A Lagrangian perspective of modelling and measurements of natural and geoengineered cirrus clouds

Author(s):
Cirisan, Ana

Publication Date:
2012

Permanent Link:
https://doi.org/10.3929/ethz-a-007578028

Rights / License:
In Copyright - Non-Commercial Use Permitted
A Lagrangian Perspective of Modelling and Measurements of Natural and Geoengineered Cirrus Clouds

A dissertation submitted to the
ETH ZURICH

for the degree of
Doctor of Sciences

presented by
ANA CIRISAN

MSc Env. Sc.
born 18 August 1981
citizen of Serbia (SRB)

accepted on the recommendation of

Prof. Dr. Thomas Peter, examiner
Prof. Dr. Peter Spichtinger, co-examiner
Prof. Dr. Ulrike Lohmann and Prof. Dr. Andrew Gettelman, co-examiner

2012
Abstract

This thesis focuses on high level cirrus clouds, i.e. wispy cold clouds that are made up of tiny ice crystals. Cirrus clouds are widespread in the Earth’s atmosphere, covering approximately 30% of the globe (Wylie and Menzel [1999]), therefore playing a significant role in the energy and atmospheric water budgets of our planet. However, due to uncertainties in the measured upper tropospheric water mixing ratios (Peter et al., 2006) and an incomplete understanding of interactions and feedbacks between cloud microphysics, large-scale and small-scale atmospheric dynamics and radiative processes (Zhang et al., 2005), it is difficult to predict the role of cirrus in a changing climate. Radiative forcing of cirrus clouds still represents one of the largest sources of uncertainty in the climate models (IPCC, 2007). Averaged over the entire atmosphere, clouds have a cooling effect, caused by the reflection of the incoming solar short-wave radiation (albedo effect). However, due to the relatively cold temperatures of cirrus clouds ($T < 235$ K), these clouds trap much of the outgoing long-wave radiation and reemit a fraction back in the direction of the surface (adding to the Earth’s greenhouse effect). Chen et al. (2000) showed that cloud visible optical thickness and cloud top pressure are the main variables determining cloud radiative forcing, and that cirrus clouds are the only cloud type resulting in an overall warming effect on climate, while the albedo effect and overall cooling dominates for all other cloud types. Zelinka and Hartmann (2010) highlighted the importance of a cloud response to a warming climate assuming that high-cloud temperature slightly increases due to the increase in static stability, resulting in a positive longwave cloud feedback (so called proportionately higher anvil temperature (PHAT) hypothesis). In addition, the radiative properties of cirrus clouds are sensitive to microphysical cloud characteristics such as ice crystal number density, size and shape (Zhang et al., 1999; Fusina et al., 2007). They therefore depend on the cirrus formation mechanisms. These parameters govern the optical properties of cirrus, defining transition between the warming and cooling regimes, affecting the cloud life cycle and thus the humidity of the upper troposphere. While the existence of high ice-supersaturations ($RHi \leq 160\%$) outside of cirrus clouds is now fully accepted and in agreement with the physicochemical properties of the onset of homogeneous nucleation of ice, ice-supersaturations inside of the cirrus clouds is still an issue of scientific debate (Spichtinger et al., 2004; Peter et al., 2006). A general weakness of many cirrus and humidity measurements, besides issues of accuracy, is that they are Eulerian in character, providing just an instantaneous picture of the investigated area. In order to improve and better understand the time evolution and life cycle of cirrus clouds in the mid-latitude regions, this thesis introduces the concept of cloud tracing using the “match” technique. The aim of this technique is to capture the same air mass twice within 1-3 hour period using balloon borne measurements. Separate balloon measurements were performed over two sites (from Payerne and from a location in the surroundings of Zurich), equipped with a particle backscatter sonde ”COBALD” (Compact Optical Backscatter Aerosol Detector), a frostpoint hygrometer ”Snow White” and a standard PTU sonde with GPS. Coordinates of the second sounding location were determined by a balloon forecasting tool, based on trajectory calculations with wind fields from the Numerical Weather Prediction (NWP) model COSMO-2, tracing the same air mass 120 km downstream of Payerne. Two successful “matches” from a total number of nine balloon launches were realized during this project. The other seven launch attempts suffered from various side effects that led to difficulties during the time of measurement (e.g. unexpected technical problems with the GPS receiver) or impossibility in performing the sounding (e.g. lacking organizational skills, bad ground weather conditions etc.). Measurements performed on 8 June 2010 resulted in a successful match flight, detecting a thick cirrus cloud with high in- and
out-of-cloud supersaturations over both measurement sites. Detailed modelling studies based on comprehensive microphysical box modelling and COSMO-7 analysis showed the importance of additional assumptions: (i) a clear requirement to superimpose small-scale temperature fluctuations onto the COSMO-derived trajectories, (ii) compensating for a too early onset (by \(\approx 30 \) minutes) of a warming along the trajectories from Payerne to Zurich, (iii) treating the COSMO-derived trajectories as adiabatic instead using directly the COSMO 3-D wind fields (but with explicit superposition of latent heat effects determined by the microphysical model), (iv) assuming the mass accommodation coefficient to be a function of supersaturation. Each of the assumptions (i)-(iv) improves the agreement with the measurements, with (i) and (ii) being clearly the dominant factors. In contrast, assuming the existence of 10 L\(^{-1}\) ice nuclei does not lead to a further improvement. The whole analysis depends on the assumption of sufficiently small cloud inhomogeneities, which is hard to justify, however the importance of (i) and (ii) is not affected by this caveat. Furthermore, despite the overall good agreement with the measured backscatter, we cannot explain 30 % in-cloud supersaturation measured over the Zurich site. This leads to the conclusion that either there was an unknown process, which hindered the ice particles consuming the excess humidity, or - and more likely- there was a possible measurement error, such as a sensor housing contamination of the Snow White hygrometer by cloud droplets from a mixed phase cloud just below the cirrus. This uncertainty calls for a requirement of in-flight checks or calibrations of hygrometers under the extreme humidity conditions in the upper troposphere.

Detailed investigation of changes in microphysical properties of cirrus clouds using a spectral box model were performed within the framework of the second project related to the potential impact of geoengineering on cirrus clouds in the Northern hemisphere mid-latitudes. Recently, the dispersal of large amounts of sulphur aerosol in the stratosphere was proposed in order to utilize the aerosol albedo effect (i.e., to reduce the amount of solar radiation reaching the Earth by scattering incoming radiation) for an artificial reduction of the anthropogenic global warming. This proposal has been repeatedly discussed within the climate community as one of the most feasibly approaches to geoengineering (Crutzen 2006; RoyalSociety, 2009). However, there is a need for deeper insight into the benefits of such a scheme, as well as into the risks of possible side effects and unintended consequences. The impact of modified sulphate aerosol droplet sizes on the formation and evolution of cirrus clouds was classified as potential side effect of this scheme (Robock 2008), but has not previously been investigated in detail. Our research provides quantitative estimations of how continuous SO\(_2\) emissions of 2 Mt/year and 10 Mt/year into the tropical stratosphere may change the ice crystal number density (up to 50 %), as well as the radiative properties of ice clouds. To this end, the size distributions of the geoengineered H\(_2\)SO\(_4\)-H\(_2\)O aerosols have been calculated with the AER 2-D aerosol model. Microphysical investigations were then carried out using a spectral box model, while the resulting climate effects were calculated by means of a radiation transfer model. We show that locally there are significant radiative effects depending on the amount of stratospheric/tropospheric air mixing as well as by other environmental conditions (i.e., cooling rate, temperature and pressure). An enhancement of cloud radiative forcing up to +2 W/m\(^2\) was obtained in the case of air masses with high fraction of stratospheric air or for very slow upwelling, while maximum cooling of -7.5 W/m\(^2\) is reached for a high fraction of tropospheric air or strong updraughts, calculated for different thin and moderately thick mid-latitude cirrus. However, changes in the cloud radiative forcing averaged over mid-latitudes are two orders of magnitude lower than these values, suggesting cirrus cloud influences as a potential side effect of this geoengineering scheme to be unimportant. However, this study was limited to considering just the aerosol effects. Further investigations are needed taking into account other feedbacks, such as changes in
the cloud lifetime, particle sedimentation or temperature and humidity changes in the upper troposphere, which will require a full 3-D computation using a global circulation model (GCM). The present study provides the underpinning for a simplified microphysical approach in such a GCM study.
Sommario

L’oggetto di questo lavoro è la categoria di nubi chiamate cirri: tali nubi sono sottili e si trovano ad un’elevata altitudine, di conseguenza sono costituite in maggior parte da piccoli cristalli di ghiaccio. I cirri sono molto diffusi nell’atmosfera terrestre: essi infatti coprono circa il 30% del globo (Wylie and Menzel, 1999), giocando un ruolo fondamentale nel bilancio di energia e acqua dell’atmosfera terrestre. Tuttavia, a causa delle incertezze relative al bilancio d’acqua misurato nell’alta troposfera (Peter et al., 2006) ed a causa di una tutt’ora incompleta comprensione delle interazioni e retroazioni tra i processi microfisici delle nubi, nonché della dinamica atmosferica e dei processi radiativi (Zhang et al., 2005), è difficile prevedere il ruolo dei cirri in un clima soggetto a cambiamento. Il forcing radiativo dovuto ai cirri rappresenta tutt’ora una delle maggiori fonti di incertezza nei modelli climatici (IPCC, 2007).

Generalmente le nubi hanno un effetto di raffreddamento, come conseguenza della riflessione della radiazione ad onde corte proveniente dal sole (effetto di albedo). Tuttavia, a causa delle temperature relativamente fredde dei cirri (\(T < 235\) K), queste nubi sono in grado di intrappolare gran parte della radiazione ad onda lunga proveniente dalla superficie terrestre e di rifletterla nuovamente verso di essa (effetto serra). Chen et al. (2000) hanno stimato che l’entità di questo effetto è più pronunciata per i cirri, traducendosi in un effetto di riscaldamento globale sul clima. Le proprietà radiative dei cirri sono largamente sensibili alle variazioni delle caratteristiche microfisiche della nube stessa, come il contenuto d’acqua, la densità numerica, la forma e le dimensioni dei cristalli di ghiaccio (Zhang et al., 1999; Fusina et al., 2007), nonché ai meccanismi di formazione dei cirri stessi. Tali parametri regolano le proprietà ottiche del cirro, definendo la transizione tra i regimi di riscaldamento e quello di raffreddamento, i quali hanno un effetto sul ciclo di vita delle nubi e sull’umidità dell’alta troposfera.

La presenza di ghiaccio ad elevate supersaturazioni, non solo all’esterno ma anche all’interno dei cirri, è ancora oggetto di discussione (Spichtinger et al., 2004; Peter et al., 2006). Un punto debole generale delle misure di cirri e di umidità, oltre ai problemi di precisione, è che tali misure sono euleriane; ciò quindi fornisce solamente un quadro istantaneo della zona studiata. Al fine di una maggiore comprensione dell’evoluzione nel tempo e del ciclo di vita dei cirri a medie latitudini, questo lavoro introduce il concetto di tracciamento di una nube utilizzando la tecnica del “match”. Lo scopo di tale tecnica è di catturare la stessa massa d’aria due volte entro un periodo di 1-3 ore, utilizzando le misure fatte sul pallone sonda. Questo tipo di misurazioni sono state effettuate in due siti (Payerne e dintorni di Zurigo), dove il pallone sonda è dotato di uno strumento in grado di misurare il backscatter dovuto a particelle “COBALD” (Compact Optical Backscatter Aerosol Detector), di un igrometro al punto di brina “Snow White” e standard PTU-GPS. Le coordinate del secondo punto di sondaggio sono state determinate calcolando la traiettoria del pallone sonda a partire dal modello di previsione meteorologica su scala regionale COSMO-2, tracciando la stessa massa d’aria 120 km a valle di Payerne. Sono stati realizzati durante questo progetto due “match” con esito positivo su un numero totale di nove lanci di palloni sonda. Gli altri sette lanci erano inutilizzabili a causa di effetti collaterali e di difficoltà durante il tempo di misurazione, che hanno causato un volo dall’esito negativo o reso impossibile eseguire il sondaggio (per esempio problemi tecnici imprevisti con il ricevitore GPS, mancanza di capacità organizzative, condizioni meteorologiche a terra, ecc.). Le misure effettuate l’8 giugno 2010 sono risultate in un volo con un match dall’esito positivo, rilevando una denso cirro con un’alta supersaturazione interna ed esterna alla nube in entrambi i punti di misura. Studio di modellizzazione dettagliati sulla base completa modellazione microfisica e sull’analisi COSMO-7 hanno evidenziato l’importanza di di ulteriori ipotesi di partenza: piccoli sballi di temperatura, variazioni adiabatiche lungo le traiettorie calcolate con COSMO-7 e il
cambiamento del coefficiente di massa di alloggiamento come funzione della sovrasaturazione. Tuttavia, non siamo in grado di spiegare il 30% di sovrasaturazione inter-nube misurato nel sito Zurigo, nonostante la buona concordanza con il backscatter misurato. Questo ci ha portato a ipotizzare un errore di misura, probabilmente causato dalla contaminazione della custodia del sensore dell’igrometro “Snow-White” da parte di goccioline di nubi provenienti da nuvole di basso quota.

Il potenziale impatto della geoingegneria sui cirri nell’emisfero settentrionale alle medie latitudini è un altro argomento di questa tesi. Recentemente, la deposizione di grandi quantità di aerosol di solfati nella stratosfera è stata proposta al fine di utilizzare l’effetto aerosol diretto (cioè, di ridurre la quantità di radiazione solare che raggiunge la Terra dalla diffusione delle radiazioni incidenti) con il fine di una riduzione artificiale del riscaldamento globale antropogenico. Questa proposta è stata più volte discussa all’interno della comunità dei ricercatori del clima come uno degli approcci più praticabili in geoingegneria. Rimane la necessità di comprendere a fondo i vantaggi di tale sistema, nonché i rischi di possibili effetti collaterali e conseguenze indesiderate. L’impatto delle modificate concentrazioni di aerosol di solfati sulla formazione e l’evoluzione dei cirri è stato classificata come un possibile effetto collaterale di questo metodo, ma non è mai stato studiato in dettaglio. La nostra ricerca fornisce stime quantitative delle variazioni della densità numerica del ghiaccio ghiaccio (fino al 50%), così come nelle proprietà ottiche e radiative delle nubi di ghiaccio originate dalle continue emissioni di \(\text{SO}_2 \) di 2 Mt/anno e 10Mt/anno nella stratosfera tropicale. Le distribuzioni della dimensione degli aerosol geoingegneristici \(\text{H}_2\text{SO}_4-\text{H}_2\text{O} \) sono state calcolate con il modello di aerosol AER 2-D. Indagini microfisiche sono state effettuate utilizzando un modello spettrale, mentre gli effetti climatici risultanti sono stati calcolati con un modello di trasferimento di radiazione. I risultati su scala locale sono stati significativamente influenzati dall’ammontare del miscelamento stratosferico/troposferico dell’aria, nonché dalle condizioni ambientali (ad esempio, velocità di raffreddamento, temperatura, pressione). Un aumento nel forcing radiativo della nube pari a +2 W/m\(^2\) è stato ottenuto nel caso di scarsa influenza dell’aria della troposfera inferiore o di moti convettivi ascendenti lenti, mentre il massimo raffreddamento pari a -7.5 W/m\(^2\) è stato raggiunto per quantità elevate di aria troposferica o intensi moti ascensionali, entrambi ottenuti per diversi cirri alle medie latitudini di sottile e medio spessore. Tuttavia, i cambiamenti medi nel forcing radiativo della nube alle medie latitudini sono di due ordini di grandezza inferiori o di moti convettivi ascendenti lenti, evidenziando l’irrelevanza dei cirri, come possibile effetto collaterale di questo metodo di geoingegneristico. Ciò nonostante, questo studio si è limitato a considerare solo gli effetti degli aerosol. Sono necessarie ulteriori ricerche che tengano conto di altri meccanismi di retroazione, come le modifiche del ciclo di vita delle nubi, la sedimentazione di particelle o le variazioni di temperatura e umidità nella troposfera superiore.