
Diss. ETH No. 29156

PRESCRIPTIVE MAINTENANCE AND OPERATION
WITH DEEP REINFORCEMENT LEARNING

A dissertation submitted to attain the degree of

Doctor of Sciences of ETH Zurich

(Dr. sc. ETH Zurich)

presented by

Yuan Tian

MSc ME, TU Delft

born on 03.01.1995

citizen of China

accepted on the recommendation of

Prof. Dr. Olga Fink, [examiner]
Prof. Dr. David Coit, [co-examiner]
Prof. Dr. Zhiwu Huang, [co-examiner]
Prof. Dr. Giovanni Sansavini, [co-examiner]

2023





Abstract

Although predictive maintenance has improved the availability of industrial systems by pre-
dicting the remaining useful life and scheduling maintenance actions in a timely manner, it
only provides information on the necessity of performing or deferring maintenance on assets.
However, for mission-critical applications, taking action and providing information to delay
equipment failure and prolong their working cycle or remaining useful life can be crucial to
the deployability of devices. Prescriptive maintenance goes beyond the prediction of the end
of life and aims to prescribe optimal operation with respect to the health condition and the
expected usage profile. Prescribed operations can help proactively manage the performance,
reliability, and availability of a system. To perform prescriptive maintenance, the dynamical
degradation process and the subsequent impact of the current decision on system health are
required to be integrated into the control actions or respective decisions. However, the fact
that the explicit degradation features may not be directly available or cannot be inferred easi-
ly in real-world scenarios limits the applications of model-based optimization approaches for
prescriptive maintenance. Moreover, model-based optimization approaches su↵er from high
computational costs, which also precludes their application to more complex systems, dis-
tributed systems, or immediate-level operation optimizations. To address the computational
challenge and the lack of explicit health information, one promising potential solution for such
tasks is reinforcement learning, which has recently shown extraordinary capability on a wide
range of end-to-end control tasks. Motivated by the achievements of reinforcement learning
in other fields, in this dissertation, we aim to develop a reinforcement learning-based pres-
criptive maintenance framework that integrates degradation awareness into decision-making.
The proposed framework can perform in real-time and can improve the system’s performance
and prolong its remaining useful life. Within the framework, four modules are proposed and
detailed below.

First of all, in order to compensate for the deviation between sensor measurements and out-
puts of physics-based performance models due to the degradation process on the real system,
we develop a real-time model calibration module, which can infer the underlying degradation
parameters and thereby calibrate the simulation environments. This module plays an essen-
tial role in the proposed framework to guarantee well-calibrated training environments for
developing prescriptive maintenance applications. Moreover, the proposed module can also
provide a better awareness of the degradation process.

Secondly, we develop a real-time load allocation module for multi-battery systems that, for
the first time, can proactively distribute load demand to each battery based on only raw sensor
measurements. This module can e↵ectively prolong the working cycle and remaining useful life
of the deployed multi-battery systems. This module has an essential impact on the reliability
and deployability of multi-battery systems for safety-critical applications. As a methodological
contribution, the Dirichlet policy is proposed for the first time to improve the e↵ectiveness
and learning stability for continuous action space allocation tasks under simplex constraint.
The Dirichlet policy can be combined with any other reinforcement learning algorithms to
improve the performance of solving allocation problems.

Thirdly, in addition to the independent decisions, in some cases (e.g., distributed systems),
the decisions can implicitly or explicitly influence other systems, which are usually modeled
as multi-agent systems. Since the centralized optimization methods are less flexible and su↵er
from high computational costs, we propose a novel decentralized multi-agent reinforcement
learning method to address these types of problems. The proposed method follows the de-



centralized execution mechanism, which is more flexible and computationally more e�cient
compared to centralized execution for real-time decision-making. Moreover, we propose a
general opponent model that allows the agent to tackle mixed cooperative-competitive sce-
narios, which has been less studied but is widely relevant in real-world applications. This
module serves as a complement to the previous modules when the structural and operational
dependencies within each machine or system must be considered.

Lastly, we propose an e↵ective and e�cient optimization module, especially for process
optimization or system reconfiguration problems in the industry. In such tasks, the analytical
forms of some or all of the functions and constraints are unknown or unexploitable, which
makes classical gradient-based approaches inapplicable. This work is the final piece of the
proposed immediate-level prescriptive maintenance framework, which provides an e�cient
solution for such optimization tasks. With the novel problem modeling and the introduced
adaptive searching strategy, the proposed module can prescribe reliable and reproducible
recommendations with limited data, which is in line with the industrial need.

In this thesis, we demonstrate the e↵ectiveness and e�ciency of the proposed framework
and corresponding modules on challenging industrial use cases or reinforcement learning
benchmarks. The proposed prescriptive maintenance framework, based on reinforcement lear-
ning, shows a promising potential to improve the performance, reliability, and lifetime of
industrial systems while reducing maintenance costs.

i



Zusammenfassung

Prädiktive Instandhaltung hat zwar die Verfügbarkeit industrieller Systeme durch die Vor-
hersage der Restnutzungsdauer und die rechtzeitige Planung von Instandhaltungsmassnah-
men verbessert, liefert aber nur Informationen über die Notwendigkeit der Durchführung
oder des Aufschubs von Instandhaltungsarbeiten an den Anlagen. Bei unternehmenskriti-
schen Anwendungen kann es jedoch für die Einsatzfähigkeit von Geräten entscheidend sein,
Präventivmassnahmen zu ergreifen und Informationen bereitzustellen, um den Ausfall von
Geräten zu verzögern und ihren Arbeitszyklus oder ihre Restnutzungsdauer zu verlängern.
Die präskriptive Instandhaltung geht über die Vorhersage der Restnutzungsdauer hinaus und
zielt darauf ab, den optimalen Betrieb im Hinblick auf den Gesundheitszustand und das
erwartete Nutzungsprofil vorzuschreiben. Vorgeschriebene Abläufe können helfen, die Leis-
tungsfähigkeit, Zuverlässigkeit und Verfügbarkeit eines Systems proaktiv zu beeinflussen. Um
präskriptive Instandhaltung durchzuführen, müssen der dynamische Degradationsprozess und
die resultierenden Auswirkungen der aktuellen Entscheidung auf den Systemzustand in die
Steuerungsmassnahmen oder entsprechenden Entscheidungen integriert werden. Die Tatsa-
che, dass die expliziten Degradationsmerkmale nicht direkt verfügbar sind oder in realen
Szenarien nicht einfach inferiert werden können, schränkt jedoch die Anwendung von modell-
basierten Optimierungsansätzen für präskriptive Instandhaltung ein. Darüber hinaus ist die
Berechnung von modellbasierten Optimierungsansätzen mit hohen Rechenkosten verbunden,
was ihre Anwendung auf komplexere Systeme, verteilte Systeme oder Betriebsoptimierun-
gen in Echtzeit ebenfalls ausschliesst. Eine vielversprechende Lösung für solche Aufgaben
ist das Reinforcement Learning, das in jüngster Zeit bei einer Vielzahl von End-to-End-
Regelungsaufgaben im Bezug auf die Rechenzeit und dem Mangel an expliziten Gesundheits-
informationen aussergewöhnliche Performance aufzeigte. Motiviert durch die Errungenschaf-
ten von Reinforcement Learning in anderen Bereichen, zielen wir in dieser Dissertation darauf
ab, ein auf Reinforcement Learning basierendes Framework für präskriptive Instandhaltung
zu entwickeln, das die Information über den Degradationszustand in die Entscheidungsfin-
dung einbezieht. Das vorgeschlagene System ist in der Lage, in Echtzeit zu arbeiten, die
Systemleistung zu verbessern und die verbleibende Nutzungsdauer zu verlängern. Innerhalb
des Frameworks werden vier Module vorgeschlagen, die im Folgenden näher erläutert werden.

Um die Abweichungen zwischen den Sensormessungen und den Ergebnissen der physikali-
schen Leistungsmodelle, die aufgrund des Degradationsprozesses eintreten, im realen System
zu kompensieren, entwickeln wir zunächst ein Echtzeit-Modellkalibrierungsmodul, das die zu-
grundeliegenden Degradationsparameter inferiert und damit die Simulationsumgebungen ka-
librieren kann. Dieses Modul spielt eine wesentliche Rolle in dem vorgeschlagenen Framework,
um gut kalibrierte Trainingsumgebungen für die Entwicklung von präskriptiven Instandhal-
tungsanwendungen zu gewährleisten. Darüber hinaus kann das vorgeschlagene Modul auch
eine bessere Kenntniss über den Degradationsprozess scha↵en.

Zweitens entwickeln wir ein Echtzeit-Lastzuteilungsmodul für Systeme mit mehreren Bat-
terien, das erstmals in der Lage ist, den Lastbedarf proaktiv auf jede Batterie zu verteilen,
und zwar ausschliesslich auf der Grundlage von Rohsensormessungen. Dieses Modul kann
den Arbeitszyklus und die verbleibende Nutzungsdauer der eingesetzten Multibatteriesyste-
me e↵ektiv verlängern und hat daher einen wesentlichen Einfluss auf die Zuverlässigkeit und
Einsatzfähigkeit von Mehrbatteriesystemen für sicherheitskritische Anwendungen. Als metho-
discher Beitrag wird zum ersten Mal die Dirichlet-Policy vorgeschlagen, um die E↵ektivität
und Lernstabilität für kontinuierliche Aktionsraum-Allokationsaufgaben unter der Simplex-

ii



Nebenbedingung zu verbessern. Die Dirichlet-Policy kann mit allen bestehenden Reinforce-
ment Learning Algorithmen kombiniert werden, um die Leistungsfähigkeit bei der Lösung
von Allokationsproblemen zu verbessern.

Drittens können Regelungsentscheidungen in einigen Fällen (z. B. bei verteilten Syste-
men) implizit oder explizit andere Systeme beeinflussen, die in der Regel als Multiagenten-
systeme modelliert werden. Da die zentralisierten Optimierungsmethoden weniger flexibel
sind und mit hohen Rechenkosten verbunden sind, schlagen wir eine neuartige dezentrale
Multi-Agenten-Reinforcement Learning Methode vor, um diese Art von Problemen anzu-
gehen. Die vorgeschlagene Methode folgt einer dezentralisierten Berechnungsstrategie, die
flexibler und rechnerisch e�zienter ist als die zentralisierte Berechnung von Echtzeitent-
scheidungen. Darüber hinaus schlagen wir ein allgemeines Oponent Model vor, das es dem
Agenten ermöglicht, gemischte kooperativ-kompetitive Szenarien zu bewältigen, was bisher
weniger untersucht wurde, aber in realen Anwendungen von grosser Bedeutung ist. Dieses
Modul dient als Ergänzung zum vorherigen Modul, wenn die strukturellen und betriebli-
chen Abhängigkeiten zwischen den einzelnen Maschinen oder Systemen berücksichtigt werden
müssen.

Schliesslich schlagen wir ein e↵ektives und e�zientes Optimierungsmodul vor, insbesondere
für Prozessoptimierungs- oder Systemrekonfigurationsprobleme in der Industrie. Bei solchen
Aufgaben sind die analytischen Formen einiger oder aller Funktionen und Nebenbedingungen
unbekannt oder unverwertbar, so dass klassische gradientenbasierte Ansätze nicht anwendbar
sind. Diese Arbeit ist der letzte Baustein des vorgeschlagenen Frameworks für die präskriptive
Echtzeitinstandhaltung, die eine e�ziente Lösung für solche Optimierungsaufgaben bietet.
Durch die neuartige Problemmodellierung und die eingeführte adaptive Suchstrategie kann
das vorgeschlagene Modul zuverlässige und reproduzierbare Empfehlungen mit sehr wenig
Daten machen, was dem industriellen Bedarf entspricht.

In dieser Arbeit demonstrieren wir die E↵ektivität und E�zienz des vorgeschlagenen Fra-
meworks und der zugehörigen Module anhand von anspruchsvollen industriellen Anwen-
dungsfällen oder Reinforcement Learning Benchmarks. Das vorgeschlagene präskriptive In-
standhaltungskonzept, das auf Reinforcement Learning basiert, zeigt ein vielversprechendes
Potenzial zur Verbesserung der Leistungsfähigkeit, Zuverlässigkeit und Langlebigkeit indus-
trieller Systeme bei gleichzeitiger Reduzierung der Instandhaltungskosten.

iii



Contents

Acknowledgments vi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research gaps and overriding research questions . . . . . . . . . . . . . . . . . 3
1.3 Aim and scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Proposed framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6.1 Real-time model calibration with reinforcement learning . . . . . . . . 14
1.6.2 End-to-end load allocation with reinforcement learning . . . . . . . . . 14
1.6.3 Multi-agent coordination in mixed cooperative-competitive environments 15
1.6.4 E↵ective and e�cient black-box optimization via reinforcement learning 15

1.7 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Real-time model calibration with reinforcement learning 18
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Maximum entropy RL. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Stability guaranteed RL. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Proposed framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Model calibration defined as a tracking problem . . . . . . . . . . . . 23
2.3.2 State space and action space . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Learning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Neural network architectures and hyper-parameters . . . . . . . . . . 25

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.1 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 End-to-End load allocation with reinforcement learning 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 Implications of the Gaussian policy . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Dirichlet policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.3 Simplex regression experiment . . . . . . . . . . . . . . . . . . . . . . 41
3.4.4 Soft Actor-Critic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.5 Hyperparameter setting . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Power allocation case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.1 Simulation environment . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iv



Contents

4 Multi-agent coordination in mixed cooperative-competitive environments 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2 Markov game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.3 Time dynamical opponent model . . . . . . . . . . . . . . . . . . . . . 52

4.4 Multi-Agent Actor-Critic with time dynamical opponent model (TDOM-AC) 54
4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5.1 Di↵erential game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5.2 Cooperative navigation . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.3 Predator and prey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 E↵ective and e�cient black-box optimization via reinforcement learning 62
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.1 Generative adversarial networks . . . . . . . . . . . . . . . . . . . . . 65
5.3.2 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.2 GANs architecture search formulated as MDP . . . . . . . . . . . . . 66

5.5 O↵-policy RL for GANs architecture search . . . . . . . . . . . . . . . . . . . 67
5.5.1 RL for GANs architecture search . . . . . . . . . . . . . . . . . . . . . 67
5.5.2 O↵-policy RL solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5.3 Implementation of E2GAN . . . . . . . . . . . . . . . . . . . . . . . . 69

5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6.2 Search space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.7.1 Reward choice: IS and FID . . . . . . . . . . . . . . . . . . . . . . . . 72
5.7.2 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Discussions 74
6.1 Real-time model calibration with reinforcement learning . . . . . . . . . . . . 74
6.2 End-to-end load allocation in real-time with reinforcement learning . . . . . . 75
6.3 Multi-agent coordination in mixed cooperative-competitive environments . . . 76
6.4 E↵ective and e�cient black-box optimization via reinforcement learning . . . 76
6.5 Proposed prescriptive maintenance and operation framework . . . . . . . . . 77

7 Conclusions 78
7.1 Research objectives revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.3 Limitations and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Bibliography 81

v



Acknowledgments

During my 3.5-year doctoral journey at ETH Zurich, I gained invaluable experience and had
the privilege of meeting many remarkable individuals who helped shape both my work and
my personal growth. I would like to take this opportunity to express my deepest gratitude
to all those who supported me during my Ph.D. studies.

First and foremost, I am enormously grateful for the mentoring and guidance provided by
my supervisor, Prof. Olga Fink. I will always cherish the memory of receiving the o↵er to
be part of the IMS team, and the journey that followed was both challenging and wonderful.
I deeply appreciate the trust, patience, encouragement, and constructive feedback that Prof.
Olga Fink provided, which was instrumental in my growth and success.

I also had the pleasure of collaborating with Dr. Qin Wang, Dr. Manuel Arias Chao, and
Dr. Minghao Han, whose precise suggestions were invaluable to my thesis. I am extremely
grateful for all the help they o↵ered.

My appreciation extends to all members of the IMS/IMOS team for their discussions,
support, and camaraderie during my doctoral journey. In particular, I would like to thank
Katharina Rombach, Ismail Nejjar, and Zhichao Han, who o↵ered me valuable perspectives
and assistance. It was an honor to spend my Ph.D. years with such a fantastic team, and I
learned so much from each of them.

I would also like to express my gratitude to Prof. Zhiwu Huang, Prof. Giovanni Sansavini,
Prof. David Coit, and Prof. Ioannis Anastasopoulos for serving on my Ph.D. committee. It
was an honor to have such distinguished scholars evaluate my work.

Lastly, I would like to express my gratitude to all who made my stay in Zurich memorable,
particularly Jiemin Du, whose unwavering support was invaluable.

And most importantly, I would like to express my deepest gratitude to my family members,
particularly my mother Kuiran Bao, my father Yingping Tian, and my grandmother Prof.
Jiazhen Fu. Their unconditional love and support gave me the confidence and courage to
pursue this academic path, and they have always been my source of strength.

In conclusion, this thesis is the result of the contributions of many people, both direct and
indirect. While it is impossible to name everyone, I appreciate all the help I have received
along the way.

vi



1 Introduction

1.1 Motivation

Prognostics and Health Management (PHM) focus on providing insight into failure mecha-
nisms, developing optimal maintenance policies, and refining management approaches over
the entire life-cycle of industrial systems in order to achieve high performance, reliability,
and availability with the lowest cost under their distinct operating and degradation condi-
tions (Pecht, 2009). Recently, there have been several advancements in PHM applications,
in particular in fault detection (Michau et al., 2020; Michau and Fink, 2021), fault diag-
nostics (Wang et al., 2019a, 2021), and prognostics, i.e., remaining useful life (RUL) pre-
diction (Chao et al., 2022). However, PHM does not end with prognostics. Based on the
information from diagnostics and prognostics, as well as available resources and operational
demand, system health management aims to provide maintenance decisions or tactical oper-
ations. If accurate RUL predictions are available, domain experts make decisions to forestall
the failure and schedule corresponding fault mitigation actions. Fault mitigation actions
include operational failure avoidance, failure recovery (low-level control, re-configuring, re-
planning), and preventive maintenance or repair. However, the decisions often depend on
the experience and expertise of domain experts and may be di�cult to take e�ciently and
e↵ectively due to the number of possible options and the resulting consequences.

While predicting the remaining useful lifetime and scheduling timely maintenance actions
may already improve the availability of the systems, it does not aim to prolong the remaining
useful lifetime or to influence it proactively. Prescriptive maintenance, however, goes beyond
the predictions of failure time. It aims to prescribe optimal operation with respect to the
usage or lifetime of the asset and integrate the degradation into the control. Prescriptive
maintenance helps to proactively manage the system’s performance, reliability, and avail-
ability, thereby reducing maintenance costs and prolonging the system’s remaining useful
lifetime (Cho et al., 2022).

Prescriptive maintenance is a very promising and urgently required research direction,
not only for industrial applications but also for infrastructure systems due to the growing
complexity and increasingly demanding requirements on their performance and availability
(Garrone et al., 2023; Gordon and Pistikopoulos, 2022; Cho et al., 2022). However, this
research direction is relatively recent and has not been explored extensively. Previous appli-
cations have mostly focused on mid-term or long-term maintenance policies (Liu et al., 2019a)
and maintenance planning (Meissner et al., 2021; Matyas et al., 2017) by using optimization-
based (Cho et al., 2022) or heuristic methods (Meissner et al., 2021); see Figure 1.1 below.
Most importantly, previous prescriptive maintenance algorithms only performed one-step
decision-making, which optimized or derived the maintenance plan and repeated this process
in the next maintenance cycle (Meissner et al., 2021; Cho et al., 2022). Such approaches do
not consider the subsequent impact of the decisions and the dynamic degradation process.
However, if we are aiming to take realistic dynamic degradation processes into account for the
maintenance decisions, sequential decision-making is required (Kanso et al., 2023; Björsell
and Dadash, 2021).

Previous works have tried to integrate the degradation conditions into decision-making by
model-based control, such as health-aware control (Hu et al., 2019; Yin and Choe, 2020)
or fault-tolerant control, which incorporate the e↵ects of aging, fatigue, and damage of the
considered components into the objective function (Kanso et al., 2023; Björsell and Dadash,
2021; Meyer and Sextro, 2014). However, there are still limitations when applying these

1



1 Introduction

methods to prescriptive maintenance tasks. Model-based control, such as the previously
mentioned model predictive control approaches (MPC), typically requires an explicit model of
the degradation behavior, which is limited in its application to systems with known or simple
degradation behavior. Besides, model-based approaches also su↵er from high computational
costs due to the online optimization process, which becomes more time-consuming in high-
dimensional control tasks. Moreover, all of the previously applied methods rely on explicit
health features, which, unfortunately, are often unavailable or di�cult to derive. Besides,
since the degradation process is, in fact, stochastic in nature, the model-based approaches
are typically vulnerable to these uncertainties. These challenges precluded the application of
immediate-level maintenance operations for complex systems. Thus, sequential decisions for
prescriptive maintenance when the explicit degradation features are not directly available or
cannot be inferred easily remain an open research question. Examples of such cases include
distributing the load in real-time to prolong the working cycle and remaining useful life of
multi-power source systems without any explicit information on the health features.

Figure 1.1: Decision types in Prognostics and Health Management, modified from (Nicod et al., 2017).

In addition to model-based control, one potential solution for such sequential decision-
making tasks is reinforcement learning (RL). RL algorithms have demonstrated superior
performance on various sequential decision-making tasks (Sutton et al., 1992), such as com-
plicated robotics control (Hwangbo et al., 2019), black-box optimization (He et al., 2016;
Fawzi et al., 2022), and competitive games (Schrittwieser et al., 2020; Silver et al., 2016).
Since the operating, environmental, and degradation conditions are uncertain and are chang-
ing frequently, the controller needs to be capable of discovering the underlying dynamics and
latent information. RL agents can learn, explore and discover system dynamics by them-
selves and further optimize given objectives from experience, which is particularly suitable
for tasks without known underlying dynamics; see Figure 1.2. In addition, with the de-
velopment of neural networks, deep RL has shown excellent capability on end-to-end control
tasks, integrating data processing and able to perform real-time decision-making based on raw
measurements or signals. Moreover, compared to model-based control methods, RL-based
methods are particularly suitable for real-time decisions in Figure 1.1 due to their compu-
tational e�ciency at deployment time (Hwangbo et al., 2019). With these properties, deep
RL becomes a promising alternative to tackle previously unsolvable real-time prescriptive
maintenance problems.

Motivated by the achievements of deep RL and the promising potential of immediate-
level prescriptive maintenance operations, we aim to develop an RL-based framework to
tackle the computational di�culty and the challenge of integrating degradation awareness

2



1 Introduction

Figure 1.2: Develop reinforcement learning-based maintenance agent in the virtual model.

into sequential decision-making. To achieve this, the main research question we need to
answer is the following: How can we integrate degradation awareness into decision-making
and improve system performance and prolong RUL via immediate-level sequential operations?

1.2 Research gaps and overriding research questions

In this thesis, we propose an RL-based methodology for prescriptive maintenance tasks that
can integrate degradation awareness into decision-making and can achieve real-time control
to improve the desired performance of industrial systems or prolong the RUL while fulfilling
the defined operational requirements. In the following, we elaborate on certain research gaps
that need to be addressed.

Real-time model calibration First of all, one of our goals is to integrate degradation
into decision support and control. For this purpose, a module capable of deriving the degra-
dation state is needed to provide the necessary understanding of the degradation process.
This is important for RL as the agent needs an environment for exploration and interaction
to learn the impact of di↵erent actions on the degradation state and to learn the optimal
policy. Since such explorations cannot be performed in real applications, a simulation envi-
ronment is required that is able to represent the degradation dynamics properly. Di↵erent
approaches have been proposed to explicitly model the degradation dynamics, such as cumu-
lative damage models (Hwang and Han, 1986) and the physics-based failure model (Kulkarni
et al., 2012). However, explicit models of degradation mechanisms are often only avail-
able for systems with rather simple degradation dynamics. An alternative strategy is to
capture the macro-level performance impact of the degradation mechanism (Urban, 1973).
Under a performance-based modeling strategy, detectable faults, either caused by deteriora-
tion or damage, appear as parameter value changes in the model. These types of degradation
modeling can provide the mechanism for tracking system behavior under degraded condi-
tions (Kulkarni and Celaya, 2019). Although there have been many successful achievements
in system and degradation modeling, it is still a challenge to calibrate the degradation pa-
rameters in the performance model in real-time when degradation happens on real systems
and the output of the performance model does not match the sensor measurements. Model
calibration has been proposed to overcome the gap between the performance model and the
measured data. However, previous approaches are computationally expensive and cannot be
applied in real time (Borguet, 2012), or else require a large amount of labeled data (Borguet,
2012; Liu et al., 2019d). To overcome these challenges and limitations, we need to answer the
research question: How can we capture the degradation state implicitly in real-time without
supervision?. A well-calibrated performance model can then be used within the simulation

3



1 Introduction

environment for prescriptive maintenance applications. The proposed module can also be
applied in real-time, providing a better awareness of the degradation process.

End-to-end load allocation With a calibrated simulation environment that is able to
capture the degradation dynamics, we can then develop sequential decision-making strate-
gies based on a calibrated training environment and enable the integration of degradation
awareness, as well. We first tackle real-time prescriptive operations that can prolong the
working cycle, the usage cycle, or the lifetime of a component or a system. This line of
research is comparatively novel, and previous studies have only been considered for relatively
simple systems where the degradation can be modeled explicitly. One of the relevant tasks
is load allocation on multi-battery systems, which are used in many mission-critical applica-
tions such as robotics, and therefore, prolonging their working cycle has recently been gaining
more and more importance (Hu et al., 2020). The degradation has a significant impact on the
working cycle of multi-power source systems. Thus, prolonging their working cycle can have
an essential impact on the deployability of the devices for safety-critical applications. Thus,
a good allocation strategy can e↵ectively prolong the discharge and also the RUL, thereby
improving availability, maximizing e�ciency, and minimizing cost. For this, we consider the
problem of prolonging the discharge cycle and also the RUL of batteries in a multi-battery
system. In such systems, individual batteries may have diverse degradation states, especially
in the second-life battery applications (Peterson et al., 2010; Hu et al., 2020; Fink et al.,
2020). In the discharge process, each power source typically starts diverging in its states of
health and remaining capacities (Zheng et al., 2015; Severson et al., 2019; Hu et al., 2020),
eventually influencing the working cycle of the entire system. Thus, it is important to de-
sign proactive allocation strategies that can implicitly infer the degradation conditions and
perform actions that respect the individual degradation state in real-time. There has been
some research addressing similar tasks. Some previous works (Sui and Song, 2020) prolong
the RUL of multi-battery systems by scheduling, which can be considered as a particular
case of load allocation. Also, other works focus on the load balancing of batteries, which
requires additional algorithms for explicit health features (Ishii, 2021; Chen et al., 2020a),
thus limiting the application when such features are unavailable. We therefore address the
following research question in this research: How can we perform prescriptive load allocation
based only on raw sensor measurements in real-time? As discussed above, RL is a promising
alternative solution for such end-to-end control tasks. However, it is non-trivial to directly
perform previous RL methods on this task. Conventional reinforcement learning methods
aim to solve discrete action space tasks or continuous action space tasks without considering
constraints. In the load allocation case, continuous action space allocation strategy allows a
more fine-grid control, and can thereby improve the performance (Chou et al., 2017). Un-
fortunately, a general solution in RL for continuous allocation problems with the simplex
constraint is still lacking and remains an open research question. Therefore, answering the
question How can reinforcement learning e↵ectively tackle continuous action space allocation
tasks? will help to overcome this limitation.

Distributed systems coordination In addition to the independent decisions that only
influence the deployed system, in real-world scenarios, decisions can sometimes implicitly or
explicitly influence other systems. For example, in power grids, each decision will inevitably
influence the entire network (Rokhforoz et al., 2021). Moreover, in manufacturing systems,
each machine is part of a production line, where the maintenance schedule also needs to
consider the degradation of other machines and their maintenance operations (Björsell and
Dadash, 2021). Such problems can be modeled by multi-agent systems (MAS), and di↵erent
methods have been proposed. Centralized decision-making methods are one of the solutions,

4



1 Introduction

including methods such as genetic algorithms (Volkanovski et al., 2008; Samuel and Rajan,
2015), particle swarm (Jagtap et al., 2020), heuristic hybrid approaches (Dahal and Chakpi-
tak, 2007), and di↵erent optimization-based methods (Xiao et al., 2016; Sadeghian et al.,
2019). However, to the best of our knowledge, these methods have mostly focused on mid-
term or long-term maintenance scheduling and su↵ered from high computational costs, which
are infeasible for immediate-level operations. On the contrary, decentralized decision-making
methods require relatively low computational time and can preserve privacy. Moreover,
they also provide more flexibility for modeling. RL-based methods have been proposed as
a promising decentralized solution in other application domains. The simplest approach in
multi-agent settings is to use independent learning agents (Tan, 1993; Arel et al., 2010).
However, when other agents change their policies or when the agents are trained together,
the environment becomes non-stationary from the perspective of any individual agent (in
a way that is not explainable by changes in the agent’s own policy) (Lowe et al., 2017).
This gives rise to notorious instability and training di�culties of independent learning (IL)
methods (Lowe et al., 2017). Multi-agent reinforcement learning (MARL) is a sub-field of
RL, and di↵erent methods have been proposed to solve the challenges of IL in MAS (Lowe
et al., 2017). However, most of the MARL frameworks focus solely on cooperative or compet-
itive tasks, which is not feasible for some of the maintenance cases, for example, optimizing
the maintenance schedule of generating units in a competitive electricity market environ-
ment (Rokhforoz and Fink, 2021; Rokhforoz et al., 2021). To address these issues, we aim to
develop a general and e↵ective opponent model with a corresponding MARL framework to
tackle the non-stationarity and mixed cooperative-competitive objective challenges in MAS
tasks. Then the resulting research question that needs to be addressed is the following:How
can we address the non-stationarity of MARL under mixed-objective scenarios? Any newly
developed algorithms need to be compared to other state-of-the-art algorithms to enable a
fair comparison of the performance. Unfortunately, there are no openly available (MA)RL
simulation environments that are specific to the maintenance tasks. Therefore, to enable
a fair comparison of the developed algorithms, we evaluate the performance on the classic
di↵erential game and multi-agent particle environments, which include cooperative, compet-
itive, and mixed-objective tasks, and have been a classic and open benchmark to evaluate
di↵erent methods.

Fast process design and system reconfiguration Besides the discussed sequential deci-
sions, there are also decisions that are unique and are made only once, such as manufacturing
process optimization or system (re-)configuration. Many such problems cannot be defined
explicitly. For example, the instrumented system design for oil and gas industry processes
to improve the reliability (Redutskiy, 2017) and aircraft engine blades designed with contact
interfaces to decrease the risk of blade/casing structural contacts (Lainé et al., 2019). In such
problems, the analytical forms of some or all of the functions and constraints are unknown
or unexploitable. In some cases, the function values can be obtained by simulations, but in
some other cases, only examples are available. Most importantly, these functions can be non-
di↵erentiable and non-convex, which makes classical gradient-based approaches inapplicable
to such problems. There have been some works proposed to address such derivative-free
optimization tasks, also as known as black-box optimization (BBO) tasks, which can be
categorized into model-based and model-free approaches. Model-based approaches include
methods such as Bayesian Optimization (Jones et al., 1998; Rasmussen, 2003), which aims
to learn and optimize a surrogate function from samples of the unknown function. However,
these type of methods cannot e↵ectively handle parameters with a variable length and are
computationally expensive, especially for high-dimensional tasks. Therefore, real-time appli-
cations are typically precluded. Recently, reinforcement learning, as a model-free method,

5



1 Introduction

has shown considerable e↵ectiveness on a wide range of BBO tasks (Mirhoseini et al., 2021;
Nian et al., 2020), such as chip placement (Mirhoseini et al., 2020) and symbolic regres-
sion (Mundhenk et al., 2021) with low computational cost after training, and has become
a promising alternative for solving such process optimization tasks. Current reinforcement
learning-based approaches mostly formulate the optimization task as a bandit problem or
multi-arm bandit problem, which require a large amount of training data and su↵er from the
large search space and local minima, respectively. These types of challenges are particularly
relevant for PHM applications–for example, the optimization of the internal materials ratio
of the battery to prolong its working cycle or maximize its capability. In this case, since an
explicit system model is often missing, the agent may only have access to a limited number
of samples from previous experience or may be able to collect a small amount of data on
real systems. In order to enable the RL agent to give a meaningful and reliable recommen-
dation based on limited data, it is necessary to address the following research question:How
can reinforcement learning agents learn and provide recommendations with limited data in
large action and state space BBO tasks? Since there is no specific open benchmark for PHM
applications, we evaluate the e↵ectiveness and e�ciency on a classical BBO task, the neural
architecture search, which is a challenging open benchmark and shares similar data-limited
and e�ciency challenges with industrial applications.

Overview of research questions

In this thesis, we focus on developing operational strategies integrating degradation aware-
ness to improve the performance of industrial systems or prolong their working cycle and
remaining useful life. Besides, since many of the process design and system reconfiguration
tasks actually belong to derivative-free optimization problems, we introduce a BBO method,
which is especially designed for the data-limited scenarios in real-world. Four modules are
proposed in this thesis; two of the modules demonstrate the e↵ectiveness on PHM tasks, while
another two modules demonstrate on challenging benchmarks that fulfill the same criteria
but can be easily transferred to maintenance problems. To summarize, the following research
questions are addressed in this thesis.

1. How can we capture the degradation state implicitly in real time without supervision?

2. How can we perform prescriptive load allocation based only on raw sensor measurements
in real-time?

3. How can reinforcement learning e↵ectively tackle continuous action space allocation
tasks?

4. How can we address the non-stationarity of MARL under mixed-objective scenarios?

5. How can reinforcement learning agents learn and provide recommendations with limited
data in large action and state space BBO tasks?

1.3 Aim and scope

The aim of this research is to develop an immediate-level prescriptive maintenance frame-
work that integrates degradation awareness into decision-making to improve the system per-
formance, reliability, and availability, and further prolong the working cycle and RUL.

Contributing to this overall aim, the work is divided into five objectives: (1) Chapter 2
introduces a real-time model calibration module embedded in this framework providing the
awareness of degradation processes and calibrating the simulation environments. (2) Chap-
ter 3 introduces an end-to-end load allocation module that can e↵ectively prolong the work-
ing cycle and RUL of the deployed multi-battery systems based only on raw measurements;

6



1 Introduction

Chapter 3 also proposes the Dirichlet policy for continuous action space allocation tasks. (4)
Chapter 4 proposes a multi-agent coordination module that can tackle the non-stationarity
in mixed-objectives scenarios; (5) Chapter 6 introduces an e↵ective and e�cient optimization
module that can provide reliable recommendations with limited data.

7



1 Introduction

1.4 Background

In this section, we briefly present the general concepts of the topics and methods that are in
the focus of this dissertation. More detailed background and review of the related works are
provided in the respective chapters.

Reinforcement learning Single-agent reinforcement Learning (Sutton and Barto, 2018)
aims to develop methods that can e↵ectively learn the operational strategy by interacting with
the environment to collect as a higher cumulative reward as possible. And RL algorithms can
be mainly divided into two categories, model-free and model-based. Model-based RL agent
aims to understand the environment and learn a world model based on its experience and
optimize the policy directly from the learned model via optimal control (or combine optimal
control methods with value estimation). On the other hand, a model-free RL agent is trying to
learn the consequences of its actions, and update the value function and policy progressively
without the knowledge of system dynamics. In this thesis, we focus on model-free RL.

RL problems are formulated as Markov decision processes (MDPs), which is a discrete-time
stochastic control process. An MDP can be described as a tuple (S,A, r, P, ⇢), where S is the
set of states that is able to precisely describe the current situation, A is the set of actions,
r(s, a) is the reward function, P (s0|s, a) is the transition probability function, and ⇢(s) is the
initial state distribution. At each time step, the process is in a state st and its associated
agent chooses an action at from the set of possible actions. Given the action, the process
moves into a new state st+1 at the next step, and the agent receives a reward rt. In a general
RL setup, an agent is trained to interact with the environment and get a reward from this
interaction. The goal is to find a policy ⇡ that maximizes the cumulative reward J(⇡):

J(⇡) = E⌧⇠⇢⇡
1X

t=0

r(st, at) (1.1)

While the standard RL merely maximizes the expected cumulative rewards, the maxi-
mum entropy RL framework considers a more general objective (Ziebart, 2010), which favors
stochastic policies. This objective shows a strong connection to the exploration-exploitation
trade-o↵ and aims at preventing the policy from getting stuck in local optima. Formally, it
is given by:

J(⇡) = E⌧⇠⇢⇡
1X

t=0

[r(st, at) + �H(⇡(·|st))], (1.2)

where � is the temperature parameter that controls the stochasticity of the optimal policy.
In model-free RL the system dynamics are unknown. Value-based methods and policy-

based methods are the two main approaches to solve this problem. The value-based method
aims to estimate the state value V (s) or Q-value(state-action value) Q(s, a) during the inter-
actions with environments in order to evaluate the goodness of states and actions and provide
guidance for decision-making:

V⇡(st) = E⇡(
TX

k=0

�kRt+k+1|St = s) (1.3)

Q⇡(st, at) = E⇡(
TX

k=0

�kRt+k+1|St = s,At = a) (1.4)

where � is the discounted factor. And Q-Learning is one of the most classic o↵-policy value-
based methods, which uses a Bellman equation as a simple value iteration update:

8



1 Introduction

Qnew(st, at) = (1� ↵)Qold(st, at) + ↵(rt + �maxQ(st+1, a
⇤)) (1.5)

The vanilla Q-learning can only solve discrete state-action space tasks, which limits the
application. With the development of deep neural networks (DNN), approaches combine
q-learning with DNN, such as Deep Q-Networks (DQN) (Mnih et al., 2015), Prioritized
Experience Replay (Schaul et al., 2016), Double DQN (Van Hasselt et al., 2016), etc. And
with two innovation technologies, memory bu↵er (Mnih et al., 2015) and target network (Mnih
et al., 2015), value-based methods successfully mastered video games (Mnih et al., 2015) and
board games (Silver et al., 2016). Take DQN’s Q Network update as an example:

rJ(✓) = ED[(r + �max
a0

Q̂✓̂(s
0, a0)�Q✓(s, a))r✓Q(s, a)] (1.6)

where D
.
= {(s, a, s0, r)} is the replay bu↵er for storing the MDP tuples (Mnih et al., 2015).

For each update, a batch of data samples from the replay bu↵er to increase the data e�ciency,
alleviate the e↵ects of data correlation and decrease the variance of the policy update. Also,
the use of target network Q̂ stabilizes the training.

However, conventional value-based approaches require each action’s value for decision-
making and value-iteration, which is infeasible for large action space or continuous action
space tasks, such as general control tasks.

On the other hand, policy-based methods (Silver et al., 2014) like classical policy gradi-
ent (Sutton et al., 1992) can directly optimize action probability without value estimation:

rJ(✓) ⇡
1

N

NX

i

(
TX

t

r✓log⇡✓(ai,t|si,t)(
TX

t

r(si,t, ai,t)) (1.7)

Compared to value-based approaches, policy-based methods enable continuous action space
decision-making but su↵er from sample e�ciency. In 1.7, every update requires multiple
trajectories. To address this issue, the actor-critic framework (Konda and Tsitsiklis, 1999)
combines value-based and policy-based methods. The actor-critic method maintains both
a policy network and a value network, where the policy network enables sample continuous
actions, and the value network provides an estimated cumulative return for policy update
without sampling entire trajectories, carrying out relatively good sample e�ciency and lower
variance of policy gradient. For example, the objective of the policy network for Soft Actor-
Critic (SAC) (Haarnoja et al., 2018a) is given by:

J(⇡) = ED [�[log(⇡✓(f✓(✏, s)|s))]�Q(s, f✓(✏, s))] (1.8)

where ⇡✓ is parameterized by a neural network f✓, ✏ is an input vector. Unlike 1.7, the gradient
signal is from the value network instead of on-policy rollouts. Besides SAC, many algorithms
arise under this framework, such as Deep Deterministic Policy Gradient (DDPG) (Lillicrap
et al., 2015), Trust Region Policy Optimization (TRPO) (Schulman et al., 2015), Proximal
Policy Optimization (PPO) (Schulman et al., 2017), etc. With these advanced methods, deep
RL achieves considerable performance on various challenging tasks, ranging from control tasks
for robotics (Hwangbo et al., 2019) or Unmanned Aerial Vehicles(UAVs) (Koch et al., 2019)
to optimization tasks for chip design (Mirhoseini et al., 2021) or AutoML (Tian et al., 2020a),
etc.

Multi-agent reinforcement learning Multi-agent systems have recently found applica-
tions in many di↵erent domains, which can be formulated as a Markov game (Littman, 1994),
also referred to as N-agents stochastic game (Shapley, 1953). For example, the maintenance

9



1 Introduction

problems in large-scale production systems. where the structural and operational dependen-
cies among machines are required to be considered (Su et al., 2022). A Markov game is
defined by a tuple (st, a1t , ..., a

n
t , r

1
t , ..., r

n
t , p, T , �). Within the tuple, st is the state at time

step t, ait and rit = rit(st, a
i
t,a

�i
t ) denote the set of actions selected by the policy of agent

i and the corresponding rewards assigned to agent i, where the a�i
t refers to the set of op-

ponent actions. T is the state transition function, p is the initial state distribution and �
is the discount factor. At each time step t, actions are taken simultaneously by all agents.
Each agent aims to maximize its own expected discounted sum of rewards. Thus, for each
individual agent i, the objective for its policy ⇡i can be expressed as:

J(⇡i) = max⇡i

1X

t=0

E[�tri(st, ait,a�i
t )] (1.9)

Many works from single agent RL have been adapted into the context of MARL, for
example, the monotonic improvement from TRPO to Heterogeneous-Agent Trust Region
Policy Optimisation (HATPRO), the maximum-entropy framework from SAC to Probabilistic
Recursive Reasoning (PR2), and etc. However, directly transferring single RL methods to
MARL setup su↵ers from the non-stationarity of the adaptive agents. To address this issue,
there are two main categories methods, the value decomposition methods, such as QDPP
(Yang et al., 2020), QMIX (Rashid et al., 2018), FOP (Zhang et al., 2021c), QTRAN (Son
et al., 2019), and VDN (Sunehag et al., 2017), while another type is opponent modeling, such
as PR2 and Regularized Opponent Model with Maximum Entropy Objective (ROMMEO).
Previous frameworks mostly focues on competitive tasks or cooperative tasks solely, and it is
still challenging to tackle tasks where the adaptive agents hold mixed cooperative-competitive
objectives.

Degradation The components of industrial and infrastructure assets degrade over time.
The degradation process depends on the operating conditions and the internal complex
Physico-chemical property (Parry et al., 1995), such as rubbing-wear or corrosion . Degrada-
tion processes are, in fact, stochastic in nature, making each system’s deterioration trajectory
unique (Arias Chao, 2021). To model the degradation process for industrial systems and fur-
ther develop diagnostics and prognostics technologies, Figure 1.3 illustrates three typical
types of the physics-based computational model (Arias Chao, 2021): 1) Models that ig-
nore micro-level degradation processes but captures macro-level degradation characteristics,
such as cumulative damage models, which normally utilize the ordinary di↵erential equations
(ODE) or empirical time-dependent correlations; 2) Models of the physics of failure, such as
thermal and fracture mechanical, which uses numerical methods to solve partial di↵erential
equations (PDE) in two or three space variables. 3) Models that capture the macro-level
performance impact of the degradation mechanism, which represents detectable faults by
parameter value changes in the model and can provide the mechanism for tracking system
behavior under di↵erent degraded conditions (Kulkarni and Celaya, 2019; Arias Chao, 2021).
However, when degradation happens on real assets, there will be discrepancies between model
predictions and observation. Without calibration, the virtual model can not represent the
real system anymore, and the prognostics become unreliable.

Model calibration In this thesis, we consider the performance model which parameterized
the degradation behavior. And in this case, model calibration aims to adjust model param-
eters that enable computational model dynamics to match reality and to generate model
predictions that fit the observations. The inferred model parameters often represent physical
quantities that are not directly observable. In the PHM context, degradation calibration is

10



1 Introduction

Figure 1.3: Overview of physics-based models

an important application to analyze the discrepancies between model predictions and obser-
vations and further infer or identify the degradation conditions. Several methods have been
proposed to address the problem of dynamical model calibration. Model-based approaches,
such as unscented Kalman filters (UKF) (Julier and Uhlmann, 1997; Turner and Rasmussen,
2010; Borguet, 2012), particle filters (Kantas et al., 2015), Bayesian inference methods using
Markov chain Monte Carlo (Rutter et al., 2009; Arias Chao et al., 2015) and Gaussian Process
(Kennedy and O’Hagan, 2001; Arias Chao et al., 2015), achieved good results in practical
applications. However, approaches of this type all su↵er from computational di�culty due to
online optimization, which makes them infeasible for real-time calibration of complex models.
And data-driven approaches require a large amount of labeled data (Borguet, 2012; Liu et al.,
2019d), which limits their implementation in practical applications.

Allocation tasks with reinforcement learning Allocation tasks are to find an optimal
distribution of a limited resource given some defined goal and constraints. And the action
space of any allocation tasks should be bounded by a simplex constraint. Allocation tasks are
very commonly encountered in real-world, such as computational resource allocation (Chen
et al., 2020b), task and order allocation (Deng et al., 2020; Feng and Gong, 2020), redundancy
allocation (Zhang and Li, 2021; Nath and Muhuri, 2021), portfolio management (Jiang et al.,
2017), blockchain applications (Feng et al., 2020), and UAV applications (Shimada et al.,
2021). Since these tasks can be formulated by sequential decision-making tasks, RL-based
approaches have been proposed to tackle them. However, as far as we know, previous RL
methods on such tasks mostly discretize the action space (Tesauro et al., 2006; Ye et al.,
2019) or directly apply softmax function on the output (Abrate et al., 2021). The former
can not prescribe fine-grid allocation output, and the action numbers increase geometrically
with the increase of assets. And the latter su↵ers from the injective property of probability
mapping functions, resulting in less e↵ectiveness and unstableness. Thus, a general solution
in RL for allocation problems with the simplex constraint is still lacking and remains an open
research question.

Process optimization and system reconfiguration Every engineering system or pro-
cess is designed with an intended purpose. And in many cases, the engineering design involves
tests and experiments since the product or process is not well understood, and the desired
performance can not be guaranteed. Such engineering design processes can be seen as an op-
timization problem. However, the process optimization problems in the industry are mostly
derivative-free. There is not a direct or explicit relation between the performance and the de-

11



1 Introduction

Figure 1.4: Overview of the proposed prescriptive maintenance framework that integrates degradation aware-
ness into decision-making and can deal with three typical immediate-level decision-making scenarios
in the industry.

sign, which makes the optimization challenging, and normally relies on the human experience.
And After the process optimization, there is still a need of fast system reconfiguration, which
is also an optimization problem. For example, in manufacturing factories, the changeover
time between productions of two di↵erent kinds of products has been calculated by min-
utes due to the limited profit margins and huge costs caused by the vacancy of production
line (Leng et al., 2020). There are several methods have been proposed for such tasks, which
can be categorized into model-based and model-free approaches. Model-based approaches,
such as Bayesian Optimization (Jones et al., 1998; Rasmussen, 2003), which aims to learn and
optimize a surrogate function from samples of the unknown function. However, model-based
approaches are computationally expensive, especially for high-dimensional tasks, and can not
perform immediately. On the contrary, RL-based methods are able to provide decision sup-
port in real-time after training. However, it still requires massive data during training, which
limits the applicability in some cases.

1.5 Proposed framework

Following the key motivation to improve performance and prolong the RUL for given systems
via real-time maintenance operations, this thesis proposes an RL-based framework that inte-
grates degradation awareness into decision-making and can tackle three typical immediate-
level decisions in prescriptive maintenance. We first develop a real-time model calibration
module to compensate for the deviation between the simulation environment and the degraded
system. We then propose an end-to-end load allocation module for multi-battery systems to
prolong their working cycle. And we introduce a novel opponent modeling method with an
e↵ective MARL for maintenance coordination problems. Lastly, we provide an e�cient opti-
mization module that can be applied to fast process optimization and system reconfiguration
tasks. An overview of the proposed framework is shown in Figure 1.4.

Modules

The proposed framework involves the development of four modules with their corresponding
methods:

1. A real-time model calibration module that aims to calibrate the degradation parameters
in the given physics-based performance model in order to compensate for the deviation
between sensor measurements and the model output on the degraded system. This

12



1 Introduction

module also plays an important role in guaranteeing well-calibrated training environ-
ments for developing prescriptive maintenance applications. Inspired by the connection
between control and inference (Levine, 2018), a novel RL-based real-time model cal-
ibration module is proposed. The proposed module is evaluated on two open engine
datasets. This module can also be applicable to other systems, such as battery systems
(Unagar et al., 2021).

2. An end-to-end load allocation module that, for the first time, can proactively distribute
load demand to each battery based only on raw sensor measurements. This module can
e↵ectively prolong the working cycle and remaining useful life of the deployed multi-
battery systems. The proposed module is evaluated on four-battery and eight-battery
systems with di↵erent degradation conditions and can be applied to other multi-power
source systems. Moreover, the Dirichlet policy is proposed for the first time to improve
the e↵ectiveness and learning stability for continuous action space allocation tasks under
simplex constraint, which can be combined with any other RL algorithm to improve
the performance when solving allocation problems.

3. A multi-system coordination module that can tackle the non-stationary in mixed co-
operative and competitive scenarios. In this module, we encode the knowledge that
the opponent policies tend to improve over time into opponent modeling. The pro-
posed module provides an e↵ective alternative solution for decentralized maintenance
decision-making in industry, which is more flexible, requires low computational cost,
and preserves privacy. This module serves as a complement to the previous module
when the structural and operational dependencies within each machine or system must
be considered.

4. An e↵ective and e�cient optimization module that can be applied to the process opti-
mization or system reconfiguration problems in industry, especially for the problems in
which the analytical forms of some or all of the functions and constraints are unknown
or unexploitable. The proposed method demonstrates considerable performance on a
challenging black-box optimization task, the generative adversarial networks (GANs)
architecture search, and can find a better architecture in far less time compared to the
SOTA method.

13



1 Introduction

1.6 Contributions

This cumulative thesis incorporates four published articles in the fields of prescriptive main-
tenance and machine learning. The key papers are included in Chapters 2 - 5. A summary
of their methodology and specific contributions is described in subsections 1.6.1 - 1.6.4.

1.6.1 Real-time model calibration with reinforcement learning

The computational model deviates from the real system due to degradation, which is a
very common situation in the industry, and manually adjusting in the laboratory is time-
consuming and cost ine�cient. Model calibration has been proposed to overcome the gap
between the performance model and the measured data. However, previous approaches are
computationally expensive and cannot be applied in real-time, or else require a large amount
of labeled data. Chapter 2 aims to develop a robust module that can calibrate the degradation
parameters of a given physics-based performance model in real-time to compensate for the
deviation between the performance model and the degraded real system. This module plays
an essential role in the proposed framework. It can not only calibrate the performance model
to ensure the training environment matches the degraded system, but most importantly, it
provides an indispensable understanding of the degradation state for the subsequent steps
of controlling the degradation process. In Chapter 2, we reformulate the model calibration
problem as an inverse problem of a tracking problem, which leverages the application of RL
for model calibration or parameter inference tasks. As far as we know, it is the first time re-
inforcement learning that has ever been applied to model calibration or parameters inference
tasks. In addition, we propose a novel constrained Lyapunov-based actor-critic (CLAC) algo-
rithm, which achieves superior inference accuracy with considerable robustness. We evaluate
the proposed framework on two open engine datasets, the Advanced Geared Turbofan 30,000
(AGTF30) and Commercial Modular Aero-Propulsion System Simulation (C-MAPSS). Dr.
Manuel Arias Chao, who contributes equally in this module, fairly and thoroughly compares
the proposed RL-based approach with the supervised learning method and model-based un-
scented Kalman filter method. The proposed method demonstrates considerable applicability
and specific advantages on real-time model calibration tasks.

Specific contributions

• A novel Markov decision process formulation is proposed to solve the model calibration
or parameter inference problem as an inverse problem of the tracking problem.

• The constrained Lyapunov-based actor-critic algorithm is proposed to improve action
stability in calibration tasks.

• A robust real-time RL-based model calibration framework is developed, which can
learn to calibrate the physics-based performance model without any labeled data or
demonstration during training.

1.6.2 End-to-end load allocation with reinforcement learning

The degradation has a significant impact on the working cycle of multi-power source systems.
Thus, prolonging their working cycle can have an essential impact on the deployability of the
devices, especially for safety-critical applications. Chapter 3 aims to develop an RL-based
prescriptive maintenance module that can proactively allocate the load to di↵erent batteries
in real time based on raw signal measurements. We evaluate the proposed module on NASA
multi-battery models. The proposed module can prolong the working cycle of the deployed
systems significantly and shows considerable scalability and transferability. Moreover, we
propose the Dirichlet policy to tackle continuous action space allocation tasks, which can be
combined with any RL algorithms for a wide range of allocation tasks.

Specific contributions

14



1 Introduction

• A deep reinforcement learning framework for prescriptive maintenance is proposed and
evaluated on NASA multi-battery models across di↵erent aspects: performance, scala-
bility, and transferability.

• We propose the Dirichlet policy to tackle continuous action space allocation tasks.
We demonstrate that the Dirichlet policy is bias-free and provides significantly faster
convergence, better performance, and better robustness to hyperparameter changes as
compared to the Gaussian-softmax policy.

1.6.3 Multi-agent coordination in mixed cooperative-competitive environments

In addition to the independent decisions, in some cases (e.g., distributed systems), the de-
cisions can implicitly or explicitly influence other systems, which are usually modeled as
multi-agent systems. Since the centralized optimization methods are less flexible and su↵er
from high computational cost, in Chapter 4, we propose a novel decentralized multi-agent
reinforcement learning method to address this type of problem. The proposed method follows
the decentralized execution mechanism, which is more flexible and computationally more e�-
cient compared to centralized execution for real-time decision-making. Moreover, we propose
a general opponent model that allows the agent to tackle mixed cooperative-competitive sce-
narios, which has been less studied but is widely relevant in real-world applications. This
module serves as a complement to the previous module when the structural and operational
dependencies within each machine or system must be considered.

Specific contributions

• A novel opponent modeling is introduced to tackle the non-stationarity and mixed-
objective tasks in MARL.

• By deriving a lower bound on the log-objective of an individual agent, we further pro-
pose an e↵ective MARL method Multi-agent Actor-Critic with Time Dynamical Oppo-
nent Model (TDOM-AC). The proposed algorithm demonstrates superior performance
on the classic di↵erential game and multi-agent particle environments.

1.6.4 E↵ective and e�cient black-box optimization via reinforcement learning

In Chapter 5, we propose an e↵ective and e�cient optimization module, especially for process
optimization or system reconfiguration problems in the industry. In such tasks, the analytical
forms of some or all of the functions and constraints are unknown or unexploitable, which
makes classical gradient-based approaches inapplicable. This work is the final piece of the
proposed immediate-level prescriptive maintenance framework, which provides an e�cient
solution for such optimization tasks. With the novel problem modeling and the introduced
adaptive searching strategy, the proposed module can prescribe reliable and reproducible
recommendations at the minute level, which is in line with the industrial need. We evaluate
the e↵ectiveness and e�ciency on a classical BBO task, the neural architecture search, which
shares similar data-limited and e�ciency challenges with industrial applications and has been
an open benchmark to compare to di↵erent optimization methods.

Specific contributions

• An RL-based optimization module is proposed for the tasks where the analytical forms
of some or all of the functions and constraints are unknown or unexploitable.

• With the novel MDP formulation, the proposed method decreases the action space,
improving the optimization e�ciency.

• An adaptive learning strategy is proposed to improve the e↵ectiveness of noisy rewards
and limited data scenarios.

15



1 Introduction

• We evaluate on GAN architecture search task and find a better GAN architecture with
a searching time seven times faster compared to the SOTA method

Chapter 2 addresses the research question: How can we capture the degradation state
implicitly in real-time without supervision? To answer this question, Chapter 2 proposes a
novel deep RL-based module for real-time model calibration and evaluates on two openly
available engine datasets. The proposed method can perform real-time degradation parame-
ters inference and achieves superior inference accuracy with considerable robustness to sensor
noise and model bias. The proposed method does not require labeled data during training
and can be applied to other systems.

Chapter 3 addresses the research questions: How can we perform prescriptive load alloca-
tion based only on raw sensor measurements in real-time? and How can reinforcement learn-
ing e↵ectively tackle continuous action space allocation tasks? To answer these questions,
Chapter 3 proposes a deep RL-based prescriptive power allocation module to proactively
allocate the load to di↵erent batteries based only on raw sensor measurements, thereby pro-
longing the working cycle of deployed multi-battery systems. Moreover, the Dirichlet policy
is proposed as an alternative to Gaussian and Gaussian-softmax policy for continuous action
space allocation tasks, and we demonstrate its advantages theoretically and experimentally.
The proposed module can be applied to other multi-power source systems, and the proposed
Dirichlet policy can be applied to a wide range of real-world allocation tasks.

Chapter 4 addresses the research question: How can we address the non-stationarity
of MARL under mixed-objective scenarios? To answer this question, we first introduce a
novel opponent model objective that can successfully alleviate the non-stationarity in op-
ponent modeling and support mixed-objective tasks. And we further derive a lower bound
on the log-objective of an individual agent and propose an e↵ective MARL method, Multi-
agent Actor-Critic with Time Dynamical Opponent Model (TDOM-AC). In Chapter 5, we
demonstrate empirically that the proposed TDOM algorithm achieves superior opponent
behavior prediction during execution time. The proposed TDOM-AC outperforms the con-
sidered baselines on the performed experiments and considered measures. TDOM-AC results
in more stable training, faster convergence, and especially a superior performance in mixed
cooperative-competitive environments. The proposed module can be applied to distributed
maintenance scheduling or operation tasks where the agents operate in a competitive envi-
ronment and cannot share their private information.

Chapter 5 addresses the research questions: Is it feasible and helpful to model a process
optimization task as a Markov Decision Process? and How can reinforcement learning agents
learn and give recommendations with limited data in large action and state space black-box
optimization tasks? To answer these questions, we target a challenging black-box optimiza-
tion task, GANs architecture search, which su↵ers from tremendous searching time and data
limitations. In Chapter 5, we introduce a novel RL-based black-box optimization method
under MDP formulation with an adaptive learning strategy. We experimentally show that
the MDP formulation is more e↵ective and e�cient compared to the bandit formulation on
a given GANs architecture search task, and can target global optimal compared to multi-
arm bandit formulation. Additionally, we show that the proposed adaptive learning strategy
exhibits noticeable reproducibility under limited data. We achieve state-of-the-art perfor-
mance on the deployed task and the demonstrated e↵ectiveness, e�ciency, and considerable
reproducibility are favorable aspects of industrial black-box optimization applications.

Chapter 6 discusses the key findings in the individual works.
Chapter 7 completes this thesis with conclusions and an outlook for future research

possibilities.

16



1 Introduction

1.7 Publications

There are four published works that are part of the dissertation:

• Yuan Tian, Manuel Arias Chao, Chetan Kulkarni, Kai Goebel, Olga Fink “Real-time
model calibration with deep reinforcement learning.” Mechanical Systems and Signal
Processing, 2022, 165: 108284.

• Yuan Tian, Minghao Han, Chetan Kulkarni, Olga Fink “A prescriptive Dirichlet power
allocation policy with deep reinforcement learning.” Reliability Engineering and System
Safety, 2022, 224: 108529.

• Yuan Tian, Klaus-Rudolf Kladny, Qin Wang, Zhiwu Huang, Olga Fink “Multi-agent
Actor-Critic with Time Dynamical Opponent Model.” Neurocomputing, 2023,517:165-
172.

• Yuan Tian, Qin Wang, Zhiwu Huang, Wen Li, Dengxin Dai, Minghao Yang, Jun Wang,
and Olga Fink. “O↵-policy reinforcement learning for e�cient and e↵ective GAN archi-
tecture search.” European Conference on Computer Vision (ECCV), 2020. pp.175-192.

Besides, there are two additional works published during the doctoral study:

• Ajaykumar Unagar, Yuan Tian, Manuel Arias Chao, Olga Fink “Learning to Calibrate
Battery Models in Real-Time with Deep Reinforcement.” Energies, 2021, 14(5): 1361.

• Minghao Han, Yuan Tian, Lixian Zhang, Jun Wang, Wei Pan “Reinforcement learning
control of constrained dynamic systems with uniformly ultimate boundedness stability
guarantee.” Automatica, 2021, 129: 109689.

17



2 Real-time model calibration with reinforcement learning

This chapter corresponds to the published article:1

Tian, Yuan, Manuel Arias Chao, Chetan Kulkarni, Kai Goebel, and Olga Fink (2022a).
“Real-time model calibration with deep reinforcement learning”. In: Mechanical Systems
and Signal Processing 165, p. 108284.

Abstract: The real-time, and accurate inference of model parameters is of
great importance in many scientific and engineering disciplines that use com-
putational models (such as a digital twin) for the analysis and prediction of
complex physical processes. However, fast and accurate inference for processes
of complex systems cannot easily be achieved in real-time with state-of-the-art
methods under noisy real-world conditions with the requirement of a real-time
response. The primary reason is that the inference of model parameters with
traditional techniques based on optimisation or sampling often su↵ers from
computational and statistical challenges, resulting in a trade-o↵ between ac-
curacy and deployment time. In this paper, we propose a novel framework
for inference of model parameters based on reinforcement learning. The pro-
posed methodology is demonstrated and evaluated on two di↵erent physics-
based models of turbofan engines. The experimental results demonstrate that
the proposed methodology outperforms all other tested methods in terms of
speed and robustness, with high inference accuracy.

2.1 Introduction
Inference of computational model parameters from real-time measurements can be referred
to as model calibration (Kennedy and O’Hagan, 2001). Model calibration aims to both
obtain model parameters that are theoretically plausible and generate model predictions
that fit the observations. The inferred model parameters often represent physical quantities
that are not directly observable or observed, i.e., they are not directly obtained from sensor
measurements. Therefore, the inference of physics-based model parameters enables one to
understand the underlying reasons for a discrepancy between physics-based model predictions
and observations, i.e., the reality gap (see Figure 2.1). This is of particular relevance for
scientific and engineering disciplines where one is interested in improving the physics-based
models analytically or explaining the observed processes in light of a given physics-based
model structure. Applications can be found in multiple areas, including geology (Elsheikh
et al., 2015), climatology (Sansó et al., 2008), biology (Henderson et al., 2009), health (Rutter
et al., 2009), finance (Liu et al., 2019d; Deng et al., 2008), cognitive science (Kangasrääsiö et
al., 2019), mechanical engineering (Kumar et al., 2013), and applied physics (Higdon et al.,
2008).

A particularly important field of application aiming at a reasoned analysis of discrepancies
between model predictions and observations is model-based system health diagnostics
of safety-critical engineered systems. Diagnostics involves detecting when a fault occurs,
isolating the root cause, and identifying the extent of the damage (Roychoudhury et al.,

1Please note, this is the author’s version of the manuscript published in Mechanical Systems and Signal
Processing. Changes resulting from the publishing process, namely editing, corrections, final formatting for
printed or online publication, and other modifications resulting from quality control procedures may have been
subsequently added. The final publication is available at https://doi.org/10.1016/j.ymssp.2021.108284.

18

https://doi.org/10.1016/j.ymssp.2021.108284


2 Real-time model calibration with reinforcement learning

2013). In model-based health diagnostics, the discrepancy between model and observation
is interpreted as a deteriorated or anomalous response of the system. Model-based health
diagnostics addresses the diagnostics problem by inferring the value of model parameters,
representing the health condition of the sub-components of a system that make the physics-
based model predictions fit the observations. In this way, anomalies in the system’s behavior
are detected and characterized by the value of model parameters.

Figure 2.1: Calibration of physics-based models aims to infer model parameters that make the physics-
based model response follow the observations, thus reducing the reality gap. In this work, a
reinforcement learning algorithm is used to obtain a neural network policy that bridges the gap
between physics-based model predictions and observations in real time.

Because of the relevance of model calibration in applications such as model-based diag-
nostics, it is important that model calibration provides accurate inference of the model pa-
rameters while being robust to uncertainty in the observations and the physics-based model
structure. Calibration in real-world scenarios faces computational and statistical di�-
culties. Computational issues are related to the need for running time-consuming simulations
using optimisation and inference techniques that generally imply a trade-o↵ between inference
accuracy and computation time. Scaling the method to complex dynamic models (such
as for example flow field calculations), high dimensional spaces and large datasets fur-
ther exacerbate the problem. Statistical issues arise from a)the incompleteness of the model
representation, b)the existence of multiple solutions, i.e., confounding solutions that match
the observations, and c)the uncertainty of the observations. Some safety-critical applications,
such as model-based diagnostics of aircraft engines considered in this paper, require an in-
ference of the model parameters that is at the same time accurate, robust and is available in
real time to enable a fast and reliable state assessment. The necessity of fulfilling all of these
requirements at the same time makes the development of methods for reliable dynamical
model calibration challenging. Several methods have been proposed to address the problem
of dynamical model calibration. When the physics-based model structure is well founded on
known physical principles (e.g., aircraft thermodynamic engine models), the majority of the
available methods for parameter inference are estimation approaches developed in the fields
of optimal control (Crassidis and Junkins, 2011) and statistics (Sacks et al., 1989). Some
examples of popular estimation methods include iterative reweighted least squares schemes
(Arias Chao et al., 2015), unscented Kalman filters (UKF) (Julier and Uhlmann, 1997; Turner
and Rasmussen, 2010; Borguet, 2012), particle filters (Kantas et al., 2015) or Bayesian infer-
ence methods using Markov chain Monte Carlo (Rutter et al., 2009; Arias Chao et al., 2015)
and Gaussian Process (Kennedy and O’Hagan, 2001; Arias Chao et al., 2015). Approaches of
this type scale relatively well to high-dimensional calibration problems and, with their prob-

19



2 Real-time model calibration with reinforcement learning

abilistic nature, handle observation noise reasonably well. These estimation methods have
achieved good results in practical applications and are considered as state-of-the-art methods
in several applications, including model-based diagnostics. Yet, despite these attractive prop-
erties, they all su↵er, at least to some degree, from various model computational and data
statistical di�culties in real-world scenarios. In particular, this is because estimation with
these methods involves multiple evaluations of the computational model, which makes them
unsuitable for real-time calibration of complex models or large datasets. Moreover, these
methods are particularly a↵ected by the inadequacy of the physics-based model structure,
resulting in an inaccurate characterization of the reality gap.

More recently, data-driven approaches have been proposed to calibrate physics-based
models. Aiming to avoid time-consuming simulations of previous calibration methods and
achieve real-time model calibration, some researchers have proposed alternative approaches
to probabilistic formulation of the calibration problem. The most common approach is to
address the calibration problem as a supervised learning problem (Liu et al., 2019d). In this
case, a neural network algorithm is trained in the inverse relation between the observations
and the model parameters. Although these methods provide a real-time calibration approach
(only a forward pass over a neural network is required at deployment time), the accuracy
of the methods is strongly dependent on the representative quality of the training datasets.
As a result, this model calibration approach is not able to adapt to new scenarios without
re-training. To mitigate this limitation, an exhaustive mapping of possible system responses
under di↵erent flight conditions and values of model parameters is required. In practice, in
high-dimensional calibration problems with a large range of flight conditions, an exhaustive
mapping is infeasible. In addition, such methods can exhibit poor performance in scenarios
involving noisy observations, which can limit their implementation in practical applications
when no noise mitigation measures are taken into consideration in the learning process.

Because of the issues mentioned above, the real-time, robust, and accurate inference of
physics-based model parameters of complex engineered systems remains challenging. How-
ever, recent developments in model-free reinforcement learning (RL) have fostered a
great deal of progress in addressing similar challenges in control problems (Zhang et al.,
2020). In fact, RL has proven to be e↵ective in finding optimal control policies for non-linear
stochastic systems when the dynamics are either unknown or a↵ected by severe uncertainty
(Buşoniu et al., 2018), including complicated robotic locomotion and manipulation (Kumar
et al., 2016; Xie et al., 2019; Hwangbo et al., 2019). The policies learnt via RL have the
ability to adapt to new scenarios and scale well to large-scale problems at run time. In
fact, the decision-making of reinforcement learning can take place through a learned policy
without any further optimization or model evaluation, which overcomes the inference speed
problem at deployment time. The learned policy can take the form of a neural network or
use other function approximation methods.Therefore, model-free RL (Sutton et al., 1992) is a
compelling alternative to traditional inference methods for physics-based model calibration.

In this work, we propose a novel formulation of the calibration problem as a tracking
problem that is modeled by a Markov decision process. Based on this formulation, we ap-
ply Lyapunov-based maximum entropy deep reinforcement learning to train an agent that
controls the physics-based model parameters to keep the model response matching the ob-
servations. In order to overcome the traditional high variance of RL and achieve better
robustness to observation uncertainty and model inadequacy, we propose a novel constrained
Lyapunov-based actor-critic (CLAC) algorithm. The proposed CLAC algorithm adds con-
straints on the stability of the policy network and is an extension of the Lyapunov-based
actor-critic (LAC) algorithm (Han et al., 2019b).

Without any knowledge of the physics-based model or simulator, the agent explores a large
range of possible dynamical responses of the system resulting in good and bad rewards. As a
result, the agent is able to exploit the dynamics of the model and produce a robust control (i.e.,

20



2 Real-time model calibration with reinforcement learning

Figure 2.2: Creating a calibration policy: Step 1, we identify the parameters of the physics-based model
we intend to calibrate. Step 2 (optional), we create a deep neural network (DNN) that models the
complex system dynamics. Step 3, we train a control policy using the the physics-based model
or the DNN model. Implementation stage: Step 4, we deploy the trained policy for real-time
model calibration.

calibration) logic. Therefore, the proposed framework overcomes the di�culties of traditional
optimal control methods, data-driven approaches and current RL algorithms. It provides:
a) an accurate real-time dynamical calibration, b) a policy that can adapt to new scenarios
without having been specifically trained on them, c) scalability to more complex systems and
high-dimensional spaces, and d) robustness to observation and model uncertainty.

The proposed framework is summarized in Figure 2.2. In the first step, we identify the
parameters of the physics-based model that are subjected to inference. In the second step,
we use a physics-based model or, alternatively, a surrogate model, in our case a deep neural
network (DNN) that emulates the expected system response for measured properties (i.e.,
observations). In the third step, we use the DNN model to train the calibration policy
network via RL. At deployment time, the trained calibration policy is directly deployed to
obtain the physics-based model parameters at run time (step 4). The resulting calibration
policy is computationally e�cient at run time. Most importantly, the calibration policy is
robust to uncertainties both in the observations and the physics-based model. The proposed
methodology is demonstrated and evaluated on two di↵erent physics-based models of a tur-
bofan engine: the Advanced Geared Turbofan 30,000 (AGTF30) and Commercial Modular
Aero-Propulsion System Simulation (C-MAPSS) from NASA.

The contribution of this paper is two-fold: 1) We propose a solution to the problem of
real-time dynamic calibration of physics-based models. In particular, we present
a general reinforcement-based model calibration framework that enables real-time inference
of system model parameters with a single forward pass through a neural network. While
the performance of the framework is demonstrated on two turbofan engine models in this
research, it could be easily applied to any system model. Furthermore, the proposed frame-
work does not require any labeled data or demonstration for training. This is in line with
the requirements of industrial scenarios where such labels are typically lacking. 2) From the
methodological perspective, we propose the constrained Lyapunov-based actor-critic
(CLAC) algorithm, which provides more action stability, especially on parameter track-
ing problems, compared to the state-of-the-art LAC reinforcement learning algorithm. This
makes the proposed approach robust to noise and high variability, which is again in line with
requirements of industrial applications.

21



2 Real-time model calibration with reinforcement learning

2.2 Preliminaries
In this section, we briefly review the basic concepts and notations related to reinforcement
learning which is in the focus of the proposed framework.

2.2.1 Reinforcement learning

Reinforcement learning is a sub-field of machine learning that focuses on how an agent inter-
acts with the environment to achieve a specific goal. The environments are typically stated
in the form of a Markov decision process (MDP), which provides a mathematical description
of decision-making processes. Under the right problem formulation, MDPs can be useful for
solving optimization and inference problems, such as the one described above for physics-
based model calibration, via reinforcement learning. The details of the MDP formulation of
physics-based model calibration will be discussed in Sec 2.3.

In conventional reinforcement learning, an agent is trained to interact with the environment
and seek rewards on the basis of its actions. The agent receives a successor state st+1 from
the environment as feedback in response to a decision (i.e., action at) taken at time-step
t. The goal is to find a policy ⇢⇡ that maximizes the discounted cumulative reward J(⇡)
(Sutton, Barto, et al., 1998), which is given by the following expression:

J(⇡) = E⌧⇠⇢⇡
1X

t=0

�tr(st, at) (2.1)

where � 2 [0, 1) is the discount factor.

2.2.2 Maximum entropy RL.

The maximum entropy reinforcement learning framework considers a more general objec-
tive, aiming to learn a stochastic policy which jointly maximises the expected discounted
cumulative reward and its expected entropy H(⇡(·|st)) (Ziebart, 2010):

J(⇡) = E⌧⇠⇢⇡
1X

t=0

�t[r(st, at) + �H(⇡(·|st))], (2.2)

where � is the temperature parameter that controls the stochasticity of the optimal policy over
the reward. Therefore, the resulting stochastic policies balance the exploration-exploitation
trade-o↵ and add robustness to the policy.

2.2.3 Stability guaranteed RL.

The maximum entropy reinforcement learning framework can also include a closed-loop sta-
bility guarantee of the system dynamics. Such a stability guarantee is particularly relevant
when dealing with control problems in real-world applications. Recently, the Lyapunov-based
actor-critic (LAC) method (Han et al., 2019b), implementing a stability guarantee, showed
state-of-the-art performance on tracking tasks. From a control-theoretic perspective, the task
of tracking can be addressed ensuring that the closed-loop system is asymptotically stable.
In other words, starting from an initial point, the trajectories of states always converge to a
single point or reference trajectory. Therefore, in (Han et al., 2019b), a stability-guaranteed
reinforcement learning framework is proposed under the following definition of stability:

Stability Definition. Suppose c⇡(·) is the cost function, c⇡ : S ! R+. The system is said
to be mean square stable (MSS) if limt!1 Estc⇡(st) = 0 holds for any initial condition s0.

Under this definition, the stability objective is given by Equation 2.3. The stability
objective defines an energy decreasing condition that drives the trajectory asymptotically
to the null space of the cost function, producing predictable behaviour of the agent. Here,
we use the Lyapunov function to denote the system’s energy, so that the state goes in the

22



2 Real-time model calibration with reinforcement learning

direction of decreasing the value of the Lyapunov function and eventually converges to the
origin or a sub-level set of the Lyapunov function.

Es⇠⌧ (Es0⇠⇢⇡L(s
0)� L(s))  �↵3Es⇠⌧ c⇡ (s) (2.3)

where the ↵3 term controls the energy decreasing speed.

2.3 Proposed framework
2.3.1 Model calibration defined as a tracking problem

In this work, we formulate the real-time model calibration problem as a tracking problem,
which is modelled by an MDP, and use reinforcement learning to find the optimal tracking
policy. We aim to control/infer the model dynamical parameters (✓t+1) to let the model
output ( ˆxt+1) match the real sensor measurement(xt+1). However, to solve model calibration
by reinforcement learning is not trivial since it is not a conventional control task. To establish
a congruence between the model calibration task and the more classical driver tracking task:
a driver (equivalent to a computational model) needs to infer the operation (equivalent to
physical parameters) of another driver (equivalent to real sensor measurement) in front. To
solve this problem, the driver only needs to keep tracking the path of the car in front. Once
driver is able to track the front car, the operation he performs, will be the operation he
would like to infer. The rationale behind this solution strategy is that learning to track
observations of a real system response (xt) by changing the model parameters (✓t) results
in a control policy that makes the physics-based model yield a sound approximation of the
physical process (x̂t), i.e., reducing the reality gap. Consequently, the tracking policy also
serves as a calibration policy (Ljung and Gunnarsson, 1990).

Under a tracking solution strategy, the MDP describing the problem is given as the tuple
(s, a, r, P, ⇢), where state (s) comprises the current model output x̂t, the target value of the
system response (observations of the real system) xt+1, and the flight condition wt+1, i.e.,
st = [x̂t, xt+1, wt+1]. The action (a) defines the model parameters that need to be calibrated,
i.e., at = ✓t. The reward/cost function r(s, a) evaluates how good the tracking is. The state
transition probability function (P (s0|s, a)) corresponds to the dynamics of the system that
can be modelled by a physics-based or a surrogate model.

In order to speed up the learning process of the RL algorithm, a discrete time counterpart
of the physics-based model F is used. The resulting dynamical system F or a surrogate
simulator is modelled by a deep neural network that approximates the dynamic transition
equation describing how the expected system response changes given the current observations
x̂t, the flight conditions wt+1, and model parameters ✓t+1, resulting in:

x̂t+1 = F (wt+1, x̂t, ✓t+1) (2.4)

For the tracking problem there is, therefore, a desired state that we would like the system
to be in at each time step, i.e., xt+1. The task of the agent is to find a control policy ✓t+1 =
⇡(x̂t, xt+1, wt+1) that minimizes the cost based on a distance metric representing the reality
gap of the physics-based model. Here we use the mean squared error (MSE) between the
model output ˆxt+1 and the real system measurement xt+1 as the reward signal. In particular,
given the dynamical system above and a target system trajectory (i.e, observations), we
train the control policy to keep the simulator output matching the real system output by
maximizing the cumulative reward as defined in Equation 5.2.

2.3.2 State space and action space

The state st describes the current sensor information of the system, the target sensor in-
formation of the system and the flight conditions, which is defined as st = [x̂t, xt+1, wt+1].
And the action describes as the system parameters need to be calibrated, i.e. degradation
parameters, which is defined as at = [✓t+1].

23



2 Real-time model calibration with reinforcement learning

2.3.3 Learning algorithm

In this work, we adopt Lyapunov-based actor-critic (LAC) (Han et al., 2019b) as the learning
algorithm, which is based on the soft actor-critic (SAC) (Haarnoja et al., 2018a) algorithm
and incorporates a stability guarantee objective. The stability guarantee objective enables a
control policy that stabilizes the system in the case of interference by unseen disturbances or
uncertainties in the system dynamics. Most importantly, the LAC algorithm has been show
to yield the best performance on tracking problems (Han et al., 2019b).

Based on the maximum entropy actor-critic framework, LAC uses the Lyapunov function
Lc as the critic in the policy gradient formulation. The objective function of J(Lc) is given
as follows:

J(Lc) = E(s,a)⇠D


1

2
(Lc(s, a)� Ltarget

c (s, a))2
�

(2.5)

Ltarget
c (s, a) = c+ � argmax

a
Lc(s

0, a) (2.6)

where Ltarget
c is the approximation target for Lc as typically used in RL methods (Mnih et al.,

2015; Lillicrap et al., 2015). Ltarget
c has the same structure as Lc, but the parameter is updated

through exponentially moving average of weights of Lc controlled by a hyperparameter ⌧ .
The objective function for the policy network is given by:

J(⇡) =ED[�[log(⇡✓(f✓(✏, s)|s))] + �(Lc((s
0, f✓(✏, s

0))� Lc(s, a) + ↵3c)] (2.7)

where ⇡✓ is parameterized by a neural network f✓, and ✏ is an input vector consisted of
Gaussian noise. The D

.
= {(s, a, s0, c)} is the replay bu↵er for storage of the MDP tuples.

In the above objective, � and � are positive Lagrange multipliers which control the relative
importance of policy entropy versus the stability guarantee. As in (Haarnoja et al., 2018b),
the entropy of policy is expected to remain above the target entropy Ht (Haarnoja et al.,
2018b), here we adopt the same strategy.The value of � is adjusted through the gradient
method, thereby maximizing the objective:

J(�) = �E(s,a)⇠D[log(⇡✓(a|s)) +Ht] (2.8)

� is adjusted by the gradient method, thus maximizing the objective:

J(�) = �(Lc((s
0, f✓(✏, s

0))� Lc(s, a) + ↵3c) (2.9)

Under conditions of high sensor noise and simulator bias resulting from an incomplete rep-
resentation of the system model (i.e., irreducible reality gap), the policy network can exhibit
large variance. Such a situation is undesirable in many real-world applications where it is
important to obtain a stable or smooth action over time. Therefore, in order to stabilize
the action, we introduce the constrained Lyapunov-based actor critic (CLAC) algorithm, a
modification of the LAC, which significantly improves the action stability under model un-
certainty and sensor noise. In CLAC, the objective function has an additional term that aims
to obtain a policy network that has similar optimal action when given a similar or near state
(snear) and is given by:

J(⇡) =ED[�[log(⇡✓(f✓(✏, s)|s))]+

�(Lc((s
0, f✓(✏, s

0))� Lc(s, a) + ↵3c)+

↵||⇡⇤✓(s)� ⇡
⇤
✓(snear)||]

(2.10)

where ↵ is a positive Lagrange multiplier, and ⇡⇤✓(s) outputs the action with the largest
probability. In our case, we use the adjacent time space state st+1 or st�1 to approximate
snear.

24



2 Real-time model calibration with reinforcement learning

Input hyperparameters, learning rates ↵�L , ↵✓
Randomly initialize a Lyapunov network L(s, a) and policy network ⇡(a|s) with
parameters �L, ✓ and the Lagrange multipliers �, �
Initialize the parameters of target network with �L  �L
for each iteration do

Sample s0 according to ⇢
for each time step do
Sample at from ⇡(s) and step forward
Observe st+1, rt and store (st, at, rt, st+1) in D

end for
for each update step do
Sample minibatches of transitions from D and update L, ⇡ and Lagrange multipliers
with gradients
Update the target networks with soft replacement:

�L  ⌧�L + (1� ⌧)�L
(2.11)

end for
end for

Algorithm 1: Constrained Lyapunov-based Actor-Critic (CLAC)

The entire procedure for training the proposed constrained Lyapunov actor-critic is outlined
in Algorithm 1 and the hyper-parameter settings can be found in the Table 2.1

It is worth mentioning that in our experiments the policy is first trained in the simulation
environment and then frozen for evaluation.

2.4 Experiments

The proposed framework is demonstrated and evaluated on two di↵erent physics-based mod-
els focusing on the diagnostics of turbofan engines. The two case studies explore di↵erent
aspects of real-world calibration problems. Case study #1 corresponds to a one-dimensional
calibration problem (d = 1) under a wide range of real (i.e., noisy) flight conditions from a
small fleet of ten units (N = 10). Case study #2 is a more complex system that explores com-
plex failure modes a↵ecting four components of the system simultaneously (d = 4). Therefore,
case study #2 explores a calibration problem under complex system responses. In contrast
to case study #1, case study #2 contains only flight condition from one single unit and,
consequently, has a more limited range of flight conditions. More details about the simulator
and flight condition data can be found in Appendix.

The performance of the proposed CLAC method is evaluated and compared to two alter-
native calibration models: a unscented Kalman filter (UKF) and a supervised end-to-end
mapping with deep learning algorithm (E2E). The evaluation also covers variants of case
study #1 designed to evaluate the robustness of the di↵erent methods to uncertainty in the
observations and system model predictions.

2.4.1 Neural network architectures and hyper-parameters

The proposed framework requires three neural networks: policy network, Lyapunov network
and surrogate network of the dynamic model .

For the policy network, we use a fully-connected multi-layer perceptron (MLP) with two
hidden layers of 256 units, outputting the mean and standard deviations of a Gaussian dis-
tribution. We adopt the invertible squashing function technique as proposed in (Haarnoja

25



2 Real-time model calibration with reinforcement learning

et al., 2018b) to the output layer of the policy network. For the Lyapunov network, we use
a fully-connected MLP with two hidden layers of 256 units, outputting the Lyapunov value.
All the hidden layers use leaky-ReLU (Maas et al., 2013) activation function.

The system dynamics (surrogate network of the dynamic model) is approximated with an
MLP with four layers (L = 4). The hidden layers have 100 units (n1 = n2 = n3 = 100). The
output layer has the dimension of the sensor reading vector (i.e. nL = n). ReLU activation
function was used throughout the hidden layers. For the output layer �L = I is the identity.

The optimization of the networks’ weights was carried out with mini-batch stochastic gra-
dient descent (SGD) and with the Adam algorithm (Kingma and Ba, 2015). Xavier initializer
(Glorot and Bengio, 2010) was used for the weight initializations. Most of the parameters
setting are according to the orginal LAC setup (Han et al., 2020), and the target entropy is
based on the SAC result (Haarnoja et al., 2018a,b).Table 2.1 provides a detailed overview of
the hyperparameters used for the experiments.

Table 2.1: LAC and CLAC Hyperparameters

Hyperparameters Batch size LR-Actor/Critic Target entropy ⌧ � ↵3 Initial � �
Value 256 1e-4/3e-4 -d 0.005 0.99 1 2 0.1

2.5 Results

The aim of the proposed framework is to enable accurate, real-time, and robust model cal-
ibration for complex systems and large-scale problems. Therefore, in this section, the per-
formance of the proposed method is analysed based on six evaluation criteria: (1)inference
accuracy, (2)computational cost, (3)robustness to system model uncertainty, (4)robustness
to observation noise, (5)scalability to more complex systems, and (6)tracking accuracy.

Inference Accuracy. The primary objective of model calibration is to infer the values of
the model parameters ✓. From the application perspective of model-based diagnostics, this
objective corresponds to inferring the true underlying degradation parameters. Therefore,
we compare the estimated degradation parameters (✓̂) with the ground truth and report the
inference accuracy in the form of the root mean square error (RMSE). Table 2.2 shows the
inference performance of the unscented Kalman filter (UKF), end-to-end mapping (E2E), and
the proposed method (CLAC) in both datasets. With the lowest RMSE, the policy obtained
with CLAC shows the best overall performance in both case studies. The improvement is
particularly significant under complex fault modes (i.e., Case Study #2). The E2E model
yields the worst overall performance in Case Study #1, which highlights the limitations of
supervised learning in cases where the flight condition dataset for training is not fully repre-
sentative of the test conditions. Figure 2.3 shows the inferred unobserved model parameters
✓̂ obtained with the three methods in Case Study #1. It is worth mentioning that unlike
the end-to-end mapping, which needs the ground truth degradation parameters for training,
our framework does not need any prior knowledge about the degradation parameters. This
makes the approach more flexible and more applicable to real scenarios.

Since reinforcement learning policies might su↵er from a high variance (Henderson et al.,
2019), we evaluated the reproducibility of the proposed method by training our agent over
five di↵erent seeds. As shown in Figure 2.4, we observe that our agent shows a good repro-
ducibility on both tasks.

Computational Cost. One crucial aspect of the proposed method is the ability to perform
calibration in real time which is a crucial requirement for real applications. Therefore, we
evaluate the time required to perform inference of the model parameters at deployment. Table
2.3 reports the average times required to calibrate a single sample and the total training time

26



2 Real-time model calibration with reinforcement learning

Table 2.2: Overview of the inference performance given by the RMSE between the inferred model parameters
and the ground truth with UKF, E2E, and CLAC approaches on complete test trajectories. Best
performance is shown in bold. 1 The analysis with the E2E model was not performed in Case
Study #2 in light of the poor results in Case Study #1

Method Case Study #1 Case Study #2
UKF 3.42e-04 3.51e-03
E2E 1.36e-03 �

CLAC 3.30 ± 0.38 e-04 2.50e-03

Figure 2.3: Inferred (blue dots) and ground truth (orange squares) traces of ✓ in Case Study #1 with UKF
(left), E2E (middle), and CLAC (right) approaches. The ✓ values for the ten units are stacked one
after the other, generating a single time sequence. Each discontinuity corresponds to the beginning
of a new unit. The UKF solution proves a good match to the ground truth with low bias and
variance. It is observed that only at the beginning of each unit, the UKF predictions show a large
bias. Estimations with the E2E model show a large variance, in particular for units with long
degradation profiles. The CLAC method demonstrates a very good match to the ground truth.

with the three methods. In terms of deployment computational cost, the proposed method
provides a speed up of ⇥150 compared to the UKF. Concretely, inference with the proposed
CLAC method takes around 40 ms using a CPU thread. This deployment speed is comparable
to the E2E model as both methods only require a forward pass over a deep neural network.
In contrast, the UKF needs to perform 2⇥(2⇥d+1) model evaluations, which for Case Study
#1 amounts to 6 s. The CLAC method requires several hours of training with an ordinary
PC and therefore incurs all the computational cost in the training phase, which is typically
not critical for practical applications. For real-time applications, the main limiting factor is
the deployment time. Therefore, in terms of computational cost, the proposed method has a
clear advantage over UKF.

Table 2.3: Overview of the average time required for inference of a single sample with UKF, E2E, and CLAC
approaches in seconds [s] for Case Study #1.

Method UKF E2E CLAC
Deployment Time [s] 6 4.2e-02 4.0e-02

Robustness to Environment Uncertainty. Robustness to model inaccuracy is an
important aspect in model calibration. It is also a well known limitation of model-based
methods such as UKF. To evaluate the sensitivity of di↵erent approaches to inaccuracies in the
models, we apply a model bias to the output of the dynamic system model (i.e., F (w, ✓)⇥↵)
to emulate an inadequacy of the system model structure (i.e., inaccurate simulator). We also
consider a case where Gaussian noise is added to the dynamic system model, i.e., F (w, ✓)+ ⌘
where ⌘ ⇠ N(0,↵⌘). It is worth noticing that adding noise to the output of the simulator

27



2 Real-time model calibration with reinforcement learning

Figure 2.4: The average calibration performance of on AGTF30 and CMAPSS task, where the shaded areas
show the 1-SD confidence intervals over 5 random seeds. The X-axis indicates the total training
steps, while Y-axis indicates the test return.

transforms the deterministic model into a stochastic system model.
From the RL perspective, the presence of an inaccurate simulator is known as sim-to-real

transfer. In fact, sim-to-real is always a critical problem in reinforcement learning since the
agent is trained in a simulated environment which may be di↵erent from the real world. In
our case, we use a surrogate DNN model to accelerate the training. Therefore, we have an
unavoidable error between the DNN surrogate model x̂t+1 = F (wt+1, x̂t, ✓t+1) and the engine
physics-based model. Then, even in the case where noise is not added, the agent needs to
make decisions with noisy DNN model outputs x̂t at every time step t.

In order to test the trained policy under bias and noisy simulators, we tested two variants
where we added a 2% fixed bias (i.e., ↵ = 1.02) and a Gaussian noise with a standard
deviation of 10% of the model output (i.e., F (w, ✓)(1+N(0,↵⌘) with ↵⌘ = 0.1) to the output
of the DNN model. The results in Table 2.4 show that the policy obtained with the CLAC
model provides a very good inference even under quite large uncertainty, demonstrating better
robustness than the UKF, which failed to optimize a stable inference. The superior inference
performance of the CLAC model under 2% fixed bias is visualised in Figure 2.5.

Table 2.4: Overview of the inference perfor-
mance (RMSE) under model bias
(i.e. F (w, ✓) ⇥ ↵) and noise (i.e.,
F (w, ✓)(1 +N(0,↵⌘)

) with UKF and CLAC approaches in Case
Study #1.

Model Bias: F (w, ✓)⇥ ↵

Intensity UKF CLAC
↵ = 1.02 2.04e-3 3.30e-04

Model Noise: F (w, ✓)(1 +N(0,↵⌘))

Intensity UKF CLAC
↵⌘ = 0.1 # 4.22e-04

Figure 2.5: Inferred and ground truth (orange
squares) traces of ✓ in Case Study #1
with 2% model bias for UKF (green tri-
angles) and CLAC (blue dots).

Scalability to more complex system and high dimensional model parameters ✓.
When the dimensionality of the physics-based model parameters ✓ increases, the complexity
of inference increases as well. Due to the non-linear correlation between the degradation

28



2 Real-time model calibration with reinforcement learning

parameters and also between the degradation parameters and observations, the solution of the
calibration problem in high dimensional spaces can lead to confounding solutions. In scenarios
with noisy observations and systems with poor observability, the solution of inverse problems,
such as UKF methods, might involve a spurious association of calibration factors that have
similar system outputs. To test the scalability of our policies, we performed experiments on
controlling 1, 2, and 4 degradation parameters in AGTF30 experiments (i.e. Case Study #2).
Figure 2.6 shows the inferred and ground truth traces of a four-dimensional ✓ in Case Study
#2 with UKF (left) and CLAC (right) approaches. As in the previous plots, the ✓ values for
1315 fault intensities are stacked one after the other, thus generating a single time sequence.
We can observe that the UKF solution does confound or smear the source of degradation.
Moreover, as observed in Case Study #1, at the beginning of each fault combination, the
predictions show large bias. Both of these issues are e�ciently solved with the proposed
CLAC method.

Figure 2.6: Comparison to the ground truth in four ✓ parameters (HPT and LPT flow (i.e., Wc) and e�ciency
(i.e., E↵.)) and di↵erent degradation parameter settings. The orange solid line is the ground truth
degradation parameter value in di↵erent trajectories. The blue dotted line is the policy’s action
with CLAC and the green solid line with triangles is the UKF prediction.

Robustness to sensor noise. In real scenarios, the observations are always noisy. There-
fore, it is also important to obtain a policy that is robust to sensor noise. To evaluate this
e↵ect, we modelled the engine sensor noise and generated a noisy flight condition by adding
Gaussian noise with an intensity of 70 db signal to noise ratio (SNRdb = 70) to the original
flight condition. Table 2.5 shows the impact of noise on the inference performance of the
UKF and CLAC methods. In this case, although our policy still shows good inference ability,
UKF is more robust to sensor noise.

Tracking accuracy. We proposed to formulate the calibration problem as a tracking
problem and use reinforcement learning to track the operational trajectories of the real sys-
tems (i.e., the observations) while being constrained to have a stable policy. Therefore, we

29



2 Real-time model calibration with reinforcement learning

Figure 2.7: Tracking with the proposed CLAC method (blue dots) and UKF (green triangles) on a subset of
Case Study #1 for four sensor outputs. Ground truth is shown with the orange solid line. The
CLAC policy is able to keep all these sensors on track.

Table 2.5: Overview of the inference performance under observation noise with UKF and CLAC approaches
for complete test trajectories - System #1.

Observation Noise: xs + ✏

Intensity UKF CLAC
SNRdb = 70 3.72e-04 7.18e-04

evaluate the error between the observed real system response and the calibrated model out-
put. Figure 2.7 shows that our policies exhibit a good tracking ability for the model outputs.
Table 2.6 provides a complete overview of the RMSE for each of the evaluated test cases.
Although the CLAC framework demonstrates a good tracking ability in all the setups, the
UKF achieves an even better tracking. This di↵erence in the performance between UKF and
CLAC is expected since in the RL agent is actually solving a more complicated problem. In
particular, the current state contains the output of the DNN model x̂t instead of the histori-
cal observation (xt). As a result, small errors accumulate a↵ecting the tracking performance.
However it is worth point out that precisely this aspect ensures that the proposed policy
action generalizes well to unseen degradation trajectories.

2.5.1 Ablation study

Comparison between LAC and CLAC algorithms In this research, we propose to
extend LAC to CLAC to improve the stability of the policy under noisy conditions. To
demonstrate the benefit of the proposed extension, we compare the inference performance of
both algorithms, LAC and CLAC, on Case Study #1. In the C-MAPSS experiments, the

30



2 Real-time model calibration with reinforcement learning

Table 2.6: Overview of the tracking performance given by RMSE with UKF and CLAC approaches in both
case studies.

Method Case Study #1 Case Study #2
UKF 0.62 1.78
CLAC 0.98 5.54

flight conditions are very diverse and the DNN model is not very accurate and is particularly
noisy. Therefore, the DNN model may lead to an unstable policy. Figure 2.8 shows the
policy’s actions with the LAC and CLAC algorithm (orange squares) and ground truth (blue
dots) for all the trajectories. CLAC demonstrates a significant reduction in the variance of
the policy. Concretely, in terms of the RMSE metric, the LAC results in a RMSE of 1.3e-03
while the CLAC leads to an RMSE of 3.3e-04. Therefore, CLAC provides a 4⇥ inference
improvement.

Figure 2.8: Left: Inferred policy’s actions with LAC algorithm (blue dots) and ground truth (orange squares)
in Case Study #1. The trajectories of the ten units, stacked one after the other, are shown. SAC
policy exhibits quite large variance. Right: Inferred policy’s actions with CLAC algorithm (blue
dots) and ground truth (orange squares). the CLAC policy shows a good stability and a very good
match to the ground truth.

2.6 Conclusions and future work

In this research, we proposed a maximum entropy reinforcement learning framework and
the constrained Lyapunov-based actor-critic (CLAC) algorithm for model calibration. The
proposed calibration methodology achieves an instantaneous, high inference accuracy and
robustness that makes the proposed methodology applicable to noisy, and large-scale calibra-
tion problems in real-time. This capability was achieved purely on the basis of training in a
simulation environment without any tedious sampling or computationally expensive solution
of an inverse problem. Moreover, and in contrast to the end-to-end learning architectures, the
proposed methodology only requires access to the model and the observations, eliminating
the need for any ground truth calibration parameters for training. Overall, the proposed
CLAC algorithm achieves more precise and faster inference than the prior state-of-the-art
approaches while being more robust to system model uncertainty.

The proposed framework can be generally combined with various RL algorithms, or can
even be extended to the meta RL (Rakelly et al., 2019; Finn et al., 2017) or hierarchical RL
(Dietterich, 2000; Barto and Mahadevan, 2003). All our experiments are currently performed
in a simulated environment. As a next step, we plan to evaluate the resulting policies on real

31



2 Real-time model calibration with reinforcement learning

industrial plants or robots.
Although the learning framework presented in the work is demonstrated in a model-based

diagnostics task, it is applicable to any physics-based model, including those used in so-called
”digital twins”. Therefore, the results presented in this paper suggest a promising research
direction in the field of model calibration. From the application perspective, the targeted
model-based diagnostics problem was solved using exclusively a set of three deep neural
networks. Therefore, the proposed framework is a paradigm shift in the field of model-based
diagnostics. Starting with a model-based problem, we demonstrate that a clever arrangement
of deep neural networks can learn both the relevant physics of a complex system and the
inference techniques required for diagnostics. It is worth pointing out that the use of deep
neural networks is very diverse (e.g., functioning as the surrogate of a physics-based system
model or as an inference network in a decision-making problem). The proposed framework
demonstrates the great potential of fusing physics-based and deep learning models.

32



3 End-to-End load allocation with reinforcement learning

This chapter corresponds to the published article:1

Tian, Yuan, Minghao Han, Chetan Kulkarni, and Olga Fink (2022b). “A prescriptive Dirich-
let power allocation policy with deep reinforcement learning”. In: Reliability Engineering
& System Safety 224, p. 108529.

Abstract: Prescribing optimal operation based on the condition of the system,
and thereby potentially prolonging its remaining useful lifetime, has tremendous
potential in terms of actively managing the availability, maintenance, and costs
of complex systems. Reinforcement learning (RL) algorithms are particularly
suitable for this type of problem given their learning capabilities. A special
case of a prescriptive operation is the power allocation task, which can be con-
sidered as a sequential allocation problem whereby the action space is bounded
by a simplex constraint. A general continuous action-space solution of such
sequential allocation problems has still remained an open research question for
RL algorithms. In continuous action space, the standard Gaussian policy ap-
plied in reinforcement learning does not support simplex constraints, while the
Gaussian-softmax policy introduces a bias during training. In this work, we
propose the Dirichlet policy for continuous allocation tasks and analyze the
bias and variance of its policy gradients. We demonstrate that the Dirichlet
policy is bias-free and provides significantly faster convergence, better perfor-
mance, and better robustness to hyperparameter changes as compared to the
Gaussian-softmax policy. Moreover, we demonstrate the applicability of the
proposed algorithm on a prescriptive operation case in which we propose the
Dirichlet power allocation policy and evaluate its performance on a case study
of a set of multiple lithium-ion (Li-I) battery systems. The experimental re-
sults demonstrate the potential to prescribe optimal operation, improving the
e�ciency and sustainability of multi-power source systems.

3.1 Introduction

Prescribing an optimal course of action based on the current system state, and thereby
potentially prolonging its remaining useful lifetime, has tremendous potential in terms of
actively managing the availability, maintenance, and costs of complex systems (Ansari et
al., 2019, 2020; Popp et al., 2020). In fact, it is a sequential decision-making task that
either requires very good dynamical models or models with very good learning capabilities.
Reinforcement learning (RL) algorithms have recently demonstrated superior performance on
sequential decision-making tasks (Sutton et al., 1992). In particular, model-free RL, which
estimates the optimal policy without relying on a model of the dynamics of the environment,
has recently yielded very promising results in many challenging tasks across areas as diverse
as gaming (Mnih et al., 2013; Silver et al., 2014), control problems (Han et al., 2019a; Tian
et al., 2022a), prescriptive maintenance (Meissner et al., 2021) and auto machine learning
(AutoML)(Tian et al., 2020a).

1Please note, this is the author’s version of the manuscript published in Reliability Engineering and Sys-
tem Safety. Changes resulting from the publishing process, namely editing, corrections, final formatting for
printed or online publication, and other modifications resulting from quality control procedures may have been
subsequently added. The final publication is available at https://doi.org/10.1016/j.ress.2022.108529.

33

https://doi.org/10.1016/j.ress.2022.108529


3 End-to-End load allocation with reinforcement learning

An important application of prescriptive operations for multi-power source systems is power
allocation with the goal of prolonging the lifetime or the usage time of the systems, thereby
improving availability, maximizing e�ciency, or minimizing cost. These types of prescrip-
tive operation tasks can be considered as sequential allocation problems. One of the major
characteristics of allocation problems is that the action space is bounded by a simplex con-
straint. This constraint makes the application of RL algorithms in a continuous action space
particularly challenging. Besides power allocation (Zhang et al., 2021b), both sequential and
single-step allocation tasks are commonly encountered in several other application scenarios,
such as task allocation (Deng et al., 2020), resource allocation (Feng et al., 2020; Zhang
et al., 2021e), order allocation (Feng and Gong, 2020), redundancy allocation (Zhang and Li,
2021; Nath and Muhuri, 2021) and portfolio management (Jiang et al., 2017). Particularly
for allocation tasks involving complex systems, system state and reliability considerations are
crucial.

Several research studies have focused on allocation tasks with reinforcement learning (Xiong
et al., 2018; Yang et al., 2018b; Jiang et al., 2017; Maia et al., 2020). However, one of the main
limitations of the previously proposed RL approaches for allocation tasks is that they were
solely able to operate in a discretized action space. This discretization typically precludes,
on the one hand, fine-grained allocation actions since the number of discretized actions may
become intractably high (Chou et al., 2017). On the other hand, the action space needs to
be carefully adjusted if the number of possible allocation options changes. These two aspects
substantially limit the scalability of the existing approaches.

To enable more general allocation decision-making, continuous action space is required
(Schulman et al., 2017; Haarnoja et al., 2018a). For continuous action-space sequential
allocation problems, the RL algorithms need to satisfy the simplex constraints as outlined
above. However, the most commonly applied Gaussian policy in other RL tasks is not able to
satisfy the simplex constraints (Lillicrap et al., 2015; Schulman et al., 2015, 2017; Haarnoja
et al., 2018a). Gaussian-softmax policy could be an alternative solution (Jiang et al., 2017).
However, this function is not injective and has additional drawbacks, such as its inability to
model multi-modality (Joo et al., 2020). This leads to less e�cient training and less e↵ective
performance.

In this paper, we focus on continuous action-space sequential allocation tasks and propose
a Dirichlet-policy-based reinforcement learning framework for sequential allocation tasks.
This enables us to overcome the aforementioned limitations. The proposed Dirichlet policy
o↵ers several advantages as compared to the Gaussian, Gaussian-softmax, and discretized
policies. The Dirichlet policy inherently satisfies the simplex constraint. Moreover, it can be
combined with all state-of-the-art stochastic policy RL algorithms. This makes it universally
applicable for sequential allocation tasks. Ultimately, the proposed Dirichlet policy exhibits
good scalability and transferability properties. In this research, we theoretically demonstrate
that the Dirichlet policy is bias-free and results in a lower variance in policy updates as
compared to the Gaussian-softmax policy. Finally, we experimentally demonstrate that the
Dirichlet policy provides significantly faster convergence, better performance, and is more
robust to changes in hyperparameters as compared to the Gaussian-softmax policy.

The performance of the proposed prescriptive operation framework in the context of se-
quential allocation problems is evaluated on a case study of multi-battery system applications
with the goal of prolonging their working cycles. The developed framework only requires raw,
real-time current and voltage measurements, along with the incoming power demand, as in-
puts. To the best of our knowledge, this is the first time an algorithm has been capable
of directly performing the load allocation strategy in an end-to-end way (without the in-
volvement of any model-based state estimation). We will demonstrate that, compared to the
equally distributed load allocation, the average length of the discharge cycle of the deployed
four-battery system can be prolonged by an average of 15.2% (and an eight-battery system

34



3 End-to-End load allocation with reinforcement learning

by an average of 31.9%) over 5000 random initializations and random load profiles, thereby
making the batteries more sustainable. Moreover, we will demonstrate that when imple-
mented on degraded batteries in second-life applications with diverse degradation dynamics,
the improvement becomes even more pronounced, reflecting a 151.0% extension of discharge
cycles on average and thus enabling the reliable usage of second-life batteries.

The contribution of this paper is twofold: 1) We propose a novel RL-based solution for
continuous action-space allocation tasks. In particular, we propose the Dirichlet policy and
demonstrate its advantages theoretically and experimentally. 2) Based on the proposed
Dirichlet policy, we set forth a prescriptive power allocation framework and evaluate its
performance on multi-battery systems to prolong the service cycles of these power source
systems. The developed framework shows the potential to improve the e�ciency and sus-
tainability of power systems with greater e↵ectiveness.

3.2 Related work

Prescriptive operation is a comparatively novel research direction that goes beyond merely
predicting the evolution of the system condition and the remaining useful life. The main goal
of prescriptive operation is to develop algorithms that are not only able to predict the required
measures but also to prescribe an optimal course of action based on the current system state.
Di↵erent objectives can be considered for prescriptive operation tasks, such as prolonging the
remaining useful lifetime and thereby improving the reliability and availability of the system;
completing a defined mission or reaching an operational goal, even in the case of adverse
conditions or faults; and minimizing emissions and energy consumption. Several research
studies have recently taken up the concept of prescriptive operation (Meissner et al., 2021;
Consilvio et al., 2019). For example, one investigation,taking economic and environmental
impact into account, has prescribed an approach to maintenance operation that improves
the e�ciency of aircraft maintenance (Meissner et al., 2021). For batteries, optimal charging
schedules have been proposed to prolong the remaining useful life (RUL) (Sui and Song,
2020). Prescriptive operation represents a very promising and urgently required research
direction with regard to industrial applications due to the rising complexity and increasingly
demanding requirements of complex industrial assets(Vater et al., 2019; Ansari et al., 2019).
The prescriptive operation problems are, in fact, sequential decision-making problems, for
which RL methods have demonstrated very good learning capabilities (Meissner et al., 2021).

In a reinforcement learning task, the agent observes the environment or system state and
prescribes an action in order to maximize the cumulative expected future reward. The action
space can be discrete, continuous, or mixed. The Q-Learning (Watkins and Dayan, 1992), as
well as deep Q-network (DQN) (Mnih et al., 2015) and related variants such as double-DQN
(Hasselt, 2010), are normally designed for discrete action-space tasks. To enable continuous
action space, policy-based algorithms such as proximal policy optimization (PPO) (Schulman
et al., 2017), trust region policy optimization (TRPO) (Schulman et al., 2015), and soft actor-
critic (Haarnoja et al., 2018a) have been proposed. These algorithms represent the stochastic
policy via a Gaussian distribution and the agent can sample from the distribution to get
the specific action. Besides the stochastic policy, the deep deterministic policy gradient
(DDPG) (Lillicrap et al., 2015) uses a deterministic policy to tackle the continuous action-
space problem. However, DDPG produces a relatively weak performance in complex problems
(Haarnoja et al., 2018a). Moreover, beta policy has been proposed to improve the e�ciency
when physical constraints are present (Chou et al., 2017).

Allocation tasks are very commonly encountered in real-world prescriptive operation prob-
lems. However, the application of reinforcement learning to this type of problem and the
elaboration of the theoretical perspective have remained relatively unexplored. The task is
to find an optimal distribution of a limited resource given some defined goal and constraints.
All allocation tasks need to fulfill the constraint that the action space is bounded by a simplex

35



3 End-to-End load allocation with reinforcement learning

constraint. Examples of allocation tasks include computational resource allocation, which is
highly useful for emerging applications with intense computational resource demands, such as
industrial automation (Chen et al., 2020b), blockchain applications (Feng et al., 2020), and
unmanned aerial vehicle (UAV) applications (Shimada et al., 2021). Reliability redundancy
allocation can help improve system reliability and minimize the cost, weight, or volume (Wang
et al., 2020; Sabri-Laghaie and Karimi-Nasab, 2019). Order allocation is becoming increas-
ingly important to commercial enterprises like passenger transportation service companies
(Kamandanipour et al., 2020; Cao and Feng, 2020), food delivery services (Sun et al., 2020),
and other logistics providers (Jauhar et al., 2021). Optimal allocation directly influences the
e�ciency and profit of such companies, who are relying on limited resources. In the financial
field, portfolio management is, in fact, also an allocation problem (Jiang et al., 2017). Un-
fortunately, a general solution in RL for allocation problems with the simplex constraint is
still lacking and remains an open research question.

A crucial application field of both allocation problems and prescriptive operation is power
allocation (Hu et al., 2020) in multi-power source configurations, which has recently been
gaining in importance. A major challenge for power allocation strategies for multi-power
source systems has been the design of optimal allocation strategies that take distinct observed
states into account and consider di↵erent dynamics. For example, in multi-battery systems,
the individual batteries commonly start diverging in their states of health and remaining
capacities through use (Zheng et al., 2015; Severson et al., 2019; Hu et al., 2020). Small
dissimilarities at the beginning of the lifetime may be amplified by di↵erent usage profiles.
Once any of the individual batteries reaches the end of discharge (EoD), the normal operation
of the entire system is impacted. Since individual batteries in the system may have dissimilar
states of charge that are not directly measurable, distributing the power equally between all
batteries is not optimal. Allocating the power demand in an optimal way to each of the
individual batteries has the potential to not only prolong the discharge cycle of the entire
multi-battery system but also its lifetime, thus improving the sustainability of the batteries.

Di↵erent power allocation strategies have been proposed, including rule-based (Wang et al.,
2019c; Wang et al., 2019d; Leonori et al., 2020) and optimization-based approaches (Bai et al.,
2019; Zhang et al., 2016). There are several limitations to these approaches. In the rule-based
load allocation, each specific state would require the definition of customized rules. Thus,
the rule-based approaches require extensive prior knowledge as well as extensive experiments
for the di↵erent conditions that, for example, take into account the state of charge (SoC)
or state of health (SoH), which cannot be measured directly. A major drawback of rule-
based approaches is that they are typically designed for a specific system and partly for
specific usage and operating conditions. Moreover, prior knowledge and model information
are also typically required. Therefore, if there is any change in the system configuration or
the operating requirements, the allocation rules need to be adjusted. Even for a simple scale-
up from four to eight batteries, the allocation rules need to be carefully adjusted. Moreover,
since the feedback of such predefined rules is typically delayed, they are also hard to optimize,
resulting in sub-optimal solutions.

Optimization-based methods typically require model information. The allocation task is
then solved by optimization or control algorithms, such as model predictive control (MPC)
(Ishii, 2021; Chen et al., 2020a) and Robust MPC (Huang et al., 2017).These approaches
are vulnerable to uncertainties and changes in the schedule of the power profile. Also, to
the best of our knowledge, they all rely on extracted information from physics-based models,
such as SoC. Furthermore, they are typically computationally intense, especially for high-
dimensional allocation problems. Thus, it is challenging for optimization-based methods to
deal with complex real-world systems in real time.

Machine learning approaches have been increasingly applied to di↵erent battery manage-
ment tasks, including predicting the future capacity (Nagulapati et al., 2021; Yang et al.,

36



3 End-to-End load allocation with reinforcement learning

2018a), SoC (Liu et al., 2021; Ng et al., 2020; Severson et al., 2019; Jiao et al., 2021), SoH,
and remaining useful life (RUL) (Xu et al., 2021a). In the power allocation domain, rein-
forcement learning-based approaches have also been recently investigated in a similar context
(Xiong et al., 2018). Compared to the rule-based and optimization-based approaches men-
tioned above, the proposed model-free RL-based framework provides an alternative solution
while overcoming some of their limitations. Unlike rule-based approaches, the strategies for
di↵erent systems can be learned with model-free RL without any manual feature engineering
or prior knowledge. The learned policy demonstrates superior computational e�ciency com-
pared to optimization-based methods. This property is particularly important for real-time
applications. Moreover, model-free RL is suitable for finding the optimal policy in tasks where
the dynamics are either unknown or a↵ected by a large uncertainty (Buşoniu et al., 2018).
Under such conditions, the optimization-based methods may fail to find a feasible strategy.
Besides, the deep RL typically shows very good performance on end-to-end control tasks and
does not require any manual feature engineering. Previous RL-based methodologies addressed
power allocation tasks by discretizing the action and state spaces, defining di↵erent weight
combinations (Xiong et al., 2018; Xu et al., 2021b; Maia et al., 2020). This significantly
reduces their scalability and transferability. Due to the exploding action space problem, it
is not feasible to directly increase the number of weight combinations for a more fine-grid
decision-making (Bellman, 1956; Lillicrap et al., 2015). Thus, to enable a more general power
allocation strategy, continuous action space and corresponding approaches (Schulman et al.,
2017; Haarnoja et al., 2018a) are needed.

3.3 Preliminaries

A Markov decision process (MDP) is a discrete-time stochastic control process. At each time
step, the process is in a state st and its associated agent chooses an action at from the set of
possible actions. Given the action, the process moves into a new state st+1 at the next step
and the agent receives a reward rt; see Fig. 3.1 below:

Figure 3.1: Reinforcement learning schematic

An MDP can be described as a tuple (S,A, r, P, ⇢), where S is the set of states that is able to
precisely describe the current situation, A is the set of actions, r(s, a) is the reward function,
P (s0|s, a) is the transition probability function, and ⇢(s) is the initial state distribution.

MDPs have been used to describe an environment in reinforcement learning. In a general
reinforcement learning setup, an agent is trained to interact with the environment and get a

37



3 End-to-End load allocation with reinforcement learning

reward from this interaction. The goal is to find a policy ⇡ that maximizes the cumulative
reward J(⇡):

J(⇡) = E⌧⇠⇢⇡
1X

t=0

r(st, at) (3.1)

While the standard RL merely maximizes the expected cumulative rewards, the maxi-
mum entropy RL framework considers a more general objective (Ziebart, 2010), which favors
stochastic policies. This objective shows a strong connection to the exploration-exploitation
trade-o↵ and aims at preventing the policy from getting stuck in local optima. Formally, it
is given by:

J(⇡) = E⌧⇠⇢⇡
1X

t=0

[r(st, at) + �H(⇡(·|st))], (3.2)

where � is the temperature parameter that controls the stochasticity of the optimal policy.

3.4 Methodology

To solve the continuous action-space allocation tasks, we introduce for the first time the
Dirichlet policy. In the following, we first theoretically demonstrate that the Dirichlet policy
is bias-free and has a lower variance of policy update as compared to the Gaussian-softmax
policy. Moreover, we experimentally demonstrate that the Dirichlet policy provides a signifi-
cantly faster convergence, better performance, and is more robust to changes in hyperparam-
eters as compared to the Gaussian-softmax policy. Additionally, we combine the Dirichlet
distribution with the state-of-art soft actor-critic for the proposed Dirichlet Power Allocation
Policy.

3.4.1 Implications of the Gaussian policy

In reinforcement learning, a policy is always required to determine which action to take given
the current state. In practice, the stochastic policy is usually parameterized by a conditioned
Gaussian distribution ⇡✓(x|s) = N (µ✓(s), �✓(s)), where µ and � are the outputs of the neural
networks. However, the action x sampled from ⇡✓ is not directly applicable to allocation tasks
since the constraint

PN
i=0 ai = 1 is not satisfied. It is straightforward to pass the generated

candidate action x to a softmax function � : RN
! RN to obtain the allocation action:

ai = �(xi)i =
exi

PN
i=1 e

xi
(3.3)

However, we show in the following that this approach would generate two side e↵ects: a
biased estimation and a larger variance. Both of these would jeopardize the policy learning.

Bias

In allocation problems, the policy gradient is written as follows:

Eg(✓) = Es

Z 1

0
⇡(a|s)r✓ log ⇡(a|s)Q

⇡(s, a)da (3.4)

It should be noted that the softmax function is not injective and many possible x can result
in the same action a. More specifically, the softmax function is invariant under translation
by the same value in each coordinate, i.e. �(x + c1) = �(x) for any constant c 2 R. When
the softmax function is combined with the Gaussian policy to generate appropriate allocation
actions, the distribution of a is, in fact, relevant to the distribution of the candidate action
x and the probability density function (PDF) satisfies

⇡(a|s) =

Z 1

�1
⇡✓(x+ c1|s)dc (3.5)

38



3 End-to-End load allocation with reinforcement learning

Substituting the above relation into the policy gradient follows that

Eg(✓) =

Es

Z 1

�1
⇡✓(x+ c1|s)r✓ log

Z 1

�1
⇡✓(x+ c1|s)Q⇡(s,�(x))dxdc

(3.6)

However, the policy gradient estimator Eĝ used in the ordinary RL algorithm is unaware of
the inner integration over the scalar variable c, as in the following

Eĝ(✓) = Es

Z 1

�1
⇡✓(x|s)r✓ log ⇡✓(x|s)Q

⇡(s,x)dx (3.7)

As the mapping of the candidate action to the allocation action is done in the environment
(the specific allocation task), the estimator is created based on the candidate action and
inevitably introduces a bias. Even if we assume that the learned critic based on the candidate
action can predict the return precisely, i.e. Q⇡(s,x) = Q⇡(s,�(x)), 8x, the bias still exists
due to the unawareness of the marginalization over c.

One might also wonder whether using the transformed allocation action a to compute the
policy gradient can yield an unbiased estimation. Unfortunately, this is not the case. This
would be equivalent to replacing the candidate action x in (3.7) with a. Though it looks
similar to the form in (3.4), the distributions ⇡✓ and ⇡ are not equivalent. In the end, this
will only result in even more biased results.

Variance

In addition to the bias, the Gaussian policy also has the drawback that the variance of the
policy gradient estimator is proportional to 1/�2. This will induce the variance to reach
infinity as the policy converges and becomes deterministic (� ! 0) (Chou et al., 2017).

To illustrate this, a useful insight is gained by comparing the policy gradient with the
natural policy gradient (Kakade, 2001). The policy gradient in (3.7) does not necessarily
produce the steepest policy updates (Amari, 1998), while the natural policy gradient does.
The natural policy gradient is given by

gnat(✓) = EsF
�1(✓)ĝ(✓) (3.8)

where F denotes the Fisher information matrix, defined as

F = Ea⇠⇡✓
⇥
r✓ log ⇡✓(a|s)r✓ log ⇡✓(a|s)

T
⇤

(3.9)

The policy gradient vector is composed of the length and the direction. The ordinary policy
gradient may have the correct direction but not necessarily the correct length. The natural
policy gradient adjusts the learning rate according to the policy distribution and produces the
steepest step. As shown in (Chou et al., 2017), the Fisher information matrix for Gaussian
policy is proportional to 1/�2, which implies that the more deterministic the policy is, the
smaller the update step that should be taken. In the end, the constant update steps will
overshoot and increase the variance of the policy gradient estimator.

3.4.2 Dirichlet policy

Since the general Gaussian or Gaussian-softmax policy are not directly applicable to the
optimization of allocation problems, applying standard reinforcement learning frameworks
or other control algorithms to allocation tasks will result in sub-optimal results that su↵er
from excessive parameter tuning and/or model complexity. To improve the stability and
convergence speed of optimization tasks of allocation problems in continuous action spaces,
we propose parameterizing the policy using Dirichlet distribution, which inherently satisfies

39



3 End-to-End load allocation with reinforcement learning

the simplex constraint and enables an e�cient optimization of allocation tasks in continuous
action spaces:

⇡✓(a|s) =
1

B(↵)

NY

i=1

a↵i�1
i (3.10)

where B(↵) denotes the multivariate beta function and can be expressed in terms of the
gamma function � as follows:

B(↵) =

QN
i=1 �(↵i)

�(
PN

i=1 ↵i)
. (3.11)

Here, the distribution is shaped by the shape parameters ↵, which is the output of the neural
network f✓(s). Thus, the policy is eventually determined by ✓.

Bias of the Dirichlet policy

The action a sampled from the Dirichlet policy (3.10) naturally satisfies the constraints on
actions in allocation problems, i.e.

PN
i=0 ai = 1 and ai � 0 (Kotz et al., 2004). Thanks to this

property, it is possible to directly sample actions that qualify as allocation actions from the
Dirichlet policy, without the need to further constrain them. As a result, the policy gradient
estimator Eĝ(✓) for Dirichlet policies takes the same form as the natural policy gradient Eg(✓)
in (3.4) and is bias-free.

Variance of the Dirichlet Policy

Let A =
PN

i=1 ↵i

log ⇡✓(a|s) = log(�(A))�
X

i=1

log(�(↵i)) +
X

i=1

(↵i � 1) log(�(ai)) (3.12)

Taking the fact that @A/@↵i = 1 and @↵j/@↵i = 0 into account results in:

@ log ⇡✓(a|s)

@↵i
=  (A)�  (↵i) + log(ai) (3.13)

with the second order derivative

@2 log ⇡✓(a|s)

@↵i@↵j
=  0(A)�  0(↵i)�ij (3.14)

where  0(z) =  (1)(z) and  (m)(z) = dm+1

dzm+1 ln�(z) is the polygamma function, the mth

derivative of the logarithm of the gamma function.
According to the regularity conditions (Wasserman, 2013), the Fisher information matrix

can also be obtained from the second-order partial derivatives of the log-likelihood function,

F (↵) =� Ea ⇡✓

2

664

@2 log ⇡✓(a|s)
@↵1@↵1

· · ·
@2 log ⇡✓(a|s)
@↵1@↵N

...
. . .

...
@2 log ⇡✓(a|s)
@↵K@↵1

· · ·
@2 log ⇡✓(a|s)
@↵N@↵N

3

775

=

2

64
 0(↵1)�  0(A) · · · � 0(A)

...
. . .

...
� 0(A) · · ·  0(↵N )�  0(A)

3

75

(3.15)

The variance of the Dirichlet policy is given by V ar[ai] =
↵i(A�↵i)
A(A+1) . As the policy becomes

deterministic given di↵erent states, certain allocation actions ↵i and A approach infinity

40



3 End-to-End load allocation with reinforcement learning

simultaneously. As shown in (Chou et al., 2017),  0(z) goes to zero as z goes to infinity.
Thus, the inverse of the Fisher information matrix goes to infinity. This ensures that the
update steps will not overshoot and the variance of the policy gradient goes to zero.

To summarize, the Dirichlet policy can intrinsically produce unbiased policy gradient esti-
mations, while the variance of policy updates is also guaranteed to be lower than that of the
Gaussian policy. These are both favorable properties to enhance the convergence speed and
allocation performance.

3.4.3 Simplex regression experiment

To demonstrate the e�ciency and e↵ectiveness of the proposed methodology, we first eval-
uate it on a simple simplex regression task. The objective is to reconstruct and sequence
a 4-dimensional simplex from a 3-dimensional vector obtained by randomly removing a
dimension from the target 4-dimensional simplex. For example, given a random simplex
vector [0.4, 0.2, 0.3, 0.1], after a dimension is randomly removed, the input data becomes
[0.4, 0.3, 0.1]. The target output is then the ranked reconstructed simplex [0.1, 0.2, 0.3, 0.4].
We use the Mean Average Error (MAE). We apply the proposed Dirichlet policy framework
and compare it to the Gaussian-softmax policy. The result shows that the Dirichlet distribu-
tion performs better and is more robust to hyperparameters such as, for example, the di↵erent
learning rates. The Dirichlet policy performs two times better compared to Gaussian-softmax
policy with a learning rate of 0.01. In addition, the Dirichlet policy is more robust against
di↵erent learning rates, while the Gaussian-softmax policy failed with a high learning rate of
0.1. See Fig. 3.2.

Figure 3.2: Numerical experiment results. We compare the learning curves of both output layers with two
di↵erent learning rates: 0.1 and 0.01, where the shaded areas show the 1-SD confidence intervals
over multiple random seeds.

For the neural networks in the numerical experiment, we use a fully connected multi-layer
perceptron (MLP) with three hidden layers of 64 units each, outputting the ↵ of a Dirichlet
distribution or the µ and � of a Gaussian distribution. For the Dirichlet distribution network,
in the first layer, the Leaky-ReLU activation function (Maas et al., 2013) is applied. In the
second layer, the tanh activation function is applied. The ↵ is modeled by a softplus element-
wise operation with log(1 + exp(x)). A constant 1 is added to the output to make sure that
↵ � 1. The choice of the activation function is motivated by the design of the Beta policy
(Chou et al., 2017). For the Gaussian-softmax network, the hidden layers have Leaky-ReLU

41



3 End-to-End load allocation with reinforcement learning

(Maas et al., 2013) as the activation function, while the final output layer is mapped to a
simplex with a softmax function.

3.4.4 Soft Actor-Critic

In this paper, we applied the o↵-policy reinforcement learning algorithm soft actor-critic
(SAC) (Haarnoja et al., 2018a) with the proposed Dirichlet policy. The SAC is based on
the maximum entropy reinforcement learning framework (Haarnoja et al., 2017), where the
objective is to maximize both the entropy of the policy and the cumulative return. As a
result, it significantly increases training stability and improves exploration during training.
Furthermore, it was demonstrated to be 10 to 100 (Haarnoja et al., 2018a) times more data-
e�cient as compared to any other on-policy algorithms applied to traditional RL tasks.

For the learning of the critic, the objective function is defined as:

J(Q) = E(s,a)⇠D


1

2
(Q(s, a)�Qtarget(s, a))

2

�
(3.16)

where Qtarget is the approximated target of Q:

Qtarget(s, a) = R(s, a) + �[Qtarget(s
0, f(✏, s0))� � log ⇡(a0|s0)] (3.17)

The objective function of the the policy network is given by:

J(⇡) = ED [�[log(⇡✓(f✓(✏, s)|s))]�Q(s, f✓(✏, s))] (3.18)

where ⇡✓ is parameterized by a neural network f✓, ✏ is an input vector, the D
.
= {(s, a, s0, r)} is

the replay bu↵er for storing the MDP tuples (Mnih et al., 2015), and � is a positive Lagrange
multiplier that controls the relative importance of the policy entropy versus the cumulative
return.

3.4.5 Hyperparameter setting

For the following experiments, we combine the proposed Dirichlet policy with the SAC frame-
work. For the policy network, we use the same architecture design as for the toy experiment
with the di↵erence that: 1) 256 units are used and 2) for the additional Q-network, we use a
fully connected MLP with three hidden layers of 256 units, outputting the Q-value. All the
hidden layers use Leaky-ReLU as the activation function. Fig. 3.3 illustrates the networks.
It is worth pointing out that we adopt the same neural architecture as that used in the SAC
(Haarnoja et al., 2018a). This neural architecture, typically utilized in other control tasks,
has yielded good performance in applications including cart-pole balancing (Haarnoja et al.,
2018a), humanoid walking (Haarnoja et al., 2018a), real-world robot control (Mahmood et
al., 2018), real quadrotor control (Hwangbo et al., 2017), and others (Schulman et al., 2015,
2017). More information regarding the task-specific input data and output action may be
found in Sec. 3.5.

Our implementation exploits the double Q-learning technique (Van Hasselt et al., 2016),
whereby two Q-functions {Q1, Q2} are parameterized by neural networks with parameters ⌫1
and ⌫2. The Q-function with the lower value is exploited in the policy learning step (Fujimoto
et al., 2018), which is useful in mitigating performance degradation caused by the bias in the
value estimation.

The optimization of the networks’ weights is carried out with the Adam algorithm. The
Kaiming initializer is used for the weight initializations (He et al., 2015). Table. 3.1 provides
a detailed overview of the hyperparameters used for the experiments. Training is conducted
on a 2.3 GHz 8-core Intel Core i9 CPU.

42



3 End-to-End load allocation with reinforcement learning

…

…

…

Softmax+1

…

(#!", %!")
Voltage 

and current 
measurements

Of Battery !

'#
Load " at time 

step #

…

…

Leaky ReLuSampling

…
Sample

… …

Joint State

Q-NetworkPolicy-Network

Q-Value

Action

State

256

256

…256

Leaky ReLu

Tanh

(	Dirichlet
concentration

Leaky ReLu

…
Leaky ReLu

256

256

256

Voltage 
and current 

measurements
Of Battery $

(#!$, %!$)

Figure 3.3: Overview of the neural network architectures.

3.5 Power allocation case study

To further evaluate the performance of the proposed method, we design a case study of multi-
battery system applications with the goal of prolonging their working cycles. We assume that
the power allocation can be controlled at the level of a single battery and that no cell balancing
is applied. We would like to emphasize that in this paper, we focus on the algorithm design for
the purpose of demonstrating its potential. Implementing this algorithm in real applications
would require a dedicated circuit design, which we leave for future work.

The information most commonly used in battery health-related analytics is the operat-
ing current and voltage measurements collected by standard battery management systems
(Richardson et al., 2018; Severson et al., 2019). In this case study, we aim to utilize only raw
measurements of current and voltage directly measured on the batteries (before the DC-DC
converter) and extend the capability of machine learning from descriptive and predictive an-
alytics to end-to-end prescriptive decision-making. To the best of our knowledge, this is the
first time an algorithm has been capable of directly performing the load allocation strategy
in an end-to-end manner (without any involvement of model-based state estimation).

The objective of the desired power allocation strategy is to prolong the working cycle of
the deployed multi-battery system. To achieve this, we formulate this problem as a Markov
decision process (MDP) and propose to solve it with Dirichlet policy reinforcement learning.

Every operation or maneuver of a multi-battery device will impose a power demand Pt on
the system. The RL-based strategy will prescribe an action at that dynamically allocates
the power demand Pt based on the observed state st. In our case, st is represented by the
real-time operational current and voltage of all the batteries in the system and the total
power demand, resulting in st = [Vt, It, Pt]. Then, the system’s state changes according to

43



3 End-to-End load allocation with reinforcement learning

Hyperparameters Value
Minibatch size 1024
Learning rate - Actor 1e-4
Learning rate - Critic 3e-4
Target entropy -

p
d

Target smoothing coe�cient(⌧) 0.005
Discount(�) 0.99
Updates per step 1

Table 3.1: SAC Hyperparameters

the allocation strategy and the system dynamics P. To achieve the objective of prolonging
the working cycle of the battery device, we provide a reward of rt = 1 to the agent at each
time step at which all the batteries in the system are still operational or the voltages are
all higher than the end-of-discharge (EoD) state. Given a discount factor �  1, an optimal
allocation strategy maximizes the expected discounted sum of future rewards, or return:

R⌧ = E[
infX

t=0

�tr(st, at)|s0 = s] (3.19)

where E indicates the expected value. Rs characterizes the long-term value of the allocation
strategy from an initial state s0 onwards.

Fig. 3.4 provides an overview of the Dirichlet power allocation framework. A: When
deploying the proposed strategy on any device with a multi-battery system – such as a
quadrotor, a robot, or an electric car – any maneuver induces a load demand. For every
maneuver, the trained strategy receives the incoming load demand with the real-time current-
voltage measurement. It distributes the power based only on the received information or
observation, without any online optimization. B: The proposed strategy is represented by a
neural network, which takes the measurements as input and outputs a weight combination
on how the load should be distributed to the individual batteries. The trained network
can dynamically allocate the power in an end-to-end way without any estimation of the
degradation state. With the input information of current and voltage measurements, it can
first implicitly learn the health of the batteries – such as SoC, SoH, or RUL – for decision-
making. With the proposed Dirichlet policy, which inherently satisfies the simplex constraint
of the allocation tasks, it can prescribe fine-grid allocation weights in a continuous manner and
can be trained more e�ciently and e↵ectively. C: In this paper, the objective is prolonging
the working cycle of the deployed multi-battery systems, a goal which could be changed in
other tasks according to di↵erent requirements.

3.5.1 Simulation environment

We train the allocation strategy in a simulation environment. The simulation environment
is a multiple Li-I battery system computational model from the NASA prognostic model
library (Daigle and Kulkarni, 2013). It captures the relevant electrochemical processes of the
discharge. For an individual battery, the state changes over time as a function of input load
and current system states are given by:

x(k + 1) = f(k, x(k), ✓(k), u(k)),

y(k + 1) = g(xt+1, ✓(k), , u(k), n(k)),
(3.20)

where k is a discrete time variable, x(k) 2 Rnx is a state vector, ✓(k) 2 Rn✓ is an unknown
parameter vector, u(k) 2 Rnu is the input vector, f is the state equation, y(k) 2 Rny is the

44



3 End-to-End load allocation with reinforcement learning

Figure 3.4: Overview of the power allocation for multi-battery systems.

output vector, and h is the output equation. For more details on the battery model, we refer
interested readers to the original paper (Daigle and Kulkarni, 2013).

During the discharge process, the load is allocated at the level of a single battery cell and
no load balancing is performed. This computational model serves as a reliable proxy for
actual battery dynamics and allows for fast iterations over the controller design. It is worth
mentioning that batteries generally have relatively complex working dynamics, which is also
a challenging case study by which to evaluate the general performance of a power allocation
strategy.

For training, we randomly sample battery states during operation as initial states s0 for
any new episode. The episode will be re-initialized when any of the batteries reaches the EoD
state.

3.5.2 Results

The proposed framework is evaluated with respect to three performance aspects: 1) Perfor-
mance is assessed on a battery system consisting of four Li-I cells. 2) Scalability is evaluated
on a battery system consisting of eight Li-I cells. 3) Transferablity is evaluated on a battery
system consisting of four second-life Li-I cells, where each of the batteries exhibits di↵erent
degradation dynamics. 4) We compare the learning performance to other state-of-the-art
reinforcement learning methods, 5) and also to heuristic strategies. We summarize the av-

erage improvement total steps(ours)-total steps(baseline)
total steps(baseline) over the baseline; see Table. 3.2. All the

performance metrics are averaged among 5000 di↵erent random initializations with random
load profiles.

Experiments Average improvement of the working cycle
four-battery system 15.2%
eight-battery system 31.9%
four-second-life-battery system 151.0%

Table 3.2: Average improvement

45



3 End-to-End load allocation with reinforcement learning

Figure 3.5: Discharge trajectories of a randomly selected test case: The y-axis represents the observed
operational voltage of the corresponding batteries. The x-axis represents the decision-making
steps.

Figure 3.6: Eight-battery system case result. A randomly selected set of discharge trajectories from the
test cases. The y-axis represents the observed operational voltage of the corresponding batteries,
while the x-axis represents the decision-making steps.

1) Performance evaluation on a four-Li-I-battery system. The trained strategy is tested
on 5000 di↵erent random initializations with random load profiles. Compared to the baseline
strategy (distributing the power equally between all batteries), the proposed framework pro-
longs the working cycle by 15.2% on average. We can observe that the single batteries were
controlled by the RL algorithm in such a way that they tended to reach the EoD state at
approximately the same time (Fig. 3.5). This is an indication of near-optimal performance.
The proposed strategy also demonstrates a relatively smooth allocation profile (Fig. 3.5).

2) Scalability evaluation on an eight-Li-I battery system. Scalability is an essential re-
quirement for power allocation approaches since di↵erent assets will have di↵erent numbers
of configurations. Previous RL approaches discretize the action and state spaces, defining
di↵erent weight combinations (Xiong et al., 2018; Maia et al., 2020), which needs to redesign
the action space when scaling up the system size. We present the proposed approach on an
eight-battery system, following the same setup as for the system with four batteries, and
show good scalability. Since more batteries provide more flexibility, the proposed RL frame-
work again displays superior performance as compared to the baseline. The performance
improvement is significantly higher when compared to the four-battery case study: Over all
the test cases, the lifetime can be extended by 31.9% on average in comparison to the base-
line. Similar properties can be observed as in the four-battery case: The batteries can reach
the EoD state nearly simultaneously (Fig. 3.6), indicating a near-optimal allocation perfor-
mance. The discharge curves are partly influenced by the allocation strategy. The oscillation
represents the changing weights for the load allocated to each of the batteries. We observed

46



3 End-to-End load allocation with reinforcement learning

on the performed experiments that the RL policy appears to prefer frequently changing the
weights between the di↵erent batteries to prolong the working cycle. The investigation of
this behavior and the improvement of the interpretability will inform our future work.

Figure 3.7: Second-life battery system case result. The y-axis represents the observed operational voltage
of the corresponding batteries, while the x-axis represents the decision-making steps.

3) Transferablity evaluation based on a four-second-life Li-I battery system. In this re-
search, to evaluate the transferability of the proposed approach to systems with di↵erent
degradation dynamics (Chao et al., 2022), we consider batteries in second-life applications
(Peterson et al., 2010; Hu et al., 2020; Fink et al., 2020). Even under the same state ini-
tialization and same load profile, second-life batteries with dissimilar degradation dynamics
will reach the EoD state much earlier. In Fig. 3.7, A presents the voltage trajectories of
four batteries. From battery 1 to 4, the degradation becomes more notable. Even under the
same initialization and same load profile, the discharge curve changes significantly. B is a
randomly chosen trajectory. The policy could significantly prolong the working cycle of the
deployed second-life battery cases.

For this evaluation, we keep all settings similar to those from the previous two experiments.
On average, the proposed approach achieves a 151.0% improvement as compared to the equal
load distribution.

The proposed approach demonstrates even more potential in systems with di↵erent power
source dynamics or degraded assets.

Figure 3.8: Learning performance and reproducibility, where the shaded areas show the standard devi-
ation confidence intervals over three random seeds. The x-axis indicates the total time steps. The
y-axis indicates the test return.

4) Learning performance compared to the state of the art (SOTA). To further evaluate the
performance and reproducibility of the results of the proposed Dirichlet policy, we compare
it to two alternative RL algorithms: the original SAC (Haarnoja et al., 2018a), one of the
state-of-the art reinforcement learning algorithms, and the deep deterministic policy gradient
(DDPG) (Lillicrap et al., 2015). We train all the agents over three di↵erent seeds on the four-
battery case study. As shown in Fig. 3.8, we observe that the proposed Dirichlet-SAC (DSAC)

47



3 End-to-End load allocation with reinforcement learning

exhibits considerable reproducibility along with superior performance and convergence speed
compared to the original SAC and the DDPG.

5) Comparison to heuristic strategies To the best of our knowledge, there are no optimization-
based approaches allowing solely on voltage-current measurements. We perform this compar-
ison for the sake of completeness of the evaluations. We would also like to emphasize that this
is not a fair comparison. Since we would like to prolong the time to the EoD state, we define
four heuristic strategies based on the operation voltage. We compare the average relative
performance working cycle

baseline working cycle to the baseline among 5000 di↵erent random initializations
with random load profiles. However, these strategies actually yield inferior performance as
compared to the baseline, see Table. 3.3.

Approaches Weights Relative Performance
Rule I [0.15, 0.25, 0.25, 0.35] 0.758
Rule II [0.1, 0.2, 0.3, 0.4] 0.279
Rule III [0.1, 0.2, 0.2, 0.5] 0.076
Rule IV [0.05, 0.2, 0.35, 0.45] 0.120
Proposed method Learned 1.152

Table 3.3: Performance comparison to heuristic rules

The weights in the Table. 3.3 means to distribute the weighted load to the batteries with
voltages from low to high, respectively.

3.6 Conclusion

In this work, a novel prescriptive Dirichlet policy reinforcement learning framework is pro-
posed for continuous allocation tasks. The proposed method overcomes the bias estimation
and large variance problems in policy gradient and can be applied to any general real-world
allocation task. It is also compatible with all other continuous control reinforcement learning
algorithms with stochastic policies. In addition, for a specific real-world prescriptive opera-
tion task, the power allocation task, we introduce the Dirichlet power allocation policy, which
presents an e↵ective and data-based prescriptive framework that is fully autonomous, flex-
ible, transferable, and scalable. The developed framework has the potential to improve the
e�ciency and sustainability of multi-power source systems. To the best of our knowledge,
it is also the first framework that enables distribution of the load in an end-to-end learning
setup, without any additional inputs of, e.g., SoC estimation. In future work, we aim to ap-
ply and deploy the proposed framework to more challenging and extensive real-world power
allocation tasks and extend it for larger problems in order to evaluate its limitations.

Acknowledgement

This work was supported by the Swiss National Science Foundation under Grant PP00P2 176878.

48



4 Multi-agent coordination in mixed cooperative-competitive
environments

This chapter corresponds to the published article:1

Tian, Yuan, Klaus-Rudolf Kladny, Qin Wang, Zhiwu Huang, and Olga Fink (2023). “Multi-
agent actor-critic with time dynamical opponent model”. In: Neurocomputing 517,
pp. 165–172.

Abstract:In multi-agent reinforcement learning, multiple agents learn simul-
taneously while interacting with a common environment and each other. Since
the agents adapt their policies during learning, not only the behavior of a sin-
gle agent becomes non-stationary, but also the environment as perceived by the
agent. This renders it particularly challenging to perform policy improvement.
In this paper, we propose to exploit the fact that the agents seek to improve their
expected cumulative reward and introduce a novel Time Dynamical Opponent
Model (TDOM) to encode the knowledge that the opponent policies tend to im-
prove over time. We motivate TDOM theoretically by deriving a lower bound
of the log objective of an individual agent and further propose Multi-Agent
Actor-Critic with Time Dynamical Opponent Model (TDOM-AC). We evaluate
the proposed TDOM-AC on a di↵erential game and the Multi-agent Particle
Environment. We show empirically that TDOM achieves superior opponent be-
havior prediction during test time. The proposed TDOM-AC methodology out-
performs state-of-the-art Actor-Critic methods on the performed experiments
in cooperative and especially in mixed cooperative-competitive environments.
TDOM-AC results in a more stable training and a faster convergence. Our
code is available at https://github.com/Yuantian013/TDOM-AC

4.1 Introduction

Multi-agent systems have recently found applications in many di↵erent domains, including
tra�c control (Du et al., 2021), games (Vinyals et al., 2019; Brown and Sandholm, 2019;
OpenAI, 2018), consensus tracking control (Yin et al., 2022; Yuan et al., 2022) and swarm
control (Hüttenrauch et al., 2019). The complexity of the tasks in these applications often
precludes the usage of predefined agent behaviors and stipulates the agents to learn a pol-
icy, and to define the problem as multi-agent reinforcement learning (MARL). In such cases,
multiple agents learn simultaneously while interacting with a common environment. Since
the agents adapt their policies during learning, not only the behavior of a single agent be-
comes non-stationary, but also the environment as perceived by the agents (Hernandez-Leal
et al., 2017). Since most of the conventional Reinforcement Learning (RL) approaches as-
sume stationary system dynamics (Sutton et al., 1992), they usually perform poorly when
required to interact with multiple adaptive agents in a shared environment (Lowe et al., 2017;
Hernandez-Leal et al., 2017).

A common approach in MARL is to explicitly consider the presence of opponents by mod-
eling their policies using an opponent model (Brown, 1951; Tian et al., 2019) (In the fol-

1Please note, this is the author’s version of the manuscript published in Neurocomputing 517 (2023):
165-172.. Changes resulting from the publishing process, namely editing, corrections, final formatting for
printed or online publication, and other modifications resulting from quality control procedures may have been
subsequently added. The final publication is available at https://doi.org/10.1016/j.neucom.2022.10.045.

49

https://github.com/Yuantian013/TDOM-AC
https://doi.org/10.1016/j.neucom.2022.10.045


4 Multi-agent coordination in mixed cooperative-competitive environments

lowing, the word ”opponents” refers to other agents in an environment irrespective of the
environment’s cooperative or adversarial nature). An accurate opponent model can provide
informative cues to future behaviors of the opponents. However, such a precise prediction is
challenging as the opponents’ policies are changing over time (Tian et al., 2019).

In our novel approach, entitled Time Dynamical Opponent Model (TDOM), we aim to
address the challenge of non-stationarity of the agent’s behavior by modeling the opponent
policy parameters as a dynamical system which are generally used to model the evolution of
systems in time (Strogatz, 2018). Here, we build the system dynamics on the prior knowledge
that all agents are concurrently trying to improve their policies with respect to their individual
cumulative reward. It is worth mentioning that TDOM is highly general and can further
support all kinds of opponent objectives, i.e. cooperative, competitive or mixed settings.

By deriving a lower bound on the log-objective of an individual agent, we further propose
a Multi-agent Actor-Critic with Time Dynamical Opponent Model (TDOM-AC) for mixed
cooperative-competitive tasks. The proposed TDOM-AC framework comprises a Centralized
Training and Decentralized Execution (CTDE), see Fig 4.1. In this framework, centralized
critics provide additional information to guide the training (Foerster et al., 2016; Lowe et al.,
2017). However, this information is not used at execution time. Each agent only has access
to the state information and can only select an action based on its own prediction of other
opponents’ actions.

Figure 4.1: An overview of the proposed framework, where i indicates to one of the agents and �i refers to
other agent(s). In the proposed framework, the decision making process is fully decentralized, each
agent only observes the state s, and then infers the opponent behavior(s) â�i via its own opponent
model �i(s). Based the state and predicted opponent behavior(s), the agent selects the action ai

via its policy ⇡i(s, â�i).

We evaluate the proposed TDOM-AC on a Di↵erential Game and a Multi-agent Particle
Environment and compare the performance to two state-of-the-art actor-critic algorithms,
namely Regularized Opponent Model with Maximum Entropy Objective (ROMMEO) (Tian
et al., 2019) and Probabilistic Recursive Reasoning (PR2) (Wen et al., 2019). We demon-
strate empirically that the proposed TDOM algorithm achieves superior opponent behavior
prediction during execution time. The proposed TDOM-AC outperforms the considered base-
lines on the performed experiments and considered measures. TDOM-AC results in a more
stable training, faster convergence and especially a superior performance in mixed
cooperative-competitive environments.

The remainder of this paper is organized as follows: Section 4.2 provides a brief overview
of the related works of this study. Section 4.3 and 4.4 introduces the proposed opponent
model and TDOM-AC. Section 4.5 interprets and compares the results of the experiments.
In Section 4.6, the conclusion and future work are presented.

50



4 Multi-agent coordination in mixed cooperative-competitive environments

4.2 Related work

Multi-Agent systems (MAS) encompass decision-making of multiple agents interacting in a
shared environment (Kamdar et al., 2018). For complex tasks where using predefined agent
behaviors is not possible, MARL enables the agent to learn from the interaction with the
environment (Zhang et al., 2021a). One of the main challenges in MARL is the inherent non-
stationarity. To address this challenge, one direction has been to account for the behaviors of
other agents through a centralized critic by adopting the CTDE framework (Foerster et al.,
2018; Yang et al., 2018c). For value-based approaches in the CTDE framework, methods
usually rely on restrictive structural constraints or network architectures, such as QDPP
(Yang et al., 2020), QMIX (Rashid et al., 2018), FOP (Zhang et al., 2021c), QTRAN (Son et
al., 2019), and VDN (Sunehag et al., 2017). For actor-critic based methods, these approaches
usually include an additional policy with supplementary opponent models that can reason
about other agents’ believes (Wen et al., 2019), private information (Tian et al., 2020b),
behavior (Lowe et al., 2017), strategy (Zheng et al., 2018) and other characteristics. With
the supplementary opponent models, these works can also be linked to the field of opponent
modeling (OM) (Albrecht and Stone, 2018; Brown, 1951).

There are several ways to model the behavior of opponents. One of them is to factor-
ize the joint policy ⇡(a�i,a�i

|s) in di↵erent ways. This has been done in previous works
(Brown, 1951; Tian et al., 2019; Wen et al., 2019). Also, di↵erent objective functions for the
opponent model have been implemented. Multi-agent Deep Deterministic Policy Gradient
(MADDPG) (Lowe et al., 2017) approximates opponents’ policy by maximizing the log prob-
ability of other agents’ actions with an entropy regularizer; PR2 (Wen et al., 2019) considers
an optimization-based approximation to infer the unobservable opponent policy via varia-
tional inference (Jordan et al., 1999) and ROMMEO adopts the regularized opponent model
with maximum entropy objective, which can be interpreted as a combination of MADDPG
and PR2. However, the existing approaches either su↵er from high computational cost due
to the recursive reasoning policy gradient (Wen et al., 2019), or are limited to specific types
of environments (Tian et al., 2019). In this work, we propose an alternative opponent model
motivated by a temporal improvement assumption to overcome these limitations.

An earlier approach that explicitly addresses opponent-learning awareness is Learning with
Opponent Learning Awareness (LOLA) (Foerster et al., 2017). When performing the policy
update, any agent optimises its return under a one-step-look-ahead of the opponent learning.
However, it is limited by strong assumptions. Specifically, these subsume access to both
exact gradients and Hessians of the value function. Furthermore, a specific network design is
required. Although the authors have subsequently proposed a variant of their approach, the
policy gradient-based naive learner (NL-PG) with fewer assumptions, the intrinsic on-policy
design inherently su↵ers from data ine�ciency. Also, LOLA only supports two-agent systems,
while we are considering approaches that allow for arbitrarily many agents.

4.3 Method

4.3.1 Assumptions

In this work, we aim to tackle the mentioned limitations outlined in Section 4.2. For fair
comparison, we adopt the same observability assumptions from previous work (Wen et al.,
2019; Tian et al., 2019; Lowe et al., 2017). Since in cooperative games all the agents receive
the same reward and in zero-sum games the opponents’ rewards can easily be inferred from
ones own reward, we assume all agents can access each other’s rewards, just like in LOLA
(Foerster et al., 2017). In contrast to vanilla LOLA, we do not make the assumption of the
observability of opponent policies.

51



4 Multi-agent coordination in mixed cooperative-competitive environments

4.3.2 Markov game

An N-agents Markov game (Littman, 1994), also referred to as N-agents stochastic game
(Shapley, 1953), is defined by a tuple (S,A1...An, r1...rn, p, T , �), where S is the state space,
and A

i is the action space. At time step t, agent i chooses its action ait 2 A
i according to the

policy conditioning on the observed state st 2 S. And rit 2 R is the corresponding rewards
assigned to agent i, which is obtained from the pre-defined reward function rit = rit(st, a

i
t,a

�i
t ),

where the a�i
t refers to the set of opponent actions. T : S ⇥ A ! S is the state transition

function, p is the initial state distribution and � is the discount factor. At each time step t,
actions are taken simultaneously by all agents. Each agent aims to maximize its own expected
discounted sum of rewards. Thus, for each individual agent i, the objective for its policy ⇡i
can be expressed as:

J(⇡i) = max⇡i

1X

t=0

E[�tri(st, ait,a�i
t )] (4.1)

We note that since multiple adaptive agents interact in a shared environment, each agent’s
rewards and the environment transitions depend also on the actions of the opponents (Hernandez-
Leal et al., 2017). Thus, the unobservable dynamic policies of the opponents induce non-
stationarity in the environment dynamics from the perspective of a single agent. To address
this challenge, we propose to consider the agent policy parameters as a dynamical system in
which we encode the prior knowledge that all agents are concurrently trying to improve their
policies.

4.3.3 Time dynamical opponent model

To introduce our methodology, we begin by deriving a lower bound for the maximization
objective in Equation 4.1, in which we omit some of the parameterization notation for less
cluttering:

max⇡i, ⇢iEait⇠⇡i(·|â�i
t ), â�i

t ⇠⇢i, a�i
t ⇠⇡̃�i

⇥
Qi(st, a

i
t,a

�i
t )

⇤
, (4.2)

where for lighter notation we omit the st ⇠ d⇡, which means sampling a state from the dis-
counted state visitation distribution d⇡ using current policies ⇡ := {⇡j}j , where ⇡j(·|a�j , s).
⇢i(·|s) refers to the belief of agent i about opponents �i, also known as opponent model.
Furthermore, we define ⇡̃j(·|s) to be

⇡̃j(aj |s) :=

Z

A�j
⇡j(aj |a�j , s) ⇢j(a�j

|s) da�j , (4.3)

which can be interpreted as the marginal policy of agent j. Then we can formulate the
marginal opponent policies to be ⇡̃�i := {⇡̃j}j2�i

The presented maximization objective means that agent i aims to maximize its Q-function
given that all agents play their current policies ⇡̃�i

t which are unknown to agent i.
We can now derive a lower bound of the log objective of agent i:

52



4 Multi-agent coordination in mixed cooperative-competitive environments

log Eait⇠⇡i
t(·|â

�i
t ), â�i

t ⇠⇢it, a
�i
t ⇠⇡̃�i

t

⇥
Qi(st, a

i
t, a

�i
t )

⇤

= log

Z

Ai

Z

A�i

Z

A�i
Qi(st, a

i
t,a

�i
t ) ⇡̃�i

t (a�i
t |st) ⇢

i
t(â

�i
t |st) ⇡

i
t(a

i
t|â

�i
t , st)

dâ�i
t da�i

t dait

= log

Z

Ai

Z

A�i

Z

A�i
Qi(st, a

i
t,a

�i
t )

⇡̃�i
t (a�i

t |st)

⇢it(a
�i
t |st)

⇢it(a
�i
t |st) ⇢

i
t(â

�i
t |st)

⇡it(a
i
t|â

�i
t , st) dâ

�i
t da�i

t dait

� Eait⇠⇡i
t(·|â

�i
t ), â�i

t ⇠⇢it, a
�i
t ⇠⇢it

"
log Qi(st, a

i
t,a

�i
t ) + log

✓
⇡̃�i(a�i

t |st)

⇢it(a
�i
t |st)

◆#

= Eait⇠⇡̃i
t, a

�i
t ⇠⇢it

⇥
log Qi(st, a

i
t,a

�i
t )

⇤
� KL

�
⇢it(·|st) || ⇡̃

�i
t (·|st)

�
.

(4.4)

If we furthermore make the assumption that:

Qopt = maxai Q
i(st, a

i,a�i) 8a�i
2 A

�i, (4.5)

for some fixed Qopt, we see that we can maximize this lower bound by minimizing the
Kullback-Leibler Divergence KL

�
⇢it(·|s) || ⇡̃

�i
t (·|st)

�
w.r.t. ⇢it and then maximizing the Q-

function w.r.t. ⇡it:

max⇡i
t
Eait⇠⇡i

t(·|a
�i
t ), a�i

t ⇠⇢it

⇥
Qi(st, a

i
t,a

�i
t )

⇤
. (4.6)

However, the method proposed above has an obvious issue: How can we minimize KL
�
⇢it(·|s) || ⇡̃

�i
t (·|st)

�

if ⇡̃�i
t is not available to agent i?
In order to address this question, we propose to utilize prior information about the op-

ponents’ learning process. Using this information would enable to better model their non-
stationary behavior. Specifically, there exists one aspect that to the best of our knowledge
has not been considered before in opponent modelling: Over time, each agent j is expected
to improve its policy using policy network parameters ✓jt

2 in order to maximize its expected
cumulative reward under the given system dynamics and opponent policies. This can be
expressed as an ordinary di↵erential equation (ODE):

d

dt
✓jt ⇡ r✓j E⇡j

✓t
, ⇡�j

t

" 1X

t=0

�t rjt (a
j
t , a

�j
t , st)

#

= r✓j E⇡j
✓, ⇡

�j
t

h
Qj(ajt , a

�j
t , st)

i
,

(4.7)

where ⇡�j := {⇡k}k2�j .
We propose to encode this knowledge in the opponent model design. We would like to make

explicit here that unlike in policy improvement, the opponent model is designed to simulate
the policy optimization process for all opponents instead of maximizing their expected Q-
value. It is worth to point out that unlike LOLA (Foerster et al., 2017) which considers
the opponent’s policy update to optimize the agent’s policy, our agent takes the opponents’

2When parameterizing a function for agent j, we will always write e.g. ⇡j
✓ instead of ⇡j

✓j
.

53



4 Multi-agent coordination in mixed cooperative-competitive environments

policy improvement assumption into account to optimize its opponent model instead of the
policy directly.

In order to minimize KL
�
⇢i(·|s) || ⇡̃�i(·|st)

�
, we exploit the temporal improvement assump-

tion for discrete time dynamics, parameterized by ✓�i:

✓�i
t ⇡ ✓�i

t�1 + ⌘r✓�i E⇡̃i
t�1, ⇡̃

�i
✓

⇥
Q�i(ai, a�i, s)

⇤
, (4.8)

for some ⌘ > 0. However, the opponent model cannot be updated like this since neither ⇡̃�i
✓t

nor ✓�i
t are directly available to agent i. Hence, we take our best approximation ⇢i t

which is

our opponent model which is parameterized by  i
t and update as

 i
t   i

t�1 + ⌘r i Eai⇠⇡̃i
t�1, a

�i⇠⇢
 i
t

⇥
Q�i(ai, a�i, s)

⇤
. (4.9)

We point out that the Q mentioned above can represent any type of critic function, such
as Q-function, soft Q-function or advantage function.

To summarize, firstly, we derive a learning objective for agent i’s policy ⇡i. We show
that a proper opponent model can alleviate the non-stationarity problem of policy update
in MARL. With an accurate opponent prediction, each agent can access to a more reliable
Q estimation, which provides a better guidance for its own policy update and further allows
the agent become to a better collaborator or stronger adversary to influence other agents in
cooperative and competitive setting respectively. Secondly, we propose a novel approach to
exploit the temporal improvement assumption to guide the opponent model evolution.

4.4 Multi-Agent Actor-Critic with time dynamical opponent model
(TDOM-AC)

With the proposed TDOM, we introduce Multi-Agent Actor-Critic with Time Dynamical
Opponent Model (TDOM-AC). TDOM-AC follows the CTDE framework (Foerster et al.,
2016; Lowe et al., 2017). There are three main modules in the proposed TDOM-AC: Central-
ized Q-function Q(s, ai,a�i), opponent model ⇢(·|s) and policy ⇡(·|s, â�i). We further use
neural networks (NNs) as function approximators, particularly applicable in high-dimensional
and/or continuous multi-agent tasks. For an individual agent, i, the three modules are param-
eterized by �i, ✓i and  i, respectively. The functions are updated using stochastic gradient
based optimization with learning rates ⌘·:

�it+1  �it + ⌘�r̂�iJ(�
i
t)

✓it+1  ✓it + ⌘✓r̂✓iJ(✓
i
t)

(4.10)

and as elucidated in subsection 4.3.3,

 i
t+1   i

t + ⌘ r̂ iJ( i
t). (4.11)

We would like to clarify that although Equations 4.10 and 4.11 perform similar opera-
tions, their underlying idea is di↵erent. We can interpret Equation 4.10 as an approximation
of a policy improvement and evaluation step without running it until convergence. How-
ever, Equation 4.11 does not follow this idea. Instead, this update is based on the temporal
improvement assumption with the underlying goal of minimizing the Kullback-Leibler diver-
gence to the true marginal opponent policies ⇡̃�i instead of policy improvement.

In the proposed TDOM-AC, experience replay bu↵er D is used (Mnih et al., 2015), where
the o↵-policy experiences of all agents are recorded. In a scenario with N agents, at time
step t, a tuple [st, st+1, a1t , ..., a

N
t , r1t , ..., r

N
t ] is recorded.

54



4 Multi-agent coordination in mixed cooperative-competitive environments

We adopt the maximum entropy reinforcement learning (MERL) framework (Haarnoja
et al., 2018a) to enable a richer exploration and a better learning stability. It is easy to
see that the derivation still holds. We merely omit the adjustments in the previous sections
for the purpose of readability. The centralized soft Q-function parameters can be trained to
minimize the soft Bellman residual:

J(�i) = E(st,at,a
�i
t ,st+1)⇠D

1

2
[Qi

�(st, at,a
�i
t )� (rit + �V (st+1))]

2, (4.12)

where the value function V is implicitly parameterized by the soft Q-function (Haarnoja et
al., 2018a) parameters. The objective function becomes:

J(�i) = � E(st,at,st+1)⇠D, â�i
t+1⇠⇢i , â

i
t+1⇠⇡i

✓

h⇣
Qi
�(st, a

i
t,a

�i
t )�

�
ri(st, a

i
t,a

�i
t )

+ �
�
Qi
�
(st+1, â

i
t+1, â

�i
t+1)� ↵ log ⇡i(âit+1|st+1, â

�i
t+1)

� ↵ log ⇢i (â
�i
t+1|st+1)

��⌘2i
.

(4.13)

The Qi
�
is the target soft Q-network that has the same structure as Qi and is parameterized

by �i, but updated through exponentially moving average of the soft Q-function weights
(Mnih et al., 2015).

According to the MERL objective, the TDOM-based policy is learned by directly minimiz-
ing the expected KL-divergence between normalized centralized soft Q-function:

J(✓i) = Es⇠D, â�i
t+1⇠⇢i 

[Qi
�(s, a

i, â�i)� ↵ log ⇡i✓(a
i
|s, â�i)], (4.14)

where ↵ is the temperature parameter that determines the relative importance of the entropy
term versus the reward, thus controls the stochasticity of the optimal policy. In order to
achieve a low variance estimator of J(✓i), we apply the reparameterization trick (Kingma
and Welling, 2014) for modeling the policy:

ait = f i
✓(✏; s,a

�i), (4.15)

where ✏t is a noise vector that is sampled from a fixed distribution. A common choice is a
Gaussian distribution N . We can now rewrite the objective in Equation 4.14 as

J(✓i) = Es⇠D, â�i
t+1⇠⇢i , ✏⇠N [Qi(s, f i

✓(✏; s,a
�i),a�i)

� ↵ log ⇡i✓(f
i
✓(✏; s,a

�i)|s,a�i)].
(4.16)

Let Q�i(s, ai, â�i) :=
P

j2�iQ
j
�(s, a

i, â�i). Then, according to Equation 4.9, the objec-
tive for the TDOM model can be written as

J( i) = Es⇠D, â�i⇠⇢i , ai⇠⇡
i
✓
[Q�i(s, ai, â�i)� ↵ log ⇢i (â

�i
|s)]. (4.17)

However, in mixed cooperative-competitive environments, agents may have conflicting inter-
ests which can neutralize the gradient in this formulation. We illustrate this by an example
of a two-player zero-sum Markov game:

r1(s, a1, a2) = �r2(s, a1, a2), 8s 2 S, (a1, a2) 2 A
2. (4.18)

The Q-function approximations Q1
� and Q2

� for agent 1 and agent 2 respectively, have con-

verged to their true functions Q1
⇡1
✓ ,⇡

2
✓
and Q2

⇡1
✓ ,⇡

2
✓
.

Theorem 1. In this setting, the gradient r iJ( i) is exclusively determined by entropy
terms.

55



4 Multi-agent coordination in mixed cooperative-competitive environments

Proof. With p(⌧) denoting the trajectory distribution, observe that the structure of the true
Q1
⇡1
✓ ,⇡

2
✓
is:

Q1
⇡1
✓ ,⇡

2
✓
(s0, a

1
0, a

2
0)

, r1(s0, a
1
0, a

2
0) + Es⇠p(s1|a10,a20)

⇣
�V 1

⇡1
✓ ,⇡

2
✓
(s1)

⌘

, r1(s0, a
1
0, a

2
0) + E⌧⇠p(⌧)

" 1X

t=1

�t
⇣
r1t (st, a

1
t , a

2
t )H(⇡1✓(a

1
t |st, a

2
t )⇢

1
 (a

2
t |st))

⌘#

= � r2(s0, a
1
0, a

2
0)� E⌧⇠p(⌧)

" 1X

t=1

�t
⇣
r2t (st, a

1
t , a

2
t ) +H(⇡1✓(a

1
t |st, a

2
t )⇢

1
 (a

2
t |st))

⌘#

=

✓ 1X

t=1

�tH(⇡2✓(a
2
t |st, a

1
t )⇢

2
 (a

1
t |st))� �

t
H(⇡1✓(a

1
t |st, a

2
t )⇢

1
 (a

2
t |st))

◆

�Q2
⇡1
✓ ,⇡

2
✓
(s0, a

1
0, a

2
0),

(4.19)

where H(·) denotes Shannon entropy. For lighter notation, let

E =

✓ 1X

t=1

�tH(⇡2(a2t |st, a
1
t )⇢

2
 (a

1
t |st))� �

t
H(⇡1(a1t |st, a

2
t )⇢

1
 (a

2
t |st))

◆
. (4.20)

Then, we can determine the gradient as:

r iJ( i) = E⌧⇠p, ✏⇠N
⇥
r iQ2

⇡1,⇡2(s0, f
i
 (✏; s0))�r iQ2

⇡1,⇡2(s0, f
i
 (✏; s0))

+r iE � ↵r i log(⇢i (f
i
 (✏; s0)|s0)

�⇤

= E⌧⇠p, ✏⇠N
⇥
r iE � ↵r i log(⇢i (f

i
 (✏; s0)|s0)

�⇤

= E⌧⇠p
⇥
r iE + ↵r iH(⇢i (·, ·|s0)

�⇤
.

(4.21)

To alleviate the potential issue of neutralized gradients, we propose to modify the TDOM
objective to be based on empirical data. Specifically, we modify the objective function as

J( i) = E(s,a�j)⇠D, âj⇠⇢i 

h X

j2�i

Qj
�

⇣
s, âj ,a�i\{j}, ai

⌘
� ↵ log ⇢j (â

�j
|s)

i
. (4.22)

Note that again we use the reparameterization trick (Haarnoja et al., 2018a) in order to be
able to exchange expectation and gradient, while still sampling from the opponent model ⇢i .
The pseudo-code can be found below 2.

4.5 Experiments

We compare the proposed TDOM-AC to two state-of-the-art algorithms based on opponent
modelling: PR2 (Wen et al., 2019) and ROMMEO (Tian et al., 2019), which have shown a
better performance with respect to the considered measures compared to Multi-Agent Soft
Q-Learning MASQL (Wei et al., 2018) and MADDPG (Lowe et al., 2017) in previous studies.
We evaluate the performance of the proposed TDOM-AC methods on a di↵erential game (Wei
et al., 2018; Wen et al., 2019; Tian et al., 2019) and the multi-agent particle environments
(Lowe et al., 2017). Those tasks contain fully cooperative and mixed cooperative-competitive
objectives with challenging non-trivial equilibria (Wen et al., 2019) and continuous action
space. All the experiments are adopted from PR2 and ROMMEO for adequate comparison.

56



4 Multi-agent coordination in mixed cooperative-competitive environments

Initialize replay bu↵er D and randomly initialize N soft Q networks Q1..n
�i..n

, N policy

networks ⇡1..n✓1..n
, and opponent model ⇢1..n 1..n

with parameters �i..n, ✓1..n and  1..n.

Initialize the parameters of target networks with Q1..n
�1..n

for each iteration do
Sample s0 according to p0(·)
while Not done do
for each agent do
Sample â�i

t from ⇢i(·|st) and ait from ⇡i(·|st, â
�i
t )

Combine the true actions at = [a1t , ..., a
n
t ] and take one step forward

end for
Observe st+1, rt = [r1t , ..., r

n
t ] and store (st,at, rt, st+1) in D

Sample minibatches of N transitions from D
for each agent do
Estimate policy gradient according to Equations 4.13,4.16, and 4.22:

�it+1  �it + ⌘�r̂�iJ(�
i
t)

✓it+1  ✓it + ⌘✓r̂✓iJ(✓
i
t)

 i
t+1   i

t + ⌘ r̂ iJ( i
t).

Update the parameters of target networks Q1..n
�1..n

end for
end while

end for
Algorithm 2: Multi-agent Actor-Critic with Time Dynamical Opponent Model (TDOM-
AC)

57



4 Multi-agent coordination in mixed cooperative-competitive environments

To reduce the performance di↵erence caused solely by entropy regularization, we add an
entropy term to the PR2 objective and equip it with a stochastic policy since both TDOM-
AC and ROMMEO employ the maximum entropy reinforcement learning framework. This
has been shown to yield better exploration and sample e�ciency (Haarnoja et al., 2018a).

For the experiment settings, all policies and opponent models use a fully connected multi-
layer perceptron (MLP) with two hidden layers of 256 units each, outputting the mean µ and
standard deviation � of a univariate Gaussian distribution. All hidden layers use the leaky-
RelU activation function and we adopt the same invertible squashing function technique as
(Haarnoja et al., 2018a) for the output layer. For the Q-network, we use a fully-connected
MLP with two hidden layers of 256 units with leaky-Relu activation function, outputting the
Q-value. We employ the Adam optimizer with the learning rate 3e � 4 and batch size 256.
The target smoothing coe�cient ⌧ , entropy control parameter ↵ and the discount factor �
are 0.01, 1, and 0.95 respectively. All training hyper-parameters are derived from the SAC
algorithm (as published in (Haarnoja et al., 2018a)) without any additional adaptations.

4.5.1 Di↵erential game

The di↵erential Max-of-Two Quadratic Game is a single step continuous action space decision
making task, where the gradient update tends to direct the training agent to a sub-optimal
point (Tian et al., 2019). The reward surface is displayed in the Fig 4.2. There exists
a local maximum 0 at (�5,�5) and a global maximum 10 at (5, 5), with a deep valley
positioned in the middle. The agents are rewarded by their joint actions, following the rule:
r1 = r2 = max(f1, f2), where f1 = 0.8⇤[�(a1+5

3 )2�(a2+5
3 )2] and f1 = [�(a1�5

1 )2�(a2�5
1 )2]+10.

Both of the agents have the same continuous action space in the range [�10, 10]. Compared

Figure 4.2: Reward surface and learning path of agents trained by TDOM-AC. Scattered points are actions
taken at each step, the lighter points are sampled later during training.

to other state-of-the art approaches, TDOM-AC shows a superior performance. In Fig. 4.3,
the learning path of the proposed TDOM-AC is displayed, where the lighter (yellow) dots

58



4 Multi-agent coordination in mixed cooperative-competitive environments

Methods TDOM-AC ROMMEO PR2
Running time 0.068s 0.089s 0.436s

Table 4.1: Average running time (seconds) per update of di↵erent methods

are sampled later. This indicates a stable and fast convergence. In Fig. 4.3, the learning
curves of all considered algorithms are displayed. Both TDOM-AC and ROMMEO show a
fast and stable convergence. However, ROMMEO fails for some random seeds, resulting in
a lower average performance. We note that the maximum-entropy version of PR2 indeed
converges faster than the original version (Wen et al., 2019). Nevertheless, the learning
process fluctuates significantly and it su↵ers from substantial computational cost, see Table
4.1.

Figure 4.3: Average performance of TDOM-AC and other baselines, where the shaded areas show the 1-SD
confidence intervals over multiple random seeds

4.5.2 Cooperative navigation

Cooperative Navigation is a three-agent fully cooperative task. The three agents should learn
to cooperate to reach and cover three randomly generated landmarks. The agents can observe
the relative positions of other agents and landmarks and are collectively rewarded based on
the proximity of any agent to each landmark. Besides this, the agents are being penalized
when colliding with each other. The expected behavior is to ”cover” the three landmarks as
fast as possible without any collision. The result shows that TDOM-AC outperforms all other
considered baseline algorithms in terms of both faster convergence and a better performance,
see Fig 4.4. Also, the TDOM-AC attains more accurate opponent behavior prediction, despite
the fact that the agents do not have direct access to any opponent action distribution, see
Fig 4.5. This is in contrast to ROMMEO, which utilizes a regularized opponent model,
the regularization being the KL divergence between the opponent model and the empirical
opponent distribution.

59



4 Multi-agent coordination in mixed cooperative-competitive environments

Figure 4.4: Moving average of total reward of TDOM-AC and other baselines on Cooperative Navigation.

Figure 4.5: The test time opponents’ behaviors prediction error of TDOM-AC and other baselines

60



4 Multi-agent coordination in mixed cooperative-competitive environments

4.5.3 Predator and prey

Predator and Prey is a challenging four-agent mixed cooperative-competitive task. There are
three slower cooperating adversaries that try to chase the faster agent in a randomly generated
environment with two large landmarks impeding the way. The cooperative adversaries are
rewarded for every collision with the agent, while the agent is being penalized for any such
collision. All agents can observe the relative positions and velocities of other agents and the
positions of the landmarks.

For this task, we train all the algorithms for 0.6M steps and compare the normalized average
episode advantage score (the sum of agent’s rewards in an episode - the sum of adversaries’
rewards in an episode (Wen et al., 2019; Lowe et al., 2017). We evaluate the performance
of the di↵erent algorithms by letting the cooperative adversaries trained by one algorithm
play against an agent trained by another algorithm and vice versa. A higher score means
the agent (prey) performs better than the cooperative adversaries (predators), while a lower
score means that the cooperative adversaries have a superior policy over the agent. Table 4.2
shows that the TDOM-AC performs best on both prey (0.999) and predator (0.547) side.

Ag vs. Ads TDOM-AC ROMMEO PR2 Mean
TDOM-AC 0.967 1.000 0.999 0.989
ROMMEO 0.674 0.997 0.981 0.884
PR2 0.000 0.722 0.313 0.345
Mean 0.547 0.906 0.764 N/A

Table 4.2: Comparison of di↵erent model settings (Agent vs. Adversaries). The values are the normalized
average episode advantage scores.

4.6 Conclusion

In this work, we propose a novel time dynamical opponent model called TDOM. It supports
mixed cooperative-competitive tasks with a low computational cost. Furthermore, we in-
troduce the TDOM-AC algorithm and demonstrate the superior performance compared to
other state-of-the-art methods on multiple challenging benchmarks. In the future, we plan to
omit the centralized training and instead also model opponent Q-function parameters as time
dynamical latent variables, thereby relying exclusively on past opponent actions for training.
Also, we would like to evaluate the proposed approach on partially observable environments
where the agent does not share its observation space with all opponents.

61



5 E↵ective and e�cient black-box optimization via
reinforcement learning

This chapter corresponds to the published article:1

Tian, Yuan, Qin Wang, Zhiwu Huang, Wen Li, Dengxin Dai, Minghao Yang, Jun Wang,
and Olga Fink (2020a). “O↵-policy reinforcement learning for e�cient and e↵ective gan
architecture search”. In: European Conference on Computer Vision. Springer, pp. 175–
192.

Abstract: In this paper, we introduce a new reinforcement learning (RL)
based neural architecture search (NAS) methodology for e↵ective and e�cient
generative adversarial network (GAN) architecture search. The key idea is to
formulate the GAN architecture search problem as a Markov decision process
(MDP) for smoother architecture sampling, which enables a more e↵ective RL-
based search algorithm by targeting the potential global optimal architecture.
To improve e�ciency, we exploit an o↵-policy GAN architecture search algo-
rithm that makes e�cient use of the samples generated by previous policies.
Evaluation on two standard benchmark datasets (i.e., CIFAR-10 and STL-10)
demonstrates that the proposed method is able to discover highly competi-
tive architectures for generally better image generation results with a consid-
erably reduced computational burden: 7 GPU hours. Our code is available at
https://github.com/Yuantian013/E2GAN.

5.1 Introduction

Generative adversarial networks (GANs) have been successfully applied to a wide range of
generation tasks, including image generation (Goodfellow et al., 2014; Brock et al., 2018; Bao
et al., 2017; Wang et al., 2018; Guo et al., 2019a), text to image synthesis (Reed et al., 2016;
Zhang et al., 2017; Park et al., 2019) and image translation (Isola et al., 2017; Choi et al.,
2018), to name a few. To further improve the generation quality, several extensions and
further developments have been proposed, ranging from regularization terms (Brock et al.,
2016; Gulrajani et al., 2017), progressive training strategy (Karras et al., 2017), utilizing
attention mechanism (Xu et al., 2018; Zhang et al., 2019), and to new architectures (Karras
et al., 2019; Brock et al., 2018).

While designing favorable neural architectures of GANs has made great success, it typically
requires a large amount of time, e↵ort, and domain expertise. For instance, several state-of-
the-art GANs (Karras et al., 2019; Brock et al., 2018) design appreciably complex generator
or discriminator backbones for better generating high-resolution images. To alleviate the
network engineering pain, an e�cient automated architecture searching framework for GAN
is highly needed. On the other hand, Neural architecture search (NAS) has been applied
and proved e↵ective in discriminative tasks such as image classification (Krizhevsky et al.,
2012) and segmentation (Liu et al., 2019b). Encouraged by this, AGAN (Wang and Huan,
2019) and AutoGAN (Gong et al., 2019) have introduced neural architecture search methods

1Please note, this is the author’s version of the manuscript published in European Conference on Computer
Vision. Springer, Cham, 2020: 175-192.. Changes resulting from the publishing process, namely editing,
corrections, final formatting for printed or online publication, and other modifications resulting from quality
control procedures may have been subsequently added. The final publication is available at https://doi.
org/10.1007/978-3-030-58571-6_11.

62

https://github.com/Yuantian013/E2GAN
https://doi.org/10.1007/978-3-030-58571-6_11
https://doi.org/10.1007/978-3-030-58571-6_11


5 Effective and efficient black-box optimization via reinforcement learning

for GAN based on reinforcement learning (RL), thereby enabling a significant speedup of
architecture searching process.

Similar to the other architecture search tasks (image classification, image segmentation),
recently proposed RL-based GAN architecture search method AGAN (Wang and Huan, 2019)
optimized the entire architecture. Since the same policy might sample di↵erent architectures,
it is likely to su↵er from noisy gradients and a high variance, which potentially further
harms the policy update stability. To circumvent this issue, multi-level architecture search
(MLAS) has been used in AutoGAN (Wang and Huan, 2019), and a progressive optimization
formulation is used. However, because optimization is based on the best performance of the
current architecture level, this progressive formulation potentially leads to a local minimum
solution.

To overcome these drawbacks, we reformulate the GAN architecture search problem as
a Markov decision process (MDP). The new formulation is partly inspired by the human-
designed Progressive GAN (Karras et al., 2017), which has shown to improve generation
quality progressively in intermediate outputs of each architecture cell. In our new formulation,
a sequence of decisions will be made during the entire architecture design process, which allows
state-based sampling and thus alleviates the variance. In addition, as we will show later in
the paper, by using a carefully designed reward, this new formulation also allows us to target
e↵ective global optimization over the entire architecture.

More importantly, the MDP formulation can better facilitate o↵-policy RL training to
improve data e�ciency. The previously proposed RL-based GAN architecture search meth-
ods (Gong et al., 2019; Wang and Huan, 2019) are based on on-policy RL, leading to limited
data e�ciency that results in considerably long training time. Specifically, on-policy RL
approach generally requires frequent sampling of a batch of architectures generated by cur-
rent policy to update the policy. Moreover, new samples are required to be collected for
each gradient step, while the previous batches are directly disposed. This quickly becomes
very expensive as the number of gradient steps and samples increases with the complexity of
the task, especially in the architecture search tasks. by comparison, o↵-policy reinforcement
learning algorithms make use of past experience such that the RL agents are enabled to learn
more e�ciently. This has been proven to be e↵ective in other RL tasks, including legged
locomotion (Lillicrap et al., 2015) and complex video games (Mnih et al., 2015). However,
exploiting o↵-policy data for GAN architecture search poses new challenges. Training the
policy network inevitably becomes unstable by using o↵-policy data, because these training
samples are systematically di↵erent from the on-policy ones. This presents a great challenge
to the stability and convergence of the algorithm (Bhatnagar et al., 2009). Our proposed
MDP formulation can make a di↵erence here. By allowing state-based sampling, the new
formulation alleviates this instability, and better supports the o↵-policy strategy.

The contributions of this paper are two-fold:

1. We reformulate the problem of neural architecture search for GAN as an MDP for
smoother architecture sampling, which enables a more e↵ective RL-based search algo-
rithm and potentially more global optimization.

2. We propose an e�cient and e↵ective o↵-policy RL NAS framework for GAN architecture
search (E2GAN), which is 6 times faster than existing RL-based GAN search approaches
with competitive performance.

We conduct a variety of experiments to validate the e↵ectiveness of E2GAN. Our discovered
architectures yield better results compared to RL-based competitors. E2GAN is e�cient, as
it is able to to find a highly competitive model within 7 GPU hours.

63



5 Effective and efficient black-box optimization via reinforcement learning

5.2 Related work

Reinforcement learning Recent progress in model-free reinforcement learning (RL) (Sut-
ton et al., 1992) has fostered promising results in many interesting tasks ranging from gam-
ing (Mnih et al., 2013; Silver et al., 2014), to planning and control problems (Hwangbo et al.,
2019; Kumar et al., 2016; Xie et al., 2019; Han et al., 2019a; Chao et al., 2020; Han et al.,
2020) and even up to the AutoML (Zoph and Le, 2017; Pham et al., 2018; Liu et al., 2018).
However, model-free deep RL methods are notoriously expensive in terms of their sample com-
plexity. One reason of the poor sample e�ciency is the use of on-policy reinforcement learning
algorithms, such as trust region policy optimization (TRPO) (Schulman et al., 2015), prox-
imal policy optimization(PPO) (Schulman et al., 2017) or REINFORCE (Williams, 1992).
On-policy learning algorithms require new samples generated by the current policy
for each gradient step. On the contrary, o↵-policy algorithms aim to reuse past experi-
ence. Recent developments of the o↵-policy reinforcement learning algorithms, such as soft
Actor-Critic (SAC) (Haarnoja et al., 2018a), have demonstrated substantial improvements
in both performance and sample e�ciency in previous on-policy methods.

Neural architecture search Neural architecture search methods aim to automatically
search for a good neural architecture for various tasks, such as image classification (Krizhevsky
et al., 2012) and segmentation (Liu et al., 2019b), in order to ease the burden of hand-crafted
design of dedicated architectures for specific tasks. Several approaches have been proposed to
tackle the NAS problem. Zoph and Le (Zoph and Le, 2017) proposed a reinforcement learning-
based method that trains an RNN controller to design the neural network (Zoph and Le,
2017). Guo et al. (Guo et al., 2019b) exploited a novel graph convolutional neural networks for
policy learning in reinforcement learning. Further successfully introduced approaches include
evolutionary algorithm based methods(Real et al., 2017), di↵erentiable methods (Liu et al.,
2019c) and one-shot learning methods (Brock et al., 2017; Liu et al., 2019c). Early works
of RL-based NAS algorithms (Xie et al., 2018; Pham et al., 2018; Zoph and Le, 2017; Liu
et al., 2018) proposed to optimize the entire trajectory (i.e., the entire neural architecture).
To the best of our knowledge, most of the previously proposed RL-based NAS algorithms
used on-policy RL algorithms, such as REINFORCE or PPO, except (Zhong et al., 2018)
which uses Q-learning algorithm for NAS, which is a value-based method and only supports
discrete state space problems. For on-policy algorithms, since each update requires new
data collected by the current policy and the reward is based on the internal neural network
architecture training, the on-policy training of RL-based NAS algorithms inevitably becomes
computationally expensive.

GANs architecture search Due to the specificities of GAN and their challenges, such as
instability and mode collapse, the NAS approaches proposed for discriminative models cannot
be directly transferred to the architecture search of GANs. Only recently, few approaches
have been introduced tackling the specific challenges of the GAN architectures. Recently, Au-
toGAN has introduced a neural architecture search for GANs based on reinforcement learning
(RL), thereby enabling a significant speedup of the process of architecture selection (Gong
et al., 2019). The AutoGAN algorithm is based on on-policy reinforcement learning. The pro-
posed multi-level architecture search (MLAS) aims at progressively finding well-performing
GAN architectures and completes the task in around 2 GPU days. Similarly, AGAN (Wang
and Huan, 2019) uses reinforcement learning for generative architecture search in a larger
search space. The computational cost for AGAN is comparably very expensive (1200 GPU
days). In addition, AdversarialNAS (Gao et al., 2019) and DEGAS (Doveh and Giryes,
2019) adopted a di↵erent approach, i.e., di↵erentiable searching strategy (Liu et al., 2019c),
for the GAN architecture search problem.

64



5 Effective and efficient black-box optimization via reinforcement learning

5.3 Preliminary

In this section, we briefly review the basic concepts and notations used in the following
sections.

5.3.1 Generative adversarial networks

The training of GANs involves an adversarial competition between two players, a generator
and a discriminator. The generator aims at generating realistic-looking images to ‘fool’ its
opponent. Meanwhile, the discriminator aims to distinguish whether an image is real or fake.
This can be formulated as a min-max optimization problem:

min
G

max
D

Ex⇠preal [logD(x)] + Ez⇠pz [log (1�D(G(z)))], (5.1)

where G and D are the generator and discriminator parametrized by neural networks. z is
sampled from random noise. x are the real and G(z) are the generated images.

5.3.2 Reinforcement learning

A Markov decision process (MDP) is a discrete-time stochastic control process. At each time
step, the process is in some state s, and its associated decision-maker chooses an available
action a. Given the action, the process moves into a new state s0 at the next step, and the
agent receives a reward.

An MDP could be described as a tuple (S,A, r, P, ⇢), where S is the set of states that is able
to precisely describe the current situation, A is the set of actions, r(s, a) is the reward function,
P (s0|s, a) is the transition probability function, and ⇢(s) is the initial state distribution.

MDPs can be particularly useful for solving optimization problems via reinforcement learn-
ing. In a general reinforcement learning setup, an agent is trained to interact with the envi-
ronment and get a reward from its interaction. The goal is to find a policy ⇡ that maximizes
the cumulative reward J(⇡):

J(⇡) = E⌧⇠⇢⇡
1X

t=0

r(st, at) (5.2)

While the standard RL merely maximizes the expected cumulative rewards, the maxi-
mum entropy RL framework considers a more general objective (Ziebart, 2010), which favors
stochastic policies. This objective shows a strong connection to the exploration-exploitation
trade-o↵, and could also prevent the policy from getting stuck in local optima. Formally, it
is given by

J(⇡) = E⌧⇠⇢⇡
1X

t=0

[r(st, at) + �H(⇡(·|st))], (5.3)

where � is the temperature parameter that controls the stochasticity of the optimal policy.

5.4 Problem formulation

5.4.1 Motivation

Given a fixed search space, GAN architecture search agents aim to discover an optimal
network architecture on a given generation task. Existing RL methods update the policy
network by using batches of entire architectures sampled from the current policy. Even
though these data samples are only used for the current update step, the sampled GAN
architectures nevertheless require tedious training and evaluation processes. The sampling
e�ciency is therefore very low resulting in limited learning progress of the agents. Moreover,
the entire architecture sampling leads to a high variance, which might influence the stability
of the policy update.

65



5 Effective and efficient black-box optimization via reinforcement learning

The key motivation of the proposed methodology is to stabilize and accelerate the learning
process by step-wise sampling instead of entire-trajectory-based sampling and making e�cient
use of past experiences from previous policies. To achieve this, we propose to formulate the
GAN architecture search problem as an MDP and solve it by o↵-policy reinforcement learning.

5.4.2 GANs architecture search formulated as MDP

We propose to formulate the GAN architecture search problem as a Markov decision pro-
cess (MDP) which enables state-based sampling. It further boosts the learning process and
overcomes the potential challenge of a large variance stemming from sampling entire archi-
tectures that makes it inherently di�cult to train a policy using o↵-policy data.

Formulating GAN architecture search problem as an MDP provides a mathematical de-
scription of architecture search processes. An MDP can be described as a tuple (S,A, r, P, ⇢),
where S is the set of states that is able to precisely describe the current architecture (such as
the current cell number, the structure or the performance of the architectures), A is the set
of actions that defines the architecture design of the next cell, r(s, a) is the reward function
used to define how good the architecture is, P (s0|s, a) is the transition probability function
indicating the training process, and ⇢(s) is the initial architecture. We define a cell as an
architecture block we are using to search in one step. The design details of states, actions,
and rewards is discussed in Section 5.5.

It is important to highlight that the formulation proposed in this paper has two main
di↵erences compared to previous RL methods for neural architecture search. Firstly, it is
essentially di↵erent to the classic RL approaches for NAS (Zoph and Le, 2017), which for-
mulate the task as an optimization problem over the entire trajectory/architecture. Instead,
the MDP formulation proposed here enables us to do the optimization based on the disentan-
gled steps of cell design. Secondly, it is also di↵erent to the progressive formulation used by
AutoGAN (Gong et al., 2019), where the optimization is based on the best performance of
the current architecture level and can potentially lead to a local minimum solution. Instead,
the proposed formulation enables us to potentially conduct a more global optimization us-
ing cumulative reward without the burden of calculating the reward over the full trajectory
at once. It is important to point out that the multi-level optimization formulation used in
AutoGAN (Gong et al., 2019) does not have this property.

Figure 5.1: Overview of the proposed E2GAN: the o↵-policy reinforcement learning module for GAN archi-
tecture search. The entire process comprises five steps: 1)The agent observes the current state st,
which is designed as s=[Depth, Performance, Progressive state representation]. 2)The agent makes
a decision at on how to design the cell added to previous cells according to the state information. at

includes the skip options, upsampling operations, shortcut options, di↵erent types of convolution
blocks and a normalization block 3)Progressively train the new architecture, obtain the reward rt
and the new state st+1 information and then loop over it again. 4)Save the o↵-policy memory
tuple [st, at, rt, st+1] into the memory bu↵er. 5)Sample a batch of data from the memory bu↵er
to update the policy network.

66



5 Effective and efficient black-box optimization via reinforcement learning

5.5 O↵-policy RL for GANs architecture search

In this section, we integrate o↵-policy RL in the GAN architecture search by making use
of the newly proposed MDP formulation. We introduce several innovations to address the
challenges of an o↵-policy learning setup.

The MDP formulation of GAN architecture search enables us to use o↵-policy reinforcement
learning for a step-wise optimization of the entire search process to maximize the cumulative
reward.

5.5.1 RL for GANs architecture search

Before we move on to the o↵-policy solver, we need to design the state, reward, and action
to meet the requirements of both the GAN architecture design, as well as of the MDP
formulation.

State

MDP requires a state representation that can precisely represent the current network up to
the current step. Most importantly, this state needs to be stable during training to avoid
adding more variance to the training of the policy network. The stability requirement is
particularly relevant since the policy network relies on it to design the next cell. The design
of the state is one of the main challenges we face when adopting o↵-policy RL to GAN
architecture search.

Inspired by the progressive GAN (Karras et al., 2017), which has shown to improve gener-
ation quality in intermediate RGB outputs of each architecture cell, we propose a progressive
state representation for GAN architecture search. Specifically, given a fixed batch of input
noise, we adopt the average output of each cell as the progressive state representation. We
down-sample this representation to impose a constant size across di↵erent cells. Note that
there are alternative ways to encode the network information. For example, one could also
deploy another network to encode the previous layers. However, we find the proposed design
e�cient and also e↵ective.

In addition to the progressive state representation, we also use network performance (In-
ception Score / FID) and layer number to provide more information about the state. To
summarize, the designed state s includes the depth, performance of the current architecture,
and the progressive state representation.

Figure 5.2: The search space of a generator cell in one step. The search space is directly taken from Auto-
GAN (Gong et al., 2019).

Action

Given the current state, which encodes the information about previous layers, the policy
network decides on the next action. The action describes the architecture of one cell. For
example, if we follow the search space used by AutoGAN (Gong et al., 2019), action will
contain skip options, upsampling operations, shortcut options, di↵erent types of convolution
blocks, and the normalization option, as shown in Figure 5.2.

67



5 Effective and efficient black-box optimization via reinforcement learning

This can then be defined as a = [conv, norm, upsample, shortcut, skip]. The action output
by the agent will be carried out by a softmax classifier decoding into an operation. To
demonstrate the e↵ectiveness of our o↵-policy methods and enable a fair comparison, in all
of our experiments, we use the same search space as AutoGAN (Gong et al., 2019), which
means we search for generator cells, and the discriminator architecture is pre-designed and
growing as the generator becomes deeper. More details on the search space are discussed in
Section 5.6.

Reward

We propose to design the reward function as the performance improvement after adding
the new cell. In this work, we use both Inception Score (IS) and Frchet Inception Distance
(FID) as the indicators of the network performance. Since IS score is progressive (the higher
the better) and FID score is degressive (the lower the better), the proposed reward function
can be formulated as:

Rt(s, a) = IS(t)� IS(t� 1) + ↵(FID(t� 1)� FID(t)), (5.4)

where ↵ is a factor to balance the trade-o↵ between the two indicators. We use ↵ = 0.01 in our
main experiments. The motivation behind using a combined reward is based on an empirical
finding indicating that IS and FID are not always consistent with each other and can lead
to a biased choice of architectures. A detailed discussion about the choice of indicators is
provided in Section 5.7.

By employing the performance improvement in each step instead of only using performance
as proposed in (Gong et al., 2019), RL can maximize the expected sum of rewards over the
entire trajectory. This enables us to target the potential global optimal structure with the
highest reward:

J(⇡) =
X

t=0

E(st,at)⇠p(⇡)R(st, at) = Earchitecture⇠p(⇡)ISfinal � ↵FIDfinal, (5.5)

where ISfinal and FIDfinal are the final scores of the entire architecture.

5.5.2 O↵-policy RL solver

The proposed designs of state, reward, and action fulfill the criteria of MDPs and makes it
possible to stabilize the training using o↵-policy samples. We are now free to choose any
o↵-policy RL solver to improve data e�ciency.

In this paper, we apply the o↵-the-shelf soft actor-critic algorithm (SAC) (Haarnoja et
al., 2018a), an o↵-policy actor-critic deep RL algorithm based on the maximum entropy
reinforcement learning framework, as the learning algorithm. It has demonstrated to be 10
to 100 times more data-e�cient compared to any other on-policy algorithms on traditional
RL tasks. In SAC, the actor aims at maximizing expected reward while also maximizing
entropy. This increases training stability significantly and improves the exploration during
training.

For the learning of the critic, the objective function is defined as:

J(Q) = E(s,a)⇠D


1

2
(Q(s, a)�Qtarget(s, a))

2

�
(5.6)

where Qtarget is the approximation target for Q :

Qtarget(s, a) = Q(s, a) + �Qtarget(s
0, f(✏, s0)) (5.7)

The objective function of the the policy network is given by:

J(⇡) = ED [�[log(⇡✓(f✓(✏, s)|s))]�Q(s, f✓(✏, s))] (5.8)

68



5 Effective and efficient black-box optimization via reinforcement learning

Input hyperparameters, learning rates ↵�Q ,↵✓
Randomly initialize a Q network Q(s, a) and policy network ⇡(a|s) with parameters �Q, ✓
and the Lagrange multipliers �,
Initialize the parameters of target networks with �Q  �Q, ✓  ✓
for each iteration do

Reset the weight and cells of E2GAN
for each time step do
if Exploration then
Sample at from ⇡(s), add the corresponding cell to E2GAN

else if Exploitation then
Choose the best at from ⇡(s) and add the corresponding cell to E2GAN

end if
Progressively train the E2GAN
Observe st+1, rt and store (st, at, rt, st+1) in D

end for
for each update step do
Sample mini-batches of transitions from D and update Q and ⇡ with gradients
Update the target networks with soft replacement:

�Q  ⌧�Q + (1� ⌧)�Q

✓  ⌧✓ + (1� ⌧)✓

end for
end for

Algorithm 3: Pseudo code for E2GAN search

where ⇡✓ is parameterized by a neural network f✓, ✏ is an input vector consisting of Gaussian
noise, and the D

.
= {(s, a, s0, r)} is the replay bu↵er for storing the MDP tuples (Mnih et al.,

2015). � is a positive Lagrange multiplier that controls the relative importance of the policy
entropy versus the safety constraint.

5.5.3 Implementation of E2GAN

In this section, we present the implementation details of the proposed o↵-policy RL framework
E2GAN. The training process is briefly outlined in Algorithm 3.

Agent training

Since we reformulated the NAS as a multi-step MDP, our agent will make several decisions
in any trajectory ⌧ = [(s1, a1), ...(sn, an)]. In each step, the agent will collect this experience
[st, at, rt, st+1] in the memory bu↵er D. Once the threshold of the smallest memory length
is reached, the agent is updated using the Adam (Kingma and Ba, 2014) optimizer via the
objective function presented in Eq. 5.8 by sampling a batch of data from the memory bu↵er
D in an o↵-policy way.

The entire search comprises two periods: the exploration period and the exploitation pe-
riod. During the exploration period, the agent will sample any possible architecture. While
in the exploitation period, the agent will choose the best architecture, in order to quickly
stabilize the policy.

The exploration period lasts for 70% of iterations, and the exploitation takes 30% iterations.
Once the memory threshold is reached, for every exploration step, the policy will be updated
once. For every exploitation step, the policy will be updated 10 times in order to converge
quickly.

69



5 Effective and efficient black-box optimization via reinforcement learning

Proxy task

We use a progressive proxy task in order to collect the rewards fast. When a new cell is
added, we train the current full trajectory for one epoch and calculate the reward for the
current cell. Within a trajectory, the previous cells’ weights will be kept and trained together
with the new cell. In order to accurately estimate the Q-value of each state-action pair, we
reset the weight of the neural network after finishing the entire architecture trajectory design.

5.6 Experiments

5.6.1 Dataset

In this paper, we use the CIFAR-10 dataset (Krizhevsky, Hinton, et al., 2009) to evaluate
the e↵ectiveness and e�ciency of the proposed E2GAN framework. The CIFAR-10 dataset
consists of 50,000 training images and 10,000 test images with a 32⇥32 resolution. We use its
training set without any data augmentation technique to search for the architecture with the
highest cumulative return for a GAN generator. Furthermore, to evaluate the transferability
of the discovered architecture, we also adopt the STL-10 dataset (Coates et al., 2011) to train
the network without any other data augmentation to make a fair comparison to previous
works.

5.6.2 Search space

To verify the e↵ectiveness of the o↵-policy framework and to enable a fair comparison, we
use the same search space as used in the AutoGAN experiments (Gong et al., 2019). There
are five control variables: 1)Skip operation, which is a binary value indicating whether the
current cell takes a skip connection from any specific cell as its input. Note that each cell
could take multiple skip connections from other preceding cells. 2)Pre-activation (He et al.,
2016) and post-activation convolution block. 3)Three types of normalization operations,
including batch normalization (Io↵e and Szegedy, 2015), instance normalization (Ulyanov
et al., 2016), and no normalization. 4)Upsampling operation which is standard in current
image generation GAN, including bi-linear upsampling, nearest neighbor upsampling, and
stride-2 deconvolution. 5)Shortcut operation.

Figure 5.3: The generator architecture discovered by E2GAN on CIFAR-10.

5.6.3 Results

The generator architecture discovered by E2GAN on the CIFAR-10 training set is displayed
in Figure 5.3. For the task of unconditional CIFAR-10 image generation (no class labels
used), several notable observations could be summarized:

* E2GAN prefers post-activation convolution block to pre-activation convolution blocks.
This finding is contrary to AutoGAN’s preference, but coincides with previous experi-
ences from human experts.

* E2GAN prefers the use of batch normalization. This finding is also contrary to Auto-
GAN’s choice, but is in line with experts’ common practice.

70



5 Effective and efficient black-box optimization via reinforcement learning

* E2GAN prefers bi-linear upsample to nearest neighbour upsample. This in theory
provides finer upsample ability between di↵erent cells.

Our E2GAN framework only takes about 0.3 GPU day for searching while the AGAN
spends 1200 GPU days and AutoGAN spends 2 GPU days.

We train the discovered E2GAN from scratch for 500 epochs and summarize the IS and FID
scores in Table 5.1. On the CIFAR-10 dataset, our model achieves a highly competitive
FID 11.26 compared to published results by AutoGAN (Gong et al., 2019), and hand-crafted

Methods Inception Score FID Search Cost (GPU days)
DCGAN (Radford et al., 2015) 6.64± .14 - ⇤

Improved GAN (Salimans et al., 2016) 6.86± .06 - ⇤

LRGAN (Yang et al., 2017) 7.17± .17 - ⇤

DFM (Warde-Farley and Bengio, 2016) 7.72± .13 - ⇤

ProbGAN (He et al., 2019) 7.75 24.60 ⇤

WGAN-GP, ResNet (Gulrajani et al., 2017) 7.86± .07 - ⇤

Splitting GAN (Grinblat et al., 2017) 7.90± .09 - ⇤

SN-GAN (Miyato et al., 2018) 8.22± .05 21.7± .01 ⇤

MGAN (Hoang et al., 2018) 8.33± .10 26.7 ⇤

Dist-GAN (Tran et al., 2018) - 17.61± .30 ⇤

Progressive GAN (Karras et al., 2017) 8.80 ± .05 - ⇤

Improv MMD GAN (Wang et al., 2019b) 8.29 16.21 ⇤

Random search-1 (Gong et al., 2019) 8.09 17.34 -
Random search-2 (Gong et al., 2019) 7.97 21.39 -
AGAN (Wang and Huan, 2019) 8.29± .09 30.5 1200
AutoGAN-top1 (Gong et al., 2019) 8.55± .10 12.42 2
AutoGAN-top2 (Gong et al., 2019) 8.42± .07 13.67 2
AutoGAN-top3 (Gong et al., 2019) 8.41± .11 13.68 2
E2GAN-top1 8.51± .13 11.26 0.3
E2GAN-top2 8.50± .09 12.96 0.3
E2GAN-top3 8.42± .11 12.48 0.3

Table 5.1: Inception score and FID score of unconditional image generation task on CIFAR-10. We achieve
a highly competitive FID of 11.26 compared to published works. We mainly compare our
approach with RL-based NAS approaches: AGAN (Wang and Huan, 2019) and AutoGAN (Gong
et al., 2019). Architectures marked by (⇤) are manually designed.

Methods Inception Score FID Search Cost (GPU days)
D2GAN (Nguyen et al., 2017) 7.98 - Manual
DFM (Warde-Farley and Bengio, 2016) 8.51± .13 - Manual
ProbGAN (He et al., 2019) 8.87± .095 46.74 Manual
SN-GAN (Miyato et al., 2018) 9.10± .04 40.1± .50 Manual
Dist-GAN (Tran et al., 2018) - 36.19 Manual
Improving MMD GAN (Wang et al., 2019b) 9.34 37.63 Manual
AGAN (Wang and Huan, 2019) 9.23± .08 52.7 1200
AutoGAN-top1 (Gong et al., 2019) 9.16± .13 31.01 2
E2GAN-top1 9.51 ± .09 25.35 0.3

Table 5.2: Inception score and FID score for the unconditional image generation task on STL-10. E2GAN uses
the discovered architecture on CIFAR-10. Performance is significantly better than other RL-based
competitors.

71



5 Effective and efficient black-box optimization via reinforcement learning

Figure 5.4: The generated CIFAR-10(left) and STL-10(right) results of E2GAN which are randomly sampled
without cherry-picking.

GAN (Radford et al., 2015; Salimans et al., 2016; Yang et al., 2017; Warde-Farley and Bengio,
2016; He et al., 2019; Gulrajani et al., 2017; Grinblat et al., 2017; Miyato et al., 2018; Hoang
et al., 2018; Wang et al., 2019b). In terms of IS score, E2GAN is also highly competitive to
AutoGAN (Gong et al., 2019). We additionally report the performance of the top2 and top3
architectures discovered in one search. Both have higher performance than the respective
AutoGAN counterparts.

We also test the transferability of E2GAN. We retrain the weights of the discovered E2GAN
architecture using the STL-10 training and unlabeled set for the unconditional image gener-
ation task. E2GAN achieves a highly-competitive performance on both IS (9.51)
and FID (25.35), as shown in Table 5.2.

Because our main contribution is the new formulation and using o↵-policy RL for GAN
architecture framework, we compare the proposed method directly with existing RL-based
algorithms. We use the exact same searching space as AutoGAN, which does not include the
search for a discriminator. As GAN training is an interactive procedure between generator
and discriminator, one might expect better performance if the search is conducted on both
networks. We report our scores using the exact same evaluation procedure provided by the
authors of AutoGAN. The reported scores are based on the best models achieved during
training on a 20 epoch evaluation interval. Mean and standard deviation of the IS score
are calculated based on the 10-fold evaluation on 50,000 generated images. We additionally
report the performance curve against training steps of E2GAN and AutoGAN for three runs
in the supplementary material.

5.7 Discussion

5.7.1 Reward choice: IS and FID

IS and FID scores are two main evaluation metrics for GAN. We conduct the ablation study
of using di↵erent combinations. Specifically, IS only (↵ = 0) and the combination of IS and
FID (↵ = 0.01) as the reward. Our agent successfully discovered two di↵erent architectures.
When only IS is used as the reward, the agent discovered a di↵erent architecture using only

Methods Inception Score FID Search Cost (GPU days)
AutoGAN-top1 (Gong et al., 2019) 8.55± .1 12.42 2
E2GAN(IS and FID as reward) 8.51± .13 11.26 0.3
E2GAN(IS only as reward) 8.81 ± .11 15.64 0.1

Table 5.3: Performance on the unconditional image generation task for CIFAR-10 with di↵erent reward choices.

72



5 Effective and efficient black-box optimization via reinforcement learning

Figure 5.5: Training curves on architecture searching. IS score on the proxy task against training time steps.
E2GAN shows relatively good stability and reproducibility.

0.1 GPU day. The searched architecture achieved state-of-the-art IS score of 8.86, as shown
in Table 5.3., but a relatively plain FID of 15.78. This demonstrates the e↵ectiveness of the
proposed method, as we are encouraging the agent to find the architecture with a higher IS
score. Interestingly, this shows that, at least in certain edge cases, the IS and FID may not
always have a strong positive correlation. This finding motivates us to include FID in the
reward. When both IS and FID are used as the reward signal, the discovered architecture
performs well in term of both metrics. This combined reward takes 0.3 GPU days (compared
to 0.1 GPU days of IS only optimization) because of the relatively expensive cost of FID
computation.

5.7.2 Reproducibility

We train our agent over 3 di↵erent seeds. As shown in Figure 5.5, we observe that our agent
steadily converged the policy in the exploitation period. E2GAN can find similar architectures
with relatively good performance on the proxy task.

5.8 Conclusion

We proposed a novel o↵-policy RL method, E2GAN, to e�ciently and e↵ectively search for
GAN architectures. We reformulated the problem as an MDP process, and overcame the
challenges of using o↵-policy data. We first introduced a new progressive state representa-
tion. We additionally introduced a new reward, which allowed us to target the potential
global optimization in our MDP formulation. The E2GAN achieves state-of-the-art e�ciency
in GAN architecture searching, and the discovered architecture shows highly competitive
performance.

Acknowledgement

The contributions of Yuan Tian, Qin Wang, and Olga Fink were funded by the Swiss National
Science Foundation (SNSF) Grant no. PP00P2 176878.

73



6 Discussions

In this dissertation, an immediate-level prescriptive maintenance framework is proposed with
the aim of improving the system performance and prolonging the RUL. Detailed discussions
for the individual studies have been presented in the respective chapters. In Chapter 2,
we propose a real-time model calibration module, Chapter 3 proposes an end-to-end load
allocation module for multi-battery systems, Chapter 3 introduces a novel opponent mod-
eling method with an e↵ective MARL for the maintenance coordination problems, and in
Chapter 5, we develop an e�cient black-box optimization module that can be applied to
fast process optimization and system reconfiguration tasks. This chapter reviews the main
elements of the thesis and discusses the key findings of this research.

6.1 Real-time model calibration with reinforcement learning

Model calibration approaches aim to close the gap between the performance model and the
measured data. However, previous approaches are computationally expensive and cannot
be applied in real-time or require a large amount of labeled data. In Chapter 2, a real-
time degradation calibration module is proposed to compensate for the deviation between
the physics-based performance model and the data measured from the degraded real system.
This module plays an essential role in the proposed framework. It cannot only calibrate
the performance model, but most importantly, it provides an indispensable understanding of
the degradation state for the subsequent steps of controlling the degradation process. The
discussion of the key findings is summarized below.

Inference accuracy In Chapter 2, we compare the inference performance of the proposed
RL-based method to a model-based approach, the UKF, and a data-based supervised learning
approach on two open prognostics datasets: N-CMAPSS and AGTF30. The proposed ap-
proach showed the best inference accuracy on both datasets, achieving an RMSE of 3.30e�04
RMSE on AGTF30 and 2.50e � 03 on N-CMAPSS. It is worth mentioning that unlike su-
pervised learning, which needs the ground truth degradation parameters for training, our
method does not need any prior knowledge about the degradation parameters.

Computational cost Another interesting finding is related to the computational cost. The
proposed method, which is a data-driven approach without any online optimization, provides
better inference accuracy with a speed-up of ⇥150 compared to the model-based UKF. The
proposed method shows great potential for applications that require real-time inference.

Robustness One of the essential requirements for parameter inference in real-world sce-
narios is the robustness to the sensor noise and environmental uncertainty. In Chapter 2,
the proposed method can provide a very good inference, achieving an RMSE of 3.30e � 04
under model bias and an RMSE of 4.22e� 04 under model noise. This demonstrates better
robustness compared to UKF, which achieves an RMSE of 2.04e� 3 under model noise and
failed to optimize a stable inference under model noise. We demonstrate that the proposed
approach is more reliable and better applicable to real-world scenarios.

Reinforcement learning as probabilistic inference To leverage the application of RL
for model calibration or parameter inference tasks, we formulated the model calibration task
as an inverse problem of a tracking problem. Under this formulation, RL methods become

74



6 Discussions

an alternative solution for inference problems. Surprisingly, this is in line with the idea
from a previous theoretical research (Levine, 2018), which demonstrated that the Markov
decision process could be formulated as a probabilistic inference problem. To the best of our
knowledge, this is the first time that the application of RL as a probabilistic inference has
been demonstrated on real-world applications.

Action stabilization is necessary for inference tasks Another important finding is
that the action stabilization term in the policy update objective can improve the perfor-
mance and robustness of the proposed method. Since the agent is trained without labeled
data, the agent can only minimize the tracking loss instead of maximizing the inference ac-
curacy. Without any constraint, the action may exhibit a large variance. Such a situation
is undesirable in many real-world applications where it is important to obtain a stable and
smooth action over time. Therefore, in order to stabilize the actions, we introduce the CLAC
algorithm, a modification of the LAC algorithm, which significantly improves the action
stability under model uncertainty and sensor noise. The proposed stabilization term can be
applied to other tasks which require stability and smoothness of actions, for example, robotics
movement control (Taylor et al., 2021) and trajectory tracking tasks (Han et al., 2020).

6.2 End-to-end load allocation in real-time with reinforcement learning

In Chapter 3, we proposed an end-to-end load allocation framework that is able to infer the
health state of the batteries implicitly from raw signal measurements. Based on this implicit
inference, the algorithm is able to allocate the load to each of the batteries in real-time with
the aim to prolong the working cycle of the deployed multi-battery systems. The proposed
framework shows considerable scalability on NASA multi-battery system models (Daigle and
Kulkarni, 2013). Moreover, we proposed the novel Dirichlet policy to tackle the simplex
constraint in allocation tasks. This module provides a feasible solution but also a promising
direction for prolonging RUL by prescriptive operation. The discussion of the key findings is
summarized below.

End-to-end prescriptive operation with reinforcement learning In Chapter 3, we
proposed an RL-based module that can perform end-to-end load allocation for multi-battery
systems. The developed framework only requires raw current and voltage measurements,
along with the incoming power demand, as inputs. Moreover, the information is processed
automatically via the trained neural network, and the module can handle data streams in
real-time. To the best of our knowledge, this is the first time an algorithm has been shown
to be capable of directly performing the load allocation strategy in an end-to-end way. We
evaluated the performance of the proposed module on di↵erent multi-battery systems that
were modeled by a simulator (Daigle and Kulkarni, 2013). According to the experimental
results, the proposed module was able to e↵ectively prolong the working cycle of a four-
battery system by 15.2% on average compared to the equal distribution allocation policy.
Also, the proposed module showed considerable transferability to a new system configuration.
Following the same setup as for the system with four batteries, the module can be trained
and deployed on an eight-battery system, prolonging the working cycle by 31.9% on average.
When deployed on second-life battery systems, the learned strategy can prolong the working
cycle by 151.0 % on average. This module has demonstrated that RL is able to infer the
health state implicitly without any explicit information on the degradation condition and
is able to integrate this into control. This is a very promising direction for many di↵erent
applications to prolong their working cycle and RUL.

Dirichlet policy for allocation tasks In Chapter 3, we proposed the Dirichlet policy
as a plug-in module for RL algorithms to tackle continuous action space allocation tasks.

75



6 Discussions

We find that the proposed method is bias-free and has lower variance in the policy gradient
compared to the Gaussian-softmax policy. The numerical experiments showed consistent
results, where the proposed method converged faster and is also more robust to learning
rate changes. This result can be applied to a wide range of real-world allocation tasks, for
example, the reliability redundancy allocation, which can help improve system reliability and
minimize the cost (Wang et al., 2020; Sabri-Laghaie and Karimi-Nasab, 2019).

6.3 Multi-agent coordination in mixed cooperative-competitive environments

In Chapter 4, we proposed a novel objective for opponent modeling with an e↵ective MARL
method for mixed-objective MAS tasks. This module can be applied as a complementary
module when the structural and operational dependencies within machines and systems are
required to be considered. The discussion of the key findings is summarized below.

Opponent model does matter In this research, we find that by deriving a lower bound of
the log objective of an individual agent, accurate opponent predictions can alleviate the non-
stationarity problem of policy updates in MARL. Moreover, with such accurate opponent
predictions, each agent can access a more reliable value estimation. This provides then a
better guidance for its own policy update. In addition, it allows the agent to become a better
collaborator or stronger adversary to influence other agents in cooperative and competitive
settings, respectively. As a consequence, all the policies can improve iteratively. We validated
this hypothesis on a challenging MAS benchmark with mixed-objective and continuous state
and action space. The proposed opponent model has shown a superior prediction accuracy
compared to two strong baselines, the ROMMEO (Tian et al., 2019)and the PR2 (Wen et al.,
2019). With better opponent predictions, the proposed MARL algorithm achieved equivalent
performance on cooperative tasks and state-of-the-art performance on mixed-objective tasks
compared to the baselines. This result supports the conclusion from previous studies that
the opponent model does matter (Wen et al., 2018).

Extension of the proposed MARL algorithm to maintenance applications One of
the potential application fields for the proposed methodology is the maintenance scheduling
or operation of power grids, where the generation units operate in a competitive environ-
ment. In such problems, the decision of each generation unit will inevitably influence the
entire network. For example, the maintenance scheduling in electricity markets, where the
generators are required to find an optimal bidding strategy and maintenance schedule to
maximize profit and improve the reliability of the entire system. However, there is a trade-o↵
between the reliability and the profit of the system since the maintenance imposes cost and
takes time during which the generation units cannot produce energy (Rokhforoz and Fink,
2021; Rokhforoz et al., 2021). Thus, the strategy of each unit should take the potential
operations of other units into account. Such problems can be modeled by MAS. As discussed
before, centralized methods su↵er from high computational costs and are less flexible, the
proposed decentralized MARL coordination module can be a promising alternative solution
for such problems.

6.4 E↵ective and e�cient black-box optimization via reinforcement learning

In Chapter 5, we propose an e↵ective and e�cient method for optimization tasks, especially
for derivative-free problems, where the structure of the objective function and the constraints
are not known and cannot be unexplored or may not even exist. This work is the final piece
in the immediate-level prescriptive maintenance framework proposed in this thesis. The
di↵erence between the previous three modules and this contribution is that this module
provides a solution for decisions that are only made once and results in a unique solution,
such as system reconfiguration and process optimization. The previous three modules focused

76



6 Discussions

on sequential decision-making tasks where the decisions are made sequentially. The discussion
of the key findings is summarized below.

MDP formulation for BBO The most important finding of this module is that the MDP
formulation can significantly improve the searching e�ciency. We evaluated the proposed
module on a challenging black-box optimization task, the GAN architecture search on the
CIFAR-10 and STL-10 datasets. The proposed framework can provide reliable recommenda-
tions with only a limited number of samples (300 samples in this example). Compared to the
SOTA algorithm, the AutoGAN (Gong et al., 2019), the proposed algorithm is seven times
faster in successfully finding a better neural architecture, becoming a new SOTA. The found
architecture also becomes the new SOTA architecture for CIFAR-10 and STL-10 datasets.

Extension to maintenance applications In Chapter 5, with the superior performance
on GAN architecture search, the proposed idea has provided a new direction for RL-based
optimization. Moreover, it has great potential for a wide range of real-world BBO tasks
in maintenance applications. For example, the reconfiguration of power grid after physical
failures and severe power disruptions is a classical BBO task in reliability engineering, where
the function between the network topology and the performance is not known. Such a problem
aims to find the optimal network topology to improve the remaining network’s largest amount
of power supply (LPS), which is also a unique decision in any unique scenario of a severe
power disruption (Zhang et al., 2021d). And a quick power recovery in extreme events can
have a significant impact on society. However, the conventional nonlinear interior point
method is only feasible for a fixed topology (Zhang et al., 2021d). We provide a promising
alternative solution, which does not depend on the objective function but solves the problem
by maximizing the reward. Moreover, other optimization tasks, such as the optimization of
the power grid, and supply chain networks with the purpose of improving the system resilience
and performance, are also potentially promising applications for the proposed methodology.
Also, the GAN architecture search module can be directly applied to search for the optimal
GAN architecture with the aim of data generation for fault diagnostics or prognostics.

6.5 Proposed prescriptive maintenance and operation framework

With the proposed modules, the prescriptive maintenance and operation framework can be
applied to complex real-world tasks. For example, in the UAVs fleet coordination task,
each UAV and its batteries may degrade di↵erently. The di↵erent degradation states can
be calibrated by the proposed model calibration module. For each UAV, the maintenance
should take the overall availability of the entire fleet and the maintenance cost into account,
which can be obtained by the multi-agent coordination module. When performing a flight,
the load allocation module can prolong the working cycle and thereby improve reliability and
deployability. Lastly, for each flight, the trajectory can be optimized by the fast optimization
module with the aim of the lowest consumption. The proposed framework is general and
flexible, with considerable scalability and transferability, showing great potential for solving
a wide range of maintenance tasks.

77



7 Conclusions

This chapter revisits the main aim and objectives of this dissertation. Key conclusions are
then discussed to answer the main research questions. Finally, the limitations and future
research directions are discussed.

7.1 Research objectives revisited

The aim of this research was to develop an immediate-level prescriptive maintenance frame-
work that integrates degradation awareness into decision-making to improve the system per-
formance, reliability, and availability, and further prolong the working cycle and the RUL

This aim was accomplished by developing the framework that comprises four modules:
(1) The development of a real-time degradation calibration module that is able to calibrate
the degradation parameters of physics-based performance models in real-time (Chapter 2);
(2) The development of an immediate-level end-to-end load allocation module with a novel
Dirichlet policy with deep RL that can prolong the working cycle and RUL of multi-battery
systems (Chapter 3); (3) The development of a distributed multi-agent coordination mod-
ule that can e↵ectively obtain feasible policies under cooperative, competitive and mixed
cooperative-competitive environments via a novel time dynamical opponent model (Chap-
ter 4); (4) The development of a fast black-box optimization module that can e↵ectively and
e�ciently provide reliable and reproducible recommendations with limited data (Chapter 5).

7.2 Summary

In this dissertation, the main research question:How can we integrate degradation into decision-
making, and improve the system performance and prolong RUL via immediate-level opera-
tions? has been answered by proposing an immediate-level prescriptive maintenance frame-
work comprising four modules. Moreover, this dissertation pushed the boundary of state-
of-the-art research in the fields of prescriptive maintenance and reinforcement learning by
answering the following five research questions:

1. How can we capture the implicit degradation state in real-time without super-
vision? In Chapter 2, we reformulated the model calibration into a tracking problem, which
can be seen as the inverse problem of the calibration problem. This formulation unleashed
the potential of reinforcement learning methods for inference tasks. We further introduced
a novel CLAC algorithm that shows a competitive accuracy on two challenging open bench-
marks, the AGTF30 and N-CMAPSS. We compared the proposed DRL approach to UKF
and the supervised learning method with respect to several performance evaluation metrics,
such as accuracy, robustness, and computational cost. The proposed DRL approach has
shown a better inference accuracy than UKF and supervised learning. Compared to UKF,
RL methods do not need any online optimization and are significantly faster during inference,
which is particularly important for real-time industrial applications, such as the application
in operational digital twins. Moreover, the proposed DRL approach has shown to be more
robust to sensor noise and model bias. Compared to supervised learning methods, DRL
methods neither require labeled data nor any supervision.

2. How can we perform prescriptive load allocation based on only raw sensor
measurements in real-time? In Chapter 3, we developed an immediate-level end-to-
end load allocation module. For the first time, we successfully prolonged the working cycle

78



7 Conclusions

of the deployed multi-battery systems based on only voltage and current information. We
demonstrated that, compared to the equally distributed load allocation, the average length
of the discharge cycle of the deployed four-battery system can be prolonged by an average of
15.2%. The proposed framework showed considerable scalability that can be easily applied
on an eight-battery system without any modification, while prolonging the working cycle by
an average of 31.9%. Besides, it is particularly applicable to second-life batteries, and can
prolong the working cycle by an average of 151.0%.

3. How can reinforcement learning e↵ectively tackle continuous action space al-
location tasks? In Chapter 3, we answered the question above by proposing the Dirichlet
policy as an alternative to Gaussian and Gaussian-softmax policy for continuous action space
allocation tasks. We found that Gaussian-softmax policy is injective for simplex output,
and theoretically and experimentally demonstrated the superior performance of the proposed
method. We showed that the Dirichlet policy converges significantly faster resulting in bet-
ter performance and is also more robust to changes in hyperparameters compared to the
Gaussian-softmax policy. The proposed method has been combined with the second module
for load allocation that can significantly prolong the working cycle of deployed systems.

4.How can we address the non-stationarity of MARL under mixed-objective sce-
narios? To answer this question, Chapter 4 demonstrated that by modeling the opponent
model parameters as a dynamical system and updating them according to the proposed
temporal improvement assumption, we implicitly minimized the KL-divergence between the
opponent model prediction and the underlying ground truth. Thus, the proposed method can
alleviate the non-stationarity problem in opponent modeling. Most importantly, the proposed
opponent model is general and supports cooperative, competitive, and mixed cooperative-
competitive environments. Based on the proposed opponent modeling, we further introduced
an e↵ective MARL framework and validated the e↵ectiveness on the multi-agent particle
environments and the classic di↵erential game.

5. How can reinforcement learning agents learn and give recommendations with
limited data in large action- and state-space BBO tasks? To answer this question,
in Chapter 5, we proposed to model large action space optimization tasks as MDPs with an
adaptive learning strategy. Compared to the conventional bandit formulation, the proposed
formulation can achieve a smoother sampling of neural architectures, which enables a more
e↵ective RL-based search algorithm. Moreover, compared to the progressive search, we spec-
ulate that our formulation can potentially target a global optimum. We investigated this
hypothesis on an open GAN architecture search benchmark. In progressive search methods,
such as AutoGAN, the GAN architecture of an earlier layer is decided greedily without con-
sidering future layers. However, a better neural architecture may have a lower reward for the
first layer but a higher final reward. The experimental results are consistent with our hy-
pothesis. In addition, with the tuned exploration and update strategy, we show considerable
reproducibility by providing reliable decisions with limited data. By combining the adap-
tive learning strategy with the proposed MDP formulation, we demonstrated the superior
performance on a challenging BBO task, the GAN architecture search.

7.3 Limitations and outlook

This dissertation has explored the immediate-level prescriptive maintenance operations that
can improve the performance and reliability of the deployed systems, and can prolong their
RUL. The proposed framework integrates degradation awareness into decision-making and
provides four modules for typical immediate-level prescriptive maintenance scenarios.

79



7 Conclusions

While several contributions both on the methodological as well on the application side have
been made in this research, there are still some challenges that we left for future research.
This section points out some of these challenges and discusses possible future directions.

Interpretability In Chapter 3, we developed a real-time load allocation framework that
allows the agent to infer the system health information implicitly and prescribe allocation ac-
tions accordingly. However, since we did not model the system health information explicitly,
the lack of interpretability may be an obstacle for some industrial applications. Recently,
combining physics-based information with data-driven approaches has shown promising re-
sults on prognostic and diagnostic tasks, leading to improvements in performance and training
e�ciency, as well as to better interpretability. However, this line of research has not been
su�ciently explored in the context of reinforcement learning. The development of decision-
making approaches that integrate physics-based information could potentially improve inter-
pretability and also support the applicability to more complex systems.

Domain shift For data-driven approaches, it is well known that when a trained model is
deployed on unseen operating conditions, the performance can deteriorate significantly (Wang
et al., 2019a). This is due to the data distribution di↵erence between training and testing
environments. This di↵erence is also referred to as domain shift (Wang et al., 2019a). Domain
adaptation(DA) methods have been proposed to tackle this kind of challenges. Domain
adaptation methods aim to leverage a small amount of data under new operating conditions
and improve the trained model’s generalization ability. In this thesis, we did not consider the
domain shift between the training environment and the deployed system, which may limit the
applicability in real scenarios. Although DA has been broadly applied in computer vision and
natural language processing, it has not been extensively studied in the field of reinforcement
learning and sequential decision-making. Some prior works of RL with DA only consider the
domain shift on the state space, which is insu�cient to tackle the operating conditions or
degradation state di↵erence. In such cases, the system dynamics changes. To address the
dynamics shift problem, it is important to develop corresponding methods that can e↵ectively
adapt the policy to the target domain.

O✏ine RL In this thesis, we mainly adopted o↵-policy RL to develop the proposed mod-
ules. However, the fact that RL provides a fundamentally online learning paradigm is also
one of the biggest limitations for industrial applications due to the lack of suitable simula-
tion environments. The conventional RL agent requires to collect experience iteratively by
interacting with the environment to learn and update, which is not practical when simulation
environments are not available. However, interaction with real industrial systems is expen-
sive and not feasible for safety-critical applications. Recently, o✏ine RL, a purely data-driven
approach without the need of interaction with environments, has drawn substantial attention
in di↵erent fields. O✏ine RL provides a promising alternative for prescriptive maintenance
tasks. This could enable a broader application capability.

Prescriptive maintenance benchmarks In this dissertation, we found that there is an
urgent need for open access benchmarks for prescriptive maintenance. Such benchmarks
would enable better comparison between the di↵erent methods and foster methodological
research in that area. Thus, a general prescriptive maintenance environment that covers
typical scenarios and tasks in the field would benefit the PHM field and boost the development
of prescriptive technologies to a great extent.

80



Bibliography

Abrate, Carlo, Alessio Angius, Gianmarco De Francisci Morales, Stefano Cozzini, Francesca Iadanza,
Laura Li Puma, Simone Pavanelli, Alan Perotti, Stefano Pignataro, and Silvia Ronchiadin (2021).
“Continuous-Action Reinforcement Learning for Portfolio Allocation of a Life Insurance Com-
pany”. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases.
Springer, pp. 237–252.

Albrecht, Stefano V and Peter Stone (2018). “Autonomous agents modelling other agents: A compre-
hensive survey and open problems”. In: Artificial Intelligence 258, pp. 66–95.

Amari, Shun-Ichi (1998). “Natural gradient works e�ciently in learning”. In: Neural computation 10.2,
pp. 251–276.

Ansari, Fazel, Robert Glawar, and Tanja Nemeth (2019). “PriMa: a prescriptive maintenance model
for cyber-physical production systems”. In: International Journal of Computer Integrated Manu-
facturing 32.4-5, pp. 482–503.

Ansari, Fazel, Robert Glawar, and Wilfried Sihn (2020). “Prescriptive maintenance of CPPS by in-
tegrating multimodal data with dynamic bayesian networks”. In: Machine Learning for Cyber
Physical Systems, Technologies for Intelligent Automation 11, pp. 1–8.

Arel, Itamar, Cong Liu, Tom Urbanik, and Airton G Kohls (2010). “Reinforcement learning-based
multi-agent system for network tra�c signal control”. In: IET Intelligent Transport Systems 4.2,
pp. 128–135.

Arias Chao, Manuel (2021). “Combining Deep Learning and Physics-Based Performance Models for
Diagnostics and Prognostics”. PhD thesis. ETH Zurich.

Arias Chao, Manuel, Darrel S. Lilley, Peter Mathé, and Volker Schloßhauer (2015). “Calibration and
Uncertainty Quantification of Gas Turbine Performance Models”. In: Proceedings of the ASME
Turbo Expo. Vol. 7A, V07AT29A001. isbn: 9780791856765. doi: 10.1115/gt2015-42392.

Bai, Yunfei, Hongwen He, Jianwei Li, Shuangqi Li, Ya-xiong Wang, and Qingqing Yang (2019). “Bat-
tery anti-aging control for a plug-in hybrid electric vehicle with a hierarchical optimization energy
management strategy”. In: Journal of Cleaner Production 237, p. 117841.

Bao, Jianmin, Dong Chen, Fang Wen, Houqiang Li, and Gang Hua (2017). “CVAE-GAN: fine-grained
image generation through asymmetric training”. In: Proceedings of the IEEE International Con-
ference on Computer Vision, pp. 2745–2754.

Barto, Andrew G and Sridhar Mahadevan (2003). “Recent advances in hierarchical reinforcement
learning”. In: Discrete event dynamic systems 13.1-2, pp. 41–77.

Bellman, Richard (1956). “Dynamic programming and Lagrange multipliers”. In: Proceedings of the
National Academy of Sciences of the United States of America 42.10, p. 767.

Bhatnagar, Shalabh, Doina Precup, David Silver, Richard S Sutton, Hamid R Maei, and Csaba
Szepesvári (2009). “Convergent temporal-di↵erence learning with arbitrary smooth function ap-
proximation”. In: Advances in Neural Information Processing Systems, pp. 1204–1212.

Björsell, Niclas and Amirhossein Hosseinzadeh Dadash (2021). “Finite Horizon Degradation Control
of Complex Interconnected Systems”. In: IFAC-PapersOnLine 54.1, pp. 319–324.

Borguet, S.J (2012). “Variations on the Kalman Filter for Enhanced Performance Monitoring of Gas
Turbine Engines”. PhD Thesis. Université de Liège.

Brock, Andrew, Je↵ Donahue, and Karen Simonyan (2018). “Large scale gan training for high fidelity
natural image synthesis”. In: arXiv preprint arXiv:1809.11096.

81

https://doi.org/10.1115/gt2015-42392


Bibliography

Brock, Andrew, Theodore Lim, James M Ritchie, and Nick Weston (2016). “Neural photo editing
with introspective adversarial networks”. In: arXiv preprint arXiv:1609.07093.

Brock, Andrew, Theodore Lim, James M Ritchie, and Nick Weston (2017). “Smash: one-shot model
architecture search through hypernetworks”. In: arXiv preprint arXiv:1708.05344.

Brown, George W (1951). “Iterative solution of games by fictitious play”. In: Activity analysis of
production and allocation 13.1, pp. 374–376.

Brown, Noam and Tuomas Sandholm (2019). “Superhuman AI for multiplayer poker”. In: Science
365.6456, pp. 885–890.

Buşoniu, Lucian, Tim de Bruin, Domagoj Tolić, Jens Kober, and Ivana Palunko (2018). “Reinforce-
ment learning for control: Performance, stability, and deep approximators”. In: Annual Reviews
in Control.

Cao, Chengxuan and Ziyan Feng (2020). “Optimal capacity allocation under random passenger de-
mands in the high-speed rail network”. In: Engineering Applications of Artificial Intelligence 88,
p. 103363.

Chao, Manuel Arias, Chetan Kulkarni, Kai Goebel, and Olga Fink (2022). “Fusing physics-based and
deep learning models for prognostics”. In: Reliability Engineering & System Safety 217, p. 107961.

Chao, Manuel Arias, Yuan Tian, Chetan Kulkarni, Kai Goebel, and Olga Fink (2020). “Real-Time
Model Calibration with Deep Reinforcement Learning”. In: arXiv preprint arXiv:2006.04001.

Chen, Hao, Jian Chen, Huaxin Lu, Chizhou Yan, and Zhiyang Liu (2020a). “A modified MPC-based
optimal strategy of power management for fuel cell hybrid vehicles”. In: IEEE/ASME Transac-
tions on Mechatronics 25.4, pp. 2009–2018.

Chen, Yifan, Zhiyong Li, Bo Yang, Ke Nai, and Keqin Li (2020b). “A Stackelberg game approach
to multiple resources allocation and pricing in mobile edge computing”. In: Future Generation
Computer Systems 108, pp. 273–287.

Cho, Anthony D, Rodrigo A Carrasco, and Gonzalo A Ruz (2022). “Improving prescriptive mainte-
nance by incorporating post-prognostic information through chance constraints”. In: IEEE Access.

Choi, Yunjey, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo (2018).
“Stargan: Unified generative adversarial networks for multi-domain image-to-image translation”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8789–
8797.

Chou, Po-Wei, Daniel Maturana, and Sebastian Scherer (2017). “Improving stochastic policy gra-
dients in continuous control with deep reinforcement learning using the beta distribution”. In:
International conference on machine learning. PMLR, pp. 834–843.

Coates, Adam, Andrew Ng, and Honglak Lee (2011). “An analysis of single-layer networks in unsuper-
vised feature learning”. In: Proceedings of the fourteenth International Conference on Artificial
Intelligence and Statistics, pp. 215–223.

Consilvio, Alice, Paolo Sanetti, Davide Anguıta, Carlo Crovetto, Carlo Dambra, Luca Oneto, Federico
Papa, and Nicola Sacco (2019). “Prescriptive maintenance of railway infrastructure: From data
analytics to decision support”. In: 2019 6th International Conference on Models and Technologies
for Intelligent Transportation Systems (MT-ITS). IEEE, pp. 1–10.

Crassidis, John L. and John L. Junkins (2011). Optimal Estimation of Dynamic Systems, Second
Edition (Chapman & Hall/CRC Applied Mathematics & Nonlinear Science). 2nd. Chapman &
Hall/CRC. isbn: 1439839859.

Dahal, Keshav P and Nopasit Chakpitak (2007). “Generator maintenance scheduling in power systems
using metaheuristic-based hybrid approaches”. In: Electric power systems research 77.7, pp. 771–
779.

Daigle, Matthew and Chetan S Kulkarni (2013). “Electrochemistry-based battery modeling for prog-
nostics”. In: Annual Conference of the PHM Society. Vol. 5. 1.

82



Bibliography

Deng, Xiaoheng, Jun Li, Enlu Liu, and Honggang Zhang (2020). “Task allocation algorithm and
optimization model on edge collaboration”. In: Journal of Systems Architecture 110, p. 101778.

Deng, Zui Cha, Jian Ning Yu, and Liu Yang (Apr. 2008). “An inverse problem of determining the
implied volatility in option pricing”. In: Journal of Mathematical Analysis and Applications 340.1,
pp. 16–31. issn: 0022247X. doi: 10.1016/j.jmaa.2007.07.075.

Dietterich, Thomas G (2000). “Hierarchical reinforcement learning with the MAXQ value function
decomposition”. In: Journal of artificial intelligence research 13, pp. 227–303.

Doveh, Sivan and Raja Giryes (2019). “DEGAS: Di↵erentiable E�cient Generator Search”. In: arXiv
preprint arXiv:1912.00606.

Du, Yali, Bo Liu, Vincent Moens, Ziqi Liu, Zhicheng Ren, Jun Wang, Xu Chen, and Haifeng Zhang
(2021). “Learning Correlated Communication Topology in Multi-Agent Reinforcement learning”.
In: Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent
Systems, pp. 456–464.

Elsheikh, Ahmed H., Vasily Demyanov, Reza Tavakoli, Mike A. Christie, and Mary F. Wheeler (Jan.
2015). “Calibration of channelized subsurface flow models using nested sampling and soft prob-
abilities”. In: Advances in Water Resources 75, pp. 14–30. issn: 03091708. doi: 10.1016/j.
advwatres.2014.10.006.

Fawzi, Alhussein, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
madamin Barekatain, Alexander Novikov, Francisco J R Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, et al. (Oct. 2022). “Discovering faster matrix multiplication algorithms with reinforce-
ment learning”. In: Nature 610, pp. 47–53. doi: 10.1038/s41586-022-05172-4.

Feng, Jianghong and Zongrong Gong (2020). “Integrated linguistic entropy weight method and multi-
objective programming model for supplier selection and order allocation in a circular economy:
A case study”. In: Journal of Cleaner Production 277, p. 122597.

Feng, Jie, F Richard Yu, Qingqi Pei, Jianbo Du, and Li Zhu (2020). “Joint optimization of radio and
computational resources allocation in blockchain-enabled mobile edge computing systems”. In:
IEEE Transactions on Wireless Communications 19.6, pp. 4321–4334.

Fink, Olga, Qin Wang, Markus Svensen, Pierre Dersin, Wan-Jui Lee, and Melanie Duco↵e (2020). “Po-
tential, challenges and future directions for deep learning in prognostics and health management
applications”. In: Engineering Applications of Artificial Intelligence 92, p. 103678.

Finn, Chelsea, Pieter Abbeel, and Sergey Levine (2017). “Model-agnostic meta-learning for fast
adaptation of deep networks”. In: Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org, pp. 1126–1135.

Foerster, Jakob, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson
(2018). “Counterfactual multi-agent policy gradients”. In: Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 32. 1.

Foerster, Jakob N, Yannis M Assael, Nando De Freitas, and Shimon Whiteson (2016). “Learning to
communicate with deep multi-agent reinforcement learning”. In: arXiv preprint arXiv:1605.06676.

Foerster, Jakob N, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and Igor
Mordatch (2017). “Learning with opponent-learning awareness”. In: arXiv preprint arXiv:1709.04326.

Fujimoto, Scott, Herke Hoof, and David Meger (2018). “Addressing Function Approximation Error in
Actor-Critic Methods”. In: International Conference on Machine Learning, pp. 1587–1596.

Gao, Chen, Yunpeng Chen, Si Liu, Zhenxiong Tan, and Shuicheng Yan (2019). “AdversarialNAS:
Adversarial Neural Architecture Search for GANs”. In: arXiv preprint arXiv:1912.02037.

Garrone, Andrea, Simone Minisi, Luca Oneto, Carlo Dambra, Marco Borinato, Paolo Sanetti, Giulia
Vignola, Federico Papa, Nadia Mazzino, and Davide Anguita (2023). “Simple Non Regressive
Informed Machine Learning Model for Prescriptive Maintenance of Track Circuits in a Subway

83

https://doi.org/10.1016/j.jmaa.2007.07.075
https://doi.org/10.1016/j.advwatres.2014.10.006
https://doi.org/10.1016/j.advwatres.2014.10.006
https://doi.org/10.1038/s41586-022-05172-4


Bibliography

Environment”. In: International Conference on System-Integrated Intelligence. Springer, pp. 74–
83.

Glorot, Xavier and Yoshua Bengio (2010). Understanding the di�culty of training deep feedforward
neural networks. Tech. rep. url: http://www.iro.umontreal..

Gong, Xinyu, Shiyu Chang, Yifan Jiang, and Zhangyang Wang (2019). “Autogan: Neural architecture
search for generative adversarial networks”. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 3224–3234.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio (2014). “Generative adversarial nets”. In: Advances in Neural
Information Processing Systems, pp. 2672–2680.

Gordon, Christopher AK and Efstratios N Pistikopoulos (2022). “Data-driven prescriptive mainte-
nance toward fault-tolerant multiparametric control”. In: AIChE Journal 68.6, e17489.

Grinblat, Guillermo L, Lucas C Uzal, and Pablo M Granitto (2017). “Class-splitting generative ad-
versarial networks”. In: arXiv preprint arXiv:1709.07359.

Gulrajani, Ishaan, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville (2017).
“Improved training of wasserstein gans”. In: Advances in Neural Information Processing Systems,
pp. 5767–5777.

Guo, Yong, Qi Chen, Jian Chen, Qingyao Wu, Qinfeng Shi, and Mingkui Tan (2019a). “Auto-
embedding generative adversarial networks for high resolution image synthesis”. In: IEEE Trans-
actions on Multimedia 21.11, pp. 2726–2737.

Guo, Yong, Yin Zheng, Mingkui Tan, Qi Chen, Jian Chen, Peilin Zhao, and Junzhou Huang (2019b).
“Nat: Neural architecture transformer for accurate and compact architectures”. In: Advances in
Neural Information Processing Systems, pp. 737–748.

Haarnoja, Tuomas, Haoran Tang, Pieter Abbeel, and Sergey Levine (2017). “Reinforcement learning
with deep energy-based policies”. In: arXiv preprint arXiv:1702.08165.

Haarnoja, Tuomas, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. (2018a). “Soft actor-critic algorithms
and applications”. In: arXiv preprint arXiv:1812.05905.

Haarnoja, Tuomas, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. (2018b). “Soft actor-critic algorithms
and applications”. In: arXiv preprint arXiv:1812.05905.

Han, Minghao, Yuan Tian, Lixian Zhang, Jun Wang, and Wei Pan (2019a). “H infinity Model-free
Reinforcement Learning with Robust Stability Guarantee”. In: arXiv preprint arXiv:1911.02875.

Han, Minghao, Yuan Tian, Lixian Zhang, Jun Wang, and Wei Pan (2019b). “H1 model-free rein-
forcement learning with robust stability guarantee”. In: arXiv preprint arXiv:1911.02875.

Han, Minghao, Lixian Zhang, Jun Wang, and Wei Pan (2020). “Actor-critic reinforcement learning for
control with stability guarantee”. In: IEEE Robotics and Automation Letters 5.4, pp. 6217–6224.

Hasselt, Hado (2010). “Double Q-learning”. In: Advances in neural information processing systems
23, pp. 2613–2621.

He, Hao, Hao Wang, Guang-He Lee, and Yonglong Tian (2019). Probgan: Towards probabilistic gan
with theoretical guarantees.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification”. In: Proceedings of the IEEE
international conference on computer vision, pp. 1026–1034.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). “Identity mappings in deep residual
networks”. In: European conference on computer vision. Springer, pp. 630–645.

84

http://www.iro.umontreal.


Bibliography

Henderson, Daniel A., Richard J. Boys, Kim J. Krishnan, Conor Lawless, and Darren J. Wilkinson
(Mar. 2009). “Bayesian emulation and calibration of a stochastic computer model of mitochondrial
DNA deletions in substantia nigra neurons”. In: Journal of the American Statistical Association
104.485, pp. 76–87. issn: 01621459. doi: 10.1198/jasa.2009.0005.

Henderson, Peter, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger
(2019). Deep Reinforcement Learning that Matters. arXiv: 1709.06560 [cs.LG].

Hernandez-Leal, Pablo, Michael Kaisers, Tim Baarslag, and Enrique Munoz de Cote (2017). “A sur-
vey of learning in multiagent environments: Dealing with non-stationarity”. In: arXiv preprint
arXiv:1707.09183.

Higdon, Dave, James Gattiker, Brian Williams, and Maria Rightley (2008). “Computer Model Cal-
ibration Using High-Dimensional Output”. In: Journal of the American Statistical Association
103.482, pp. 570–583. issn: 01621459. url: http://www.jstor.org/stable/27640080.

Hoang, Quan, Tu Dinh Nguyen, Trung Le, and Dinh Phung (2018). “MGAN: Training generative
adversarial nets with multiple generators”. In.

Hu, Xiaosong, Le Xu, Xianke Lin, and Michael Pecht (2020). “Battery lifetime prognostics”. In: Joule
4.2, pp. 310–346.

Hu, Xiaosong, Changfu Zou, Xiaolin Tang, Teng Liu, and Lin Hu (2019). “Cost-optimal energy man-
agement of hybrid electric vehicles using fuel cell/battery health-aware predictive control”. In:
ieee transactions on power electronics 35.1, pp. 382–392.

Huang, Yanjun, Hong Wang, Amir Khajepour, Hongwen He, and Jie Ji (2017). “Model predictive
control power management strategies for HEVs: A review”. In: Journal of Power Sources 341,
pp. 91–106.

Hüttenrauch, Maximilian, Sosic Adrian, Gerhard Neumann, et al. (2019). “Deep reinforcement learn-
ing for swarm systems”. In: Journal of Machine Learning Research 20.54, pp. 1–31.

Hwang, W and KS Han (1986). “Cumulative damage models and multi-stress fatigue life prediction”.
In: Journal of composite materials 20.2, pp. 125–153.

Hwangbo, Jemin, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen Koltun,
and Marco Hutter (2019). “Learning agile and dynamic motor skills for legged robots”. In: Science
Robotics 4.26, eaau5872.

Hwangbo, Jemin, Inkyu Sa, Roland Siegwart, and Marco Hutter (2017). “Control of a quadrotor with
reinforcement learning”. In: IEEE Robotics and Automation Letters 2.4, pp. 2096–2103.

Io↵e, Sergey and Christian Szegedy (2015). “Batch normalization: Accelerating deep network training
by reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167.

Ishii, Koji (2021). “MPC Based Power Allocation for Reliable Wireless Networked Control Systems”.
In: IEEE Access 9, pp. 60913–60922.

Isola, Phillip, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros (2017). “Image-to-image translation
with conditional adversarial networks”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1125–1134.

Jagtap, Hanumant P, Anand K Bewoor, Ravinder Kumar, Mohammad Hossein Ahmadi, and Lin-
gen Chen (2020). “Performance analysis and availability optimization to improve maintenance
schedule for the turbo-generator subsystem of a thermal power plant using particle swarm opti-
mization”. In: Reliability Engineering & System Safety 204, p. 107130.

Jauhar, Sunil Kumar, Saman Hassanzadeh Amin, and Hossein Zolfagharinia (2021). “A proposed
method for third-party reverse logistics partner selection and order allocation in the cellphone
industry”. In: Computers & Industrial Engineering 162, p. 107719.

Jiang, Zhengyao, Dixing Xu, and Jinjun Liang (2017). “A deep reinforcement learning framework for
the financial portfolio management problem”. In: arXiv preprint arXiv:1706.10059.

85

https://doi.org/10.1198/jasa.2009.0005
https://arxiv.org/abs/1709.06560
http://www.jstor.org/stable/27640080


Bibliography

Jiao, Meng, Dongqing Wang, Yan Yang, and Feng Liu (2021). “More intelligent and robust esti-
mation of battery state-of-charge with an improved regularized extreme learning machine”. In:
Engineering Applications of Artificial Intelligence 104, p. 104407.

Jones, Donald R, Matthias Schonlau, and William J Welch (1998). “E�cient global optimization of
expensive black-box functions”. In: Journal of Global optimization 13.4, pp. 455–492.

Joo, Weonyoung, Wonsung Lee, Sungrae Park, and Il-Chul Moon (2020). “Dirichlet variational au-
toencoder”. In: Pattern Recognition 107, p. 107514.

Jordan, Michael I, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul (1999). “An in-
troduction to variational methods for graphical models”. In: Machine learning 37.2, pp. 183–
233.

Julier, Simon J and Je↵rey K Uhlmann (1997). “New extension of the Kalman filter to nonlinear
systems”. In: Signal Processing, Sensor Fusion, and Target Recognition VI. Vol. 3068, p. 182.
isbn: 0819424838. doi: 10.1117/12.280797.

Kakade, Sham M (2001). “A natural policy gradient”. In: Advances in neural information processing
systems 14, pp. 1531–1538.

Kamandanipour, Keyvan, Mohammad Mahdi Nasiri, Dinçer Konur, and Siamak Haji Yakhchali
(2020). “Stochastic data-driven optimization for multi-class dynamic pricing and capacity al-
location in the passenger railroad transportation”. In: Expert Systems with Applications 158,
p. 113568.

Kamdar, Renuka, Priyanka Paliwal, and Yogendra Kumar (2018). “A state of art review on various
aspects of multi-agent system”. In: Journal of Circuits, Systems and Computers 27.11, p. 1830006.

Kangasrääsiö, Antti, Jussi P. P. Jokinen, Antti Oulasvirta, Andrew Howes, and Samuel Kaski (June
2019). “Parameter Inference for Computational Cognitive Models with Approximate Bayesian
Computation”. In: Cognitive Science 43.6. issn: 0364-0213. doi: 10.1111/cogs.12738. url:
https://onlinelibrary.wiley.com/doi/abs/10.1111/cogs.12738.

Kanso, Soha, Mayank Shekhar Jha, and Didier Theilliol (2023). “Degradation Tolerant Optimal Con-
trol Design for Linear Discrete-Times Systems”. In: International Conference on Diagnostics of
Processes and Systems. Springer, pp. 398–409.

Kantas, Nikolas, Arnaud Doucet, Sumeetpal S Singh, Jan Maciejowski, and Nicolas Chopin (2015).
“On Particle Methods for Parameter Estimation in State-Space Models”. In: Statistical Science
30.3, pp. 328–351. doi: 10.1214/14-STS511.

Karras, Tero, Timo Aila, Samuli Laine, and Jaakko Lehtinen (2017). “Progressive growing of gans for
improved quality, stability, and variation”. In: arXiv preprint arXiv:1710.10196.

Karras, Tero, Samuli Laine, and Timo Aila (2019). “A style-based generator architecture for generative
adversarial networks”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4401–4410.

Kennedy, Marc C. and Anthony O’Hagan (2001). “Bayesian calibration of computer models”. In:
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63.3, pp. 425–464. issn:
1369-7412. doi: 10.1111/1467-9868.00294. url: http://doi.wiley.com/10.1111/1467-
9868.00294.

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980.

Kingma, Diederik P and Jimmy Lei Ba (2015). “Adam: A method for stochastic optimization”. In:
3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Pro-
ceedings. arXiv: 1412.6980.

Kingma, Diederik P and Max Welling (2014). Auto-Encoding Variational Bayes. arXiv: 1312.6114
[stat.ML].

86

https://doi.org/10.1117/12.280797
https://doi.org/10.1111/cogs.12738
https://onlinelibrary.wiley.com/doi/abs/10.1111/cogs.12738
https://doi.org/10.1214/14-STS511
https://doi.org/10.1111/1467-9868.00294
http://doi.wiley.com/10.1111/1467-9868.00294
http://doi.wiley.com/10.1111/1467-9868.00294
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114


Bibliography

Koch, William, Renato Mancuso, Richard West, and Azer Bestavros (2019). “Reinforcement learning
for UAV attitude control”. In: ACM Transactions on Cyber-Physical Systems 3.2, pp. 1–21.

Konda, Vijay and John Tsitsiklis (1999). “Actor-critic algorithms”. In: Advances in neural information
processing systems 12.

Kotz, Samuel, Narayanaswamy Balakrishnan, and Norman L Johnson (2004). Continuous multivariate
distributions, Volume 1: Models and applications. Vol. 1. John Wiley & Sons.

Krizhevsky, Alex, Geo↵rey Hinton, et al. (2009). “Learning multiple layers of features from tiny
images”. In.

Krizhevsky, Alex, Ilya Sutskever, and Geo↵rey E Hinton (2012). “Imagenet classification with deep
convolutional neural networks”. In: Advances in Neural Information Processing Systems, pp. 1097–
1105.

Kulkarni, Chetan S and Jose Celaya (2019). “Electronics Prognostics”. In: Fault Diagnosis of Dynamic
Systems. Springer, pp. 433–458.

Kulkarni, Chetan S, José R Celaya, Kai Goebel, and Gautam Biswas (2012). “Physics based electrolytic
capacitor degradation models for prognostic studies under thermal overstress”. In: PHM Society
European Conference. Vol. 1. 1.

Kumar, Natarajan Chennimalai, Arun K. Subramaniyan, Liping Wang, and Gene Wiggs (Nov. 2013).
“Calibrating transient models with multiple responses using bayesian inverse techniques”. In:
Proceedings of the ASME Turbo Expo. Vol. 7 A. American Society of Mechanical Engineers Digital
Collection. isbn: 9780791855263. doi: 10.1115/GT2013-95857.

Kumar, Vikash, Abhishek Gupta, Emanuel Todorov, and Sergey Levine (2016). “Learning dexterous
manipulation policies from experience and imitation”. In: arXiv preprint arXiv:1611.05095.

Lainé, Julien, Elsa Piollet, Florence Nyssen, and Alain Batailly (2019). “Blackbox optimization for
aircraft engine blades with contact interfaces”. In: Journal of Engineering for Gas Turbines and
Power 141.6.

Leng, Jiewu, Qiang Liu, Shide Ye, Jianbo Jing, Yan Wang, Chaoyang Zhang, Ding Zhang, and Xin
Chen (2020). “Digital twin-driven rapid reconfiguration of the automated manufacturing sys-
tem via an open architecture model”. In: Robotics and Computer-Integrated Manufacturing 63,
p. 101895.

Leonori, Stefano, Maurizio Paschero, Fabio Massimo Frattale Mascioli, and Antonello Rizzi (2020).
“Optimization strategies for Microgrid energy management systems by Genetic Algorithms”. In:
Applied Soft Computing 86, p. 105903.

Levine, Sergey (2018). “Reinforcement learning and control as probabilistic inference: Tutorial and
review”. In: arXiv preprint arXiv:1805.00909.

Lillicrap, Timothy P, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra (2015). “Continuous control with deep reinforcement learning”.
In: arXiv preprint arXiv:1509.02971.

Littman, Michael L (1994). “Markov games as a framework for multi-agent reinforcement learning”.
In: Machine learning proceedings 1994. Elsevier, pp. 157–163.

Liu, Bin, Jing Lin, Liangwei Zhang, and Uday Kumar (2019a). “A dynamic prescriptive maintenance
model considering system aging and degradation”. In: IEEE Access 7, pp. 94931–94943.

Liu, Chenxi, Liang-Chieh Chen, Florian Schro↵, Hartwig Adam, Wei Hua, Alan L Yuille, and Li Fei-
Fei (2019b). “Auto-deeplab: Hierarchical neural architecture search for semantic image segmen-
tation”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 82–92.

Liu, Chenxi, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy (2018). “Progressive neural architecture search”. In:
Proceedings of the European Conference on Computer Vision (ECCV), pp. 19–34.

87

https://doi.org/10.1115/GT2013-95857


Bibliography

Liu, Hanxiao, Karen Simonyan, and Yiming Yang (2019c). “DARTS: Di↵erentiable Architecture
Search”. In: International Conference on Learning Representations. url: https://openreview.
net/forum?id=S1eYHoC5FX.

Liu, Shuaiqiang, Anastasia Borovykh, Lech A. Grzelak, and Cornelis W. Oosterlee (Dec. 2019d). “A
neural network-based framework for financial model calibration”. In: Journal of Mathematics in
Industry 9.1, pp. 1–28. issn: 21905983. doi: 10.1186/s13362-019-0066-7. arXiv: 1904.10523.

Liu, Xinyang, Zhuoyuan Zheng, İ Esra Büyüktahtakın, Zhi Zhou, and Pingfeng Wang (2021). “Battery
asset management with cycle life prognosis”. In: Reliability Engineering & System Safety 216,
p. 107948.

Ljung, Lennart and Svante Gunnarsson (Jan. 1990). “Adaptation and tracking in system identification-
A survey”. In: Automatica 26.1, pp. 7–21. issn: 00051098. doi: 10.1016/0005-1098(90)90154-A.

Lowe, Ryan, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch (2017). “Multi-agent
actor-critic for mixed cooperative-competitive environments”. In: arXiv preprint arXiv:1706.02275.

Maas, Andrew L, Awni Y Hannun, and Andrew Y Ng (2013). “Rectifier nonlinearities improve neural
network acoustic models”. In: Proc. icml. Vol. 30. 1, p. 3.

Mahmood, A Rupam, Dmytro Korenkevych, Brent J Komer, and James Bergstra (2018). “Setting
up a reinforcement learning task with a real-world robot”. In: 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 4635–4640.

Maia, Ricardo, Jérôme Mendes, Rui Araújo, Marco Silva, and Urbano Nunes (2020). “Regenerative
braking system modeling by fuzzy Q-Learning”. In: Engineering Applications of Artificial Intel-
ligence 93, p. 103712.

Matyas, Kurt, Tanja Nemeth, Klaudia Kovacs, and Robert Glawar (2017). “A procedural approach
for realizing prescriptive maintenance planning in manufacturing industries”. In: CIRP Annals
66.1, pp. 461–464.

Meissner, Robert, Antonia Rahn, and Kai Wicke (2021). “Developing prescriptive maintenance strate-
gies in the aviation industry based on a discrete-event simulation framework for post-prognostics
decision making”. In: Reliability Engineering & System Safety 214, p. 107812.

Meyer, Tobias and Walter Sextro (2014). “Closed-loop control system for the reliability of intelligent
mechatronic systems”. In: PHM Society European Conference. Vol. 2. 1.

Michau, Gabriel and Olga Fink (2021). “Unsupervised transfer learning for anomaly detection: Ap-
plication to complementary operating condition transfer”. In: Knowledge-Based Systems 216,
p. 106816.

Michau, Gabriel, Yang Hu, Thomas Palmé, and Olga Fink (2020). “Feature learning for fault detection
in high-dimensional condition monitoring signals”. In: Proceedings of the Institution of Mechanical
Engineers, Part O: Journal of Risk and Reliability 234.1, pp. 104–115.

Mirhoseini, Azalia, Anna Goldie, Mustafa Yazgan, Joe Jiang, Ebrahim Songhori, Shen Wang, Young-
Joon Lee, Eric Johnson, Omkar Pathak, Sungmin Bae, et al. (2020). “Chip placement with deep
reinforcement learning”. In: arXiv preprint arXiv:2004.10746.

Mirhoseini, Azalia, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. (2021). “A graph placement
methodology for fast chip design”. In: Nature 594.7862, pp. 207–212.

Miyato, Takeru, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida (2018). “Spectral normal-
ization for generative adversarial networks”. In: arXiv preprint arXiv:1802.05957.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller (2013). “Playing atari with deep reinforcement learning”. In: arXiv
preprint arXiv:1312.5602.

88

https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://doi.org/10.1186/s13362-019-0066-7
https://arxiv.org/abs/1904.10523
https://doi.org/10.1016/0005-1098(90)90154-A


Bibliography

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. (2015). “Human-
level control through deep reinforcement learning”. In: nature 518.7540, pp. 529–533.

Mundhenk, T Nathan, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Daniel M Faissol, and
Brenden K Petersen (2021). “Symbolic regression via neural-guided genetic programming popu-
lation seeding”. In: arXiv preprint arXiv:2111.00053.

Nagulapati, Vijay Mohan, Hyunjun Lee, DaWoon Jung, Boris Brigljevic, Yunseok Choi, and Hankwon
Lim (2021). “Capacity estimation of batteries: Influence of training dataset size and diversity on
data driven prognostic models”. In: Reliability Engineering & System Safety 216, p. 108048.

Nath, Rahul and Pranab K Muhuri (2021). “Evolutionary Optimization based Solution approaches
for Many Objective Reliability-Redundancy Allocation Problem”. In: Reliability Engineering &
System Safety, p. 108190.

Ng, Man-Fai, Jin Zhao, Qingyu Yan, Gareth J Conduit, and Zhi Wei Seh (2020). “Predicting the
state of charge and health of batteries using data-driven machine learning”. In: Nature Machine
Intelligence, pp. 1–10.

Nguyen, Tu, Trung Le, Hung Vu, and Dinh Phung (2017). “Dual discriminator generative adversarial
nets”. In: Advances in Neural Information Processing Systems, pp. 2670–2680.

Nian, Rui, Jinfeng Liu, and Biao Huang (2020). “A review on reinforcement learning: Introduction and
applications in industrial process control”. In: Computers & Chemical Engineering 139, p. 106886.

Nicod, Jean-Marc, Brigitte Chebel-Morello, and Christophe Varnier (2017). From prognostics and
health systems management to predictive maintenance 2: knowledge, reliability and decision. John
Wiley & Sons.

OpenAI (2018). OpenAI Five. https://blog.openai.com/openai-five/.

Park, Taesung, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu (2019). “Semantic image synthesis
with spatially-adaptive normalization”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2337–2346.

Parry, AB, SJ Majumdar, N Peake, and CJ Chapman (1995). “Erosion, corrosion and foreign object
damage e↵ects in gas turbines”. In: ROLLS ROYCE PLC-REPORT-PNR.

Pecht, Michael (2009). “Prognostics and health management of electronics”. In: Encyclopedia of struc-
tural health monitoring.

Peterson, Scott B, JF Whitacre, and Jay Apt (2010). “The economics of using plug-in hybrid electric
vehicle battery packs for grid storage”. In: Journal of Power Sources 195.8, pp. 2377–2384.

Pham, Hieu, Melody Y Guan, Barret Zoph, Quoc V Le, and Je↵ Dean (2018). “E�cient neural
architecture search via parameter sharing”. In: arXiv preprint arXiv:1802.03268.

Popp, Timothy, Mehrdad G Shirangi, Ole Petter Nipen, and Anders Berggreen (2020). “Prescriptive
data analytics to optimize casing exits”. In: IADC/SPE International Drilling Conference and
Exhibition. OnePetro.

Radford, Alec, Luke Metz, and Soumith Chintala (2015). “Unsupervised representation learning with
deep convolutional generative adversarial networks”. In: arXiv preprint arXiv:1511.06434.

Rakelly, Kate, Aurick Zhou, Deirdre Quillen, Chelsea Finn, and Sergey Levine (2019). “E�cient
o↵-policy meta-reinforcement learning via probabilistic context variables”. In: arXiv preprint
arXiv:1903.08254.

Rashid, Tabish, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson (2018). “Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning”. In: International Conference on Machine Learning. PMLR, pp. 4295–
4304.

89

https://blog.openai.com/openai-five/


Bibliography

Rasmussen, Carl Edward (2003). “Gaussian processes in machine learning”. In: Summer school on
machine learning. Springer, pp. 63–71.

Real, Esteban, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc
V Le, and Alexey Kurakin (2017). “Large-scale evolution of image classifiers”. In: Proceedings of
the 34th International Conference on Machine Learning-Volume 70. JMLR. org, pp. 2902–2911.

Redutskiy, Yury (2017). “Optimization of safety instrumented system design and maintenance fre-
quency for oil and gas industry processes”. In: Management and Production Engineering Review
8.

Reed, Scott, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee
(2016). “Generative Adversarial Text to Image Synthesis”. In: International Conference on Ma-
chine Learning, pp. 1060–1069.

Richardson, Robert R, Christoph R Birkl, Michael A Osborne, and David A Howey (2018). “Gaussian
process regression for in situ capacity estimation of lithium-ion batteries”. In: IEEE Transactions
on Industrial Informatics 15.1, pp. 127–138.

Rokhforoz, Pegah and Olga Fink (2021). “Safe multi-agent deep reinforcement learning for joint bid-
ding and maintenance scheduling of generation units”. In: arXiv preprint arXiv:2112.10459.

Rokhforoz, Pegah, Blazhe Gjorgiev, Giovanni Sansavini, and Olga Fink (2021). “Multi-agent mainte-
nance scheduling based on the coordination between central operator and decentralized producers
in an electricity market”. In: Reliability Engineering & System Safety 210, p. 107495.

Roychoudhury, I., V. Hafiychuk, and K. Goebel (2013). “Model-based diagnosis and prognosis of a
water recycling system”. In: 2013 IEEE Aerospace Conference, pp. 1–9.

Rutter, Carolyn M., Diana L Miglioretti, and James E. Savarino (Dec. 2009). “Bayesian calibration
of microsimulation models”. English (US). In: Journal of the American Statistical Association
104.488, pp. 1338–1350. issn: 0162-1459. doi: 10.1198/jasa.2009.ap07466.

Sabri-Laghaie, Kamyar and Mehdi Karimi-Nasab (2019). “Random search algorithms for redundancy
allocation problem of a queuing system with maintenance considerations”. In: Reliability Engi-
neering & System Safety 185, pp. 144–162.

Sacks, J, W J Welch, J S B Mitchell, and P W Henry (1989). Design and Experiments of Computer
Experiments. doi: 10.2307/2245858. url: http://dx.doi.org/10.2307/2245858.

Sadeghian, Omid, Arman Oshnoei, Saman Nikkhah, and Behnam Mohammadi-Ivatloo (2019). “Multi-
objective optimisation of generation maintenance scheduling in restructured power systems based
on global criterion method”. In: IET Smart Grid 2.2, pp. 203–213.

Salimans, Tim, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen (2016).
“Improved techniques for training gans”. In: Advances in Neural Information Processing Systems,
pp. 2234–2242.

Samuel, G Giftson and C Christober Asir Rajan (2015). “Hybrid: particle swarm optimization–genetic
algorithm and particle swarm optimization–shu✏ed frog leaping algorithm for long-term generator
maintenance scheduling”. In: International Journal of Electrical Power & Energy Systems 65,
pp. 432–442.

Sansó, Bruno, Chris E Forest, and Daniel Zantedeschi (2008). Inferring Climate System Properties
Using a Computer Model. Tech. rep. 1, pp. 1–38. url: http://www.ams.ucsc.edu/%7B~%
7Ddanielz/.

Schaul, Tom, John Quan, Ioannis Antonoglou, and David Silver (2016). “Prioritized Experience Re-
play”. In: ICLR (Poster).

Schrittwieser, Julian, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. (2020). “Master-
ing atari, go, chess and shogi by planning with a learned model”. In: Nature 588.7839, pp. 604–
609.

90

https://doi.org/10.1198/jasa.2009.ap07466
https://doi.org/10.2307/2245858
http://dx.doi.org/10.2307/2245858
http://www.ams.ucsc.edu/%7B~%7Ddanielz/
http://www.ams.ucsc.edu/%7B~%7Ddanielz/


Bibliography

Schulman, John, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz (2015). “Trust
region policy optimization”. In: International conference on machine learning. PMLR, pp. 1889–
1897.

Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov (2017). “Proximal
policy optimization algorithms”. In: arXiv preprint arXiv:1707.06347.

Severson, Kristen A, Peter M Attia, Norman Jin, Nicholas Perkins, Benben Jiang, Zi Yang, Michael H
Chen, Muratahan Aykol, Patrick K Herring, Dimitrios Fraggedakis, et al. (2019). “Data-driven
prediction of battery cycle life before capacity degradation”. In: Nature Energy 4.5, pp. 383–391.

Shapley, Lloyd S (1953). “Stochastic games”. In: Proceedings of the national academy of sciences
39.10, pp. 1095–1100.

Shimada, Hayato, Yuichi Kawamoto, and Nei Kato (2021). “Novel Computation and Communication
Resources Allocation Using Relay Communications in UAV-mounted Cloudlet Systems”. In: IEEE
Transactions on Network Science and Engineering.

Silver, David, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. (2016).
“Mastering the game of Go with deep neural networks and tree search”. In: nature 529.7587,
pp. 484–489.

Silver, David, Guy Lever, Nicolas Heess, Thomas Degris, DaanWierstra, and Martin Riedmiller (2014).
“Deterministic policy gradient algorithms”. In: International conference on machine learning.
PMLR, pp. 387–395.

Son, Kyunghwan, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi (2019). “Qtran:
Learning to factorize with transformation for cooperative multi-agent reinforcement learning”.
In: International Conference on Machine Learning. PMLR, pp. 5887–5896.

Strogatz, Steven H (2018). Nonlinear dynamics and chaos with student solutions manual: With appli-
cations to physics, biology, chemistry, and engineering. CRC press.

Su, Jianyu, Jing Huang, Stephen Adams, Qing Chang, and Peter A Beling (2022). “Deep multi-
agent reinforcement learning for multi-level preventive maintenance in manufacturing systems”.
In: Expert Systems with Applications 192, p. 116323.

Sui, Yu and Shiming Song (2020). “A Multi-Agent Reinforcement Learning Framework for Lithium-ion
Battery Scheduling Problems”. In: Energies 13.8, p. 1982.

Sun, Guofeng, Zhiqiang Tian, Renhua Liu, Yun Jing, and Yawen Ma (2020). “Research on coordi-
nation and optimization of order allocation and delivery route planning in take-out system”. In:
Mathematical Problems in Engineering 2020.

Sunehag, Peter, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. (2017). “Value-
decomposition networks for cooperative multi-agent learning”. In: arXiv preprint arXiv:1706.05296.

Sutton, Richard S, Andrew G Barto, et al. (1998). Introduction to reinforcement learning. Vol. 135.
MIT press Cambridge.

Sutton, Richard S and Andrew G Barto (2018). Reinforcement learning: An introduction. MIT press.

Sutton, Richard S, Andrew G Barto, and Ronald J Williams (1992). “Reinforcement learning is direct
adaptive optimal control”. In: IEEE Control Systems Magazine 12.2, pp. 19–22.

Tan, Ming (1993). “Multi-agent reinforcement learning: Independent vs. cooperative agents”. In: Pro-
ceedings of the tenth international conference on machine learning, pp. 330–337.

Taylor, Annalisa T, Thomas A Berrueta, and Todd D Murphey (2021). “Active learning in robotics:
A review of control principles”. In: Mechatronics 77, p. 102576.

91



Bibliography

Tesauro, Gerald, Nicholas K Jong, Rajarshi Das, and Mohamed N Bennani (2006). “A hybrid re-
inforcement learning approach to autonomic resource allocation”. In: 2006 IEEE International
Conference on Autonomic Computing. IEEE, pp. 65–73.

Tian, Yuan, Manuel Arias Chao, Chetan Kulkarni, Kai Goebel, and Olga Fink (2022a). “Real-time
model calibration with deep reinforcement learning”. In: Mechanical Systems and Signal Process-
ing 165, p. 108284.

Tian, Yuan, Minghao Han, Chetan Kulkarni, and Olga Fink (2022b). “A prescriptive Dirichlet power
allocation policy with deep reinforcement learning”. In: Reliability Engineering & System Safety
224, p. 108529.

Tian, Yuan, Klaus-Rudolf Kladny, Qin Wang, Zhiwu Huang, and Olga Fink (2023). “Multi-agent
actor-critic with time dynamical opponent model”. In: Neurocomputing 517, pp. 165–172.

Tian, Yuan, Qin Wang, Zhiwu Huang, Wen Li, Dengxin Dai, Minghao Yang, Jun Wang, and Olga Fink
(2020a). “O↵-policy reinforcement learning for e�cient and e↵ective gan architecture search”. In:
European Conference on Computer Vision. Springer, pp. 175–192.

Tian, Zheng, Ying Wen, Zhichen Gong, Faiz Punakkath, Shihao Zou, and Jun Wang (2019). “A
regularized opponent model with maximum entropy objective”. In: Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence, pp. 602–608.

Tian, Zheng, Shihao Zou, Ian Davies, Tim Warr, Lisheng Wu, Haitham Bou Ammar, and Jun Wang
(2020b). “Learning to communicate implicitly by actions”. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence. Vol. 34. 05, pp. 7261–7268.

Tran, Ngoc-Trung, Tuan-Anh Bui, and Ngai-Man Cheung (2018). “Dist-gan: An improved gan using
distance constraints”. In: Proceedings of the European Conference on Computer Vision (ECCV),
pp. 370–385.

Turner, Ryan and Carl Edward Rasmussen (2010). “Model based learning of sigma points in unscented
Kalman filtering”. In: Proceedings of the 2010 IEEE International Workshop on Machine Learning
for Signal Processing, MLSP 2010, pp. 178–183. isbn: 9781424478774. doi: 10.1109/MLSP.2010.
5589003.

Ulyanov, Dmitry, Andrea Vedaldi, and Victor Lempitsky (2016). “Instance normalization: The missing
ingredient for fast stylization”. In: arXiv preprint arXiv:1607.08022.

Unagar, Ajaykumar, Yuan Tian, Manuel Arias Chao, and Olga Fink (2021). “Learning to Calibrate
Battery Models in Real-Time with Deep Reinforcement Learning”. In: Energies 14.5, p. 1361.

Urban, Louis A (1973). “Gas path analysis applied to turbine engine condition monitoring”. In: Journal
of Aircraft 10.7, pp. 400–406.

Van Hasselt, Hado, Arthur Guez, and David Silver (2016). “Deep reinforcement learning with double
q-learning”. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 30. 1.

Vater, Johannes, Lars Harscheidt, and Alois Knoll (2019). “Smart manufacturing with prescriptive
analytics”. In: 2019 8th International Conference on Industrial Technology and Management (IC-
ITM). IEEE, pp. 224–228.

Vinyals, Oriol, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. (2019). “Grandmaster
level in StarCraft II using multi-agent reinforcement learning”. In: Nature 575.7782, pp. 350–354.

Volkanovski, Andrija, Borut Mavko, Tome Boševski, Anton Čauševski, and Marko Čepin (2008).
“Genetic algorithm optimisation of the maintenance scheduling of generating units in a power
system”. In: Reliability Engineering & System Safety 93.6, pp. 779–789.

Wang, Hanchao and Jun Huan (2019). “Agan: Towards automated design of generative adversarial
networks”. In: arXiv preprint arXiv:1906.11080.

92

https://doi.org/10.1109/MLSP.2010.5589003
https://doi.org/10.1109/MLSP.2010.5589003


Bibliography

Wang, Qin, Gabriel Michau, and Olga Fink (2019a). “Domain adaptive transfer learning for fault
diagnosis”. In: 2019 Prognostics and System Health Management Conference (PHM-Paris). IEEE,
pp. 279–285.

Wang, Qin, Cees Taal, and Olga Fink (2021). “Integrating expert knowledge with domain adaptation
for unsupervised fault diagnosis”. In: IEEE Transactions on Instrumentation and Measurement
71, pp. 1–12.

Wang, Ting-Chun, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro (2018).
“High-resolution image synthesis and semantic manipulation with conditional gans”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8798–8807.

Wang, Wei, Mingqiang Lin, Yongnian Fu, Xiaoping Luo, and Hanghang Chen (2020). “Multi-objective
optimization of reliability-redundancy allocation problem for multi-type production systems con-
sidering redundancy strategies”. In: Reliability Engineering & System Safety 193, p. 106681.

Wang, Wei, Yuan Sun, and Saman Halgamuge (2019b). “Improving MMD-GAN Training with Re-
pulsive Loss Function”. In: International Conference on Learning Representations. url: https:
//openreview.net/forum?id=HygjqjR9Km.

Wang, Yue, Xiaohua Zeng, Dafeng Song, and Nannan Yang (2019c). “Optimal rule design methodology
for energy management strategy of a power-split hybrid electric bus”. In: Energy 185, pp. 1086–
1099.

Wang, Yujie, Zhendong Sun, and Zonghai Chen (2019d). “Development of energy management system
based on a rule-based power distribution strategy for hybrid power sources”. In: Energy 175,
pp. 1055–1066.

Warde-Farley, David and Yoshua Bengio (2016). “Improving generative adversarial networks with
denoising feature matching”. In.

Wasserman, Larry (2013). All of statistics: a concise course in statistical inference. Springer Science
& Business Media.

Watkins, Christopher JCH and Peter Dayan (1992). “Q-learning”. In:Machine learning 8.3-4, pp. 279–
292.

Wei, Ermo, Drew Wicke, David Freelan, and Sean Luke (2018). “Multiagent soft q-learning”. In: 2018
AAAI Spring Symposium Series.

Wen, Ying, Yaodong Yang, Rui Luo, Jun Wang, and Wei Pan (2018). “Probabilistic Recursive Rea-
soning for Multi-Agent Reinforcement Learning”. In: International Conference on Learning Rep-
resentations.

Wen, Ying, Yaodong Yang, Rui Luo, Jun Wang, andWei Pan (2019). “Probabilistic recursive reasoning
for multi-agent reinforcement learning”. In: arXiv preprint arXiv:1901.09207.

Williams, Ronald J (1992). “Simple statistical gradient-following algorithms for connectionist rein-
forcement learning”. In: Machine learning 8.3-4, pp. 229–256.

Xiao, Lei, Sanling Song, Xiaohui Chen, and David W Coit (2016). “Joint optimization of production
scheduling and machine group preventive maintenance”. In: Reliability Engineering & System
Safety 146, pp. 68–78.

Xie, Sirui, Hehui Zheng, Chunxiao Liu, and Liang Lin (2018). “SNAS: stochastic neural architecture
search”. In: arXiv preprint arXiv:1812.09926.

Xie, Zhaoming, Patrick Clary, Jeremy Dao, Pedro Morais, Jonathan Hurst, and Michiel van de
Panne (2019). “Iterative Reinforcement Learning Based Design of Dynamic Locomotion Skills
for Cassie”. In: arXiv preprint arXiv:1903.09537.

Xiong, Rui, Jiayi Cao, and Quanqing Yu (2018). “Reinforcement learning-based real-time power man-
agement for hybrid energy storage system in the plug-in hybrid electric vehicle”. In: Applied
energy 211, pp. 538–548.

93

https://openreview.net/forum?id=HygjqjR9Km
https://openreview.net/forum?id=HygjqjR9Km


Bibliography

Xu, Tao, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, and Xiaodong He
(2018). “Attngan: Fine-grained text to image generation with attentional generative adversarial
networks”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1316–1324.

Xu, Xiaodong, Shengjin Tang, Chuanqiang Yu, Jian Xie, Xuebing Han, and Minggao Ouyang (2021a).
“Remaining Useful Life Prediction of Lithium-ion Batteries Based onWiener Process Under Time-
Varying Temperature Condition”. In: Reliability Engineering & System Safety 214, p. 107675.

Xu, Yue, Dechang Pi, Shengxiang Yang, and Yang Chen (2021b). “A novel discrete bat algorithm
for heterogeneous redundancy allocation of multi-state systems subject to probabilistic common-
cause failure”. In: Reliability Engineering & System Safety 208, p. 107338.

Yang, Duo, Xu Zhang, Rui Pan, Yujie Wang, and Zonghai Chen (2018a). “A novel Gaussian process
regression model for state-of-health estimation of lithium-ion battery using charging curve”. In:
Journal of Power Sources 384, pp. 387–395.

Yang, Jianwei, Anitha Kannan, Dhruv Batra, and Devi Parikh (2017). “Lr-gan: Layered recursive
generative adversarial networks for image generation”. In: arXiv preprint arXiv:1703.01560.

Yang, Tianyu, Yulin Hu, M Cenk Gursoy, Anke Schmeink, and Rudolf Mathar (2018b). “Deep rein-
forcement learning based resource allocation in low latency edge computing networks”. In: 2018
15th International Symposium on Wireless Communication Systems (ISWCS). IEEE, pp. 1–5.

Yang, Yaodong, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang (2018c). “Mean field
multi-agent reinforcement learning”. In: International Conference on Machine Learning. PMLR,
pp. 5571–5580.

Yang, Yaodong, Ying Wen, Jun Wang, Liheng Chen, Kun Shao, David Mguni, and Weinan Zhang
(2020). “Multi-agent determinantal q-learning”. In: International Conference on Machine Learn-
ing. PMLR, pp. 10757–10766.

Ye, Hao, Geo↵rey Ye Li, and Biing-Hwang Fred Juang (2019). “Deep reinforcement learning based
resource allocation for V2V communications”. In: IEEE Transactions on Vehicular Technology
68.4, pp. 3163–3173.

Yin, Yanling, Xuhui Bu, Panpan Zhu, and Wei Qian (2022). “Point-to-Point Consensus Tracking
Control for Unknown Nonlinear Multi-Agent Systems Using Data-Driven Iterative Learning”. In:
Neurocomputing.

Yin, Yilin and Song-Yul Choe (2020). “Actively temperature controlled health-aware fast charging
method for lithium-ion battery using nonlinear model predictive control”. In: Applied Energy
271, p. 115232.

Yuan, Shuo, Chengpu Yu, and Ping Wang (2022). “Suboptimal Linear Quadratic Tracking Control
for Multi-Agent Systems”. In: Neurocomputing.

Zhang, Han, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena (2019). “Self-Attention Gener-
ative Adversarial Networks”. In: International Conference on Machine Learning, pp. 7354–7363.

Zhang, Han, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dimitris
N Metaxas (2017). “Stackgan: Text to photo-realistic image synthesis with stacked generative
adversarial networks”. In: Proceedings of the IEEE international conference on computer vision,
pp. 5907–5915.

Zhang, Hanxiao and Yan-Fu Li (2021). “Robust optimization on redundancy allocation problems in
multi-state and continuous-state series-parallel systems”. In: Reliability Engineering & System
Safety, p. 108134.

Zhang, Kaiqing, Zhuoran Yang, and Tamer Başar (2021a). “Multi-agent reinforcement learning: A
selective overview of theories and algorithms”. In: Handbook of Reinforcement Learning and Con-
trol, pp. 321–384.

94



Bibliography

Zhang, Liang, Hao Zheng, Tao Wan, Donghan Shi, Ling Lyu, and Guowei Cai (2021b). “An inte-
grated control algorithm of power distribution for islanded microgrid based on improved virtual
synchronous generator”. In: IET Renewable Power Generation.

Zhang, Shuo, Rui Xiong, and Jiayi Cao (2016). “Battery durability and longevity based power man-
agement for plug-in hybrid electric vehicle with hybrid energy storage system”. In: Applied Energy
179, pp. 316–328.

Zhang, Tianhao, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu (2021c). “Fop: Factor-
izing optimal joint policy of maximum-entropy multi-agent reinforcement learning”. In: Interna-
tional Conference on Machine Learning. PMLR, pp. 12491–12500.

Zhang, Xi, Haicheng Tu, Jianbo Guo, Shicong Ma, Zhen Li, Yongxiang Xia, and Chi Kong Tse (2021d).
“Braess paradox and double-loop optimization method to enhance power grid resilience”. In:
Reliability Engineering & System Safety 215, p. 107913.

Zhang, Xiaoxiong, Song Ding, Bingfeng Ge, Boyuan Xia, and Witold Pedrycz (2021e). “Resource
allocation among multiple targets for a defender-attacker game with false targets consideration”.
In: Reliability Engineering & System Safety 211, p. 107617.

Zhang, Y., L. Guo, B. Gao, T. Qu, and H. Chen (2020). “Deterministic Promotion Reinforcement
Learning Applied to Longitudinal Velocity Control for Automated Vehicles”. In: IEEE Transac-
tions on Vehicular Technology 69.1, pp. 338–348.

Zheng, Fangdan, Jiuchun Jiang, Martha A Zaidan, Wei He, and Michael Pecht (2015). “Prognostics
of lithium-ion batteries using a deterministic Bayesian approach”. In: 2015 IEEE Conference on
Prognostics and Health Management (PHM). IEEE, pp. 1–4.

Zheng, Yan, Zhaopeng Meng, Jianye Hao, Zongzhang Zhang, Tianpei Yang, and Changjie Fan (2018).
“A deep bayesian policy reuse approach against non-stationary agents”. In: Proceedings of the
32nd International Conference on Neural Information Processing Systems, pp. 962–972.

Zhong, Zhao, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu (2018). “Practical block-wise neural
network architecture generation”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2423–2432.

Ziebart, Brian D (2010). “Modeling purposeful adaptive behavior with the principle of maximum
causal entropy”. In.

Zoph, Barret and Quoc V Le (2017). “Neural architecture search with reinforcement learning”. In:
International Conference on Learning Representations.

95




	Acknowledgments
	Introduction
	Motivation
	Research gaps and overriding research questions
	Aim and scope
	Background
	Proposed framework
	Contributions
	Real-time model calibration with reinforcement learning
	End-to-end load allocation with reinforcement learning
	Multi-agent coordination in mixed cooperative-competitive environments
	Effective and efficient black-box optimization via reinforcement learning

	Publications

	Real-time model calibration with reinforcement learning
	Introduction
	Preliminaries
	Reinforcement learning
	Maximum entropy RL.
	Stability guaranteed RL.

	Proposed framework
	Model calibration defined as a tracking problem
	State space and action space
	Learning algorithm

	Experiments
	Neural network architectures and hyper-parameters

	Results
	Ablation study

	Conclusions and future work

	End-to-End load allocation with reinforcement learning
	Introduction
	Related work
	Preliminaries
	Methodology
	Implications of the Gaussian policy
	Dirichlet policy
	Simplex regression experiment
	Soft Actor-Critic
	Hyperparameter setting

	Power allocation case study
	Simulation environment
	Results

	Conclusion

	Multi-agent coordination in mixed cooperative-competitive environments
	Introduction
	Related work
	Method
	Assumptions
	Markov game
	Time dynamical opponent model

	Multi-Agent Actor-Critic with time dynamical opponent model (TDOM-AC)
	Experiments
	Differential game
	Cooperative navigation
	Predator and prey

	Conclusion

	Effective and efficient black-box optimization via reinforcement learning
	Introduction
	Related work
	Preliminary
	Generative adversarial networks
	Reinforcement learning

	Problem formulation
	Motivation
	GANs architecture search formulated as MDP

	Off-policy RL for GANs architecture search
	RL for GANs architecture search
	Off-policy RL solver
	Implementation of E2GAN

	Experiments
	Dataset
	Search space
	Results

	Discussion
	Reward choice: IS and FID
	Reproducibility

	Conclusion

	Discussions
	Real-time model calibration with reinforcement learning
	End-to-end load allocation in real-time with reinforcement learning
	Multi-agent coordination in mixed cooperative-competitive environments
	Effective and efficient black-box optimization via reinforcement learning
	Proposed prescriptive maintenance and operation framework

	Conclusions
	Research objectives revisited
	Summary
	Limitations and outlook

	Bibliography

