attempts divided by the number of feasible
targets. Bottom Left: Planning times against varying forest density, note the logarithmic
scale on the y axis Bottom Right: Path lengths as a function of varying forest density.

running RRT* for 5 s). Lastly, the graph shows Euclidean distance between

start and finish dlb which is a lower bound on the path length. We can see that

the planned path is close to the lower bound in all cases. The paths tend to

shorten with the increasing density since more feasible trees lie on the inside

of the forest alley. Hence, HEAP does not turn to the side, which shortens the

overall path length.

As a second scenario, we evaluated planning performance while navigating

an unstructured forest. The forest was generated using the same probability

distributions as in the scenario above. We leave a clear area (10m by 10m) in

the middle of the map to ensure a feasible starting pose. The target trees were
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Table 2.5: Number of feasible (attainable) targets together with the total number of
planning attempts for each forest density. We show the data for forest alley and unstructured
forest scenario.

forest alley unstructured forest

density n targets
n feasible
targets

n (successful)
planning attempts

n targets
n feasible
targets

n (successful)
planning attempts

0.01 6 6 (59) 60 23 23 (230) 230
0.03 18 18 (180) 180 50 50 (499) 500
0.05 23 23 (230) 230 50 50 (498) 500
0.07 38 38 (380) 380 50 49 (486) 490
0.09 50 49 (489) 490 50 44 (398) 440
0.1 50 49 (489) 490 50 36 (332) 360
0.11 50 48 (477) 480 50 32 (283) 320
0.12 50 46 (448) 460 50 27 (269) 270
0.14 50 44 (428) 440 50 26 (251) 260
0.15 50 44 (421) 440 50 23 (224) 230
0.2 50 37 (365) 370 50 9 (90) 90
0.25 50 30 (283) 300 50 7 (70) 70
0.3 50 26 (255) 260 50 7 (70) 70

selected at random with a maximum of 50 trees. Again, we check the feasibility

for each target by running the planner for 30 s and perform 10 planning trials.

Performance measures shown in Fig. 2.27b - Fig. 2.27d are calculated only for

feasible targets. One can observe a much faster drop in the percent of feasible

targets (compared to the forest alley scenario). In most cases, our planner finds

the solution rather quickly (800ms in the worst case). We can also notice that

the success rate drops compared to the previous scenario since there is no

forest alley. The planner has to find a path through narrow passages (hard

for sampling-based planners). The forest density of 0.1 seems to be especially

hard, i.e. the harvester can still fit through the trees, but just barely. The

success rate for densities between 0.05 and 0.15 can be increased with longer

planning times. For forest densities of 0.15 and higher the HEAP harvester

simply dos not fit between the trees. Hence the set of feasible targets comprises

the trees around the clear patch in the middle of the simulated forest. In this

case, the success rate goes again to 100%.

To evaluate the planning performance under realistic conditions, we planned

on a map of our testing field and a map of forest patch where we conducted

the tests. The forest patch map with target trees is shown in Fig. 2.28. Black

dots represent trees and other obstacles, while target trees are denoted with

red dots. We manually selected the trees along the forest alley, discarding

any tree without path computed within 30 s of planning. The forest density

at the testing site was estimated to be about 0.14 (trees/m2). The planner
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(a) Simulated unstructured forest for tree density 0.1
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Figure 2.27: Joint path and approach-pose planning for the unstructured forest scenario.
Top Left: Top view of the random forest with the path and approach-pose planned. See
Fig. 2.26 for explanations of the colors in the image. Top Right: Success rate as the
forest density increases. Feasibility rate and success rate are calculated the same way as for
Fig. 2.26. Bottom Left: Planning times against varying forest density, note the logarithmic
scale on the y axis Bottom Right: Path lengths as a function of varying forest density.

achieved a success rate of about 98% which is almost the same as the simulated

scenario (95%). Furthermore, the time tapproach (1625.15ms) is close to the

simulated one (1728.75ms). tinit (120.62ms) is lower than the simulated one

(308.36ms); which would indicate that it has fewer narrow passages than the

simulated forest.. On the testing field, the planner achieved the success rate

of 100% (omitted for the sake of brevity).
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Figure 2.28: Obstacle map for the forest patch sce-
nario. Obstacles are shown in black color whereas free
space is shown in gray color. The targets are denoted
with red cylinders

Table 2.6: Planning
metrics for the forest
patch scenario (averaged
over 10 trials).

num targets 51

success rate 0.98

time until

first solution [ms]
(120± 555)

approach-pose

generation time [ms]
(1625± 621)

total planning

time [s]
(6.6± 0.6)

initial path

length [m]
(18.38± 10.86)

optimized path

length [m]
(14.3± 9.84)

length

lower bound [m]
(13.53± 9.48)

2.9.3 Tree Detection

We evaluated tree detection offline by mimicking local maps assembled from

harvester sensors during the scanning maneuver. We select 6m by 6m patches

inside the map shown in Fig. 2.9a and ask the tree detector to detect all

trees inside the cropped map. The patch size roughly corresponds to the area

covered by vertical Velodyne sensor frustum after the scanning maneuver. The

detection procedure discarded clusters with diameter bigger than 2.5m, fewer

than 1000 points or with gravity alignment score less than 0.8 (as defined in

Sec. 2.6); the result is shown in Fig. 2.29. One can observe successful tree

detections even in the presence of vegetation. Heavy clutter in the scene, such

as in patch five and patch twelve, causes the detector to reject segmented tree

clusters, incorrectly producing false negatives. In case no trees are detected

close to the target, the harvester resorts to blind grabbing at the target location

(known a priori from the map). We evaluated the detection accuracy on

three different forest patches (the ones shown in Fig. 2.32b, Fig. 2.32c and

Fig. 2.37a). For evaluation, we selected 6m by 6m patches (about 30 of

them) at random from each map and run the tree detection on them. The

true number of trees was determined manually by inspecting the point cloud

patch. The quantitative evaluation is shown in Table 2.7. The fail cases and

extended analysis for the tree detector are presented in the Appendix 2.12.2.

2.9.3.1 Tree Detector for Mission Planning

In this section, we present the use of a tree detector as a mission planner.

Although the tree detector was designed to be used on small local maps, it

can also be used to extract tree coordinates for clear-cutting missions or as a
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Figure 2.29: 6m by 6m point cloud patches from the testing site. Red corresponds to the
lowest and purple to the highest elevation. Tree detections are shown with green cylinders.
Tree detection has failed for snapshots 5 and 12 (marked with black arrows).

mission planning aid. We ran the tree detection offline on three forest patches

of different styles, all shown in the figures below. The ground plane was filtered

out, and the procedure presented in Sec. 2.6 was used. We manually identify

the trees in each point cloud to obtain the actual number of trees.

Fig. 2.30a shows the first forest patch together with tree detections. The patch

has about 246 (both evergreen and deciduous) trees, and the tree detector

correctly detected 210 of them. There were 14 false positives, and 36 trees were

not detected (false negatives), which amounts to a precision of 94% and recall

rate of about 85%. The point cloud of the second forest patch and detected

trees are shown in Fig. 2.30b. In total, there are 163 (spruce) trees, and the

tree detector correctly detected 143 of them. There were six false positives,

and 20 trees were not detected, which amounts to a precision of 96% and

recall rate of about 88%. The last forest patch is shown Fig. 2.31. The Forest

patch has about 285 trees (all deciduous trees). The tree detector detected in

63



2. Robotic Precision Harvesting: Mapping, Localization, Planning and
Control for a Legged Tree Harvester

Table 2.7: Tree detection evaluation.

map num trials num trees recall precision
Fig. 2.32b 32 4.13± 1.91 0.88± 0.2 0.92± 0.16
Fig. 2.37a 33 4.78± 2.39 0.82± 0.25 0.94± 0.11
Fig. 2.32c 32 3.28± 1.71 0.95± 0.14 1

total 97 4.06± 1.17 0.88± 0.12 0.95± 0.07

(a) Mixed forest with detected trees (b) Spruce forest with detected trees

Figure 2.30: Maps and tree detections for two forest patches. Detected trees are de-
noted with black bounding boxes. Red/yellow color corresponds to the lowest elevation and
blue/purple to the highest. Left: Forest with both evergreen and deciduous trees. Note the
heavy clutter towards the edges of the map. Right: Forest with mainly spruce trees.

total 266 trees. Four detections were false positives, whereas the number of

false negatives was 19. These numbers give the tree detector precision of 98%

and recall rate of 93%. For a pointcloud with 26 million points, it takes our

method about 300 s to complete.

We want to conclude that using our tree detector as a mission planner may

yield inferior results than other methods. However, the strong points of our

method are that it is lightweight, available as open-source, and can be used

online on the robot. For tree detection on large forest areas, one is better

off using some of the more advanced approaches, such as Burt, Disney, and

Calders, 2019 which achieve recall rates up to 96% on tropical forest datasets.

One should note, however, that the method is computationally expensive; it

takes two days to process a map with 17 million points on a computer with

24 cores. Some of the best results that we have seen have been obtained using

the forestry module inside the LiDAR360 commercial software for pointcloud

processing. Unfortunately, LiDAR360 is not available for free.
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Figure 2.31: Forest patch and detected trees denoted with black bounding boxes. The
forest patch consists of deciduous trees.

2.9.4 Localization

We evaluated the localization of the proposed sensor module running Google

Cartographer SLAM in three different terrains: two forest patches and our

testing field. We collect the dataset with the sensor module presented in 2.3.2,

and we run the SLAM offline, which produces a consistent, optimized map.

Subsequently, we set the Cartographer in the localization mode and tune it

such that both the LIDAR odometry and loop closures run in real-time. Note

that Cartographer running in the localization mode does not try to build a

global map (see Hess, 2017). We are interested in quantifying performance

degradation when running in real-time localization mode without joint map

and trajectory bundle adjustment. We localize in a previously built map and

compare the localized pose against the bundle adjusted trajectory (pseudo-

ground-truth). Paths overlaid inside the map can be seen in Fig. 2.32 while

the top view plots of the trajectories can be seen in Fig. 2.33.

(a) Testfield (b) Forest 1 (c) Forest 2

Figure 2.32: The trajectories from the localization field experiments overlaid with the
map.
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(b) Forest 1
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(c) Forest 2

Figure 2.33: The trajectories from the localization field experiments viewed from above.
Forest 1 and Forest 2 are datasets from two different forests.

We evaluate the localization error as the euclidean distance between the cor-

responding points on the localized trajectory and pseudo ground-truth trajec-

tory. For the test field, we obtain a translational error of 0.11 ± 0.09 meters;

the trajectory length was 255.8m. Trajectory length for the first forest dataset

was 158.37m, and Cartographer localizes with the error of 0.17± 0.28 meters.

Inside, the second forest trajectory was 183.27meters long, and the localiza-

tion error was 0.25±0.28 meters. The presented evaluation is biased since the

cartographer (the same method) is used for both map building and localiza-

tion. Hence, we evaluate localization performance using a different method,

the ICP (using point to plane error metric). The ICP is used to register LI-

DAR scans in a map built using the cartographer (we do not have the ground

truth). Subsequently, the translational error between the ICP localized tra-

jectory and the pseudo-ground truth from the cartographer is computed. For

the first forest, the error is 0.085± 0.038 meters, and in the second forest, the

error is 0.078± 0.035 meters. For the test field, we obtain an average error of

0.13± 0.11 between the pseud-ground truth and the ICP.

To better understand the overall accuracy, we compare the mapping and local-

ization performance against ground-truth data in two different environments:

a forest and an urban setting (emergency services training ground in Wangen

an der Aare, Switzerland). Both areas are shown in Fig. 2.34. The ground-

truth data was produced using Leica’s RTC 360 3D laser scanner. It is a

rotating laser scanner that aligns point clouds and uses VIO to record moves

from station to station for scan pre-registration automatically. For both the

forest and the training ground, the RTC360 reported sub-centimeter accuracy.

We align the ground truth map and the cartographer map using the Cloud-

compare software alignment tool. The aligned maps for the Wangen area are

shown in Fig. 2.35. The area has dimensions of 294 x 577 x 66 meters (W x
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(a) Wangen and der Aare (CH) (b) Forest 3

Figure 2.34: Locations for mapping ground truth evaluation. Left: Aerial photo of the
emergency responders training ground, Wangen and der Aare. Image taken from https:

//www.mediathek.admin.ch/media/image/da1c1259-8d9a-430a-893d-d325de139149Right:
Forest patch where the mapping accuracy was evaluated. The forest in the photo is an old
forest.

L x H). The RMS error from the registration was 0.578m with the average

distance between the points of 0.76± 0.52 meters (see below for a discussion).

To map the area using our proposed setup, about 10 min of walking around

the site was required. To obtain the ground truth map, we made 55 scans

which required a whole afternoon of work.

Besides the map quality, we also evaluate cartographer’s trajectory quality

(pseudo-ground truth in Fig. 2.32 and Fig. 2.33). To obtain the ground truth

trajectory, we register laser scans in the ground truth map from the Leica

scanner using the ICP. Then we align the trajectories estimate from the car-

tographer with the ground truth trajectory (using the transform obtained dur-

ing the map alignment step). The trajectory length was 823m and the overall

error was 0.41 ± 0.28 meters, overlay visualized in Fig. 2.38a. This level of

accuracy is acceptable for navigation; however, blind grabbing might not be

accurate enough, which is why our method does an extra detection step in

the local map. We note that the overall errors (both map and trajectory

estimation) computed are pessimistic (worst case) because of the changes in

the environment between the data collection. We observed new (or differently

parked) vehicles, cranes, trailers, tents, and even a large water pool left on

the main road of the training ground. All of these changes in the environment

negatively influence the accuracy of scan matching and make the correct data

association harder.
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Figure 2.35: Map of the emergency responders training ground, Wangen an der Aare,
Switzerland. The ground truth map is shown in black(from Leica RTC360), and in red,
the cartographer map is shown. The green circle shows an example of good alignment, the
dotted circle shows an example of bad alignment, and the green square shows an example
of changes between two mapping sessions. The data was collected a couple of weeks apart.

In addition to the urban environment, we collected the ground truth in two

forest patches near Wangen an der Aare in Switzerland. Again, the Leica

RTC360 3D scanner was used for generating the map. The cartographer map

was registered against the ground truth map using Cloudcompare software.

For the first forest patch, the RMS registration error was 0.042m, and the

distance between registered point clouds was 0.06 ± 0.05 meters. Dimensions

of the forest area are 243 x 257 x 43 meters (W x L x H). The aligned maps

are shown in Fig. 2.37. The close-up shot shown in Fig. 2.37b shows a snug

fit between the aligned maps. One can also notice how the cartographer map

is significantly noisier than the ground truth map from the RTC scanner.

This comes to no surprise since RTC360 comes with more than an order of

magnitude more accurate distance measurements (less than 5mm at 40 meters)

compared to the Ouster range sensor (5 cm at 40 meters).

ICP was used to register LIDAR scans against the ground truth map and

create a ground truth trajectory. We compare it to the pseudo ground truth

from the cartographer. Overall translational error was 0.05± 0.03 meters and

the overlaid trajectories are shown in Fig. 2.38b. This is an order of magnitude

lower error compared to the urban environment, which can be explained by

the fact that we collected the data in succession, and hence both maps look the

same. This allows for better scan registration. Additionally, the forest areas

68



2.9. Results

(a) Good alignment (b) Poor alignment (c) Changes between data col-
lection

Figure 2.36: Close up view of encircled areas from Fig. 2.35. Ground truth is shown in
black and cartographer map shown in red. Left: Example of good alignment. Note how
building edges from different maps snap well onto each other. Middle: Example of poor
alignment. Note how the building walls are far apart from each other. Right: Changes
between the dataset collections. Note the black tents in the ground truth map and the red
firefighting trailer in the cartographer map.

(a) Registered maps (b) Close up of the alignment

Figure 2.37: Aligned forest maps. Ground truth map shown in black color where the
cartographer map has been shown in red color. Left: Top view of the aligned maps. Right:
Close up image of the aligned maps. Note how tree trunks nicely fit together.

are smaller, which also leads to better accuracy. We verified the obtained error

in another forest patch with younger trees (map size 100 x 96 x 17 meters).

Comparing the map with the ground truth map, we obtained similar numbers:

the RMS registration error was 0.078m, the distance between the registered

maps was 0.12 ± 0.1 meters. The error between the ground truth trajectory

and pseudo-ground truth from the cartographer was 0.04 ± 0.03 meters over

the 100.34m distance traveled (images and a map of the forest patch omitted

for brevity).

Both cartographer’s localization and the ICP can run in real-time on the robot,

however ICP consumes less CPU. The comparisons between cartographer’s

localization mode and pure ICP based localization suggest the superior per-

formance of ICP. Hence, we would like to conclude that one could also use

ICP for localization during harvesting missions. The authors will switch to
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(a) Wangen training site
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(b) Forest 3 (near Wangen)

Figure 2.38: Top view trajectory estimate from cartographer (brown) aligned with the
ground truth trajectory (blue). Left: Trajectory estimates for data collection at Wangen
training site. Note how the error is bigger in the area where maps in Fig. 2.35 are not well
aligned. Right: Trajectory estimates for data set collection in the forest 3.

the ICP based localization in the future. Our ICP implementation is available

as open-source for the community9.

9https://github.com/leggedrobotics/icp_localization
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2.9.5 Fully integrated system

This section presents snapshots of a fully integrated system performing a har-

vesting mission. We tested our system on a test field where HEAP was com-

manded to grab “tree trunks”. One tree trunk is composed of three wooden

logs strapped together such that they can stand straight up (see the video or

Fig. 2.39). We show the approaching sequence on our test field in Fig. 2.39

and omit the rest of the maneuver for the sake of brevity since the full ma-

neuver is already shown in Fig. 2.40. In addition to our test field, we have

performed the second set of experiments in a small forest alley in a real forest

with fully grown adult trees. We show snapshots of 1 operational cycle be-

tween grasping two trees in Fig. 2.40. The reader is encouraged to watch a

video accompanying this submission since it offers a better insight10.

Figure 2.39: HEAP approaching wooden logs at our testing field. We do not show the
rest of the maneuver for the sake of brevity. The reader is encouraged to watch the video.

It takes about 1-2.5 minutes for the machine to complete the entire cycle,

depending on how far the cabin has to turn and how far it has to drive. The

cabin turns and driving are tuned conservatively (slow), and the time could be

improved drastically by speeding them up. The proposed system was able to

run without any changes in both the test field and the forest. Furthermore, we

were able to successfully detect both tree trunks and wooden logs and perform

a grab. A human operator was often inside the cabin for safety.

10https://youtu.be/1FLD0djPFgU
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Figure 2.40: Snapshots of an operational cycle between grabbing two trees. HEAP re-
positioning the base close to the tree (snapshots 1-6) followed by scanning the environment
and building a local map (snapshots 7-9). Finally, HEAP grabs the tree by extending the
arm (snapshots 10-12) and retracting it (snapshots 13-15). After retracting the arm, the
harvester is ready to grab the next tree and whole cycle repeats.
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2.10 Summary

We present the first (to the best of our knowledge) demonstration of a full-

sized harvester performing autonomous precision tree grabbing. We do not

investigate tree cutting, which could be done with an appropriate harvesting

tool. Components off our system have been evaluated individually and inte-

grated into a complete autonomous system. We show evaluation of the control

system, approach-pose planner, mapping accuracy, localization accuracy, point

cloud to elevation map conversion algorithm, and the tree detector.

A lightweight and versatile sensor module is presented; it can be used for

mapping and later mounted on the harvester for localization. The sensor

module and SLAM system together generate an a priori map of the mission

area. Subsequently, the HEAP harvester can localize itself at mission time,

which enables it to navigate under the forest canopy without relying on a GPS

signal.

Our system can plan approach-poses in confined spaces, and it can negoti-

ate challenging terrain by combining the chassis-balancing and path-following

controllers. Our planner relies on traversability maps that we estimate from

elevation maps, which, in turn, we calculate directly from point clouds using

our conversion algorithm. We rely on a human expert to specify target trees

for harvesting. To combat localization error and enable precision harvesting,

we plan grasping poses in the local frame, using a geometric detection algo-

rithm that operates on the laser point-cloud. Lastly, we make parts of our

planning11, mapping12, localizing13 and tree-detecting14 software stack open

source for the community.

2.11 Discussion & Outlook

Each of the modules (e.g., planning, mapping) has been first tested and bench-

marked individually before integrating them into a complete precision harvest-

ing mission. For example, we first tested planning and control with RTK GPS

before adding the SLAM system. Stepwise integration was essential to isolate

problems. We also note that having a simulation environment was benefi-

cial, since we could first test the functionality in simulation and then focus on

11https://github.com/leggedrobotics/se2_navigation
12https://github.com/ANYbotics/grid_map/tree/master/grid_map_pcl
13https://github.com/leggedrobotics/icp_localization
14https://github.com/leggedrobotics/tree_detection
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tuning on the machine. State-machine behavior, for example, can be almost

completely verified in simulation. Another lesson learned from this work was

that state machines get complicated when they must include recovery behav-

ior (e.g. re-plan if no solution is found). In the future, it would be beneficial

to look into using behavior trees Winter, Hayes, and Colvin, 2010, which are

typically more compact and implicitly integrate recovery behaviors.

Experimental verification of our approach during the wet season was unfor-

tunate, and the biggest problem occurring was that the machine would occa-

sionally get stuck in the mud. This problem was somewhat mitigated by using

chains and putting wooden logs and branches in the mud to improve trac-

tion. We do not see this as a limitation of our system since forestry operations

typically find a place during dry seasons.

We point out that pure, geometric localization (or detection) can fail in a

real forest. For example, a crowd of humans observing the machine can look

very similar to tree trunks in a point cloud, a situation that, on one occasion,

caused the SLAM module to generate spurious pose estimates. Furthermore,

we had a few cases of sun rays directly shining on our camera, which con-

dition caused the visual odometry to diverge. Subsequently, the whole state

estimation pipeline diverged despite the pure LIDAR odometry working well.

This problem seeks an approach that can adequately detect sensor degradation

to ensure robust mapping and localizing in all cases. We also believe that it

is important to perform a quantitative evaluation of different SLAM systems

under similar conditions in forest areas. This procedure would involve testing

different approaches (e.g. LOAM variants, Cartographer, ICP) in varied for-

est styles with a high-accuracy ground-truth map (e.g. from the 3D scanner).

The research community could thus focus the development efforts on the most

promising approach.

An immediate improvement to the localization system wold be to use ICP

as opposed to Cartographer’s localization mode (see Section 2.9.4). Other

improvements we are planning will focus on utilizing complementary sensors

where applicable and implementing health-checking systems to mitigate state-

estimating problems. For example, one could run both vision and LIDAR-

based SLAM to increase robustness since these two modalities complement

each other Khattak et al., 2020. Furthermore, traversability estimation should

use visual information, since pure geometry can be misleading in natural en-

vironments.

Robust handling of heavy clutter would be especially beneficial, since such sit-

uations constitute the primary conditions of tree-detection failure. Detecting
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trees in the local map could also benefit from using visual information. In

case of thick vegetation or heavy branch clutter, one could also look into using

radar sensors for determining a grabbing pose on a tree stem.

We plan to improve the approach-pose planner by incorporating footprint

adaptation and adjusting the number of generated approach-poses based on

the environment, as noted in Section 2.8. Furthermore, it would be interest-

ing to benchmark different planners (e.g., Probabilistic Roadmap (PRM) or

hybrid A* algorithm Dolgov et al., 2010). Additionally, the implementation of

approach-pose generation can be parallelized. For tree felling, the arm planner

can be enhanced to include tree geometry, once the gripper is holding a tree

trunk. Lastly, the tree trunk weight could be included in the arm controller

to improve the arm-plan tracking.

Besides improving the mission-execution and motion planners, an exciting area

to pursue is to develop a more intelligent mission planner. Instead of just

relying on an operator-provided order of execution, one could optimize some

objective (e.g., minimal time). Such a planner becomes especially relevant if

one wants to maximize efficiency in a scenario involving multiple harvesters.

Apart from algorithmic improvements, one crucial aspect for future forestry

missions is to have rugged sensors. We used an umbrella to protect our sensor

module from water during the experiments (see Fig. 2.3, in the back of the

machine); however, this is not a viable solution for a fully autonomous har-

vester operating in a harsh environment. Furthermore, the sensors must be

protected from branches, vegetation clutter, and branch debris falling onto the

machine. Since harvester machines need to deal with clutter and vegetation,

it is advisable to have redundant sensors such that localization can be robust

to occlusions.

Incorporating the improvements outlined above will bring us one step closer to

fully automated precision forestry that will increase yields and relieve humans

from tedious labor.
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2.12 Appendix

2.12.1 Point Cloud to Elevation Map Conversion

We analyze how the point cloud conversion algorithm presented in Section 2.5.1

reacts to clutter and vegetation. The data was collected with a handheld sen-

sor, and we build small maps of forest patches. The forest patches vary in

dimension between 17x18 meters up to 29x32 meters (width x length). We

convert the point cloud to the elevation map and show the results below. Un-

fortunately, we cannot provide rigorous quantitative analysis since the ground

truth (actual ground elevation) is extremely hard to collect in the presence

of vegetation. Furthermore, it is hard to define the ground truth since there

are cases where we want more than just ground information in the elevation

map (e.g., trees, stumps). However, looking at the images and maps presented

below, one can draw some conclusions about the conversion algorithm’s be-

havior.

All the elevation maps shown below have a resolution of 10 cm. One can

observe (especially from Fig. 2.42) that thin tree trunks present a problem for

the elevation map and are often not well captured in it. One could increase the

map’s resolution to capture them better; however, there is a trade-off between

detail and computation time. Furthermore, to avoid holes and artifacts, one

needs denser point clouds with the increasing elevation map resolution (smaller

cell size). Dense branches and low and medium clutter do not seem to pose a

big problem, and the resulting elevation maps have no or low artifacts. Thick

tree trunks (30 cm diameter and more) are visible well in the map, and we

did not experience any problems with the tree canopy or branches. This holds

as long as forest ground is captured in the point cloud. One limitation of the

approach is the ability to deal with heavy clutter (e.g., Fig. 2.46). Indeed thick

vegetation and branches touching the ground will often appear as blobs in the

elevation map.

In Fig. 2.48 we illustrate the influence of a cluster tolerance parameter on the

elevation map. Both maps correspond to the cluttered forest patch shown in

Fig. 2.46a. One can note that the lower value of cluster tolerance better filters

out the clutter and recovers the ground elevation. However, there is a trade-off

since it also filters smaller trees out of the map (denoted with a red rectangle).

Large tree trunks remain unaffected; in case of a cluttered environment and

larger tree trunks, smaller values are recommended. In a case the point cloud

is very dense, smaller values usually yield better results.
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(a) Forest patch (b) Elevation map (c) Elevation map + point cloud

Figure 2.41: Forest scene with large tree trunks, no clutter and low branch density. The
elevation map nicely captures the tree trunks and the forest ground.

(a) Forest patch (b) Elevation map (c) Elevation map + point cloud

Figure 2.42: Scene with no clutter, but higher branch density compared to the previous
scene. Besides the big tree trunks many smaller trees with trunk diameter less than 10 cm
are present. One can clearly see a limitation of our algorithm, since many of the smaller
trees are not well captured in the map at 10 cm resolution.

(a) Forest patch (b) Elevation map (c) Elevation map + point cloud

Figure 2.43: Cluttered scene without vegetation. Compared to the Fig. 2.42, tree trunks
in this scene are thicker and better captured in the elevation map. High branch density does
not seem to pose the problem for the conversion algorithm as long as there is enough ground
data in the point cloud.
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(a) Forest patch (b) Elevation map (c) Elevation map + point cloud

Figure 2.44: Scene with low vegetation and low clutter. One can see that the elevation
map does not contain any artifacts. The vegetation causes the map to be somewhat rougher
compared to the forest ground without the vegetation.

(a) Forest patch (b) Elevation map (c) Elevation map + point cloud

Figure 2.45: Medium clutter forest patch with ground vegetation. We can see that the
surface of the elevation map looks somewhat rougher compared to the Fig. 2.44. The algo-
rithm successfully captures the tree trunks and filters out some thin trees.

(a) Forest patch (b) Elevation map (c) Elevation map + point cloud

Figure 2.46: High clutter scene with lots of vegetation. We can see that the thick vegetation
corrupts the elevation map and causes bumps and roughness in it. Thick tree trunks are
still well visible in the map.
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(a) Forest patch (b) Elevation map (c) Elevation map + point cloud

Figure 2.47: Combined scene with medium vegetation clutter and trees. Branches reaching
all the way to the ground effectively inflate the trunk of the tree which can be seen in the
middle of the elevation map (big blobs to the left of the tree trunk).

(a) Map computed with higher cluster toler-
ance

(b) Map computed with lower cluster toler-
ance

Figure 2.48: Elevation maps computed using our point cloud to elevation map conversion
algorithm with different cluster tolerance parameter. One can observe that the lower cluster
tolerance better filters out the vegetation and clutter.
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2.12.2 Tree Detection from Local Maps

In this section, we present some tree detection failure cases on the local map

patches. Example failure cases are shown in Fig. 2.49. The most common

cause of failure is a false negative when no tree is detected, and there is one in

the map. False-negative examples can be seen in snapshot 1,2,3,4,5,7,8,9,10,11

and 12. What all these fail cases have in common is the presence of vegetation

and clutter in the scene. Some patches are so cluttered (e.g., 1 and 12) that it is

extremely challenging for a human to find the trees in the scene. Since our ap-

proach extracts Euclidean clusters, any branches or canopy that touches other

trees presents a problem. Touching canopies (from two different trees) cause

the algorithm to extract two or more trees (together with all the branches) as

one cluster. Subsequently, the whole blob of points will be rejected because it

is either too wide or the gravity alignment is not vertical enough. Ultimately,

Figure 2.49: 6m by 6m point cloud patches where detection algorithm failed. Red cor-
responds to the lowest and purple to the highest elevation. Tree detections are shown with
transparent boxes. The patches come from three different maps that were used for detection
accuracy evaluation (see Sec. 2.9.3.

since our detection approach is purely geometric, it runs into limitations in the

presence of high clutter and vegetation. The clutter problem could be mit-

igated by changing the cluster tolerance in the Euclidean cluster extraction
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phase. If the point cloud is very dense smaller values (less than 0.1m) usually

yield better results. Values that are too small will result in a single tree being

split into multiple clusters, whereas large values will result in multiple trees

merged into a single cluster. This calls for a detection procedure involving a

tree model, which would help filter out the branch clutter (e.g., RANSAC). A

learning-based approach could also be an option. Alternatively, one could use

a different sensor modality that will penetrate through the clutter and allow

for direct tree trunk detection (e.g., a radar).

The second failure mode is mistaking a branch for a tree or detecting the same

tree twice (false positive). Examples of such behavior can be seen in snapshots

6 and 12. This type of failure is not as common as the false negative. One

could extend our approach with simple sanity checks (e.g., if two clusters have

similar x and y coordinates than most likely they belong to the same tree) to

increase the performance. Another option would be to filter out branches and

vegetation, which can be mistaken for a tree. A visual sensor would also help

in this case since it is relatively easy to distinguish between vegetation and a

tree trunk for a human.

2.13 Lessons Learned

We propose a system for autonomous precision tree-grabbing in a natural for-

est, a milestone towards autonomous precision tree harvesting. The mission

starts with a human mapping an area of interest with a handheld sensor mod-

ule. Subsequently, the module is mounted on HEAP to enable navigation

under the forest canopy without GPS signal. Strategies for mapping, localiza-

tion, control, and planning are proposed. We focus on lessons most relevant

for this thesis, i.e., lessons learned in planning and control.

We observed that having terrain-adaptive behavior was essential for complet-

ing the mission. The chassis balancing system overcame substantial obstacles,

such as ditches and stumps that the motion planner was unaware of. Further-

more, minimizing contact forces on the legs achieved traction control, prevent-

ing wheels from falling deep into the mud. Subsequent controllers deployed on

HEAP were all terrain-adaptive.

Even the terrain adaptive controller was sometimes not enough, and the ma-

chine would get stuck in the mud. In this case, the arm was manually de-

ployed to lift the wheels out of the mud and push itself. This motivated us to

investigate whether we could develop a planner using the arm for locomotion.
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Although the recovery behavior for the forestry use case could have been re-

alized using heuristics, we wanted to create a general planner that can mimic

what good human operators can do (e.g., in MenziMuckCom, 2011 ).

Lastly, we tried to compute approach poses for tree grabbing heuristically,

which was susceptible to many corner cases. However, coming up with a set of

candidate poses was relatively easy. Subsequently, the approach pose selection

was outsourced to RRT planner, and we optimized for path and approach pose

in a single motion planning problem. We followed this approach of giving as

much freedom as possible to the planner in the rest of the thesis.
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3
Whole-body motion planning for

walking excavators

Jelavic, E. and Hutter, M. (2019). “Whole-body motion planning for walking excavators”. In:
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,
pp. 2292–2299

DOI: 10.1109/IROS40897.2019.8967631

Video: https://youtu.be/u3XO4PaPc6I

This article presents a trajectory planning framework for all-terrain vehicles

with legs and wheels such as walking excavators. Our formulation takes into

account the whole body of the robot while computing the plans for locomotion.

Hence, we can produce motion plans over the rough terrain that would be hard

to plan without considering all Degrees of Freedom (DoF) simultaneously.

Our planner can also optimize over the contact schedule for all limbs, thereby

finding the feasible motions even for the infeasible initial contact schedule.

Furthermore, we introduce a novel formulation of the support area constraint.

We generate plans for a Menzi Muck M545, a 31 DoF walking excavator with

five limbs: four wheeled legs and an arm. We show motion plans for traversing

a variety of terrains that require whole-body planning. To the best of our

knowledge, this is the first work that addresses motion planning in rough

terrain for vehicles with legs and wheels.

3.1 Introduction

Robots with legs and wheels such as walking excavators offer great potential

for operation in uneven terrain. They can be deployed for various tasks such as
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landscaping, forestry or earth-moving. This versatility comes with a cost: to

perform locomotion in rough terrain the operator is required to coordinate all

degrees of freedom for each of the limbs simultaneously. As a result, operating

such a system can be quite exhausting and hiring experienced operators is

expensive. Furthermore, handcrafting the motion generation for rough terrain

traversal is difficult, because legged-wheeled systems have many DoF. To this

end, we present a Trajectory Optimization (TO) based planning approach that

leverages all DoF of a legged-wheeled robot. We do this by planning over the

full joint space and the base pose at the same time which allows us to find a

set of motions that is richer than if we planned motion for parts of the robot

separately. Using TO for planning is attractive because it is general enough

so that any high-level task can be formulated as a TO problem. With enough

computing power (an ideal case), the solver produces a valid plan or reports

that a solution does not exist which would solve the planning problem on a

general level. We demonstrate our approach on a walking excavator. Planning

the motion for the whole body, allows us to compute plans for different terrains

using the same planner.

3.1.1 Related Work

Path planning techniques for wheeled robots and legged robots with point feet

have received a lot of attention. However, there is a significant research gap in

the field of planning for legged-wheeled robots and the literature available is

rather scarce. In the following, we categorize the existing approaches in terms

of how they solve the planning problem (e.g., static or dynamic motion plans,

contact schedule optimization). We also discuss the missing components to

address the motion planning problem in rough terrain for a legged-wheeled

robot.

1) Dynamic trajectory planning Trajectory optimization for legged robots has

been well studied, and so far impressive results have been shown for legged

robots with point feet Bellicoso et al., 2018b; Farshidian et al., 2017a; Winkler

et al., 2018, 2017. Typically, planners for legged locomotion produce dynamic

motion plans that are computed as a solution to a complex nonlinear pro-

gram. Although the application of those planners is limited to the robots

with point feet, there is still some connection to our problem. In both cases,

one needs to enforce a similar set of constraints, ensure that the robot re-

mains stable or even optimize over the contact schedule (duration and order

of contact phases for each End-Effector (EE)). Recently, there have also been

advances in the locomotion planning for legged-wheeled robots such as Viragh
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et al., 2019, Bjelonic et al., 2019a and Geilinger et al., 2018. All of these

authors show dynamic locomotion with wheels, although without taking the

terrain into account while planning. Furthermore, the optimization horizon

is rather short (usually 1-2 seconds) and may not be suitable for slow robots.

While the approaches used for dynamic legged-wheeled locomotion planning

are closer related to our problem, there is still a major difference. The differ-

ence stems from the fact that our platform is a customized, 12000 kg heavy,

walking excavator HEAP (Hydraulic Excavator for an Autonomous Purpose)

2018. Therefore we restrict ourselves to computing the kinematically feasible

motions only. Kinematic planning is justified by the fact that our system is

rather slow, Coriolis forces can be neglected and planning dynamic motions

becomes unnecessary. Moreover, some dynamic motions could even be danger-

ous. We require that all states are statically stable. As a benefit, omitting the

complex rigid-body dynamics in the problem formulation allows us to extend

the optimization horizon. This is because we do not have to enforce dynamics

constraint along the trajectory which can be expensive to compute.

2) Statically stable trajectory planning Wheeled-legged systems were success-

fully deployed for extraterrestrial missions in rough terrain where the system

is required to be statically stable at all times. However, little work has been

done on computing motion plans that would keep a robot statically stable.

Typically, the robot is teleoperated and a purely reactive controller is trying

to keep the base in the desired pose; examples can be found in Cordes, Babu,

and Kirchner, 2017; Giordano et al., 2009; Hashimoto et al., 2005; Reid et

al., 2016; Smith, Sharf, and Trentini, 2006; Wilcox, 2012. Computing mo-

tion plans for legged-wheeled robots in an indoor environment has been done

in Hashimoto et al., 2005, Lim et al., 2017 and Klamt and Behnke, 2017,

2018; Klamt et al., 2018. None of these approaches considers the whole body

planning problem. Driving and stepping phase are treated as two separate be-

haviors and the robot switches between them. Typically, heuristics are used to

deduce when to switch and which action to do next. In Klamt et al., 2018, the

switching command comes from the human operator. The switching behavior

is in contrast with our formulation, where we formulate a whole body motion

planning problem. Driving and stepping motions are considered together and

the optimizer may choose to perform both at the same time. One interesting

approach to planning for legged-wheeled locomotion can be found in Tanaka

and Hirose, 2008, where wheels are used for locomotion and legs to jump over

the obstacles. This approach, although interesting from a system design point

of view, is not suitable for a heavy excavating machine. Kinematically feasible

plans have been computed in Giftthaler et al., 2017 for the In Situ Fabricator
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2 (IF2), a robot with a similar level of complexity as our excavator. Although

their planner considers the planning problem for the whole body, they do not

consider any stepping motions. Furthermore, they do not consider the terrain

in the planning algorithm.

3) Stability Criterion Formulation The support polygon stability criterion has

been known in the legged robotics community for a long time Wieber, 2002.

Usually, it has been embedded into the TO as an intersection of half-spaces.

For the sake of robustness, the support area is often shrunk which leads to a

tedious computation of half-spaces and error-prone geometric manipulations.

Recent work Del Prete, Tonneau, and Mansard, 2016; Winkler et al., 2017 has

proposed to formulate the support area stability criterion as a convex hull of

the support points. To drive Center of Pressure (CoP) away from the edge

of the support polygon, they add a cost term in the optimization. However,

because a cost term is used to enforce the stability, CoP can still reach the edge

of the support polygon (and the robot could fall). To this end, we bring a novel

formulation of the support polygon constraint that can shrink the support area

without computing any half-spaces. This way we retain a guarantee that CoP

(or Center of Mass (CoM) in our case) never reaches an edge of the support

polygon.

4) Contact Schedule Optimization To compute the motion plans for legged

systems, one needs to reason about which EE’s are in contact with the en-

vironment at all times. The discrete nature of contacts makes the planning

a hard combinatorial problem. For optimizing the contact schedule, previous

approaches have used Mixed-Integer optimization formulations which become

hard to compute for longer planning horizons Deits and Tedrake, 2014 or com-

plementary constraints that require special treatment from the solver Mor-

datch, Todorov, and Popović, 2012. Most recently, contact schedule has been

computed by incorporating timings as continuous variables in the Nonlinear

Program (NLP) Winkler et al., 2018. The latter approach can use a general

NLP solver, and we extend it for legged-wheeled robots.

3.1.2 Contribution

To the best of our knowledge this is the first work that addresses a whole

body motion planning for legged-wheeled systems in rough terrain. Our ap-

proach is targeted for use on the autonomous walking excavators however,

it could be used on other robots as well. With respect to the related work,

our contributions can be summarized as follows: We introduce the complete

TO formulation for legged-wheeled robots in rough terrain. Furthermore, our
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formulation allows for the use of different types of EE’s for locomotion. A

walking excavator is a good example since it can use both wheeled legs and

the shovel for locomotion. In addition, we introduce a novel and intuitive

stability constraint formulation. We allow for shrinkage of the support area

without tedious computation of half-spaces. Finally, we present a formula-

tion that can optimize the contact schedule for legged-wheeled robots. Our

formulation uses continuous variables and can be embedded directly into an

NLP.

3.2 Problem Formulation

We solve a continuous time TO problem that can be described as

find xxx(t), ẋ̇ẋx(t)

s.t. xxx(t0) = xxx0 xxx(tF ) = xxxF

ggg(xxx) ≤ 0 gggh(xxx) = 0 gggnh(xxx, ẋ̇ẋx) = 0

Where ggg(xxx) set of inequality constraints, gggh and gnh represent the set of holo-

nomic and non-holonomic constraints, respectively, the vector x(t) is a vector

of decision variables, and t0 and tF are the initial and final time, respectively.

In essence, what we need to solve is an Optimal Control Problem (OCP).

There are different techniques to solve an OCP such as Dynamic Program-

ming, Indirect Methods and Direct Methods that transcribe the continuous

time problem into an NLP Diehl et al., 2006. We choose to transcribe an op-

timal control problem into an NLP. Solving an optimal control problem as an

NLP is attractive because one does not need to provide a stable (or feasible)

initial solution to the problem; this is all outsourced to the optimizer. For us,

this means that the challenge of computing an initial feasible trajectory over

long time horizons and complex terrains is eliminated. Besides, Nonlinear Op-

timization is a well-developed field with the mathematical apparatus capable

of dealing with very general equality and non-equality constraints. The full

NLP that we solve to generate motion plans is summarized in Eq. 3.2a below.

Constraint specific to our excavator, (Eq. 3.2b) is shown in green color.
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3. Whole-body motion planning for walking excavators

find: IpppB(t) base linear position (3.2a)

θθθB(t) base euler angles

∀ i, i ∈ L :

Ipppi(t) ith limb position

qqqi(t) ith limb joint angles

Ti,j ith limb gait timings

s.t. IpppB(t = 0) = ppp0 initial position

IθθθB(t = 0) = θθθ0 initial orientation

IpppB(t = T ) = pppg goal position

IθθθB(t = T ) = θθθg goal orientation

BpppCOM (t) ∈ S(t) support polygon

∀ i, i ∈ L :

Ipppi(t) ∈ Wi(t) ith limb workspace

bbbL ≤ qqqi(t) ≤ bbbU ith limb joint bounds∑
j

Ti,j = T ith limb total duration

if i ∈ C(t) :
Ipppzi = hterrain(

Ipppx,yi ) terrain height

if i ∈ (C(t) ∩ Lw) :

Wiṗppi · aaay = 0 no lateral slip

if i ∈ (C(t) ∩ (L \ Lw)) :

Iṗpp = 0 zero contact velocity

Iaaax × Innn(Ipppx,yi ) = 000 shovel orientation (3.2b)

The problem formulation is general enough for legged-wheeled systems except

for the shovel orientation constraint that is specifically tailored to our excava-

tor called Hydraulic Excavator for Autonomous Purpose (HEAP) Jud et al.,

2021b. L(t) is the set of all limbs (HEAP has five limbs, four legs + an arm).

The set C(t) denotes all the limbs that are in contact at time t, S(t) is the

support polygon at time t, and the set Lw denotes all the limbs that have a

wheel at the end. Left superscript is a coordinate frame; I denotes the iner-
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3.2. Problem Formulation

tial (world) frame, B denotes the base frame, and Wi denotes the ith wheel

frame. Right superscript denotes a component of the vector e.g. Wi ṗ̇ṗpzi is the

z component of the velocity of the ith limb expressed in the ith wheel frame.

Coordinate frames used for problem formulation are shown in Fig. 3.3a, 3.3b

and 3.3c.

3.2.1 Joint and Cartesian Space Formulation

Decision variables for the NLP shown in Eq. 3.2a are the base pose, joint

positions and EE positions. Note that the EE variables are redundant since

we already know the EE position through the forward kinematics. We chose

to keep them since they lead to a more natural formulation of the terrain-

related constraints. Furthermore, the addition of EE positions as optimization

variables facilitates the NLP initialization; it is easier to find points that satisfy

the terrain constraints in Euclidean space than to compute them directly in

the joint space.

Using box constraints to enforce the kinematically feasible range of motion for

EE’s can be found in Winkler et al., 2018, Bellicoso et al., 2018b). This is

desirable since it leads to linear constraints and speeds up the optimization.

However, box constraints are not suitable for our platform. The workspace of

each wheeled EE is a non-convex shaped volume that is difficult to describe

analytically in Euclidean space (as shown in Fig. 3.1). Hence, specifying the

range of motion constraint becomes laborious, error-prone and tedious. To

ensure that our plans are kinematically feasible, we add the joint variables

into the optimization and enforce the forward kinematics constraint. In Fig.

3.1, one can see that HEAP’s legs do not have knee joints, so the position

of the EE always stays equally far away from the hip. The absence of knee

joints restricts the EE range of motion and makes it hard to come up with

good heuristics for step planning for individual limbs (approach presented in

Klamt and Behnke, 2018, Klamt and Behnke, 2017). We would also like to

point out that by considering the system as a whole, we can discover a richer

set of motions and ultimately traverse more challenging obstacles.

3.2.2 Spline Formulation

NLP decision variables are represented in the time domain as splines composed

of third order polynomials. Instead of directly optimizing over the polynomial

coefficients, we optimize over the states at polynomial junctions and the time

duration of the polynomial. This is the Hermite Parametrization (HP); if two
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3. Whole-body motion planning for walking excavators

Figure 3.1: Model of the excavator shown without the arm for better visibility. Workspace
of the EE’s is shown; in blue color for the front legs, in red color for the hind legs. These
shapes depict the volume where HEAP can place the center of the wheels without moving
the base. Workspace of the arm is essentially a cylinder that encompasses the whole base
with an inner radius of 1.5 m and with the maximal outer radius of 8 m.

nodes (xk, ẋk), (xk+1, ẋk+1) are connected by a third order polynomial with a

duration ∆T then:

x(t) = a3t
3 + a2t

2 + a1t+ a0

ai = f(xk, ẋk, xk+1, ẋk+1,∆T ) ∀ t ∈ [tk, tk+1]

HP leads to a more natural constraint formulation since we do not have to

transcribe states into the polynomial coefficients and we can directly opti-

mize over the states and velocities; which is why we chose HP for collocation.

Derivation of the relationship between the polynomial coefficients and node

values at junctions can be found in Winkler et al., 2018.

3.2.3 Contact Schedule Optimization for Wheeled robots

To optimize over the contact schedule, we extend the idea from Winkler et al.,

2018 such that it can handle limbs with wheels. Same as for a pointed foot, a

limb with wheel can either be in contact or not, which means that contact and

swing phase alternate. The main difference w.r.t to phase-based parametriza-

tion introduced in Winkler et al., 2018 is that one cannot fix the value of a

certain spline in one of the phases. E.g., For a robot with point feet the posi-

tion of a foot does not change while the foot is in contact; however, a position

of a wheeled EE can change in both contact and swing phase. The difficulty

with wheeled EE’s is that different constraints have to be active for contact

and swing phase. In phase based parametrization, only the timings of the

polynomials change, the number of junctions between polynomials per phase

stays constant. Hence, one could try to enforce the phase-specific constraints

directly at the polynomial junctions, because the junctions always remain in
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the same phase. The latter approach, however, doesn’t work for constraints

such as support area constraint which depend on the contact state of more than

one limb. This is because the polynomial junctions can be shifted in time and

hence, the contact state of the other limbs might change. To make the contact

schedule optimization for wheels possible, we propose to add the indicator vari-

ables ci(t),∀ i ∈ L (similar to Neunert, Farshidian, and Buchli, 2016) which

can take values between 0 and 1. These indicator variables are splines shown

in Fig. 3.2. They are parametrized using the phase based parametrization.

The splines are forced to be constant, except at the transition phase (darker

red regions in Fig. 3.2) which should be kept as short as possible. Using the

contact indicators, we can enforce alternating sets of constraints in alternating

phases. When the constraint should not be active, the corresponding ci(t)

becomes 0, and product of the constraint and the indicator evaluates to zero.

This way, we can still optimize the contact schedule for limbs with wheels.

Figure 3.2: Contact indicator c(t) variables used for optimizing over the gait. Each contact
indicator variables takes the value 1 (red area) if the foot is in contact and the value 0 if it is
not (green area). Polynomials in splines are kept constant except at the transitions between
the swing and stance phase (darker red area). Splines are connected at the nodes (black
dots); note that the number of nodes per phase is always constant and not dependent on
the duration of the polynomials in between.

3.3 Implementation

We describe some constraints shown in Eq. 3.2a in more detail. We do not use

any cost in our formulation since this allows for faster computation times and

less tuning. However, one might want to add the cost to gain more control

over the planned motion.

3.3.1 Limb Workspace Constraint

This constraint ensures that the position of the EE’s stays in the allowed range

of motion with respect to the base. We formulate this constraint for each limb,
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3. Whole-body motion planning for walking excavators

(a) Cordinate frames on HEAP (b) Shovel coordinate system. (c) Wheel coordinate systems.

Figure 3.3: Left: Coordinate frames used for planning with HEAP. Each limb has a
coordinate frame attached to the EE. Legs of the excavator are denoted with abbreviations,
LF stands for Left Front, RH for Right Hind etc. x axis is shown in red color, y in green and
z in blue. Middle: OS denotes the origin of shovel contact coordinate system. The x, y, z
axis of coordinate systems are denoted with aaax, aaay , aaaz respectively. The shovel orientation
constraint enforces that the aaax vector is parallel with the normal vector nnn. Right: OWi

is

in the center of the wheel, aaay is axis of rotation. OWc,i
is the contact point of the ith wheel.

For modeling purposes, we use a thin disc wheel model.

regardless of whether it has a wheel or not. The constraint is formulated in

the world frame as follows:

RRRBI(θθθ(t))(
Ipppi − IpppB) =

BTTT (qqqi) ∈ R3 ∀i ∈ L

bbbL,i ≤ qqqi ≤ bbbU,i ∈ RDoF (i) ∀i ∈ L

Where Ipppi,∀i ∈ L denotes the position of the EE in the world frame, BTTT (qqqi) is

the forward kinematics computed for the ith limb in the base frame, RRRBI(θθθ(t))

is the rotation matrix from the inertial frame into the base frame, IpppB and
Ipppi are positions of the base and ith EE in the world frame, respectively. bbbL,i

and bbbU,i are the lower and the upper bound for the joint positions qqqi of the i
th

limb and DoF (i) is the number of joints that the ith limb has.

3.3.2 Robust Support Polygon Constraint

Support polygon constraint enforces stability along the trajectory. In general,

for contact points that are not on the same height, the admissible region for

the CoM such that the robot is in the static equilibrium is not equivalent to

the support polygon spanned by those contact points (projected in the plane

perpendicular to the gravity vector). However, in Del Prete, Tonneau, and

Mansard, 2016 it has been shown that as long as each contact point’s friction

cone contains a direction opposite to the gravity, CoM being in the support

polygon spanned by the contact points is sufficient for the static stability.
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3.3. Implementation

Hence it follows that one of the limitations of our approach is that the contact

points should not be on the surfaces that are ”too steep.” We use a convex

hull formulation for the support polygon constraint, thus avoiding the need to

compute any half-spaces. Computing half-spaces is tedious since HEAP can

have up to five contact points at the same time. Expressing the constraint as

a convex hull enables us to use the same constraint formulation even though

the number of the EE’s that are in contact changes over time. We enforce the

following constraint at discrete time intervals:∑
i∈C(t)

(
αi +

ϵ

n

)BTTT (qqqi) = BpppCOM ∈ R2

∑
i∈C(t)

αi = 1− ϵ ∈ R, 0 ≤ ϵ ≤ 1, αi ≥ 0

Where αi and ϵ are real numbers, BpppCOM is the center of mass (CoM) ex-

pressed in the base frame, and n is the number of EE’s that are in contact

at time t. Note that αi are optimization variables while ϵ is a parameter.

The support polygon constraint keeps the robot from falling. However, the

optimizer might find motion plans where CoM of the robot is on the bound-

ary of the support polygon. To avoid this situation, we shrink the support

polygon. Thanks to our formulation of the stability constraint, this is done

very elegantly without the need to compute any half-spaces. The bigger the

ϵ, the more conservative we are; i.e., the minimum permitted distance of CoM

to the edge of the support polygon becomes larger. The reader is referred to

the Appendix for the derivation of the constraint.

3.3.3 Shovel Orientation Constraint

To prevent damage to the terrain, we impose that shovel bucket has to touch

the ground with the flat end. The constraint is implemented as follows:

RRRSB(qqqi)RRRBI(θθθ(t))
Innn(Ipppx,yi )× Saaax = 000 ∈ R3

∀i ∈ (C(t) ∩ (L \ Lw))

RRRSB(qqqi) is the rotation matrix from the base frame into the shovel frame

(frames shown in Fig. 3.3), RRRBI(θθθ(t)) is rotation from the inertial frame into

the base frame and Innn(Ipppx,yi ) is the terrain normal in the inertial frame at the

point where shovel (see Fig. 3.3b) touches the ground. Saaax is x unit vector

expressed in the shovel frame and × is cross product.
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3. Whole-body motion planning for walking excavators

Figure 3.4: Gaits used on HEAP. Color denotes limb that is in contact, and white space
denotes that the limb is in the swing phase. All timings are normalized. Left: Driving gait.
Middle: Walking without the arm. Right: Walking with legs and the arm.

3.3.4 Lateral Slip Constraint

For every limb that has a wheel at the end and is in contact, we forbid moving

in the lateral direction (no moving sideways). To avoid the lateral slip, the

y component of the linear velocity of the center of the wheel expressed in

the frame Wi has to be zero (see Fig. 3.3c). Strictly speaking, one should

constrain the lateral velocity of the contact point to be zero, and that velocity

also depends on the angular velocity of the center of the wheel and the radius

of the wheel. For our case, the angular velocity is so small that it can be

neglected. The constraint without simplifications can be found in Giftthaler

et al., 2017.

RRRWiB(qqqi)RRRBI(θθθ(t))
Iṗppi(t) · Wiaaay = 0 ∈ R

∀i ∈ (C(t) ∩ Lw)

RRRWiB(qqqi) is the rotation from base frame to the ith wheel frame., Iṗppi(t) is

velocity of the center of the wheel in the world frame and Wiaaay is the y axis

of the coordinate system in the center of the wheel (see Fig. 3.3c).

3.3.5 Gait Design

Although our formulation allows for optimization of the contact schedule and

has the ability to change the gait pattern, we need to provide an initial contact

schedule to the optimizer. We have designed three different gait patterns,

purely by observing the sequences that human operators perform. Gaits that

we use are shown in Fig. 3.4. The driving gait with all wheels in contact

and the arm in the air is used most often (left part of Fig. 3.4). Next, we

design a walking gait with an overlap (all four wheels on the ground) and the

arm always in the air (middle). This gait is useful if one needs to change the

robot’s pose in place (i.e., without driving). On the right, the stepping gait

is shown. The arm establishes ground contact to help to overcome obstacles

such as steps or gaps.
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Figure 3.5: Subfig. 1 shows HEAP repositioning itself diagonally from (0, 0) m to (10, 10)
m. Subfig. 2a-2d shows HEAP performing cusps to arrive at a goal pose 5 m to the left.
We do not impose any constraints on the final EE configuration. Blue line shows the CoM
trajectory.

Figure 3.6: Left to Right : HEAP crossing a 3m wide gap using the stepping gait. The
coordinate frame marks the goal position. The arm is facing forward initially, but it has to
be turned back to step over the gap successfully. This behavior can be seen in the middle
figure; HEAP is turning the arm 180 degrees to establish contact on the left side of the gap
and thus be able to step to the right side.

3.4 Results and Discussion

In this section we present different motions generated for HEAP using our

planner. We implemented our trajectory optimization problem in C++, using

the Ipopt as an NLP solver Wächter and Biegler, 2006 and Hsl subroutines as

linear solvers Science and Council, 2007. We interface the Ipopt using Ifopt

Winkler, 2018a. All derivatives are computed analytically for better perfor-

mance. Computing the forward kinematics and the corresponding jacobians

was done using the RBDL library Felis, 2016. We show different behaviours

that emerge from our TO formulation. We don’t change the problem formula-

tion to obtain different motions, we merely provide a different initial contact

schedule. Our problem setup only allows for changing the timings of the con-

tact schedule, it does not allow for adding or removing contact phases.

3.4.1 Driving Motions

We show some motions that emerge from our planner when suing driving gait

introduced in section 3.3. The motion plans are shown in Fig. 3.5. In Sub-
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3. Whole-body motion planning for walking excavators

Figure 3.7: Left to Right : HEAP climbing on a 1m block using the stepping gait. The
machine exhibits the same behavior as for the gap.

Figure 3.8: Minimal distance of the CoM to the edge of the support polygon while per-
forming the maneuver shown in Fig. 3.10. Negative distance means that CoM is inside the
polygon. Robot remains stable as long as the CoM stays inside the green region. Blue CoM
trajectory was obtained with ϵ = 0.0 and the red one with ϵ = 0.5. We define S to be the
stability margin.

figure 1, HEAP is given a diagonally shifted goal position. Note how the

optimizer automatically discovers crab steering mode without specifying any

further details. In Sub-figure 2a - 2d HEAP is driving to a goal position located

on the side. It cannot just drive directly to it, nor it can crab steer to it. To

reach the goal, HEAP has to make cusps and switch between the forward and

reverse driving, which is the solution that our planner finds. Note that because

of the kinematic configuration of the legs, it is not possible to turn the wheels

in place without violating the lateral slip constraint. For planning the driving

maneuvers, the optimization takes ten times shorter than the time horizon of

the plan.

3.4.2 Stepping and Walking Motions

We tested the effectiveness of the stepping gait from section 3.3 for overcom-

ing obstacles. Stepping gait uses the arm on the excavator for locomotion.

We show two maneuvers that we tested in Fig. 3.6 and Fig.3.7. In Fig. 3.6,
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HEAP is asked to cross a gap which is modeled as a parabola (because of the

gradient for NLP). Planning such a maneuver is a tough non-convex problem,

especially since the robot cannot just jump over the obstacle. It has to slowly

coordinate placement of its limbs while standing directly above the gap. This

involves turning the arm of the excavator 180 degrees such that it can be used

to traverse on the right side of the gap. The NLP solver has to find a feasible

solution within a set that is non-convex and not connected. We also show a

motion plan where HEAP has to step a 1m high block (see Fig. 3.7). This

motion uses the stepping gait as well. For both gap crossing and stepping on

a block, the optimization takes about 2.5 times shorter than the plan length.

This is due to the terrain constraints that create a non-convex and not con-

nected feasible set, and it is hard for the optimizer to find a feasible solution.

We also show the stepping motion where we command a goal pose that is

rotated 90 degrees. Snapshots of the motion are shown in Fig. 3.10. This

motion was planned using the walking gait. Note how HEAP turns the arm to

the side opposite of the swing leg, to keep balance. The arm motion emerges

naturally from our formulation because we consider the whole-body planning

problem.

3.4.3 Robust Support Polygon Constraint

We test the effectiveness of the newly proposed stability constraint formulation.

We ask the planner to compute motion plans for a 90 degrees stepping turn

(see Fig. 3.10). We measure the minimal distance of the CoM the edge of

the support polygon. The plot of minimal distance over time is shown in Fig.

3.8. Green shaded region denotes stable states, whereas CoM crossing into

the red region will cause the robot to fall. It can be seen that our formulation

successfully enforces greater minimum distances of CoM to the edge of the

support polygon (greater stability margin S).

3.4.4 Contact Schedule Optimization

We show the contact schedule optimization on a case where it is not possible

to achieve the given goal without optimizing over the timing. The motion is

shown in Fig. 3.9. On the left, the base is positioned 5m away from the goal

position with the arm almost fully extended and the shovel in contact. The

total duration of the planned motion is 7 s. The initial timings are set such

that the wheels are in contact for all 7 s, and the arm is in contact for 6s.

HEAP’s kinematic limits prevent it from reaching the goal with the shovel

that is in contact and the speed limits (1 m/s max) prevent it from reaching
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3. Whole-body motion planning for walking excavators

Figure 3.9: Left to Right : HEAP moving from (x, y) = (5, 0) m to (x, y) = (0, 0) m while
simultaneously optimizing over the gait timings. Left : The base has to move where the
coordinate system axis are. Middle: Even with the fully extended arm and tilted base, it
is still too far from the goal position to reach it without changing the gait timings. Right :
The contact timings change and the contact is broken.

Figure 3.10: Left: HEAP using the walking gait to turn in place 90 degrees. The initial
and the final pose are shown opaque, while the poses in between are shown transparent.
The arrow shows the turning direction. Right: Snapshot from a turning motion. Note how
the machine uses the arm as a counterweight to keep balance.

the goal if the pure driving phase stays 1s long. Thus the optimization must

figure out that it has to extend the swing phase for the arm and shorten the

contact phase (total duration stays the same). The machine extends itself

as much as kinematic limits allow, (middle Fig.) but ultimately the contact

schedule timings change, and the contact has to be broken (right Fig.) After

the optimization, the arm driving phase is 2.2 seconds long. Time to compute

the trajectory was 15 s (two times longer than the planning horizon).

3.5 Conclusion and Outlook

We have shown a TO based path planning in rough terrain for legged-wheeled

systems. Our formulation allows for planning with both wheeled and non-

wheeled limbs, as well as combinations of thereof. We demonstrate the effec-

tiveness of our approach on a walking excavator traversing different types of
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terrains. Ability to traverse different terrains, using the same planner shows

the advantage of whole-body planning. Our formulation is not robot spe-

cific. We show capabilities of the planner to optimize over the gait timings

for all EE’s, including the ones with wheels. Finally, we introduce an intuitive

and straightforward formulation of the support polygon constraint that avoids

computation of half-spaces and allows for shrinkage of the support area.

We plan to bring this approach on the real platform and show driving and step-

ping motions on HEAP. Another possible improvement could be embedding

signed distance fields and collision checking. Collision checking would allow us

to execute tasks such as manipulation, or stepping over convex obstacles. At

the moment we observe that HEAP’s legs can collide with the terrain while

stepping on a block. Furthermore, since we use a gradient-based method, our

approach suffers from all the problems inherent to gradient methods, most

hindering one being trapped in the local minima. In the future, one could use

sampling-based methods to find a good initial guess for the contact schedule

that negotiates the non-convex terrain. A good initial guess for the contact

schedule speeds up the optimization drastically. One could also extend the

gait generation such that there is a phase where no limbs are in contact, and

the base is touching the ground. Such a maneuver is executed sometimes by

human operators to reposition all legs at once.

3.6 Appendix

3.6.1 Robust Support Polygon Constraint Derivation

To derive our formulation of the robust support polygon constraint, first, we

show how to shrink a support polygon defined with vertices that are centered

around the origin of the coordinate system. Subsequently, we show how to

reduce the problem to the previous case to derive the form of the constraint

that we presented. The derivation is valid for a support area with any positive

number of support points. A convex hull for a set of vertices ppp1, .., pppN is set of

all points xxx such that:

xxx =
∑
i

αipppi,
∑
i

αi = 1, αi ≥ 0
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Assuming that all the vertices defining the convex hull (blue points in Fig.

3.11, left) are centered around the origin, elements xxx inside the shrunk convex

hull can be described as:

xxx =
∑
i

αipppi,
∑
i

αi = 1− ϵ, 0 ≤ ϵ ≤ 1, αi ≥ 0

To see this, we define k = 1− ϵ, and then the constraint becomes:
∑

i αi = k.

Dividing the expressions with k and substituting α̃i = αi/k we get:

xxx =
∑
i

α̃ikpppi =
∑
i

α̃ip̃ppi,
∑
i

α̃i = 1, α̃i ≥ 0

Here we have defined new points p̃ppi = kpppi; Since k ≤ 1 it is easy to see that

we have scaled the radius vectors of all points such that they shift towards

the origin. Since the points were centered (origin was in the centroid of the

polygon by assumption) the shape of the polygon stays the same and the

origin remains the centroid of the polygon. Now we show how to formulate

the constraint with points that are not necessarily centered and thus obtain

the robust support polygon constraint. The problem formulation is shown

in Fig. 3.11, middle and right drawing. We start by defining the centered

points p̂ppcom = pppcom − ccc and p̂ppi = pppi − ccc where ccc is the centroid of the polygon

ccc =
∑

i pppi/n, and n is the number of vertices of the polygon. Now we can

formulate the constraint for the centered set of points:

p̂ppcom =
∑
i

αip̂ppi,
∑
i

αi = 1− ϵ, 0 ≤ ϵ ≤ 1, αi ≥ 0

Figure 3.11: Left : Convex polygon and the same polygon in orange color shrunk by a
factor of 0.6, Middle: Not centered convex polygon, Right : Centered convex polygon. ccc
denotes the centroid of the polygon, pppCOM the center of mass, pppi is the ith support point.
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Then we substitute back the original variables:

pppcom − ccc =
∑
i

αi(pppi − ccc)

... Steps omitted for the sake of space. We arrive at:∑
i

(αi +
ϵ

n
)pppi = pppcom,

∑
i

αi = 1− ϵ, 0 ≤ ϵ ≤ 1, αi ≥ 0

This is precisely the constraint presented in section 3.2. Note that for ϵ = 0

we recover the standard convex hull constraint and that for ϵ = 1 the support

polygon degenerates to a point which is the centroid of the support points.

3.7 Lessons Learned

This paper presented a TO-based motion planner for legged wheeled systems

in the presence of complex terrain. The planner transcribes the Motion Plan-

ning Problem (MPP) using the collocation method and computes whole-body

motion plans. The MPP formulation permits robots with wheels, legs, and

combinations thereof (such as HEAP, used as a testing platform).

We learned that optimization is a very powerful tool extremely good at dealing

with complex non-linear kinematics and constraints. The proposed planner

could compute smooth motions even with a very naive initial guess. However,

introducing obstacles slowed down the optimization significantly. Furthermore,

we noticed that allowing the optimization to optimize Contact Schedule (CS)

often led to long computing times and sometimes loss of convergence. It was

clear that the gait should be optimized with a different method.

Explicitly computing half spaces for a support polygon is easy when limb and

base planning are decoupled; however, it becomes tough for whole-body plan-

ning since the motion of the limbs and base are coupled. Furthermore, it needs

to be clarified how to compute gradients for such an operation (the optimizer

needs gradients). To address this problem, we developed the novel robust sup-

port polygon constraint, which seamlessly integrates inside the planner and it

was used inside the optimization in every subsequent paper.
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Terrain-Adaptive Planning and

Control of Complex Motions for

Walking Excavators

Jelavic, E., Berdou, Y., Jud, D., Kerscher, S., and Hutter, M. (2020). “Terrain-adaptive
planning and control of complex motions for walking excavators”. In: 2020 IEEE/RSJ inter-
national conference on intelligent robots and systems (IROS). IEEE, pp. 2684–2691

DOI: 10.1109/IROS45743.2020.9341655

Video: https://youtu.be/7QU1UmnMy1Q

This article presents a planning and control pipeline for legged-wheeled (hy-

brid) machines. It consists of a Trajectory Optimization based planner that

computes references for end-effectors and joints. The references are tracked

using a whole-body controller based on a hierarchical optimization approach.

Our controller is capable of performing terrain adaptive whole-body control.

Furthermore, it computes both torque and position/velocity references, de-

pending on the actuator capabilities. We perform experiments on a Menzi

Muck M545, a full size 31 Degrees of Freedom (DoF) walking excavator with

five limbs: four wheeled legs and an arm. We show motions that require full-

body coordination executed in realistic conditions. To the best of our knowl-

edge, this is the first work that shows the execution of whole-body motions on

a full size walking excavator, using all DoFs for locomotion.
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4. Terrain-Adaptive Planning and Control of Complex Motions for
Walking Excavators

4.1 Introduction

Robotic platforms are becoming more sophisticated and required to operate

in increasingly challenging environments. One example are hybrid legged-

wheeled1 systems that offer versatility in a variety of terrain. They combine

the agility of legged systems with the speed of wheeled systems in flat ter-

rain. However, planning and control algorithms suitable for hybrid systems

remain somewhat underdeveloped compared to their purely legged or wheeled

counterparts. To this end, we present a motion planner capable of producing

robust, terrain-aware motion plans, suitable for execution on real platforms.

Planning with entirely accurate terrain information is not possible, due to the

imperfect sensor data and spatial map discretization. Furthermore, too many

details and exact geometry (e.g., vegetation roughness, mud) can still render

Trajectory Optimization (TO) very hard. Hence, it is desirable to be able to

plan on simplified geometry and retain robustness at the execution time. We

tackle the robustness problem by designing the terrain-adaptive controller suit-

able for machines that are not fully torque-controllable. Our framework has

been validated on a hydraulic walking excavator HEAP (Hydraulic Excavator

for an Autonomous Purpose) 2018 in both simulations and experimentally2.

4.1.1 Related Work

Motion planning and control for legged systems, and for hybrid systems in

particular, are nowadays typically done using TO based approaches due to

their favorable scaling with the system dimension. Often, planning algorithms

run in a receding horizon fashion to maximize robustness, which is beneficial

for deployment on the real hardware. Such an architecture has been able to

produce various motions for legged robots with point feet (e.g. Grandia et al.,

2019b, Bellicoso et al., 2018b, Farshidian et al., 2017a). Despite similarities

with legged systems, hybrid systems have received less attention from the

robotic community. So far, algorithms for hybrid systems have been developed

mainly by the aerospace community. Typically, in extraterrestrial missions, a

robot is required to be statically stable while traversing over uneven terrain;

an example of such a work can be found in Jarrault, Grand, and Bidaud, 2011,

Cordes, Babu, and Kirchner, 2017 or Wilcox, 2012. However, these systems

are usually teleoperated in purely reactive mode. There is no planning or

whole-body control deployed on the robot.

1Legged-wheeled systems are referred to as hybrid systems in further text
2https://youtu.be/7QU1UmnMy1Q
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Figure 4.1: Top: A walking excavator has five limbs; an arm, and four legs with a wheel at
the end of each leg. They usually operate in muddy and slippery conditions, which requires
motion plans with large stability margin. Bottom: Hydraulic Excavator for Autonomous
Purpose (HEAP) balancing on three legs while performing a stepping maneuver. A video
demonstrating all the motions accompanies this submission.

Recently, several authors have investigated the application of TO to whole-

body planning and control for hybrid robots. In Bjelonic et al., 2019a, Bjelonic

et al., 2019b, ANYmal solves an Nonlinear Program (NLP) with box con-

straints on the end-effector position over a prediction horizon of 0.85 s - 2 s.

While motions on the real system look quite impressive, the planning update

rates achieved (about 200Hz) are chiefly thanks to the short prediction horizon

and linear inequalities (box constraint) that can be used to enforce end-effector

range of motion. In contrast, the kinematics of a walking excavator (absence

of the knee joint) does not permit such a simplification, and one has to solve

for the joint positions as well (see Jelavic and Hutter, 2019). This renders

the NLP considerably harder, which then results in a decreased Real-time

(RT) factor. In Viragh et al., 2019, ANYmal performs hybrid stepping and

driving motions generated by solving a Quadratic program (QP) with a pre-

diction horizon of 2 s. The authors introduce a simplified Zero Moment Point

(ZMP) criterion that allows for planning at 50Hz while the torque computa-

tion runs at 400Hz. Similar to Viragh et al., 2019, Robosimian Bellegarda

and Byl, 2019 shows impressive dynamic driving motions computed for a 2 s

planning horizon. However, both robots perform motions only in simulation
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and are typically deployed in less harsh environments compared to HEAP, see

Fig. 4.1.

Momaro Klamt and Behnke, 2018 and more recently, Centauro Klamt et al.,

2018 both perform stepping and driving maneuvers over uneven terrain. Con-

trary to the approaches outlined above, Momaro and Centauro do not blindly

locomote, but rather maintain a surroundings map that is used to decide when

to drive and when to step. However, neither robot performs whole-body mo-

tion planning, and transitions between driving and motions are handcrafted.

In contrast, our planning and control pipeline computes and executes whole-

body plans, which is a more scalable approach for robots with many DoFs.

We propose an approach that decouples the problem into sequential offline mo-

tion planning and online tracking phases. Few previous works have approached

the problem in this way. In Winkler et al., 2018, a plan involving dynamic

motions is computed for a robot with point feet. The motion is tracked using a

hierarchical Whole Body Controller (WBC) Bellicoso et al., 2016. In Medeiros

et al., 2019, whole body plans are computed in a simplified 2D scenario and

then extended to 3D with results only being shown in simulation. Skaterbots

Geilinger et al., 2018, use a general framework that allows for generation of

different hybrid motions. While demonstrated motions are quite challenging

and look smooth, they have only been demonstrated on small robots in lab-

oratory conditions. In its present form, it remains an open question of how

the planning and control algorithm would transfer to a large scale robot with

a high degree of modeling and environment uncertainty.

Typically, whole-body control is associated with torque-controlled robots and

there is rich literature covering the topic Bellicoso et al., 2019, Fahmi et al.,

2019, Grandia et al., 2019b, Bjelonic et al., 2019a, Bjelonic et al., 2019b.

However, many existing machines do not feature actuators for high accuracy

torque control (e.g. large friction, delays) or do not have all actuators torque-

controllable. Furthermore, models of the system dynamics are only available

with limited accuracy. In contrast, we develop a control framework that can

handle a mixture of torque-controlled and position/velocity controlled DoFs.

4.1.2 Contribution

We present a planning and control pipeline for legged wheeled machines. In

particular, we focus on large scale robots with many DoFs such as walking

excavators. Our contributions can be summarized as follows: We extend the

motion planner introduced in our previous work Jelavic and Hutter, 2019 for
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execution on the real hardware. Besides, we design a tracking controller for

executing challenging whole-body motions on a real machine. All of the mo-

tions shown are computed and executed using the same pipeline, i.e., the same

planner and the same controller without any changes. We use an extended

terrain-adaptive whole-body controller based on Hierarchical Optimization

(HO) framework Bellicoso et al., 2016. The controller handles both torque and

position/velocity controllable DoFs in a single structure. Lastly, our frame-

work has been demonstrated on a full-scale hydraulically-actuated excavator

in a realistic environment. We show that the proposed approach can execute

challenging motions despite the mud, high actuator friction, and limited model

accuracy available for HEAP. To the best of our knowledge, this is the first

time whole-body motions have been shown on a full size walking excavator.

4.2 Planning

In our previous work Jelavic and Hutter, 2019, we introduced a collocation Har-

graves and Paris, 1987 based planner that solves an optimal control problem.

It produces kinematically consistent plans while respecting the non-holonomic

rolling constraint for the wheels. In this article our planner has been extended

with additional constraints and analytical costs, to make plans executable on

real hardware.

4.2.1 Notation

Before introducing any equations, we introduce the notation used. Legs are

denoted with LF (Left Front), RF , LH, RH (Right Hind). The inertial

frame is denoted with I and B denotes the floating base of the robot. The

left subscript indicates the frame in which the quantity is expressed, e.g., IrIB
denotes the position of the base with respect to the inertial frame expressed in

the inertial frame. For rotation, we use quaternions or rotation matrices, where

RIB (qIB) is a rotation of the base with respect to the inertial frame. We use

v for linear velocities; Ivee is a linear velocity of the end-effector expressed in

the inertial frame. Angular velocity is denoted with ω, IωIB is the angular

velocity of the base frame as seen from the inertial frame expressed in the

inertial frame. Further examples using the same convention can be found in

Furgale, 2014. We denote desired quantities with the right superscript d, e.g.,

Iv
d
B is a desired base linear velocity, expressed in the inertial frame. Right

subscript denotes a vector component, e.g. vx is the x component of vector
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v. Finally, the generalized coordinate vector q and the generalized velocity

vector u are given with:

q =

IrIB
qIB
qj

 ∈ SE(3)× Rnj ,u =

 IvB

BωIB

q̇j

 ∈ Rnu (4.1)

where nu = 6 + nj and nj is the number of joints. qj ∈ Rnj is the vector of

joint coordinates.

4.2.2 Extensions

The planner uses a set of constraints, introduced in our previous work Jelavic

and Hutter, 2019. We describe the newly added planner components with the

equations given below.

Base motion constraint: Box constraint on the base roll angle encourages the

optimization to primarily use the arm for balancing and not to tilt the base.

Large roll angles θ of the base shrink the support polygon and could lead to

catastrophic falls. In addition, a limit on the angular velocity of the base

discourages fast motions.

|θ| ≤ θmax, BωIB ≤ ωmax (4.2)

End-effector motion constraint: We do not allow fast movement of the limbs.

Fast movement of the limbs may cause the controller to request too much

actuation, rendering the tracking problem infeasible (e.g. not enough oil flow

from the hydraulic pump). The second issue that the planner does not account

for inertial forces when limbs are swinging. Hence, high velocities can lead to

poor base tracking performance.

|vEE | ≤ vEE,max (4.3)

Nominal posture terminal cost: The planner is encouraged to finish the motion

in the nominal posture. This makes the planning the next maneuver easier

since the nominal posture is stable and joint positions are far away from the

bounds. We denote cost functions or cost terms with J .

Jnominal = (qT − qn)
TS(qT − qn) (4.4)

where S is the cost matrix and qT and qn are terminal and nominal joint

positions, respectively.
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Wheel velocity difference cost: Since HEAP cannot control each wheel’s ve-

locity individually, we encourage the planner to find the solutions where all

wheels have similar velocities. In this way, it easier for controller to track the

motion and the amount of slip is reduced.

Jwheel,i,j =
T∑

t=0

∥v2i − v2j ∥22 (4.5)

where vi is the linear velocity magnitude of the ith wheel and (i, j) ∈
{(LF,RF ), (LH,RH)}. The effect of the cost on the wheel magnitude dif-

ference is illustrated in Figure 4.2.
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Figure 4.2: Difference in velocity magnitude between Left Front (LF) and Right Front
(RF) wheel during the sideways driving maneuver. The base command was to drive left.
It can be seen that the introduction of the cost reduces speed difference by an order of
magnitude over the trajectory duration. Motions that require less velocity difference are
easier for the controller to track.

Similar to our findings, Melon et al., 2020 also reports introducing costs in

the optimization improves the quality of the planned motion. Unfortunately,

improved quality comes with more computation time (about 2x decrease of

the RT factor).

4.3 Control

The proposed control system is based on HO Bellicoso et al., 2016. HO con-

troller essentially implements an inverse dynamics algorithm Siciliano et al.,

2010. Such a control scheme allows HEAP to be force controlled. Despite

operating in purely tracking mode, force control can be beneficial since the

machine can adapt to unperceived terrain changes (e.g., bumps or puddles not

captured in the planning phase). The schematic of the proposed whole-body

controller is shown in Fig. 4.3. Fig. 4.4 shows the excavator and all the DoFs.
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Legend

qc - joint trajectory for 
contact legs
eec - trajectory for 
end-effectors in contact
b - base trajectory
cs - contact schedule
eenc - trajectory for 
swing end-effectors
PD - Impedance 
controller
WBC HO - 
Optimization based 
whole body controller
IK HO - Optimization 
based inverse 
kinematics controller

𝛕c - joint torques for 
contact end-effectors
unc - joint velocities for 
swing end-effectors
WBC𝛕c - wbc torques 
for contact limbs
WBC𝛕nc - wbc torques 
for swing limbs    

WBC HO IK HOPD

Measured state

WBC𝛕c

PD𝛕c

𝛕c

Planner, NLP

qc eenc
beec cs

Desired base pose

+

offline

100 Hz

unc

WBC𝛕nc

Figure 4.3: Structure of the proposed planning and control system. The planner (green
color) sends the desired references to the controller (red color). The WBC computes desired
torques for both contact and swing end-effectors. In addition to the WBC, we run an
impedance controller for the stance end-effectors and the Inverse Kinematics (IK) controller
for the swing end-effectors. Impedance controller torques are added to the WBC torques and
sent to the contact limbs. Velocities computed from IK are sent to the low-level controller.
Note how the WBC torques computed for swing limbs WBCτnc are not used. While the
planner runs offline, the proposed controller runs at 100Hz. The limiting factor in achieved
frequency is the bandwidth of the Controller Area Network (CAN) bus.

4.3.1 Whole-Body Control

The WBC is the core controller of our framework. In addition, we extended it

with two more controllers (see Fig. 4.3) in order to compute references for both

dynamically (torque) controlled joints and kinematically (position/velocity)

controlled joints. The control system receives operational space references from

the planner and computes optimal generalized accelerations u̇∗ and contact

forces λ∗, i.e. the solution vector x∗ looks like: x∗ = [u̇∗Tλ∗T ]T ∈ Rnu+3nc ,

where nc is the number of end-effectors that are in contact.

WBC solves a series of QP problems in a prioritized order. A solution of a

QP with lower priority is computed in the nullspace of the QP with higher

priority. For each QP, inequality constraintsAix ≤ bi and equality constraints

Cix = di define a task Ti where index i denotes the task priority. Matrices
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Figure 4.4: Schematic of HEAP with all joints and their axes. Joint notations on RF and
Right Hind (RH) legs are omitted for the sake of clarity. They have the same DoF’s as
the LF and Left Hind (LH) leg that are shown. Joints 1, 2, 9, 14 and 15 cannot be torque
controlled. Joint 12 has a very high and nonlinear static friction which makes the torque
control hard. The rest of the joints can be torque controlled. Figure adapted from Jud
et al., 2021b.

A and C, together with vectors b and d are task-dependent and have to be

specified by the user. By adding tasks Ti and assigning their priorities in a

meaningful way, one can shape the behavior of the robot (see Bellicoso et al.,

2016).

4.3.2 Tasks

The tasks used in WBC with their respective priorities are specified in Table

4.1. Before providing the formulation details, we explain how the priorities for

the tracking tasks are chosen.

The base tracking task is split into sub-tasks with different priorities to reduce

the number of DoFs in the optimization. Unconstrained optimization vari-

ables can have a detrimental effect on the quality of the motion (bang-bang

solutions) and may produce unnecessary motions. Looking at the kinemat-

ics of the excavator in Fig. 4.4, it can be seen that roll, pitch and height of

the base can be controlled using Flexion/Extension (FE) joints (joints num-

ber 5 and 7 in Fig. 4.4); other joints have a minor contribution. This holds

even for the case when one leg is in the air. Hence, the base tracking task

is split into terrain adaptive posture tracking (roll, pitch and height that are

influenced by FE joints) and 2D pose tracking (x, y and yaw influenced by

Abduction/Adduction (AA) and steer joints). Exploiting the hierarchical task
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setup to achieve posture adaptation has been reported in Bellicoso et al., 2019.

We exploit hierarchical task setup to realize the terrain adaptive behavior.

Prioritizing the adaptive posture tracking tasks in the HO over the 2D pose

tracking tasks achieves the desired goal and the machine adapts to the ter-

rain (see Section 4.4.1). In addition, the HO is more constrained which helps

finding steadier motions.

Wheel and base 2D pose (x, y and yaw) are most influenced by the same set

of joints. These are steering (numbers 1 and 2 in Fig. 4.4) and AA joints

(numbers 4, 5, 6 and 8). For this reason, the base and wheel 2D pose tracking

tasks should have the same priority. Otherwise, the DoFs may be used to

satisfy one task perfectly, and then the lower priority task could be rendered

infeasible. It is worth observing that given the fixed positions of the wheels,

the position of the base is largely determined. There is little space to move the

base without violating the wheel rolling constraint, which means that accurate

wheel tracking implies accurate base tracking. For this reason, we tune the

wheel tracking gains to be higher than the base for the 2D pose tracking tasks.

Table 4.1: WBC task setup. Smaller number indicates higher priority.

Priority Task

1 Floating base equations of motion
1 Joint limits
1 Friction cone
1 Wheel rolling constraint
2 Base orientation (pitch, roll)
2 Base translation (height)
3 Base orientation (yaw)
3 Base translation (lateral, longitudinal)
3 Ground leg orientation (yaw)
3 Ground leg translation (lateral, longitudinal)
4 Swing limb orientation
4 Swing limb translation
5 Joint acceleration minimization
5 Contact force minimization

Floating base equations of motion: We require that computed solution x∗

satisfies rigid body Equations of Motion (EoM). For details on the EoM see

Bjelonic et al., 2019a, Siciliano et al., 2010 or Featherstone, 2014.
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Joint limits: This task implements box constraints on position, velocity and

torque joint limits, i.e.

qj,lower ≤ 1

2
q̈j∆t2 + q̇j,t∆t+ qj,t ≤ qj,upper (4.6)

q̇j,lower ≤ q̈j∆t+ q̇j,t ≤ q̇j,upper (4.7)

τj,lower ≤ τ ≤ τupper (4.8)

Since the optimization has accelerations as decision variables, we need to in-

tegrate one time step to enforce the position and bounds limits. ∆t denotes

time step, qj,t are the joint positions and q̇j,t joint velocities at time step t,

respectively.

Friction Cone: The friction cone is approximated by a friction pyramid (to

have linear constraints). Details about the implementation of the constraint

can be found in Bellicoso et al., 2017.

Wheel rolling constraint : Wheel rolling constraint ensures that there is no

lateral movement of the wheel, i.e., the wheel can only move in the longitudinal

direction. The derivation of the rolling constraint can be found in Bjelonic et

al., 2019a.

Base tracking : We use a standard formulation that be commonly found for

floating base robots, e.g., Bellicoso et al., 2017, Bellicoso et al., 2016. The

equations are given below:

[JB,r 03×3nc ]x = RWI

(
I
r̈dIB +Kp(Ir

d
IB −I rIB)

+Kd(I ṙ
d
IB −I ṙIB)

)
− J̇B,ru (4.9)

[JB,q 03×3nc
]x = RWI

(
I
αd

IB +Kp(q
d
BI ⊟ qBI)

+Kd(Iω
d
IB −I ωIB)

)
− J̇B,qu (4.10)

where JB,r is a translational Jacobian and JB,q si a rotational Jacobian. The

desired angular acceleration of the base is denoted with Iα
d
IB . Operator ⊟ :

SO(3) → R3 is defined in Bloesch et al., 2016.

Ground leg translation: With steerable wheels, one can control both lateral

and longitudinal translation of the wheel. We close the control loop over the

longitudinal error (distance to W d along the ex axis in Fig. 4.5a) and lateral
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error (distance to W d along the ey in the same Figure) resulting in the equality

constraint:

πj

(
[JW,r 03×3nc ]x

)
= πj

(
RWI

(
I
r̈dIW +Kp(Ir

d
IW −I rIW )

+Kd(I ṙ
d
IW −I ṙIW )

)
− J̇W,ru

)
(4.11)

where JW,r is a translational Jacobian in wheel frame W (see Figure 4.5b).

The operator πj(·), j ∈ {x, y} is the projection onto the wheel longitudinal

axis ex (red color in Figure 4.5a) and lateral axis ey (green color).

Ground leg orientation: Since wheels introduce non-holonomic constraints,

one has to control the yaw angle of the wheel to track the position. Equalities

describing the ground leg orientation task are given by:

πz

(
[JW,q 03×3nc ]x

)
= πz

(
KpRWI(q

d
WI ⊟ qWI)+

KdRWI(Iω
d
IW −I ωIW ) +Kp,e(q̇

ref
j,w )e− J̇W,qu

)
(4.12)

e = [0 0 sign(q̇refj,w )δ]T (4.13)

δ = atan2(WrWWd,x, WrWWd,y) (4.14)

The matrices KP ,Kp,e, denote proportional gains, and KD, derivative gains.

All the matrices are diagonal and belong to a set of positive definite matrices

S3. The orientational Jacobian expressed in the wheel frame W is given with

JW,q. Wheel joint velocity reference (joints number 1 and 2 in Figure 4.4) is

denoted with q̇refj,w . We give more details about q̇refj,w computation in Section

4.3.5. Besides tracking the orientation given from the plan, we introduce an

additional feedback term Kp,ee over the desired position in the Equation 4.12.

This term drives the wheel directly to the desired position (origin of W d

in Fig. 4.5a). The sign(·) function in Equation (4.13) is used to correctly

handle the reverse driving. Such a control law is similar to the pure pursuit

tracking algorithm Coulter, 1992, with the main difference that we do not

impose moving along a circular arc towards the goal point. The pure pursuit

algorithm computes a circular arc trajectory since it has been designed for

wheeled robots with front steering when both front and rear wheel pairs have

to point to the same center of rotation. However, because of the additional

degree of freedom in the leg (the AA joints), HEAP’s wheels do not have to

point to the same center of rotation. The gain Kp,e(q̇
ref
j,w ) is an adaptive gain

on the [qw,min, qw,max] interval. Such a practice is common in the vehicle

control community Kuwata et al., 2008.
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ex
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𝛿ew
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(a) Wheel top view (b) Wheel frame

Figure 4.5: Left: Top view of a wheel tracking the desired trajectory (shown in blue
color). The desired position and orientation of the wheel center at time t are denoted
with a coordinate system W d. Coordinate system W denotes the current position and
orientation. Wheel axes are shown in red and green colors. The yaw error δ from Equation
(4.14) is denoted with δ in the Figure. Position error along the rolling direction is shown
with a full black line and denoted with symbol ew. Right: The wheel frame W is defined
to lie on the origin of the wheel. The axis ey is defined as the wheels rotation axis, and the
axis ex is defined as the direction perpendicular to ey and the terrain normal n. The wheel
moves in the direction of the axis ex. Note that the wheel frame W does not rotate with
the wheel.

Swing limb tracking : For swing limb motion tracking, we use the same for-

mulation as for the base (see Equatinos (4.9) and (4.10). The base Jacobians

JB are replaced with limb end-effectors Jacobians Ji, i ∈ {W,A}, depending
on whether we control the wheel frame W or the arm end-effector frame A.

Desired and measured coordinates for the base are replaced with desired and

measured coordinates for the limb end-effector.

Joint acceleration and contact force minimization: The task minimizes the

joint accelerations by setting q̈j = 0. It also tries to minimize the contact

forces to get rid of internal forces acting on the robot Bellicoso et al., 2017.

4.3.3 Impedance control

For the end-effectors that are in contact, we add torques computed using the

Proportional-Derivative (PD) controller PDτc = Kp(q
d
j −qj)+Kd(q̇

d
j −q̇j). q

d
j

and q̇d
j are known from the planner (denoted qc in Fig. 4.3). The PD action

helps to combat the friction effects and model inaccuracies, which become

prominent at low torques. E.g., if the arm is extended far in the front, contact

forces at the hind legs become low, and there is less torque in the joints. At

low torques, Coulomb friction can cause unwanted chattering. This issue is

ameliorated by adding some torque computed from the PD controller. The

net effect is that the legs are ”stiffened up”, i.e., the actuators operate in a
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higher frequency range where the friction effects are not as strong. Instead of

PD control, a lead-lag controller could also be used.

4.3.4 Inverse Kinematics Control

The IK controller is also based on HO and computes the desired joint velocities

q̇nc. To make the swing limbs (including the arm) accurately follow a planned

motion trajectory, we use joint velocity control as this can much better com-

pensate for modeling errors and highly-dominant friction effects. Furthermore,

some joints on our machine are simply not torque-controllable. One way to

make the WBC and IK work together is to let the IK compute desired joint

velocities and then add them as a constraint in the WBC. This constraint is

merely another task Ti in the WBC whose priority should be lower than the

joint limits task. The task can be formulated as an equality constraint:

q̈j∆t+ q̇j,t = q̇j,IK (4.15)

Such a task should only be added for non-contact limbs. Incorporating the IK

into the WBC in this way ensures that solution x∗ satisfies the EoM (highest

priority task in the WBC). However, Equation 4.15 can introduce unwanted

noise in the WBC which is why we do not add such a task.

We merely add the swing limb tracking task in the WBC controller (see Table

4.1). The torques computed for the swing limb cannot be sent to the actua-

tors (some are not torque-controllable, furthermore joint friction is prominent

without any load). However, by enforcing the swing limb tracking task, the

WBC becomes aware of the swing limb motion and accounts for inertial effects

on the base. As a consequence, the IK controller does not deteriorate the base

tracking because the WBC has already accounted for the swing limb motion.

In this way, the two controllers (WBC and IK) can work together without

conflicts. In addition, the inertial effects are minimized in the planning phase

since the motion planner does not request any dynamic motions. In Fig. 4.3,

note how the torques WBCτnc for swing limbs computed by the WBC are ne-

glected and velocities from IK are used for control. Validation of our approach

is shown in Fig. 4.6.

4.3.5 Wheel Speed Control

The turning speed of the wheels cannot be measured directly since wheel

actuators do not have encoders or any sensors. Therefore it is not possible

to close the control loop over the wheel joint (see Fig. 4.4) velocities. To
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Figure 4.6: Torques in LF and RF flexion joints during the swing phases while performing
stepping experiment. It can be seen the torques for swing limb joints computed by the WBC
do not substantially differ from the actual torques when tracking the velocities from the IK
controller.

address this problem, we close the loop over the wheel position. Furthermore,

the wheel joints are not torque controllable either. Nonetheless, we still let

the WBC include them in the optimization problem as if they were torque

controllable. The same reasoning as for the swing limbs applies (see Section

4.3.4).

The reference wheel speed q̇refj,w is calculated using Equation 4.16. Kff denotes

the feed-forward gain multiplying the desired speed obtained from the planner,

and Kp and Ki are proportional and integral gain, respectively. The reference

current for the valves, is then calculated as irefv = l(q̇refj,w ). Note that function

l is unknown and hard to identify.

q̇refj,w = Kff q̇
d
j,w +Kpew +Ki

∫ t

0

ew(t)dt (4.16)

Where position error ew (see Fig. 4.5a) is calculated as the distance from the

measured wheel position along its rolling direction ex to the plane spanned by

the vectors edy and edz of the desired wheel frame.

ew = Ie
d
x ·
(
Ir

d
IW − IrIW

)
Ie

d
x · Iex

, (4.17)

where IrIW is the position of the wheel origin in the world frame and Iex is

the rolling direction of the wheel in the world frame.
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4.4 Results and Discussion

We perform experiments on HEAP, a full-size 12-ton walking excavator.

HEAP is equipped with 12 torque-controllable and 4 position/velocity con-

trollable joints in the chassis. The arm has 4 torque-controllable joints and 3

position/velocity controllable joints . The wheel joints in the chassis (numbers

1 and 2 in Figure 4.4) are not torque controllable, together with the cabin

turn, shovel roll, and shovel yaw (numbers 9, 14 and 15). The planner is run

offline on a laptop with Intel Xeon E3-1535M v5 2.90GHz processor. It is

implemented using Ipopt NLP solver Wächter and Biegler, 2006 which imple-

ments the primal-dual barrier method. Ipopt is interfaced from C++ using

Ifopt Winkler, 2018b. Both the planner and the controller use Rigid Body

Dynamics Library (RBDL) for rigid body algorithms Felis, 2017. For state es-

timation we rely on a two-state information filter Bloesch et al., 2017 that fuses

Real-time Kinematic (RTK) Global Navigation Satellite System (GNSS) mea-

surements with Inertial Measurement Unit (IMU) measurements from chassis

and the cabin. The reader is encouraged to watch the video accompanying

this article. In all of our experiments, we keep a human driver inside the cabin

for safety.

Figure 4.7: Left to Right : HEAP driving forward over a small hill. The front leg adapts its
height to the ground height, despite motion planner producing plans under the flat ground
assumption.

4.4.1 Reactive controller behavior

Fig. 4.7 shows the terrain adaptive control behavior induced by our controller.

Fig. 4.8 shows the tracking performance. The planner thinks that the ground

is flat and comes up with a plan to move forward. However, there is a small

hill in the way, and the controller adjusts the front leg position to keep the

base upright. This behavior naturally emerges from the task prioritization

given in our controller (see Section 4.3.1). Without the torque control in the

FE joints, such adaptation would be hard to achieve.

118



4.4. Results and Discussion

2 4 6 8 10 12 14 16 18 20

1

1.2

he
ig

ht
 [m

]

Base Height Tracking

desired
measured

2 4 6 8 10 12 14 16 18 20
-2

0

2

4

an
gl

e 
[d

eg
]

Base Roll and Pitch Tracking

d

d

2 4 6 8 10 12 14 16 18 20

1

1.5

he
ig

ht
 [m

]

LF EE Height Tracking

desired
measured

2 4 6 8 10 12 14 16 18 20
Time [s]

0

0.5

1

P
os

iti
on

 [r
ad

]

LF HFE Joint Position

desired
measured
min
max

Figure 4.8: Adaptive terrain behavior. Note how the base height, roll α and pitch β are
tracked accurately over uneven terrain (see Fig. 4.7). To achieve the base tracking, the
controller abandons tracking for the LF end-effector height and the FE joint position. Such
a behavior is achieved through task prioritization.

Figure 4.9: Left to Right : HEAP performs a driving maneuver. The base is commanded
to move forward and left (frames 1-3). Subsequently, we command the machine to drive back
to the starting point (frames 4-6). The planning and control pipeline naturally discovers the
crab steering mode of the machine.

4.4.2 Driving motions

We show the ability of our proposed pipeline to generate driving motions in

Fig. 4.9. The base is commanded to go forward and left. The optimization

discovers the crab steering mode (frame 2), where all wheels point in the same

direction. Upon reaching the goal pose (frame 3), we command the machine

to drive back to the place where it started. The same crab steering behavior

emerges once more (frame 4), this time when driving backward. The motion is

completed in frame 6. Note that the machine ends up in a configuration where

the base is shifted to the right. This is because the planner receives only the

base pose as a goal; the optimization discovers the actual configuration. Com-

puting the plan for driving maneuvers takes about 1 s. Tracking performance

is shown in Fig. 4.11c.
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Figure 4.10: Left to Right : HEAP performs a stepping maneuver and reorients its base
by 30◦. The gait pattern requires it to lift the legs in the following order { LH, LF, RH, RF
}. The machine cannot complete the maneuver without using the arm for balancing (e.g.,
in snapshot 3).
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(a) Stepping turn
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(b) Stepping sideways
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(c) Driving

Figure 4.11: Left: Tracking in x−y plane for the base and end-effectors while performing
turning maneuver shown in Figure 4.10. The coordinate frame (full lines) denotes starting
pose while frame shown in dashed lines shows the end pose. The desired base pose is shown
in cyan color, while the desired trajectory of each leg is shown in brown color. The desired
trajectory for the arm is shown in blue color, while the actual trajectory is shown in the
magenta color. Middle: Tracking performance for the stepping sideways maneuver (shown
in video). The machine is commanded to step sideways two times by 0.5m Right: Driving
maneuver, shown in Figure 4.9. HEAP was commanded to drive front and right and then
to return to the starting point.

4.4.3 Stepping motions

To illustrate the whole-body capabilities of the controller, HEAP executes

the stepping maneuver shown in Figure 4.10. In this experiment, we plan a

stepping motion to turn the whole machine by 30◦ in the yaw direction. Motion

is then tracked using our whole-body controller proposed in Section 4.3. One

can observe that the controller simultaneously coordinates the behavior of

the boom, base, and all the legs. The boom is used as a counterweight and

turns to the side opposite of the swing limb. Furthermore, the controller shifts

the base to keep the Center of Mass (CoM) inside the stable region. In the

end, one can observe a successfully reoriented base (snapshot 6). Thanks to

the cost introduced in section 4.2, the machine ends the motion in a stable

configuration close to the nominal position. Hence, it is ready for re-planning

and execution of another turn maneuver if necessary. Computing the plan for
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stepping motions takes about 10 s-15 s. Tracking performance in x−y is shown

in Fig. 4.11b and 4.11a.

4.5 Conclusion and Outlook

We extend the planning approach introduced in our previous work to make

motion plans more robust and executable on a real platform. We design a

terrain-adaptive controller that is capable of tracking the motion plans pro-

duced by our planner. The controller is based on a whole-body control frame-

work and tailored for robots where not all joints may be torque-controllable,

or the torque control may be difficult. Our framework has been experimen-

tally validated through executing challenging motions on a full size walking

excavator with 31 DoF. We hope to have advanced large machines towards the

mobility level displayed by the best human operators. In the future, we would

like to use the arm for locomotion through creating contacts with the ground

and not merely balancing. The use of the fifth limb would enable stepping over

obstacles, a maneuver commonly executed by humans. Furthermore, we would

like to investigate what level of robustness is achievable by controlling as many

joints as possible in position mode. Torque control is highly beneficial, however

expensive since more cylinders have to be retrofitted with high-performance

hydraulic valves.

4.6 Lessons Learned

This paper brings the optimization planner from Paper II to hardware. We

extend the planner proposed in Paper II with additional cost terms to facili-

tate sim to real transfer. We design the terrain-adaptive controller for track-

ing whole body plans, including driving and stepping motions. Motion plans

computed by our planner have been executed on HEAP, a 12-tonne legged

excavator.

An important observation from this paper is that hydraulic actuators are

highly non-linear and precise torque control is hard to achieve. The situa-

tion is alleviated if the joint under consideration is highly loaded. An example

of such a joint is Hip Flexion-Extension (HFE) joint. In high load conditions,

the friction force is much smaller than the load force, and the relative error

in force control decreases. Hence, load-bearing joints can be controlled in the

torque mode. For non-load bearing joints, e.g., steering joints, precise torque
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control is tough to achieve. Lastly, tuning the torque control loops is very labo-

rious. These observations made us revisit the control system design (Chapter

6).

Planning once offline and executing the plans in purely tracking mode limits

the motion duration we can execute. Over time the robot deviates too much

from the plan, and it is hard to recover since the controller developed in this

work has no look-ahead horizon. The drift is especially prominent for driv-

ing motions since HEAP cannot control individual wheel speeds, and there

is always some slip during tracking. Limitations on types of maneuvers we

could accurately execute spurred us to investigate re-planning, i.e., running

the planner in the Model Predictive Control (MPC) fashion.
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5

Combined Sampling and

Optimization Based Planning for

Legged-Wheeled Robots

Jelavic, E., Farshidian, F., and Hutter, M. (2021). “Combined sampling and optimization
based planning for legged-wheeled robots”. In: 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, pp. 8366–8372

DOI: 10.1109/ICRA48506.2021.9560731

Video: https://youtu.be/B-NHY4xwgwY

Planning for legged-wheeled machines is typically done using trajectory opti-

mization because of many degrees of freedom, thus rendering legged-wheeled

planners prone to falling prey to bad local minima. We present a combined

sampling and optimization-based planning approach that can cope with chal-

lenging terrain. The sampling-based stage computes whole-body configura-

tions and contact schedule, which speeds up the optimization convergence.

The optimization-based stage ensures that all the system constraints, such

as non-holonomic rolling constraints, are satisfied. The evaluations show the

importance of good initial guesses for optimization. Furthermore, they sug-

gest that terrain/collision (avoidance) constraints are more challenging than

the robot model’s constraints. Lastly, we extend the optimization to handle

general terrain representations in the form of elevation maps.
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5. Combined Sampling and Optimization Based Planning for
Legged-Wheeled Robots

5.1 Introduction

Equipping robots with legs enables mobility over unstructured terrains, the

same as the animals can traverse them. On the other hand, wheeled robots

are not as mobile as their legged counterparts, but they are far more energy-

efficient. By combining legs and wheels into a hybrid system, roboticists have

tried to keep the best characteristics of legged and wheeled systems Bjelonic et

al., 2020b; Klamt and Behnke, 2017; Sun et al., 2020. Unfortunately, increased

flexibility comes with an increase in complexity, especially true for motion

planning since the combinatorial aspect of legged robots (contact schedule) is

combined with wheeled robots’ non-holonomic nature (rolling constraints). A

powerful tool used to cope with the increased complexity is Trajectory Op-

timization (TO). TO has been shown to work well on hybrid systems with

many Degrees of Freedoms (DoFs) (Bjelonic et al., 2020b; Du, Fnadi, and

Benamar, 2020; Jelavic and Hutter, 2019). However, optimization is prone

to local minima. While some control over solution quality can be achieved

through cost function shaping (e.g., Medeiros et al., 2020; Melon et al., 2020),

the optimization can ultimately fail due to the non-convexity of the planning

problem. Failures happen especially often in challenging terrain where colli-

sion (avoidance) constraints become particularly difficult for optimizers. In

this letter, we overcome this problem by providing good initializations (ini-

tialization step) for the optimization-based planner (refinement step); i.e we

combine Sampling Based Planning (SBP) with TO. Our initialization step

computes base poses, joint positions, and contact schedule, which are all then

fed to the optimization. The gain is that our method can handle systems with

many DoF while still being able to cope with challenging terrain.

5.1.1 Related Work

Early research on locomotion for hybrid systems treats the whole system

as a driving robot and uses legs as an active suspension. Such a prac-

tice is widespread in the aerospace community Cordes, Babu, and Kirchner,

2017; Giordano et al., 2009 and has more recently been applied to wheeled

quadrupeds Bjelonic et al., 2019a. The main disadvantage of such an ap-

proach is that it does not fully leverage the hybrid system’s legged nature, i.e.,

the robot cannot negotiate obstacles.

To simplify the combinatorial nature of contact schedule planning for legged

robots, researchers often use cyclic gaits to restrict the solution space size.

Planning with cyclic gaits has been widely used for quadrupedal robots with
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Figure 5.1: Hydraulic Excavator for Autonomous Purpose (HEAP) navigating a variety of
different terrains (refer to accompanying video for more examples). Left-up: Driving up a
2m service ramp. Right-up: hole terrain, traversing over a hole via 1m wide passage which
is too narrow for both legs. Left-middle: rough terrain, navigating a terrain with roughness
of ±1.5m. Right-middle: step terrain, stepping on a 1m high block. Left-down: Stepping
over 0.5m high wall. Right-down: gap terrain, crossing a 2m wide gap.

point feet (Bellicoso et al., 2018b; Farshidian et al., 2017a; Rebula et al.,

2007; Winkler et al., 2017) and more recently, it has been applied to hybrid

robots as well (Bjelonic et al., 2020b; Du, Fnadi, and Benamar, 2020; Viragh

et al., 2019). Presented controllers run under the flat ground assumption in an

Model Predictive Control (MPC) fashion with a prediction horizon of about

2 s. Such a strategy relies on reactive control behavior from MPC, and while

it can traverse small irregularities in the terrain, large obstacles still pose an

issue. Furthermore, these approaches are not suitable for temporally global

plans because of the relatively short prediction horizon.

More recently, terrain-aware planning has been proposed for hybrid robots

(Medeiros et al., 2020; Sun et al., 2020), which demonstrate the ability to

traverse challenging terrain and plan motions in a whole-body fashion. How-

ever, the presented methods solely rely on trajectory optimization and often

fall prey to the local minima. Furthermore, the environment is known excatly,

and it remains unclear how the planner would handle maps generated from real

sensory data since discretization and noise can lead to discontinuous gradients

in the optimization.
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Unlike the optimization, SBP cope well with the non-convex environment.

Attempts to use SBPs can be found in Geisert et al., 2019; Tonneau et al.,

2018a, where the proposed approach samples base poses in SE(3) space and

computes a guiding path for the base of the robot. The footholds are computed

in the next stage using the guiding path. However, the proposed approach does

not use any optimization, which would make the planning for robots with non-

holonomic constraints difficult. Unlike Tonneau et al., 2018a, our approach

does not accept a guiding path before having computed the footholds.

Recently, Short and Bandyopadhyay, 2017 has introduced a Contact Dynamic

Roadmap (CDRM) data structure for rapid collision checking and foothold

generation at runtime. The crux of the approach is computing a Probabilistic

Roadmap (PRM) of collision-free configurations offline and then using it for

planning online. A similar idea is employed for self-collision avoidance during

the initialization phase in our work. We extend the PRM with additional data,

so that the approach is applicable to robots with heavy limbs such as walking

excavators.

Finally, Klamt et al. Klamt and Behnke, 2017, Klamt and Behnke, 2018 use

a graph-search based approach to plan hybrid motions for the Momaro robot.

The robot decides when to drive and when to step based on a carefully crafted

cost function. The transition sequences between driving and stepping are

not computed in a whole-body fashion (as they are handcrafted). Lastly, the

graph-search algorithm choice is motivated by the fact that the robot can turn

in place using its wheels only. Hence, the approach is unsuitable for robots

with a minimal turning radius greater than zero in its current form.

5.1.2 Contribution

We present a combined sampling and optimization based planner for legged-

wheeled machines with many DoFs. We use terrain representation to generate

a wide variety of locomotion behaviors for navigating complex terrain. The

planner is divided into two stages: Initialization Step based on a sampling-

based planner and Refinement Step through nonlinear optimization. These

two stages produce kinematically feasible and statically stable plans, moti-

vated by our use case on a walking excavator HEAP (Hydraulic Excavator

for an Autonomous Purpose) 2018. Given the base’s initial and goal pose,

our formulation computes base trajectory in SE(3), joint trajectories, and

contact schedule. To the best of the author’s knowledge, existing approaches

provide only high-level waypoints (e.g., Bellicoso et al., 2018a; Klamt and

Behnke, 2018; Wermelinger et al., 2016). Finally, our approach is the first (to
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(a) Raw terrain (b) Filtered terrain

Figure 5.2: Left: Elevation map of a block with a height jump. The color gradually
changes from blue to white, where blue areas are the lowest. Right: Filtered elevation map
shown in yellow color. Areas with dark yellow color have the lowest height. The filtered
elevation can be used to compute base pose, as described in Sec. 5.3

the best of our knowledge) to include general terrain representations into an

optimization-based planner for hybrid systems.

5.2 Problem Statement

A legged-wheeled robot comprises N limbs with wheels and M limbs without

wheels, e.g., a walking excavator has four limbs with wheels, and one non

wheeled limb (see HEAP (Hydraulic Excavator for an Autonomous Purpose)

2018). The base of the robot can move in SE(3) space. Robot’s knowledge

about the environment is contained in a map, which is a mapping h : R2 → R
that maps coordinates to various functions describing the environment (e.g.,

height, traversability). In this letter, a multilayered grid map Fankhauser and

Hutter, 2016b data structure is used. Robot’s ith limb is in contact with the

environment if it is close enough to the surface, i.e.

|pz
i − h(px

i ,p
y
i )| ≤ ϵ, ϵ ∈ R+ (5.1)

where pz denotes z component of the contact position p and h(px,py) is height

at the contact position. We assume that the contact point is below the center

of the wheel (negative gravity direction). For a 30◦ slope (which is the limit

beyond which we consider terrain untraversable), the approximation error is

about 15% of the wheel radius, which is well within the adaptation capabilities

of the tracking controller, as demonstrated in Jelavic et al., 2020.
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The environment is divided into traversable part denoted with T and un-

traversable part denoted with ¬T . A contact is valid if the contact point lies

in the traversable set T , i.e.

(px,py) ∈ T ≡ sdf(px,py) > δ > 0 (5.2)

where sdf(·, ·) represents a 2D Signed Distance Function (SDF) with the pos-

itive distance meaning the point lies in T . We require all the contact points

to stay at least δ away from the ¬T . The 2D SDF is stored as a grid map

layer and calculated using marching parabolas Felzenszwalb and Huttenlocher,

2012. Note that, unlike the limbs, robot’s base is not required to stay in T
since the base is not in contact with the terrain.

Our goal is to find a trajectory τ with a length of T seconds such that

pB(t = 0) = pB,start and pB(t = T ) = pB,goal where pB,start,pB,goal are

given starting and goal position for the base of the robot. Apart from the

base, we do not enforce any other constraints on robot’s pose or joint angles

although this is not a hard requirement of our approach.

5.3 Initialization Step

The backbone of the initialization step is a sampling-based planner that sam-

ples base poses. We use Rapidly-Exploring Random Trees (RRTs) Karaman

and Frazzoli, 2011; LaValle, 2006 although the problem formulation also per-

mits the use of multi-query planners such as PRMs Kavraki et al., 1996. Re-

sults presented are mostly generated using and RRT# Arslan and Tsiotras,

2013, whose implementation is taken from Sucan, Moll, and Kavraki, 2012.

In addition to RRT, a PRM of limb end-effector positions is precomputed for

efficient online planning.

5.3.1 Offline Computation

We use the CDRM data structure introduced in Short and Bandyopadhyay,

2017. CDRM can be used at runtime to generate collision-free movements of

the robot’s limbs. In our case, CDRM helps us avoid collision between arm

and legs while using the arm as a supporting limb. For each limb, the mapping

between joint angles qi and end-effector position Bpi is stored. This mapping

does not change over time since Bpi is expressed in the base frame of the

robot. Furthermore, we store the mapping between ith limb’s Center of Mass

(CoM) pi,com and joint configuration for the same limb. This allows us to
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(a) Roadmap legs (b) Roadmap arm

Figure 5.3: Roadmap vertices (red spheres) and edges (blue lines). Each vertex represents
an end-effector position in R3. Left: Roadmap shown for the legs of a walking excavator.
Shown are 300 vertices and about 2000 edges. Right: Roadmap for the arm. Shown are
1000 vertices and about 8000 edges.

evaluate the stability criterion during the online planning phase rapidly. The

offline roadmap is created using the PRM algorithm; it is shown in Fig. 5.3.

The roadmap does not change over time which motivates the use of PRM.

In addition to the roadmap, we compute terrain normals and filtered height.

This computation can be performed by fitting a tangent plane at each point

(x, y) locally. Local fitting is done using least squares, and as a result, we get

the normal of the plane and fitted height at point (x, y). We filter once with

a local radius R of 0.3m and once with 2.5m, which is roughly the robot’s

footprint radius. Filtering result with large R is shown in Fig. 5.2. The idea

behind this is to use the filtered height for computing base poses. Terrain

discontinuities (e.g., steps) should not be reflected in the base movement since

the base moves above the terrain. On the other hand, smoothed terrain (shown

in yellow) is a good approximation for base movement, assuming that it stays

at some (roughly) constant height above the smoothed terrain.

5.3.2 Online Planning

Having computed the roadmap shown in Fig. 5.3, an RRT planner finds a plan

between base poses pB,start and pB,goal. We use RRT framework to enable

re-planning in potentially changing maps. Similar to previous work Tonneau

et al., 2018a, our planner proposes a base pose before computing the limb

contacts. Subsequently, we check whether contacts can be established and

whether the robot is stable. In general, a sampling-based planner typically
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has three main components: sampling, connecting a new sample to the tree,

and feasibility checking. In this section, we describe how each step works.

5.3.2.1 Sampling

Candidate base poses are sampled in SE(2) space instead of full-fledged SE(3).

The idea behind this decision is straightforward: since limbs interact with the

environment, the sampler uses terrain information to constrain some DoFs of

the base pose, which reduces the dimension of the search space. Hence our

planner samples x, y position of the base, and yaw angle γ from a uniform dis-

tribution. The remaining DoFs are computed based on local terrain features:

roll angle α, pitch angle β, and z coordinate. Roll and pitch are computed from

terrain normal n such that the base remains roughly parallel to the terrain

underneath. Finally the z coordinate can be computed as z = h(x, y)+hdesired

where h(x, y) is the terrain elevation at sampled point (x, y) and hdesired is

user defined desired height above the terrain.

Selecting h(x, y) and n can be tricky. E.g., when crossing a deep gap, terrain

height can be so low that the planner cannot generate any valid poses (despite

the heavy filtering). Luckily, one can leverage a simple observation to chose

good h and n. When moving over untraversable terrain ¬T , the robot only

cares about the nearest T (traversable area). The rationale is that contacts

should only be made with T , and the base pose should be selected such that

limbs can reach the nearest T . Alg. 3 implements this proposition; it selects h

and n such that contacts with T can be established. The Alg. 3 enumerates

all candidate normals and heights (lines 1-6) and then does a small brute

force search to select a pair (hbest,nbest) that minimizes some criterion. The

computePoseCost function in line 9, gives low cost to poses where all legs

are grounded and penalizes big roll and pitch angles. Full base pose is then

determined from (hbest,nbest).

5.3.2.2 Connection to Tree

Upon drawing a random base pose (x, y, γ), the planner tries to connect it to

the tree (using the weighted cost of euclidean distance and angular distance).

The connection is done in SE(2) space using Reeds-Shepp (RS) curves Reeds

and Shepp, 1990. RS curves give an optimal path between two poses while

respecting the minimum turning radius constraint. For a robot that can turn

in place, one could use a very small turning radius. Attempting straight-line

connections between base poses would make the subsequent refinement step

(see Sec. 5.4) very hard since the satisfaction of the non-holonomic rolling
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Algorithm 3 Select n and h at position (x, y)

1: ▷ Input: base position (x, y), grid map
2: (x̂, ŷ) = nearestTraversablePosition(x, y)
3: h = height(x, y), n = normal(x, y)
4: hf = heightFiltered(x, y), nf = normalFiltered(x, y)
5: ĥ = height(x̂, ŷ), n̂ = normal(x̂, ŷ)
6: ĥf = heightFiltered(x̂, ŷ), n̂f = normalFiltered(x̂, ŷ)
7: Hs = { h, hf , ĥ, ĥf}, Ns = { n, nf , n̂, n̂f}
8: for (nc, hc) in {Ns×Hs} do
9: cost = computePoseCost(hc,nc)

10: if cost < cbest then
11: hbest = hc, nbest = nc, cbest = cost
12: end if
13: end for
14: return (hbest, nbest)

Figure 5.4: Addition of a new node into the RRT tree. Red circles and full black lines
are nodes and paths that make the current RRT tree. The newly sampled node (green) has
to be connected to the rest of the tree. For a successful connection, all subnodes on the
connecting path (small green circles) have to be valid.

constraint cannot be guaranteed. By using RS curves, this is implicitly en-

sured; however, the resulting trajectory might be longer. Computing the RS

connection is done terrain agnostic completely.

5.3.2.3 Feasibility Checking

Fig. 5.4 depicts the feasibility checking. Upon drawing a new sample (large

green node) as described in step 1, we compute a RS connection (dotted line)

to the new node, as described in step 2. Subsequently, the dotted line is dis-

cretized into subnodes (small green circles) using an RS interpolation method

Sucan, Moll, and Kavraki, 2012. Next, for each subnode we generate full 6

DoF pose using Alg. 3. Finally, each subnode undergoes feasibility checking,

ensuring that the robot is statically stable and can establish enough contacts

with the ground. In case a feasibility check passes for every subnode, the

RRT adds the new state and the connecting path to the tree. It is crucial to
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Algorithm 4 Check feasibility of base pose T

1: (α, β) = rollAndPitch(T )
2: if |α| > αmax or |β| > βmax then
3: return FALSE
4: end if
5: nContacts = selectContactLegsConfiguration(T )
6: switch nContacts do
7: case 4
8: return TRUE
9: case 3

10: selectSwingLegsCofiguration(T )
11: selectSwingArmCofiguration(T )
12: return isStable()

13: case 2
14: selectContactArmConfiguration(T )
15: selectSwingLegsCofiguration(T )
16: return isStable()

17: case 1, 0
18: return FALSE

discretize the RS path with high resolution since straight-line connections are

assumed between two subsequent subnodes; in our implementation, we allow

for a maximal distance of 20 cm. The length of the whole path is a tuning

parameter (in our case, 15m). Alg. 4 summarizes feasibility checking.

The feasibility check shown in Alg. 4 does not allow poses with a large roll or

pitch angle (line 2). We then ground all the legs (line 5). A leg is grounded if

a sufficient number of configurations in PRM are in contact with the surface

and the contact location lies in T (see Sec. 5.2). Among grounded legs con-

figurations the algorithm picks the one closest to the default configuration. In

case of four contact legs, the pose is deemed to be stable. In case three legs

are in contact, the algorithm selects good joint configuration for the swing leg

according to some criterion (e.g. ground clearance or proximity to the default

configuration). The swing arm configuration is selected such that the CoM

is as centralized as possible. In case only two legs are in contact, the algo-

rithm checks whether the arm can be grounded (line 14) and then proceeds

with selecting swing leg configurations. The isStable() function computes the

CoM of the whole robot and verifies that it lies in the support polygon. Aside

from performing feasibility checking, Alg. 4 computes the full joint state of the
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Figure 5.5: Evaluation metrics Left: Costs and computation times of the RRT (opti-
mization excluded). t-time until first solution (blue), ci-initial solution cost (red), cf -final
solution cost (yellow). Middle: Success rates for different terrains versus difficulty. Maxi-
mal difficulty of 1, corresponds to roughness of ±2 m, gap width of 3.5m and step height
of 1.5m. Minimal difficulty corresponds to roughness of ±0.25 m, gap width of 1m and
step height of 0.5m. HEAP wheel radius is 0.6m for comaprison. For the hole terrain and
flat terrain, the difficulty remains unchanged and the curves are shown for the sake of com-
pleteness. Right Computation time until optimization convergence when initializing using
planner’s first stage versus using linear interpolation. For terrains with obstacles, gap, step
and hole, linear interpolation cannot find a solution.

robot q for feasible poses. The CoM of the full joint configuration q can be

computed using:

pcom(q) =
1

M

(
mBpB,com +

N∑
i=1

mipi,com(qi)

)
(5.3)

where M is the mass of the whole robot, pi,com and mi are the position of

CoM and mass of the ith limb, respectively. Thanks to the mapping between

qi and pi,com computed offline, the sum in Eq. 5.3 can be evaluated rapidly.

Note that unlike Tonneau et al., 2018a, we do not require all limbs to contact

the environment while generating base poses, thus allowing for more flexibility.

Once the RRT has reached pB,goal, the final path is post-processed. In the

first step, the contact schedule is modified to ensure stability. We do not allow

establishing/breaking more than one contact between two different successive

nodes. If the robot wants to change more than one contact state at any point,

we insert a node in between. Those situations happen only when the arm

contact is established/broken. The robot tries to change the contact state of

the arm and leg(s) simultaneously. We add a short full contact phase (legs +

the arm) in between to ensure static stability. Secondly, we compute Inverse

Kinematics (IK) for the non-wheeled limbs in contact. Any of those limbs has

to satisfy the contact constraint ṗi = 0. For each non-wheeled limb in contact,
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we find base poses at the beginning and the end of its respective contact phase.

The reference position p∗ for the IK is found by solving:

min ||ps − pe|| (5.4)

and setting p∗ = (p∗
s + p∗

e)/2.0, where ps are all positions in the ith limb

roadmap at the beginning of the contact phase and pe at the end of the

contact phase. We then compute ith limb’s joint angles for every contact node

as qi = IK(p∗).

Alg. 4 ensures that the robot is stable and that limbs are not in a collision. Nev-

ertheless, it assumes that straight line connections in joint space are collision-

free. The assumption might be invalid, especially for the arm, which moves

around the base and is used as a counterweight. To overcome this problem,

we use the precomputed roadmap in which we, similar to Short and Bandy-

opadhyay, 2017, invalidate all vertices and edges that are in a collision with

other limbs or the environment. Once the graph is updated, each limb’s path

is found using a graph search algorithm (A* in our case). In practice, legs

always end up being collision-free, but the arm often collides with legs. Hence

we run the graph search only between nodes where the arm moves.

5.4 Refinement Step

The refinement step uses TO to satisfy all system constraints. TO methods

scale well with system dimension and can handle nonlinear constraints such as

forward kinematics or non-holonomic rolling constraints. However, computing

the correct contact schedule and dealing with obstacles remains challenging

for the gradient-based methods, so we initialize optimization with trajectory

computed in the initialization step. The optimization receives contact sched-

ule, base position/velocity (6 DoF) and joint position/velocity (25 DoF in our

case) and solves a feasibility problem. Adding an optimization objective allows

for fine motion tuning, however it typically results in increased computation

times. TO planner used in this paper is based upon our previous work Jelavic

and Hutter, 2019, and below we present modifications that enable us to cope

with more challenging scenarios.

Terrain maps To the best of the author’s knowledge, there is no optimization-

based planner for hybrid systems that can handle general terrain representa-

tions. Compared to their legged counterparts, hybrid robots keep their limbs

in contact over long distances. Hence, map errors influence more variables
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Figure 5.6: Traversing terrain in different manners. Limb names: LF stands for Left Front,
whereas RH stands for Right Hind etc. Left: HEAP reaches goal pose via shortest path
Middle Left: Contact schedule traversing over the gap. Total duration: 114.98 s Middle
Right: HEAP trying to minimize stepping while reaching the goal. Not that two legs still
have to be lifted since the bridge is too narrow for both legs. Right: Contact schedule for
driving whenever possible. Total duration: 156.33 s

and constraints, which makes the optimization more sensitive. So far, pro-

posed terrain-aware optimization planners have used analytical descriptions of

the environment Medeiros et al., 2020, Winkler et al., 2018, Sun et al., 2020.

Our planner integrates grid maps Fankhauser and Hutter, 2016b into the op-

timization, thus allowing planning in any environment where a 2.5D map is a

suitable representation. The elevation map comes into the optimization in the

form of height constraint for all limbs in contact C.

pz
i = h(px

i ,p
y
i ), ∀i ∈ C (5.5)

The constraint (5.5) is problematic since height mapping h(·, ·) is discrete and
discontinuous (e.g. gaps or steps) which can cause optimization to diverge. Far

away from the cell center, Nearest Neighbor (NN) search or linear interpolation

are poor approximations of the true elevation. Hence, approximation of partial

derivatives [∂h∂x
∂h
∂y ] using central finite differences renders them non smooth.

For large grid cells (0.1m), the key to improving the optimization convergence

is using a higher-order approximation of the h(·, ·) function. We found that

bicubic interpolation and bicubic convolution algorithms Keys, 1981 work well.

Implementations of both algorithms are integrated into the open-source pack-

age Grid Map and made available for the community1. Unfortunately, neither

filtering nor higher-order approximation can help if the terrain is discontinuous

(steps or gaps). To handle discontinuities, we use gradient clipping, a technique

known from the machine learning community. Smaller clipping thresholds pre-

vent getting stuck in bad minima. However, they usually require a few more

iterations for convergence.

1https://github.com/ANYbotics/grid_map
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Traversability Constraint We require that all contacts stay in the traversable

area; the constraint implements Eq. 5.2. The gradient is also computed using

a central finite difference with bicubic interpolation.

Collision Avoidance Constraint imposes a minimum distance between the col-

lision geometries of the robot. We use shape primitives such as spheres or

cylinders. We impose that the minimal distance between collision geometries

has to be greater than dmin. The minimal distance between collision geome-

tries is calculated using the Bullet physics engine.

5.5 Results

We tested our planner on HEAP HEAP (Hydraulic Excavator for an Au-

tonomous Purpose) 2018, which is a customized Menzi Muck M545 walking

excavator; five limbs, 25 joints, and a floating base make it a challenging test

bench. The whole planning pipeline is implemented in C++ programming

language, and tests are performed on the Intel Xeon E3-1535M processor with

32 GB of RAM.

5.5.0.1 Roadmap Generation

We use a roadmap size of 300 vertices per leg and about 3000 vertices for the

arm since it has a much larger workspace (see Fig. 5.3). More vertices yield

better workspace approximation; consequently, finding stable configurations is

more likely. However, with more vertices, more computation is required to find

stable configurations. We found the proposed number of vertices to be enough

for finding solutions for the scenarios tested. For each vertex in the roadmap,

we attempt the connection to its ten nearest neighbors (in operational space).

If the distance to the nearest neighbor is bigger than dmax, the connection

is rejected. For the legs dmax=0.3m and for the arm dmax =1m. PRM

generation takes about 30 minutes, with more than 99% of the computation

required for the arm roadmap generation. Looking for connections that are

shorter than dmax is the most computationally intensive operation.

5.5.0.2 Terrains

The proposed planning pipeline can compute plans in various terrains (see

Fig. 5.1, also see the video attached2). The planner uses the same set of

parameters for all scenarios. Traversing such challenging terrains would not be

2https://youtu.be/B-NHY4xwgwY
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possible with a purely optimization-based planner and handcrafting a contact

schedule for those scenarios would be difficult. We show success rates on

complex terrain features in Fig. 5.5b, by averaging five trials for each difficulty.

All terrains except flat ground are shown in Fig. 5.1: rough (middle left image),

gap (bottom right), step (middle right), hole (top right). For terrains flat,

rough, gap and step, the planner was asked to find a path of about 15m in

length. For terrain hole, the length was about 30m such that the planner has

to navigate around the hole to get to the other side (see Fig. 5.1, top right).

The maximal distance parameter in the RRT was set to 10m. We consider

planning successful if both initialization and refinement step find a solution.

Times and costs in Fig. 5.5a have been obtained by averaging ten successful

trials across all terrain difficulties. All the plans are found using the same

RRT optimizing planner with planning time of 4 s. Fig. 5.5a shows that the

first stage finds initial solutions quickly and that they are close to the optimal

ones. Short planning times suggest that the initialization step could be used

in a receding horizon fashion.

5.5.0.3 Importance of Initialization

To quantify effect of good initialization on the convergence, we use linear in-

terpolation (between start and goal pose) as a baseline strategy. The other

strategy is using a whole-body plan from the first stage to initialize all the

variables. Linear interpolation uses the contact schedule from the first stage

since it cannot compute one alone. The computation times until convergence

when initialized with linear interpolation are shown in Fig. 5.5c (red color).

The times were obtained by averaging ten successful trials with different ini-

tializations over all terrains. The computation times variance is caused by

different durations of initialization trajectories from the first stage (longer

durations require more computation). A good initialization makes a small dif-

ference in continuous terrain (flat terrain and rough terrain with roughness

±0.5). However, it becomes essential for harder terrains (hole, gap, step) since

linear interpolation fails to produce a solution. This result corroborates our

hypothesis from the Sec. 5.1 that TO can easily handle non-holonomic and

nonlinear constraints from the robot model, whereas terrain constraints and

contact schedule discovery present challenges for the optimization. Unlike ag-

ile quadrupeds in Winkler et al., 2018, HEAP cannot execute full flight phases,

which makes the terrain constraints especially challenging.
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5.5.0.4 Contact Schedule Discovery

The way of terrain traversing can be influenced by tuning the cost function

inside SBP. This is illustrated in Fig. 5.6. HEAP is commanded to reach the

other side of the gap. Trajectory of the base is shown in green color. In the

first scenario (Fig. 5.6a), HEAP incurs no cost for lifting the legs off. Upon

introducing the stepping penalty, HEAP realizes that it can use a small bridge

to avoid breaking contact on all legs, Fig. 5.6c. This behavior emerges merely

by introducing the stepping penalty and without any other modifications. Such

flexibility is made possible by optimizing over contact schedule and full-body

poses simultaneously. The resulting contact schedules are shown in Fig. 5.6b

and Fig. 5.6d.

5.6 Conclusion and Outlook

We present a combined sampling and TO based planner for legged-wheeled

robots. The sampling-based stage computes whole body configurations and

contact schedule; it is based on RRT planner and a roadmap that is pre-

computed offline. Compared to existing work, the roadmap is extended to

store the mapping between joint angles and CoM, which allows for quick sta-

bility checks in the presence of heavy limbs. Our SBP planner achieves fast

planning times and could be used interactively. In the second planning stage,

TO satisfies all system constraints, such as non-holonomic rolling constraint.

We integrate elevation maps into TO and demonstrate planning on general

map representations. Evaluations of the proposed approach suggest that the

main difficulty for TO stems from terrain/collision (avoidance) constraints and

contact schedule planning, problems that are mitigated using the proposed

two-stage approach.

Future developments will verify the approach on real machines. Besides, we

plan to investigate using TO for tracking plans from the first stage in an MPC

fashion.

5.7 Lessons Learned

This publication investigated combining the merits of sampling and

optimization-based planning. We use a two-stage approach where the SBP

computes an initial guess for the optimization-based planner from Paper II.

The computationally intensive foothold computation and stability checking
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inside SBP is sped up by utilizing roadmaps computed offline. General pur-

pose elevation maps are integrated into the optimization-based planner from

Paper II. The success rate of the proposed two-stage planner was evaluated on

a variety of challenging terrains.

The most important takeaway from this publication is that optimization needs

to be carefully initialized in the presence of obstacles or difficult terrain. We

quantitatively evaluated how important the initial guess is. We found that it is

not enough to provide a feasible Contact Schedule (CS), but it is also essential

to initialize the motion and the footholds. The results confirmed our intuition

that the optimization gets stuck in local minima for difficult terrains.

On the other hand, on easy terrain, the TO had no issue computing motion

plans that required dealing with nonlinear kinematics—in this case, providing

a good initial guess slightly improved the convergence (fewer required itera-

tions). These facts suggest that planning in the presence of obstacles is more

challenging than planning with complex kinematics/dynamics.

Lastly, naively including elevation maps in the optimization can lead to a loss

of convergence. Typically the maps contain discontinuities either because of

sensor noise or terrain features (e.g., steps). Naively computing gradients using

finite differences can lead to vast and discontinuous gradients. We found that

gradient clipping can help retain convergence even with large terrain jumps

and sensor noise. Furthermore, it is helpful to use interpolation between the

samples for large grid map cells. Higher-order interpolations like cubic or cubic

convolution improve convergence compared to linear interpolation.

To aid the foothold planning inside the TO, we included a 2D signed distance

field computed from the traversability map. We found 2D SDF to be an

excellent representation for foothold planning since it has continuous gradients,

it is fast to compute, and it avoids dedicated pipelines for foothold feasibly

region computation like in Grandia et al., 2022.
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6
LSTP: Long Short-Term Motion

Planning for Legged and

Legged-Wheeled Systems

Jelavic, E., Qu, K., Farshidian, F., and Hutter, M. (2022c). “LSTP: Long Short-Term Motion
Planning for Legged and Legged-Wheeled Systems”. submitted to IEEE Transactions on
Robotics

DOI: not published yet

Video: https://youtu.be/iQiNAy6sLlo

This article presents a hybrid motion planning and control approach applica-

ble to various ground robot types and morphologies. Our two-step approach

uses a sampling-based planner to compute an approximate motion which is

then fed to numerical optimization for refinement. The sampling-based stage

finds a long-term global plan consisting of a contact schedule and sequence

of keyframes, i.e., stable whole-body configurations. Subsequently, the opti-

mization refines the solution with a short-term planning horizon to satisfy all

nonlinear dynamics constraints. The proposed hybrid planner can compute

plans for scenarios that would be difficult for trajectory optimization or sam-

pling planner alone. We present tasks of traversing challenging terrain that

requires discovering a contact schedule, navigating non-convex obstacles, and

coordinating many degrees of freedom. Our hybrid planner has been applied

to three different robots: a quadruped, a wheeled quadruped, and a legged

excavator. We validate our hybrid locomotion planner in the real world and

simulation, generating behaviors we could not achieve with previous methods.
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The results show that computing and executing hybrid locomotion plans is

possible on hardware in real-time.

6.1 Introduction

Motion planning is one of the fundamental problems in robotics, as it enables

mobile robots to safely navigate in uncontrolled environments. Among differ-

ent strategies for mobility, legs combined with wheels are the most promising

solution when it comes to task that require a high level of mobility (legs)

and efficiency (wheels) in challenging terrain Bjelonic et al., 2019a; Jud et al.,

2021b; Kashiri et al., 2019.

The motion planning for hybrid platforms, i.e. systems with legs and wheels,

is particularly challenging since, on one side, legs and wheels increase the

number of Degrees of Freedoms (DoFs) the planner has to handle. On the other

hand, motion planning for legged-wheeled robots is particularly complex since

the combinatorial nature of stepping with legs (contact schedule) is combined

with the non-holonomic nature of wheeled robots (rolling constraints). To

tackle this challenging problem, we propose a motion planning framework for

legged and legged-wheeled platforms based on different levels of model fidelity

and different prediction horizons. In particular, a Numerical Optimization

(NO) technique is used for short-term planning with high fidelity (e.g. full

kinodynamic model) and randomized sampling for long-term planning with

lower fidelity (full kinematics in quasistatic conditions).

NO is frequently used for planning and control with legged robots as it handles

well high dimensional joint space, non-holonomic constraints, and nonlinear

dynamics constraints. Examples can be found in the early work of Bellicoso

et al., 2016; Bjelonic et al., 2019a; Jenelten et al., 2020, which follows the de-

coupled planning approach for the footholds and the base of the robot. With

the advance of solvers and more computing power, researchers have started

solving whole body planning problems in a receding horizon fashion fully on-

board Grandia et al., 2022, whereby discrete foothold locations and continuous

body motions are jointly optimized. However, a major limitation is the sen-

sitivity to initialization and local optima, which are often caused by terrain

constraints (e.g., collision avoidance) Jelavic and Hutter, 2019. Similarly, re-

searchers tackled the locomotion problem using Reinforcement Learning (RL)

methods Lee et al., 2020; Miki et al., 2022a. Despite the unprecedented ro-

bustness and impressive field deployments, RL methods still struggle to achieve
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(a) Legged excavator

(b) Quadruped (c) Wheeled quadruped

Figure 6.1: a) HEAP overcomes a virtual bridge too narrow to drive over it. Hence, the
stepping behavior emerges. We did not dig a ditch in our testing field. However, the map
supplied to the planner contains it. Left: HEAP driving on three wheels over the bridge.
Right: Visualization of the map the planner sees. b) ANYmal climbing consecutive steps.
c) ANYmal on wheels stepping up the stairs (plan visualization). All the motions are also
shown in the accompanying video https://youtu.be/4eqq4Ucl92o.

precise and coordinated foot placement required to negotiate terrains such as

stepping stones Brakel et al., 2021; Grandia et al., 2022.

On the other hand, Sampling Based Plannings (SBPs) Karaman and Fraz-

zoli, 2011; Kavraki et al., 1996; LaValle and Kuffner Jr, 2001; LaValle et al.,

1998 can handle very non-convex environments since the randomization allows

them to escape local minima. The robotic community has been using SBP for

planning contacts and whole-body motions on a variety of legged robots Bretl,

2006; Geisert et al., 2019; Hauser et al., 2008; Tonneau et al., 2018a. How-

ever, including kinodynamic constraints in a sampling-based planner remains

an open research problem. Legged robots have many DoFs which often results
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in long planning times as SBP runtimes scale exponentially with configuration

space dimension.

This work presents Long Short-Term Motion Planner (LSTP) combining the

merit of optimization-based and sampling-based methods while generalizing to

different robot types. The method is showcased on a quadruped, a wheeled-

quadruped, and a legged excavator. The SBP computes contact schedule

and keyframe (whole-body state) sequence quickly (< 1 s) thanks to offline-

computed roadmaps. Subsequently, the NO refines the initial solution. Whole-

body states from SBP act as attractors for the optimization preventing it from

falling into bad local minima. Thus, we can handle both complex terrains

(thanks to SBP), many DoFs, and complex system dynamics (thanks to NO).

We run the NO in an Model Predictive Control (MPC) fashion, thus ensuring

stability and robustness to disturbances Farshidian et al., 2017a.

6.1.1 Related Work

The robotic community has extensively studied motion planning for legged

robots, and NO emerged as one of the most common methods, especially

for short-term planning. Examples of optimization-based controllers for

quadrupeds can be found in Bellicoso et al., 2016, 2018b where Hierarchi-

cal Optimization (HO) satisfies system constraints while tracking base twist

reference. Optimization has also been used to implement active suspension be-

haviour on legged-wheeled robots Cordes, Babu, and Kirchner, 2017; Giordano

et al., 2009; Reid et al., 2016. However, these works do not have a look-ahead

horizon in the future and hence cannot overcome challenging obstacles.

Planning allows the robot to prepare for the oncoming obstacles and thus

increases the chances of overcoming them. In Winkler et al., 2018, the au-

thors use collocation to transcribe the problem into an Nonlinear Program

(NLP) and solve it using IPOPT solver Wächter and Biegler, 2006. The opti-

mization discovers whole-body maneuvers using all DoFs to overcome various

obstacles. This approach has been extended to work with a legged-wheeled

robot Medeiros et al., 2020 and a legged excavator Jelavic and Hutter, 2019.

Similar examples of using NO for planning can be found in Geilinger et al.,

2018; Jelavic et al., 2020; Melon et al., 2020. The authors above plan offline

once and then track the plan using a tracking controller. In Jelavic et al., 2020;

Winkler et al., 2018, the tracking controller is based on HO from Bellicoso et

al., 2016.

Keeping the contact schedule fixed and allowing the NO to optimize for the

whole-body motion is a common practice in the legged-robot community.
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While NO can also optimize over the contact schedule Jelavic and Hutter,

2019; Winkler et al., 2018, it often results in a very non-convex NLP that is

difficult to solve. This motivates the use of Mixed-Integer Programs (MIPs)

and L1 norms for planning Ioan et al., 2021; Tonneau et al., 2020. MIPs

have been successfully applied in robotics, e.g., for humanoid robots Deits and

Tedrake, 2014. While this is an attractive problem formulation, the computa-

tion times scale exponentially with the planning horizon.

Planning in the receding horizon fashion reduces the need for an accurate

tracking controller and increases the system’s robustness. Many roboticists

use NO in this fashion, and this paradigm is often called MPC. In Bellicoso

et al., 2018b; Bjelonic et al., 2019a; Jenelten et al., 2020; Winkler et al.,

2015 the authors generate motions in a decoupled fashion (decoupled base

trajectory and footholds) using Zero Moment Point (ZMP) criterion. The

decoupled planning has also been applied to legged-wheeled robots Bjelonic

et al., 2019a; Sun et al., 2020. The optimization problem can be solved at

high frequencies, up to 200Hz. However, decoupling the problem reduces the

controller’s generality.

Increased computing power and new methods based on differential dynamic

programming Farshidian et al., 2017c have enabled optimizing for base and

limbs simultaneously Farshidian et al., 2017a. Many recent works solve a full

optimization problem using a centroidal or single-rigid-body model Grandia

et al., 2019b, 2022; Ishihara, Itoh, and Morimoto, 2019; Jenelten et al., 2022;

Sleiman et al., 2021. Algorithm in Li, Frei, and Wensing, 2021 solves a hierar-

chical MPC, where a high-fidelity model (near future predictions) is combined

with a lower-fidelity model (predictions further away in time). Optimizing

over full dynamics without decoupling makes planned motions stabler Li, Frei,

and Wensing, 2021. Moreover, the MPC has progressed to the point where

it is possible to incorporate the terrain constraints and solve the optimiza-

tion in real time Grandia et al., 2021; Melon et al., 2021. Bjelonic et al., 2022

shows a two-stage optimization where a motion library is first computed offline

and then executed using online MPC. We also follow the approach of using

perceptive MPC as a backbone for our refinement planning stage.

While NO is a great tool for dealing with complicated nonlinear dynamics

and many DoFs, it inevitably falls prey to local minima. Some researchers

have tackled this problem by employing stochastic optimization Mastalli et

al., 2020. While the planner can cope with challenging terrain, the motion

plans take up to several minutes to compute. Another stream of research uses

different types of planners to cope with local minima; most of them are based
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on Rapidly-Exploring Random Trees (RRTs) Karaman and Frazzoli, 2011;

LaValle and Kuffner Jr, 2001, Probabilistic Roadmaps (PRMs) Kavraki et al.,

1996 or grid-based methods (e.g. A∗ Hart, Nilsson, and Raphael, 1968).

Grid-based methods discretize the workspace and use a graph search algorithm

(A∗ being a popular choice). Early works Escande, Kheddar, and Miossec,

2013 can generate complex motions by defining a suitable potential field over

the workspace. However, motions like crawling narrow passages and ladder

climbing come at the cost of high computation times (up to 3 h). More recently,

Klamt and Behnke, 2017, 2018 propose motion planning for the legged-wheeled

robot Momaro based on A* that runs in real-time by combing handcrafted

stepping motions with a carefully designed cost function.

Early works utilizing SBPs generate complex maneuvers, such as free climb-

ing or ladder climbing, yet with very long computation time (e.g., 16min for

32 steps) Bretl, 2006; Escande, Kheddar, and Miossec, 2013; Hauser et al.,

2008. Hornung et al., 2014 shows RRT-based whole-whole body motion plan-

ning with a Nao humanoid. The work builds upon ideas presented in (Kuffner

et al., 2002; Şucan and Chitta, 2012), where samples are drawn from pre-

computed sets. While gracefully handling whole-body manipulation on flat

ground, the approach is unsuitable for traversing obstacles since the set of

stable configurations is strongly dependent on the terrain. Recently, more ef-

ficient approaches are proposed for humanoid and quadrupedal robots Geisert

et al., 2019; Short and Bandyopadhyay, 2017; Tonneau et al., 2018a,b. SBPs

can deal with very complex environments, and even compute limb contact

schedule Tonneau et al., 2018a. However, creating kinodynamically consistent

motion directly in the SBP remains challenging, possibly leading to complex

planning pipelines and long planning times.

Replacing the SBP with an RL policy can be an effective alternative for

foothold planning. In Tsounis et al., 2020, RL is used to plan footsteps which

are then tracked by the RL based controller. Gangapurwala et al., 2022 also

uses an RL footstep planner with a model-based tracking controller executing

the plan. Li et al., 2021b uses a similar strategy except that the model-based

tracking is happening in the latent space. While promising, these methods

still require retraining for different types of terrains and cannot plan acyclic

gait patterns.

Global planning typically relies on a sampling-based or grid-search technique

with reduced model order. The resulting high-level planner is then combined

with a local planner or controller Klamt and Behnke, 2017; Wermelinger et
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al., 2016 that are often based on cyclic gait pattern. Tranzatto et al., 2022b;

Wellhausen and Hutter, 2021 extends the SBP with neural network to predict

the terrain difficulty for the underlying tracking controller. The introduced

cost estimator requires re-training of the neural network estimator in case of

a controller swap.

Combining sampling and optimization-based planning is a sound strategy to

escape the local minima and enforce kinodynamic constraints. One possi-

ble combination is to solve a Boundary Value Problem (BVP) for computing

connections inside the SBP. BVP can typically be solved either for low DoF

systems (e.g., a vehicle) or with an analytical solution (e.g. Ding et al., 2021;

Hwan Jeon, Karaman, and Frazzoli, 2011; Kim, Kwon, and Yoon, 2018; Xie et

al., 2015). Fernbach et al., 2020; Fernbach, Tonneau, and Täıx, 2018 computes

transition feasibility for a humanoid robot and successfully transfers the solu-

tion to hardware. Another possibility is using sampling or grid-based search

to provide an initial guess for the optimization and refine the motion plan.

The two-stage approach has been widely used in the literature, most notably

for manipulation problems Dai et al., 2018; Leu, Wang, and Tomizuka, 2022;

Leu et al., 2021. In Li et al., 2021a, motion plans for a trailer composition are

calculated, and in Li, Long, and Gennert, 2016, the authors plan whole-body

motions for a humanoid robot without planning a contact schedule. We fol-

lowed the idea of using the two-stage approach, and we extended it to be used

for whole-body motion and contact planning.

This work computes approximate whole-body plans with an SBP and then

refines them with MPC. We follow the idea of using contact dynamic roadmaps

introduced in Short and Bandyopadhyay, 2017 to speed up the SBP which are

an extension of dynamic roadmaps Leven and Hutchinson, 2002 for legged

robot usage. We further extend the contact roadmap to handle robots with

heavy limbs. Our planner leverages MPC from Farshidian et al., 2017a for

tracking and re-planning on a shorter time horizon. We propose a strategy for

using kinematic MPC on legged excavators operating in challenging terrain

where terrain adaptation is imperative, but precise torque control is often

unavailable.

6.1.2 Contribution

This work presents LSTP, a combined sampling and optimization-based plan-

ner for mobile robots with many DoFs. The planner consists of a long horizon

Initialization Step with SBP computing a contact schedule and a sequence of

keyframe whole-body configurations and a short horizon Refinement Step with
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MPC satisfying dynamics and contact constraints. We introduce the following

contributions:

• We extend the dynamic roadmap data structure to be applicable for

robots with heavy limbs, such as legged excavators. Compared to Short

and Bandyopadhyay, 2017, we achieve faster roadmap lookup. This

allows our SBP planner to rapidly find plans under 0.5 s over challenging

terrains such as stepping stones.

• The proposed LSTP generalizes to a variety of different legged mobile

platforms. We exemplarily demonstrate this on a quadruped, a wheeled

quadruped with non-steerable wheels, and a legged excavator with steer-

able wheels and an arm. So far, only generalizations for different legged

robots have been shown in the Tonneau et al., 2018a

• We present and apply for the first time a whole body MPC controller to

a legged excavator, enabling it to execute motions on par with skilled hu-

man operators. We retain all the qualities from the controller presented

in Jelavic et al., 2020 and extend it to execute new motions

• We extensively verified the proposed planner in simulation and exper-

imentally on three different robots, including a quadruped (ANYmal),

legged-wheeled quadruped (ANYmal on wheels), and a legged excavator

(Hydraulic Excavator for Autonomous Purpose (HEAP)).

With respect to our previous work Jelavic, Farshidian, and Hutter, 2021, we

generalize the SBP planner for different robots, show hardware experiments on

multiple platforms and design a whole-body control system for HEAP. Lastly,

we remove the need for offline optimization-based refinement and introduce a

real-time MPC.

6.2 Preliminaries

Notations used for robot’s limbs are the following: LF stands for Left Front,

and similarly we have, RF, LH, RH (Right Hind). ARM denotes HEAPs

arm. Label EE means End-Effector. Left superscript denotes the frame (e.g.
Bp means a position in the base frame B) and defaults to world frame W if

omitted. Right superscript indicates a component of a vector (e.g. pz is the z

component of p). T denotes a homogeneous transform composed of translation

t and rotation R.
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Desired base pose (SE2)
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(MPC optimization)

Initialization 
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Figure 6.2: Planning pipeline overview

Our planner computes a trajectory that is T seconds long, given the starting

base pose TB(t = 0) = TB,start and TB(t = T ) = TB,goal where TB,start

and TB,goal are given poses of the robot’s base. We always command the

goal pose in SE(2) since the height, roll, and pitch are well-defined by the

terrain around the goal pose (see Sec. 6.3.3.1). No additional constraints on

the joint configurations are imposed at TB,goal. Proposed pipeline is visualized

in Fig. 6.2. The planner is divided into an Initialization step computing an

approximate long-term plan Γ and a Refinement step computing a short-term

plan satisfying all the constraints and exhibiting smooth motions.

The planner perceives the world via a multilayered map, which can be defined

as mapping f : R2 → R from (x, y) coordinates to various functions f(x, y). It

always receives elevation data h(·, ·), then computes and stores Signed Distance

Function (SDF) or traversability as layers in the map, relying on the grid map

implementation Fankhauser and Hutter, 2016a. Terrain (map) is partitioned

into traversable part T and untraversable part ¬T . Any contact point needs

to be in the traversable area T :

(px,py) ∈ T ≡ sdf2(p
x,py) ≥ δ ≥ 0, (6.1)

where δ is a user-defined parameter and sdf2(·, ·) represents a 2D SDF with

the positive distance meaning the point lies in T . All contact points need to

be at least δ away from the ¬T . sdf2 is calculated using Felzenszwalb and

Huttenlocher, 2012 and stored as a grid map layer.
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A legged robot can in general have both limbs without wheels and limbs with

wheels (e.g. HEAP has 4 legs with wheels and an arm). We say that ith limb

is in contact when it’s close to the surface,

|pz
ee,i − h(px

ee,i,p
y
ee,i)−Rw| ≤ ϵ, ϵ ∈ R+, (6.2)

where pee,i denotes the position of ith limb End-Effector (EE) and h(·, ·) gives
the terrain height. Rw is the wheel’s radius and is set to 0 for limbs without

wheels. ϵ ∈ R+ is used to control contact proximity. Eq. 6.2 assumes that the

contact point is directly underneath the wheel’s center, which is often violated.

However, the tracking controller can compensate for this error (see experiment

section).

6.3 Long Term Planning: Initialization Step

The Initialization Step computes an approximate long-term (global) solution

to the planning problem. The approximate solution is a sequence of keyframe

configurations with a feasible contact schedule. Each keyframe is a stati-

cally stable whole-body configuration with contact flags. Simple interpolation

between keyframes can violate system constraints (e.g., rolling constraints);

hence, the solution is only approximate. The Initialization Step uses RRTs

Karaman and Frazzoli, 2011; LaValle et al., 1998 to explore the space, but one

could also use PRM planners Kavraki et al., 1996. This chapter first outlines

the computation of limb roadmaps that happens offline. Limb roadmaps store

the mapping between joint configurations and EE positions and are used to

speed up foothold computation during the planning phase. Subsequently, the

chapter describes the terrain preprocessing pipeline, triggered whenever the

map is updated. The last section combines all the elements in a sampling-

based planner.

6.3.1 Roadmap Precomputation

A roadmap is a mapping between ith limb joint angles qi and the EE position

in the base frame Bpee,i. Each limb has its own base-pose invariant roadmap

(expressed in the base frame). Examples of roadmaps are shown in Fig. 6.3.

Generating a roadmap offline and using it online is an idea introduced in Kall-

man and Mataric, 2004; Short and Bandyopadhyay, 2017. Here we extend

the roadmap to store mapping between the ith limb joint angles qi and the

position of its Center of Mass (CoM) Bpcom,i. The CoM location is needed to
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(a) Roadmap
ANYmal legs

(b) Roadmap
HEAP legs

(c) Roadmap HEAP
arm

(d) Collision spheres for
ANYmal base and limbs

Figure 6.3: Roadmap vertices (red spheres) and edges (blue lines). Each red dot represents
an end-effector position in R3. a) Roadmap for ANYmal robot (only vertices shown). Each
leg has 5000 vertices in the roadmap. b) HEAP legs have 300 vertices and about 2000 edges
in the roadmap. c) HEAP arm with 1000 vertices and about 8000 edges shown. d) Collision
spheres approximating the geometry of the legged robot. We use ten balls of a radius of 20
cm for the base, two balls of 7 cm radius for each knee, and three balls of 3.5 cm radius for
each shank.

test the support polygon stability criteria for keyframes. The CoM position of

a robot with total mass M and limbs I can be computed as:

Bpcom =
1

M

(
Bpcom,B mB +

∑
i∈I

Bpcom,i mi

)
. (6.3)

Evaluating Eq. 6.3 is much faster than computing the CoM from scratch, and

it allows us to rapidly check the stability criterion during online planning. In

Eq. 6.3, mi denotes mass of ith limb and mB is the mass of robot’s base.

For robots with heavy limbs, such as HEAP or humanoid robots, evaluating

Eq. 6.3 is essential to ensure stability.

Besides stability, no self-collision should occur for any given configuration of

the legs. A simple way to prevent self-collision is to enforce the roadmap ver-

tices to stay in their respective quadrants. For the HEAP arm, preventing

all collisions in the roadmap generation might be too restrictive. Hence, the

collision-free arm movement is planned during the online planning phase by

invalidating portions of the roadmap colliding with legs or the terrain. Choos-

ing the number of vertices in the roadmap involves a tradeoff. Many vertices

approximate the workspace well but require more computation for online plan-

ning. We found that 4000-5000 vertices yielded an acceptable tradeoff for a

legged robot. For HEAP, we used 300 vertices in the leg roadmap and 3000

vertices in the arm roadmap. The connection between neighboring vertices is

rejected if it is longer than dmax. We used dmax = 0.3m for HEAPs legs and

dmax = 1m for the arm. For the legged robot we used dmax = 0.05m. Space

around the robot is voxelized, and we store vertices within respective voxels.
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Raw elevation map Surface normals Traversability estimation

Traversability SDF Filtered elevation Elevation SDF 

Obstacle avoidance Base pose calculationFoothold selection

Figure 6.4: Terrain preprocessing module overview.

Voxelization accelerates configuration lookup since a good guess of foothold

typically exists, e.g., around the default position. Finding candidate footholds

takes 9± 9µs for a quadruped robot. We avoid transforming the terrain into

the roadmap frame and search vertices only around the best guess instead of

searching the entire roadmap and randomly sampling a feasible one Short and

Bandyopadhyay, 2017. In implementing their method, just transforming the

terrain without any foothold search takes 35± 10µs.

6.3.2 Terrain Preprocessing

The only input to the terrain preprocessing module is a raw elevation map

(h) implemented using a grid map data structure Fankhauser and Hutter,

2016a. From this elevation, we compute additional layers for surface normals,

traversability SDF, elevation SDF, and filtered elevation. The relations be-

tween different tasks and their usages are illustrated in Fig. 6.4.

Surface normals are computed by fitting a tangent plane to a neighbourhood

within a small radius of each grid cell (see Appendix 6.11.1).

Traversability SDF is the SDF in 2D storing the distance of any points from

the nearest untraversable region (see Fig. 6.5c). We refer to this field as sdf2
in further text. More details about how terrain traversability is classified can

be found in Appendix 6.11.1.

Elevation SDF is a signed distance field in 3D which is used for collision

avoidance. The value is positive if the point is outside of the terrain and neg-

ative if the point lies inside the terrain. We refer to the 3D SDF field as sdf3
in further text. sdf3 is computed using the implementation from grid map

package which can be found open source1.

Filtered elevation, denoted by hf , is a smoothed version of the terrain height

visualized in Fig. 6.5d. The smooth elevation is used by the base pose selection

module (Sec. 6.3.3.1). Implementation details can be found in Appendix 6.11.1.

1https://github.com/ANYbotics/grid_map
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(a) Raw Elevation (b) Elevated Mean (c) Untraversable (d) Filtered terrain

Figure 6.5: Intermediate steps in terrain preprocessing for stepping stones terrain. a) Raw
elevation map input. b) Elevated mean (see Appendix 6.11.1). c) Untraversable terrain
shown in black color. d) Filtered terrain, used by the base pose selector module.

6.3.3 Sampling-Based Planning

With the roadmap computed offline and the terrain pre-processed, we are ready

to use the RRT based planner online. The planner attempts to connect TB,start

and TB,goal geometrically (only considers the kinematics). The state space S
is defined in Eq. 6.4 with nJ being the number of limb joints (actuated) and

{0, 1}|I| contact states of all limbs I. SBPs main components are described

below.

S := R3 × SO(3)× RnJ × {0, 1}|I|. (6.4)

6.3.3.1 Sampling

Although the planner is a full 3D planner, the sampling module operates in

SE(2) space which is motivated by the use of legged systems. Since legged

robots locomote by interacting with the terrain, their base has to be in the

vicinity of the terrain surface. Therefore, we uniformly sample the base’s x, y

position and the orientation in yaw γ and compute the remaining DoFs from

the terrain features. Note that the base pose selection module operates on

filtered terrain, which only retains prominent terrain features (see Sec. 6.3.2).

Roll α and pitch β are computed from the terrain normal n such that the robot

roughly stays parallel to the surface below the base. The z coordinate can then

be computed simply as z = hdes+hf (x, y) where hdes is a user-defined desired

height above the ground and hf (x, y) is the filtered terrain height.

6.3.3.2 Expansion

Expansion refers to connecting the newly drawn sample to the rest of the

tree. The maximum connection length is a tuning parameter (15m for HEAP

and 5m for the legged robot). The connecting path for the base is computed

using Reeds-Shepp (RS) curves Reeds and Shepp, 1990, which give an optimal

path between two poses in SE(2) while respecting a minimal turning radius
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constraint. Upon drawing a random sample (x, y, γ), we use RS curve length

drs to determine its nearest neighbors. The RS path is computed without

considering any terrain information; it just helps enforce the rolling constraints

for robots with steerable wheels. Using straight-line connections might render

the problem infeasible in the refinement step (see Sec. 6.5). For legged robots,

we also use RS curves with small turning radii since they naturally minimize

sideways motions, typically less stable and slower than locomoting forwards.

6.3.3.3 Feasibility Checking

SBP checks the connection feasibility before connecting the newly drawn sam-

ple to the rest of the tree. Unlike Tonneau et al., 2018a where a guiding path is

computed first, we do not add the connection into the tree before calculating

the entire trajectory and ensuring its feasibility with four criteria.

• Kinematic Reachability : A contact must lie inside reachable workspace

which is approximated by the roadmap.

• Collision Avoidance: Robot’s base and limbs must not be in collision

with the environment for each state along the proposed connection (sim-

ilar to Escande, Kheddar, and Miossec, 2013).

• Valid Contact Positions: All contacts need to lie within traversable ter-

rain T .

• Stability Criteria (relaxed): CoM is allowed to deviate at most ϵs (pa-

rameter) from the support polygon edge. In addition, we impose a lower

bound on the support polygon’s area. For ϵs = 0 the robot is statically

stable.

Kinematic reachability can be verified by transforming roadmap vertices into

the world frame and then using Eq. 6.2. This can be evaluated quickly using

the pre-computed roadmap and the elevation map. The collision check can

be easily enforced using sdf3 from Sec. 6.3.2. It suffices to ensure that col-

lision spheres B(c, r) (ball of radius r centered at c) are outside the terrain,

i.e. sdf3(c
x, cy, cz) ≥ r. Fig. 6.3d shows an example of collision geometry for

the legged robot. Contact validity can be checked using sdf2 from Sec. 6.3.2

and Eq. 6.1. Lastly, the algorithm checks the support polygon stability cri-

terion, which does not hold in arbitrary terrain configuration, and care needs

to be taken to ensure stability. We empirically found that the refinement step

154



6.3. Long Term Planning: Initialization Step

Figure 6.6: Addition of a new node into the RRT tree (expansion step). Red circles and
full black lines are nodes and paths that make the current RRT tree. The newly sampled
node (green) has to be connected to the rest of the tree. For a successful connection, all
subnodes on the connecting path (small green circles) have to be valid. For a legged robot,
the subnodes are connected using One-Step Motions (OSMs), which is illustrated in Fig. 6.7.

can stabilize the robot even when the CoM projection is slightly outside the

support polygon (controlled by ϵs).

Fig. 6.6 depicts the feasibility checking. Upon drawing a new sample (large

green node) as described in Sec. 6.3.3.1, we compute a RS connection (dotted

line) to the new node, as described in Sec. 6.3.3.2. Subsequently, the dotted

line is discretized into subnodes (small green circles) using an RS interpolation

method Sucan, Moll, and Kavraki, 2012. The subnodes do not necessarily be

equidistant. Next, for each subnode we generate full 6 DoF pose using the

filtered elevation layer inside the grid map. Finally, each subnode undergoes

feasibility checking, ensuring that all criteria above are satisfied. If every

subnode is feasible, the new state and the connecting path are added to the

tree. For detailed description, refer to Sec. 6.4.

6.3.3.4 Cost Function

An optimizing SBP in the Initialization Step allows us to minimize a user

defined cost function. Eq. 6.5 introduces our cost c, composed of RS path

length drs(Γ) and sum of robot-specific costs on each state L(s) along the

trajectory Γ.

c = drs(Γ) +
∑
s∈Γ

L(s), Γ ⊂ S. (6.5)

Robot specific costs are given with Eq. 6.6 (HEAP) and Eq. 6.7 (ANYmal and

ANYmal on wheels). For HEAP, we penalize the legs going over untraversable

terrain ¬T to prefer driving over stepping (as shown in our previous work

Jelavic, Farshidian, and Hutter, 2021). ¬T
1ee,i is an indicator function with

a value 1 if the ith limb EE is inside the untraversable area ¬T . w is the
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user-defined weight. For the legged robot, we penalize the roll (α) and pitch

(β) angles of the base with different weights.

L(s) = w
∑
i∈I

¬T
1ee,i for HEAP, (6.6)

L(s) = wα absα+ wβ absβ for others. (6.7)

6.4 Feasibility Check

We introduce a subroutine called OSM, which does additional discretization

between the green subnodes in Fig. 6.6 to ensure connection feasibility. We

describe the algorithm for the legged robot first since it is the most general,

and then the special cases for other robots.

When all feet are grounded, the robot is in a Full-Support State (FSS). OSM

is the transition between two FSSs, during which at most one swing phase

(corresponding to one step) happens for each leg. We assume the robot con-

stantly moves between two FSSs which will always result in a short full stance

phase. This chapter describes how OSM is used inside RRT and subsequently

all the subroutines.

6.4.1 Using One-Step Motion with RRT

Proposed OSM is used inside RRT expansion step. After sampling the base

pose, the new vertex (vnew) needs to be connected to the tree. We find a

nearest neighbor in the tree (vnn) and use Alg. 8 (see Appendix 6.11.2) to

check validity between the two samples. If vnn and vnew can be connected,

Alg. 8 returns a sequence of OSMs that achieve the connection. The maximum

length of the edge between vnn and vnew can be tailored to different terrains.

OSMs do not have to be the same length. The planner receives a user-defined

list of lengths for OSM, L = [l1, l2, . . . , ln] which is sorted in descending or-

der. Empirically we found that the planner makes use of longer connections

first, which achieve fast progress in easier terrains and resorts to using shorter

connections when the terrain gets harder. The process of adding a new vertex

with OSMs of different lengths is illustrated in Fig. 6.7.

6.4.2 One-Step Motion Creation

OSM creation routine (Alg. 6 in Appendix 6.11.2) receives a full state as a

starting point and a base pose for the goal. It first generates an FSS for the
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?
Figure 6.7: Path validation using OSMs.
Each gray node and arrow refers to an FSS
and an OSM, respectively. Crosses represent
failed OSM creations. Top to bottom: we
first create an FSS for vnn, and then success-
fully generates the first OSM (the first length
defined in lentgh candidates L). The second
OSM tries two lengths before the third length
succeeds. The third OSM tries one length be-
fore the second one succeeds. Finally the last
OSM connects to vnew in one try.

goal base pose, then discretize the connecting RS path, find a feasible contact

schedule, and create valid swing motions. Motion duration is computed in

the end. The algorithm returns true if a feasible OSM is discovered and false

otherwise. We illustrate an example OSM trajectory on two different terrains

in Fig. 6.10.

6.4.2.1 Full-Support State Computation

FSS creation subroutine receives a base pose and computes joint configuration

(one keyframe). We define nominal hip positions2 which are shown with blue

spheres in Fig. 6.8 on the left. A desired foothold is computed as a traversable

point on the terrain surface closest to the nominal hip position. Subsequently,

joint positions q are created by searching valid roadmap vertices in a user-

defined neighborhood of the desired foothold. A vertex is considered valid

when foot position is in contact with the traversable terrain T (Eq. 6.1 and

Eq. 6.2) and the corresponding leg collision free (see Sec. 6.3.3.3). In case

no valid vertex is found, FSS creation for this state returns failure. Fig. 6.8

shows FSS creation on the stairs. One FSS corresponds to a green subnode in

Fig. 6.6 and Fig. 6.7.

6.4.2.2 Full-Support State Connection

The base path connecting the OSM start and the goal is discretized into

subnodes with the detailed algorithm description found in Appendix 6.11.2.

In Short and Bandyopadhyay, 2017, two FSSs connect with a creep gait, i.e.

the robot first moves the limbs and then the base with all 4 limbs on the

ground. In contrast, our two-stage approach can accommodate for simultane-

ous motion of the base and swing limbs, which increases the overall motion

speed by 35% and allows overcoming larger obstacles.

2computed by projecting nominal footholds onto the base frame’s x-y plane
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Figure 6.8: FSS computation on stairs (white shows traversable terrain, black un-
traversable). Left: Base and nominal hip positions (blue spheres). Middle: Desired
footholds (red spheres) computed using nominal hip positions. Right: FSS with leg config-
urations.

6.4.2.3 Contact Schedule Computation

Once the OSM connection has been discretized into subnodes, the algorithm

attempts to compute a feasible contact schedule. Generally, the robot has to

break contact once the foot is at the edge of its workspace. This observation has

been used in Tonneau et al., 2018a where FIFO queue is used to decide which

limb to recover first. In contrast, we allow for earlier contact breaks giving

the planner more freedom to reshape the support polygon in anticipation of

obstacles. First we find the latest contact breaking point and earliest contact

establishing point for each limb. We define the Latest Contact Break (LCB)

for limb i as the latest subnode when limb’s swing phase must start (we must

break contact because the limb is in the kinematic limits). The counterpart of

LCB is the Earliest Contact Creation (ECC), i.e. the earliest subnode that can

establish a valid contact with footholds at OSM goal state. Contact schedule

is computed by solving a feasibility problem (see Eq. 6.33) where LCB and

ECC define the constraints. Essentially, we seek to compute contact breaks no

later than the LCB and contact creations no earlier than ECC. An example

of contact schedule computation is shown in Fig. 6.9 with detailed description

given in Appendix 6.11.2.

6.4.2.4 Swing Motion Validation

The last step in OSM creation is to validate swing motion. We look for feasible

swing trajectories after finding the contact schedule. Swing motion can be

verified by invalidating portions of the roadmap and then performing the graph

search, as suggested in Short and Bandyopadhyay, 2017. However, in our

approach, the roadmap is not stationary during a swing phase because the

base moves. We instead search collision-free vertices near the desired swing

position that are user-defined distance above the terrain.
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p = (LF, RF, LH, RH) p = (LF, RF, RH, LH)

Figure 6.9: Contact schedule computation for swing orders (LF,RF,LH,RH) and
(LF,RF,RH,LH). The black dots on the top represents the OSM states. Each red ar-
row points from the start to LCB, and each blue one from the goal to ECC. Swing phases
generated from Alg. 5 (see Appendix 6.11.2) are shown as gray rectangles. There exist many
other feasible contact schedules (e.g., move swing phase to the left, increase the size of swing
phase).

Figure 6.10: OSM with length = 20 cm created on stairs (left) and obstacles (right).
Terrain color represents the height value (white: maximum, blue: minimum). The base
trajectory is shown in green, limb trajectories in separate colors. The spheres on the terrain
show liftoff and touchdown locations.

6.4.2.5 Timing Computation

Transition duration between two states along the path is computed as follows:

∆tl = t(i+ 1)− t(i) =
1

vJ

(
∥qJ(i+ 1)− qJ(i)∥∞

)
(6.8)

where qJ is the vector of joint positions and vJ is the expected mean joint

velocity (same as Jelavic, Farshidian, and Hutter, 2021).

6.4.3 Legged-Wheeled Robot

By modifying the LCB and ECC search, we can reuse the OSM concept for

legged-wheeled robots such as ANYmal on wheels Bjelonic et al., 2019a. A

description on how to find LCB and ECC for a legged-wheeled robot is given

in Appendix 6.11.3. Compared to legged robot duration ∆tl (see Eq. 6.8), one
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needs to consider the average driving speed. Transition duration between two

states along the path is thus slightly different:

∆tlw = max
{
∆tl,

1

vB

(
∥rB(i+ 1)− rB(i)∥2

)}
(6.9)

where rB is the position of the base and vB is the expected mean driving

speed.

6.4.4 Legged Excavator

OSM method is slightly modified to work for systems like legged excavators,

whereby the planner has to handle legs with wheels that can move and an arm

that cannot move when in contact. We discretize the connection as described

in Sec. 6.3.3.3 with maximal distance between the subnodes being 20 cm (green

circles in Fig. 6.6).

It is most efficient to keep all four legs in contact and drive, which can be seen

as FSS for HEAP. The planner allows configurations with minimum three

contact limbs (e.g. 2 legs and an arm). When the contact state switches, e.g.,

HEAP needs to lift Left Front (LF) leg while Right Hind (RH) is airborne, we

insert an FSS in between, which is a special case of OSM where the length is

not predefined.

When the arm has to move, HEAPs base stops, and we use the roadmap to

find a collision-free path similar to Short and Bandyopadhyay, 2017. If the arm

has to establish contact (e.g., for going over a gap), we find the corresponding

contact establishing and contact breaking point. The arm contact position p∗

is found by solving

min ∥pcc − pcb∥ (6.10)

and setting p∗ = (p∗
cc + p∗

cb)/2.0, where pcb and pcc are positions of valid

vertices in arm roadmap at contact break and creation subnodes. Each contact

node’s arm joint angles are computed solving Inverse Kinematics (IK) q =

IK(p∗) as in Jelavic, Farshidian, and Hutter, 2021.

6.5 Short Term Planning: Refinement Step

Optimization is the backbone of Refinement step. It refines the keyframe tra-

jectory Γ found in the Initialization step to ensure smooth, stable, and feasible

motions. Γ is a sequence of full body poses and contact states. Full states
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help the optimization convergence instead of just providing base poses (see

Sec. 6.7.2). Optimization can modify the whole body states but not the Con-

tact Schedule. As opposed to offline Trajectory Optimization (TO) Jelavic,

Farshidian, and Hutter, 2021; Jelavic and Hutter, 2019, we solve the opti-

mization in an MPC fashion, which brings robustness during execution as it

can compensate for small deviations from the reference Γ. The optimization

can deviate from the initial plan if fulfilling systems constraints or rejecting

disturbances requires so.

The Refinement Step solves an Optimal Control Problem (OCP) given below:

min
x,u

Φ(x(T )) +

∫ T

0

L(x(t),u(t), t) dt

s.t. x(t0) = x0

ẋ(t) = f(x(t),u(t), t)

g1(x(t),u(t), t) = 0

g2(x(t), t) = 0

h(x(t),u(t), t) ≥ 0,

(6.11)

where L is a time-varying running cost, Φ is the cost at the terminal state,

and T is the prediction horizon. The state and input are represented by x

and u, respectively. A Riccati-based solver solves the optimal control prob-

lem in Eq. 6.11. In particular, we use the Differential Dynamic Programming

(DDP) method from Grandia et al., 2019b and the Direct Multiple Shooting

(DMS) scheme from Grandia et al., 2022. Both methods handle state-input

equality constraints g1 using the projection technique Nocedal and Wright,

1999. Pure state equality constraints g2 are enforced using augmented La-

grangian Sleiman, Farshidian, and Hutter, 2021. The state-input inequal-

ity constraints h are handled using relaxed barrier functions as proposed

in Grandia et al., 2019b. Transcription implementation, as well as optimiza-

tion solvers, are publicly available in the OCS2 optimal control toolbox Farbod,

n.d.

6.5.1 MPC for Legged Robot

OCP given with Eq. 6.11 has been solved using Sequential Linear Quadratic

(SLQ) algorithm presented in Grandia et al., 2019b. We used prediction hori-

zon of T = 1 s with the maximal step size of 0.01 s. Below we describe the

dynamic model and constraints used in the MPC formulation.
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6.5.1.1 System Dynamics

Legged robot state is composed of the position of the CoM p in world frame,

Euler angles θ (Z − Y ′ −X ′′ sequence) of the base, joint position qJ,i for leg

i = {1, 2, 3, 4}, and the linear velocity Bv and the angular velocity Bw of CoM.

The total number of joints for the robot is nJ = 12. Since the legs are much

lighter than the body, CoM is assumed to be configuration invariant. Robot’s

state can be written as x =
(
p, θ, qJ ,

Bv, Bω
)
∈ R24 and control input u as

u =
(
uJ ,

Bλee

)
∈ R24, where uJ is the joint velocity and Bλee,i ∈ R3 is the

contact force at ith EE. We use a kinodynamic model describing the dynamics

of a single rigid free-floating body together with the kinematics for each leg.

The Equations of Motion can be found in Grandia et al., 2019b.

6.5.1.2 Cost Formulation

MPC should track Γ, however it is allowed to deviate. Hence, deviation from

the reference state is penalized quadratically. The reference twist is computed

using finite differences, and the reference forces are equally distributed on

stance feet. High-frequency input is also penalized as proposed in Grandia

et al., 2019a.

6.5.1.3 Constraints

We use C to denote the set of contact limbs.

Zero Force or Velocity Constraint : A contact leg cannot change its position

while a swing leg cannot generate a contact force,{
vee,i = 0, i ∈ C,
λee,i = 0, i /∈ C.

(6.12)

Foot Constraint : The foothold of a contact leg must be placed at its reference

from Γ, while for a swing leg, its foot should maintain a certain height to avoid

foot scuffing, {
pee,i = p̄ee,i, i ∈ C,
pz
ee,i ≥ h(px

ee,i,p
y
ee,i) + c(t), i /∈ C,

(6.13)

where pee,i is the foot position of ith limb and p̄ee,i is the reference. h(·, ·)
evaluates the terrain height. c(·) is the clearance function used to minimize

the constraint violation and thus make the problem more numerically stable

for the optimizer (see Fig. 6.11).
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mid-swing

t

c(t)

initial
swing

terminal
swing

entire swing phase

Figure 6.11: The ground clear-
ance function. It gradually in-
creases to a user-defined value and
then gradually decreases. Such a
shape minimizes violation in the ini-
tial and terminal swing phases since
feet cannot change state instantly.

Friction Cone Constraint : We use the perturbed cone proposed in Grandia

et al., 2019b to avoid differentiability problems around the origin.

hcone,ϵ = µcFz −
√
F 2
x + F 2

y + ϵ2 ≥ 0, (6.14)

where µc is the friction coefficient, ϵ is a control parameter, and F =

[Fx, Fy, Fz] is the contact force expressed in the local frame of the terrain

surface.

Push Force Constraint : To enforce stability margins, the vertical component

of contact forces Wλz
ee,i for contact legs needs to be larger than a user-defined

value,
Wλz

ee,i ≥ λz,min, ∀i ∈ C. (6.15)

Leg Collision Constraint : sdf3 is used to prevent collision of knee and shin

with the terrain,

sdf3(c) ≥ r for all limb collision spheres B(c, r). (6.16)

Limb collision spheres for ANYmal can be found in Fig. 6.3d.

6.5.2 MPC for HEAP

The OCP for HEAP is transcribed into a finite-dimensional NLP using

DMS Bock and Plitt, 1984 and solved with Sequential Quadratic Program-

ming (SQP). We used prediction horizon of T = 15 s. Below we describe the

differences in OCP formulation compared to the legged robot.

6.5.2.1 System Dynamics

HEAP state is given with x =
(
p, θ, qJ

)
∈ R31. Control input can be written

as u as u =
(
v, θ̇, q̇J , α

)
∈ R36. Euler angles θ (Z − Y ′ − X ′′ sequence)
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parametrize the rotation, p is the base position, qJ are joint positions and

v is the linear velocity of the base. α is a vector of weights used to enforce

robust support polygon constraint in Eq. 6.20. System dynamics can then be

described as:

ẋ(t) = S u(t), (6.17)

where S is a selection matrix of the form S =
[
I31×31 031×5

]
. Following our

previous work Jelavic and Hutter, 2019, HEAP uses a kinematic model since

such a heavy machine is operated in quasi-static conditions.

6.5.2.2 Cost Formulation

The cost function follows the same principle as for the legged robot, i.e., the

solution should stay close to Γ computed by the SBP. Since HEAP has one

hydraulic circuit that spins all wheels at approximately the same velocity, we

add cost terms that help bridge the simulation to the hardware gap. The cost

term below minimizes slip by penalizing the linear wheel velocity difference

between the left and the right side.

L(x) =
∑

i,j∈Cl

∥∥vee,i − vee,j

∥∥2
2
, (6.18)

where vee,i denotes the velocity of the wheel center. We use C for contact

limbs (legs and arm) and Cl for contact legs only.

6.5.2.3 Constraints

Rolling Constraint prevents lateral slip, i.e. linear velocity of the wheel center

stays perpendicular to wheel joint axis.

Eivy
ee,i = 0, ∀i ∈ Cl, (6.19)

with
Eivy

ee,i being y component of the wheel center velocity expressed in ith

end-effector frame Ei. Optimization is not aware of the wheel joint, it treats

the wheel as a moving contact point which reduces number of variables.
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Stability Constraint: We use the robust support polygon constraint introduced

in Jelavic and Hutter, 2019 which avoids the need to compute half spaces

manually: ∑
i∈C

(
αi +

ϵ

|C|

)
px,y
ee,i = px,y

com ∈ R2,

∑
i∈C

αi = 1− ϵ, 0 ≤ ϵ ≤ 1, αi ≥ 0,

(6.20)

where αi are part of the input vector u, ϵ is a user-defined parameter, and pcom

is the position of CoM. The bigger the ϵ, the more conservative we are, i.e.,

the minimum permitted distance of CoM to the edge of the support polygon

becomes larger. We set ϵ = 0.1 in this work.

Swing Limb Constraint: We follow the same formulation as for the legged

robot. The user-defined height threshold was 0.6m for the legs and 0.9m for

the shovel.

Contact Limb Constraint: We relax the foothold constraint from Eq. 6.13;

MPC can optimize contact position as long as the limb stays grounded within

the traversable area (Eq. 6.1 and Eq. 6.2).

6.6 Control

6.6.1 Legged Robot Control

The Low-level Whole Body Controller (WBC) for the legged robot is based

on the hierarchical optimization from Bellicoso et al., 2016. It considers full

nonlinear rigid body dynamics of the robot and it solves a series of Quadratic

programs (QPs) tasks in a prioritized order through nullspace projection. Ta-

ble 6.1 shows tasks and priorities used. WBCs output torques are augmented

with a PD term for stance legs. For more details on the specific WBC version,

the reader is referred to Grandia et al., 2022.

6.6.2 HEAP Control

Compared to the legged robot and our previous work Jelavic et al., 2020,

we omit the WBC based on HO Bellicoso et al., 2016. Instead, through the

use of Virtual Model Controller (VMC) we retain the good qualities from our

previous work Jelavic et al., 2020 including the terrain adaptation. The new
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Table 6.1: WBC task setup. Smaller number indicates higher priority.

Priority Type Task

1 = Floating base equations of motion
1 ≤ Joint torque limits
1 ≤ Joint position limits
1 ≤ Joint velocity limits
1 ≤ Friction cone
1 = Stance legs no contact motion
2 = Swing leg tracking
3 = Base orientation tracking
3 = Base translation tracking
4 = End-effector force tracking

controller can use the arm as a support limb and it shows higher robustness.

Lastly, the presented controller relies on existing tuning of hydraulic cylinders

which removes the need for laborious tuning of the low-level torque control

loops. Below we describe how VMC is combined with MPC and how each

individual joint is controlled.

6.6.2.1 Virtual Model Control

Motion of the CoM is governed by the net resulting force acting on it. Assum-

ing quasi-static conditions (p̈ = θ̈ = 0), virtual force fv and virtual moment

mv can then be computed by PID control law. This is expressed in Eq. 6.21.

Mg +
∑
i

λz
c,i = fv = PID(zdes − zmeas), (6.21)∑

i

rc,i × λc,i = mv = PID(θdes − θmeas).

p is the position, g is the gravitational acceleration, and θ is rotation

parametrized by Euler angles. λc,i is a contact force at ith contact point and

rc,i is the distance from the contact point to the CoM. We only regulate the

height in z direction, roll θr and pitch θp angle of the base. The contact forces

required to produce desired virtual force and moment can then be recovered

by solving a QP:
min
Λ

ΛTWΛ

s.t. Λlb ≤ Λ ≤ Λub

AΛ = b,

(6.22)
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Figure 6.12: HEAP joints. Blue joints are always frozen and red joints are always velocity
controlled. Green joints are torque controlled when corresponding limb is in contact, velocity
controlled otherwise. Figure adapted from Jud et al., 2021b.

where Λ is a stacked vector of contact forces, W is a weighting matrix and the

constraint AΛ = b arises from the geometry of the contact points w.r.t. to the

CoM (Eq. 6.21). The solution of Eq. 6.22 yields minimal contact forces which

are distributed as equally as possible. The joint torques can then be recovered

with JTΛ = τ where J is the stacked contact Jacobian matrix. Compared

to our previous work Hutter et al., 2016b, we include the arm into the control

structure as a contact point.

6.6.2.2 HEAP Whole Body Controller

While MPCs purpose is to track the desired plan, VMC makes the system

terrain-adaptive and compliant. In practice we cannot acquire a full accuracy

map with on-board sensors. Furthermore, such a map has too many details

which make the gradients non-smooth. Hence the system needs to plan us-

ing simplified geometry and adapt to the unmodelled terrain at runtime. We

achieve this by utilizing a minimal set of torque-controlled joints. An impor-

tant consideration is that hydraulic cylinders have a lot of friction, and in

some cases (e.g. tele joint in Fig. 6.12) the friction is even position dependent.

However, if the joint supports lot of weight, the amount of friction torque in

the total torque is relatively low and the resulting control performance is bet-
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ter compared to non-load bearing joints. We control Hip Flexion-Extension

(HFE) and Telescopic (TELE) joints in torque mode given that these joints

bear the most load when corresponding limb is in contact. Since Contact

Schedule (CS) allows only configurations with at least three contacts, there is

always enough DoFs to control roll, pitch and height.

Fig. 6.13 shows the structure of combined MPC and VMC controllers. The

MPC receives a trajectory Γ from the SBP. Optimized roll, pitch and height

are fed to VMC which then computes HFE and TELE joint torques to achieve

desired base pose. Lower level controller selects joint control mode based on

the contact schedule CS. All joints are velocity controlled except for HFE

and TELE if the corresponding limb is in contact. Both torque and joint

velocity commands are filtered using exponential smoothing to remove small

jumps. MPC is tuned to accurately follow the plan from the SBP. MPC uses

a prediction horizon of 15 s, which is enough to correct for small deviations

around the long term plan Γ. In contrast, the VMC control loops are tuned

for good disturbance rejection since VMC sees the terrain as a disturbance.

VMC uses a state machine to handle late touchdown events. A swing leg that

VMC

Filtering, control mode selection

Legend

cs - contact schedule
𝚪 - trajectory from the
SBP planner

𝜭des - desired base roll 
and pitch angle

zdes- desired base 
height

q - joint velocities 
𝛕HFE - flexion-extension 
hip torques

𝛕TELE - arm telescope 
torque
SBP - sampling based 
planner
VMC - virtual model 
control     

𝜭des

[𝛕TELE   𝛕HFE]

SBP planner

cs 𝚪

Desired base pose

2 s

0.01 s

zdesMPC

ٜ
q

0.05-0.2 s

command

ٜ

Figure 6.13: HEAP control system
with layer execution times on the right.
MPC tracks trajectory Γ from SBP us-
ing a kinematic model from Eq. 6.17.
VMC computes torques for Hip Flexion-
Extension and arm Telescopic joint to
track roll, pitch and, base height setpoints
from the MPC. Joint control mode is se-
lected based on contact schedule.

should be in contact (based on contact schedule) is commanded a constant

velocity in HFE joint until contact is established. Late touchdowns require

dedicated treatment since they may result in instability. We found that early

touchdowns are not problematic; they merely degrade the base tracking perfor-

mance. With dedicated late touchdown handling, we could perform stepping

motion in terrain with a roughness of about ±50 cm.
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To execute some of the maneuvers shown in the result section, HEAP needs

to control wheel velocities. The lack of wheel speed measurements (no oil flow

sensor in the wheel rotary actuators) is mitigated by closing the PI control

loop over the base velocity. Given desired wheel velocities ω we can compute

linear velocities of the wheel center vcenter = ωRw (Rw is wheel radius). The

desired base speed vB,des is approximated by taking the average over grounded

wheel linear velocities. Base speed vB in a local frame can be estimated by

differentiating the base position and taking a dot product with the heading of

the base. The final estimate is obtained after applying an exponential filter.

Control signal u is computed with a PID control law with feedforward term

kff vB,des. u is applied to all four wheels since they cannot be controlled

individually.

u = PID
(
vB,des − vB

)
+ kff vB,des, (6.23)

6.7 Results

The proposed LSTP is implemented entirely on Central Processing Unit

(CPU). All components are implemented in C++ programming language with

ROS as a communication middleware. SBP uses the OMPL library Sucan,

Moll, and Kavraki, 2012 and MPC is implemented using OCS2 library Far-

bod, n.d., both of which are available as open source. OCS2 relies on Pinocchio

library Carpentier et al., 2019 for rigid body dynamics and all the derivatives

are computed using CppAd framework Bell, 2012. Terrain processing is com-

mon to all robots. This chapter presents results with a different robot in

separate sections. For a better impression please refer to the video3.

6.7.1 Terrain Preprocessing

Normal estimation is a key component in our terrain preprocessing pipeline.

It is used by the base pose selector and later by the traversability estimation.

Fig. 6.14 left shows the runtime of normal estimation on a fixed size 8m ×
8m map at 3 cm resolution with varying normal estimation radius R. The

algorithm complexity is O(R2) since the number of points used for estimation

is proportional to the neighborhood surface (see Appendix 6.11.1). The total

runtime of our processing pipeline with varying map sizes (resolution is always

3 cm) is shown in the middle. The pipeline can maintain more than 1 Hz

real-time rate updates, even for 20× 20 meter maps. The right plot shows the

3https://youtu.be/4eqq4Ucl92o
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Figure 6.14: Terrain processing runtime analysis with 6 threads. Left: Normal estimation
runtimes for 8 × 8 meters map (resolution = 3 cm) and different radii. Middle: Total
runtimes for different map sizes at a resolution of 3 cm. Right: Runtime percentage of each
component.

percentage of time spent in each submodule, with the vast majority of time

spent estimating wide-neighborhood normals. sdf3 is excluded from Fig. 6.14

right since it is computed using open-source software; its average runtime is

115 ms for an 8 m × 8 m map and z coordinate between -0.5 m and 1.9 m.

6.7.2 Legged Robot

We evaluate our planning and control pipeline in simulation first and then

validate it on real hardware ANYmal robot Hutter et al., 2016a. For simulation

evaluation we create terrains 20m × 20m in size (3 cm resolution). Start and

goal are fixed SE(2) states; (0, 0, 0) and (5, 5, 0), respectively. We generate

eight different terrain types with three difficulty levels each. Different terrain

types are gaps, obstacles, ramps, stairs, mazes, bricks, terrace, and stepping

stones; all shown in Fig. 6.15. In each map, the white color denotes the

fully traversable area, and the fully untraversable area is shown in a dark

color (black or olive). The final path after 2 s planning time is denoted in

green. Black lines represent the connections inside the RRT tree. Table 6.2

describes difficulty levels for each terrain. At Hard level, some of the features

are too difficult for the robot to traverse, and a detour has to be taken (e.g.,

slope terrain). This highlights the planner feature of negotiating obstacles to

shorten the path if possible and take a detour if not.
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(a) Gap (width = 50
cm)

(b) Obstacles (height
= 25 cm)

(c) Ramp (slope =
0.6)

(d) Stairs (rise = 20
cm)

(e) Maze (# holes =
# pillars = 60)

(f) Bricks (height =
25 cm)

(g) Terrace (step
height = 20 cm)

(h) Stepping stones
(12% removed)

Figure 6.15: Top: Non-randomized terrains at the highest difficulty level; robot cannot
negotiate some terrain features, and a detour must be taken. Bottom: Four randomized
terrain types with the highest difficulty level. We do not know whether a solution exists a
priori. If we cannot find a feasible plan within 20 s planning time, the terrain is re-generated
until one is found.

6.7.2.1 SBP Success Rate

SBP success rate was tested on a laptop with an Intel i7-10750H@2.60GHz

6-core processor. The success rate is defined as the number of plans that

reach the goal over the number of total plans when a feasible path exists.

For randomized terrains, we ensure that a feasible path exists by running the

planner for 20 seconds. If no path is found, the terrain is re-sampled until a

feasible path is found. We consider 6 planning times (0.1, 0.2, 0.5, 1.0, 2.0 and

5.0 seconds), and plan 100 times for every terrain and every planning time.

Each randomized terrain is sampled 10 times for a fair evaluation. The result

is shown in Tab. 6.3. It reads that the success rate drops with decreasing the

planning time; the worst-case scenario has a planning success of 94% for 0.5

seconds of planning time. The planner takes at most 1 second to achieve 100

% success rate on the easy and medium terrains, and 2 seconds for the difficult

terrains.

Fig. 6.16 shows two contact schedules discovered by our planner. These two

examples highlight that when the terrain is easy, the planner resorts to using

well-understood and efficient cyclic gait patterns. On the other hand, in the

presence of obstacles, an acyclic contact schedule can emerge and enable the

robot to precisely orient its body in anticipation of difficult terrain.
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Table 6.2: Terrain features for planner evaluation.

Terrain
Level

Easy Medium Hard Comment

gap
width [m]

0.3 0.4 0.5
0.5 m is too wide

for crossing
obstacle
height [m]

0.15 0.2 0.25 obstacles 6 cm wide

ramp
slope [deg]

11.3 21.8 31
max traversable

slope: 25◦

stair
rise [m]

0.1 0.15 0.2 stair run 30 cm

num pillars
and holes

20 40 60
position distributed

uniformly
brick

height [m]
0.15 0.2 0.25

100 bricks that
robot can step on

terrace step
height [m]

0 0.1 0.2
Perlin noise with
quantization steps

% stepping
stones removed

4 8 12
grid with some stones
removed at random

14 16 18 20 22 24 26
Time [s]

R
H

L
H

R
F

L
F

14 16 18 20 22 24 26
Time [s]

R
H

L
H

R
F

L
F

Figure 6.16: Contact schedule visualization (cyan: contact phase, white: swing phase).
Left: planner discovers cyclic contact schedule when walking on the flat ground. Right:
planner uses a highly acyclic gait to walk on the stepping stones.

6.7.2.2 MPC Convergence Rate

The second scenario evaluates the convergence rate of the combined SBP and

MPC, defined as the number of times MPC converges for the entire trajectory

over the number of plans executed. For evaluation purposes, the MPC has

perfect knowledge of robot dynamics, and the controllers do not influence the
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Table 6.3: SBPs success rate for ANYmal on different terrain types, difficulty levels, and
planning times. The top row shows the minimal planning time where no failures occur (e.g.,
for the hard difficulty level, with 2 s planning time, the SBP finds a solution in all terrains).

Terrain

Level Easy → 1.0 s Medium → 1.0 s Hard → 2.0 s
plan time [s] plan time [s] plan time [s]
0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

gap .88 .97 1.0 .81 .97 1.0 .50 .82 1.0
obstacles .82 .96 1.0 .79 .97 1.0 .69 .96 1.0
ramp .81 .98 1.0 .81 .96 1.0 .42 .78 .98
stairs .89 .99 1.0 .83 .97 1.0 .70 .84 .99

maze .87 .93 1.0 .82 .88 .97 .74 .90 .94
bricks .83 .92 1.0 .75 .86 1.0 .44 .86 .97
terrace .81 .95 1.0 .82 .92 1.0 .69 .93 .98

st. stones .79 .94 .98 .74 .87 .99 .67 .83 .94

success rate. For each non-randomized terrain, ten global plans are executed.

For each randomized terrain, we generate two samples for each terrain type

and then execute five plans for each sample. The trivial solutions, where the

straight-line path on flat ground is enough to connect the start and goal, are

removed.

We compare the convergence rate for two different MPC formulations: one

with and one without the swing leg joint deviation penalty. We found that the

MPC with swing leg penalization always converges, yet the other can diverge

on stepping stones with a probability of 30 %. This result demonstrates the

benefit of performing whole-body planning in the initialization step since the

whole-body plans better guide the optimization to the correct local minima.

Fig. 6.17a and Fig. 6.17b show how the cost function guides the swing leg to

the desired foothold.

6.7.2.3 LSTP Physical Simulation

The proposed planning and control framework was tested in the physical sim-

ulation together with the WBC. Since running a physical simulation is compu-

tationally expensive, we tested the full simulated stack on each terrain three

times without failures.

6.7.2.4 LSTP Hardware Tests

We deploy our planning and control framework on ANYmal. ANYmal has

two Robosense RS-Bpearl LiDARs, both in front and back. Bpearls are dome-
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(a) No leg deviation penalty (b) With leg deviation penalty

Hardware tests setup

1. SBP plans in a global map that is fully known

 Constructs grid_map for each physical terrain

 Implements a state estimator with pure localization mode 

2. SBP plans in a local map (8m x 8m) centered at the current position of the robot

 The height map generated from LiDAR is only good near the robot initially

 Only a short-term global plan is returned to the MPC 

20.01.2022 18

(c) Gap occlusion

Figure 6.17: a) & b) Improved optimization convergence through penalizing swing leg
deviation. We show an example for the LF leg, whose trajectory planned by the MPC is
colored in blue. The reference foothold at the end of the swing phase is shown with the
blue disk. The initial solution is shown on the left after the optimization iteration on the
right. a) Without penalization, the foothold of the optimized trajectory is far away from
the reference foothold (distance shown with red arrows). b) The optimized swing motion
lands smoothly on the reference foothold with penalization. c) While the LiDAR correctly
detects the closer stepping stones, it cannot see holes between the far away stepping stones
(marked with red arrows). Hence, the foot placement might be incorrect.

shaped LiDARs with 360◦×90◦ Field of View (FOV). ANYmal has two on-

board computers equipped with an Intel i7-8850H@2.60 GHz 6-core processor.

The Locomotion PC (LPC) runs MPC at 25Hz and the WBC at 400Hz.

The controllers are run asynchronously from one another. The Navigation PC

(NPC) runs the sampling-based planner and the terrain processing pipeline

described in Sec. 6.3.2. Elevation mapping runs at 20Hz on a Jetson AGX

Xavier onboard computer Miki et al., 2022b. As a state estimator we use the

fusion of leg kinematics and IMU Bloesch et al., 2013 together with the LiDAR

odometry Khattak et al., 2020. All experiments have been performed with a

statically stable gait with the maximum recorded velocity of approximately 20

cm/s, which is the same velocity we achieved in the simulation.

Fig. 6.18 depicts the system architecture. The workflow starts from LPC re-

ceiving a goal pose, which is then sent to the NPC. Subsequently, the NPC

requests a local elevation map from Jetson and performs pre-processing. SBP

plans a trajectory using the processed map and sends it to the MPC for track-

ing.

In our experiments, we let the robot plan in a local map of size 8m by 8m

centered at the robot’s current position. The SBP plans a global path; how-

ever, we only send a portion of it to the MPC for tracking. Once the tracking

finishes, SBP re-plans with an updated map. This procedure is repeated until

the goal is reached. By letting the SBP re-plan, we can avoid issues like the

one shown in Fig. 6.17c where the holes are occluded, and as a result, the

planner could attempt to place the feet there.
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Local map request

Local elevation map

Plan request

Shortened plan

LPC
WBC 
MPC

NPC
SBP

Terrain Preprocessing

Jetson
Elevation  
Mapping 

Figure 6.18: ANYmal system architecture. Navigation PC only requests a local height
map generated using elevation mapping from Jetson. Once the SBP computes a plan, it is
sent to the Locomotion PC, where MPC tracks it.

A range of terrains used for hardware experiments can be found in Fig. 6.19.

We could cross 36 cm wide gaps, close to the simulation result of 40 cm and

more than the manufacturer’s specification of 30 cm. The planner discovers an

acyclic contact schedule for the gap-crossing maneuver, similar to the stepping

stones scenario. Next, we increase the gap width to 47cm (too wide to cross)

and add a narrow bridge. The bridge is too narrow to place all feet on it, so

the planner has to coordinate the leg placement precisely. Fig. 6.20 shows the

sequence of the robot crossing the bridge. Finally, we also test three different

stepping-stone scenarios to showcase the generality of our planner.

Apart from negative obstacles like gaps and stepping stones (see Fig. 6.19),

we tested the planner’s capability to negotiate steps. The robot was asked to

go up and down a step of 20 cm, more than the stair heights recommended in

construction, which vary between 14 cm and 19 cm. Experimenting with the

maze environment showcases the planner’s ability to escape local minima. We

constructed a wall around the room corner and left only one narrow passage

allowing the robot to get in. Subsequently, the robot was asked to go to

the corner from the other side of the wall, where the straight line connection

leads to a dead end. With the initialization from the SBP, the robot can walk

around and reach the goal. Such a maneuver would be impossible if only MPC

planner was used.

6.7.3 Legged-Wheeled Robot

This section shows the planner’s capabilities to plan for a legged-wheeled

robot with non-steerable wheels. Executing SBPs plans on hardware has been

demonstrated in our previous work Bjelonic et al., 2022. For the sake of space,

we only show the SBPs evaluation since, in this work, the SBP was generalized

to enable base turning and side stepping.
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(a) Gap 36 cm wide (b) Bridge 47 cm wide (c) Stepping stones 1 (d) Stepping stones 2

(e) Stepping stones 3 (f) Step up, 20 cm (g) Step down, 20 cm (h) Maze

Figure 6.19: Various terrains tested on the real robot.

Figure 6.20: Anymal using a bridge to cross a 47 cm wide gap. The bridge is too narrow
to place all 4 feet on it. Hence the robot has to figure out a contact schedule and coordinate
limb motion to avoid this situation.

The success rate of the SBP is shown in Tab. 6.4. Fig. 6.1 shows an example of a

legged wheeled robot navigating stairs using our SBP. The planner is evaluated

in the same scenarios as the legged robot. The success rate is comparable to

the one for the legged robot shown in Tab. 6.3, but a bit lower. It also takes

longer planning times to achieve a 100% success rate for all terrain types. We

speculate that this is due to the fact that ANYmal on wheels has a shorter

shank compared to ANYmal resulting in shorter reach. The SBP planners use

the same tuning for the legged and legged-wheeled robots; we did not need to

change any parameters.

6.7.4 HEAP

HEAP is used for experimental verification of the proposed planning and con-

trol architecture. We ran the planner on a laptop with AMD Ryzen 9 5900HX

CPU 3.3 GHz processor. VMC controller, filtering, wheel velocity control loop,

and state estimation run on an onboard computer. Leica iCON iXE3 system

provides Global Navigation Satellite System (GNSS) with Real-time Kine-

matic (RTK) corrections. Two-state information filter Bloesch et al., 2017
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Table 6.4: SBPs success rate for ANYmal on wheels across different terrain types, difficulty
levels, and planning times. The top row shows the minimal planning time where no failures
occur (e.g., for the hard difficulty level, with 5 s planning time, the SBP finds a solution in
all terrains).

Terrain

Level Easy → 2.0 s Medium → 2.0 s Hard → 5.0 s
plan time [s] plan time [s] plan time [s]
0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

gap .68 .91 .99 .73 .96 1.0 .44 .73 .99
obstacles .63 .91 1.0 .71 .86 1.0 .55 .88 .99
ramp .76 .91 1.0 .72 .91 1.0 .22 .62 .98
stairs .82 .96 1.0 .67 .86 1.0 .67 .93 .99

maze .73 .92 .98 .83 .94 .99 .53 .73 .95
bricks .76 .90 1.0 .70 .90 1.0 .68 .78 .94
terrace .78 .97 1.0 .71 .90 .99 .65 .82 .99

st. stones .64 .83 .95 .52 .75 .92 .50 .74 .91

fuses GNSS measurements with the two Inertial Measurement Unit (IMU)

units (from the chassis and the cabin). For more details, please refer to Jud

et al., 2021b. In all experiments with HEAP, SBP plans once with 2 s plan-

ning time. The plan is then fed to the MPC, which runs between 5 and 20 Hz

(depending on the task).

6.7.4.1 LSTP Hardware Tests

We start by testing the combined sampling and optimization planning on hard-

ware. Convergence rate was tested in our previous work Jelavic, Farshidian,

and Hutter, 2021, and in this work, we focus on hardware results. Fig. 6.21

shows experiment where HEAP steps over a virtual gap. We did not dig an

actual gap in our testing field; however, the height map provided to the plan-

ner contains a gap, and hence the stepping-over behavior emerges. Another

maneuver where HEAP crosses the virtual bridge is shown in Fig. 6.1. These

maneuvers require perceptive planning with both SBP and MPC. Stepping

over a gap is challenging for the control system since it has to precisely coor-

dinate the movement of the arm kinematics with the movement of the base

such that the contact point does not slip. The control system has to be robust

since the wheel speed cannot be precisely controlled, and hence we cannot pre-

cisely control the base movement. Without high-frequency local re-planning

from the MPC, the gap crossing maneuver would prove challenging due to

accumulated drift. The total gap crossing duration is 103 s.
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Figure 6.21: Top to Bottom:
HEAP stepping over a virtual gap,
the timeline goes from top to bottom.
Left: snapshots of the machine per-
forming the maneuver. Right: ter-
rain representation as seen by the
planner and the controller.

6.7.4.2 Long-Horizon MPC

We also experiment with using solely MPC as a planner and controller to

verify MPCs ability to plan over long horizons. In this case, MPC receives

a goal pose and a contact schedule without any guiding path. The terrains

tested are relatively flat since MPC can fail to converge in the presence of

obstacles without good initialization Jelavic, Farshidian, and Hutter, 2021.

The prediction horizon is set to 25 s. The start and goal pose, along with

the route taken by the base and the wheels, is shown in Fig. 6.22b. The

optimization can discover an efficient path that actively utilizes all four steering

joints. It involves crab steering, a configuration where all four steering joints

point in the same direction, resulting in diagonal movement of the base that

is not aligned with its heading. The machine is moved 2.53m sideways with

a trajectory that involves four direction changes (discovered by MPC). The

motion duration is 46 s, and a contact schedule was externally provided.
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(b) Crab Steering Paths

Figure 6.22: Left: Start and end configuration of HEAP performing a driving maneuver.
The base is commanded to move sideways, and MPC discovers a motion satisfying the rolling
constraint, which involves called crab steering. It involves all four wheels pointing in the
same direction while the machine moves diagonally. Right: Base and end-effector positions
during the crab steering experiment. The lines denote the path taken by each wheel and
the base. The coordinate frames denote the base’s starting (S) and finishing (F) position of
the base, where red color denotes x axis and the green denotes y axis. For HEAP, x axis is
aligned with the direction of travel.

The MPC can also plan stepping motions with a fixed contact schedule. The

machine lifts off the legs in the following order: LH, LF, RH, RF. Each swing

phase lasts 5 s. HEAP is commanded to turn in place multiple times, with

approximately 30 degrees yaw increments. Fig. 6.23 shows snapshots of the

machine changing its orientation by approximately 108 degrees. A similar sce-

nario is shown in Fig. 6.24 where HEAP steps 6.1m sideways without driving.

Total motion duration is 177 s for the stepping turn and 266 s for the sideways

stepping.

It is challenging for the optimization to plan in the presence of nonlinear

constraints (e.g., support polygon constraint) over long horizons. Furthermore,

the planning times should be short enough to run in real-time. In all cases,

the MPC plans with the flat ground assumption. Hence, the control system is

also tested since it has to compensate for the unmodelled terrain (the whole

field is sloped and bumpy).

6.7.4.3 Whole-Body Controller Terrain Adaptiveness

Lastly, Fig. 6.25 shows an experiment where HEAP is required to adapt to

unseen terrain. The planner is given a goal pose ahead of the machine and

generates trajectories with flat ground assumption. However, there is a hole
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Figure 6.23: HEAP performing a stepping turn in place. The x− y position stays approx-
imately the same, while the azimuth of the chassis changes.

Figure 6.24: HEAP performing a stepping turn and moving laterally. The chassis keeps
the azimuth approximately the same as at the beginning of the maneuver.

on one side of the machine (blue arrow) and a hill on the other (red arrow).

In the next frame, one can observe that the machine retracted its left leg and

extended its right leg to keep the base as leveled as possible. Base and joint
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Figure 6.25: Top: HEAP is commanded forward and there is a hole in front of it (blue
arrow) and a hill (red arrow). Since the MPC is planning with a flat terrain assumption,
VMC has to coordinate the front legs to keep the chassis leveled. Bottom: Base and joint
tracking. While the base is tracking (with some offset) the MPC commands, HFE joints
ignore the MPC references to accommodate for the unmodelled terrain.

tracking during the experiment is also shown in Fig. 6.25. The MPC sends

base references to the VMC, which tries to track them. Note that there is some

offset since the VMC control has not been tuned with the set point following

in mind. The HFE leg joints do not follow the planned values from the MPC
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since the terrain map inside the MPC does not match the reality. Note how

the left and right HFE joint move in opposite directions since there is a hill

on one side and a hole on the other.

6.8 Discussion

6.8.0.1 Initialization step

We chose an optimizing planner like RRT* since the cost allows shaping the

robot’s behavior (Jelavic, Farshidian, and Hutter, 2021) at the expense of more

computation. Since we sample only a three-dimensional subspace, one could

use a grid-based method for the base motion planning. We chose RS curves

as connections since they elegantly enforce the minimal turning radius for a

robot with steerable wheels (HEAP). They are also beneficial for quadrupeds

since they naturally limit the robot from walking too much sideways, the least

stable way of locomoting. RS curves come with a trade-off: they are far more

computationally expensive than straight-line connections (for quadrupeds).

6.8.0.2 Refinement step

While timings are unecessary for quasi-static motions, we compute them be-

cause the optimization is formulated as an OCP. Since the MPC only receives

and tracks a snippet of the trajectory (e.g., 15 s out of 250 s) in the near future,

we trade off some optimality (e.g., cannot speed up the motion) for real-time

re-planning; crucial for hardware experiments. We found that using SLQ was

possible, however less numerically stable than SQP (especially for HEAP) since

SLQ is quite sensitive during the rollout phase.

6.8.0.3 Control

For the torque-controllable legged robot with high bandwidth actuators, we

follow the standard approach of using terrain-adaptive whole-body control at

the lowest level, which improves robustness. For HEAP, the same method does

not work because fine torque control is not possible on all joints. Hence, we

run the VMC to be compliant (necessary for hardware experiments) and MPC

to track the motion plan. The VMC + kinematic MPC structure avoids a

complicated dynamic model inside the MPC, which helps us achieve real-time

performance and reduces the amount of tuning for deployment. Optimizing

dynamic models for HEAP is numerically challenging because of significant

differences in link masses. Moreover, we do not have an accurate dynamic

model (e.g., the weight of hoses and oil is not modeled).
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6.9 Conclusion

This work presented LSTP, a combination of sampling and optimization-based

motion planning for complex legged and legged-wheeled machines. The plan-

ner is divided into two stages. The long term initialization step is backed by

an RRT planner, while the short term refinement step backed by the NO. The

initialization step computes a contact schedule and a sequence of keyframe

configurations used as an initial guess for the optimization. We found that

initializing with whole-body configurations can improve optimization conver-

gence in some cases. SBP presented in this work can find initial solutions in

less than 1 second, which makes it suitable for real-time re-planning. Fast

computation times are achieved by precomputing limb roadmaps offline and

then using them to rapidly check collisions and stability at runtime. Lastly,

the SBP can handle three robot types: a legged robot, a legged-wheeled robot

with non-steerable wheels, and a legged excavator with steerable wheels.

The planner’s second stage uses optimization running in an MPC fashion to

refine the initial guess from the sampling-based planner. The constant re-

planning allows for robustness which is especially important for the HEAP

where the hardware does not allow precise control. The proposed two-stage

planning approach has been benchmarked on a variety of terrains requiring

MPC to stay out of local minima.

We validate the proposed planning and control system on hardware for both

quadrupedal robot ANYmal and excavator HEAP. We show that our approach

can be executed on hardware in realistic conditions. In particular, for HEAP,

we show that the proposed MPC controller is terrain-adaptive and does not

require precise terrain models.

6.10 Outlook

The fundamental limitation of our approach is that it only allows for quasi-

static motions. The initialization stage of LSTP can only discover static gaits

which are not optimized in the second stage. It would be interesting to relax

the stability assumption allowing SBP to find more dynamic gaits such as trot-

ting or jumps. Frameworks like Winkler et al., 2018 allow for gait refinement

in the second stage; however, one needs to ensure real-time execution and

prevent the optimization from getting stuck. Thereby, hierarchical models Li,

Frei, and Wensing, 2021 or new efficient solvers for switching time optimization

Katayama and Ohtsuka, 2022 could be used.
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The other fundamental limitation is the choice of a height map as an envi-

ronmental representation. Our planner cannot discover contact-rich motions

involving overhanging structures (e.g., crawling, ladder climbing), which could

be addressed by choosing a different map representation. One big challenge

for such confined environments is to devise an efficient strategy for base pose

selection.

In addition, the SBPs base pose selection module could be improved. Since

a cost function can describe a good base pose, one could use reinforcement

learning to train a policy to produce a 3D pose based on the raw terrain

observations. This would remove the need for terrain pre-processing, free up

computational resources and reduce the amount of tuning. We have already

done some preliminary work in this direction.

Lastly, we will implement the SBP running in a separate thread at any time.

This way, the MPC could request the new plan before it finishes executing the

previous plan, which speeds up maneuver execution.

6.11 Appendix

6.11.1 Terrain Preprocessing

The normal estimation module fits a plane locally for each cell point pi =

(xi, yi) inside the grid map. As a result, terrain normal vectors ni = [nx
i n

y
i 1]

T

and a height estimate h̃i are computed. The tangent plane at point pi is a

function of height h and local coordinates (dx, dy) = (x− xi, y − yi) ∈ R2,

nx
i dx+ ny

i dy + (h− h̃i) = 0. (6.24)

Assuming that all the points pj (height denoted by hj) within radius R from

pi lie on the plane, we can write Eq. 6.24 in the matrix notation,

[∆x∆y − 1] · θ = −hj , ∀j with ∥pj − pi∥2 < R, (6.25)

where ∆x = xj − xi, ∆y = yj − yi, and θ = [nx
i ny

i h̃i]
T is the vector of

parameters. We can then assemble the data matrix D ∈ RM×3 and height

vector h ∈ RM and perform the normal estimation by solving the least squares

problem:

θ∗ = (DTD)−1DTh. (6.26)
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Normal estimation is used in computing both surface normals and filtered

elevation. The difference is that the former one uses a smaller radius Rs

(0.1m for ANYmal and 0.3m for HEAP) and does not consider traversability.

The latter one performs normal estimation using all traversable points within

a larger radius of Rl (0.4m for ANYmal and 2.5m for HEAP).

A grid cell (x, y) is categorized as untraversable if on a steep slope or if the

surrounding terrain is irregular. Terrain is considered irregular at (x, y) when

its height deviates too much from its elevated mean value. The elevated mean

hem around point pi is computed in the local neighbourhood with radius Rl,

Nl(R,pi) :=
{
pj

∣∣∣ ∥pj − pi∥2 < Rl

}
. (6.27)

Define Ne(R,pi) as the set of nearby points whose height are above havg, the

average height of Nl(R,pi),

Ne(R,pi) :=
{
(x, y) ∈ Nl(R,pi) | h(x, y) > havg

}
. (6.28)

Then we can compute elevated mean hem using equation Eq. 6.29 with the

height offset defined in Eq. 6.30.

hem = min{hmax, havg + woho}, (6.29)

ho =
1

absNe

∑
(x,y)∈Ne

(
h(x, y)− havg

)
, (6.30)

where hmax is the maximum height inNl(R,pi) and wo is a user-defined weight

controlling the influence of elevated mean. Elevated mean is motivated by use

case on terrains containing negative obstacles such as ditches and stepping

stones. We found elevated mean to help correctly assess traversability for

terrains like gaps, holes, and stepping stones without a negative effect on others

such as stairs, ramps, and pillars. Visualization of the computing elevated

mean can be seen in Fig. 6.5b. Upon classifying the traversable regions we

compute the sdf2.

Lastly, the algorithm computes filtered elevation for base pose selection by

fitting planes using

Nf (R,pi) := Nl(R,pi) ∩ T , (6.31)
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i.e., all traversable points in Nl(R,pi). The rationale behind is that the base

of the robot should not adjust itself to the untraversable regions since those

are the ones that we want to avoid anyway.

6.11.2 Feasibility Check for Point Foot Robot

6.11.2.1 Full-Support State Connection

The base path connecting the start and the goal of OSM is discretized into

Nseg segments with Nseg +1 states. To create a swing phase, we need at least

one state to contain a non-grounded leg. Hence we require each swing phase

to span across two segments at least, Nseg,s ≥ 2. Larger Nseg,s yields finer

discretization of swing leg motion in space (not in time) but decreases the

computation speed. The number of segments in OSM cannot be set smaller

than Nseg,min := K ·Nseg,s with K being the number of the limbs, otherwise

we cannot create a feasible contact schedule if all limbs need to have a swing

phase. We set Nseg slightly larger than Nseg,min to allow for longer swing

phases if needed.

6.11.2.2 Contact Schedule Computation

We refer to set of discretized states within OSM as O, i.e.

O :=
{
oj , j = 0, . . . ,K withK = Nseg

}
. (6.32)

In Eq. 6.32, o0 denotes the starting state of OSM where oK denotes the end

of it. Their leg configurations are already determined in FSS computation. To

find LCB, we search for every state from 1 to K−1 for valid roadmap vertices

close to footholds at state o0. If at state j no such vertex is found, we set

jlcb = j − 1. In case the search reaches index K − 1 it means that the leg

can remain in contact during the entire OSM. On the other hand, ECC are

computed by searching from index K − 1 to Nseg,s (backwards). If at index j

the footholds in oK cannot be reached, we set jecc = j+1. In case contact can

remain for all the searched index, we set jecc = Nseg,s because contact break

can at earliest happen at 0.

Given the latest contact break jlcb[i] and earliest contact creation jecc[i] for

the ith swing limb, a feasible contact schedule can be computed by solving

the feasibility problem below. The algorithm needs to find indices of states
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LF

RH

RH

Ostart OgoalLF

Figure 6.26: Different swing orders generate different support polygons in an OSM. In the
upper one, the robot swings first the LF leg and then the RH one, which makes the Support
Polygon (SP) large enough. The swing limb order is reversed in the lower option, and this
makes the SP very small (highlighted in red) once the LF leg breaks contact.

where contact break jcb[i] and contact creation jcc[i] happen. The feasibility

problem below is solved only for the swing legs SW of OSM.

find jcb[i], jcc[i] for all i ∈ SW
s.t. jcb[i] ∈ {0, 1, . . . , jlcb[i]}

jcc[i] ∈ {jecc[i], jecc[i] + 1, . . . , Nseg}
jcc[i]− jcb[i] ≥ Nseg,s

at most one swing leg, ∀o ∈ O
(relaxed) stability constraint, ∀o ∈ O.

(6.33)

For a fixed swing limb permutation p, it is easy to compute the contact sched-

ule. p tells the swing limb order, e.g. limb at position 0 is the one that swings

first. An algorithm for finding a feasible contact schedule is shown in Alg. 5.

As inputs Alg. 5 takes a sequence of OSM states O, ECC and LCB indices

(jecc, jlcb) for each leg and a swing limb order p. The output of Alg. 5 are

the indices of contact breaks jcb and contact creations jcc for all limbs. If a

limb does not change its contact state the corresponding ECC and LCB are

set to −1 in our implementation. Alg. 5 returns false if no feasible contact

schedule can be computed in line 23. The function unstableIndex finds the

first index t encountered from jcc[i] to jcb[i] for which stability constraints are

violated or −1 if no violation. Two examples of the contact plans found with

Alg. 5 are shown in Fig. 6.9.

For a quadrupedal robot, the number of different swing orders is at most

4! = 24 and they result in different support polygons. Fig. 6.26 shows how

different swing orders influence on the SPs area. Hence all the combinations
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Algorithm 5 Compute contact schedule for a swing order p

1: function getContactSchedule(p, jlcb, jecc,O)
2: jcb ← [−1,−1,−1,−1]⊤, jcc ← [−1,−1,−1,−1]⊤;
3: for k = p.size()− 1 : 0 do
4: i← p[k];
5: ▷ i is k-th swing limb in p
6: if k = p.size()− 1 then Commentlast swing limb
7: jcc[i]← Nseg ;
8: else
9: jcc[i]← jcb[p[k + 1]];
10: ▷ set cc to the next cb
11: end if
12: while true do
13: jcb[i]← min(jlcb[i], jcc[i]−Nseg,s);
14: if jcc[i] < jecc[i] or jcb[i] < 0 then
15: return false;
16: end if
17: for c = 0 : k − 1 do
18: ▷ swing limbs prior to i
19: if jcb[i] < jecc[p[c]] then
20: return false;
21: end if
22: end for
23: t← unstableIndex(p, jcb[i], jcc[i],O);
24: if t = −1 then
25: break;
26: else
27: jcc[i]← t− 1;
28: end if
29: end while
30: end for
31: return {jcb, jcc};
32: end function

are enumerated and we try to compute a feasible contact schedule using the

Alg. 5 (this can be done in parallel). Computation terminates as a feasible

contact schedule is found.

6.11.3 Legged-Wheeled Robot Extension

We say that a leg is in the driving mode if it drives forward in longitudinal

direction, without any lateral movement. The stepping mode refers to the leg

going through a swing phase. The robot enters the stepping mode if its base

is turning, side-stepping or when the terrain under the wheel is untraversable.

We can identify this situation by looking at the projection of the nominal

hip location on the ground. To find LCB for a legged-wheeled robot we first
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Algorithm 6 Create one-step motion (OSM)

1: function createOSM(ostart,ogoal)
2: O ← discretize(ostart,ogoal);
3: ▷ only base poses
4: if ¬createFullSupportState(ogoal) then
5: return false;
6: end if
7: if ¬isBaseCollisionFree(O) then
8: return false;
9: end if
10: jlcb ← findLatestContactBreaks(O);
11: SW ← getSwingLimbs(jlcb);
12: jecc ← findEarliestContactCreations(O,SW);
13: for all p ∈ Sym(SW) do
14: ▷ Sym(SW) are permutations of SW
15: cs←getContactSchedule(p, jlcb, jecc, O);
16: ▷ Alg. 5
17: if cs ̸= false then
18: if createSwingMotion(O, cs) then
19: return O;
20: end if
21: end if
22: end for
23: return false;
24: end function

Algorithm 7 Get feasible OSM lengths

1: function feasibleOsmLengths(d, dtotal)
2: ret← {}, dto go ← dtotal − d;
3: if dto go < max(L) then
4: ret.push back(dto go);
5: end if
6: for all l ∈ L do
7: if dto go − l > min(L) then
8: ret.push back(l);
9: end if
10: end for
11: return ret;
12: end function

check what is the leg mode by iterating over the OSM states. Once the leg

enters the stepping mode it remains a stepping leg until the end of the OSM.

In this case the LCB is searched from the index where the leg switches its

state from driving to stepping, same as it was done for the legged robot. If

at state j no such vertex is found, we set jlcb := j − 1. For the driving legs

the configuration is found by finding vertices in the roadmap which are close
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Algorithm 8 Motion feasibility validation from sstart to send

1: function isMotionValid(sstart, send)
2: traj ← {};
3: ▷ state sequence between sstart and send

4: dtotal ← distance(sstart, send), d← 0;
5: while d < dtotal do
6: ostart ← nullptr;
7: if d = 0 then
8: ostart ← copyState(sstart);
9: createFullSupportState(ostart);
10: else
11: ostart ← copyState(traj.back());
12: end if
13: osm success← false;
14: L ← feasibleOsmLengths(d, dtotal);
15: ▷ Alg. 7
16: for all l ∈ L do
17: ogoal ← nullptr;
18: if d+ l = dtotal then
19: ogoal ← copyState(send);
20: else
21: ogoal ← interp(sstart, send, d+ l);
22: end if
23: O ← createOSM(ostart,ogoal);
24: ▷ Alg. 6
25: if O ≠ false then
26: traj.push back(O);
27: d← d+ l;
28: osm success← true;
29: break;
30: end if
31: end for
32: if ¬osm success then
33: return false;
34: end if
35: end while
36: return true;
37: end function

to the projection of the nominal hip position on the terrain. For driving legs

we can simply establish ground contact same way as during FSS computation

(Sec. 6.4.2.2). Similarly, once can find the ECC for the legged-wheeled robot.

The computation can be parallelized for different legs.
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6.12 Lessons Learned

The last paper introduced LSTP, a planner for legged and legged-wheeled

systems based on sampling and optimization. Compared to Paper IV, we ex-

tended the planner to handle legged robots with point feet and legged robots

with non-steerable wheels. The planner has been benchmarked on various ter-

rains for three different platforms: ANYmal, ANYmal on Wheels, and HEAP.

We redesign HEAP’s control system and deploy it on hardware. The new con-

trol system was able to execute all the maneuvers presented in Paper III with

more robustness, and additionally, it can use the arm for locomotion.

The general purpose nonlinear solver IPOPT used in papers II, III, and IV

performs the best in robustness and convergence properties; however, it is

much slower since it does not exploit the problem structure. We experimented

with different strategies inside the MPC and found that DMS is stabler than

the SLQ. This is especially true for longer prediction horizons and for HEAP,

which has more complicated kinematics than the legged robot. We also found

that optimizing offline with TO leaves the optimization more freedom to im-

prove upon the solution from the SBP.

From the deployment point of view, it is clear that today’s hydraulic machines

are not meant for autonomous operation. While the machine tracks the motion

plans, it will only be able to do so somewhat precisely. The actuators need

more bandwidth for precise control, and sensing is also limited. For example,

the wheel speeds cannot be measured, nor the wheels can be controlled indi-

vidually. While it was essential to have re-planning capabilities in real-time,

the frequency was not as important, and we could execute motions even with

low re-planning frequencies (5Hz-20Hz).

Parts of the sampling-based planner can profit from data-driven tech-

niques—for example, the base pose selection module. A cost function can de-

scribe a good base pose; hence, we could use RL and train a policy outputting

a 3D pose based on the raw terrain observations (we did some preliminary

work in this direction). Sampling-based planners can profit from learning-

based techniques since the algorithm is broken down into sub-modules with

clearly defined boundaries. It is less clear how to incorporate a similar strategy

into optimization.
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This thesis investigated motion planning and control in the presence of obsta-

cles for legged and legged-wheeled robots. Compared to the related work, we

developed a whole-body planning method that can handle systems with many

Degrees of Freedoms (DoFs), overcome challenging terrain, compute global

plans, and discover a Contact Schedule (CS). The proposed planner removes

the need for a multi-level hierarchical planning pipeline, as shown in Fig. 1.1,

and it can more effectively utilize the robot’s DoFs. The functionality was

achieved by combining randomized sampling with optimization. The proposed

approaches were demonstrated on a variety of machines of different size and

locomotion modality. Besides legged excavators which were the main focus of

this thesis, we extended our findings to the other robots, thus demonstrating

the generality of the approach. The outcome of this thesis is an increased

understanding of how to choose an appropriate technique to solve the Motion

Planning Problem (MPP).

7.1 Accomplishments

We showcase a first autonomous deployment of a full-size hydraulic machine

for precision harvesting in Chapter 2. Chapter 2 proposes mapping, planning,

localization, and control techniques. This is the first time that a complete

harvesting system has been investigated and demonstrated on hardware (to

the best of our knowledge). During the deployment, Hydraulic Excavator for

Autonomous Purpose (HEAP)’s locomotion strategy was to drive and use legs

as active suspension. Observing HEAP sometimes getting stuck in wet terrain

and comparing it to what human operators can do with legged excavators, we

decided to concentrate future efforts on improving the locomotion system.

The autonomous deployment in Chapter 2 resulted in several software contri-

butions and one hardware contribution. To enable mission planning, we built
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a prototype of a handheld sensor module for environment scanning. Interest-

ingly, a similar solution emerged in the industry for mobile mapping (Leica,

2022). We also developed a robust algorithm for converting raw point clouds

into 2.5D elevation maps deployed in a real forest and several other environ-

ments. The implementation is available as open-source1, and it was used for

autonomous embankment excavation (Jud et al., 2021a) and as a ground truth

for online elevation mapping (Fankhauser, Bloesch, and Hutter, 2018). The

tree detection algorithm used in this thesis is open-source too2. The method

is purely geometry-based and operates directly on point clouds without extra

pre-processing. Planning and path following are also available online3. The

planning and path following has also been used on the Spacebok robot (Arm

et al., 2019), and for other projects on HEAP (Jud et al., 2021a). Lastly,

we open-sourced our localization software4 used for generating ground-truth

trajectories. It is used for navigation with ANYmal on Wheels (at the time of

writing) and was used in two ETH Robotic Summer Schools (ETH, 2022).

Subsequent papers strived to create a planning and control system with

capabilities similar to those of experienced operators. We opted for an

optimization-based approach to utilize all DoFs effectively. The proposed op-

timization planner could perform stepping motions and use the arm similar to

how humans use it. Moreover, the planner could discover driving movements

too complex for human operators since they require simultaneously coordi-

nating too many DoFs. In the scope of second paper, we derived the robust

support polygon constraint, which was indispensable for hardware deployment

on HEAP and also used for a legged robot in a student’s master thesis.

The second step was to verify the feasibility of the kinematic plans on hard-

ware. We decided to use an optimization-based controller since it allows us to

include system constraints. The controller achieves terrain adaptation through

Hierarchical Optimizations (HOs) task prioritization. While successfully used

for torque-controllable legged robots with electric actuators, HO had not been

applied to hydraulic machines. In Chapter 4 we bridge this gap. We could

execute whole-body driving and stepping motions on hardware by carefully

combining inverse kinematics with full rigid-body inverse dynamics. To our

knowledge, this was the first time such maneuvers were shown on a full-sized

legged excavator.

1https://github.com/ANYbotics/grid_map/tree/master/grid_map_pcl
2https://github.com/leggedrobotics/tree_detection
3https://github.com/leggedrobotics/se2_navigation
4https://github.com/leggedrobotics/icp_localization
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Chapter 5 builds a sampling-based framework and combines it with an

optimization-based planner. We use HEAP as a showcase platform since it

has 31 DoF and naive sampling with an Sampling Based Planning (SBP) is

too slow. This was the first time we could compute whole-body motions with-

out any initial guess for a system with that many DoFs. Chapter 5 presents an

evaluation of what makes the motion planning problem hard for optimization;

i.e., it is much harder to deal with the obstacles and complex terrain than a

complex robot model. Chapter 5 was the first time a general elevation map

was incorporated into the optimization problem for legged-wheeled systems,

resulting in a software contribution merged into an open-source package grid -

map5. We implemented cubic interpolation and cubic convolution, which we

found to speed up the optimization convergence for large grid cell sizes.

Finally, in Chapter 6, we extend our findings from previous papers to other

robots. The sampling-based planner was extended to handle robots with point

feet and legged-wheeled quadrupeds with non-steerable wheels. The proposed

SBP was tested on ANYmal on wheels in Bjelonic et al., 2022. The offline

optimization from Chapter 3 was replaced with an Model Predictive Control

(MPC) based on Direct Multiple Shooting (DMS). This change enabled re-

planning at frequencies of about 5-50 Hz (depending on the robot and terrain).

For HEAP, we revisited the whole-body control system design: we increased

robustness, decreased the amount of tuning, and retained terrain adaptation.

HEAP could now execute combined stepping and driving motions and use the

arm as a supporting limb to step over obstacles. The performance was on par

with skilled human operators, thus fulfilling the goal set for ourselves after

Chapter 2. At the time of writing, these results have not been achieved by

any other excavator/method.

7.2 Outlook

Future research directions are outlined below.

7.2.1 Terrain Processing

One of the bottlenecks in our approach is terrain perception. We rely on

traversability for foothold computation, meaning that wrong traversability

could result in unstable configurations. For the purpose of this thesis we

developed a simple geometric approach in Chapters 5 and 6, however a more

5https://github.com/ANYbotics/grid_map
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principled way of estimating traversability is required (e.g., Frey et al., 2022).

A purely geometry-based estimation has limitations; ultimately, we must in-

corporate visual information. Traversability estimation is an open problem in

robotics, and we see a lot of potential for further research on this topic.

7.2.2 Computation

With the advent of cheap Graphics Processing Unit (GPU) computing units

like Jetson (NVIDIA, 2022), the planning algorithms should benefit from more

computation power. While we parallelized certain portions of the planner, like

the terrain processing pipeline, improvements must be made. Randomized

sampling has a high potential for parallelization since samples are drawn in-

dependently from each other, and in the future parallel sampling planners like

Bialkowski, Karaman, and Frazzoli, 2011 will gain importance. On the other

hand, the optimization is harder to parallelize since it is iterative, and the

descent needs to be done incrementally while re-evaluating gradients. How-

ever, once initialized close to optimum, the optimization converges rapidly,

and the computation times are low enough for practical applications. With

rapid planning times, the whole pipeline (and not just optimization) could be

run at high frequency and thus provide more robustness in the system.

7.2.3 Data-Driven Approaches

In the last few years (a Ph.D. time) application of data-driven methods for

quadrupedal robots has seen tremendous progress. So far, we have seen an

application for control of legged robots (Miki et al., 2022a) showing unprece-

dented robustness in field deployments. Data-driven approaches can connect

well with randomized sampling. We are already witnessing various attempts;

Chemin et al., 2021 presents an effort to learn the steer function for connecting

new samples to the tree, Yang et al., 2021 shows planning with learned motion

costs, and Ichter, Harrison, and Pavone, 2018 tries to learn a good sampling

distribution. We experimented with a learned policy for efficient sampling,

where we sample in SE(2) space and let the policy determine the full 6D pose.

Connecting learning approaches to the SBP planners is an exciting research

direction for the future.

Apart from SBP, learning-based approaches can potentially improve the ter-

rain processing pipeline. Works like Chavez-Garcia et al., 2018; Frey et al.,

2022 try to learn the traversability function by relying on geometry informa-

tion. In Chavez-Garcia et al., 2017; Hirose et al., 2018, images are used to
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predict terrain properties. Given the success of data-driven methods in other

fields like computer vision and their potential to relieve us from handcraft-

ing heuristics, we expect them to become more widespread for traversability

estimation.

Lastly, the data-driven control methods seem promising to reduce the amount

of tuning when deploying on hardware. This is especially true for hydraulic

machines, which exhibit highly non-linear dynamics. The current application

of learning-based controllers is limited to excavator arm control (Egli and

Hutter, 2022). However, it would be helpful to have a complete whole-body

tracking controller tuned entirely from data and without manual labor.
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For robotic autonomy, motion planning plays an important 
role, especially in the presence of obstacles. Overcoming 
obstacles requires adapting locomotion strategy to the 
surrounding terrain, a pattern that can be observed in 
humans and animals. Traditionally, the problem is 
decomposed into smaller subproblems using simplified 
models and heuristics, which often cannot capture the 
coupled dynamics in the system. Hence they often plan 
motions not fully utilizing the robot's capabilities.

This dissertation extends the locomotion capabilities of 
legged robots, emphasizing legged excavators. It develops 
motion planning algorithms utilizing all degrees of freedom 
for overcoming challenging terrain. We formulate the motion 
planning problem in a general way for multiple robot types 
and explore concepts for solving it. To this end, optimization 
and randomized sampling play a central role in computing 
global, whole-body motions presented in this thesis.


