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Abstract
Compound structural identification for non-targeted screening of organic molecules in complex mixtures is commonly car-
ried out using liquid chromatography coupled to tandem mass spectrometry (UHPLC-HRMS/MS and related techniques). 
Instrumental developments in recent years have increased the quality and quantity of data available; however, using current 
data analysis methods, structures can be assigned to only a small fraction of compounds present in typical mixtures. We 
present a new data analysis pipeline, “MSEI”, that harnesses data science methodologies to improve structural identification 
capabilities from tandem mass spectrometry data. In particular, feature vectors for fingerprint calculation are found directly 
from tandem mass spectra, strongly reducing computational costs, and fingerprint comparison uses an optimised methodol-
ogy accounting for uncertainty to improve distinction between matching and non-matching compounds. MSEI builds on 
the identification of a small number of compounds through current state-of-the-art data analysis on UHPLC-HRMS/MS 
measurements and uses targeted training and tailored molecular fingerprints to focus identification to a particular molecular 
space of interest. Initial compound identifications are used as training data for a set of random forests which directly predict 
a custom 75-digit molecular fingerprint from a vectorised MS/MS spectrum. Kendrick mass defects (KMDs) for peaks 
as well as “lost” fragments removed during fragmentation were found to be useful information for fingerprint prediction. 
Fingerprints are then compared to potential matches from the PubChem structural database using Euclidean distance, with 
fingerprint digit weights determined using an SVM to maximise distance between matching and non-matching compounds. 
Potential matches are additionally filtered for hydrophobicity based on measured retention time, using a newly developed 
machine learning method for retention time prediction. MSEI was able to correctly assign > 50% of structures in a test 
dataset and showed > 10% better performance than current state-of-the-art methods, while using an order of magnitude less 
computational power and a fraction of the training data.

Keywords Structural identification · Tandem mass spectrometry · Machine learning · Liquid chromatography

Introduction

Identification of organic molecules in complex mixtures is 
a key question facing many scientific fields ranging from 
metabolomics to renewable energy, with samples from 
diverse sources including plants, blood, aerosols, soil, or 
biofuels. Ultra-high performance liquid chromatography 
coupled to high-resolution tandem mass spectrometry 

(UHPLC-HRMS/MS) is a widely used, sensitive method 
for analysis of these complex mixtures. This method first 
involves separation of the mixture by retention time using 
UHPLC, followed by high resolution mass spectrometric 
analysis of the compounds in each retention time window—
the “MS1” mass spectrum. Furthermore, a “parent ion” peak 
from each MS1 is selected for fragmentation (usually the 
most intense peak), followed by mass spectrometric analysis 
of the fragmentation products—the “MS2” or “fragment” 
mass spectrum. Instrumental developments over the past 
decades leading to high mass resolving power mean that 
the exact sum formula for hundreds or thousands of com-
pounds may be detected in a single sample [1, 2]; however, 
molecular structures can only be confidently assigned to a 
very small subset of these compounds [3, 4].
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Retention time reflects molecular structure and functional 
groups; however, retention time is poorly generalizable, and 
standards are not often readily available [5, 6]. Retention 
time is determined by partitioning between the hydrophobic 
stationary phase and the hydrophilic eluent and thus reflects 
a compound’s hydrophobicity [7], most commonly described 
using the n-octanol-water partition coefficients (XlogP). 
Currently, retention time and hydrophobicity are not widely 
used in molecular structure annotation. The development 
of machine learning algorithms to predict retention time 
and hydrophobicity based on molecular structure mean that 
retention time will be increasingly useful as an independent 
filter to complement mass spectral information and verify 
structural assignments [8–11].

Mass spectra and fragment mass spectra (MS1 and MS2) 
depend on molecular structure and functional groups and 
therefore contain information which can be used to assign 
compound identities. Fragment presence and intensity 
depend on ionization efficiency, collisional activation, 
energy transfer, kinetic shift, and dissociation, and can 
involve multi-step fragmentation and rearrangment; there-
fore, interpreting and predicting fragmentation spectra is 
challenging [12–14]. Similar fragment patterns generally 
indicate similar molecules or molecular subunits; however, 
to converse is not true: high molecular similarity does not 
necessarily lead to similar fragmentation patterns [15]. Some 
functional groups lead to characteristic neutral “lost frag-
ments”, while others do not cause characteristic losses; fur-
thermore, some losses, such as dehydration, can suppress 
additional losses [13]. Lost fragments can reflect molecu-
lar similarity better than detected fragments through their 
direct relationship to functional groups [16]. Although tan-
dem mass spectra contain a wealth of information reflect-
ing molecular structure, complex computational methods are 
needed to relate spectra to structure.

Numerous computational tools are available to process 
tandem mass spectral data and assign compound identities 
(see [4] for a detailed review of methodologies). Many com-
monly used and commercial methods compare measured 
fragmentation spectra to spectral databases. However, spec-
tral databases have limited numbers of compounds—orders 
of magnitude less than molecular structure databases. Spec-
tral matching is therefore often complemented by prediction 
of in silico fragmentation spectra for potential matches; this 
method is however computationally expensive, challeng-
ing and uncertain [4, 17]. Leading methodologies there-
fore mainly use measured fragmentation spectra to predict 
molecular substructures and construct a “fragmentation tree” 
[16], which is used to generate a molecular fingerprint that 
can be compared to candidate structures or molecular fami-
lies [18, 19]. Molecular substructures and families can addi-
tionally be investigated using the “Kendrick Mass Defect” 
[20, 21]. KMDs are used to group compounds based on the 

sum formula by selecting for repeating subunits known as 
bases, which can represent particular functional groups. 
Despite many advances in computational methodologies, 
state-of-the-art approaches are computationally intensive 
and can correctly assign < 40% of molecular structures [4, 
18], showing the potential for further improvements.

In this study, we present a data-driven approach to struc-
tural identification (“MSEI”: Molecular Structure Elucida-
tion using Integrated data science approaches), which uses 
integrated data science methodologies to predict molecular 
fingerprints directly from tandem mass spectra and to opti-
mise the comparison of predicted fingerprints to potential 
structural matches. MSEI uses a small number of initial 
compound identifications to train an ensemble of random 
forests to predict a tailored molecular fingerprint based on a 
vector representation of key features from UHPLC-HRMS/
MS measurements. Because MSEI is tailored to a subset 
of compounds of interest and directly predicts fingerprints 
from spectra, the approach requires much less computational 
power than equivalent methods, allowing both training and 
prediction to be conducted on a standard laptop. The pre-
dicted fingerprint is compared to potential matches using a 
weighted distance metric, with weights learnt using a sup-
port vector machine, to assign unknown structures with per-
formance exceeding currently available methods. Retention 
time, predicted using a newly developed machine learning 
method for estimation of hydrophobicity, is further used to 
filter potential structural matches. This manuscript presents 
the approach as a “proof of concept”, illustrating data sci-
ence techniques that could be used individually or together 
to improve current metholodogies for structural identifica-
tion or as the basis for a stand-alone data analysis pipeline.

Methods

UHPLC‑HRMS measurements

Prior to analysis, all samples (from the datasets in Table 1) 
were filtered using PTFE filters (0.22 �m). Blank runs were 
performed between each analysis and used for background 
subtraction. 13 C Vanillin ( 13C6C2H8O3 , 10 � M) was added 
to each sample before analysis to check the internal instru-
ment performance and measurement stability. The injec-
tion volume was 1 � L. The analysis was performed using 
a Thermo Scientific DionexTM Ultimate 3000 Series RS 
system (Thermo ScientificTM , Switzerland) consisting of a 
pump, a column compartment, and an auto-sampler. The 
chromatographic separation of compounds was carried out 
with the use of AccucoreTM RP-MS column (150 mm × 2.1 
mm, particle size 2.6 �m), from Thermo ScientificTM , with 
a Uniguard pre-column (Accucore RP-MS Defender Guards; 
2.1 × 10 mm, 2.6 �m). The following gradients were used 
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for mobile phase A (1 vol.% MeOH, 1 vol.% acetonitrile and 
0.02 vol.% formic acid in water) and mobile phase B (100 
vol.% MeOH): 1 % B (0–1 min) 1 to 99% B (1–6 min), 99% 
B (6–8 min), followed by an equilibration step and 99 to 1% 
B (8−8.2 min), 1% B (8.2–10 min). The flow rate was set to 
0.7 mLmin−1 , and the temperature of the column was kept 
constant at 323 K. A heated electrospray ionization source 
(H-ESI, 3 kV spray voltage) was used for the ionization of 
the analytes in positive and negative modes. Data acquisition 
was performed with a Thermo ScientificTM Q-ExactiveTM 
hybrid quadrupole-orbitrap mass spectrometer controlled by 
the Xcalibur 4.1 software. Mass spectra were acquired in full 
scan mode with an isolation window of 1 m/z from 50 to 
750 m/z. The resolution was 70,000 at m/z = 200. Raw mass 
spectral data files were collected in triplicate, including the 
blanks between each run.

Data preprocessing

The UHPLC-HRMS data was imported into the Compound-
DiscovererTM 3.2 software (Thermo ScientificTM , Switzer-
land) and processed with standard settings except for mass 
tolerance (set to 2.5 ppm). Chromatographic peaks detected 
in one of the input files but missing in others were checked 
by the Fill Gaps option. The sum formula was predicted 
based on exact mass and isotopic patterns and evaluated 
against MS/MS spectra. Only features yielding formulas 
available in ChemSpider database were used [22]. The iden-
tity of the compounds was determined whenever possible 

with mzCloud library of fragmentation spectra (MS/MS) 
[23], to be used as training data for the MSEI method.

The initial compound assignment with CompoundDis-
covererTM produces a data file containing a summary of all 
unique compounds present in the spectral dataset, including 
compounds with unknown structures. The purpose of this 
initial processing step is to (i) to identify “valid” spectra 
based on peak patterns, (ii) to have an initial assignment of 
sum formulas, and (iii) to provide initial identification for 
a subset of compounds, to be used as training and testing 
data. Key information taken from the compound identifica-
tion input file is compound name, sum formula, molecular 
weight, and the match quality determined by Compound 
Discover (for unknown compounds, only the sum formula 
and molecular weight are given). The output of any similar 
initial spectral processing software providing this key infor-
mation could be used.

Further data preprocessing is described in detail in the 
SI text (Section 1); only a brief overview of key points is 
given here. For all identified compounds, the PubChemPy 
package [24] was used to retrieve the isomeric and canoni-
cal SMILES, the IUPAC name, and the hydrophobicity 
(XlogP). UHPLC-HRMS/MS data (.mzML format) for the 
three datasets shown in Table 1 was imported into Python 
and matched to compound information from Compound-
DiscovererTM . Sum formulas for all MS1 and MS2 peaks in 
all datasets were determined.

The next stage of the preprocessing procedure involved 
two parts: (i) establishing a method to determine whether 
two MS2 spectra “match”, i.e. represent the same structure, 

Table 1  Summary of datasets used in this study. “# of compounds” 
describes the total number of compounds assigned a sum formula 
by Compound Discover. “# of compounds identified” is the number 
of compounds assigned a molecular structure by CompoundDiscov-
erer. “Well-matched compounds” are defined as having an mz-cloud 
match quality of ≥ 0.85 determined by CompoundDiscoverer. “Total 

# of MS2 spectra” is the total number of MS2 spectra collected, while 
“# of valid MS2 spectra” is the number of MS2 spectra identified as 
relating to a compound and assigned a sum formula, thus filtering out 
spectra which appear to be invalid (e.g. instrumental noise). Datasets 
are described further in [25, 26]

Name DiAcids Fallopia Ruthenium

Description Mixture of 
dicarboxylic acid 
standards

Compound mixture from catalytic 
hydrothermal near-critical lique- 
faction of Fallopia Japonica [25]

Compound mixture from Ruthenium 
catalyst at different stages during catalytic 
gasification of organic wastes [26]

# of .mzML files 12 39 22
# of compounds 13 947 1013
# of compounds identified 13 293 76
# of well-matched compounds 13 124 17
Min. molecular weight 104.0 58.0 114.1
Max. molecular weight 285.2 686.5 1493.1
Total # of MS2 spectra 10486 41280 44688
# of valid MS2 spectra 200 19750 1033
# of averaged MS2 spectra 63 4607 465
Av. # peaks per MS2 spectrum 22 19 58
Av. # peaks per av. MS2 spectrum 14 18 40
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(ii) applying this method to identify and aggregate matching 
spectra. To determine the similarity of two spectra, a radial 
basis function kernel is used to compare the measured mass-
to-charge ratios (mz) of all peaks in the two spectra, similar 
to the approached used by [27] (approach described in detail 
in the SI text (Sections 1 and 1.3):

where S1,2 is the similarity index for Spectrum 1 (i peaks) 
and Spectrum 2 (j peaks) where mz is the mass of each peak 
in the spectra. �mz is the estimated standard deviation in peak 
mass for repeated measurements of the same mass, expressed 
in ppm, and mzi−mzj

(mzi+mzj)∕2×10
6
 expresses the difference between 

peak masses in ppm. �mz was empirically determined to be 
1.4 ppm or 0.0002 amu, based on the repeatability of peak 
mass for peaks corresponding to the same sum formula in 
the DiAcids dataset, described in detail in the SI text (Sec-
tions 1 and 1.3).

The similarity index will approach 0 for spectra with no 
peaks in common, while for identical spectra, the similarity 
index will equal the number of peaks. The normalised simi-
larity index ( Snorm ) can be calculated to account for varying 
numbers of peaks in different spectra:

where S1,1 is the similarity of spectrum 1 with itself, thus 
giving the number of peaks in spectrum 1, and analogously 
for S2,2 . As a further indicator of similarity between two 
spectra, the number of peaks in common between the two 
spectra is determined, based on a threshold of 5 × �mz to 
determine if two peaks represent the same sum formula; this 
threshold is a robust measure of similar and different peaks 
as shown in Fig. S1. Unlike in [27], peak intensity is not 
used in the calculation of peak similarity, as intensity and 
relative intensity of peaks are much less reproducible than 
mass (see Fig. S5); peak masses are sufficient to distinguish 
between similar spectra in high resolution MS/MS.

An intercomparison of spectra with a high match qual-
ity, as labelled by CompoundDiscoverer, was carried out to 
characterise the spectral similarity index as a labelling tool 
for matching and non-matching spectra (see SI text, Sec-
tions 1 and 1.3). Significant overlap between normalised 
similarity index distributions for matching and non-matching 
spectra was found (Fig. S2). High spectral similarity was 
found to indicate at least moderately similar molecular struc-
tures (Fig. S4); however, high molecular similarity did not 
guarantee high spectral similarity. Ionization voltage and 

(1)S1,2 =

I�
i=1

J�
j=1

exp

⎛
⎜⎜⎜⎜⎝
−
1

8

�
mzi−mzj

mzi+mzj

2
×106

�2

�mz

⎞
⎟⎟⎟⎟⎠

(2)Snorm
1,2

=
S1,2

(S1,1)
0.5(S2,2)

0.5

analyte concentration did not play a clear role in determin-
ing spectral variability. A threshold to classify matching and 
non-matching spectra based on both the normalised similar-
ity index and the number of peaks in common between two 
spectra (Fig. S3) was defined as:

where Snorm
max

 is the intercept and corresponds approximately to 
the maximum normalised similarity possible for non-matching  
spectra (0.25), and a is the slope. An optimum value for a 
(0.01) was found empirically in order to minimise false positive 
matches while capturing most true positive matches (Fig. S3).

Spectra from the same molecular structure should be 
combined to: (i) identify and remove “noise” peaks which do 
not represent a true, reproducible fragment substructure, and 
(ii) aggregate true peaks to increase confidence in molecular 
weight and relative intensity, particularly for low intensity 
peaks. Equation 3 was used to identify groups of matching 
spectra, and clusters of peaks found across multiple spectra 
were averaged to produce a single spectrum from each group 
of matching spectra (SI text, Sections 1 and 1.3). Spectral 
averaging led to a reduction of 50–75% in the number of 
MS2 spectra and a reduction of one-third in the average 
number of peaks per MS2 spectrum (Table 1).

The final stage of preprocessing involved quality checking 
the data. All averaged spectra assigned to a particular com-
pound were intercompared. Compounds with more than one 
non-matching group of averaged spectra (e.g. spectra 1–3 
for compound Y match each other, as do spectra 4–5; how-
ever, 1–3 do not match 4–5) are flagged (Fig. S6), and only 
the largest group of matching spectra are used for further 
calculations. Retention time and hydrophobicity (XLogP) 
were also compared for all well-identified compounds 
(Fig. S7). We use hydrophobicities predicted using a graph 
neural network combined with multitask learning—whereby 
helper tasks are added to the model, such as related molecu-
lar properties, to improve generalization—as described in 
[11]. A sigmoid fit was used to estimate expected XLogP 
for all compounds based on measured retention time. All 
compound identifications where expected XLogP, predicted 
from retention time, did not match the compound XLogP 
were flagged as representing potential structural isomers.

Molecular fingerprints

Molecular fingerprints can be used to summarise molecular 
structure information in a machine readable format; however, 
there is no single “optimal” set of keys to generalise across 
all possible molecular structures [28]. We therefore created a 
molecular fingerprint tailored to the molecular structure space 
of interest in this study incorporating nine numeric identifiers 
(Table 2), in order to maximise discrimination between similar 

(3)Sthreshold = Snorm
max

− a ∗ n(peaks in common)
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molecules while avoiding computation for models of finger-
print digits which contain no information. Unlike most molec-
ular fingerprints [18, 29, 30], the nine digits are not binary 
but represent counts of certain functional units and therefore 
contain much more information than typical binary finger-
prints. For each molecular structure assigned by Compound-
Discoverer, identifiers (i–vi) were found using the Chem.
Fragments module from the rdkit package in Python 
[31]; identifier (vii) was found with the Chem.rdMolDe-
scriptors module from rdkit; and (viii and ix) were 
directly found from the canonical SMILES of the molecule 
based on repeated C units.

In addition to the nine selected count digits, all Molecular 
ACCess System (MACCS) keys that had at least a 95:5% 
split between major and minor values for the 382 unique 
molecular structures identified in the three datasets were 
used as digits of the molecular fingerprint. A total of 66 
of the available 167 MACCS keys fulfilled this condition.1 
MACCS keys were generated using the function GetMAC-
CSKeysFingerprint from the Chem.rdMolDe-
scriptors module in rdkit. A total of 75-digit molec-
ular fingerprints were determined for the 382 molecular 
structures assigned by CompoundDiscoverer.

Conversion of MS1 and MS2 spectra  
to an input data vector

Key information contained in each MS1-MS2 spectra was 
converted to a vector, to simplify input to machine learning 
algorithms for molecular fingerprint prediction. Peak rank-
ings were used to improve the comparability of input data 

vectors for different spectra, in order to compare fragment 
ions describing similar molecular structure information. 
Based on the priority ranking, key peak information (mz, 
intensity, relative intensity, number of C, H, O, N atoms in 
the peak sum formula, number of C, H, O, N atoms lost from 
the parent ion to form the fragment, KMD values for 9 key 
bases (see “Structural information represented by KMDs and 
lost fragments”)) was concatenated for peaks with priorities 
1 to 6 for each spectrum. Intensity was not directly used 
to rank peaks, as it is poorly reproducible between differ-
ent spectra (Fig. S5); therefore, intensity bands were used. 
For each of the averaged MS1-MS2 spectra from the three 
datasets, peaks were ranked in priority for vectorisation (see 
example in Table S1):

• Peaks with between 10% and 100% of the maximum 
intensity in the spectrum were ordered according to the 
mass of the lost fragment and for relative intensity bands 
of 1–10%, 0.1–1%, 0.01−0.1%, etc.

• A combined priority ranking based on intensity group 
and lost fragment mass was found.

• The parent ion peak was given priority of 1.
• All MS2 peaks with no assigned sum formula were not 

given a priority.

The combined peak ranking procedure ensures that peaks 
within a similar intensity range and representing a similar 
fragment loss from the parent ion are compared, as these 
peaks likely contain similar structural information, rather 
than simply comparing peaks with the same mass.

In addition to the information from the highest priority 
peaks, general information regarding lost fragment pres-
ence and absence was added to the input data vector repre-
senting each spectrum. For the 10 key lost fragments (see 
“Structural information represented by KMDs and lost frag-
ments”), the presence (true/false), as well as the mz, inten-
sity, and the relative intensity of the remaining fragment, 

Table 2  Description of the 75 digits used in the molecular fingerprint to create a machine-readable description of molecular structures. “Mini-
mum” and “maximum” refer to the minimum and maximum values found across the 382 identified molecular structures in the three datasets

Name Description Minimum Maximum

i n_Al_COO Number of aliphatic carboxyl groups 0 3
ii n_Ar_COO Number of aromatic carboxyl groups 0 2
iii n_Al_OH Number of aliphatic hydroxyl groups 0 5
iv n_Ar_OH Number of aromatic hydroxyl groups 0 3
v n_OH Number of hydroxyl groups 0 5
vi n_CO Number of carbonyl O groups, excluding COOH 0 2
vii n_ArRing Number of aromatic rings 0 4
viii longestchain Number of carbons in the longest unbranched carbon chain 1 20
ix backbone Length of the carbon backbone 1 26

MACCS 66 MACCS keys with 95:5% split between major and minor values 0 1

1 MACCS keys 50, 53, 54, 57, 66, 72, 74, 76, 82, 83, 89, 90, 91, 92, 
93, 95, 96, 98, 99, 100, 101, 104, 105, 108, 109, 110, 111, 112, 113, 
114, 115, 116, 117, 118, 121, 123, 125, 127, 128, 129, 131, 132, 136, 
137, 139, 140, 143, 144, 146, 147, 149, 150, 151, 152, 153, 154, 155, 
156, 157, 158, 159, 160, 161, 162, 163, 165.
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were added to the input data vector for each spectrum. For 
all 574 lost fragments identified in the three datasets, the 
presence (true/false) was recorded in the input data vector 
for each spectrum.

The final input data vector for each spectrum therefore 
contained information about peaks with priorities 1 to 6 and 
about peaks representing the 10 key fragment losses, as well 
as presence and absence of all identified lost fragments, and 
additionally the retention time and MS1 intensity of the par-
ent ion, totalling 772 input data features. All features of the 
input data matrix were rescaled to values between 0 and 1.

Selection of input data features to predict molecular 
fingerprint digits

The fingerprint labels (“Molecular fingerprints”) and the 
input matrix (“Conversion of MS1 and MS2 spectra to an 
input data vector”) were filtered so that no NaN values were 
present. Consistent averaged spectra with a match quality 
from CompoundDiscoverer of 0.85 and a match between 
measured retention time and compound hydrophobicity (SI 
text, Sections S1 and S1.4) were selected (1 051 spectra 
representing 190 unique compounds). The 190 unique com-
pounds were randomly split into train/validate (75%) and test 
(25%) datasets, and the spectra were then assigned to train/
validate and test groups. This ensured that molecular struc-
tures used for training and validation are not represented in 
the test dataset.

Each digit of the fingerprint, representing a different 
molecular subunit or functional group, was predicted sepa-
rately from the input data matrix using random forest (RF) 
and extreme gradient boosting (XGB) algorithms. These 
two methods were chosen for comparison as they perform 
well on non-linear classification and regression problems, 
have similar architecture, and can both provide feature 
importances to indicate which fingerprint digits are used 
to distinguish molecular structures. Classifiers were used 
for digits with ≤ 3 unique labels (sklearn.ensemble.
RandomForestClassifier or xgboost.XGB-
Classifier) and regressors for digits with > 3 labels 
(sklearn.ensemble.RandomForestRegressor 
or xgboost.XGBRegressor) (Table 2). The compounds 
in the train/validate dataset were split into training and vali-
dation datasets: for RF, out of bag sampling was used during 
training, and one quarter of compounds were used for vali-
dation, and for XGB, 4 cross-validation folds were applied. 
The procedure described below was repeated for each of the 
four folds, and the final results were averaged.

To select features relevant for prediction of each fin-
gerprint digit, the procedure recommend by [32] was fol-
lowed. Initially, all 772 input features were used, and the 
RF or XGB model was trained. The trained model was used 
to predict the validation data, and goodness of fit criteria 

were calculated (macro-averaged precision, recall, F1 score, 
micro-averaged F1 score). Feature importance was found 
using two methods: Gini importance, provided as an attrib-
ute of the trained classifier (classifier.feature_
importances_), or permutation importance, calculated 
with inspection.permutation_importance 
from the sklearn package. The least important 25% of 
features were flagged with an importance score of 1, and 
the next iteration was carried out without these features. The 
least important 25% of features in the second iteration was 
flagged with a score of 2, and iterations continued until one 
feature remained. Standard recursive feature elimination was 
not used (one feature removed per iteration) because of the 
large number of models this would entail for every digit and 
feature and the high intercorrelation between some features. 
The group of features giving the best F1 score (precision and 
recall compared when F1 scores were equal) were found for 
each fingerprint digit (Figs. 3 and S10).

Prediction of molecular fingerprints

The RF-G and XGB-G (random forest and extreme gradi-
ent boosting with Gini importance) models using the input 
data features selected as described in the previous subsec-
tion were optimised with hyperparameter tuning (SI text, 
Section S2). The models were then trained on the full train/
validate dataset and used to predict the test dataset for each 
digit of the fingerprint (Fig. S11). For regression models, 
output was rounded to the nearest integer, as these values 
represent counts of functional groups.

For all fingerprint digits predicted using classifica-
tion, the prediction probability was estimated using the 
predict_proba attribute of the classifier model from 
sklearn, which reports the number of votes for each class 
divided by the number of trees in the forest. This method 
cannot be used for regression models, thus the prediction 
quality for each unique value of each fingerprint digit was 
additionally calculated: the frequency of the value was found 
and used to estimate the probability of a true prediction (the 
prediction quality) for each value of the digit, according to 
Bayes’ theorem:

where P(A) is the frequency of the value, P(B) is the fre-
quency with which the value is predicted, P(B|A) is the 
probability that the value is predicted when it is true, i.e. the 
true positive rate, and thus P(A|B) is the prediction quality 
for the value of a digit, i.e. the probability that the digit has 
that value given a prediction of that value. The frequencies 
and prediction qualities for non-MACCS fingerprint digits 
are shown in Fig. S12.

(4)P(A|B) = P(A) × P(B|A)
P(B)
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Using fingerprint comparisons to rank and assign 
molecular structure matches

To assign structures based on the tailored molecular fin-
gerprints estimated using MS/MS spectra data with the 
RF-G model, the get_compounds function from the 
PubChemPy package was used to retrieve all compounds 
matching a sum formula from the PubChem molecular 
structure database. Hydrophobicity (logP) was estimated 
for all potential matches using the GNN+multitask method 
described in the SI (Section S1.4.1, [11]). The fingerprints 
for all potential matches were calculated, and the potential 
match fingerprints were compared to the spectrum finger-
print using the Tanimoto distance, as recommended by [33]. 
All potential matches with Tanimoto distance scores equal 
to or lower than the 200th match were retained; if there were 
less than 200 potential matches, all were retained.

The Tanimoto distance comparison does not weight 
fingerprint digits according to their importance in distin-
guishing matching and non-matching fingerprints. The 
importance of digits could be based on factors such as the 
uniqueness of the digit in identifying a molecular substruc-
ture or family or dependent on the prediction quality of the 
value or the digit, thus not easily estimated a priori. There-
fore, digit weights were derived using a linear support vector 
machine (SVM) to maximise the distance of matching and 
non-matching fingerprints from the theoretical hyperplane. 
For each spectrum in the train/validate dataset, the squared 
difference between each digit of the predicted fingerprint 
and each digit of the fingerprints of the potential matches 
was found. When the potential match structure was the same 
as the structure assigned to the spectrum by Compound-
Discoverer, the vector of squared differences was labelled 
“1”; when the structures did not match, the label of “2” 
was assigned. The resulting matrix of squared differences 
had 290 103 fingerprint comparisons for the 868 train/vali-
date spectra, with 859 comparisons labelled as matching. 
A linear SVM was trained on the fingerprint comparisons 
using the function sklearn.svm.SVC(kernel = 
‘linear’,C=1).fit() with a four-fold cross-valida-
tion procedure. The digit weights in each fold were retrieved 
with the attribute coef_, and mean weights across the 
four folds were found. Negative values should be avoided 
for the representation of weights; therefore, negative weights 
were set to 0, and the SVM procedure was repeated for all 
digits not yielding a negative weight. Up to three iterations 
were needed until no negative weights were found.

The SVM approach estimates weights for fingerprint 
digits but does not consider the prediction probability for 
each predicted digit value. Therefore, a further optimiza-
tion was carried out using the expectation values for the 
predicted fingerprints, instead of the integer predictions. 
For fingerprint digits predicted with classification, the 

prediction probability was used to find the expectation 
value, e.g. if the predicted value was 1 with a probability 
of 0.7, the expectation value was 0.7; if the predicted value 
was 0 with a probability of 0.9, the expectation value was 
0.1. The expectation value for fingerprint digits calculated 
using regression was taken as the predicted integer value, 
as this is the best value estimate given the input data. 
The differences between digits were found as described 
in the previous paragraph, using the expectation values 
for predicted digits and comparing to potential matches 
using squared differences for each digit. The SVM proce-
dure was repeated to determine optimal weights based on 
expectation value fingerprint comparisons.

Following optimisation of the digit weights, fingerprint 
comparisons for the train/validate, test, and unlabelled 
spectra datasets were carried out for potential matches 
using Tanimoto distance, Euclidean distance, Euclidean 
distance with SVM weights (hereafter “Weighted Euclid-
ean distance”), and Euclidean distance using expectation 
values with SVM-expectation value weights (hereafter 
“Weighted Euclidean distance with expectation values”) 
to measure fingerprint similarities.

The “match quality” for each potential match was esti-
mated based on (i) confidence in the fingerprint predic-
tion and (ii) the confidence with which the fingerprint 
comparison can be attributed to the “matching” class. For 
classification digits, the prediction probability of each 
digit was used as an estimate of confidence in the digit; 
for regression digits, where prediction probability could 
not be obtained, the prediction quality for the digit value 
was used to estimate the confidence. The mean confidence 
across the 75 digits was found to estimate the overall con-
fidence in the fingerprint ( Pfingerprint ), using optimised digit 
weights from the SVM. To estimate confidence in the fin-
gerprint match, the distributions of fingerprint similarities 
for matching and non-matching classes for the test dataset 
(Fig. 4) were approximated with Gaussian distributions. 
The probability that a calculated fingerprint similarity 
belongs to the matching class was found with:

where Pmatch−dist is the probability that a distance belongs to the 
“match” distribution, D is the distance between the predicted 
fingerprint and the potential match, Dmatch is the mean distance 
for matching fingerprints, and �match is the standard deviation 
of matching fingerprints distances (Fig. 4). Pnon−match−dist is 
calculated analogously. The probability that the distance is a 
match given Pmatch−dist and Pnon−match−dist is found using a 
Bayesian estimate as Pmatch =

Pmatch−dist

Pmatch−dist+Pnon−match−dist

 . The overall 
“match quality” was estimated as Pfingerprint × Pmatch.

(5)Pmatch−dist =
1

�match

√
2�

e
−

(D−Dmatch )
2

�match
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Results and discussion

Structural information represented by KMDs 
and lost fragments

Kendrick mass defects (KMDs) reflect molecular subunits 
and families and can therefore summarise key structural 
information from MS1/MS2 peak masses [20, 21]. We there-
fore investigated the potential of KMDs of MS1 and MS2 
peak masses to act as “features”—input for the machine 
learning models used to predict molecular properties repre-
sented as fingerprint digits. However, KMDs for many bases 
show strong correlations as they describe similar molecular 
subunits (Fig. 1). For example, strong correlation is seen 
between KMDs for bases CH2 , C 2H4 , and C 3H8 , which all 
describe the aliphatic carbon backbone of a molecule. Simi-
larly, KMDs for O, O 2 , C 2 O, and other oxygenated carbon 
bases all describe the oxygenation state of a molecule and 

the presence of C=O groups and thus show strong corre-
lations. The importance of these subunits can directly be 
seen in the DiAcids dataset fragmentation patterns, which 
consistently show CO2 losses. More complex C-O function-
alities including ring structures are described with KMD 
bases C 3H6 O, C 5H6 O, and C 2H4 O. Based on KMD inter-
correlations, nine KMD bases were selected which contain 
independent information about key molecular structures and 
substructures: CH2 , OCH2 , H 2 , CO2 , S, NH3 , C 3H6 O, C 5
H6 O, and CH4.

“Lost fragments”—the mass difference between the par-
ent ion and fragment ions—in MS2 spectra represent key 
molecular structure information and could also be useful 
features for molecular fingerprint prediction. A total of 574 
unique lost fragments were identified in the three datasets, 
and 10 key lost fragments were selected: the 7 most fre-
quent losses, as well as the smallest fragments H 2 and CO, 
and the non-oxygenated C 3H8 fragment. The most common 

Fig. 1  Correlations between KMD values for different bases seen for 
all fragment and parent ion peaks in the three datasets used in this 
study. The colour scale shows R 2 to indicate the strength of the cor-
relation. The diagonal shows a histogram of values for each KMD. 

Molecular patterns represented by three major KMD groupings are 
shown in grey at the left-hand side, and the nine KMD bases selected 
as input data are marked with asterixes
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lost fragments were CO2 , describing presence of a carboxyl 
or similar group, H 2 O, showing potential for dehydration, 
e.g. an OH group, and often involving H-rearrangement, and 
other small carbohydrate fragments (Fig. 2). Simultaneous 
losses of both CO2 and H 2 O as well as other small carbo-
hydrates within a single spectrum were more common than 
statistically predicted (Figs. 2c and S5), reflecting the occur-
rence of multiple-step fragmentation. Some double losses 
were less common than expected, for example H 2 losses 
occurred less often together with oxygenated fragments like 
CO, CO2 , and C 2O4.

Input data features for prediction of fingerprint 
digits

For each of the algorithms (RF and XGB) and each of 
the two importance measures (Gini (RF-G, XGB-G) and 
permutation (RF-P, XGB-P)), the optimum features used 
to predict each fingerprint digit were found from the maxi-
mum macro-averaged F1 score for the digit, while also 
accounting for no major drop in either precision or recall, 
as shown in Fig. S10. The performance with the chosen 
features was compared among the algorithms (Fig. S10 and 
S11, Table S2). The best performing models were the RF 
and the XGB with Gini importance (RF-G and XGB-G); 
moreover, the feature selection based on Gini importance 
was around ten times faster. RF-G, XGB-G, and XGB-P 
models chose similar number of features and around 2/3 of 
features in common. The RF-P model was less consistent 
with other models and chose significantly more features, 
whereby only around half of features were chosen in com-
mon with other models.

A summary of most common chosen features for the 
RF-G and XGB-G models is shown in Fig. 3. KMD values 
describe the molecular structure and functional groupings 
of peaks and were chosen as useful input data for a large 
proportion of fingerprint digits. KMDs and other informa-
tion were primarily chosen from peaks with priorities 1–4; 
lower priority peaks were rarely chosen as input, which may 
be due to the lower reproducibility of less intense peaks. The 
mz and relative intensity of the peak corresponding to a CO2 
loss was important for around a quarter of fingerprint digits 
in both RF-G and XGB-G models, showing the informa-
tion quality of this loss for predicting carboxyl structures in 
particular. The H 2 O loss was additionally chosen for many 
digits in the XGB-B model. Across most fingerprint digits 
in both RF-G and XGB-G models, retention time was a key 
input data feature; the strong relationship between retention 
time and hydrophobicity makes it an integrated descriptor 
of molecular structure (Fig. S7, [7, 8]).

Using the chosen features for each fingerprint digit, 
RF-G and XGB-G models were optimised (see SI Text Sec-
tion S2), trained on the train/validation dataset, and used to 
predict the test dataset. Both models performed similarly 
(Fig. S10); models were able to make very good predictions 
for many MACCS digits, but prediction of non-binary digits 
and particularly of the carbon branching structure (“back-
bone” and “longestchain” digits) was challenging. The fre-
quencies and prediction qualities for non-MACCS finger-
print digits using the RF-G model are shown in Fig. S12. 
The prediction of high OH and ring counts was challeng-
ing, likely due to the low frequency of these structures in 
training data and the difficulty of capturing high functional 
group counts in single fragments. Prediction quality of 

a) b) c)

Fig. 2  Most common fragmentation losses across the three datasets 
used in this study. a Sum formula and frequency of the 25 most com-
mon lost fragments. b For 10 key lost fragments (in bold in a), the 
percentage of spectra containing both fragment losses is shown. c The 
difference between measured and predicted simultaneous fragment 

losses. For example, CO
2
 is lost in 52% of spectra and H 

2
 O in 42% 

of spectra. If losses were independent we would expect intersection 
in 0.42 × 0.52 = 22 % of spectra. In (b), we see these losses occur in 
31% of spectra, thus a difference of +9% is shown in (c). In (b) and 
(c), the diagonal shows the frequency of each lost fragment
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even-numbered chain and backbone lengths is much higher 
than odd-number chain and backbone lengths, despite simi-
lar frequencies, suggesting less ambiguous fragmentation 
patterns for even-C-numbered molecular structures. Aver-
aged over the whole fingerprint, the RF-G model delivered 
1% better F1 scores than the XGB-G model and was thus 
selected for final fingerprint prediction.

Assigning molecular structures based on predicted 
fingerprints

The sum formulas for the spectra in the three datasets yielded 
between 29 (C9H4O5 ) and 10 912 (C13H16O3 ) potential 
matches from the PubChem database. The top 200 potential 
matches were initially selected using the Tanimoto distance 

to compare the predicted fingerprint with fingerprints for 
potential matches, as recommended by [33] (see “Using fin-
gerprint comparisons to rank and assign molecular structure 
matches”). Potential matches were additionally ranked using 
Euclidean, weighted Euclidean, and weighted Euclidean with 
expectation value methods. The distributions of similarities for 
fingerprints representing matching and non-matching molecu-
lar structures calculated with the different methods using the 
train/validate and the test datasets are shown in Fig. 4. The 
weighted Euclidean distances (with and without expectation 
values) perform best to distinguish fingerprints from match-
ing and non-matching structures compared to the Tanimoto 
distance and the unweighted Euclidean distance: the Tanimoto 
distance has 31% overlap between matching and non-matching 
distributions for the test set, compared to 29% overlap for the 

a) b)

Fig. 3  The top 25 input data features for molecular property (finger-
print digit) predictions are shown on the x-axis, ordered by averaged 
importance, and the colour scale indicates their final importance 
ranking for each of the molecular subunits shown on the y-axis. Red 
indicates the most important features and dark blue the least impor-
tant features. The black crosses mark features which were chosen 
for optimum model performance. The feature names are coloured: 
red text indicates KMD features (KMD-base-npeak where npeak is 

the peak priority ranking). Orange text indicates features relating to 
the priority ranked peaks (type-property-npeak, where type is “frag” 
for the measured fragment or “missfrag” for the lost fragment, and 
property is mz, atom (C, O, N, H) count, intensity, or relative inten-
sity). Green text indicates features relating to particular lost fragments 
(property-lostfragment). Asterixes below the feature names indicate 
that the feature can only be obtained from the MS2; other features are 
from the parent ion spectrum and thus can obtained from the MS1
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Euclidean distance, 19% overlap for the weighted Euclidean 
distance, and 15% overlap for the weighted Euclidean distance 
with expectation values.

The estimated weights for different fingerprint digits 
depended on a combination of prediction quality and digit 
class frequency (Fig. S13). Digits with low F1 scores did 
not receive high weights, but not all well-predicted digits 
were weighted highly. Digits where the majority value had a 

frequency of less than 50% were not highly weighted, and in 
general digits with an imbalanced split between classes were 
weighted more highly, as they were presumably able to encode 
“unique” features of particular molecules and molecular fami-
lies. The most highly weighted digits described small substruc-
tures within molecules related to branching and bonding pat-
terns and heteroatom positions (Fig. S13). Some digits in the 
fingerprint carry similar or overlapping information, such as 

Fig. 4  Fingerprint similarity for matching (blue) and non-matching 
(orange) structures calculated using different distance measures: Tan-
imoto, Euclidean, weighted Euclidean, and weighted Euclidean using 
expectation values. Dashed lines and bars show results for the train/

validate set; solid lines and filled bars show values for the test set. 
Left-hand panels show the density histogram and right-hand panels 
show the cumulative density histogram
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n_Al_OH and n_Ar_OH and n_OH, and some MACCS keys. 
In this case, we find low importances for all three OH-related 
digits. Despite this, we opt to retain digits describing similar 
or overlapping features: predictions are uncertain, particularly 
for non-binary digits; therefore, similar digits can still provide 
additional information.

The performance of the molecular structure assignment 
for each of the fingerprint distance calculation methods 
is summarised in Fig. 5a, and a detailed view of the best-
performing method (weighted Euclidean with expectation 
values) is shown in Fig. 6. Despite the fingerprint only hav-
ing 75 digits, equally well-matched compounds were rare, 
because the tailored fingerprint had 9 non-binary digits and 
very few redundant digits. These results may underestimate 
the performance, as the “correct” structures assigned by 
CompoundDiscoverer may be incorrect in an unknown num-
ber of cases. Using the weighted Euclidean distance with 
expectation values (red), the MSEI approach assigns around 
10% more correctly identified molecular structures within 
the top n matches compared to previously published results 
for the state-of-the-art CSI:FingerID approach [18].

The estimated match quality for MSEI clearly relates to the 
goodness of prediction (Fig. 6): 50% of molecular structures 
are correctly assigned as the top match with match quality 
≥ 0.85, and 70% of spectra are able to be assigned with match 
quality ≥ 0.85. For match quality ≥ 0.95, 80% of assignments 
are correct, and 25% of structures are able to be assigned at 
this level. The MSEI approach performs best for molecular 
families included in the training datasets: compounds assigned 

with high confidence by MSEI (MQ ≥ 0.9) belong to the same 
molecular taxonomies [34] as compounds in the train/validate 
dataset (Fig. 5b). The MSEI approach is able to learn MS1 and 
MS2 spectral features from a limited number of compounds 
and effectively predict other compounds within these molecu-
lar families; however, prediction outside of these molecular 
families is more challenging and uncertain and thus requires 
further training data.

Case study: the ruthenium dataset

The ruthenium dataset contains spectra measuring organic com-
pounds present on a ruthenium catalyst at different stages during 
the catalytic gasification of organic wastes, described in detail by 
[26]. The catalyst stages are (i) initial active catalyst, (ii) inactive 
catalyst with organic molecule deposits on the surface, and (iii) 
catalyst reactivated by washing with organic solvents.

The dataset (Table 1) contained > 1000 valid MS2 spec-
tra; however, only 17 well-matched compounds could be 
identified by CompoundDiscoverer. A total of 11 com-
pounds corresponding to 24 averaged spectra from this 
dataset were used for training and validation of the MSEI 
approach. The dataset is illustrative of the MSEI approach, 
which is to assign compounds within a limited molecular 
structure space based on a small amount of training data 
from similar datasets. The full MSEI approach illustrated 
in this paper, including data preprocessing for all datasets 
in Table 1, fingerprint selection, feature selection, training 
and validation, and prediction of compound structures for 

a) b)

Fig. 5  Characterisation of the MSEI structure assignment method. 
a The percentage of instances in which the correct structure (y-axis) 
was identified within the top n matches (x-axis) for different finger-
print distance calculation methods for the test dataset. The results 
from CSI:FingerID taken from [18] are shown in orange for compari-

son, and the results for random matching are shown as a grey dashed 
line. b ClassyFire level 2 taxonomies [34] for compounds in the train/
validate sets and for well-matched compounds assigned using the 
MSEI method
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the ruthenium dataset took around 48 h on a standard lap-
top (MacBook Pro, M1, 2020, 16 GB RAM), making the 
approach at least an order of magnitude faster than other 
currently available methodologies [18].

Using MSEI, 15% of spectra in the ruthenium dataset 
were assigned a molecular structure with a match quality 
≥ 0.85; the test dataset has shown that at MQ ≥ 0.85, 50% of 
structures are correctly predicted (Fig. 6). MSEI was able 
to assign 81% of spectra were assigned with match quality 
≥ 0.5 (42% correctly predicted). MSEI was able to identify 
40 unique compounds with match quality ≥ 0.85, more than 
double the number identified by CompoundDiscoverer.

Well-matched compounds identified at the inactive (ii) 
and reactivated (iii) catalyst stages are shown in Tables S3 
and S4. Three of the straight chain molecules on the inacti-
vated catalyst contain C=C double bonds, which are present 
in none of the molecules on the activated catalyst. Struc-
tures with multiple linked rings such as tetracyclehexade-
caoctaene and hydroxychromenone may also be implicated 
in catalyst deactivation. These results illustrate the strength 
of the MSEI approach to assign structures to unknown com-
pounds in non-targeted analysis. Moreover, the fingerprints 
generated can provide significant direct information about 
the functional groups and composition of compounds, even 
when structures cannot be assigned.

Application and limitations

MSEI is a tailored approach to prediction of molecular struc-
tures from UHPLC-HRMS/MS measurements (see overview 

in Fig. 7) using a variety of data science techniques. With 
MSEI, we can achieve > 10% more correct structural iden-
tifications than similar methods, using a fraction of the 
computational power and training data volume [4, 17, 18]. 
We used 142 unique compound identifications generated 
for three datasets by CompoundDiscoverer as training data 
to generate a 75-digit molecular fingerprint, specific to the 
molecular space represented by the training data. The train-
ing data was then used to select relevant spectral features to 
predict each fingerprint digit using a random forest model, 
optimise hyperparameters, and train a final model for each 
digit. Intensity and mass-to-charge ratio of fragments cor-
responding to CO2 and H 2 O losses, as well as retention time 
and fragment elemental composition, were found to be key 
input data. KMDs for parent and fragment ions, describing 
molecular families based on molecular substructures, were 
also found to be useful features for prediction of all finger-
print digits. Existing structural identification methods could 
incorporate the MSEI direct fingerprint prediction approach 
to complement existing fingerprint estimation methods, for 
example, to speed up fingerprint calculation. The approach 
could also be used in applications required only fingerprints 
and not full structural information, such as in the predic-
tion of toxicity of unknown compounds from non-targeted 
HRMS/MS analysis [35].

The optimised random forest models were used to predict 
fingerprints for spectra corresponding to both test data with 
known structures and spectra representing unknown molecu-
lar structures. Several methods were tested to compare pre-
dicted fingerprints to potential matches from the PubChem 

a) b) c)

Fig. 6  Summary of match statistics based on match quality for all 
datasets in Table 1. The x axis shows the match quality; results are 
cumulative for all matches with match quality equal or above the indi-
cated value. a The mean ranking of the correct match; b the percent-
age of instances where the correct match is within the top 5 matches 

(orange) or the correct match is the top match (blue); c  the percent-
age of compounds that were able to be assigned at or above different 
match quality levels. A match quality of 0.85 corresponds to 50% of 
top matches correctly assigned in the test dataset, and this threshold is 
indicated with the grey dashed lines in each panel
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database. Compared to unweighted Tanimoto and Euclidean 
distances, weighted distance metrics showed significantly 
improved performance. Optimal weights for each fingerprint 
digit were determined using an SVM; the method performed 
best when combining learnt weights with expectation val-
ues for each fingerprint digit. Fingerprint digits encoding 
less common functional groups were weighted more highly, 
showing the importance of tailored molecular fingerprints 
for structural identification. Furthermore, we developed 
a method to predict compound hydrophobicity based on 
molecular structure, to compare to measured retention times 
and act as an independent filter for molecular structure attri-
bution [11]. MSEI was able to correctly assign > 50% of 
structures from the test dataset, with 80% of structures cor-
rectly identified in the top 10 matches. Incorporation of the 
SVM-weighted fingerprint comparison into current struc-
tural identification pipelines would improve performance 
while requiring minimal additional computational power, 
even for large fingerprints.

MSEI uses fingerprints specifically selected for the 
molecular space of interest and is trained on a subset of 
the data of interest; thus, it has limited ability to general-
ize to unknown molecular families. Moreover, the ability of 
MSEI to predict compounds for spectra measured on differ-
ent instrumentation is currently unknown. The approach is 

envisaged as part of an analysis pipeline: a laboratory will 
be interested in compounds from particular sample types and 
will first analyse their data using their existing methodolo-
gies, for example, CompoundDiscoverer or CSI:FingerID. 
This will generate a dataset on which MSEI can be trained 
and then used to complement these existing approaches and 
predict structures for a much larger number of unknown 
compounds. Over time, MSEI can be retrained on further 
data and standards to gain greater predictive ability and 
widen the molecular space of interest. Furthermore, train-
ing data and/or trained models can be shared between labo-
ratories working on similar sample types using equivalent 
instrumentation to improve compound identification. Data-
base spectra can be used to widen the molecular space avail-
able for training, although—as with all approaches—caution 
should be taken when comparing spectra collected from dif-
ferent instrumental set-ups. MSEI is written in Python, and 
code is publicly available; thus, MSEI can be tailored to the 
needs of a specific pipeline or run from the command line, 
and internal processing steps can be investigated and visu-
alised much more simply than with many existing spectral 
processing packages.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11224- 023- 02192-2.

Fig. 7  A schematic overview of the MSEI approach to structural 
identification based on UHPLC-HRMS/MS measurements. An ini-
tial set of structural identifications is used to train a set of random 
forests, each representing one digit of a tailored molecular finger-
print. The random forests are used to predict fingerprints for all valid 
spectra in a dataset. Comparison of predicted fingerprints to poten-

tial structural matches from the PubChem database is used to assign 
structures for unknown molecules. For the datasets used in this study 
(see Table 1), 2–13% of compounds had a “well-matched structure” 
following initial assignment, which increased to 72% with MSEI 
(Fig. 6)

https://doi.org/10.1007/s11224-023-02192-2
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