
ETH Library

First three years of the
international verification of neural
networks competition (VNN-
COMP)

Journal Article

Author(s):
Brix, Christopher; Müller, Mark Niklas ; Bak, Stanley; Johnson, Taylor T.; Liu, Changliu

Publication date:
2023-06

Permanent link:
https://doi.org/10.3929/ethz-b-000617162

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
International Journal on Software Tools for Technology Transfer 25(3), https://doi.org/10.1007/s10009-023-00703-4

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-2496-6542
https://doi.org/10.3929/ethz-b-000617162
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10009-023-00703-4
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


International Journal on Software Tools for Technology Transfer (2023) 25:329–339
https://doi.org/10.1007/s10009-023-00703-4

EXPLANATION PARADIGMS LEVERAGING ANALYTIC INTUITION

Special Section: Introducing Explanation Paradigms Leveraging Analytic Intuition

First three years of the international verification of neural
networks competition (VNN-COMP)

Christopher Brix1 · Mark Niklas Müller2 · Stanley Bak3 · Taylor T. Johnson4 · Changliu Liu5

Accepted: 14 January 2023 / Published online: 30 May 2023
© The Author(s) 2023

Abstract
This paper presents a summary and meta-analysis of the first three iterations of the annual International Verification of Neural
Networks Competition (VNN-COMP), held in 2020, 2021, and 2022. In the VNN-COMP, participants submit software
tools that analyze whether given neural networks satisfy specifications describing their input-output behavior. These neural
networks and specifications cover a variety of problem classes and tasks, corresponding to safety and robustness properties
in image classification, neural control, reinforcement learning, and autonomous systems. We summarize the key processes,
rules, and results, present trends observed over the last three years, and provide an outlook into possible future developments.

Keywords Certified robustness · Adversarial robustness · Formal verification · Formal methods · Neural networks ·
Machine learning · Deep learning

1 Introduction

Neural networks are increasingly used in safety-critical ap-
plications [7, 24]. However, it has become apparent that they
are highly susceptible to adversarial examples [52], i.e., mi-
nor and possibly imperceptible input perturbations can cause
the output to change significantly. As such perturbations can
occur in the real world either at random or due to malicious
actors, it is of utmost importance to analyze the robustness
of deep learning based systems in a mathematically rigorous
manner before applying them in safety-critical domains. To

this end, a wide range of methods and corresponding soft-
ware tools have been developed [13, 17, 23, 25]. However,
with tools becoming ever more numerous and specialized,
it became increasingly difficult for practitioners to decide
which tool to use.

In 2020, the inaugural VNN-COMP was organized to
tackle this problem and allow researchers to compare their
neural network verifiers on a wide set of benchmarks. Ini-
tially conceived as a friendly competition with little stan-
dardization, it was increasingly standardized and automated
to ensure a fair comparison on cost-equivalent hardware us-
ing standardized formats for both properties and networks.

In this work, we outline this development, summarize key
rules and results, describe the high-level trends observed over
the last three years, and provide an outlook on possible future
developments.

2 Neural network verification

We consider the neural network verification problem de-
fined as follows: Given an input specification φ ⊆ Rdin , also
called pre-condition, an output specification ψ ⊆ Rdout , also
called post-condition, and a neural network N : Rdin �→ R

dout ,
we aim to prove that the pre-condition implies the post-
condition, i.e.,

∀x : x � φ⇒ N(x) � ψ, (1)

� C. Brix
brix@cs.rwth-aachen.de

M.N. Müller
mark.mueller@inf.ethz.ch

S. Bak
stanley.bak@stonybrook.edu

T.T. Johnson
taylor.johnson@vanderbilt.edu

C. Liu
cliu6@andrew.cmu.edu

1 RWTH Aachen University, Aachen, Germany
2 ETH Zurich, Zurich, Switzerland
3 Stony Brook University, Stony Brook, NY, USA
4 Vanderbilt University, Nashville, TN, USA
5 Carnegie Mellon University, Pittsburgh, PA, USA

Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-023-00703-4&domain=pdf
mailto:brix@cs.rwth-aachen.de
mailto:mark.mueller@inf.ethz.ch
mailto:stanley.bak@stonybrook.edu
mailto:taylor.johnson@vanderbilt.edu
mailto:cliu6@andrew.cmu.edu


330 C. Brix et al.

or provide a counterexample.
Inspired by the notation common in the SAT-solver com-

munity, we encode this problem by specifying a constraint
set describing an adversarial example, i.e.,

∃x : x � φ ∧ N(x) � ¬ψ. (2)

Therefore, we call instances where Equation (2) is satisfiable
and thus the property encoded by Equation (1) does not
hold SAT, and instances where Equation (2) is unsatisfiable
and the property encoded by Equation (1) has been shown
to hold UNSAT. Note that while it is possible to show SAT

by directly searching for counter-examples using adversarial
attacks [18, 34], these approaches are not complete, i.e., if
they are not successful in finding a counter-example this does
not imply that a property holds.

Example problems One particularly popular property is
the robustness to adversarial �∞-norm bounded perturbations
in image classification. There, the network N computes a nu-
merical score y ∈ Rdout corresponding to its confidence that
the input belongs to each of the dout classes for each in-
put x ∈ Rdin . The final classification c is then computed as
c = arg maxi N(x)i . In this setting, an adversary may want to
perturb the input such that the classification changes. There-
fore, the verification intends to prove that

arg maxi N(x ′)i = t,

∀x ′ ∈ {x ′ ∈ Rdin | ‖x − x ′‖∞ ≤ ε},

where t is the target class, x is the original image, and ε is
the maximal permissible perturbation magnitude. There, the
pre-condition φ describes the inputs an attacker can choose
from (φ = {x ′ ∈ Rdin | ‖x − x ′‖∞ ≤ ε}), i.e., an �∞-ball of
radius ε , and the post-condition ψ describes the output space
corresponding to a classification to the target class t (ψ =

{y ∈ Rdout | yt > yi,∀i � t}).
When neural networks are used as controllers, more com-

plex properties can be relevant. For example, in the ACAS
Xu setting [24], a neural controller gives action recommen-
dations based on the relative position and heading of the
controlled and intruder aircraft. There, we want to, e.g., en-
sure that for inputs D corresponding to the intruder aircraft
being straight ahead and heading our way, neither of the
evasive maneuvers “strong left” (SL) or “strong right” (SR)
is considered the worst option. More formally, we want to
verify that

arg miniN(x
′
)i � {SL,SR}, ∀x ′ ∈ D .

Here, we obtain a more complex, non-convex post-condition

ψ =Rdout\

(
{y ∈ Rdout | ySL < yi, ∀i � {SL,SR}}

∪ {y ∈ Rdout | ySR < yi, ∀i � {SL,SR}}
)
.

3 Competition goals

VNN-COMP is organized to further the following goals.

Define standards To enable practitioners to easily use
and evaluate a range of different verification approaches and
tools without substantial overhead, it is essential that all tools
can process both networks and specifications in a standard-
ized file format. To this end, the second iteration of the VNN-
COMP established such a standard. Problem specifications
(pre- and post-condition) are defined using the VNN-LIB [53]
format and neural networks are defined using the ONNX [3]
standard. In 2022, additionally, a standardized format for
counterexamples was introduced.

Facilitate verification tool comparison Every year,
dozens of papers are published on neural network verifi-
cation, many proposing not only new methods but also new
benchmarks. With authors potentially investing more time
into tuning their method to the chosen benchmarks, a fair
comparison between all these methods is difficult. VNN-
COMP facilitates such a comparison between a large number
of tools on a diverse set of benchmarks, using cost-equivalent
hardware, and test instances not available to participants. Let-
ting participants and industry practitioners propose a wide
range of interesting benchmarks, yields not only a ranking on
the problems typically used in the field, but also highlights
which tools are particularly suitable for more specialized
problems. Further, by ensuring a standardized installation
and evaluation process is in place, the comparison to a large
number of state-of-the-art tools for any publication is en-
abled.

Shape future work directions The visibility VNN-
COMP lends to the problems underlying the considered
benchmarks has the potential to raise their profile in the
community. As benchmarks are developed jointly by in-
dustry and academia, this constitutes a great opportunity to
shape future research to be as impactful as possible. Over the
last years, benchmarks have featured ever-increasing network
sizes (see Table 5), promoting scalability, more complex net-
works (including, e.g., residual [20] and max-pooling layers
[69]), promoting generalizability, and more complex specifi-
cations, enabling more interesting properties to be analyzed.

Springer



VNN-COMP first three years 331

Bring researchers together Both the rule and bench-
mark discussion phase during the lead-up to the competi-
tion, as well as the in-person presentation of results at the
Workshop on Formal Methods for ML-Enabled Autonomous
Systems (FoMLAS)1 provide participants with a great op-
portunity to meet fellow researchers and discuss the future
of the field. Further, the tool and benchmark descriptions
participants provide for the yearly report [2, 5, 36] serve as
an excellent summary of state-of-the-art methods, allowing
people entering the field to get a quick overview.

4 Overview of three years of VNN-COMP

In this section, we provide a high-level description of how
the VNN-COMP evolved from 2020 to 2022, listing all par-
ticipants and the final rankings in Table 4. Generally, perfor-
mance is measured on a set of equally weighted benchmarks,
each consisting of a set of related instances. Each instance
consists of a trained neural network, a timeout, and input
and output constraints. Below, we group benchmarks into
categories to enable a quicker comparison between years.

4.1 VNN-COMP 2020

The inaugural VNN-COMP2 [2] was held in 2020 as a
“friendly competition” with no winner. Its main goal was
to provide a stepping stone for future iterations by starting
the process of defining common problem settings and iden-
tifying possible avenues for standardization.

4.1.1 Benchmarks

Three benchmark categories were considered with only one
of the eight teams participating in all of them:

– Fully connected networks with ReLU activations – two
benchmarks, based on ACAS Xu and MNIST.

– Fully connected networks with sigmoid and tanh activation
functions – one benchmark, based on MNIST.

– Convolutional networks – two benchmarks, based on
MNIST and CIFAR10.

4.1.2 Evaluation

Teams evaluated their tools using their own hardware. While
this simplified the evaluation process, it made the reported
results incomparable, due to the significant hardware differ-
ences. The teams reported that they used between 4 and 40
CPUs and between 16 and 756 GB of RAM.

1 https://fomlas2022.wixsite.com/fomlas2022.
2 https://sites.google.com/view/vnn20/vnncomp.

4.2 VNN-COMP 2021

Based upon the insights gained in 2020, the second iteration
of VNN-COMP3 was organized with a stronger focus on
comparability between the participating tools [5].

4.2.1 Benchmarks

Teams were permitted to propose one benchmark with a to-
tal timeout of at most six hours, split over its constituting
instances. Networks were defined in the ONNX format [3] and
problem specifications were given in the VNN-LIB format
[53]. To prevent excessive tuning to specific benchmark in-
stances, benchmark proposers were encouraged to provide a
script enabling the generation of new random instances for
the final tool evaluation. However, teams were allowed to
tune their tools for each benchmark, using the initial set of
benchmark instances.

In 2021, the benchmarks could be split into the following
categories, with multiple teams participating in all of them:

– Fully connected networks with ReLU activations – two
benchmarks, based on ACAS Xu and MNIST.

– Fully connected networks with sigmoid activations – one
benchmark, based on MNIST.

– Convolutional networks – three benchmarks, based on
CIFAR10.

– Networks with max-pooling layers – one benchmark,
based on MNIST.

– Residual networks – one benchmark, based on CIFAR10.
– Large networks with sparse matrices – one benchmark,

based on database indexing.

4.2.2 Evaluation

To allow for comparability of results, all tools were evaluated
on equal-cost hardware using Amazon Web Services (AWS).
Each team could decide whether they wanted their tool to be
evaluated on a CPU-focused r5.12xlarge or a GPU-focused
p3.2xlarge instance (see Table 1 for more details). Further,
instead of providing results and runtimes themselves, teams
had to prepare scripts automating the installation and execu-
tion of their tools. After the submission deadline, the orga-
nizers installed and evaluated each tool using the provided
scripts. In many cases, this process required some debugging
in a back and forth between the organizers and teams.

Scoring For every benchmark, 10 points were awarded for
correctly showing the instance to be SAT/UNSAT, with a 100
point penalty for incorrect results (see Table 2). A simple
adversarial attack was used to identify “easy” SAT instances,

3 https://sites.google.com/view/vnn2021.

Springer

https://fomlas2022.wixsite.com/fomlas2022
https://sites.google.com/view/vnn20/vnncomp
https://sites.google.com/view/vnn2021


332 C. Brix et al.

Table 1 Available AWS
instances 2021 2022 vCPUs RAM [GB] GPU

r5.12xlarge ✓ ✗ 48 384 ✗

p3.2xlarge ✓ ✓ 8 61 V100 GPU with 16 GB memory
m5.16xlarge ✗ ✓ 64 256 ✗

g5.8xlarge ✗ ✓ 32 128 A10G GPU with 24 GB memory
t2.large ✗ ✓ 2 8 ✗

Table 2 Points per instance in 2021. SAT instances were split into
simple and complex, based on whether a simple adversarial attack was
successful

Ground truth Returned result

SAT UNSAT Other

SAT, simple +1 −100 0
SAT, complex +10 −100 0
UNSAT −100 +10 0

on which the available points were reduced from 10 to 1.
If tools reported contradicting results on an instance, the
ground truth was decided by a majority vote. Bonus points
were awarded to the fastest two tools on every instance (two
points for the fastest and one point for the second fastest).
Runtimes differing by less than 0.2 seconds or below one
second were considered equal, so multiple teams could re-
ceive the two point bonus. To correct the notable differences
in startup overhead, e.g., due to the need to acquire a GPU,
it was measured as the runtime on a trivial instance and
subtracted from every runtime. The benchmark score was
computed from the points obtained as discussed above by
normalizing with the maximum number of obtained points.
Consequently, the tool with the most points was assigned a
score of 100%. The total competition score was simply the
sum of the per benchmark scores, corresponding to equal
weighting.

Results In 2021, 12 teams participated in the competi-
tion. α-β-CROWN won first place, followed by VeriNet in
second, and ERAN/OVAL in third, depending on the over-
head measurement and voting scheme used to determine
result-correctness. Except for VeriNet, they all used the GPU
instance.

4.3 VNN-COMP 2022

In the most recent iteration of VNN-COMP4 [36], the eval-
uation was fully automated, allowing the number of bench-
marks to be increased.

4 https://sites.google.com/view/vnn2022.

4.3.1 Benchmarks

In 2022, each participating team could submit or endorse up
to two benchmarks, allowing industry practitioners to pro-
pose benchmarks without entering a tool. Each benchmark
had a total timeout of between three and six hours, with
randomization of instances being mandatory this year. Tool
tuning was still permitted on a per benchmark level and, in
practice, also per network using the network’s statistics.

The submitted benchmarks can be grouped into the fol-
lowing categories:

– Fully connected networks with ReLU activations – three
benchmarks, based on reinforcement tasks and MNIST.

– Fully connected networks in TLL format [14] – one bench-
mark.

– Large networks with sparse matrices – one benchmark,
based on database indexing and cardinality estimation.

– Convolutional networks – three benchmarks, based on
CIFAR10.

– Residual networks – two benchmarks, based on CIFAR10,
CIFAR100, and TinyImageNet.

– Complex U-Net networks with average-pooling and soft-
max – one benchmark based on image segmentation.

4.3.2 Evaluation

Similar to the previous year, teams could choose between a
range of AWS instance types (see Table 1) providing a CPU,
GPU, or mixed focus. Except for the much weaker t2.large
instance, all instances were priced at around three dollars per
hour. In contrast to 2021, when organizers had to manually
execute installation scripts and debug with the participants,
an automated submission and testing pipeline was set up.
Teams could submit their benchmarks and tools via a web
interface by specifying a git repository, commit hash, and
post-installation script (enabling, e.g., the acquisition of li-
censes). This triggered a new AWS instance to be spawned
where all installation scripts were executed. If the installation
succeeded, the tool was automatically evaluated on a previ-
ously selected set of benchmarks before the instance was
terminated again. To enable debugging by the participants,
all outputs were logged and made accessible live via the
submission website, allowing them to monitor the progress.

Springer

https://sites.google.com/view/vnn2022


VNN-COMP first three years 333

Fig. 1 Cactus plot for all tools
in the VNN-COMP 2022 across
all benchmarks

Table 3 Points per instance in 2022

Ground truth Returned result

SAT UNSAT Other

SAT +10 −100 0
UNSAT −100 +10 0

This automation allowed each team to perform as many tests
as necessary without the need to wait for feedback from the
organizers. Furthermore, teams could test on the same AWS
instances used during final evaluation without having to pay
for their usage, with the costs kindly covered by the SRI Lab
of ETH Zurich.

Scoring Unlike during the VNN-COMP 2021, SAT in-
stances were not divided into simple and complex for scoring
purposes, leading to 10 points being awarded for all correct
results (see Table 3). Further, instead of relying on a voting
scheme to determine the ground truth in the presence of dis-
sent among tools, the burden of proof was placed on the tool
reporting SAT, requiring them to provide a concrete counter-
example. If no valid counter-example was provided, the cor-
responding tool was judged to be incorrect and awarded the
100 point penalty.

Results Out of the eleven participating teams, α-β-
CROWN placed first, MN-BaB second, and VeriNet third.
For a comparison of all participating tools across all bench-
marks, see Fig. 1.

5 Comparison across the years

In Table 4, we list all tools participating in any iteration of
the VNN-COMP and refer the interested reader to the corre-
sponding VNN-COMP report for a short description of the
tools. In Table 5, we compare the scope of the competition
across the last three years. As can be seen, the number, va-
riety, complexity, and scale of benchmarks increased with

every iteration. Starting with 5 benchmarks covering simple
fully connected (FC) and convolutional (Conv) networks in
2020, the 2022 competition saw 12 benchmarks including
a range of complex residual and U-Net architectures with
up to 140 million parameters. Further, we believe that the
increasing number of registered tools clearly shows that the
interest in both the field in general and the competition in
particular is growing year by year. However, the large and in-
creasing discrepancy between registered and submitted tools
might indicate that many teams feel like they are not able to
invest the significant effort required to support not only the
standardized network and specification formats, but also the
wide variety of different benchmarks. As tools are ranked
by their total score, with each benchmark providing a score
of up to 100%, the final ranking is biased towards tools that
support all benchmarks. While we believe that this is a valu-
able incentive for tool developers to develop methods that
can be easily applied to new problems, it might be daunting
for new teams to implement all necessary features, deterring
them from participating at all.

Successful trends While all teams started out using only
CPUs in 2020, only one of the top four teams relied solely on
CPUs in 2021, and all top three teams chose GPU instances in
2022. This transition enabled both the more efficient evalua-
tion of simple bound propagation methods such as DeepPoly
[50], CROWN [67], and IBP [19], and approximate solutions
of the linear programming (LP) problems arising during ver-
ification [15, 60, 63]. Similarly, the top two teams in 2021
and all top three teams in 2022 relied on a branch-and-bound
(BaB) based approach, recursively breaking down the ver-
ification problem into easier subproblems until it becomes
solvable, thus effectively enabling the use of GPUs to solve
tighter mixed integer linear programming (MILP) encodings
of the verification problem [11, 15, 60, 66]. Both top two
teams in the most recent iteration combined this approach
with additional multi-neuron [15] and solver-generated cut-
ting plane constraints [66], first introduced by the 3rd place
ERAN in 2021 [38]. We thus conclude that successful tools
leverage hardware accelerators such as GPUs to efficiently
handle tight (MI)LP encodings of the verification problem.

Springer



334 C. Brix et al.

Table 4 Participating tools

Tool Organization Participation, place References

2020 [2] 2021 [5] 2022 [36]

α-β-CROWN Carnegie Mellon, Northeastern,
Columbia, UCLA

✗ ✓(1/12) ✓(1/11) [62, 63, 68]

AveriNN Kansas State University ✗ ✗ ✓(11/11) N/A
CGDTest University of Waterloo ✗ ✗ ✓(5/11) N/A
Debona RWTH Aachen University ✗ ✓(6/12) ✓(8/11) [9]
DNNF University of Virginia ✗ ✓(12/12) ✗ [47]
ERAN ETH Zurich, UIUC ✓ ✓(3/12) ✗ [38, 44, 48–51]
FastBatLLNN University of California ✗ ✗ ✓(9/11) N/A
Marabou Hebrew University of Jerusalem, Stanford

University, Amazon Web Services, NRI
Secure

✗ ✓(5/12) ✓(7/11) [26]

MIPVerify Massachusetts Institute of Technology ✓ ✗ ✗ [54]
MN-BaB ETH Zurich ✗ ✗ ✓(2/11) [15]
nnenum Stony Brook University ✓ ✓(8/12) ✓(4/11) [4]
NNV Vanderbilt University ✓ ✓(9/12) ✗ [55–58, 61]
NV.jl Carnegie Mellon, Northeastern ✗ ✓(10/12) ✗ [29, 30]
Oval University of Oxford ✓ ✓(3/12) ✗ [10–12, 33, 40–42]
PeregriNN University of California ✓ ✗ ✓(6/11) [27]
RPM Stanford ✗ ✓(11/12) ✗ [59]
Venus Imperial College London ✓ ✓(7/12) ✗ [8, 28]
VeraPak Utah State University ✗ ✗ ✓(10/11) N/A
VeriNet Imperial College London ✓ ✓(2/12) ✓(3/11) [21, 22]

Table 5 Comparison across years

2020 2021 2022

Tools registered N/A 15 18
Tools submitted 8 13 11
Benchmarks submitted 5 8 (+1 unscored) 12 (+1 unscored)
Max. network depth 8 18 27
Max. network parameters 855,600 42,059,431 (sparse) 138,356,520
Activation functions ReLU, tanh, sigmoid ReLU, sigmoid, MaxPool,

AveragePool
ReLU, sigmoid, MaxPool

Layer types Fully Connected, Conv Fully Connected, Conv, Residual Fully Connected, Conv, Residual,
BatchNorm

Applications Image Recognition, Control Image Recognition, Control,
Database Indexing

Image Recognition, Control,
Database Indexing, Cardinality
Estimation

Mean #benchmarks/tool 3.0 (min 2, max 5) 5.5 (min 1, max 9) 7.3 (min 1, max 13)

6 Outlook

Below we discuss considerations that could enable future
iterations of the VNN-COMP to serve its goals and the com-
munity, discussed in Sect. 3, even better.

6.1 Tracking year-on-year progress

While we believe VNN-COMP already provides reasonable
mechanisms for comparing the tools submitted in every it-

eration, the changing benchmarks and tools make it hard
to track the year-on-year progress of the field as a whole.
Because some tools are heavily optimized for the specific
benchmarks of that year’s competition, simply evaluating
them on the benchmarks of previous (or future) years (even
if they support them) does not yield a meaningful progress
metric. While one benchmark from the inaugural competi-
tion was included as an unscored extra benchmark in the
two following iterations (cifar2020), only few unsolved
instances remain, making it a very insensitive measure for

Springer



VNN-COMP first three years 335

further improvements. While including all benchmarks from
previous years in the (scored) benchmark selection would
place an undue burden on participants, choosing one partic-
ularly challenging, representative, and interesting benchmark
every year to be included as a (scored) extra benchmark in
future iterations might be a good compromise. Additionally,
a more restrictive stance on tool tuning could enable a much
more representative evaluation of new tools on old bench-
marks.

6.2 Tool tuning

Many of the most successful tools do not employ a single
verification strategy, but a whole portfolio of different modes,
all coming with different hyperparameters. Depending on
their choice, tool performance can vary significantly, making
it essential for practitioners to get their choice right when
applying these tools to new problems. However, this can
be highly challenging given the large number of parameters
and their complex interactions, especially without in-depth
knowledge of the tool.

For VNN-COMP, tuning tools was allowed explicitly on
a per-benchmark basis and implicitly on a per-network ba-
sis, enabling teams to showcase the maximum performance
of their tools. However, for future iterations, it might be in-
teresting to restrict tuning for some or all benchmarks to
encourage authors to develop autotuning strategies, making
the adaption of their tools to new problems much easier. This
could, for example, be implemented by not only generating
random specifications, but also random networks.

6.3 Batch processing

Every VNN-COMP benchmark consists of a set of instances
that, while typically related, are evaluated in isolation, with
the tool being terminated in between. Unfortunately, this
means that any startup overhead such as acquiring a GPU or
preprocessing the considered network is incurred for every
instance. This is in contrast to most practical settings where
a large number of input-output specifications are considered
for the same network. This discrepancy is accounted for by
measuring and subtracting this overhead from each individ-
ual runtime. However, not only is this overhead measurement
process flawed and introduces noise, but it can also dominate
the evaluation time for easy instances.

In future iterations, tools could be provided with a whole
batch of properties at once to more closely relate to their
typical application. Further, currently, timeouts are defined
per instance, making a strategy of always attempting verifica-
tion until timeout is optimal. However, in a practical setting,
recognizing instances where verification is likely to fail and
stopping early can significantly increase a method’s through-
put and thus utility. Switching to per benchmark timeouts for

the VNN-COMP would incentivize the development of ef-
fective heuristics towards this goal. Furthermore, tools could
benefit from proof-sharing approaches [16], where verified
sub-problems from one instance are reused for following
instances.

6.4 Continuous competition

In addition to a yearly VNN-COMP, tool submissions for the
most recent benchmark set could be accepted on a rolling
basis, made possible by the automated submission and eval-
uation process introduced this year. This would transform the
competition from a yearly snapshot of the current research
to a centralized repository of the state-of-the-art, updating as
teams submit new methods that they publish. However, if not
implemented with great care, this would enable tools to be
tuned on the evaluation instances before submission, leading
to a skewed comparison. Further, the question of funding the
required cloud compute remains open.

6.5 Soundness evaluation

An inherent requirement for neural network verifiers is that
they be sound, i.e., that they never claim a safety property
holds, when in fact it does not. However, assessing sound-
ness is difficult as the ground truth for VNN-COMP problem
instances is generally only known if it was shown to be SAT
with a valid counter-example. This is particularly problem-
atic when no instances in a benchmark are SAT and thus
returning UNSAT for every instance immediately can not be
demonstrated to be unsound. Requiring a certain portion of
instances of every benchmark to be SAT (in expectation),
could alleviate this issue. An interesting alternative avenue
to tackle this challenge is proof generation [39]. An extra
category could be introduced where tools are additionally
required or incentivized to provide a verifiable proof if they
claim a property is UNSAT.

While big soundness bugs are rare, few or none of the
submitted tools are floating point sound, i.e., even tools
that would be sound using exact arithmetic might become
unsound due to imprecisions introduced by floating-point
arithmetic. This is particularly pronounced if tools choose to
use single precision computations for performance reasons.
The sensitivity of different tools to such issues could be
evaluated on a benchmark specifically designed to uncover
floating point soundness issues.

6.6 Other competition modes

A dedicated falsifier category could be added to encourage
teams to develop and submit stronger attacks, going beyond
the standard adversarial attacks. Further, a meta-solver cate-
gory could be added to investigate whether approaches that

Springer



336 C. Brix et al.

heuristically pick from a range of methods, successful in
other domains [64], can significantly outperform individual
tools. However, it would need to be ensured that these tools
provide sufficient value over individual submissions, which
already combine different verification strategies.

6.7 Promote common tool development

Parsing large and complex VNN-LIB files or converting ONNX
files to other common formats can be time-consuming to
implement. While many teams implemented their own tools
to this end, available, open-source tools for the parsing of
VNN-LIB files [1] and the optimization of ONNX files (DNNV
[46]) should be highlighted and their continued development
encouraged.

6.8 Remaining challenges

We can broadly identify four groups of challenges in neural
network verification:

– Verifying relatively small but only weakly regularized net-
works, which requires an extraordinarily precise analysis,
can still be intractable with current methods.

– Scaling precise methods to medium-sized networks (e.g.,
small ResNets) and datasets (e.g., Cifar100 or TinyIma-
geNet) with a large number of neurons is challenging, as
the cost of branch-and-bound based algorithms scales ex-
ponentially with the required split depth, making branch-
ing decisions both harder and more important.

– Scaling verification to large networks (e.g., VGG-Net 16)
and datasets (e.g., ImageNet) in the presence of dense
input specifications requires particularly memory-efficient
implementations due to a large number of neurons.

– Verification outside of the classification setting is under-
explored leading to a lack of established approaches for
e.g., image segmentation or object detection.

Orthogonally, the training of certifiably robust networks re-
mains an open problem. Despite significant progress over
recent years [6, 19, 35, 37, 43, 45, 65], networks trained
specifically to exhibit provable robustness guarantees still
suffer from severely degraded standard accuracy. Therefore,
most benchmarks considered in the VNN-COMP are based
on networks trained without consideration for later certifi-
cation. More broadly in the community, readers may also
be interested in the International Competition on Verify-
ing Continuous and Hybrid Systems (ARCH-COMP)5 cate-
gory on Artificial Intelligence and Neural Network Control
Systems (AINNCS), which has been held annually since
2019 [31, 32], and considers neural network verification in
closed-loop systems.

5 https://cps-vo.org/group/ARCH/FriendlyCompetition.

7 Advice for participants

In this section, we provide some guidance for teams that are
interested in the VNN-COMP but have not participated yet.
Note that these are neither rules nor requirements.

7.1 For benchmark authors

The VNN-COMP intends to highlight areas where neural
network verification can be successfully applied, and to
showcase interesting differences between the participating
tools. Thus, ideally, tasks are not so hard that none of the
instances can be solved by any participant, but also not so
easy that every tool can solve all of them. For benchmarks
related to real-world applications, we recommend including
a detailed description of the background, to highlight the
benchmark’s relevance and the characteristics of the veri-
fication problem, e.g., sparseness of the input or some net-
work layers. Further questions and requests for modifications
should be expected while tool authors work on supporting
the proposed benchmark.

7.2 For tool authors

We recommend teams reference past benchmarks to test their
tool before the new benchmarks are submitted. Given the
ever-increasing diversity of submitted benchmarks, it may
not be feasible to support all benchmarks from the get-go.
If this is the case, we recommend focusing on the fully con-
nected and convolutional ReLU networks, which in the past
have covered a wide range of benchmarks, while minimizing
implementation effort. Some operations, e.g., max-pooling
can also be simplified to multiple ReLU layers using tools
such as DNNV [46]. Further, we recommend extensive test-
ing against adversarial attacks to minimize the chance for
soundness errors. For tools that are designed for very specific
problems, we also want to encourage authors to submit a rele-
vant benchmark highlighting this specialization. Finally, we
recommend reading publications associated with the well-
performing tools (see Table 4) to gain a better understanding
of the techniques used by successful teams.

8 Conclusions

In this report, we summarize the main processes and results
of the three VNN-COMP held so far from 2020 to 2022.
We highlight the growing interest in the field, expressed in
an increasing number of registered teams and considered
benchmarks, including some submitted by industry. Further,
we observe that every year, the size and complexity not only
of the considered networks, but also specifications grew,
driving and exemplifying progress in the field. Finally, we

Springer

https://cps-vo.org/group/ARCH/FriendlyCompetition


VNN-COMP first three years 337

highlight the increase in accessibility of verification methods
resulting from the standardized input and output formats and
the automated installation and evaluation process required
for participation in VNN-COMP.

Acknowledgements This material is based upon work supported by
the Air Force Office of Scientific Research and the Office of Naval Re-
search under award numbers FA9550-19-1-0288, FA9550-21-1-0121,
FA9550-22-1-0019, FA9550-22-1-0450, and N00014-22-1-2156, as
well the Defense Advanced Research Projects Agency (DARPA)
Assured Autonomy program through contract number FA8750-18-
C-0089, and the National Science Foundation (NSF) under grants
1911017, 2028001, 2220401, and 2220426. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the
United States Air Force, the United States Navy, DARPA, or NSF.

Funding Note Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Simple Adversarial Generator. https://github.com/stanleybak/
simple_adversarial_generator. Accessed: 2022-09-13

2. VNN-COMP2020 report. https://www.overleaf.com/project/
5f0c85e8d15dc10001749fa9. Accessed: 2022-08-28

3. Bai, J., Lu, F., Zhang, K., et al.: Onnx: open neural network ex-
change (2019). https://github.com/onnx/onnx

4. Bak, S.: Execution-guided overapproximation (ego) for improving
scalability of neural network verification (2020)

5. Bak, S., Liu, C., Johnson, T.: The second international verification
of neural networks competition (VNN-COMP 2021): summary
and results (2021). https://doi.org/10.48550/ARXIV.2109.00498

6. Balunovic, M., Vechev, M.T.: Adversarial training and prov-
able defenses: bridging the gap. In: 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis Ababam,
Ethiopia, April 26–30, 2020 (2020). https://openreview.net/forum?
id=SJxSDxrKDr

7. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B.,
Goyal, P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., Zhang,
X., Zhao, J., Zieba, K.: End to end learning for self-driving cars
(2016). https://doi.org/10.48550/ARXIV.1604.07316

8. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener,
R.: Efficient verification of neural networks via dependency anal-
ysis. In: Proceedings of the 34th AAAI Conference on Artificial
Intelligence (AAAI20). AAAI Press, Menlo Park (2020)

9. Brix, C., Noll, T.: Debona: decoupled boundary network analysis
for tighter bounds and faster adversarial robustness proofs. CoRR
(2020). arXiv:2006.09040 [abs]

10. Bunel, R., De Palma, A., Desmaison, A., Dvijotham, K., Kohli,
P., Torr, P.H., Kumar, M.P.: Lagrangian decomposition for neural
network verification. In: Conference on Uncertainty in Artificial
Intelligence (2020)

11. Bunel, R., Lu, J., Turkaslan, I., Kohli, P., Torr, P., Kumar, M.P.:
Branch and bound for piecewise linear neural network verification.
J. Mach. Learn. Res. 21, 1574–1612 (2020)

12. Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Mudigonda,
P.K.: A unified view of piecewise linear neural network verifi-
cation. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Infor-
mation Processing Systems, vol. 31, pp. 4795–4804. Curran As-
sociates, Red Hook (2018). https://proceedings.neurips.cc/paper/
2018/hash/be53d253d6bc3258a8160556dda3e9b2-Abstract.html

13. Ehlers, R.: Formal verification of piece-wise linear feed-forward
neural networks. In: International Symposium on Automated Tech-
nology for Verification and Analysis, pp. 269–286 (2017). https://
doi.org/10.1007/978-3-319-68167-2_19

14. Ferlez, J., Shoukry, Y.: AReN: assured ReLU NN architecture for
model predictive control of LTI systems. In: Proceedings of the
23rd International Conference on Hybrid Systems: Computation
and Control, HSCC ’20. ACM, New York (2020). https://doi.org/
10.1145/3365365.3382213

15. Ferrari, C., Müller, M.N., Jovanovic, N., Vechev, M.T.: Complete
verification via multi-neuron relaxation guided branch-and-bound.
In: 10th International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25–29, 2022 (2022). https://
openreview.net/forum?id=l_amHf1oaK

16. Fischer, M., Sprecher, C., Dimitrov, D.I., Singh, G., Vechev, M.T.:
Shared certificates for neural network verification. In: Shoham, S.,
Vizel, Y. (eds.) Computer Aided Verification – 34th International
Conference, CAV 2022, Proceedings, Part I, Haifa, Israel, Au-
gust 7–10, 2022. Lecture Notes in Computer Science, vol. 13371,
pp. 127–148. Springer, Berlin (2022). https://doi.org/10.1007/978-
3-031-13185-1_7

17. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaud-
huri, S., Vechev, M.T.: AI2: safety and robustness certification
of neural networks with abstract interpretation. In: 2018 IEEE
Symposium on Security and Privacy, SP 2018, Proceedings, San
Francisco, California, USA, 21–23 May 2018, pp. 3–18. IEEE
Comput. Soc., Los Alamitos (2018). https://doi.org/10.1109/SP.
2018.00058

18. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harness-
ing adversarial examples. In: Bengio, Y., LeCun, Y. (eds.) 3rd In-
ternational Conference on Learning Representations, ICLR 2015,
Conference Track Proceedings, San Diego, CA, USA, May 7–9,
2015 (2015). http://arxiv.org/abs/1412.6572

19. Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R., Qin, C., Uesato,
J., Arandjelovic, R., Mann, T.A., Kohli, P.: On the effectiveness of
interval bound propagation for training verifiably robust models.
CoRR (2018). arXiv:1810.12715 [abs]

20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image
recognition. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/
10.1109/CVPR.2016.90

21. Henriksen, P., Lomuscio, A.: Efficient neural network verification
via adaptive refinement and adversarial search. In: Proceedings of
the 24th European Conference on Artificial Intelligence (ECAI20)
(2020)

22. Henriksen, P., Lomuscio, A.: Deepsplit: an efficient splitting
method for neural network verification via indirect effect analy-
sis. In: Proceedings of the 30th International Joint Conference on
Artificial Intelligence (IJCAI21) (2021). https://doi.org/10.24963/
ijcai.2021/351

23. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verifica-
tion of deep neural networks. In: Majumdar, R., Kunčak, V. (eds.)
Computer Aided Verification, pp. 3–29. Springer, Cham (2017)

Springer

http://creativecommons.org/licenses/by/4.0/
https://github.com/stanleybak/simple_adversarial_generator
https://github.com/stanleybak/simple_adversarial_generator
https://www.overleaf.com/project/5f0c85e8d15dc10001749fa9
https://www.overleaf.com/project/5f0c85e8d15dc10001749fa9
https://github.com/onnx/onnx
https://doi.org/10.48550/ARXIV.2109.00498
https://openreview.net/forum?id=SJxSDxrKDr
https://openreview.net/forum?id=SJxSDxrKDr
https://doi.org/10.48550/ARXIV.1604.07316
http://arxiv.org/abs/arXiv:2006.09040
https://proceedings.neurips.cc/paper/2018/hash/be53d253d6bc3258a8160556dda3e9b2-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/be53d253d6bc3258a8160556dda3e9b2-Abstract.html
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1145/3365365.3382213
https://doi.org/10.1145/3365365.3382213
https://openreview.net/forum?id=l_amHf1oaK
https://openreview.net/forum?id=l_amHf1oaK
https://doi.org/10.1007/978-3-031-13185-1_7
https://doi.org/10.1007/978-3-031-13185-1_7
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/arXiv:1810.12715
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.24963/ijcai.2021/351
https://doi.org/10.24963/ijcai.2021/351


338 C. Brix et al.

24. Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer,
M.J.: Policy compression for aircraft collision avoidance systems.
In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference
(DASC), pp. 1–10 (2016). https://doi.org/10.1109/DASC.2016.
7778091

25. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Re-
luplex: An efficient SMT solver for verifying deep neural networks.
In: Majumdar, R., Kunčak, V. (eds.) Computer Aided Verification,
pp. 97–117. Springer, Cham (2017)

26. Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R.,
Shah, P., Thakoor, S., Wu, H., Zeljić, A., et al.: The Marabou frame-
work for verification and analysis of deep neural networks. In: Inter-
national Conference on Computer Aided Verification, pp. 443–452.
Springer, Berlin (2019)

27. Khedr, H., Ferlez, J., Shoukry, Y.: Effective formal verification
of neural networks using the geometry of linear regions. arXiv
preprint (2020). arXiv:2006.10864

28. Kouvaros, P., Lomuscio, A.: Towards scalable complete verifica-
tion of ReLU neural networks via dependency-based branching. In:
Proceedings of the 30th International Joint Conference on Artifi-
cial Intelligence (IJCAI21) (2021). https://doi.org/10.24963/ijcai.
2021/364

29. Liu, C., Arnon, T., Lazarus, C., Kochenderfer, M.J.: Neu-
ralverification.jl: algorithms for verifying deep neural networks.
In: ICLR 2019 Debugging Machine Learning Models Work-
shop (2019). https://debug-ml-iclr2019.github.io/cameraready/
DebugML-19_paper_22.pdf

30. Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., Kochender-
fer, M.J.: Algorithms for verifying deep neural networks. Found.
Trends Optim. 4(3–4), 244–404 (2021). https://doi.org/10.1561/
2400000035

31. Lopez, D.M., Althoff, M., Benet, L., Chen, X., Fan, J., Forets, M.,
Huang, C., Johnson, T.T., Ladner, T., Li, W., Schilling, C., Zhu,
Q.: Arch-comp22 category report: artificial intelligence and neural
network control systems (AINNCS) for continuous and hybrid
systems plants. In: Frehse, G., Althoff, M., Schoitsch, E., Guiochet,
J. (eds.) Proceedings of 9th International Workshop on Applied
Verification of Continuous and Hybrid Systems (ARCH22). EPiC
Series in Computing, vol. 90, pp. 142–184 (2022). https://doi.org/
10.29007/wfgr

32. Lopez, D.M., Musau, P., Tran, H.D., Dutta, S., Carpenter, T.J.,
Ivanov, R., Johnson, T.T.: Arch-comp19 category report: artifi-
cial intelligence and neural network control systems (ainncs) for
continuous and hybrid systems plants. In: Frehse, G., Althoff, M.
(eds.) ARCH19. 6th International Workshop on Applied Verifica-
tion of Continuous and Hybrid Systems. EPiC Series in Comput-
ing, vol. 61, pp. 103–119 (2019). https://doi.org/10.29007/rgv8

33. Lu, J., Kumar, M.P.: Neural network branching for neural network
verification. In: International Conference on Learning Representa-
tions (2020)

34. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: To-
wards deep learning models resistant to adversarial attacks. In:
6th International Conference on Learning Representations, ICLR
2018, Conference Track Proceedings, Vancouver, BC, Canada,
April 30–May 3, 2018 (2018). https://openreview.net/forum?id=
rJzIBfZAb

35. Mirman, M., Gehr, T., Vechev, M.T.: Differentiable abstract inter-
pretation for provably robust neural networks. In: Dy, J.G., Krause,
A. (eds.) Proceedings of the 35th International Conference on Ma-
chine Learning, ICML 2018, Stockholmsmässan, Stockholm, Swe-
den, July 10–15, 2018. Proceedings of Machine Learning Research,
vol. 80, pp. 3575–3583 (2018). http://proceedings.mlr.press/v80/
mirman18b.html

36. Müller, M.N., Brix, C., Bak, S., Liu, C., Johnson, T.T.: The third
international verification of neural networks competition (VNN-
COMP 2022): summary and results (2022). https://doi.org/10.
48550/arXiv.2212.10376

37. Müller, M.N., Eckert, F., Fischer, M., Vechev, M.T.: Certified train-
ing: small boxes are all you need. CoRR (2022). https://doi.org/10.
48550/arXiv.2210.04871

38. Müller, M.N., Makarchuk, G., Singh, G., Püschel, M., Vechev,
M.: Prima: precise and general neural network certification via
multi-neuron convex relaxations. arXiv preprint (2021). arXiv:
2103.03638

39. Isac, O., Barrett, C., Zhang, M., Katz, G.: Neural network verifica-
tion with proof production. In: 22nd International Conference on
Formal Methods in Computer-Aided Design (FMCAD) (2022)

40. De Palma, A., Behl, H.S., Bunel, R., Torr, P.H.S., Kumar, M.P.:
Scaling the convex barrier with active sets. In: 9th International
Conference on Learning Representations, ICLR 2021, Conference
Track Proceedings, May 3–7, 2021 (2021). https://openreview.net/
forum?id=uQfOy7LrlTR

41. De Palma, A., Behl, H.S., Bunel, R., Torr, P.H.S., Kumar, M.P.:
Scaling the convex barrier with sparse dual algorithms. CoRR
(2021). https://doi.org/10.48550/arXiv.2101.05844

42. De Palma, A., Bunel, R., Desmaison, Alban., Dvijotham, K., Kohli,
P., Torr, P.H.S., Kumar, M.P.: Improved branch and bound for
neural network verification via lagrangian decomposition. CoRR
(2021). https://doi.org/10.48550/arXiv.2104.06718

43. De Palma, A., Bunel, R., Dvijotham, K., Kumar, M.P., Stan-
forth, R.: IBP regularization for verified adversarial robustness via
branch-and-bound. (2022). https://doi.org/10.48550/arXiv.2206.
14772

44. Serre, F., Müller, C., Singh, G., Püschel, M., Vechev, M.: Scaling
polyhedral neural network verification on GPUs. In: Proc. Machine
Learning and Systems (MLSys) (2021)

45. Shi, Z., Wang, Y., Zhang, H., Yi, J., Hsieh, C.: Fast cer-
tified robust training with short warmup. In: Ranzato, M.,
Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan, J.W.
(eds.) Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Sys-
tems 2021, NeurIPS 2021, Virtual, December 6–14, 2021,
pp. 18335–18349 (2021). https://proceedings.neurips.cc/paper/
2021/hash/988f9153ac4fd966ea302dd9ab9bae15-Abstract.html

46. Shriver, D., Elbaum, S., Dwyer, M.B.: DNNV: a framework for
deep neural network verification. In: Silva, A., Leino, K.R.M.
(eds.) Computer Aided Verification, pp. 137–150. Springer, Cham
(2021)

47. Shriver, D., Elbaum, S.G., Dwyer, M.B.: Reducing DNN prop-
erties to enable falsification with adversarial attacks. In: 43rd
IEEE/ACM International Conference on Software Engineering,
ICSE 2021, Madrid, Spain, 22–30 May 2021, pp. 275–287. IEEE
(2021). https://doi.org/10.1109/ICSE43902.2021.00036

48. Singh, G., Ganvir, R., Püschel, M., Vechev, M.: Beyond the sin-
gle neuron convex barrier for neural network certification. In:
Advances in Neural Information Processing Systems, vol. 32,
pp. 15098–15109. Curran Associates, Red Hook (2019)

49. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.:
Fast and effective robustness certification. In: Bengio, S., Wal-
lach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Gar-
nett, R. (eds.) Advances in Neural Information Processing
Systems, vol. 31, pp. 10802–10813. Curran Associates, Red
Hook (2018). http://papers.nips.cc/paper/8278-fast-and-effective-
robustness-certification.pdf

50. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract do-
main for certifying neural networks. Proc. ACM Program. Lang.
3(POPL), 41:1–41:30 (2019)

51. Singh, G., Gehr, T., Püschel, M., Vechev, M.: Boosting robustness
certification of neural networks. In: Proc. International Conference
on Learning Representations (ICLR) (2019)

52. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D.,
Goodfellow, I.J., Fergus, R.: Intriguing properties of neural net-
works. In: Bengio, Y., LeCun, Y. (eds.) 2nd International Confer-
ence on Learning Representations, ICLR 2014, Conference Track

Springer

https://doi.org/10.1109/DASC.2016.7778091
https://doi.org/10.1109/DASC.2016.7778091
http://arxiv.org/abs/arXiv:2006.10864
https://doi.org/10.24963/ijcai.2021/364
https://doi.org/10.24963/ijcai.2021/364
https://debug-ml-iclr2019.github.io/cameraready/DebugML-19_paper_22.pdf
https://debug-ml-iclr2019.github.io/cameraready/DebugML-19_paper_22.pdf
https://doi.org/10.1561/2400000035
https://doi.org/10.1561/2400000035
https://doi.org/10.29007/wfgr
https://doi.org/10.29007/wfgr
https://doi.org/10.29007/rgv8
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
http://proceedings.mlr.press/v80/mirman18b.html
http://proceedings.mlr.press/v80/mirman18b.html
https://doi.org/10.48550/arXiv.2212.10376
https://doi.org/10.48550/arXiv.2212.10376
https://doi.org/10.48550/arXiv.2210.04871
https://doi.org/10.48550/arXiv.2210.04871
http://arxiv.org/abs/arXiv:2103.03638
http://arxiv.org/abs/arXiv:2103.03638
https://openreview.net/forum?id=uQfOy7LrlTR
https://openreview.net/forum?id=uQfOy7LrlTR
https://doi.org/10.48550/arXiv.2101.05844
https://doi.org/10.48550/arXiv.2104.06718
https://doi.org/10.48550/arXiv.2206.14772
https://doi.org/10.48550/arXiv.2206.14772
https://proceedings.neurips.cc/paper/2021/hash/988f9153ac4fd966ea302dd9ab9bae15-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/988f9153ac4fd966ea302dd9ab9bae15-Abstract.html
https://doi.org/10.1109/ICSE43902.2021.00036
http://papers.nips.cc/paper/8278-fast-and-effective-robustness-certification.pdf
http://papers.nips.cc/paper/8278-fast-and-effective-robustness-certification.pdf


VNN-COMP first three years 339

Proceedings, Banff, AB, Canada, April 14–16, 2014 (2014). http://
arxiv.org/abs/1312.6199

53. Tacchella, A., Pulina, L., Guidotti, D., Demarchi, S.: The verifica-
tion of neural networks library (VNN-LIB) (2019). https://www.
vnnlib.org

54. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural
networks with mixed integer programming. In: ICLR (2019)

55. Tran, H.D., Bak, S., Xiang, W., Johnson, T.T.: Verification of
deep convolutional neural networks using imagestars. In: 32nd
International Conference on Computer-Aided Verification (CAV).
Springer, Berlin (2020)

56. Tran, H.D., Musau, P., Lopez, D.M., Yang, X., Nguyen, L.V., Xi-
ang, W., Johnson, T.T.: Parallelizable reachability analysis algo-
rithms for feed-forward neural networks. In: Proceedings of the 7th
International Workshop on Formal Methods in Software Engineer-
ing (FormaliSE’19), FormaliSE ’19, pp. 31–40. IEEE Press, Pis-
cataway (2019). https://doi.org/10.1109/FormaliSE.2019.00012

57. Tran, H.D., Musau, P., Lopez, D.M., Yang, X., Nguyen, L.V., Xi-
ang, W., Johnson, T.T.: Star-based reachability analysis for deep
neural networks. In: 23rd International Symposium on Formal
Methods (FM’19). Springer, Berlin (2019)

58. Tran, H.D., Yang, X., Lopez, D.M., Musau, P., Nguyen, L.V., Xi-
ang, W., Bak, S., Johnson, T.T.: NNV: the neural network verifi-
cation tool for deep neural networks and learning-enabled cyber-
physical systems. In: 32nd International Conference on Computer-
Aided Verification (CAV) (2020)

59. Vincent, J.A., Schwager, M.: Reachable polyhedral marching
(RPM): a safety verification algorithm for robotic systems with
deep neural network components (2021)

60. Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.J., Kolter,
Z.: Beta-CROWN: efficient bound propagation with per-neuron
split constraints for complete and incomplete neural network veri-
fication. arXiv preprint (2021). arXiv:2103.06624

61. Xiang, W., Tran, H., Johnson, T.T.: Output reachable set estimation
and verification for multilayer neural networks. IEEE Trans. Neural
Netw. Learn. Syst. 29(11), 5777–5783 (2018)

62. Xu, K., Shi, Z., Zhang, H., Wang, Y., Chang, K.W., Huang, M.,
Kailkhura, B., Lin, X., Hsieh, C.J.: Automatic perturbation analysis
for scalable certified robustness and beyond. In: Advances in Neural
Information Processing Systems, vol. 33 (2020)

63. Xu, K., Zhang, H., Wang, S., Wang, Y., Jana, S., Lin, X., Hsieh,
C.J.: Fast and complete: enabling complete neural network ver-
ification with rapid and massively parallel incomplete verifiers.
In: International Conference on Learning Representations (2021).
https://openreview.net/forum?id=nVZtXBI6LNn

64. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla:
portfolio-based algorithm selection for SAT. J. Artif. Intell. Res.
32(1), 565–606 (2008)

65. Zhang, H., Chen, H., Xiao, C., Gowal, S., Stanforth, R., Li, B.,
Boning, D.S., Hsieh, C.: Towards stable and efficient training
of verifiably robust neural networks. In: 8th International Con-
ference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26–30, 2020 (2020). https://openreview.net/forum?
id=Skxuk1rFwB

66. Zhang, H., Wang, S., Xu, K., Li, L., Li, B., Jana, S., Hsieh,
C., Kolter, J.Z.: General cutting planes for bound-propagation-
based neural network verification. CoRR (2022). https://doi.org/
10.48550/arXiv.2208.05740

67. Zhang, H., Weng, T., Chen, P., Hsieh, C., Daniel, L.: Effi-
cient neural network robustness certification with general ac-
tivation functions. In: Bengio, S., Wallach, H.M., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Ad-
vances in Neural Information Processing Systems 31: An-
nual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, Montréal, Canada, December 3–8, 2018,
pp. 4944–4953 (2018). https://proceedings.neurips.cc/paper/2018/
hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html

68. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Ef-
ficient neural network robustness certification with general acti-
vation functions. Adv. Neural Inf. Process. Syst. 31, 4939–4948
(2018). https://arxiv.org/pdf/1811.00866.pdf

69. Zhou, C.: Computation of optical flow using a neural network. In:
IEEE 1988 International Conference on Neural Networks, vol. 2,
pp. 71–78 (1988). https://doi.org/10.1109/ICNN.1988.23914

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.

Springer

http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://www.vnnlib.org
https://www.vnnlib.org
https://doi.org/10.1109/FormaliSE.2019.00012
http://arxiv.org/abs/arXiv:2103.06624
https://openreview.net/forum?id=nVZtXBI6LNn
https://openreview.net/forum?id=Skxuk1rFwB
https://openreview.net/forum?id=Skxuk1rFwB
https://doi.org/10.48550/arXiv.2208.05740
https://doi.org/10.48550/arXiv.2208.05740
https://proceedings.neurips.cc/paper/2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html
https://arxiv.org/pdf/1811.00866.pdf
https://doi.org/10.1109/ICNN.1988.23914

