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1 Summary 
 
Within a multicellular organism, cells are organized in a defined manner while communicating 
with each other. A single cell never just stands alone; its behavior and gene expression are 
always influenced by its local microenvironment. Disruptions of these organizations cause 
reciprocal changes in both a cell's transcriptome and its cellular crosstalk with the 
environment, which can lead to the development of diseases. It is therefore important to not 
only know the identities and gene expression of single cells, something that can be 
investigated by single-cell RNAseq (scRNA-seq), but also the spatial arrangements of different 
cell types and states. Spatial transcriptomics (ST) can be described as the detection of mRNA 
transcripts within a spatially defined area. In recent years there has been a massive 
development of ST technologies with constant improvements and optimizations. However, 
some limitations still affect existing ST methods, namely the need for specialized equipment 
and expertise, lack of single-cell resolution, or low throughput.  
 
In this thesis, I developed a new ST method called sphere-sequencing (sphere-seq) that 
addresses these limitations. In short, fresh tissues, which can be from a variety of origins and 
shapes, are partially dissociated into cellular communities (spheres) of sizes between 100-
500 µm. Spheres are then sorted in a size-dependent manner into wells of a 96-well plate 
using a large fragment biosorter, which works like a conventional flow cytometer but enables 
the sorting of objects much larger than single cells. Sphere sizes are defined based on prior 
knowledge of interesting spatial units within complex tissues, for example in the murine liver 
we were sorting spheres between 200-450 µm to capture spatial differences along central-
portal vein axis. After sorting, spheres are dissociated into single cells and labeled with sphere-
specific barcodes using a method where barcodes integrate into a cell’s membrane via lipid 
anchors. We established a set of 288 different barcodes, which allows the analysis of 288 
spheres per experiment. After cell labeling, all cells are pooled and used for scRNA-seq. After 
sequencing and demultiplexing a single cell can then be allocated to its sphere of origin and 
thereby its cellular neighborhood based on the sphere barcode. The anatomical niche of a 
sphere can then be reconstructed using landmark gene signatures or the presence and 
absence of a specific cell type. This approach helps to group spheres into defined anatomical 
regions, either using nominal categories (e.g., metastasis-associated and metastasis-free) or 
ordinal categories (e.g., specific layers within a zonated organ). Ordinally or nominally labeled 
spheres can then be analyzed to determine spatially restricted gene expression, cell type 
abundances, or ligand-receptor (L-R) interactions.   
 
We applied sphere-seq to the mouse liver, to study differences in gene expression between 
anatomical zones. The liver is a highly spatially organized organ. Hepatocytes, the 
parenchymal cells of the liver, are organized into repetitive hexagonal structures called 
lobules. From each corner of the lobule, portal veins and hepatic arteries carry nutrient- and 
oxygen-rich blood, which then flows through sinusoidal vessels toward the central vein. This 
generates a gradient of oxygen, nutrients, hormones, and WNT signaling along the portal-to-
central axis, which in turn leads to a division of labor between hepatocytes from different zones 
along this gradient. Non-parenchymal cells (NPCs), like liver endothelial cells (LECs), assist 
hepatocytic tasks. Different tasks along the central-portal axis require different proteins, 
therefore, many genes are differentially expressed in different layers of the lobule, which was 
extensively studied in hepatocytes and LECs. We, therefore, employed a previously identified 
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gene signature in LECs to reconstruct the spatial position of each sphere along the central-
portal axis. This enabled us to study zonated gene expression in other cell types, for example 
in Kupffer cells (KCs), the tissue-resident macrophages of the liver. This revealed a zonated 
expression for Vcam1, which was enriched in KCs of the periportal regions in metastases-
bearing mice. VCAM1 was shown to be involved in immune cell recruitment which in turn can 
lead to KC activation. L-R interaction analysis further strengthened this assumption because 
this predicted VCAM1 ligands on KCs interacting with various integrins on immune cells, 
especially in periportal regions. In general, integrins are important players for immune cells in 
the processes of binding to and transmigrating through the vascular wall, migrating through 
tissues, and interacting with other cells. We could therefore speculate that there is a higher 
need for Vcam1 to bind incoming immune cells from the portal blood to achieve an increased 
immune reaction due to the metastatic process.  
 
We further used sphere-seq to assess spatial differences between metastatic niches in a 
mouse model of colorectal cancer (CRC) liver metastasis. Liver metastasis formation due to 
CRC is especially common, around 41 % of patients develop metastases in the liver. This is 
due to the anatomical position and structure of the liver. It is a highly vascular organ and it lies 
in proximity to the gastrointestinal tract, where blood drains from the gut into the liver, bringing 
circulating cancer cells from primary tumors into the liver where they can persist and form 
metastases. However, in the metastatic liver, there are also many areas with healthy tissues 
and we, therefore, wanted to apply sphere-seq to study the spatial differences between distal 
and proximal areas to micro-metastatic sites to study what factors are involved in metastasis 
development. Spheres were grouped based on the presence (= proximal) and absence (= 
distal) of metastatic cells. This analysis revealed an enrichment of C1q+ macrophages, which 
are associated with an anti-inflammatory phenotype, within proximal areas. This subset of 
macrophages has been previously shown to be involved in T cell exhaustion and is an 
indicator of poor cancer prognosis. With L-R interaction analysis between macrophages and 
T cells, we could identify interactions involving SPP1 and FN1 ligands expressed by 
macrophages, which were shown to be enriched in various cancers and correlate to poor 
prognosis.  
 
We applied an imaging-based ST technology for multiplexed fluorescence in situ hybridization 
(smFISH) using a 100-plex gene panel to the same samples of metastasis-bearing murine 
livers. Spatial differences that we identified with sphere-seq analysis could be validated using 
this imaging approach. This highlighted that sphere-seq truly captures spatial variability of 
gene expression in situ.  
 
Application to other samples like CRC organoids, murine spleen, and Crohn’s disease patient 
biopsies showed that sphere-seq is a versatile method which enables addressing diverse 
biological questions. Comparison to the most widely used ST method, Visium, revealed that 
sphere-seq is superior in terms of cellular resolution and the ability to capture different spatial 
niches with similar quality.   
 
Together, this thesis shows the development of sphere-seq with a comprehensive 
experimental and computational workflow that can be easily adapted to other tissue types. Its 
application to liver metastasis revealed interesting new findings that could be characterized 
further to identify potential therapeutic targets in the future.   
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2 Zusammenfassung 
 
In multizellulären Organismen organisieren sich Zellen in definierten Bereichen. Eine einzelne 
Zelle ist niemals alleine, ihr Verhalten und ihre Genexpression ist abhängig von anderen 
Zellen in ihrer Umgebung. Werden diese zellulären Organisationen gestört oder verändert 
kann es zur Entwicklung von Krankheiten kommen. Deshalb ist es wichtig nicht nur die 
Identität und Genexpression einer einzelnen Zelle zu kennen (diese Informationen erhält man 
durch das Sequenzieren der RNA von einzelnen Zellen), sondern auch die räumlichen 
Beziehungen von einzelnen Zellen und Zelltypen zueinander. Die Lehre des räumlichen 
Transkriptoms beschreibt die Detektion von mRNA-Transkripten in räumlich definierten 
Regionen. In den letzten Jahren gab es eine massive Entwicklung der räumlichen 
Transkriptom-Technologien mit ständigen Verbesserungen und Optimierungen. Allerdings 
gehen mit bestehenden Methoden immer noch einige Einschränkungen einher, die 
hauptsächlich in der Notwendigkeit von spezialisierter Ausrüstung und Fachwissen, 
mangelhafter Bildgebung von einzelnen Zell oder niedrigem Durchsatz liegen.    
 
In dieser Doktorarbeit habe ich eine neue Methode entwickelt, sie heisst: «Sphere-sequencing 
(Spehre-seq)» (Kugel-seq), die einige dieser Limitierungen adressiert. Kurz 
zusammengefasst, frisches Gewebe von vielfältigem Ursprung und Form, wird partiell 
zerkleinert in zelluläre Gemeinschaften (Kugeln), die im Durchmesser zwischen 100-500 µm 
gross sind. Die Kugeln werden dann nach festgelegten Grössen mit einem Biosorter in 96 
Multi Well Platten sortiert. Der Biosorter funktioniert wie ein normales Durchflusszytometer, 
aber erlaubt das Sortieren von grösseren Objekten als einzelnen Zellen. Die Kugel-Grössen 
werden festgelegt aufgrund von vorherigem Wissen über interessante räumliche Einheiten in 
komplexen Geweben. Zum Beispiel, in der Mausleber haben wir uns dazu entschieden 200-
450 µm grosse Kugeln zu sortieren, damit wir räumliche Unterschiede entlang der 
verschiedenen Schichten des Leberläppchens analysieren können. Nach dem Sortieren 
werden die Kugeln in einzelne Zellen dissoziiert und mit Kugel-spezifischen Barcodes 
gekennzeichnet. Dafür verwenden wir eine Methode, in der die Barcodes mit Hilfe von Lipid-
Ankern in die Zellmembran eindringen. Wir habe ein Set mit 288 Barcodes, also können wir 
288 Kugeln per Experiment analysieren. Nach dem Sequenzieren und Demultiplexen können 
wir eine einzelne Zelle zu ihrer originalen Nische zuweisen aufgrund der Kugel-spezifischen 
Barcodes. Die anatomische Lage der Kugeln kann dann rekonstruiert werden mit Hilfe von 
Gen-Signaturen die Referenzpunkte darstellen oder durch die Anwesenheit oder Abwesenheit 
von bestimmten Zelltypen. Dieses Konzept erlaubt uns die Kugeln je nach den räumlichen 
Orten, von denen sie herkommen, zu gruppieren. Das können entweder nominale Gruppen 
sein oder die Kugeln können in einem Gradienten in einer Ordinalskala angeordnet werden. 
Ordinal oder nominal kategorisierte Kugeln können dann verwendet werden um räumliche 
Unterschiede in der Genexpression, Zelltyp-Anreicherungen oder Interaktionen zwischen 
Liganden und Rezeptoren zu untersuchen.         
 
Wir haben Sphere-seq angewendet an der Mausleber um Unterschiede in der Gen Expression 
zwischen unterschiedlichen anatomischen Orten zu analysieren. Die Leber ist strukturell 
aufgebaut in Nischen. Hepatozyten, der Hauptzelltyp in der Leber, sind organisiert in sich 
wiederholende sechseckige Strukturen - dem sogenannten «Leberläppchen» - in denen das 
Blut von der Pfortader und der Leberarterie gemeinsam zur zentralen Vene fliesst. Dieser 
Blutfluss bewerkstelligt, dass sich ein Gradient zwischen Pfortader und Zentralvene bildet, mit 
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Variationen in Bezug auf Sauerstoff, Nährstoffe, Hormone und dem WNT-Signalsystem. Dies 
wiederum geht einher mit einer Arbeitsteilung zwischen Hepatozyten von unterschiedlichen 
Zonen entlang dieses Gradienten. Nicht-Parenchyme Zellen, wie zum Beispiel die Leber-
Endothelial Zellen (LEZ) helfen den Hepatozyten ihre Arbeiten auszuführen. Diese 
unterschiedlichen Aufgaben entlang der verschiedenen Zonen des Leberläppchens benötigen 
unterschiedliche Genexpressions-muster. Diese Muster wurden exzessiv untersucht in 
Hepatozyten und LEZ. Wir haben das ausgenützt um die räumlichen Positionen innerhalb des 
Leberläppchens für jede Kugel anhand der Genexpression von LEZ zu rekonstruieren. 
Dadurch konnten wir räumliche Genexpression in anderen Zelltypen studieren, zum Beispiel 
in Kupffer-Zellen (KZ), den sessilen Makrophagen der Leber. Wir konnten eine erhöhte 
Genexpression von Vcam1 in KZ des Periportalfeldes von Metastasis-tragenden Mäusen 
identifizieren. VCAM1 ist involviert in der Rekrutierung von Immunzellen, was wiederum zur 
Aktivierung von KZ führen kann. Die Analyze von Interaktionen der Liganden und Rezeptoren 
hat diese Annahme bestärkt, weil diese vermehrten Interaktionen zwischen VCAM1 Liganden 
auf KZ und unterschiedlichen Integrinen auf Immunzellen im Periportalfeld vorhergesagt hat. 
Integrine sind wichtig für Immunzellen in dem Prozess der Bindung an und Transmigration 
durch die vaskuläre Wand. Wir spekulieren daher, dass eine höhere Expression von Vcam1 
zur Bindung von Immunzellen führt, welche durch die Pfortader in die Leber hineinkommen, 
um eine erhöhte Immunantwort aufgrund des metastatischen Prozesses zu bewerkstelligen.  
 
Zusätzlich haben wir Sphere-seq verwendet um unterschiedliche metastatische Nischen zu 
studieren in einem Mausmodell, das Metastasen in der Leber entwickelt ausgehend von 
Krebszellen des Dick- und Mastdarms. Die Formation von Metastasen in der Leber durch 
Krebs im Darm ist sehr weit verbreitet, ungefähr 41 % der Darmkrebs-Patienten entwickeln 
Metastasen in der Leber. Dies ist so aufgrund der anatomischen Position und Struktur der 
Leber. Die Leber ist ein sehr vaskuläres Organ, das in der Nähe des Magen-Darm-Trakts liegt. 
Diese Position führt dazu, dass das Blut direkt vom Darm in die Leber fliesst und zirkulierende 
Krebszellen können daher einfach vom Darm in die Leber fliessen, wo sie sich festsetzen 
können und sich zu Metastasen entwickeln. Allerdings entwickeln sich nur an manchen Stellen 
in der Leber Metastasen, viele Bereiche bleiben ohne Metastasen, deshalb wollten wir mit 
Sphere-seq die Unterschiede zwischen Bereichen analysieren, die distal oder proximal zu 
Metastasen liegen. Wir haben dafür Kugeln gruppiert aufgrund der Anwesenheit (= Proximal) 
und Abwesenheit (= Distal) von metastatischen Zellen. Unsere Analyse hat gezeigt, dass in 
proximalen Bereichen C1q+ Makrophagen angereichert sind, diese haben meistens einen 
anti-entzündlichen Phänotyp. In vorherigen Studien wurde gezeigt, dass diese spezifischen 
Makrophagen involviert sind in der Erschöpfung von T-Zellen und sie sind ein Indikator für 
eine schlechte Prognose in Krebserkrankungen. Mit einer Analyse um die Interaktion von 
Liganden und Rezeptoren zwischen Makrophagen und T-Zellen vorherzusagen, haben wir 
einer Erhöhung von Interaktionen mit den Liganden SPP1 und FN1 gefunden, welche von 
Makrophagen exprimiert sind. Beide sind involviert in mehreren verschiedenen Krebsarten 
und korrelieren mit einer schlechten Prognose.    
 
Wir haben eine Methode mit Bildgebung angewendet, wo wir 100 verschiedene Gene 
gleichzeitig visualisieren können (multiplexed smFISH), in unseren Proben von 
metastatischen Lebern der Maus. Räumliche Unterschiede, die wir in Sphere-seq identifiziert 
haben, konnten wir validieren mit dieser Bildgebungs-Methode. Dies zeigt, dass wir in situ 
räumliche Unterschiede mit Sphere-seq identifizieren können.  
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Die Anwendung von Sphere-seq auf andere Proben wie zum Beispiel Darmkrebs-Organoide, 
Maus Milz und Biopsien von Morbus Crohn Patienten hat gezeigt, dass diese Methode sehr 
einfach anwendbar ist für eine Vielzahl unterschiedlicher biologischen Fragestellungen. Der 
Vergleich mit einer der meist-angewandten Methoden für die Analyse von räumlichen 
Transkriptomen, Visium, hat gezeigt, dass Sphere-seq besser ist in Bezug auf die Auflösung 
und der Fähigkeit unterschiedliche räumliche Nischen mit vergleichbarer Qualität zu 
beschreiben.    
 
Zusammengefasst, diese Arbeit zeigt die Entwicklung von Sphere-seq mit umfassenden 
Details zum experimentellen und die Analyse betreffenden Ablauf. Dieser kann einfach auf 
andere Gewebsarten adaptiert werden. Die Anwendung auf Lebermetastasen hat 
interessante neue Ergebnisse aufgezeigt, die in der Zukunft weiter charakterisierte werden 
können, um neue Therapiemöglichkeiten zu entwickeln.  
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4 Abbreviations  
 

AE – average expression  MHC – major histocompatibility complex  
Anti-TNF – anti tumor necrosis factor  MIF – macrophage inhibitory factor  
APC – antigen-presenting cells  MNN – mutual nearest neighbors  
ATP – adenosine triphosphate  mRNA – messenger ribonucleic acid 
BC – barcode  mS – milli seconds  
BCL – binary base call  mtRNAs – mitochondrial RNAs  
BCR – B cell receptor  MULTI-seq – multiplexing using lipid-tagged indices 

for single-cell RNA sequencing 
Bp – base pair  mW – megawatt 
BSA – bovine serum albumin MZ – marginal zone  
Bulk RNA-seq – bulk ribonucleic acid sequencing  NAC – neoadjuvant chemotherapy  
CCC – cell-cell communications  NAFLD – non-alcoholic fatty liver disease   
CD – Cluster of differentiation  NGS – next-generation sequencing  
CD – Crohn’s disease  NK – natural killer  
cDNA – complementary deoxyribonucleic acid  NKT – natural killer T  
CEL-seq – Cell Expression by Linear amplification and 
sequencing 

NPCs – non-parenchymal cells  

CITE-seq – cellular indexing of transcriptomes and 
epitopes sequencing  

PBS – phosphate buffered saline  

cLM genes – central vein landmark genes PCR – polymerase chain reaction  
CRC – colorectal cancer  PCs – principal components  
Cre – cyclization recombinase  pLM genes – portal vein landmark genes   
CRISPR – clustered regularly interspaced short 
palindromic repeats  

PLP – padlock probes  

CUT&Tag – cleavage under targets and tagmentation  PMT – photomultiplier tube 
CV – central vein poly(A)  – polyadenylated  
DACs – dopaminergic amacrine cells  poly(A)-tail  – polyadenylated tail 
DAPI – 4’,6-diamidino-2-phenylinodole poly(dT) – poly deoxy thymidylate  
DBiT-seq – Deterministic barcoding in tissue for spatial 
omics sequencing  

psi – pounds per square inch 

DCs – dendritic cells  PV – portal vein  
DEGs – differentially expressed genes  qPCR – quantitative polymerase chain reaction  
DGE analysis – differential gene expression analysis RCA – rolling circle amplification  
DMD – digital micromirror device RNA – ribonucleic acid 
DNB – DNA nanoball  RNA-seq - ribonucleic acid sequencing  
EGFR – epidermal growth factor receptor ROI – region of interest  
EtOH – Ethanol  RPE- random priming and extension  
ev/s – events per second  RT – reverse transcription  
FACS – fluorescence-activated cell sorting  SBH – sequencing by hybridization  
FBS – fetal bovine serum SBL – sequencing by ligation  
FFPE – formalin-fixed paraffin-embedded  SBS – sequencing-by-synthesis  
FISH – fluorescent in situ hybridization Sci-RNA-seq – single-cell combinatorial indexing RNA 

sequencing  
FISSEQ – fluorescent in situ RNA sequencing  scRNA-seq – single-cell ribonucleic acid sequencing 
FOCA – Fluidics and Optical Core Assembly  SEDAL – sequencing with error reduction by dynamic 

annealing and ligation  
Fz – Frizzled receptor  smFISH – single molecule fluorescent in situ 

hybridization 
GEMs – Gel beads-in-emulsions  snRNA-seq – single nuclei ribonucleic acid 

sequencing 
GFP – green fluorescent protein  SOLiD - sequencing by oligonucleotide ligation and 

detection 
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GI – gastrointestinal  SPACECAT – Spatially Photo Activatable Color 
Encoded Cell Address Tags 

H&E – hematoxylin and eosin  Sphere-seq – sphere-sequencing  
HCC – hepatocellular carcinoma  SPLiT-seq – split-pool ligation-based transcriptome 

sequencing  
HDST – high-definition spatial transcriptomics  SPOTS – Spatial Protein and Transcriptome 

Sequencing  
HSCs – hepatic stellate cells  ST – Spatial transcriptomics  
HypISS – hybridization-based in situ sequencing STARmap – spatially-resolved transcript amplicon 

readout mapping 
IBD – inflammatory bowel disease  Stereo-seq – Spatial enhanced resolution sonics-

sequencing  
IHC – immunohistochemistry  STRS – spatial total RNA-sequencing  
inDrop RNA-seq – indexing droplets RNA sequencing TAMs – tumor associated macrophages  
ISH – in situ hybridization  TCR – T cell receptor  
ISS – in situ sequencing  TME – tumor microenvironment  
KCs – Kupffer cells  TOF – time of flight  
L-R – ligand-receptor interaction TPLSM – two-photon laser scanning microscopy 
LAMs – lipid-associated macrophages  Tregs – regulatory T cells  
LCM – laser capture microdissection  tSNE – t-distributed stochastic neighbor embedding  
LCM-seq – laser capture microdissection sequencing UC – ulcerative colitis 
LECs – liver endothelial cells UMAP – Uniform Matrix Approximation and Projection  
LED – light emitting diode  UMI – unique molecular identifier  
LMO – lipid-modified oligonucleotide VCT – volumetric computed tomography  
loxP – locus of X-over in P1 VEGF – vascular endothelial growth factor 
LSECs – liver sinusoidal endothelial cells  VSMCs – vascular smooth muscle cells 
LVECs – liver vascular endothelial cells  WNT – wingless-related integration site  
MARS-seq – Massively Parallel Single-Cell RNA-Seq WTA – whole transcriptome analysis 
MC – Molecular Cartography  ZC – zonation coordinate  
MERFISH – multiplexed error-robust FISH  
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5 Introduction  
 

5.2  Spatial transcriptomics  
 

5.2.1 What is spatial transcriptomics?  
 
Transcriptomics is the observation of the transcriptome, the collection of all ribonucleic acid 
(RNA) transcripts1. Messenger RNA (mRNA) is of special interest because it encodes proteins 
and enables insights into the molecular state of a biological system1. Therefore, “spatial 
transcriptomics” (ST) describes the analysis of RNAs within different spatial arrangements. 
Biological tissues are multicellular organizations of different cell types arranged in specific 
ways to interact with each other to maintain tissue homeostasis. Their compositions can be 
altered in diseases like cancer, where cells interact in specific ways, different from a 
homeostatic state, to promote or fight against the diseased state. Investigating the spatial 
position of cells and their spatial gene expression in perturbed tissues is important for studying 
cellular mechanisms involved in diseased phenotypes. Using RNA sequencing (RNA-seq) of 
whole tissues or cell mixtures (currently known as bulk RNA-seq) comparing healthy and 
perturbed tissues, diverse mechanisms in cancer and other diseases could be decoded2. With 
the development of single-cell RNA-seq (scRNA-seq), which allows studying gene expression 
in individual cells3,4, scientists got an even closer look at changes in tissue compositions. 
However, during single-cell dissociation of tissues, a cell's spatial position is lost, therefore 
these kinds of datasets are difficult to use for structure-function analysis3. Scientists tried to 
overcome this limitation with the development of ST, which enables the investigation of cellular 
composition, transcriptional changes, and cellular interactions in a spatial context5. The field 
of ST method development has rapidly evolved to improve spatial resolution and 
transcriptomic profiling in a high throughput manner.  
 

5.2.2 Historical development of spatial transcriptomics (NGS-based 
approaches)  

 
As mentioned in the above section, today’s use of next-generation sequencing (NGS)-based 
ST is heavily influenced by prior advancements in bulk RNA-seq and scRNA-seq. RNA-seq 
was developed more than a decade ago; the usual experimental workflow includes the 
following steps: RNA extraction, mRNA enrichment, cDNA synthesis, sequencing adapter 
ligation, library preparation, and sequencing – using primarily the Illumina short-read platform 
that uses a NGS approach, specifically, sequencing by synthesis with 3’ blocked fluorescently 
labeled nucleotides6. Afterwards, sequencing reads are computationally aligned to the 
transcriptome and reads of different genes are quantified6. Currently, this approach is called 
bulk RNA-seq because whole tissues or samples of cells are sequenced in bulk. Therefore, 
this approach only allows the analysis of the average gene expression of a mixture of different 
cells. Unlike bulk RNA-seq, scRNA-seq allows resolving individual cells, their cell types and 
activation states. The first time scRNA-seq was reported in 2009 when Tang and colleagues 
sequenced the transcriptome of single mouse blastomeres (the four-cell stage embryo); they 
called their method “mRNA-Seq”7. Their method of capturing mRNA via poly-adenylated 
(poly(A)) capture7, illustrated in figure 1, was the basis of many current scRNA-seq methods. 
In short, single blastomere cells were manually picked and the poly(A)-tails of mRNAs were 
bound by poly deoxy thymidylate (poly(dT)) primers7. Poly(dT) primers contain an anchor 
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sequence that can be incorporated at the 5’ end during complementary deoxyribonucleotide 
acid (cDNA) first-strand synthesis7. A poly(A)-tail was then added on the 3’ end and another 
poly(dT) primer could bind for second-strand cDNA synthesis incorporating a second anchor 
sequence7. Then double-stranded cDNA was amplified, fragmented and adaptors for 
sequencing were ligated7. After final library amplification, cDNA fragments were sequenced 
using sequencing by oligonucleotide ligation and detection (SOLiD) sequencing7.    

 
Figure 1: Schematic drawing of the mRNA-Seq workflow. 
A single cell, picked manually, is lysed and its mRNA is 

transcribed into cDNA using poly(dT) primer (=poly(A) 

capture). An anchor sequence (UP1) is incorporated in the 

poly(dT) primer resulting in anchor sequence 1 on the 5’ end. 

On the 3’ end of the first strand cDNA, a poly(A)-tail is added 

and during the following second strand cDNA synthesis, a 

poly(dT) primer with the second anchor sequence (UP2) can 

bind. UP1 and UP2 primers can then be used for cDNA 

amplification following fragmentation and adaptor ligation for 

later SOLiD sequencing. Fragments with adapters are then 

amplified in a final library amplification step. Illustration from 

Tang F. et al., mRNA-Seq whole-transcriptome analysis of a 

single cell. Nature Methods, 6, 377-382, 2009, by permission 

of Springer Nature (https://www.nature.com/nmeth/). 

 
 
 
 
 

Poly(A) based mRNA capture in single cells was then adapted by many high throughput 
scRNA-seq technologies to incorporate a cell barcode (BC) and unique molecular identifier 
(UMI)8–14. This results in labeling all mRNA transcripts of a single cell with the same cell BC 
and each polymerase chain reaction (PCR) transcript with a UMI to account for PCR biases15. 
To archive capturing of single cells there are different approaches:    

• Microfluidics: A bead with barcoded poly(dT) primers and a single cell are 
encapsulated in oil droplets and during cell lysis mRNA transcripts are captured by the 
bead; for example Drop-seq10, inDrop (indexing droplets) RNA-seq11 and the 
commercial 10X Genomics Chromium System;  

• Plate-based: Single cells are sorted into wells of a 96 or 384 well plate containing 
poly(dT)-cell-BC-UMI primer; for example MARS-seq (Massively Parallel Single-Cell 
RNA-Seq)13,16 and CEL-seq (Cell Expression by Linear amplification and 
Sequencing)12,17;  

• Micro- or nano-well based: Barcoded beads and single cells are trapped into micro- or 
nano-wells and there is only space for one of each in every single well; for example, 
Seq-well14 and the commercial BD Rhapsody Single Cell Analysis System; 

• Methods where single cells are labeled in a split-and-pool approach; for example 
SPLiT-seq (split-pool ligation-based transcriptome sequencing)18 and sci-RNA-seq 
(single-cell combinatorial indexing RNA sequencing)19;  

For higher throughput, reduction of costs per sample and batch effect, cell hashing methods 
were developed where single cells of a sample are labeled with a sample barcode, allowing 
multiple samples to be pooled for one single-cell capture run20,21. The sample barcode is a 
stretch of oligonucleotides with an incorporated poly(A) stretch that can be captured with 
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scRNA-seq poly(A) capture. Two examples are CITE-seq (cellular indexing of transcriptomes 
and epitopes sequencing), where barcodes are attached to antibodies that can bind to cell 
surface epitopes20 and MULTI-seq (multiplexing using lipid-tagged indices for single-cell RNA 
sequencing), where barcodes are attached to lipid anchors that can easily integrate into a 
cell’s phospholipid bilayer membrane21.   
 
The advancements in high throughput and increased mRNA capture efficiency per single cell 
led to many discoveries and atlases from humans22 and mice23 of cell types, cell subtypes, 
and cell states within various healthy and diseased tissues (reviewed in Zhang et al., 2021 
and Jovic et al., 202224,25). However, due to single-cell dissociation prior to mRNA capture, 
the spatial location of a single cell is lost. To preserve spatial information, the field of ST 
evolved. For example, important progress in the field was made by Raj et al. in 2008 by 
developing a method to visualize single mRNA molecules in situ26 using multiple singly labeled 
probes and Ståhl et al. in 2016 who developed a method called “Spatial Transcriptomics” (ST) 
where mRNA transcripts of cells are captured in situ27. Many technologies have been 
developed since then, with constant improvements in resolution and throughput. They will be 
discussed in the following section.  
 

5.2.3 Spatial transcriptomics approaches 
 
ST technologies can be broadly categorized into imaging-based and mRNA capture-based 
(reviewed in Lee et al, 202228). Imaging-based methods are based on single-molecule in situ 
hybridization (ISH) or in situ sequencing (ISS) while mRNA capture-based methods are 
typically based on capturing mRNAs with spatial barcodes28. A comparison of these two 
approaches is illustrated in figure 2. Additionally, computational methods reconstruct spatial 
cellular organizations from scRNA-seq data (reviewed in Kleino et al., 2022)5. 

 
Figure 2: Comparison of image-based (left) and capture-based (right) ST methods. Image-based methods 

entail in situ sequencing (ISS), where barcoded mRNA is identified by mRNA amplicon sequencing, and in situ 

hybridization (ISH), where mRNA transcripts are identified by complementary probe hybridization. Readout of both 

methods is generated by high-resolution microscopy allowing mRNA molecule detection at subcellular resolution. 

The capture-based approach can be divided into three subcategories: laser capture microdissection (LCM), where 

in situ regions of interest are obtained directly, capturing of mRNAs of tissue sections via spatial barcodes printed 

directly on the slide, or via bead arrays. Readouts of these methods are generated via NGS and mapping of 

transcript reads back to the tissue position. There are methods with various resolutions from single-cell resolution 

to broad tissue regions. Illustration from Lee J. et al., Recent advances in spatially resolved transcriptomics: 

challenges and opportunities. BMB Rep. 55, 113-124, 2022, under permission of 
http://creativecommons.org/licenses/by-nc/4.0. 
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5.2.3.1 Imaging-based  
 
Multiplexed imaging-based ST methods can be divided into ISH and ISS approaches; both 
follow similar workflows (highlighted in figure 3). Detection of transcripts can be targeted by 
designing hybridization probes complementary to target sequences (adapted from 
fluorescence in situ hybridization [FISH]29 or targeted padlock probes for ISS) or untargeted 
by using random primers for ISS30.Encoding can be achieved with two different approaches: 
a linear method, where a single gene is visualized in every round of imaging and an 
exponential method, where multiple genes are detected in every round of imaging30. Acquired 
images are then used for downstream analysis that incorporates the following steps: Images 
of multiple rounds have to be aligned and spots have to be registered; registered spots are 
then used for spot calling and decoding to assign a barcode for each spot that defines a gene’s 
identity30. The principles of ISH and ISS methods will be explained in the next section with 
given examples of methodologies.  
 

 
Figure 3: Comparison of different imaging-based ST technologies. mRNAs can be detected with three different 

approaches: Fluorescent in situ hybridization (FISH) approach where a probe complementary to the mRNA 

molecule hybridizes and can be visualized with either a fluorophore that is bound by the probe or via readout probe 

that hybridizes to the target probe; In situ sequencing can be either untargeted using untargeted primer or targeted 

using targeted padlock probes. For multiplexing, encoding can be either linear when a different gene is labeled in 

each round, or exponential when multiple RNAs are labeled in a single round. This can be done using different 

chemistries, cleavable dyes, in situ sequencing, or sequential hybridization. Image processing: Data is collected 

with fluorescent imaging, different rounds of imaging have to be aligned and spots have to be assigned to each 

imaging round, then gene identification is defined by spot calling and decoding based on several imaging rounds. 

Illustration from Tian L. et al., The expanding vistas of spatial transcriptomics. Nature Biotechnology, 2022, by 

permission of Springer Nature (https://www.nature.com/nbt/).  

5.2.3.1.1 In situ hybridization (ISH) 
ISH-based ST methods are built on fluorescence in situ hybridization (FISH)29. In this method, 
oligonucleotide sequence probes complementary to a target mRNA labeled with multiple 
fluorophores are designed, which bind the mRNA and can be visualized with fluorescence 
microscopy29. However, due to the large fluorescent signal of multiple labeled probes, it was 
difficult to detect single molecules. This was circumvented by Raj et al., developing an 
approach (single molecule FISH, smFISH) where each target mRNA is bound by 48 or more 
short singly labeled probes26. However, with this method, only a limited number of different 
mRNA molecules can be visualized at the same time due to the limitation of how many different 
fluorophores can be spectrally separated by the available optical setup. To allow a higher 
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throughput, MERFISH (Multiplexed error-robust FISH) was developed31,32. In short, a set of 
probes are designed to bind target mRNA molecules; the probes do not only contain 
complementary oligonucleotide sequences to hybridize to target mRNAs they also contain a 
readout sequence31,32. The readout sequence is bound by readout probes in successive 
rounds of hybridization and imaging, resulting in a unique, binary barcode for each target 
RNA31,32. MERFISH allowed the detection of 140-1001 genes simultaneously due to 
constraints in optical resolution31,32. SeqFISH+ overcame this limitation by making use of 60 
pseudo-colors within three fluorescent channels, which allowed the detection of 10,000 
genes33. There are also other ISH ST approaches, some of which are highlighted and 
compared in table 1.  
 

Method Features Resolution Number of 
genes/UMIs 

References  

MERFISH Sequential rounds of probe 

hybridization and visualization; 

error detection and/or correction 

Sub-

cellular  

140 genes 

with and 1001 

genes without 

error 

correction  

Chen et al., 
2015 

Science32; 

Moffitt et al., 
2016 PNAS31 

seqFISH+ Sequential rounds of probe 

hybridization and detection, 

increased detection quantity by 

usage of pseudocolors 

Sub-

cellular  

~10,000 

genes  

Eng et al., 
2019 

Nature33  

Split-FISH Multiplexed FISH in combination 

with split probes where two probes 

have to bind the target in order to 

be detected by a bridge probe that 

is read by a readout probe; 

reduction of off-target effects  

Sub-

cellular  

~317 genes  Goh et al., 
2020 Nat. 

Methods34 

EEL FISH RNA is transferred to a glass slide 

prior to probe hybridization using 

electrical force; reduces time-

consuming z-axis imaging  

Sub-

cellular  

~448 genes 

per color 

channel  

Borm et al., 
2022 Nat. 

Biotec.35  

Table 1: Comparison of selected ISH ST methodologies.  

5.2.3.1.2 In situ sequencing (ISS) 
In comparison to ISH ST methods, ISS ST methods are not limited by the number of 
fluorophores and the optical diffraction limit, which is the smallest physical distance required 
to distinguish between two objects in an optical setup26,28,29. Nucleotide sequences of RNA 
molecules are detected by sequencing-by-ligation (SBL), for example, in STARmap (spatially-
resolved transcript amplicon readout mapping)36, and FISSEQ (fluorescent in situ RNA 
sequencing)37, or by sequencing-by-hybridization (SBH) in HybISS (hybridization-based in situ 
sequencing)38. In short, SBL (shown in figure 4A on the example of FISSEQ) works as follows: 
Sequencing primer hybridizes to adapter sequences of in situ amplified cDNA followed by 
sequential rounds of fluorescent probe ligation, detection by confocal imaging and cleavage 
of fluorescent signal; a barcode of signals is then decoded for each spot and gene37. SBH 
(illustrated in figure 4B on the example of HybISS) uses bridge probes that hybridize to in situ 
amplified cDNA and fluorescent readout-probes hybridize to bridge probes and are read out 
with fluorescence microscopy38. The hybridization approach of bridge and readout probes in 
SBH leads to increased fluorescent signals that can be visualized by standard epifluorescence 
microscopes instead of confocal microscopes for SBL38. mRNA detection follows different 
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strategies. One strategy is in situ reverse transcription (RT) of mRNAs using random 
hexamers or targeted primers, where adapter sequences for later sequencing are 
incorporated, following cDNA amplification using rolling circle amplification (RCA) of ligated 
first strand cDNA (used, for example, in FISSEQ)28,37 shown in figure 4C. Another approach 
is the use of so-called padlock probes (PLP) which are oligonucleotide probes that have two 
target-complementary segments that are connected by a linker sequence and after the target 
recognition the ends of the probe are ligated to form a circularizes molecule, this reduces 
background and results in an increased detection efficiency39. PLPs are then ligated to the 
target cDNA and RCA is initiated (used in STARmap36 and HybISS38), shown in figure 4D. 
Different ISS ST technologies are summarized and compared in table 2.  
 

 
Figure 4: Overview of different approaches for ISS ST methodologies. A) Sequencing-by-ligation using 

sequencing primer hybridization and sequential rounds of fluorescent probe ligation, imaging, and cleavage. B) 
Sequencing-by-hybridization using a combination of bridge- and readout-probes. Signal detection happens by 

sequential rounds of first bridge-probe hybridization following read-out probe hybridization, imaging of fluorophore 

from read-out probe, and stripping. C) In situ RT and rolling circle amplification (RCA): Primer for RT bind in a 

targeted or untargeted way following RCA. D) Padlock probes (PLP) hybridize to cDNA after RT initiating RCA. 

Illustration A and C from Lee J. H. et al., Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression 

profiling in intact cells and tissues. Nat. Protoc. 10, 442-458, 2015, by permission of Springer Nature 

(https://www.nature.com/nmeth/). Illustration B and D from Gyllborg D. et al., Hybridization-based in situ 

sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissues. Nucleic Acids Res. 

48, e112, 2020, by permission of Oxford University Press.   

Method Features Resolution Number of 
transcripts 

References  

FISSEQ In situ RT, RCA and SBL  Sub-

cellular  

~200  Lee et al., 
2015 Nat. 

Protocol37 

STARmap No RT, PLP hybridization to mRNA, 

RCA and SBL using SEDAL 

sequencing (sequencing with error-

reduction by dynamic annealing 

and ligation)  

Sub-

cellular  

160-1020  Wang et al., 
2018 

Science36 

A C

B D

Sequencing-by-ligation (SBL)

Sequencing-by-hybridization (SBH)

In situ RT and RCA

PLP hybridisation and RCA
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HybISS In situ RT, PLP hybridization, RCA 

and SBH  

Sub-

cellular  

~119 Gyllborg et 
al., 2020 

Nucleic Acids 

Res.38 

ExSeq Combines expansion microscopy40 

with FISSEQ37; signals very close 

to each other can be differentiated 

better  

Sub-

cellular  

Up to 3,000 Alon et al., 
2021 

Science41  

Table 2: Comparison of selected ISS ST methodologies.  

5.2.3.1.3 Gene panel design for targeted imaging-based ST  
For a targeted imaging- based ST approach, a gene panel has to be designed prior to the 
experiment. There are many things to consider when choosing the gene panel because the 
number of genes to detect are limited. First of all, cell type markers have to be included that 
are unique in order to confidently distinguish cell types. Additionally, the expression level and 
length of the mRNA has to be taken into account. If the mRNA is too short, only few probes 
can hybridize which might generate a signal too weak to detect and if the expression level is 
too high it might be challenging to detect single mRNA molecules42,43. For example, for 
MERFISH these cutoffs have been determined to be the possibility to design at least 48 
hybridization probes and an upper limit of expression level of 100-200 mRNA molecules per 
cell, which can be converted to 10-20 UMI counts for Drop-seq10 for example, where the 
capture rate is 10 %42,43.  
 

5.2.3.2 mRNA capture-based  
 
Methods involving mRNA capture are usually of lower resolution (single cells to multiple cells) 
than imaging-based methods (sub-cellular to single cell), however, they can be used in a high 
throughput, unsupervised manner28. In comparison to imaging-based targeted ST approaches 
they do not rely on gene panel design, mRNAs can be captured in an explorative way. 
Generally, these methods are based on the same principle as scRNA-seq, the capturing of 
mRNA with poly(dT) primers introducing a spatial or single cell barcode3,28. However, the 
mechanism of how mRNA gets in contact with the poly(A) capture primers is different. Different 
approach can be subdivided broadly into three categories: mRNA molecules can be captured 
from tissue slices with spatial indices using arrays or microfluidics; mRNA molecules can be 
captured via regions of interest (ROIs), which can be labeled with for example photoactivatable 
dyes following single cell extraction, which is then followed by sorting of labeled cells, and 
scRNA-seq44; or mRNA molecules can be captured from small cellular communities in bulk 
after partial dissociation.  
 
5.2.3.2.1 Spatial indexing  
Spatial indexing of fresh frozen tissue slices is used by various different ST technologies 
highlighted in figure 5 and table 3. In general, mRNA molecules are captured from thin (10 µm 
in most methods) fresh frozen tissue slices with spatial primers that include a poly(dT) stretch, 
UMI, and a spatial barcode sequence, either attached on a glass slide or applied using 
microfluidics44. Different approaches result in different resolutions (compared in table 3). The 
ST method developed by Ståhl et al., later adopted by the 10X Genomics platform Visium, 
uses arrays of indexing primers printed in defined spatial positions, so-called spots27,45. 
However, in Ståhl et al. each spot captured an area of a mixture of up to 100 cells, which was 
improved to 10 cells in Visium28. This has been even further improved by the development of 
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Slide-seq where barcoded beads like the ones used for Drop-seq10, are printed on a rubber-
coated glass slide46. The identity of the spatial barcoded bead is then determined by SOLiD 
(SBL) sequencing and after the mRNA of frozen tissue slices is captured with beads, the 
library preparation is done following the Drop-seq procedure46. In another approach, the 
barcoded poly(d)T primer is amplified into clusters either in an arrayed manner, like in HDST 
(high-definition spatial transcriptomics) where clusters are generated in wells 2 µm of size and 
spatial positions are identified by sequential hybridization using fluorescent decoder 
oligonucleotides (SBH)47 or in a continuous manner using solid-phase amplification like in Seq-
Scope where spatial positions are identified by sequencing-by-synthesis (SBS)48. SBS is 
adopted by the Illumina platforms and decodes oligonucleotide sequences by sequential 
rounds of adding all four nucleotides labeled with different fluorophores and imaging, the 
fluorophore is cleaved off and another round of hybridization takes place (reviewed in Goodwin 
et al., 201649). Stereo-seq (Spatial enhanced resolution sonics-sequencing) uses DNA 
nanoball (DNB)-patterned arrays, and positions are defined by DNB sequencing, enabling 
nanometer capture resolution50. DNB sequencing was developed by MGI technologies. In 
short, small DNA fragments are circularized and amplified into DNA nanoballs where 
sequencing primers can bind to adapter sequences, and then DNA sequences are encoded 
by sequential rounds of adding fluorescently labeled probes, imaging, and removal.  
Another approach to spatially introduce barcoded poly(d)T primer to capture fresh frozen 
tissue slices is microfluidics, this is employed by DBiT-seq (Deterministic barcoding in tissue 
for spatial omics sequencing)51. In this method, a tissue slice is trapped in a gasket where 
microfluidics channels supply the permeabilized tissue with two sets of barcodes in two 
perpendicular directions, each spot resulting in having a unique combination of two 
barcodes51.  
Most of the ST methods require fresh frozen tissue slices, however, there are developments 
towards the usage of FFPE fixed tissues, for example in an adapted version of Visium52.  
 

Figure 5: Schematic drawing of spatial indexing 
approaches using molecular capture probes: a 

combination of poly(dT), UMI and spatial barcode 

oligonucleotide sequences. Indexing probes are printed 

on a glass slide in different organizations: spots, beads, 

arrayed clusters, continuous clusters, or nanoballs. 

Probes can also be applied to tissue sections via 

microfluidics. Illustration from Moffitt J. R. et al., The 

emerging landscape of spatial profiling technologies. 

Nat. Rev. Genet., 2022, by permission of Springer 

Nature (https://www.nature.com/nmeth/). 

 

Method Features Resolution Number of 
transcripts/UMI 

References  

ST  Spatial barcodes are printed within 

spots on a glass slide; Spatial 

barcode position is predefined;  

100 µm, 

200 µm 

center-to-

center = 

50-100 

cells per 

spot 

1,000-3,000 

transcripts per 

spot  

Ståhl et al., 
2016 

Science27; 

Salmen et 
al., 2018 Nat. 

Protocol45;   
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10X 

genomics 

Visium 

platform  

Based on ST by Ståhl et al., 
201627; Spatial barcode primers in 

predefined spots;  

55 µm; 100 

µm center-

to-center = 

1-10 cells 

per spot 

~4,500 

transcripts per 

spot  

Ståhl et al., 
2016 

Science27; 

Salmen et 
al., 2018 Nat. 

Protocol45;   

Slide-seq Spatial barcoded beads printed on 

a glass slide; Spatial position 

decoded by SBL;  

10 µm; 10 

µm center-

to-center = 

single-cell  

~59 UMIs per 

bead 

Rodriques et 
al., 2019 

Science46 

HDST Arrayed clusters of spatial 

barcoded primers in 2 µm wells; 

Spatial position decoded by SBH;  

2 µm = 

sub-cellular  

~190 UMIs per 

cell  

Vickovic et 
al., 2019 Nat. 

Methods47  

Slide-seq 

V2 

Same approach like Slide-seq46, 

but higher capture efficiency; 

Spatial position decoded by SBL;  

10 µm; 10 

µm center-

to-center = 

single-cell  

~500-1,000 

UMIs per bead  

Stickels et 
al., 2021 Nat. 

Biotec.53  

Seq-Scope Continuous clusters of spatial 

barcoded primers; Spatial position 

decoded by SBS;   

0.5-0.8 µm 

center-to-

center = 

sub-cellular  

4,700 UMIs per 

cell 

Cho et al., 
2021 Cell48  

PIXEL-seq Continuous clusters of spatial 

barcoded primers; Spatial position 

decoded by SBS;  

≤1 µm = 

sub-cellular  

<1,000 UMIs 

/10x10 µm2 

Fu et al., 
2022 Cell54  

Stereo-seq Spatial barcoded primers arranged 

in DNB-patterned arrays; Spatial 

position decoded by DNB 

sequencing  

220 nm; 

500-715 

nm center-

to-center = 

sub-cellular  

~1,450 UMIs 

per 10 µm   

Chen et al., 
2022 Cell50  

Table 3: Comparison of selected spatial indexing mRNA capture-based ST technologies.  

5.2.3.2.2 Regions of interest 
A second widely applied approach that evolved in ST technology development was the 
labeling of ROIs using photo-activation followed by sorting of labeled cells and scRNA-seq or 
isolating of ROIs using other strategies28,44. Selected methods are summarized in table 4.  
The approach of isolating ROIs was first employed by LCM-Seq (Laser capture 
microdissection sequencing) which is based on LCM (laser-capture microdissection)55 using 
infrared or ultraviolet lasers to isolate ROIs, following RNA-seq using the SMART-seq256,57 
scRNA-seq protocol, which is a plate-based approach for full-length transcriptomic studies58. 
Another approach is labeling of ROIs using photoactivation. These methods rely on the 
concept of photoactivatable tags that can be illuminated in defined regions28,44. After activation, 
tissues get dissociated and illuminated cells can be sorted and used for scRNA-seq28,44. The 
first method with this approach was NICHE-seq using a reporter mouse expressing 
photoactivatable GFP that could be activated by two-photon laser scanning microscopy 
(TPLSM)59. A similar approach is used by SPACECAT (Spatially Photo Activatable Color 
Encoded Cell Address Tags) where samples are stained with photoactivatable dyes60. In 
methods like ZipSeq61 and Light-Seq62, illumination releases caged oligonucleotide 
sequences on tissues that can then be hybridized to fluorophores or primer sequences.  
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Method Features Resolution Number of 
transcripts/UMI 

References  

LCM-Seq ROI extraction using LCM55; 

sequencing of ROIs using 

SMART-seq256,57;  

Down to one 

cell   

Up to 4,958 

transcripts per 

ROI 

Nichterwitz 

et al., 2016 

Nat. Com.63 

NICHE-seq ROI extraction by 

photoactivation of GFP from a 

transgenic mouse and FACS; 

sequencing using MARS-seq16;    

Around 100 

µm, then 

single cells  

200-1,500 per cell   Medaglia et 
al., 2017 

Science59 

SPACECAT ROI extraction by 

photoactivation of dyes applied 

to tissues and FACS; 

sequencing using Seq-Well14;  

10-20 

cells+, then 

single cells  

~6,000 transcripts 

per cell  

Genshaft et 
al., 2021 Nat. 

Com.60  

ZipSeq ROI extraction by uncaging a 

complementary sequence for 

binding a primer for poly(A) 

capture; sequencing by 

Chromium 10X Genomics 

platform;  

200-400 µm, 

then single 

cells  

500-6,000 

transcripts per 

cell  

Hu et al., 
2020 Nat. 

Methods61 

Light-Seq ROI labeling in situ by 

uncaging DNA barcodes that 

can then be sequenced using 

ex situ NGS;  

4-1,000+ 

cells  

1,000-10,000 

UMIs per 10x10 

µm2 area 

Kishi et al., 
2022 Nat. 

Methods62  

Table 4: Comparison of selected ROI capture-based ST technologies.  

5.2.3.2.3 Partial dissociation 
The third approach uses fluorescence-activated cell sorting (FACS) to isolate physically 
interacting pairs or communities of cells (2-10 cells) after partial dissociation of tissues, 
followed by sequencing of sorted communities in bulk using the MARS-seq scRNA-seq 
protocol13,16,64–66. After sequencing, transcriptomes of single cells are analyzed using 
computational deconvolution approaches. The spatial location of cells can then be 
reconstructed using so-called landmark genes, meaning their expression is specific for certain 
spatial locations65,66. Furthermore, ligand-receptor interactions between pairs of cells can be 
investigated64. For example, in pcRNAseq (paired-cell sequencing) the authors isolated 
heterogeneous pairs of hepatocytes and liver endothelial cells (LECs) and then they used 
zonated landmark gene expression in hepatocytes to reconstruct the position of LECs65. A 
zonated gene expression signature in LECs could then be identified65. 
 

Method Features Resolution Number of 
transcripts/UMI 

References  

pcRNAseq FACS sorting of pairs of cells; 

sequencing using MARS-seq16;   

Pairs of cells  200-1,500 per cell   Halpern et 
al., 2018 Nat. 

Biotec.65 

PIC-seq FACS sorting of pairs of cells; 

sequencing using MARS-

seq2.013;   

Pairs of cells  ~700 transcripts 

per cell  

Giladi et al., 
2020 Nat. 

Biotec.64 

ClumpSeq FACS sorting of communities 

of ~10 cells; sequencing using 

MARS-seq2.013;    

2-10 cells  ~700 transcripts 

per cell 

Manco et al., 
2021 Nat. 

Com.66  
Table 5: Comparison of selected partial dissociation capture-based ST technologies.  



 25 

5.2.3.3 Computational methods to infer the spatial location of a cell 
 
Using computational approaches, single cells from scRNA-seq can be integrated with spatial 
information to infer their spatial location. One approach to do so is using a small set of 
landmark genes acquired by ISH or methods like LCM-Seq following integration with scRNA-
seq data to reconstruct the spatial location of single cells67–69. This approach is highlighted in 
figure 6 on the example of the small intestinal villus where landmark gene signatures of cells 
from different zones within the crypt-villus axis are generated using LCM-Seq69. These were 
then used for the reconstruction of the anatomical origin of individual cells from scRNA-seq69. 
Using more extensive mathematical models many other tools were developed to integrate 
large scRNA-seq datasets with small samples of ST data (reviewed in Kleino et al, 20225). 
Two examples are novoSpaRc, which take into consideration that nearby cells are often more 
similar70, and DEEPsc which uses a deep learning-based algorithm to impute spatial 
structures of scRNA-seq data using a spatial reference71.        
 

                                 
Figure 6: Schematic illustration of spatial reconstruction of single cells from the intestinal villi using 
landmark gene signatures. Small intestinal villi are used for scRNA-seq and LCM-seq of different zones. Genes 

detected by LCM-seq of different zones can be used as landmark genes to reconstruct the position of single cells 

along the crypt-villus axis. Illustration from Moor A.E. et al., Spatial Reconstruction of Single Enterocytes Uncovers 

Broad Zonation along the Intestinal Villus Axis. Cell, 175, 1156-1167, 2018, by permission of Elsevier Science & 
Technology Journals.  

5.2.3.4 Spatial methods capturing mRNA plus other modalities 
 
In most recent ST technology developments, many scientists try to capture mRNA in 
combination with other modalities. One example is a method capturing all RNA molecules 
(coding RNAs, noncoding RNAs, and viral RNAs), called STRS (spatial total RNA-
sequencing)72. This is achieved by enzymatic in situ polyadenylations, adding poly(A) tails 
onto RNA molecules that are not polyadenylated and these can then be captured using the 
Visium standard protocol72. Another example is Spatial CUT&Tag73 where DBiT-seq51 is 
combined with cleavage under targets and tagmentation (CUT&Tag) chemistry74,75 to detect 
histone modifications. Thereby, histone modifications are bound by antibodies, followed by 
the ligation of adapters to the genomic DNA of the position where the antibodies bind73. Then 
adapters are labeled with a spatial barcode following the DBiT-seq workflow73. DBiT-seq was 
also adapted to work for proteins in a method called Spatial-CITE-seq, by applying DNA-
conjugated antibodies to the tissue slice before spatial barcoding76. This workflow was also 
adapted for Visium in SPOTS (Spatial PrOtein and Transcriptome Sequencing)77.  
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5.2.4 Current limitations  
 
The field of ST is relatively new and although there are constant developments and 
improvements, there are still many limitations that come along with different ST methods.  
 
Imaging-based methods are limited by the optical diffraction limit and the auto-fluorescent 
background signal of some tissue types can impair the fluorescent signal of labeled mRNA 
molecules to be detected properly5. Optical crowding is often challenging when analyzing large 
panels of targeting probes5; this problem has been improved by ExSeq, which uses expansion 
microscopy prior to in situ sequencing41. Probe design is another challenge with targeted 
imaging-based technologies. SeqFISH+33 requires at least 1kb large mRNA molecules for 
probe design, MERFISH31,32 needs 100-200 nucleotides5. Detection rates can often be 
increased by multiple probes binding the same mRNA molecule; however, this is limited by 
the length of mRNA transcripts78. Additionally, secondary structures and base composition 
can impact accessibility for probe binding78. ISH and some ISS methods are often targeted; 
therefore, prior knowledge is needed for panel design.  
 
mRNA capture-based spatial-indexing methods are unsupervised but often lack single-cell 
resolution. A single spot in Visium27,45 captures up to 10 cells. This is especially problematic 
when studying small cells with low amounts of mRNA molecules which could be crowded out 
by mRNA from larger cells. Hildebrandt et al., saw that in ST experiments of the liver there 
were low signals of liver endothelial cells (LECs) because mRNA molecules of the larger 
hepatocytes were captured preferentially79. Halpern et al. found that LECs had 23-fold lower 
total numbers of UMIs compared to hepatocytes in their scRNA-seq experiments65, therefore 
the chance that mRNA molecules of hepatocytes are captured in ST experiments is much 
higher. Even though array-based methods like Slide-seq46 have a single-cell resolution, one 
capture area could still capture a mix of two cells because its position could lie between a 
border region of two cells. It is difficult to truly acquire single-cell resolution confidently. 
Computational methods like SPOTlight80, SpatialDecon81, or Cell2Location82 can be used to 
analyze spot cell type composition or to assign individual cell types to spatial areas5, however, 
these are highly dependent on the quality of single-cell references and differences in gene 
expression of genes that are expressed within more than one cell type are difficult to identify. 
Another challenge in regards to that is that during tissue permeabilization mRNA molecules 
can diffuse5 and bind to distant capture areas contaminating other spatial areas.    
 
In comparison, many imaging-based methods even have a sub-cellular resolution. However, 
to assign signals to single cells, cell-segmentation procedures are required. Standard 
segmentation tools use specific markers like for example DAPI (4’,6-diamidino-2-
phenylinodole) staining for the nucleus to assign imaging pixels to cytoplasmic, nuclear, and 
empty regions5. Another approach is the usage of membrane markers, for example Lohoff et 
al. used a combination of ß-catenin, E-cadherin, pan-cadherin and N-cadherin to label cellular 
borders in combination with DAPI staining for cell segmention83. The assignment can be 
challenging for cells with different shapes, labeling cell borders might be superior over DAPI 
only staining in this case. Additionally, it might be difficult to segment cells from very densely 
organized structures. The authors of the development of Seq-Scope, for example, discuss that 
it is challenging to do segmentation in liver samples to divide NPCs from hepatocytes because 
hepatocytes are much bigger compared to NPCs48. For Stereo-seq, the authors claim that, 
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especially for densely packed tissue areas of small cells like immune cells, cell segmentation 
can be challenging50.   
 
Many ROI-based methods have single cell resolution by dissociating selected ROIs into single 
cells previous to single cell capture. However, often, only a limited number of regions can be 
analyzed at the same time due to constraints in fluorescent signal combinations or different 
illumination properties. For example, ZipSeq allows analysis of a maximum of four regions 
simultaneously61 and Light-Seq allows three rounds of light-directed barcoding, thereby 
labeling three regions62. Additionally, these methods are highly supervised in terms of spatial 
regions, ROIs are predefined by known microanatomical structures and thereby these 
methods are blind to unknown spatial tissue heterogeneities.  
 
Partial dissociation-based methods like PIC-seq64, pcRNAseq65, and Clump-seq66 lack single-
cell resolution, and thereby they face similar challenges of deconvolution as mentioned for ST 
array-based methods.  
 
In both, imaging- and mRNA capture-based spatial indexing technologies, transcript detection 
is often limited by the thickness of 10 µm tissue slices. Sometimes this does not even include 
an entire cell, for example, the diameter of a hepatocyte within the liver is approximately 20-
30 µm84. Three-dimensional information is lost and due to high costs per experiment, studies 
are often restricted to a couple of hand-picked slices resulting in analysis of a couple of flat 
areas within an organ. Additionally, tissues have to be freshly frozen or otherwise preserved 
to maintain mRNA integrity and sectioning is often tricky and difficult. 
 
Many ST technologies are limited by their instruments which are often expensive and 
unavailable to a broad scientific community. This is especially true for imaging-based methods 
where high-resolution microscopes with automated fluidics are needed5. NGS costs are lower, 
however, with higher resolution also the sequencing cost increases. Additionally, in both 
cases, often complex computational methods are needed for image and data analysis, which 
are often not accessible for many scientists3.  
 

5.3 Ligand-receptor interaction analysis  
 

5.3.1 Different types of ligand-receptor interactions  
 
Cells communicate with each other in defined manners to develop and maintain tissue 
homeostasis. These interactions are often impaired and changed when diseases like cancer 
develop. It is therefore important to study how cells communicate to find potential therapeutic 
targets. The general principle of cell-cell communication (CCC) is a sender cell that releases 
or presents so-called ligands to its surroundings and a receiver cell that binds the ligand with 
a so-called receptor, together termed ligand-receptor (L-R) interaction85. Ligands can be 
various different molecules like proteins, small peptides, steroids, amino acids, retinoids, or 
fatty acid derivatives; they can be either presented on the cell surface, secreted or diffused 
through the plasma membrane85. The binding of ligands by receptors initiates downstream 
signaling within the receiver cell85. L-R interactions can happen across different distances, i) 
juxtracrine interactions require direct cell-cell contact; ii) paracrine (ligand and receptor on 
neighboring cells) and autocrine (ligand and receptor on the same cell) signaling require 
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ligands to travel short distances; iii) and finally endocrine signaling requires molecules to travel 
long distances within the bloodstream, which can potentially control the behaviors of the whole 
organism, for example, this includes hormones85 (Fig.7). The distance that a cyto- or 
chemokine can meaningfully propagate during paracrine signaling was estimated at around 
250 µm by Francis et al.86. The term cytokines refers to signaling molecules in the form of 
peptides, proteins, and glycoproteins, while chemokines are chemo attractive cytokines that 
mediate communication within the immune system87.   

 
Figure 7: Overview of different types of L-R interactions 
defined by the distance two cells are apart to be able to 
communicate. Juxtracrine signaling requires direct cell contact, 

paracrine (ligand and receptor on neighboring cells) and 

autocrine (ligand and receptor on the same cell) work for short 

distances and endocrine signals can travel long distances within 

the bloodstream. Illustration from Armingol E. et al., Deciphering 

cell-cell interactions and communication from gene expression. 

Nat. Rev. Genet. 22, 71-88, 2021, by permission of Springer 
Nature (https://www.nature.com/nmeth/). 

 

   
 
 

 
5.3.2 Inferring ligand-receptor interactions from single-cell transcriptomics data  

 
CCC studies are traditionally done with methods of co-immunoprecipitation, proximity labeling 
proteomics, yeast two-hybrid screening, or fluorescence resonance energy transfer imaging 
to identify protein-protein interactions (reviewed in Rao et al., 2014 and Zhou et al., 202088,89). 
However, the accessibility to transcriptomic studies instead of proteomics is much higher, and 
therefore computational tools were developed to predict L-R interactions from transcriptomics 
data (reviewed in Armingol et al., 202190). The resolution of different cell types within scRNA-
seq datasets is especially useful for L-R prediction studies because one knows the exact cell 
type where a ligand or a receptor is expressed90. Methods to predict L-R interactions from 
scRNA-seq data are all based on a similar approach shown in figure 8. In short, after gene 
expression matrix generation by scRNA-seq and clustering, genes are filtered based on known 
ligands and receptors from collected resources of know interactions90. Based on gene 
expression of L-R pairs across two clusters, a communication score is calculated90.   
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Figure 8: Overview of the 
approach to predict L-R 
interactions from single-cell 
transcriptomics data. 1) Cell or 

tissue collection for scRNA-seq 

analysis; 2) Generation of gene 

expression matrices per cell or 

sample; 3) Adding information of 

known L-R pairs; 4) Filtering of 

gene expression data by known 

L-R pairs; 5) Calculation of a 

communication score of L-R 

pairs between two cell types; 6) 

Interpretation and visualization of 

results. Illustration from Armingol 

E. et al., Deciphering cell-cell 

interactions and communication 

from gene expression. Nat. Rev. Genet. 22, 71-88, 2021, by permission of Springer Nature 

(https://www.nature.com/nmeth/). 

There are many different tools for L-R prediction with slight differences in the type of L-R 
database that is used and the calculation of communication scores. Many of these methods 
were compared by Dimitrov et al., 202291. Databases from CellPhoneDB92 and ICELLNET93 
are manually curated, meaning that the interactions were manually checked, while other 
iTALK94 and SingleCellSignalR95 are using databases that also include non-curated 
interactions, which results in larger databases, but higher chances of false-positives. There 
are also many different approaches how to identify the most important interactions, reviewed 
in Armingol et al., 202190. Methods like iTALK use a differential combination approach, where 
differentially expressed genes (DEGs) between clusters are overlapped with known L-R 
pairs94. NicheNet uses a network-based approach by taking downstream targets and 
transcription factors into consideration for the prediction96. CellPhoneDB and ICELLNET are 
based on permutation tests to evaluate significance; they rely on random shuffling of labels to 
generate a null hypothesis that can then be used for testing of significance of observed L-R 
pairs92,93. Ligands and receptors can be heteromeric complexes and only if all subunits are 
expressed meaningful interactions can take place, therefore, some tools like CellPhoneDB 
and ICELLNET account for subunit expression, ensuring that only if all subunits are expressed 
sufficiently an interaction is predicted92,93.  

5.3.3 Inferring ligand-receptor interactions from spatial transcriptomics data  
 
Due to the rapid development of different ST approaches, a lot of effort has been dedicated 
to including spatial information in L-R interaction analysis, which helps to prioritize interactions 
and to remove false positives because spatially close cells are also more likely to interact with 
each other. Existing tools like CellPhoneDB (version 3) and NicheNet included the 
consideration of spatial information in their pipelines92,96–98. Other tools were developed 
specifically for application to ST data. For example, a feature in the Giotto ST toolbox takes 
the spatial proximity of cell types into consideration for L-R prediction by using spatial proximity 
graphs99. Another tool, SpaOTsc, constructs space-constrained communication networks by 
estimating the “diffusivity” of signaling pathways by investigating downstream gene expression 
in a spatial context100. And a very recent approach from Fischer et al. uses neural networks to 
compute intercellular communication by taking the influence of the niche composition on gene 
expression into consideration101.  
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5.3.4 How to identify cell-cell communications that are biologically most relevant  
 
All L-R prediction tools based on transcriptomics give large lists of potential L-R interactions 
as outputs. However, it is challenging to decipher the biologically most relevant interactions. 
Using ST in combination with or instead of scRNA-seq data is already a good effort to extract 
more relevant interactions because cells are more likely to interact if they are in spatial 
proximity. An interesting approach was introduced by Guilliams et al. where they hypothesized 
that biologically most relevant L-R interactions are evolutionarily conserved98. Therefore, the 
authors performed L-R prediction studies on single-cell transcriptomics data from the liver of 
various different species like macaque, hamster, chicken, zebrafish, humans, and mouse98. 
They could thereby find a highly conserved interaction between Kupffer cells and stellate 
cells98. Other approaches are based on the validation of L-R interactions identified with 
transcriptomic assays using proteomic assays. For example, experimental approaches like 
co-occurrence measurements of ligand and receptor proteins using FACS or 
immunohistochemistry90. However, these do not functionally validate L-R interactions; to do 
so, inhibitors against or activator cytokines for ligands or receptors can be used to block certain 
interactions in vivo or in vitro and expressional changes in pathways can be assessed90. 
 

5.3.5 Limitations of current approaches  
 
L-R interaction analysis based on transcriptomic data (scRNA-seq and ST) are based on the 
following assumptions: Gene expression can be directly translated to protein abundance and 
protein abundance is translatable to interacting potential without taking any other factors like 
post-translational modifications into consideration90. This is a major limitation because 
predicted L-R interactions might result in false positives that might not be biologically relevant. 
Some effort has been dedicated to taking on this limitation by combining transcriptomics and 
proteomics within one assay90, for example, scRNA-seq in combination with a CITE-seq 
antibody panel against potential L-R pairs, or tools like Nativeomics which uses mass 
spectrometry to identify ligand binding to membrane proteins102 and INs-seq that integrates 
scRNA-seq readouts with intracellular protein measurements using cell permeabilization, 
staining, and FACS103. Another consideration is that not all interactions that are within L-R 
databases are functionally validated properly90 and many contributing interactions are likely 
not annotated and included in databases yet. The inclusion of spatial data reduces the 
likelihood of false positive L-R predictions90. However, with the lack of single-cell resolution it 
is often difficult to study direct L-R interactions between specific cell types.  
 

5.4 Mouse liver biology 
 
The liver is a highly spatially organized organ with well annotated stereotypic gene 
expression patterns and functions arranged in defined spatial locations104. This makes the 
liver an ideal organ to benchmark our novel ST technology.  
 

5.4.1 Anatomy of the liver 
 
Within the human body, the liver makes up 2-3 % of the body weight, making it the largest 
internal organ105. As a combination of two lobes, a larger right lobe and a smaller left lobe, the 
liver is located in the upper abdominal cavity where the rib cage protects it and the position is 
maintained by ligamentous attachments that expand into the so-called Glisson capsule or 
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hepatic capsule that protects the livers surface105. The blood entering into the liver is a 
composition of approximately 75 % of venous blood, a collection from the spleen, stomach, 
intestine, gallbladder, and pancreas, and 25 % of highly oxygenated blood from the hepatic 
artery106. On the microanatomical scale, the liver is built up of homogenous subunits called 
liver lobules that are hexagonal structures of bi-layered chords of hepatocytes, separated by 
sinusoidal vessels104. Within the sinusoids, blood flows from the portal vein (PV) and the 
hepatic artery radially inwards to the draining central vein (CV)104,107. The PV, hepatic artery, 
and the bile duct together form the portal triad107. The blood flow creates a gradient of oxygen, 
due to influx from the hepatic artery and gradual consumption as blood flows towards the 
CV104; the influence of this will be discussed later in the section on metabolic zonation. 
Endothelial cells are lining the sinusoids and exchange molecules from the blood with 
hepatocytes in a microenvironment called the space of Disse, which lies in between these two 
cell types108. Fluids in the bile duct are going in the opposite direction of the blood flow to 
transport bile acid to the intestine104. Figure 9 illustrates the microanatomical structure of the 
liver.  
 

Figure 9: Microanatomical structure of the liver 
sinusoids and metabolic zonation. A) Hexagonal 

structure of the liver lobules. They are organized in 

different zones lining the sinusoids forming a central to 

portal axis. B) Structure of a liver sinusoid showing the 

blood flow from the portal vein and hepatic artery draining 

into the central vein. Different cell types, which support 

hepatic function, are indicated in the figure. There is a 

gradient of oxygen, nutrients and hormones within the 

blood which results in different tasks within different lobule 

zones shown in different color gradients. This division of 

labor is a concept called “metabolic zonation”. Illustration 

from Trefts E. et al., The liver. Curr. Biol., 27, R2247-
R2251, 2017, by permission from Elsevier.  

5.4.2 Functions of the liver  
 
The liver has several critical functions to preserve physiological homeostasis (reviewed in Ben-
Moshe and Itzkovitz et al., 2019)104. The blood drains from the intestine and is therefore full of 
metabolites and nutrients104. One of the liver's main tasks is to store nutrients and to manage 
their release in a controlled manner. For example, the liver helps to keep constant glucose 
levels throughout the day104. Other liver tasks are detoxification, defense against pathogens, 
production of hormones, and protein synthesis104. Hepatocytes produce bile acids, which are 
collected in bile ducts and shuttled over the portal triad to the intestine104. Bile acids are 
important for solubilizing lipids to promote lipid absorption109.   
 

5.4.3 Immune tolerogenic feature of the liver  
 
An interesting feature of the liver is its immune tolerance (reviewed in Crispe et al., 2003)110. 
It has been hypothesized that due to a constant influx of blood from the intestine, which is full 
of harmless bacterial products and food-derived antigens, the liver’s immune system has to 
have a certain tolerance against them that represses it from getting activated against harmless 
influx110. However, the hepatic immune system also has to be ready if pathogenic products 
are entering the liver, therefore different immune cell types have to exert different tasks to 
regulate immune tolerance and immune activation.  

Space of Disse
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5.4.4 Cell types within the liver and their functions  
 
The liver is composed of 60% parenchymal cells, which are the hepatocytes, and 40% non-
parenchymal cells (NPCs), which are mainly liver endothelial cells (LECs), hepatic stellate 
cells (HSCs), cholangiocytes, Kupffer cells (KCs) and additional immune cells111. The most 
important cell types for this thesis within the murine liver will be described in more detail within 
this section.   
 

5.4.4.1 Parenchymal cells  
 
Parenchymal is a term that describes cells that are the most abundant and functionally 
important within a tissue volume112. Within the liver, these are the hepatocytes making up 
around 80 % of the liver mass111. They have diverse functions depending on where the 
hepatocytes are within the central to portal axis104. The exact functions will be discussed in 
the section on metabolic zonation.  
 

5.4.4.2 Non-parenchymal cells  
 
Non-parenchymal describes cells that help parenchymal cells in a supportive way to conduct 
their functions.  
 
5.4.4.2.1 Liver endothelial cells (LECs) 
Endothelial cells in general are lining blood vessel walls where they are involved in the 
exchange and filtering of for example nutrients113. Within the liver they can be broadly 
subdivided into large vessel endothelial cells (LVECs) and liver sinusoidal endothelial cells 
(LSECs)114,115. LVECs are lining the large blood vessels114. Liver sinusoidal endothelial cells 
(LSECs) are lining the liver sinusoids, where they function as sieve plates to exchange 
molecules between the blood and the hepatic cell types116. They have a higher permeability 
for molecules than other endothelial cells113. Their open pores, so-called fenestrae, which are 
around 100-200 nm in diameter lack a diaphragm and basement membrane (reviewed in Braet 
et al., 2002)117. This makes an bidirectional exchange of particles, fluids and solutes easier 
because it does not require complex processes of endocytosis and transcytosis, however, 
only particles smaller than the fenestrae can pass117. Interestingly, the number and diameter 
of fenestrae can change dynamically due to pathological or physiological changes117.   
Additionally, LSECs are involved in the tethering of leukocytes so they can enter the hepatic 
tissue from the blood stream (reviewed in Shetty et al., 2018)118. The processes of initial 
adhesion, subsequent crawling on the vessel wall, and transmigration are mediated by 
adhesion molecules, for example, intercellular adhesion molecule 1 (ICAM1) and vascular cell 
adhesion molecule 1 (VCAM1), that bind leukocytes via integrins118.  
  
5.4.4.2.2 T lymphocytes  
T lymphocytes within the liver can be broadly subdivided into CD4+ and CD8+ T cells which 
increase during inflammation due the recruitment of circulating T cells via for example LSECs 
or KCs110.  T cells can be primed by antigen-presenting cells (APCs) which can be for example 
LSECs119, KCs110,120 or DCs110. Antigen presentation is a process where a cell presents an 
antigen on its cell surface, which can for example be derived from pathogens121. For T cells 
this presentation occurs via a so-called major histocompatibility complex (MHC)121. The 
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presented antigen can then be recognized by T cells, which in response can initiate anti-
pathogenic effector functions121. 
 
5.4.4.2.3 Macrophages  
KCs are the tissue resident macrophages of the liver and they are involved in the phagocytosis 
of microorganisms and apoptotic cells110,122,123. During an inflammatory response, KCs can 
function as APCs and interact with T cells which may lead to their proliferation and cytokine 
production110,120. Interaction of KCs with lymphocytes can also lead to reciprocal activation of 
KC124. There are also indications that KCs are involved in immune tolerance, e.g. by the 
production of nitric oxide that suppresses activation of T cells125. During pathological 
conditions, circulating monocytes can be recruited from the blood which can differentiate into 
macrophages with different immunogenic functions in response to their microenvironment 
(reviewed in Wen et al., 2021)126. Previously, macrophages were subdivided into two 
categories based on their Ly6C expression (Ly6Chigh and Ly6Clow), however, recent advances 
in scRNA-seq studies discovered many more subtypes during pathological conditions126,127. 
Some of them will be discussed in a later section on macrophages in liver metastasis.    
 
5.4.4.2.4 NK and NKT cells 
Within the liver, there is an exceptionally high proportion of natural killer (NK) and natural killer 
T (NKT) cells compared to other lymphoid tissues110,128,129. NK cells are involved in the 
adaptive immune response by generating cytokines and interacting with other immune cells130. 
NKT cells in general serve as a bridge between the adaptive and the innate immune system131 
and they were found to secrete IL-4 which gives them an anti-inflammatory phenotype110,132. 
 

5.4.5 Metabolic zonation  
 
Spatial heterogeneity between hepatocytes across the central-portal axis was first described 
in 1933 by Kater et al., where they described gradients of glycogen and fat and differences in 
mitochondria morphology133. Many other studies followed, grouping different metabolic 
functions into pericentral (combined lobule layers towards the central veins) and periportal 
(combined lobule layers towards the portal vein) tasks, a concept named “metabolic 
zonation”104,133–139 (Fig. 9).  
 

• Pericentral tasks: Glycolysis, lipogenesis, alcohol detoxification  
• Periportal tasks: Gluconeogenesis, oxidative metabolism, ureagenesis, β-oxidation of 

fatty acids, cholesterol biosynthesis, amino acid breakdown  
 
In general, periportal tasks are more energy-consuming because the oxygen levels are higher; 
therefore, hepatocytes can make more adenosine triphosphate (ATP)104. Another factor that 
impacts metabolic zonation is the production of WNT (Wingless-related integration site) which 
is produced by centrally located LECs and its concentration, therefore, gradually decreases 
towards the portal vein 65,104,140. WNT/!-catenin signaling has been recognized as a master 
regulator of liver metabolic zonation116. One-third of zonated genes within hepatocytes are 
regulated by WNT signaling – with WNT-activated and -repressed genes being expressed 
pericentrally and periportally, respectively141.  
Metabolic zonation only imprints within the first week after birth in mice, hepatocytes in 
perinatal mice show no zonation116,142,143. The first studies on metabolic zonation were done 
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using methods like histochemistry, immunohistochemistry (IHC), ISH, or a method called 
digitonin-collagenase perfusion104. Digitonin is a detergent that lyses eukaryotic cells and 
perfusion of the liver from either the central or portal vein leads to damaged cells within the 
central or portal vein respectively144–146. The cells within the undamaged side could then be 
dissociated using collagenase, an enzyme that digests collagen which keeps the tissue matrix 
intact, and undamaged cells could be analyzed144–146. With the development of single-cell 
transcriptomics, the hepatic division of labor could be studied in high throughput assays. 
Halpern et al. used scRNA-seq of hepatocytes and 6 landmark genes, identified previously 
and verified by smFISH, to reconstruct the spatial position of hepatocytes within 9 lobule layers 
from central to portal vein141. Reconstructed hepatocytes could then be investigated further 
and approximately half of the genes were found to be zonated to conduct different tasks141. 
Information about zonated gene expression in this study was then used further by Halpern et 
al. in 2018 to reconstruct the spatial position of LECs using pcRNAseq65. Pairs of LECs and 
hepatocytes were sequenced together and the position of pairs was then reconstructed using 
hepatocyte landmark genes, different gene expression patterns in LECs between different 
lobule layers could then be analyzed further65. They found that also in LECs approximately 50 
% of the genes are zonated with pericentral genes being mainly associated to WNT 
signaling65. This underlined the important role of LECs in supporting the zonation of 
hepatocytes.  
 

5.4.6 Immune zonation  
 
Recently, Gola et al. employed quantitative multiplex imaging to characterize the immune 
zonation of the liver, and described the enrichment of NKT cells and KCs in the periportal 
area147. This was also seen in the recent effort of Guilliams et al. to characterize all hepatic 
cells using single-cell and single-nuclei sequencing (snRNA-seq)98. Immune zonation in mice 
manifests only around day 20-25 after birth when the mice are weaned compared to metabolic 
zonation that is matured around one week after birth142,143,147. Unlike metabolic zonation, WNT 
signaling does not have any influence on immune zonation, rather the change in gut microbiota 
during food uptake after weaning induces the periportal enrichment of KCs and NKT cells147. 
The periportal enrichment is suggested to be important for pro-inflammatory responses 
towards incoming bacteria and pathogens from the intestinal blood flow, this might protect 
important functions of the central veins147. Even though there is a zonation of KCs as a whole, 
no difference in gene expression across KCs from different zones within the central-portal axis 
has been described to date.  
 

5.5 Colorectal liver metastasis  
 

5.5.1 Epidemiology and current treatment options    
 
Liver metastasis formation is especially common in colorectal cancer (CRC), presumably 
because venous blood drains from the gut and the liver is a highly vascular organ148. A study 
from 2006 revealed that of 4,399 CRC patients 41 % developed metastases in the liver149. 
Worldwide, CRC constitutes around 10% of all diagnosed cancers yearly and is the second 
most common type of cancer in women and third in men150. In patients where it is possible to 
resect metastatic tissues, patients undergo surgical resection, combined with pre-operative 
neoadjuvant chemotherapy (NAC)151,152. Patients with non-resectable metastases are treated 
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with chemotherapy and biological agents targeting EGFR (epidermal growth factor receptor) 
or VEGF (vascular endothelial growth factor) to reduce tumor growth151,152. However, 
researchers are constantly trying to find targets for more defined treatment options for different 
metastatic phases.       
 

5.5.2 Phases of liver metastasis development  
 
Metastasis formation is a multi-phase process (reviewed in Brodt et al., 2016)153. The first 
phase is called the microvascular phase153. During that phase tumor cells that derive from 
primary sites like the colon and circulate within the vasculature get trapped153. It is followed by 
the extravascular pre-angiogenic phase where tumor cells travel into the space of Disse and 
activate a stromal response153. The third phase is the angiogenic phase where de novo 
vasculature is formed within micrometastases153. This is followed by the fourth and last phase, 
the growth phase which is defined by the expansion of metastases153.  
 

5.5.3 Influence of hepatic cells in metastasis formation, promotion, and 
reduction  

 
Hepatic cells are influencing CRC metastatic development in different ways. Within the tumor 
microenvironment (TME) different cell types are getting recruited or existing cell types are 
changing their behavior in order to have pro- or anti-metastatic effects (reviewed in Niu et al., 
2022 and Oura et al., 2021)154,155. Cell types most important for this thesis will be explained in 
more detail.  
 
When a tumor cell enters the liver through the bloodstream, LSECs, KCs, and NK cells are 
likely among its first encounters156. These cells have the potential to fight the incoming threat, 
for example by KC-dependent phagocytosis, NK-dependent cytolysis, and activation of other 
immune cells through the release of pro-inflammatory factors like TNF-"156,157.  
 
5.5.3.1 Liver sinusoidal endothelial cells   
Liver sinusoidal endothelial cells are involved in recruitment of immune cells from the blood 
into the TME155. Later in the angiogenic phase, LSECs are also involved in de-novo 
vascularization153. 
 
5.5.3.2 Macrophages  
KCs in general have an anti-metastatic effect through phagocytosis of tumor cells and the 
release of TNF-", which has a pro-inflammatory effect153,158,159. Additionally, KCs can recruit 
other immune cells like NK cells and neutrophils to fight against the metastatic cells153.  
Circulating monocytes that originated in the bone marrow are recruited to the TME, where 
they differentiate into tumor associated macrophages (TAMs) that can have different functions 
to promote or fight against the metastatic process126,154. One example is the CCL2|CCR2 
recruitment axis between tumor cells and monocytes, where they then acquire a TAM 
phenotypes that favors tumor growth154. Recently published scRNA-seq studies from patient 
samples of CRC and liver metastasis found an enrichment of SPP1+ and MRC1+CCL18+ 
expressing macrophage which correlated with an immunosuppressive 
microenvironment160,161. Another example is C1Q+ macrophages which have been shown to 
be immunosuppressive and were found to be correlated with poor patient prognosis in hepatic 
metastasis127,162.   
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5.5.3.3 T lymphocytes  
Recruited macrophages can influence the T cell composition within the TME153. For example 
the C1Q+ macrophage subset is correlated with a higher abundance of exhausted T cells127. 
T cell exhaustion is a phenomenon where T cells lose their function to produce effector 
cytokines, they lose their cytotoxicity and they overexpress inhibitory receptors (reviewed in 
Jiang et al., 2015)163. All these features lead to a pro-tumorigenic TME163.  
 

5.5.4 Mouse model of colorectal liver metastasis 
 
Mouse models of liver metastasis can be subdivided into two categories: spontaneous and 
experimental (reviewed in Oh et al., 2017)164. The spontaneous approach includes a primary 
tumor generated by injection of cancer cells into the colon; and after the primary tumor 
develops it spontaneously metastasizes to the liver164. This approach represents all phases of 
the metastatic process, however, metastasis formation is often not predictable and 
reproducible and it takes a long time until metastases development164–166. Sometimes the 
primary tumor even has to be resected, before proper metastasis formation, because the 
tumor burden is too high164–166. During the experimental approach, CRC cells are injected 
directly into the spleen or the portal vein, the cells then enter the microvasculature and some 
of them engraft and form liver metastasis164. The advantage of this model is that the metastasis 
formation is fast and it is more reproducible than the spontaneous model, however, only the 
late metastatic phase can be studied and the systemic changes of the immune system due to 
a primary tumor are bypassed164. We used an experimental model, inducing liver metastasis 
via intrasplenic injection of AKPS CRC organoids. These organoids harbor four mutations in 
the following genes: Apc, Kras, Tp53 and Smad4, which are the four driver mutations involved 
in colorectal cancer development167.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 37 

6 Aims of this thesis  
 
The field of ST technology development is quite new and still harbors many limitations. For 
example, complex technology requirements like high-resolution microscopes, targeting only a 
few ROIs, the requirement of prior knowledge for gene panel design in commercially available 
imaging-based methods, and the lack of single-cell resolution in commercially available, easy-
to-use, unsupervised technologies168. Therefore, we wanted to develop a new ST 
methodology called sphere-sequencing (sphere-seq) that includes the following 
improvements:  
 

• Single-cell resolution  
• Unsupervised transcriptome-capture  
• Three-dimensional spatial capture  
• High-throughput  
• No requirements for tissue slicing  
• Simplicity of data analysis  

 
These are the aims to archive that:  

1. Establishment of an experimental and computational workflow for sphere-seq.  
2. Validation of sphere-seq on metastasis-bearing livers.  
3. Evaluation of sphere-seq performance in comparison to one of the most applied 

mRNA-capture array-based ST method (Visium).  
4. Application of sphere-seq on other tissues and species.  
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7 Material and methods  
 

7.1 Experimental protocol of sphere-sequencing  
 
This section describes the experimental protocol of sphere-seq that was developed for this 
project. It includes a detailed section for all materials used together with their distributors. The 
procedure is explained in a continuous manner step by step in Arabic numbering format. 
Options for some steps are highlighted with capital letters in alphabetical order for different 
tissues and Latin numbers for different scRNA-seq methodologies. There are also sections 
highlighting the anticipated results and options for troubleshooting.  
 

7.1.1 Materials  
7.1.1.1 Equipment  

Equipment  Distributor/Catalogue number Tissue  
Big centrifuge 5910R  Eppendorf  All 

Centrifuge insert for 50 mL tubes  Eppendorf All 

Centrifuge insert for 5 mL tubes   Eppendorf  All 

Centrifuge insert for plates  Eppendorf  All  

Small centrifuge 5424R Eppendorf  All 

Thermal cycler (ProFlex PCR System) Applied Biosystems  All 

Thermomixer Eppendorf  All 

Thermomixer adapter for 96 well plates Eppendorf  All 

Thermomixer adapter for 1.5 mL tubes  Eppendorf  All  

Large fragment biosorter  Union Biometrica  All 

1000 µm nozzle  Union Biometrica  All 

P20 multichannel pipette Rainin  All 

P200 multichannel pipette  Rainin All  

P20 pipette  Rainin  All  

P200 pipette  Rainin All 

P1000 pipette  Rainin  All  

Hemocytometer  Sigma Aldrich  All  

10x Magnetic Separator (for small PCR tubes) 10X Genomics  All  

Magnetic separation Rack for 1.5 mL tubes  New England Biolabs #S15065 All  

Mini centrifuge   Sigma Aldrich  All 

Qubit 4 fluorometer  Thermo Fisher Scientific  All 

Tape Station 4200 system Agilent Technologies  All 

10X Vortex Adapter Chromium 10X #330002 All if 10X  

Chromium 10X single-cell capture system  Chromium 10X  All if 10X  

BD RhapsodyTM Express Single-Cell Analysis 

system   

BD Rhapsody  All if BD 

BD RhapsodyTM P1200M pipette BD Rhapsody #633704 All if BD  

BD RhapsodyTM P5000M pipette  BD Rhapsody #633705 All if BD  

Large magnetic separation stand  V&P Scientific, Inc. #VP772FB-1 All if BD  

Heat block for 1.5 mL tubes  Fisher Scientific   All if BD  

Perfusion pump  Thermo Fisher Scientific Liver  

Rocking Shaker   Thermo Fisher Scientific  Organoids  
Table 6: Equipment for sphere-seq.   
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7.1.1.2 Consumables  
 

Consumables  Distributor/Catalogue number Tissue  
15 and 50 mL falcon tubes  Falcon  All 

Strainer in different sizes (40, 70, 

100, 300, 200, 400, 500 µm)   

PluriSelect #43-50040-51, #43-50070-51, 

#43-50100-51, #43-50200-03, #43-50300-03, 

#43-50400-03, #43-50500-03 

All 

Non-binding, V-shaped 96-well plates  Greiner Bio-one #651901 All 

Adhesive sealing sheets for plates   Thermo Fisher Scientific #AB0558 All 

Low-retention P20 pipette tips  Rainin  All 

Low-retention P20 pipette tips  Rainin  All  

P20 pipette tips Rainin  All 

 

P200 pipette tips Rainin All  

Low-retention P1000 pipette tips  Rainin  All  

P1000 pipette tips  Rainin  All  

5 mL FACS tubes  Falcon  All  

Low-binding 1.5 mL Eppendorf tubes Eppendorf  All  

BD RhapsodyTM Cartridge Kit BD Biosciences #633801 All  

Quit tubes  Invitrogen #Q32856 All 

High sensitivity D1000 Tape Station 

tapes  

Agilent Technologies #5067-5584 All 

High sensitivity D5000 Tape Station 

tapes  

Agilent Technologies #5067-5592 All 

Tape Station loading tips Agilent Technologies #5067-5598 All  

P1000 pipette tips  Eppendorf  All if BD 

5 mL pipette tips  Eppendorf  All if BD  

Chromium Next GEM Chip G Single 

Cell Kit (1 reaction) 

10X Genomics #PN-10000120 All if 

Chromium 

10X 
Table 7: Consumables for sphere-seq.   

7.1.1.3 Reagents  
 

Reagents  Distributor/Catalogue number Tissue  
PBS, pH 7.4 Gibco  All 

60 µm Megabead NIST 

traceable particles  

Polysciences    All 

125 µm Megabead NIST 

traceable particles 

Polysciences    All 

175 µm Megabead NIST 

traceable particles 

Polysciences    All 

10 X PBS  Millipore  All 

Cleaning Solution for Biosorter Union Biometrica #300-5072-000 All 

100 % Ethanol  Sigma Aldrich  All 

BSA Sigma Aldrich  All  

MULTI-seq Lipid-Modified 

Oligos   

Sigma Aldrich #LMO001-100R; or lab of Zev 

Gartner as UCSF  

All  

Trypan Blue Solution, 0.4 %  Gibco  All  

MULTI-seq primer  IDT, standard desalting,   

5’-CTTGGCACCCGAGAATTCC-3’ 

All 
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SPRIselect beads  Beckman coulter B23319 All  

Elution buffer (EB) Qiagen  All  

Nuclease free water  Invitrogen  All 

HiFi HotStart ReadyMix (2x) Fisher Scientific #NC0295239 All 

Small RNA TruSeq RPI primer 

different indices  

Illumina #RS-200-0012 or IDT TrueGrade 

purification  

All  

100% Isopropanol Sigma Aldrich  All  

High sensitivity D1000 Tape 

Station reagents  

Agilent Technologies #5067-5585 All 

High sensitivity D5000 Tape 

Station reagents 

Agilent Technologies #5067-5593 All 

dsDNA high-sensitivity Qubit 

reagent kit  

Life Technologies #Q32854 All  

288 MULTI-seq barcode oligos 

for 3’ capture   

IDT, standard desalting,  

5’-

CCTTGGCACCCGAGAATTCCANNNNNNNNA30-3’ 

All if 3’ 

capture 

288 MULTI-seq barcode oligos 

for 5’ capture   

IDT, standard desalting,  

5’-

CCTTGGCACCCGAGAATTCCANNNNNNNNCCC

ATATAAGAAA -3’ 

All if 5’ 

capture  

BD RhapsodyTM Cartridge 

Reagent Kit (1 reaction) 

BD Biosciences #633731 All if BD  

BD RhapsodyTM cDNA Kit (1 

reaction) 

BD Biosciences #633773 All if BD 

BD RhapsodyTM Whole 

transcriptome Analysis (WTA) 

Amplification Kit (1 reaction) 

BD Biosciences #633801 All if BD 

Chromium Next GEM Single 

Cell 5’ library and Gel bead Kit 

v 1.1 (1 reaction) 

10X Genomics #PN-1000165 All if 10X 

Chromium Single Cell 5’ 

Library Construction Kit  

10X Genomics #PN-1000020 All if 10X  

DynaBeads MyOne Silan 

Beads 

Thermo Fisher #37002D All if 10X  

Low glucose DMEM (1 g/L D-

Glucose/L-Glutamine, 

Pyruvate) 

Gibco #31885-023 Liver  

1 M HEPES Gibco  Liver 

Liberase  Sigma Aldrich #05401119001 Liver 

10 X TripLE Gibco  Liver 

MACS tissue storage solution  Miltenyi Biotec #130-100-008 Crohn 

HBSS (-Ca2+ -Mg2+) Sigma Aldrich  Crohn 

0.5 M EDTA  Lonza  Crohn 

HBSS (+Ca2++Mg2+) Sigma Aldrich  Crohn 

DNAseI  Roche Diagnostics #10104159001  Crohn 

Collagenase from Clostridium 

histolyticum  

Sigma Aldrich #C5138 Crohn 

1 X TripLE Gibco  Organoids 
Table 8: Reagents needed for sphere-seq.   
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7.1.2 Procedure  
 
General note: use low-retention pipette tips and low-binding tubes whenever possible to 
reduce cell loss.  
 
1. Prepare the following solutions  

 
Solution Components    Tissue  
1 X PBS for sorter (5-10 L) 10 X PBS diluted with ddH2O  All 

Standard beads solution (30 

mL) 

2-3 drops of each bead size (60, 125, 175 µm) in 30 

mL ddH2O 

All 

70 % EtOH for sorter (0.5 L) Dilute 100 % EtOH with ddH2O All  

EDTA/PBS 20 mM EDTA in PBS   All  

Anchor:BC for 100-400 µm 

spheres  (288x) 

50 nM, Anchor:BC 1:1 in 20 µl PBS;   All  

Anchor:BC for 400-800 µm 

spheres (288x) 

100 nM, Anchor:BC 1:1 in 20 µl PBS;  All 

Co-anchor for 100-400 µm 

spheres (288x) 

50 nM in 20 µl PBS  All 

Co-anchor 100 nM (288x) 100 nM in 20 µl PBS All 

10 % BSA/PBS (40 mL)   Dissolve 3 g BSA in PBS; filter through 40 µm 

strainer before use  

All  

1 % BSA/PBS (20 mL)  Dilute 2 mL 10 % BSA with 18 mL PBS  All  

MULTI-seq primer  2.5 µM in TE  All  

80 % EtOH for library 

preparation (10 mL) 

Dilute 100 % EtOH with nuclease free ddH2O All  

Murine Liver Dissociation 

Buffer (9 mL)  
low glucose DMEM (1 g/L D-Glucose/L-
Glutamine, Pyruvate) with 15 mM HEPES, 32 
µg/mL Liberase and 1x TripLE 

Liver 

Crohn Epithelial Dissociation 

Buffer (30 mL)  
HBSS (-Ca2+-Mg2+) with 10 mM HEPES and 5 
mM EDTA 

Crohn 

Crohn Digestion Buffer (30 

mL) 

HBSS (+Ca2++Mg2+) with 0.5 mg/mL DNAseI and 

0.5 mg/mL Collagenase  

Crohn 

10 % BSA/low Glucose DMEM 

(40 mL)   

Dissolve 3 g BSA in low Glucose DMEM; filter 

through 40 µm strainer before use  

All  

1 % BSA/low Glucose DMEM 

(20 mL)  

Dilute 2 mL 10 % BSA with 18 mL low Glucose 

DMEM  

All  

Table 9: Solutions that have to be prepared for sphere-seq.  

2. Set-up of the large fragment biosorter (follows the BioSorter manual from Union 
Biometrica) 

2.1. Use 1000 µm FOCA (Fluidics and Optics Core Assembly) 
2.2. Fill 10 mL ddH2O into the sample cup (50 mL falcon tube)  
2.3. Check the tanks: the waste tank should be empty, the water tank filled with ddH2O, 

the sheath flow tank filled with 1x PBS, the ethanol tank filled with 70 % EtOH, and 
the cleaning solution tank filled with a cleaning solution;    

2.4. Turn on the biosorter and the computer 
2.5. Open FlowPilot software 
2.6. Turn on the lasers using the iBEAM-SMART software: Switch on the emission of 

channel 1 to 60 mW 
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2.7. Open an existing or new experiment in the drop-down menu “setup” 
2.8. Set the settings of the biosorter to the following parameters, these can be adjusted 

depending on the sort requirements, the machine, and the software:  
• Sample cup pressure: 0.42 pounds per square inch (psi) 
• Diverter pressure: 2.5 psi 
• Power: 50 megawatts (mW) 
• Gain: 1.0 
• Photomultiplier tube (PMT) Volts green: 600 
• PMT Volts red: 750 
• Drop width: 7 milliseconds (mS) 
• Sort delay: 23 mS  
• Sheath flow rate: 57 %  
• Select Pinch valve  

2.9. Use the flushing procedure to fill the pipe that connects the sample cup with the FOCA 
with fluids:  

2.9.1. check all boxes “Sheath on”, “Sample on”, “Diverter pressure” and “Waste tray 
open”  

2.9.2. Depressurize the sample cup by clicking “Refill sample” 
2.9.3. When the pipe is filled with fluids depressurize by clicking “Done Refill” 

2.10.  General procedure: when changing the sample cup depressurize beforehand by 
clicking “Refill sample”, after the sample cup is changed click “Done Refill” 

2.11.  Washing and priming of the system: “Maintenance” drop-down menu, select in the 
following order:  

2.11.1. Water Wash 
2.11.2. Prime Flow Cell 
2.11.3. Prime Sample Cup 

2.12.  Check if all pipes around the FOCA are filled with fluids, if there are air bubbles left 
repeat 2.11 until the air bubbles are gone 

2.13.  Check flow rate and stream:  
2.13.1. Flow stream  

2.13.1.1. Check the boxes “Sheath on” and “Waste tray open”  
2.13.1.2. Uncheck “Sample on” and “Diverter pressure”  
2.13.1.3. The stream should be a narrow straight stream 
2.13.1.4. If not, then adjust the micrometer wheel on the side of the waste tray 

2.13.2. Sheath flow rate:  
2.13.2.1. can be measured by collecting the flow through for one minute 
2.13.2.2. It should be around 45 mL for the 1000 µm FOCA 
2.13.2.3. If not accurate enough, sheath rate can be adjusted 

2.14.  Open an existing or new sample 
2.14.1. If new then draw plots from the “Layout” drop-down menu, you need a 

histogram with TOF on the x-axis and extinction on the y-axis for size selection, 
and for fluorescence a histogram with TOF on the x-axis and Green/Red/.. on the 
y-axis.  

2.15.  For sorting in a 96-well plate calibrate plate positions:  
2.15.1. Put the lid of a 96-well plate on the X-Y-Z Stage  
2.15.2. Open the menu “Calibrate plate positions”  
2.15.3. Set the position for plate A well A1 and the last well; do the same for plate B 



 44 

2.15.4. Set positions by repeatedly doing a drop test, checking the position of the drop, 
adjusting X and Y, and testing again until the drop is central within the well 

2.15.5. The z-position can be adjusted too in case the sorting should happen on an ice 
block for example  

3. Creation of a standard curve using standard-sized beads (60, 125, and 175 µm) to adapt 
the sorting gate   

3.1. Put the falcon tube with standard beads solution in the sample cup position 
3.2. In the “Acquisition” menu select the storage gate “all events” to store and acquire 

approximately 300-500 events per bead size 
3.3. Take acquired data to generate a standard curve with bead size on the x-axis and 

TOF and/or extinction on the y-axis  
3.4. Calculate TOF and extinction based on the linear model for sphere sizes of interest 

and draw the appropriate gates in the histogram  
3.5. The linear model can also be used in reverse to calculate an estimate of sphere sizes 

after sorting  
4. Tissue collection 

A. Murine liver:  
a. Euthanize the mouse  
b. Perfuse the liver with PBS with a perfusion pump (flow rate 2-3 mL/min) over an 

insertion in the vena cava inferior 
c. After perfusion remove the gallbladder and collect the liver in PBS on ice  

B. Murine spleen: Euthanize the mouse and collect the spleen in PBS on ice  
C. Crohn’s biopsy: Surgically resected tissues are collected in MACS tissue storage 

solution on ice; process further within 4-6 hours for optimal cell quality 
D. CRC organoids:  

a. Dissolve Matrigel of domes with ice cold PBS and collecting them in a 50 mL falcon 
tube, put the tube in an ice bucket and put it on a shaker for 30 min  

b. Wash two times with cold PBS by spinning at 290 x g at 4 °C 
5. Partial dissociation 

5.1. Use the following partial dissociation solutions:  
A. Murine liver: low glucose DMEM (1 g/L D-Glucose/L-Glutamine, Pyruvate) 
B. Murine spleen: PBS  
C. Crohn’s disease patient biopsy: HBSS (-Ca2+-Mg2+) 

5.2. Use mechanical force of a scissor to partially dissociate collected tissues in a 2 mL 
Eppendorf tube with partial dissociation solution  

5.3. Repeatedly filter partially dissociated spheres with an upper-size strainer (for example 
400 µm), wash down chunks that get caught by the filter, re-cut, and filter again. 
Repeat this until most tissue is cut into small spheres  

5.4. To remove single cells and small spheres, filter solution with a lower size limit strainer 
(for example 200 µm) 

5.5. After filtering, flip the strainer upside down and wash off spheres that got caught by 
the strainer. This is the sphere-seq solution with in this example spheres between 
approximately 200-400 µm in diameter  

5.6. Dilute the solution to approximately 45 mL using partial dissociation solution and dilute 
further to achieve a dilution of around 5-10 events per second (ev/s) with the sorter  

6. Prepare sorting plates  
6.1. Take non-binding, V-shape 96-well plates  
6.2. Add appropriate dissociation buffer to each well  
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A. Murine liver: 30 µl Murine Liver Dissociation Buffer (see table 9) 
B. Murine spleen: 30 µl PBS  
C. Crohn’s biopsy: 100 µl Crohn Epithelial Dissociation Buffer (see table 9) 
D. CRC organoids: 30 µl 1 X TripLE 

6.3. Keep on ice until use  
7. Sphere sorting using a large fragment biosorter  

7.1. Draw an appropriate sorting gate:  
Option 1: Sorting only based on size: 

a. Draw a gate in the histogram with TOF on the x-axis and extinction on 
the y-axis based on values defined by the standard size linear model   

Option 2: Sorting based on size and fluorescence: 
a. For green turn on the 488 nm blue laser to a power of 50 (only green 

has been optimized). 
b. Draw a size selected gate like in option 1 
c. Use this gate to make a histogram with TOF on the x-axis and 

Green/Red/… on the y-axis 
d. Acquire a negative control with spheres that have similar sizes to the 

sample that will be sorted 
e. Draw a gate that is outside of the negative control for all different sizes, 

the same size distribution is important because larger spheres also 
have a larger autofluorescence signal. In the histogram therefore with 
an increase in TOF also the green/red/… signal increases in the 
negative control 

7.2. Add the sample cup with the spheres and acquire events  
7.3. Dilute if flow rate is too high, should be in the range of 5-10 ev/s otherwise sorting 

might not be pure  
7.4. Turn on the mixer within the sample cup at around 50 % speed so the spheres do not 

settle (reduce speed if spheres are fragile)  
7.5. Adjust the coincidence mode to “NoDoubles” which helps the sorting to be pure (one 

sphere per well) 
7.6. Select the calibrated plate in the drop-down menu “Setup/Plate” and add 1 event to 

the wells that should be sorted 
7.7. In the sorting window select the sorting gate and tick the box “Store only sorted” 
7.8. Check the sorting efficiency by sorting a couple of objects on the lid of a 96-well plate, 

after selecting the wells and adding 1 event each, press “Fill Plate”  
7.9. After sorting check the presence/absence of objects per well under a microscope, 

optionally adjust the sort delay in the “Delay Setup Menu”. The sort delay defines the 
time between detection of a particle and giving a sort command.   

7.10.  Add the plate with the dissociation buffer to the X-Y-Z stage 
7.11.  Select all required wells with 1 event and press “Fill Plate”  
7.12.  During sorting make sure the sample cup does not go empty, in case it is almost 

empty abort the sort, remembering the position of wells that were sorted already, add 
solution to the sample cup and start sorting again selecting the wells that are left; Do 
not ‘Pause’ the sorting because sometimes this leads to re-flush  

7.13.  After sorting, seal the plate and put it on ice until further use for dissociation  
7.14.  Washing of the biosorter in-between samples: Apply flushing procedure (step 2.9) 

until sheath solution comes into the sample cup, then change sample to fresh 40 mL 
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ddH2O acquire approximately 30 mL until no events are seen anymore, turn sheath 
flow to 48 in this case so the FOCA gets rinsed with higher speed 

7.15.  End-of-the-sort washing procedure: First apply 7.14, then do washes in the following 
order:  

7.15.1. Cleaning Solution Wash 
7.15.2. Ethanol Wash  
7.15.3. Water Wash 
7.15.4. Rinse the FOCA with another 40 mL ddH2O from the sample cup  
7.15.5. Change a sample cup to 30 mL 70 % EtOH  

7.16. Turn off the biosorter and the computer   
7.17.  Remove the solution from the waste container  

8. Single-cell dissociation of spheres  
A. Murine liver:  

a. Incubate on a thermomixer at 37 °C shaking at 300 rpm for 20 min  
b. For the last 2 minutes shake at 700 rpm and place on ice after  

B. Murine spleen:  
a. Manually dissociate spheres by harshly pipetting up and down 50 times on ice 

using a multichannel P20 pipette 
C. Crohn’s biopsy:  

a. Incubate two times 15 min at 37 °C and vortex plate in-between 
b. Spin at 400 x g for 10 min at 4 °C  
c. Remove supernatant carefully 
d. Add 100 µl of Crohn’s Digestion Buffer (see table 9) 
e. Incubate at 37 °C and 300 rpm for 30 min 
f. Inactivate enzyme activity by adding 50 µl of 20 mM EDTA/PBS and incubate 

at 37 °C, 300 rpm for 5 min 
g. Spin plates at 4 °C, 400 rpm for 10 min 
h. Remove supernatant leaving approximately 30-50 µl left in the wells and place 

on ice    
D. CRC organoids:  

a. Incubate at 37 °C, 300 rpm for 12 min 
b. For the last 2 min shake at 700 rpm and place on ice  

9. Labeling of cells with sphere-specific barcode  
 
Short description of the labeling approach  
 
This step follows the protocol from McGinnis et al., 201921 with small adaptations. The 
technology was developed for single-cell hashing and its workflow will be summarized. It has 
three parts, 8 base pair (bp) long BCs with incorporated primer sequences and a poly(A)-
stretch, a lipid anchor, and a lipid co-anchor21. The lipid anchor is mixed with a BC of interest, 
which hybridizes to the lipid anchor. This anchor with bound BC (called lipid-modified 
oligonucleotide, LMO) can easily integrate into a cell’s hydrophobic membrane over its 
hydrophobic lignoceric acid amide on the 5’ side21. The co-anchor binds the anchor and 
strengthens the integration of the complex to the membrane via its 3’ palmitic acid amide21. 
The poly(A)-stretch of the BC can then be captured with scRNA-seq technologies, acting like 
any other mRNA21. McGinnis et al. designed 96 different BCs21, we extended this to 288 with 
a hamming distance of at least 3. The hamming distance measures the number of different 
nucleotides between two BCs, because of errors in sequencing this should be at least 3 to 
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reduce misidentifications and misallocations of BCs. During library preparation after cDNA 
amplification, the library gets split into two parts, the smaller fragments being the MULTI-seq 
BCs and the larger ones the cDNA transcripts. Later, these two pieces of information can be 
integrated21. The MULTI-seq workflow is summarized in figure 10.  
 

 
Figure 10: Overview of the MULTI-seq cell hashing approach. A) Structure of the lipid-modified oligonucleotide 

(LMO) design. B) Workflow: First cells of different samples are labeled with different BCs. Then cells are pooled 

and captured with scRNA-seq poly(A)-capture. After Gel beads-in-emulsion (GEMs) isolation, RT, clean-up and 

cDNA amplification the DNA is split into the large cDNA transcript fraction and the small sample barcode DNA 

fraction, which are used for separate library preparation. After sequencing and demultiplexing a single cell can be 

allocated to its transcripts and MULTI-seq BC over the Cell BC information and cells can be clustered based on 

mRNA space and Barcode space. Illustration from McGinnis C.S. et al., MULTI-seq: sample indexing for single-

cell RNA sequencing using lipid-tagged indices. Nat. Methods 16, 619-626, 2019, by permission of Springer Nature 
(https://www.nature.com/nmeth/). 

The advantage of the MULTI-seq cell hashing approach for its use for spheres-seq is the 
possibility to quench the cell labeling approach, which allows the pooling of cells without 
washing samples individually. This is important for sphere-seq because the cell number of an 
individual sphere is very small and washing of cells within individual wells would lead to 
massive cell loss. The reaction can be quenched by adding high concentrations of albumin 
(bovine serum albumin, BSA; or fetal bovine serum, FBS; BSA is a component of FBS). 
Albumin binds lipids via its uncharged amino acid side chains over a nonpolar binding to the 
hydrocarbon chain of lipids169. Therefore, residual Anchor:BC anchor complexes in solution 
are bound by albumin and are therefore prevented from integrating into cells from different 
spheres after pooling.    
 
The MULTI-seq protocol was developed for 10X with large cell numbers. We therefore first 
adapted the concentration of LMOs to the small cell numbers within spheres. We then adapted 
the protocol to its usage with the BD Rhapsody Single-Cell Capture method. Therefore, the 
MULTI-seq protocol was combined with the Sample Tag Library Preparation Protocol from 
BD. The detailed protocol for BD and 10X will be explained in the following section. Subsection 
(I.) will be the BD approach, and (II.) will be the 10X approach. The protocol was optimized for 
10X 5’ v1.1. and BD v1, but might also be compatible with other versions.  
 

9.1. Prepare Anchor:BC and Co-anchor solutions for appropriate sphere sizes (100-400 
µm: 50 nM; 400-800 µm 100nM)  

Tips for solution preparation:   
• Anchor:BC: For 288 spheres pre-mix the Anchor with PBS in 3 columns of a 96-well 

plate and then add to 288 wells containing the BCs  
o For 50nM: in each well of 3 columns mix 13 µl Anchor (1 µM stock) and 234 µl 

PBS, mix by shaking on the Thermomixer for 1 min at 700 rpm; then put 1 µl of 
BC (1 µM stock) to each of 288 wells and add 19 µl of previously mixed 
Anchor/PBS.  

A B
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o For 100 nM: premix 3 columns with 26 µl Anchor (1 µM stock) and 208 µl PBS, 
then put 2 µl of BC (1 µM stock) to each of 288 wells and add 16 µl of previously 
mixed Anchor/PBS.  

• Co-anchor: Dilute Co-Anchor in PBS for 288 spheres in 3 columns of a 96-well plate. 
o For 50 nM mix 13 µl Co-anchor (1 µM stock) with 247 µl PBS;  
o For 100 nM mix 26 µl with 234 µl PBS. 

9.2. Add 20 µl Anchor:BC solution to the plates with dissociated spheres 
9.3. Mix plates using a thermomixer at 20 °C at 700 rpm for 1 min 
9.4. Put on ice and incubate for 5 min  
9.5. Add 20 µl of Co-anchor solution  
9.6. Mix the plates using a thermomixer at 20 °C at 700 rpm for 1 min 
9.7. Put on ice and incubate for 5 min  
9.8. Add 100 µl 10 % BSA/PBS (10 % BSA in low Glucose DMEM for liver)  
9.9. Mix the plates using a thermomixer at 20 °C at 700 rpm for 1 min 
9.10.  Put on ice and incubate for 5 min  

10. Pool cells and wash using FACS tubes  
10.1.  Spin down the first time using appropriate speed and time  

A. Murine liver: 300 x g, 10 min  
B. Murine spleen: 400 x g, 10 min  
C. Crohn’s biopsy: 400 x g, 10 min  
D. CRC organoids: 300 x g, 5 min  

10.2.  Remove supernatant by decanting and pool leftover of all FACS tubes into one  
10.3.  Wash 2 times with 1 % BSA/PBS (or 1 % BSA/low Glucose DMEM for liver), after 1st 

wash filter through a 40 or 70 µm strainer depending on the cell types  
A. Murine liver: 70 µm  
B. Murine spleen: 40 µm 
C. Crohn’s biopsy: 40 µm  
D. CRC organoids: 40 µm  

10.4.  After the 2nd wash transfer cell suspension into a 1.5 mL low-bind Eppendorf tube 
and spin down a last time 

10.5.  Resuspend in 1 % of BSA/PBS 
I. BD: resuspend in 55 µl  
II. 10X: resuspend in 37.5 µl  

11. Quality control of cell suspension:  
11.1.  Mix 2.5 µl of cell suspension with 2.5 µl Trypan Blue Solution  
11.2.  Load suspension into a hemocytometer chamber and check under a microscope  
11.3.  Continue if the viability is at least 70 % and at least 10,000 cells are left in the solution 

12. Single-cell capture and cDNA synthesis  
12.1. Load a maximum amount of cells  

I. BD:  
a. Load up to 80,000 cells  
b. Follow the protocol: Single Cell Capture and cDNA Synthesis  
c. In short: single cells are loaded into a microwell chip; they will settle down within 

15 min; then magnetic capture beads are applied; in each well, there is only 
space for one cell and one bead; after both are loaded lysis buffer is applied 
for 2 min, during which poly(A) mRNAs and MULTI-seq BCs bind to capture 
beads; using magnetic force, beads with captured cellular transcripts are 
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retrieved; retrieved beads are then used for RT followed by exonuclease I 
treatment  

II. 10X:  
a. Load up to 30,000 cells   
b. Follow the protocol: Chromium Next GEM Single Cell V(D)J Reagent Kits v1.1 
c. In short: cells are mixed with master mix containing reagents for lysis and 

reverse transcription; Cell:Master mix solution and Gel beads are loaded 
separately into the 10X Chip; Beads and cells are then fused to generate 
single-cell GEMs; within GEMs, cells are lysed and RNA is reverse transcribed  

13. cDNA amplification and splitting of libraries into whole-transcriptome analysis (WTA) and 
MULTI-seq fractions  

I. BD:  
a. Recover the MULTI-seq product following the first steps of the ‘Rhapsody WTA 

SampleTag’ protocol  
b. The Sample Tag product in this case is the MULTI-seq product  
c. The MULTI-seq product is denatured off the beads during incubation at 95 °C  
d. Follow instructions for cDNA amplification for the WTA fraction following the 

protocol’s sections of Random priming and extension (RPE), RPE purification, 
RPE PCR, and purification of RPE PCR amplification product using SPRI 
instead of AMPure beads for the cleanups  

II. 10X:  
a. Follow instructions from Chromium Next GEM Single Cell V(D)J Reagent Kits 

v1.1 until cDNA Amplification  
b. During cDNA Amplification add the MULTI-seq primer  

o 50 µl Amplification Master Mix  
o 14 µl SC5’ Feature cDNA Primers  
o 1 µl MULTI-seq primer (2.5 µM) 

c. Perform cDNA amplification  
d. Split cDNA fractions during 0.6X SPRI clean-up  
e. After incubation with SPRI beads, transfer the supernatant containing the small 

cDNA fragments to a new tube, this is the MULTI-seq fraction  
f. Continue cleanup of the large cDNA fragments, this is the WTA fraction  

14. WTA library preparation  
I. BD:  

a. Follow instructions from BD ‘Rapsody WTA SampleTag’ protocol for WTA 
index PCR using SPRI instead of AMPure beads for the cleanups  

II. 10X:  
a. Follow instructions from Chromium Next GEM Single Cell V(D)J Reagent Kits 

v1.1 for 5’ Gene Expression (GEX) Library Construction (Fragmentation, End 
Repair & A-tailing, followed by Adapter Ligation and Sample Index PCR)  

15. MULTI-seq library preparation  
I. BD:  

a. Follow BD instructions from BD ‘Rapsody WTA SampleTag’ protocol for 
Purifying Sample Tag PCR 1 products using SPRI instead of AMPure XP 
beads; use 1.8x SPRI for the cleanup  

b. Quantify concentration on Qubit using a dsDNA high-sensitivity kit   
c. Follow MULTI-seq protocol  
d. Take 3.5 ng for indexing PCR  
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e. Mix the following  
o 26.25 µl Kapa HiFi HotStart ReadyMix (2X)  
o 2.5 µl Library Forward Primer  
o 2.5 µl RPI primer (choose a unique one for each sample)  
o 3.5 ng DNA 
o Nuclease-free water to 50 µl final volume 

f. Perform indexing PCR:  
1. 95 °C – 5 min  
2. 98 °C – 15 sec 
3. 60 °C – 30 sec  
4. 72 °C – 30 sec  
5. Repeat steps 2-4 (8-12 times)  
6. 72 °C – 1 min  
7. 4 °C – hold  

g. Perform clean-up with 1.6X SPRI beads:  
1. Add 80 µl of SPRI beads  
2. Mix and incubate for 5 min at room temperature  
3. Put on a magnet and wait until the solution is clear  
4. Remove and discard the supernatant 
5. Wash 2 times with 80 % EtOH without disturbing the beads 
6. Let the beads dry for 1-2 min  
7. Resuspend beads in 25 µl elution buffer (EB)  

II. 10X:  
a. Follow MULTI-seq protocol  
b. Take the supernatant from the cDNA cleanup  
c. Use 3.2X SPRI beads and 1.8X Isopropanol  
d. Mix and incubate for 5 min at room temperature  
e. Put on a magnet and discard the supernatant 
f. Wash 2 times with 80 % EtOH without disturbing the beads 
g. Dry beads for 2 min and resuspend in 50 µl EB  
h. Quantify concentration on a Qubit using a dsDNA high-sensitivity kit  
i. Take 3.5 ng for indexing PCR  
j. Mix the following  

o 26.25 µl Kapa HiFi HotStart ReadyMix (2X) 
o 2.5 µl Library Forward Primer  
o 2.5 µl RPI primer (choose a unique one for each sample)  
o 3.5 ng DNA 
o Nuclease-free water to 50 µl final volume 

k. Perform indexing PCR:  
1. 95 °C – 5 min  
2. 98 °C – 15 sec 
3. 60 °C – 30 sec  
4. 72 °C – 30 sec  
5. Repeat steps 2-4 (8-12 times)  
6. 72 °C – 1 min  
7. 4 °C – hold  

l. Perform clean-up with 1.6X SPRI beads:  
1. Add 80 µl of SPRI beads  
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2. Incubate for 5 min at room temperature  
3. Put on a magnet and wait until the solution is clear  
4. Remove and discard the supernatant 
5. Wash 2 times with 80 % EtOH without disturbing the beads 
6. Let the beads dry for 1-2 min  
7. Resuspend beads in 25 µl elution buffer (EB)  

16. Check the quality and concentration of the libraries:  
16.1. Check the quality with Tape Station high sensitivity D1000 reagents and tapes    
16.2. Check the concentration with a Qubit 4 fluorometer using a dsDNA high-

sensitivity kit   
16.3. Calculate the nM concentration of the libraries using the concentration from 

Qubit and the average peak size from Tape Station and the following formula:  
o (Concentration in ng/µl / (660 g/mol * average peak size in bp)) * 1,000,000 
o The 660 g/mol is the average weight of one bp   

17. Sequencing  
• Paired-end sequencing  
• WTA library: 30,000-50,000 reads/cell  

I. BD:  
o Read 1: 60 bp 
o Read 2: at least 62 bp  
o Index read: 8 bp  

II. 10X:  
o Read 1: 26 bp 
o Read 2: at least 88 bp  
o Index read: 8 bp  

• MULTI-seq library: 3,000-5,000 reads/cell  
I. BD:  

o Read 1: 60 bp 
o Read 2: at least 8 bp  
o Index read: 6 bp  

II. 10X:  
o Read 1: 26 bp 
o Read 2: at least 8 bp  
o Index read: 6 bp  

 
7.1.3 Anticipated Results  

 
The WTA library should have a peak around 250-1,000 bp; the concentration should be > 1 
ng/µl. The MULTI-seq library should have a peak around 175 bp for 10X and around 230-250 
bp for BD; the concentration should be in a range between 0.8-3 ng/µl. figure 11 shows 
examples of DNA profiles from Tape Station measurements.  
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Figure 11: Examples of Tape Station profiles for A) BD Rhapsody WTA library, B) BD Rhapsody MULTI-seq 

library, C) 10X WTA library, D) 10X MULTI-seq library.    

 
7.1.4 Troubleshooting  

 
There are not enough cells at the end of the sphere-seq procedure to run a scRNA-seq 
experiment: The reasons for that could be cell loss during the washing steps or the spheres 
being too small. This could be addressed by being more careful during washing and decanting. 
Additionally, the centrifugation steps could be adapted, smaller cells like immune cells need 
longer (10 min at 400 x g) compared to epithelial cells (5 min at 300 x g). For very small 
spheres, one could consider carrier cells, which are of different cell types so they can be 
subdivided later on. Another reason for a low cell count at the end of the procedure could be 
that the sorting is not efficient, resulting in empty wells, to improve that one could optimize the 
sort delay.  
 
Cell viability is too low: One could optimize the single-cell dissociation. With practice, the 
sphere-seq procedure is faster and viability might increase.  
There is only a very small or no MULTI-seq peak: Make sure to remove all residual albumin 
(FBS and BSA) before MULTI-seq labeling of spheres. Make sure the dissociation is complete 
because if cells are still within clumps the MULTI-seq lipids cannot integrate into the cell’s 
membrane because its surface is hidden by other cells. Reduce the freeze-thaw cycles of the 
MULTI-seq BC dilutions, the single-stranded DNA might degrade.   
 

7.2 Computational analysis approaches for sphere-sequencing 
 
This section describes the computational approach developed for the sphere-seq data 
analysis pipeline. It includes a detailed section for analysis packages used for different 
programming languages (Linux, R and Python). The procedure is explained in a continuous 
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manner step by step in an Arabic numbering format. Options for some steps are highlighted 
with Latin numbers or letters in alphabetical order. There are also sections highlighting the 
anticipated results and options for troubleshooting. The detailed code is stored in the GitHub 
repository: https://github.com/Moors-Code/Sphere-sequencing.  
 

7.2.1 Packages for analysis  
 

7.2.1.1 Linux programming 
 

Package   Version   Reference 
Bcl2fastq  2.20.0.422 Illumina 

zUMIs 2.9.4 Parekh et al., 2018 Gigascience170  

STAR 2.5.2b Dobin et al., 2013 Bioinformatics171  

Cell Ranger 5.0.0 10X Genomics  
Table 10: Linux packages used in the sphere-seq analysis pipeline.    

7.2.1.2 Python programming 
Python version 3.8.10 was used 

Package   Version   Reference  
CellPhoneDB 4.0.0 Efremova et al., 2020 Nat. Protoc.92 

Table 11: Python packages used in the sphere-seq analysis pipeline.    

7.2.1.3 R programming  
R version 4.1.0 was used 

Package   Version   Reference 
biomaRt 2.50.3 Durinck et al., 2005 Bioinformatics172; Durinck et al., 

2009 Nat. Protoc.173 

deMUTLIplex 1.0.2 McGinnis et al., 2019 Nat. Biotec.21  

Seurat 4.0.3 Hao et al., 2021 Cell174  

scran 1.22.1 Lun et al., 2016 F1000Res175 

SingleCellExperiment 1.16.0 Amezquita et al., 2020 Nat. Methods176 

dplyr 1.0.7 Wickham et al., 2020177  

tidyverse 1.3.1 Wickham et al., 2019 J. Open Source Softw.178 

ggplot2 3.3.5 Wickham et al., 2016 Springer Link179 

batchelor 1.10.0 Haghverdi et al, 2018 Nat. Biotechnol.180 

edgeR 3.36.0 Robinson et al., 2010 Bioinformatics181; McCarthy et 
al., 2012 Nucleic Acids Res.182; Chen et al, 2016 

F1000Res.183  
Table 12: R packages used in the sphere-seq analysis pipeline.    

7.2.2 Procedure  
 
1. Demultiplexing of raw data after Illumina sequencing: Demultiplex the binary base call 

(BCL) files with Bcl2fastq to convert them to FASTQ files  
2. FASTQ file processing:  

2.1. WTA scRNA-seq FASTQ files: generate count matrices with genes as rows and cell 
IDs as columns 
I. 10X: Use the Cell Ranger pipeline with a GRCm38 v2020-A gene code for mouse 

data  
II. BD:  
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a. Use the zUMIs pipeline with the following gene alignments generated with 
STAR, for human samples GRCh38 v2020-A and for mouse GRCm38 vM25 
with the option to fuse it to a GFP 3’ UTR sequence in case there is GFP within 
the data  

b. Convert ensemble IDs to gene names using the biomaRt package with 
musmusculus gene ensemble or hsapiens gene ensemble version 95  

2.2. MULTI-seq FASTQ files: process with the deMULTIplex package: generates a 
MULTI-seq BC UMI matrix per cell; then an identity (MULTI-seq BC, Doublet or 
Negative) is assigned to each cell following the classification workflow; the 
instructions can be found on the GitHub page: https://github.com/chrismcginnis-
ucsf/MULTI-seq  

3. Use the Seurat package for scRNA-seq analysis: Generate a Seurat object  
4. Integration of MULTI-seq BC and WTA information: match the cell IDs of the MULTI-seq 

BC and the gene count matrix of the WTA; this assigns each cell to a MULTI-seq BC and 
therefore sphere of origin 

5. Normalize and scale WTA data using the Seurat function ‘SCTransform’ 
6. OPTIONAL: Apply batch effect correction using mutual nearest neighbours (MNN) 

correction within the batchelor package 
7. Quality control:  

7.1. Remove low-quality cells with lower than 200 features  
7.2. Remove low-quality cells with high mitochondrial content defined by the ratio of 

mitochondrial genes to cytoplasmic genes. This cut-off can be chosen differently for 
different samples, for example, epithelial cells from patient biopsies tend to have 
higher mitochondrial content compared to immune cells. Optionally chose different 
cut-offs for different cell type clusters. As a general rule of thumb use 10% as a cut-
off.  

7.3. Remove doublets by applying an upper feature per cell cut-off, for example, 7,500. 
Chose an appropriate value based on a FeatureScatter plot plotting nCount_RNA 
against nFeature_RNA per cell  

8. Clustering and annotation:  
8.1. For clustering choose the top 2,000 highly variable features, when doing batch effect 

correction uses a combined number of variable features, for example, 6,000 for 10 
samples. 

8.2. Choose significant principal components (PCs) using an Elbow plot  
8.3. Cluster cells first broadly using a low resolution and annotate cell clusters into broad 

cells like T, B, Myeloid, Stromal,…  
8.4. Then use the Seurat function ‘FindSubCluster’ to re-cluster broadly annotated clusters 

and annotate subtypes based on known marker genes or DEGs identified with the 
Seurat function ‘FindAllMarkers’, it uses a non-parametric Wilcoxon Rank Sum test 
(default parameter: min.pct 0.25 and logfc.threshold 0.25).  

9. Integration of sphere size and fluorescence signal from the Biosorter:  
9.1. Generate a standard curve with TOF measurement from standard-size beads 
9.2. Fit TOF measurements of sorted spheres into the linear model to calculate sphere 

size in diameter  
9.3. Normalize the fluorescence signal with the sphere size 
9.4. Overlay the plate ID and well position with MULTI-seq BC identity and integrate 

sphere size and normalized fluorescence information with the MULTI-seq BC column 
of the Seurat object  
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10. Cells per sphere cut-off: Apply a cut-off of a minimum cell number per sphere and remove 
all other spheres  

11. Reconstruction of the spatial position of spheres:  
I. Based on a continuous gene expression axis: Explained on the example of the lobule 

layer axis from central to portal veins within the liver  
a. Follow the workflow adapted from the previously described pipeline in Ben-

Moshe et al., 2022115 
b. Extract only specific cell types where the signature is expressed, in this example 

LECs 
c. Produce pseudo-bulks of each sphere from the cell type of interest (f.e. LECs) 

by calculating the average expression of normalized signature genes; signature 
A and B; in this example of CV landmark (cLM) and PV landmark (pLM) genes 
from Halpern et al, 201865   

d. Use two normalization steps: First log-normalize genes and then divide the 
normalized expression by the highest expression across spheres; this ensures 
that all genes contribute equally to the reconstruction algorithm   

e. Calculate a zonation coordinate (ZC) for each sphere by dividing the sum of 
double normalized signature A genes by the sum of signature A and B genes; in 
this example ZC = pLM/(pLM+cLM)  

f. Rescale ZCs so that 0 is the most signature A and 1 is the most signature B. In 
this example, 0 will be the most central and 1 will be the most portal. This can be 
done because the ZC is a relative score and depends on the cells and landmark 
genes. Additionally, signature A and B genes are not exclusively expressed in 
cells of one or the other group, there is a gradient of gene expression.  

g. ZCs can then be grouped into different zones or areas. In this example lobule 
layers L1-L10 (L1: ZC < 0, L2: ZC < 0.2, L3: ZC < 0.3,…L10: 0.9 > ZC ≤ 1.0)  

II. Based on cell type presence:  
a. Choose a cell type of interest  
b. Spheres containing the cell type of interest are spatial group A, spheres lacking 

the cell type of interest are spatial group B 
c. For example, spheres with metastatic cells are group A (proximal to micro-

metastasis), and spheres lacking metastatic cells are group B (distal to micro-
metastasis)  

12. Analysis of DGE between different spatial groups: 
I. Within a continuous zonation axis:  

a. Use the edgeR package  
b. Make pseudobulks per sphere of the cell type of interest (Average single cell 

counts per sphere) 
c. Only consider spheres with at least 2 of the cells of interest or 5 if there are many 

cells  
d. Remove lowly expressed genes with the function ‘filterByExp’ 
e. Fit a negative binomial generalized log-linear model with the continuous zonation 

axis as an ordered factor covariate (in the example of the lobule layer 
L1<L2<L3<L4<L5<L6<L7<L8<L9<L10)  

f. Use the sample identity as a covariate blocking factor to account for batch effects  
g. Use ‘glmQLFTest’ function to identify genes that are different from 0 and have a 

Benjamin-Hochberg adjusted p-value smaller than 0.05. For studying linear 



 56 

zonation patterns use coef =’.L’ and coef = ’.Q’ for studying parabolic patterns 
(genes high in lobule layer L5 and low in L1 and L10 for example) 

II. Between two groups:  
a. Use the edgeR package  
b. Follow the description of 12.I.a-f, however, instead of using an ordered factor, 

use two groups as factor covariates  
c. Also, a non-parametric Wilcoxon signed-rank test using the ‘ggsignif ‘function 

from the ggplot2 R package can be applied   
13. Analysis of differences in cell type abundance between two groups: 

a. Follow the workflow previously described in Lun et al., 2017184  
b. Compute normalized log counts from cluster abundances within two groups 

using the ‘cpm’ function of edgeR, accounting for the total number of cells from 
each sample  

c. Specify a design matrix, use group labels as covariates  
d. Use sample identity as a blocking factor  
e. Estimate the dispersion parameter using the ‘estimateDisp’ function with trend = 

‘none’  
f. For each cell type fit a negative binomial generalized log-linear model with 

‘glmQLFit’ function (robust = TRUE, abundance.trend = FALSE)  
g. Use the function ‘glmQLFTest’ to identify cell types significantly different from 0 

with a Benjamin-Hochberg adjusted p-value of 0.05 
14. Ligand-receptor interaction analysis between two groups:  

a. Use the python package CellPhoneDB  
b. CellPhoneDB uses a human L-R database, if data is mouse convert mouse gene 

symbols to human gene symbols using the biomaRt package  
c. Follow the workflow on the Github page: 

https://github.com/ventolab/CellphoneDB 
d. Group the sphere into two spatial groups and perform CellPhoneDB analysis 

separately on grouped objects  
e. CellPhoneDB takes cell cluster labels and gene expression as input to match 

with known L-R interaction pairs from the CellPhoneDB public repository  
f. Use the default parameters 
g. Use the following outputs from each of the two analyses: A data.frame with 

average L-R expression between two cell types represented by a mean value, 
and a data.frame of p-values for each L-R pair determined using a null 
distribution of means from randomly permuted annotated cluster labels  

h. Only consider significant interactions (p-value ≤ 0.05) 
i. Calculate the difference in L-R interaction scores (mean values) between two 

groups  
 

7.2.3 Anticipated results and troubleshooting   
 
In the MULTI-seq BC classification process from step 2.2, to allocate cells to spheres of origin, 
there should be a clear clustering of MULTI-seq BCs. Positive cells in red should cluster in a 
clear differentiated cluster (Fig. 12, left). If there is no clear differentiation of BC signals within 
clusters (Fig. 12, right) or if there is no signal at all (Fig. 12, middle) BC should be removed 
from classification schema.  
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Figure 12: t-distributed stochastic neighbor embedding (tSNE) plot of cells clustered by MULTI-seq BCs. 

The left plot shows cells positive for one BC, the middle plot shows a BC that is not present and should therefore 

be removed from the classification schema and the right plot shows BC signal in more than one cluster and should 

therefore also be removed from the classification process.    

7.3 Specific methods and materials used in this thesis  
 

7.3.1 Sphere-sequencing of murine metastatic and healthy livers  
 

7.3.1.1 Induction of metastasis in mouse liver and tissue collection  
 
VilCreERT2; APCfl/fl; Tp53fl/fl; KrasG12D/wt (AKP) organoids were obtained from Owen 
Sansom (Beatson Institute for Cancer Research in Glasgow) and modified to harbor an 
additional knockout in Smad4 which results in VilCreERT2; APCfl/fl; Tp53fl/fl; KrasG12D/wt; 
Smad4KO (AKPS) organoids. Organoids were cultured in Matrigel (Corning) as stated 
previously in Sato et al.185. Supplement culture medium (Advanced DMEM/F12, Life 
Technologies™) with the following compounds: 10 mM HEPES (Life Technologies™), 1 x N2 
supplement (Life Technologies™), 100 mg/mL Penicillin/streptomycin, 2 mM L-Glutamine 
(Life Technologies™), 1mM N-acetylcysteine (Sigma-Aldrich) and 1x B27 supplement (Life 
Technologies™). AKPS organoids (4 domes per recipient mouse) were washed in ice-cold 
PBS repeatedly to eliminate all Matrigel. Then the organoids were dissociated into small 
cellular communities and resuspended in 50 µl PBS. They were then loaded into a syringe 
(BD, MicroFine, 0.3 ml, 30 G). C57BL/6 mice (8 weeks old, male, from Janvier-Labs) were 
injected subcutaneously with Carprofen (5 mg/kg) 30 min before surgery following 
anesthetization with isoflurane gas and they were put on a 37 °C thermal pad to keep warm. 
The mice were then shaved and disinfected with betadine (mix of 0.5% lidocaine (5 mg/ml), 
and 0.25 % bupivacaine (2.5 mg/ml) over a subcutaneous injection at the planned incision 
line. After disinfection, the organoids were injected beneath the capsule of the spleen and 
incubated for 10 min followed by splenic resection by ligation. Sterile PBS was then used to 
wash the wound and using an absorbable polyglactin suture (Vicryl 4- 0 or 5-0 coated) the 
peritoneal wall was closed. The skin was closed with wound clips. During the wake-up phase, 
Buprenorphine (0.1 mg/kg) was injected subcutaneously. During the wake-up phase, the 
animals were monitored and also in the following days after surgery. After 14 days the 
experiment was terminated. All procedures were performed according to the Swiss Guidelines 
upon the approval of the Cantonal Veterinary Office Basel-City. Tissue was collected as stated 
in the sphere-seq experimental protocol in section 7.1 step 4.A.   
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7.3.1.2 Sphere-sequencing experimental procedure 
 
The experimental procedure was performed according to the protocol in section 7.1. Sphere-
seq was done with liver of 9 injected mice, from which 3 had macroscopically visible 
metastasis, and one healthy liver. Spheres were sorted with sizes between 200-450 µm and 
single cells were captured using the BD Rhapsody platform. 50 nM MULTI-seq lipid Anchor:BC 
and CoAnchor were used. Sphere-seq libraries were sequenced on a NovaSeq 6000 system 
(Illumina) using NovaSeq SP Reagent Kits (100 cycles) v1.5 and S4 Reagent kits (200 cycles) 
v1.5 with XP workflow.  
 
Testing of sorting purity of single spheres per well. Liver tissue was partially dissociated and 
used for sorting of spheres between 200 and 450 µm in diameter. Nine plates were sorted and 
used for imaging on a Leica Thunder Imaging System. Plate scans were then visually 
inspected to count wells with none, one or multiple fragments. 
 

7.3.1.3 Sphere-sequencing Computational analysis  
 
For the computational analysis the pipeline described in section 7.2 was followed with specific 
parameters described in this section. The detailed code is stored in the GitHub repository: 
https://github.com/Moors-Code/Sphere-sequencing.   
 
Estimation of true cell number per liver sphere. spheres were assumed to be spherical, and 
their volume was calculated for different sizes (50, 100, 150, 200, 250, 300, 350, 400, 450 µm) 
using the formula for spherical volume (4/3∗ $ ∗ r3 ∗ 1.07 g/mL, r is the radius, 1.07 g/mL is the 
density). The density of the liver was estimated to be around 1.07 g/mL186 and 1 g of liver was 
estimated to have 135 million hepatocytes187. 20 % NPC111 were added resulting in 162 million 
cells per gram liver. It was then calculated that there are approximately 151,401,869 million 
cells per cm3 and this value was then used to calculate the estimate amounts of cells in x µm3 

spheres.  
 
Single cell count matrix generation. zUMIs was used to generate the single cell count matrix 
using the GRCm38 vM25 gene code. For three samples (S1-3) deeper sequencing was 
required. FASTQ files were merged and then used as input for zUMI.  
 
Batch effect correction and normalization. 10 samples were integrated while correcting for 
batch effects. After integration, the combined object underwent SCT normalization.  
 
Quality control. Low quality cells (< 200 features, > 20 % of reads mapped to mitochondrial 
genes) and doublets (> 7,500 features) were removed.   
 
Clustering and annotation. 10 MNN corrected PCs were used for clustering in a Uniform Matrix 
Approximation and Projection (UMAP) two-dimensional space. A resolution of 1 was used to 
cluster and annotate broad cell types. Sub clustering was then used to annotate cell subtypes. 
For annotation, markers from the Liver Cell Atlas from Guilliams et al. were used98. 
 
Cells per sphere cutoff. Spheres with less than 5 cells were removed.  
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Reconstruction of spheres into lobule layer positions. ZC per sphere was calculation from 
LECs with central and portal vein landmark genes65. Spheres were then grouped into 8 lobule 
layers because there were not many spheres from the most central and most portal (L1-L3, 
L4, L5, L6, L7, L8-L10). To control the accuracy of the algorithm, landmark gene expression 
in hepatocytes from grouped spheres of pericentral (L1-L5) and periportal (L6-L10) areas was 
analyzed.   
 
Split of dataset for different analysis. Samples were split into three datasets, healthy liver 
(n=1), livers from mice that were injected with CRC organoids (n=9) for liver zonation analysis, 
and liver samples with visible metastasis and high abundance of metastatic cells (≥ 20 cells) 
(n=3, S3, S6, S7) were used for the analysis of metastatic niches.    
 
Grouping based on cell type presence – classification of metastatic distance. Only taking 
samples S3, S6 and S7 into consideration; Spheres with metastatic cells were defined as 
‘proximal’ and spheres lacking metastatic cells as ‘distal’.  
 
Analysis of zonation specific genes. DEGs were analyzed within a continuous zonation axis 
(L1-L3<L4<L5<L6<L7<L8-L10) for LECs and KCs. Genes that were identified in perturbed 
liver samples were plotted in pericentrally and periportally grouped spheres from healthy liver 
with a non-parametric Wilcoxon signed-rank test applied from the ‘ggsignif ‘function in 
ggplot2179 R package.   
 
Analysis of differences in cell type abundance. Analyses was done between pericentral (L1-
L5) and periportal (L6-L10), and between proximal and distal areas.   
 
L-R interaction analysis. Analysis was performed between pericentral (L1-L5) and periportal 
(L6-L10), and between proximal and distal areas.   
 
Assessment of bias between different sphere sizes and cell number cutoffs. The differences 
between sphere size and cell counts of spheres between two groups (pericentral and 
periportal, distal and proximal) were assessed with a non-parametric Wilcoxon signed-rank 
test using the ‘ggsignif ‘function from ggplot2 R package179. Spheres were then grouped into 
two different size ranges (211-325 µm and 326-457 µm) to test the influence of different sphere 
sizes. For testing the influence of different cell counts an object with spheres having at least 5 
cells/sphere was compared to an object with spheres that have at least 20 cells/sphere. 
Differences in cell type proportions were assessed by UMAP plotting, split by different 
scenarios. DEGs of KCs and LECs were assessed between two groups as described 
previously with batch and lobule layer as blocking factors covariates. Zonated genes were 
assessed in LECs from different scenarios as described previously. 
 

7.3.2 Sphere-sequencing of the organoid mixing species experiment    
 

7.3.2.1 Organoid cultivation and collection  
 
Cultivating human CRC organoids. Human CRC organoids were obtained from the laboratory 
lead by Salvatore Piscuoglio (Visceral Surgery Research Laboratory, University of Basel) and 
cultivated as previously described185. The following supplements were added to the culture 
medium (Advanced DMEM/F12, Life Technologies™): 10 mM HEPES (Life Technologies™), 
2 mM Glutamax (Gibco), 50 ng/ml Human epidermal growth factor (hEGF) (Stemcell 
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#78006.1), 10 mM  Nicotinamide (Sigma Aldrich), 500 nM A83-01 (Stemcell #100-0245), 1x 
B27 supplement (Life Technologies™), 100 ng/ml human R-spondin (LuBioScience #120-38-
20), 1.25 mM N-acetyl-l-cysteine (Sigma Aldrich), 100 ng/ml Recombinant human Noggin 
(Stemcell #78060), 10 µM Y-27632 dihydrochloride (Rock inhibitor) (Stemcell #72304) , 10 nM 
Prostaglandin E2 (PGE2) (Stemcell #72634), 10 nM Gastrin (Sigma Aldrich, #G9145) and 10 
µM SB202190 (Stemcell #72634).  
 
Cultivating mouse CRC organoids. VilCreERT2;APCfl/fl;Tp53fl/fl;KrasG12D/wt (AKP) 
organoids were obtained from Owen Sansom (Beatson Institute for Cancer Research in 
Glasgow). The plasmid pMSCV-loxp-dsRed-loxp-eGFP-Ruo-WPRE188 was used to label them 
with GFP. They were cultured as described in section ‘7.3.1.1 Induction of metastasis in 
mouse liver and tissue collection’ while adding 100 µg/ml murine recombinant Noggin to the 
medium (LuBioScience, #250-38-250).  
 
Organoid collection. Collect in PBS as described in section 7.1 step 4.D and mix mouse and 
human organoids in a ratio 1:1.      
 

7.3.2.2 Experimental procedure 
 
For the experimental procedure the protocol in section 7.1 was followed. Mixed organoids 
were used for sorting based on GFP signal. 144 GFP+ mouse and 144 GFP- human organoids 
were sorted. Single cells were captured using the BD Rhapsody platform. 50 nM MULTI-seq 
lipid Anchor:BC and CoAnchor were used. Sphere-seq libraries were sequenced on a 
NovaSeq 6000 system (Illumina) using NovaSeq SP Reagent Kits (100 cycles) v1.5 kit.  
  

7.3.2.3 Computational analysis  
 
For the computational analysis the pipeline described in section 7.2 was followed with specific 
parameters described in this section. The detailed code is stored in the GitHub repository: 
https://github.com/Moors-Code/Sphere-sequencing. 
 
Single cell count matrix generation. zUMIs was used to generate the single cell count matrix 
using a fused gene code of GRCm38 v2020-A, GRCh38 v202-A and GFP 3’ UTR sequence.   
 
Quality control, clustering and annotation. First low-quality cells (< 200 features, > 30 % of 
mitochondrial genes) were removed. Followed by UMI count normalization and scaling using 
‘SCTransform’ from the Seurat package. Single cells were then clustered in UMAP space 
using 10 PCs. Clusters were then annotated to human and mouse depending on expression 
of species-specific genes. Cells were also annotated based on their sphere BC and GFP 
signal of sorted spheres.   
 
Removal of cell free RNA with DecontX. When we explored the data, we realized that there 
were contaminations of human or mouse reads in cells of the opposite species due to cell free 
RNA, even after low quality cells were removed. Therefore decontX function within the R 
package celda189 (v1.12.0) with default parameters was used to remove the contamination 
due to cell free RNA.  
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Analysis of the amount of correctly and incorrectly assigned cells. Cells were annotated based 
on two species specific identifies. First the annotation based on the gene expression and 
secondly based on the GFP signal due to the sphere BC. These two annotations were 
matched and proportions of correctly and incorrectly assigned cells per sphere could be 
calculated. A cell was incorrect for example if the GFP signal and sphere BC annotated it as 
mouse, however based on gene expression it was human. There were three spheres that 
were 100 % incorrectly assigned cells and they were, therefore, allocated to the opposite GFP 
condition because most probably there was an error in fluorescent sorting.  
 

7.3.3 Sphere-sequencing of mouse healthy spleen 
 

7.3.3.1 Experimental procedure 
 
Sphere-seq of murine spleens. For the experimental procedure the protocol in section 7.1 was 
followed. Two healthy spleens were processed for sphere-seq with 96 BC each. Sphere sizes 
were between 200-400 µm. Single cells were captured using the 10X Genomics Platform. 25 
nM for sample 1 and 50 nM for sample 2 of MULTI-seq lipid Anchor:BC and CoAnchor were 
used. Sphere-seq libraries were sequenced on a NovaSeq 6000 system (Illumina) using 
NovaSeq SP Reagent Kits (100 cycles) v1.5 kit.  
 
Conventional scRNA-seq of spleen with 5 MUTLI-seq BC. Spleen was squished through a 70 
µm strainer and single cells were collected by centrifugation at 400 x g for 10 min at 4 °C. Cell 
pellet was resuspended in red blood lysis buffer (ACK Lysing Buffer, Thermo Fisher Scientific). 
Cells were split into 5 samples with the same cell numbers each and they were labeled with 2 
µM MULTI-seq reagents (barcodes used: Bar8, Bar46, Bar54, Bar62 and Bar84) following the 
MULTI-seq protocol21. Single cells were then given to the Functional Genomics Facility Zürich 
(FGCZ) at UZH in Zürich who performed the single cell capture using the 10X Genomics 
Platform and 3’ capture beads and sequencing on a NovaSeq 6000 system (Illumina) using 
NovaSeq SP Reagent Kits (100 cycles) v1.5 kit.  
 

7.3.3.2 Computational analysis  
 
For the computational analysis the pipeline described in section 7.2 was followed with specific 
parameters described in this section. The detailed code is stored in the GitHub repository: 
https://github.com/Moors-Code/Sphere-sequencing. 
 
Single cell count matrix generation. Cell Ranger was used to generate the single cell count 
matrix using the GRCm38 v2020-A gene code.  
 
Quality control, clustering and annotation. Two sphere-seq experiments of healthy spleen 
were merged without batch effect correction. Low quality cells and doublets (< 200 features, 
> 10 % mitochondrial reads, > 6,000 features) were removed. UMI counts were scaled and 
normalized using ‘SCTransform’ from the Seurat174 package and then clustered in UMAP 
space using 10 PCs. Marker gene from Medaglia et al.59 were used for annotation and sphere 
with less than 5 cells were removed.   
 
Conventional scRNA-seq of spleen with 5 MUTLI-seq BC. Cells were allocated to their sample 
BC following the workflow from the deMULTIplex21 R package (v1.0.2).  
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7.3.4 Sphere-sequencing of Crohn’s disease biopsies 
 

7.3.4.1 Experimental procedure  
 
For the experimental procedure the protocol in section 7.1 was followed. Two patient biopsies 
from the ileocecal valve, which encompasses parts of the ileum (small intestine) and the 
caecum (colon) were processed, from each two samples (inflamed and one non-inflamed). 
Samples were processed 4-6 hours after surgery. Spheres of around 500 µm diameter in size 
were manually picked instead of sorted with the biosorter. For both samples, spheres from 
inflamed and non-inflamed biopsies were picked: Patient 1: non-inflamed Bar145-Bar192 and 
inflamed Bar1-144, 193-288; Patient 2: non-inflamed Bar97-192 and inflamed Bar1-96, 193-
288. 100 nM MULTI-seq lipid Anchor:BC and CoAnchor were used for labelling and single 
cells were processed using the BD Rhapsody platform. Sphere-seq libraries were sequenced 
on a NovaSeq 6000 system (Illumina) using NovaSeq SP Reagent Kits (100 cycles) v1.5 kit.  
 

7.3.4.2 Computational analysis  
 
For the computational analysis the pipeline described in section 7.2 was followed with specific 
parameters described in this section. The detailed code is stored in the GitHub repository: 
https://github.com/Moors-Code/Sphere-sequencing. 
 
Single cell count matrix generation. zUMIs was used to generate the single cell count matrix 
using the GRCh38 v202-A gene code was used.  
 
Quality control, clustering and annotation. Sphere-seq data of both patients were merged 
without batch effect correction. Low quality cells (< 200 features) were removed before 
clustering in UMAP space using 10 PCs. No mitochondrial cutoff was applied because the 
epithelial cells in biopsies have much higher mitochondrial genes because samples cannot be 
processed fresh, and we did not want to lose all of them. Cell types were first broadly 
annotated at resolution 0.5 and then sub-clustered to annotate subtypes while removing 
clusters with an overrepresentation of mitochondrial gene in their top 5 DEGs (function 
‘FindAllMarkers’ from Seurat174 with default parameters for DGE analysis). Cell type markers 
were used from Martin et al.190 and  Smillie et al.191. Spheres with less than 5 cells were 
removed from further analysis.  
 
Fibrotic vs. Non-fibrotic analysis in patient 1. Patient 1 was used for grouping spheres into 
fibrotic and non-fibrotic spheres based on the presence of fibroblasts, defined by S100A4 
expression192.  These two groups were then used to analyze DEGs, cell type abundance and 
L-R interactions.    
 

7.3.5 Conventional single-cell RNAseq of murine metastatic liver  
 

7.3.5.1 Experimental procedure 
 
Two samples of metastatic livers (each one lobe) were used for ex vivo digestion after 
perfusion with PBS (Gibco). Samples were cut into small pieces and incubated in 1.5 ml 
Eppendorf tubes with 1 ml of dissociation cocktail (the same as is used for sphere-seq) at 37 
°C shaking with 300 rpm. After incubation samples where squished through a 100 µm strainer 
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(Falcon) using the plunger from a syringe and cells were collected in low glucose DMEM 
medium (1 g/L D-Glucose/L-Glutamine, Pyruvate; Gibco) containing 1 % BSA (Sigma Aldrich). 
Cells were counted using a hemocytometer and 15,000 cells were loaded on a BD Rhapsody 
Single Cell capture machine. Library preparation was done following instructions from BD 
‘Rapsody Whole Transcriptome analysis’ protocol using SPRI instead of AMPure beads for 
the cleanups. Final libraries were then sequenced on a NovaSeq 6000 system (Illumina) using 
S4 Reagent kits (200 cycles) v1.5 with XP workflow (Read 1: 60 bp, read 2: 100 bp, index 
read: 8 bp).  
   

7.3.5.2 Computational analysis  
 
Demultiplexing and single-cell matrix generation. Demultiplexing of BCL files was done using 
bcl2fastq (v2.20.0.422, Illumina). FASTQ files were then processed to a single-cell matrix 
using zUMIs170 (v2.9.4) with a gene alignment generated with STAR171 (v2.5.2b) using mouse 
GRCm38 vM25 fused to GFP 3’ UTR. Ensemble IDs were then converted to gene names 
using the biomaRt172,173 (v2.50.3) package with musmusculus gene ensemble version 95.   
Demultiplexing of raw data after Illumina sequencing: Demultiplex the binary base call (BCL) 
files with Bcl2fastq to convert them to FASTQ files.  
 
Quality control, clustering and annotation. The two samples were merged without batch effect 
correction. Low quality cells and doublets (< 200 features, > 20 % mitochondrial reads, > 7,500 
features) were removed. UMI counts were scaled and normalized using ‘SCTransform’ from 
the Seurat174 package and then clustered in UMAP space using 10 PCs. Marker gene from 
the liver cell atlas98 were used for annotation.  
 
Comparison with sphere-seq. Before applying any quality cut-offs, the median percentage of 
mitochondrial genes was analyzed and compared between both protocols (conventional 
scRNA-seq and sphere-seq). Additionally, the cell type presence between both protocols were 
analyzed in UMAP split plots.  
 

7.3.6 Visium of mouse metastatic liver  
 

7.3.6.1 Tissue collection  
 
Mouse liver tissues were collected as described in 7.1.2/4a and then a small part of one lobe 
was embedded in O.C.T.TM compound (Tissue-Tek) snap-frozen in liquid nitrogen, by floating 
the embedded tissue within a metal beaker filled with isopentane (Sigma Aldrich). Tissues 
were then stored at -80 °C.   
 

7.3.6.2 Experimental procedure  
 
Library preparation. Embedded and snap-frozen tissues were used for slicing of 10 µm 
sections with a cryostat (Leica CM3050S). The Slices were put within the capture area of a 
10X Visium Spatial Gene expression slide that was calibrated to -20 °C within the cryostat. 
The slide was processed the following day and stored at -80 °C in a slide container until then. 
For the generation of cDNA libraries, the manufacturer’s instructions were followed. In short: 
Tissue on slides underwent methanol fixation and hematoxylin and eosin (H&E) staining to 
assess tissue morphology and quality. The following steps were performed after: tissue lysis, 
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RT, second strand synthesis and cDNA denaturation. These steps were done on the slide. 
Permeabilization time, previously assessed with the Tissue Optimization Kit and Protocol, was 
10 min. After that cDNA was transferred into PCR tubes following qPCR to measure its 
concentration. The next step was cDNA amplification with qPCR defined cycle numbers, 
followed by the final steps of: end repair, A-tailing, adapter ligation and index PCR.   
 
Quality assessment and sequencing. Quantity and quality of libraries were measured using a 
dsDNA high-sensitivity (HS) kit (Life Technologies #Q32854) on a Qubit 4 fluorometer 
(Thermo Fisher) and a high sensitivity D1000 reagents and tapes (Agilent #5067-5585, #5067-
5584) or high sensitivity D5000 reagents and tapes (Agilent #5067-5593, #5067-5592) on a 
TapeStation 4200 system (Agilent Technologies). Paired-cell sequencing was performed: 
NovaSeq 6000 system (Illumina) with NovaSeq SP Reagent Kits (100 cycles) v1.5 using the 
following read configuration: read 1: 28 bp, read 2: 82 bp, index read 1: 10 bp, index read 2: 
10 bp and 50,000 reads/spot.  
 

7.3.6.3 Computational analysis  
 
The detailed code is stored in the GitHub repository: https://github.com/Moors-Code/Sphere-
sequencing. 
 
Demultiplexing. BCL files were demultiplexed with Bcl2fastq v2.20.0.422 from Illumina which 
converts them to FASTQ files.  
 
Pre-processed using Space Ranger. FASTQ files were pre-processed with the Space Ranger 
pipeline (v1.2.0) (10X Genomics) using GRCm38 v2020-A genecode.   
 
Clustering and spatial area annotation. Both samples underwent separate processing. They 
were normalized and scaled using ‘SCTransform’ from Seurat174 and clustered in UMAP space 
with 10 PCs. Annotation of clusters was based on landmark genes of hepatocytes and done 
to allocate spots into portal vein, central vein and metastatic areas. Portal and central vein 
areas were considered ‘distal’ and metastatic areas as ‘proximal’ for analysis of metastatic 
areas.   
 
Assessment of the number of gene features per spatial area. Mean values of gene feature 
counts were calculated from proximal and distal areas to metastatic sites. These were 
compared to mean values from sphere-seq.  
 
Batch effect correction. Visium samples were then merged using the MNN batch correction 
method within the batchelor180 package (v1.10.0).  
 
Deconvolution. Visium spots were deconvoluted using sphere-seq data as a reference. Top 
20 genes from each cell type were used which also showed sufficient expression in Visium 
datasets. Genes were then used to deconvolute spots with the SCDC193 package 
(v0.0.0.9000). At least 75 % of genes had to be assigned to a specific cell type to annotate 
spots, others were annotated as mixed.   
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7.3.7 Public Visium data analysis  
 
The detailed code is stored in the GitHub repository: https://github.com/Moors-Code/Sphere-
sequencing. 
 
Visium datasets from Guilliams et al.98 were used (healthy liver and NAFLD (non-alcoholic 
fatty liver disease) and spots were annotated for central, mid, periportal and portal zones 
based on zonated marker genes from hepatocytes to test with sphere-seq identified zonated 
gene expression.  
 

7.3.8 Molecular Cartography of mouse metastatic liver  
 

7.3.8.1 Tissue collection 
 
Tissue collection was done as described for Visium.  
 

7.3.8.2 Experimental procedure  
 
Sample preparation and pre-processing. The procedure has been previously described98. In 
short, 4 liver samples (two with visible metastasis, two that were injected with CRC organoids, 
but no visible metastasis were formed) were used for sectioning 10 µm thick slices and placed 
on capture areas of slides from Resolve BioSciences, as explained for Visium. These slides 
were stored at -80 °C and sent on dry ice to Resolve BioSciences. There, the samples were 
processed further using the following procedure: Sample fixation and 100-plex combinatorial 
smFISH. During every cycle of smFISH colored probes were developed, imaged and 
decolorized. This resulted in a unique combinatorial BC of each target gene. We chose 100 
genes from sphere-seq analysis (20 genes for defining cell types and 80 genes to validate 
genes found in spatial analysis of sphere-seq). Resolve BioSciences used a Zeiss 
Celldiscoverer 7 microscope for imaging with a magnification of 25x imaging 9 rounds and 16 
z-stacks per region. Computationally spots were then segmented, fluorescence background 
was removed and alignment of images from different rounds was done. The result was a 
profile from each pixel including the information of 16 values (two color channels, 8 imaging 
rounds = 16 images).  
 

7.3.8.3 Image analysis in ImageJ  
 
ImageJ with genexyz Polylux tool plugin from Resolve BioSciences was used for image 
analysis.  
 

7.3.8.4 Computational analysis  
 
The detailed code is stored in the GitHub repository: https://github.com/Moors-Code/Sphere-
sequencing. 
 
Cell segmentation. Cellpose194 (v.2.0.4) was used for nuclei segmentation based on DAPI 
images with a model of pretrained nuclei and the following parameters: flow_treshold 0.5, 
cellprob_threshold -0.2. Nuclear segments were expanded to 10 pixels (1.38 µm, 1 pixel = 
138 nm) using the function ‘expand_labels’ from scikit-image. Then transcripts were assigned 
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to each expanded segment which represents a cell. All segments that were larger than the 
sum of 4 median absolute deviation (MAD) and the median segment area were excluded from 
downstream analysis. Low quality cells were removed during clustering and annotation. Low 
quality cells or clusters were identified if they could not be annotated properly to a certain cell 
type or the clusters were very small only showing very view DEGs.   
 
Clustering and annotation. Generated count matrix from cell segmentation was used for 
normalization and scaling within the Seurat174 workframe (‘SCTransform’). Clustering in UMAP 
space was done with 10 PCs, followed by annotation using cell type marker genes. Clusters 
that could not be annotated properly were removed. Annotation was then projected onto DAPI 
images in ImageJ based on x-y coordinates of segmented cells.  
 
Integration of spatial feature area. Landmark genes for central vein (Cyp2e1), portal vein 
(Cyp2f2) and metastatic sites (Gpx2) were used for area visualization. Followed by manually 
drawing and exporting of x and y coordinates of spatial areas. X and y coordinates were then 
matched with these of segmented cells to allocate single cells to spatial areas.   
 
DGE analysis between two groups. This analysis was following the workflow of sphere-seq, 
but instead of generating pseudo bulks from spheres, they were generated from spatial feature 
areas.  
 
Investigation of differences in cell type abundance comparing two groups. The workflow of 
sphere-seq was followed for this analysis.  
 
Colocalization analysis. The 2D space of the centroids from segmented areas was used to 
generate a spatial neighborhood graph based on the Euclidean distance. Vertices show the 
cells connected by edges if their distance is < 10 µm. A kd-tree based nearest neighbor search 
was used to construct the graph within a pre-defined radius of 10 µm. Therefore, the R function 
‘nn2’ (RANN v.2.6.1, searchtype=’radius’) was used with a sufficiently large k (k=41). This 
analysis outputs an adjacency matrix that could then be used for graph construction with the 
igraph195 package (v.1.3.4). For each ROI, the number of edges from two cell types was 
calculated and normalized by the sum of cells in each region. This was done for both spatial 
groups (proximal and distal) and then the difference between the normalized amounts of 
edges was computed. For testing the significance of an enrichment, an empirical null 
distribution was generated by random permutation of cell type labels (m = 1000) per slide and 
compared to the tested value. The P value was then computed with the formula 
P=(b+1)/(m+1), taking tissue composition and spatial identifies into account. B is the number 
of permutations where a higher number of edges between cell types was observed and m is 
the total amount of permutations196. This was computed for each slide and cell-cell pair to 
calculate a score representing co-localization or avoidance, depending on the sign. 
Visualization was done using an adaptation from83.   
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8 Results  
 

8.1 Overview of sphere-seq and the sorting approach  
 
The sphere-seq approach is a combination of well-established methods: flow cytometry, 
single-cell hashing, and scRNA-seq. The method is based on previously developed 
methodologies, Paired-cell sequencing65, PIC-seq64, and Clump sequencing66, that sequence 
cellular communities of 2-10 cells, requiring computational deconvolution procedures to 
allocate transcripts to different cells. We wanted to extend these approaches to single cell 
resolution and larger cellular communities. The established experimental workflow starts with 
patrial dissociation of tissues into cellular communities, so-called spheres. Spheres are then 
sorted into wells, one sphere per well, of a 96-well plate using a large fragment biosorter. After 
sorting, individual spheres are dissociated into single cells within their respective wells, 
followed by labeling of cells with sphere-specific lipid-tagged BCs21. After labeling, cells are 
pooled and used for scRNA-seq using the BD Rhapsody or 10X Genomics platform. The 
sphere label allows us to allocate a single cell to its sphere and thereby its cellular 
neighborhood of origin. The outline of the sphere-seq approach is illustrated in fig. 13. We 
applied it to a murine model of liver metastasis, murine healthy liver, murine healthy spleen, 
CRC organoids (human and mouse), and Crohn’s disease patient biopsies.  
 

 
Figure 13: Schematic drawing of the sphere-seq experimental workflow. Created with BioRender.com. 

Sorting with the large fragment biosorter was optimized to sort single spheres into 96-well 
plates. Using a linear model of standard sized beads TOF and extinction measurements could 
be calculated for drawing a sorting gate for sphere sizes of interest, in case of the murine liver 
between 200 and 450 µm (Fig. 14A, B). The accuracy of the sorting approach was assessed 
by sorting, plate imaging and counting of fragments per single wells of 9 plates. 92 % of wells 
had one fragment, 7.5 % no fragment and 0.5 % had two fragments (Fig. 14 C, D). We can 
therefore conclude that the sorting process is sufficiently accurate. The wells with zero 
fragments will lead to cell loss, but they would not contaminate our dataset. The two wells we 
identified with two fragments each, could be either due to a sorting error, or the fragment split 
into two due to the sorting pressure while sorting. Because we applied an index sorting 
approach, TOF measurements of each sorted event was recorded and could, therefore, be 
used to estimate the size of each individual sphere using the linear model of standard size 
beads. We sorted spheres with different size distributions for different tissue types (Fig. 14E). 
The size-gating of the biosorter was pre-defined in a way so we could capture biologically 
relevant subunits which was 200-450 µm in case of the murine liver, 100-400 µm for the murine 
spleen and CRC organoids had sizes between 100-300 µm. 
 
 

1. Partial dissociation 
into spheres 

2. Single sphere sorting 
into wells of a 96-well 
plate 

3. Single cell 
dissociation 

4. Sphere 
labeling 

5. Pooling of cells and 
scRNA-seq 
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Figure 14: Overview of the sphere sorting approach. A) Linear standard curve of standard sized beads [60 µm 

(n = 982), 125 µm (n = 736), 175 µm (n = 923)] to calculate sphere sizes. Black dots are measurements of individual 
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beads; TOF = Time of flight. B) Image showing the gating from the large fragment sorter. R1-R3 represent standard 

sized beads and R4 shows the sorting gate of spheres between 200 and 450 µm. C) Brightfield microscopy image 

of 96 wells with single sorted sphere. Red arrows indicate spheres and red squares indicate zoomed-in wells. D)  
Barplot showing the number of spheres within wells (n=864 wells across 9 plates). E) Sphere size distribution of 
sorted spheres from different tissues [n = 82 (murine spleen), 1468 (murine liver), 138 (CRC organoids) spheres]. 

The theoretical number of cells per sphere could be quantified using the estimated amounts 
of cells per gram mouse liver which was estimated to be around 135 million hepatocytes187. 
Due to the fact that 20% of the liver mass are hepatocytes and 20% NPCs111, we added  27 
million NPCs, which results in 162 million cells per gram liver. The density of the liver was 
estimated to be around 1.07 g/mL based on volumetric computed tomography (VCT)186. 
Therefore, the volume of 1g liver could be calculated to be 1.07 cm3 and the number of cells 
per cm3 was estimated to be 151,401,869 million cells. The volume of different sphere sizes 
was calculated based on their diameter, calculated from the linear model of standard-sized 
beads, using the formula for spherical volume (4/3∗ $ ∗ r3 ∗ 1.07 g/mL, r is the radius, 1.07 
g/mL is the density) with the assumption that the sphere is entirely round. Even though 
spheres were not entirely round and had different shapes (Fig. 15A), we used this assumption 
to estimate the theoretical number of liver cells per sphere size (Fig. 15B). The true cell number 
of cells per liver sphere of different sizes was determined by integrating estimated size from 
biosorter and sequenced single-cell transcriptomes per sphere (Fig. 15C). Cell numbers were 
quite variable between spheres, possibly due to irregular shapes and sample processing. 
However, the mean values of sequenced cells were increasing with sphere size which showed 
some kind of robustness of the sphere-seq approach because the larger the sphere the more 
cells should be there for sequencing. Approximately 0.4-1.2 % of cells from theoretical 
amounts of cells got sequenced (Fig. 15D). The low amounts of recovered cells per sphere 
make sphere-seq sparse. The reasons for the low percentage could be cellular loss during the 
experimental procedure, most likely due to washing steps. Also, the MULTI-seq classification 
seems to be less efficient in sphere-seq. There was some variation between samples, but 
approximately 50 % of cells (accounting for around 3000-5000 cells in most cases) could be 
assigned to a single MULTI-seq/sphere BC (= positive cells), the rest were negative or 
doublets (Fig. 15E). We run an experiment with murine splenocytes that were split into 5 
samples, labeled with different MUTLI-seq BC. This revealed an efficiency of around 60 % 
positives, which is 10 % more efficient than sphere-seq (Fig. 15F). A balance in terms of 
concentration and washing steps had to found to archive sufficient labeling while preventing 
background labeling that impacts the MULTI-seq classification algorithm. A too small amount 
leads to negative cells, but too much leads to doublets. In the beginning phase of sphere-seq 
development we used 100-200 nM per sphere and only one washing step which led to massive 
amounts of doublets impacting the MULTI-seq algorithm to find positively labeled cells. We 
then reduced the concentration to 25-50 nM and 2-3 washes which led to more efficient 
classifications (data not shown). Another factor that influences the labeling is connective tissue 
that holds together the cells within a sphere. It usually gets filtered out before MULTI-seq 
labeling, however in sphere-seq this could impact the workflow negatively, unnecessary 
pipetting steps should be reduced to prevent cell loss. Therefore, connective tissue could 
hinder proper lipid anchor integration all around a cell’s surface. This could also be a possible 
explanation of the decreasing cell coverage with larger sphere sizes (Fig. 15D), because larger 
spheres harbor larger amounts of connective tissue. For downstream analysis of sphere-seq, 
we only consider spheres with at least 5 cells which in our experience is a sufficient cutoff to 
analyze sphere-seq data. This is an arbitrary cut-off, as are thresholds for sphere size - the 
influence and potential biases introduced by of both of these parameters will be discussed in 
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detail within a later section. All in all, these quality metrics demonstrate that our processing 
and sorting strategy is a fast and precise way to isolate spatial niches from complex tissues.  
 

Figure 15: Comparison of sequenced and theoretically estimated cell counts per sphere of murine liver 
samples. A) Representative brightfield microscopy images of liver spheres. Scale bar of 100 µm is displayed in 

the right bottom corners. B) Scatterplot showing the theoretically calculated cell counts for different sphere sizes. 

C) Distribution of sequenced cell counts from different spheres grouped within different size. Dots represent 

individual spheres (n = 200-250: 144, 251-300: 266, 301-350: 410, 351-400: 450, 401-450: 272 spheres). The 

middle line represents the median; upper and lower line are the first and third quartile (25th and 75th percentiles); 

the upper and lower whiskers extend to 1.5 * the distance between first and third quartile; dots outside of the 

whiskers are considered outliers. D) Barplot comparing the percentage of sequenced cells from the theoretical 

estimate of cell counts (n = 200-250: 144, 251-300: 266, 301-350: 410, 351-400: 450, 401-450: 272 spheres). E) 
Grouped barplot showing the proportions of positive (blue), negative (green), and doublets (red) allocated to sphere 

BCs after MULTI-seq classification (n = S1: 3257 positive, 446 doublet, 3326 negative; S2: 4809 positive, 738 

doublet, 3048 negative; S3: 3572 positive, 621 doublet, 3119 negative; S4: 4561 positive, 790 doublet, 3338 

negative; S5: 3594 positive, 652 doublet, 2037 negative; S6: 4162 positive, 610 doublet, 3220 negative; S7: 2765 

positive, 367 doublet, 2485 negative; S8: 2721 positive, 827 doublet, 3315 negative; S9: 5167 positive, 887 doublet, 

4353 negative; S10: 3166 positive, 504 doublet, 3169 negative cells). F) Grouped barplot showing the proportions 

of positive (blue), negative (green) and doublets (red) allocated to hashing BCs after MULTLI-seq classification 

from a murine spleen scRNA-seq experiment combining 5 individually labeled samples (Positives: BC8: 795, BC46: 

795, BC54: 780, BC62: 346, BC84: 2409; doublets: 1818; negatives: 1592 cells).  

8.2 Comparison of sphere-seq to conventional scRNA-seq  
 
We applied sphere-seq to a total of 10 murine livers. One from a healthy mouse and nine mice 
were injected with CRC organoids over an intrasplenic injection following splenic resection. 
After 2 weeks livers were harvested and we found that three of them had visible metastases. 
All samples were merged and single cells were annotated using marker genes from the 
recently published liver cell atlas98 (Fig. 16A, B). Single cells could be allocated to their sphere 
of origin and after removing spheres with less than 5 cells, we could analyze different cell type 
proportions per sphere (Fig. 16C).  
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Figure 16: Cell type annotation of sphere-seq experiments from murine livers. A) Uniform manifold 

approximation and projection (UMAP) from all liver sphere-seq samples combined (n = 10 samples: 9 injected with 

CRC organoids, 1 healthy). Cells are colored based on their cell type. B) Heatmap of cell type marker gene 

expression of annotated cells (n = 10 samples: 9 injected with CRC organoids, 1 healthy). C) Barplot showing 

different proportions of cell types per sphere; only spheres with at least 5 cells are included. (n = 1568 spheres 
across 10 samples: 9 injected with CRC organoids, 1 healthy).  

To assess the quality of sphere-seq compared to conventional scRNA-seq we conducted two 
conventional scRNA-seq experiments of CRC injected murine livers using the same ex vivo 
dissociation protocol like for sphere-seq. Cells were annotated using marker genes from the 
liver cell atlas98 (Fig. 17A). The ratio of genes mapped to mitochondrial genes compared to all 
other genes is an indicator of cell quality. Low-quality cells have high ratios because their cell 
membrane becomes leaky leading to cytoplasmic mRNAs diffusing out of the cells, while 
mitochondrial RNAs (mtRNAs) will be contained within the mitochondria that are too large to 
diffuse out of the cells broken membrane197. Therefore, in low quality cells, a higher amount 
of mtRNAs is being captured compared to cytoplasmic RNAs. The comparison of the median 
values of the percentages of mitochondrial to cytoplasmic genes between sphere-seq and 
conventional scRNA-seq revealed that sphere-seq might even be better in terms of cellular 
quality. Additionally, the number of UMI counts and genes are slightly better in sphere-seq 
(Fig. 17B). However, both protocols show similar values for these quality measurements and 
it has to be considered that there is much variability in cellular quality between scRNA-seq 
experiments in general. We were also wondering, if during the random sphere-seq sorting 
process, we introduce any kind of bias towards one cell type or another. This could arise 
because attachments of some cell types might be stronger or weaker and cell types with lower 
connectivity might be lost during partial dissociation. Therefore, we compared cell types of 
sphere-seq and conventional scRNA-seq, which were comparable across protocols (Fig. 
17C).  
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Figure 17: Comparison of sphere-seq to conventional scRNA-seq of murine metastatic livers. A) Heatmap 

of cell type marker gene expression of annotated cells from conventional scRNA-seq (n = 2 sampled injected with 

CRC organoids). B) Boxplots comparing UMI counts, gene counts and ratios of mitochondrial to cytoplasmic 

genes from scRNA-seq and sphere-seq. Dots represent samples (scRNA-seq: n = 2; Sphere-seq: n = 9). The 

middle line represents the median; upper and lower line are the first and third quartile (25th and 75th percentiles); 

the upper and lower whiskers extend to 1.5 * the distance between first and third quartile; dots outside of the 

whiskers are considered outliers. C) Uniform manifold approximation and projection (UMAP) comparing cell types 
in scRNA-seq and sphere-seq (scRNA-seq: n = 2; Sphere-seq: n = 9). 

In sum, we have found no evidence indicating that the sphere-seq procedure impacted the 
quality of single cell transcriptomes. Additionally, we could show that we did not introduce a 
specific bias towards certain cell types (at least not a bias that is not shared with conventional 
scRNA-seq). Of course, this could be slightly different for other tissues, than the liver, that are 
more prone to shear stress during sorting or that require faster single-cell processing 
procedures for good quality reads.  
  

8.3 A mixing species experiment showed a high accuracy of the sphere-seq 
approach  

 
To assess the accuracy of our sphere-seq approach in terms of cell allocation to the sphere 
of origin, we conducted a species-mixing experiment. To this end, we mixed GFP+ mouse and 
GFP- human CRC organoids. Using fluorescent index sorting we then sorted 144 wells with 
GFP+ and 144 wells with GFP- organoids. In this case, a sphere was an organoid. We then 
applied the sphere-seq procedure and analyzed the purity of human and mouse cells matching 
the index fluorescent sorting. A schematic drawing of the experimental approach is highlighted 
in fig. 18A. The normalized GFP signal of spheres classified as human and mouse based on 
GFP-expression is indicated in fig. 18B. To assess the accuracy of sphere-seq, we analyzed 
the proportion of incorrectly assigned cells per sphere (Fig. 18C). This revealed that 95 % of 
cells possessed species specific UMIs that matched the species of the index sorting – these 
cells were considered to be correctly assigned (Fig. 18D). This experiment showed that 
sphere-seq is a highly accurate approach because the vast majority of cells could be correctly 
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allocated. Miss-allocation might have been either due to unbound MULTI-seq BCs that 
introduce background staining of cells after pooling of individual wells, or loose single cells 
attached to organoids of the opposite species during sorting.    
    

 
Figure 18: Species mixing experiment with CRC organoids to assess sphere-seq barcoding accuracy. A) 
Schematic illustration of the experimental workflow. Created with BioRender.com. B) Boxplots showing the 

normalized GFP signal of sorted GFP- human and GFP+ mouse organoids (n = 288 organoids, each species 144). 

Black dots show individual organoids. The middle line represents the median; upper and lower line are the first and 

third quartile (25th and 75th percentiles); the upper and lower whiskers extend to 1.5 * the distance between first 

and third quartile; dots outside of the whiskers are considered outliers. C) Scatter plot highlighting spheres with 

incorrectly assigned cells. Dots represent individual spheres and their color shows the proportion of incorrectly 

assigned cells (mouse cells in human spheres or human cells in mouse spheres) (n = 139 spheres). D) The fraction 

of cells that are correctly and incorrectly assigned is shown in a barplot (n = 139 spheres, 7862 cells correct, 410 

cells incorrect).     

8.4 An imaging-based transcriptomics approach was used for the validation 
of sphere-seq  

 
To validate findings from sphere-seq of the metastasis-bearing mouse liver, we wanted to use 
an imaging-based ST approach. We designed a 100-gene panel that included marker genes 
for different cell types and genes that showed spatially differentiated gene expression in 
sphere-seq. This panel was used for highly-multiplexed FISH (Molecular Cartography, MC) 
for 4 samples of CRC injected livers, from which two showed visible metastasis. DAPI staining 
of images could be used for cell segmentation. Segmented single cells could then be used for 
dimensionality reduction, clustering, and cell type annotation (Fig. 19A, B). Comparison of 
broad cell type annotation between MC and sphere-seq revealed that immune cells and LECs 
are well reflected in sphere-seq (Fig. 19C). However, we found a bias of sphere-seq towards 
loosing hepatocytes, stellate cells, fibroblasts and metastatic cells. This was probably due to 
the ex vivo digestion protocol of livers in sphere-seq. A phenomenon, we also saw in 
conventional scRNA-seq datasets from livers that were digested in the same way and which 
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was previously discussed by Gulliams et al.98. Some cell types (neutrophils, DCs, basophils, 
cholangiocytes) could not be resolved with MC because the gene panel was restricted to 100 
genes and selected genes were not specific enough to annotate these cell types.   
 

Figure 19: Annotation of Molecular Cartography imaging-based ST data and its comparison to sphere-seq. 
A) UMAP visualization of cells after cell segmentation (n = 4 samples). Cells are colored based on their cell type. 

B) Dotplot showing the cell type marker expression within annotated clusters. C) Zoomed-in barplot comparing cell 

type proportions between MC and sphere-seq (MC: n = 4 samples, Sphere-seq: n = 9 samples). Cell types 

highlighted in red boxes represent the largest differences between the datasets.     

8.5 Sphere-seq could be used to identify previously uncharacterized 
zonated gene expression in LECs and KCs 

 
8.5.1  Reconstruction of the sphere position along the lobule layer axis 

 
To study zonated gene expression within the liver we wanted to first reconstruct the spatial 
origin of each sphere. Therefore, we applied a previously generated algorithm that uses a 
zonated gene expression signature in LECs65,115 to assign spheres to a specific position within 
the central-portal axis. For each sphere we calculated a zonation coordinate (ZC) based on 
pericentral and periportal landmark gene expression signatures (cLM and pLM) in LECs.  
Average expression (AE) across LECs from a sphere was calculated separately for cLM and 
pLM genes and used for the calculation of ZC by dividing the AE pLM genes by the sum of AE 
cLM and AE pLM genes. This generated a ZC between 0 and 1 where 0 is the most central 
and 1 is most portal. Using this approach, spheres could be placed within the central-portal 
axis (Fig. 20A). Spheres could be grouped into different lobule layers, the most central (L1-3) 
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and most portal (L8-10) were combined because there were not many spheres from the most 
central or portal layer. Furthermore, they could be grouped into pericentral (L1-5) and 
periportal (L6-10) zones (Fig. 20B). We could speculate that the sphere size might be too big 
to capture the most distant layers, the middle layers are more of a continuum in terms of 
zonated gene expression. To assess the accuracy of this reconstruction approach in our 
sphere-seq dataset, we analyzed zonated landmark gene expression in hepatocytes from 
spheres grouped into pericentral and periportal areas. The pericentral-specific landmark 
genes Cyp2e1 and Cyp1a2, which are P450 enzymes involved in the oxidation of drugs104, 
were highly expressed in hepatocytes of spheres from the pericentral group. The periportal 
genes Cyp2f2,  and Alb, –  of note, albumin production is a highly energetically demanding 
task and therefore needs a lot of ATP resources only present in portal areas104 – were almost 
exclusively expressed in hepatocytes of periportal spheres (Fig. 20C). This showed that our 
assignment of spheres to specific anatomical compartments worked reliably and this 
information could be used for further analysis.   
 

Figure 20: Allocation of spheres to different lobule layers based on a previously identifies zonated gene 
expression signature in LECs. A) Schematic illustration of the strategy to reconstruct sphere position based on 

gene expression in this case a zonation coordinate is calculated based on CV and PV landmark genes (cLM and 

pLM) in LECs. Created with BioRender.com. B) Barplot showing the distribution of zonation coordinates of spheres 

across different lobule layers (n = L1-3: 143, L4: 243, L5: 452, L6: 478, L7: 207, L8-10: 29 spheres across 10 

samples). C) Dotplot of landmark gene expression in hepatocytes of grouped spheres into pericentral and periportal 

regions: pericentral landmark genes: Cyp2e1 and Cyp1a2; periportal landmark genes: Cyp2f2 and Alb (n = 

pericentral: 46, periportal: 31 spheres across 10 samples).   
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8.5.2  Determination of spatial areas in Molecular Cartography images 
 
To use MC data for validation of spatially distinct findings of sphere-seq, we first needed to 
group cells of MC images into periportal, pericentral or metastatic areas. Therefore, we used 
marker genes for periportal (Cyp2f2), pericentral (Cyp2e1), and metastatic (Gpx2) regions. 
We visualized these transcripts on MC images and manually drew areas surrounding cells 
expressing specific landmark genes (Fig. 21A). Information of previously annotated pericentral 
and periportal hepatocytes from single-cell segmented images could then be grouped based 
on manually assigned spatial areas (Fig. 21B). This showed the accuracy of this approach to 
determine spatial areas.  
 

Figure 21: Determination of spatial areas in Molecular Cartography images. A) Representative image from 

MC of periportal (Cyp2f2 in blue), pericentral (Cyp2e1 in red) and metastatic (Gpx2 in green) areas. Yellow lines 

show manually drawn areas to group cells into different spatial areas. B) UMAP visualization of pericentral and 

periportal hepatocytes from different spatial areas (n = 4 samples).   

8.5.3  Sphere-seq identified previously uncharacterized zonated gene 
expression in LECs 

 
After the reconstruction of spheres based on the zonated gene expression in LECs, we wanted 
to analyze zonated gene expression in LECs of genes that were not present in the signature 
that was used for reconstruction. We did a DGE analysis of LECs from spheres grouped into 
lobule layers and we could find many genes that were significantly differentially expressed 
along the central-portal axis (Fig. 22A, left). We included some of the zonated genes into our 
gene panel for MC. We then extracted LECs after cell segmentation and annotation and 
analyzed DEGs between periportal and pericentral areas. Thereby, we could validate our 
findings of zonated genes (Fig. 22A, right). For example, we found Plpp1, a phospholipid 
phosphatase, enriched pericentrally, matching the known pericentral zonation of 
lipogenesis104. Galnt15, a gene involved in O-linked oligosaccharide biosynthesis, was 
periportally zonated, which makes sense because gluconeogenesis is periportally zonated104 
(Fig. 22A-D). Other examples were the pericentrally zonated Lhx6 (Fig. 22A-D), which was 
previously identified to be centrally zonated in LECs198, it is involved in the regulation of 
canonical WNT signaling which is centrally zonated104,199. And Cd36 (fatty acid 
translocase/cluster of differentiation 36) (Fig. 22A-D) which is involved in fatty acid transport 
and has an established periportal zonation in LECs200–202, was also found to be periportally 
zonated in LECs in our dataset (Fig. 22B-D). Furthermore, we assessed the zonation of these 



 77 

four genes in LECs from healthy liver, and found them to be significantly zonated as well (Fig. 
22E), illustrating, that these genes are most likely involved in homeostatic processes. In 
conclusion, with the help of sphere-seq, we could identify previously uncharacterized zone-
specific gene expression in LECs. Additionally, we could confirm the previously published 
pericentral and periportal expression of Lhx6 and Cd36, respectively198,201,202, which gave us 
confidence that our approach of assigning spheres to lobule layers was working reliably.  
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Figure 22: Analysis of zonated gene expression in LECs. A) Volcano plots of DEGs between spatially ordered 

spheres (left, sphere-seq, n = 1384 spheres across 9 samples) or spatially grouped areas (right, Molecular 



 79 

Cartography, n = 155 areas across 4 samples) in pericentral (red) and periportal (yellow) zones. Colored dots show 

significantly upregulated DEGs in one or the other condition and labels indicate genes that were present also in 

the MC gene panel and could be validated. B) Boxplots of selected genes of spatially ordered spheres (n = L1-L3: 

137, L4: 214, L5: 402, L6: 409, L7: 196, L8-L10: 26 spheres across 9 samples). Black dots represent individual 

spheres. C) Boxplots of selected genes of spatially grouped areas from MC data (n = pericentral 89, periportal 66 

areas across 4 samples). Black dots represent individual manually drawn areas. D) Representative MC images of 

selected zonated genes. DAPI stain (white) is overlayed with gene expression in colors. The scale bar is shown in 

the lower left corner. E) Boxplot of selected genes of spatially grouped spheres from healthy murine livers (n = 

pericentral: 76, periportal: 83 spheres across 1 sample). A non-parametric Wilcoxon signed-rank test was applied 

(*** < 0,001, not significant > 0.05). Black dots represent individual spheres. For A, B, and C a negative binomial 

generalized log-linear model was applied for statistical analysis; p-values (Benjamin-Hochberg adjusted) < 0.05 

were considered as significant (*** < 0.001, ** < 0.005, * < 0.05). In B, C and E the middle line represents the 

median; upper and lower line are the first and third quartile (25th and 75th percentiles); the upper and lower whiskers 

extend to 1.5 * the distance between first and third quartile; dots outside of the whiskers are considered outliers.    

8.5.4  Sphere-seq identified zonated gene expression in KCs indicating an 
involvement in leukocyte recruitment 

 
Next, we wanted to use spheres, which were spatially-sorted based on LECs, to analyze 
zonated gene expression in other cell types, for example, KCs. We identified that Vcam1 
(Vascular Cell Adhesion Molecule-1) is periportally zonated in KCs which was confirmed 
independently with MC (Fig. 23A, B). VCAM1 function has been mostly characterized in 
endothelial cells where it facilitates binding of immune cells and can promote their 
extravasation203. Interestingly, Vcam1 was not significantly zonated in KCs of healthy liver 
(Fig. 23C), suggesting its upregulation/zonation was a response to the perturbation of 
introducing metastases. In LECs it has been previously described that Vcam1 expression in 
upregulated during metastasis204. Not much information about the function of Vcam1 in KCs 
has been revealed yet, however, a study by Okada et al. showed that VCAM1 mediates 
crosstalk between KCs and lymphocytes, which in return leads to activation of KCs124.  
 

Figure 23: Analysis of zonated gene expression in KCs. Boxplots of Vcam1 of A) spatially ordered spheres 

from sphere-seq data (n = L1-L3: 115, L4: 206, L5: 379, L6: 387, L7: 182, L8-L10: 26 spheres across 9 samples), 

B) spatial areas from MC data (n = pericentral 89, periportal 66 areas across 4 samples) and C) spatially grouped 

spheres from sphere-seq data of untreated murine liver (n = pericentral: 67, periportal: 74 spheres across 1 

sample). The middle line represents the median; upper and lower line are the first and third quartile (25th and 75th 

percentiles); the upper and lower whiskers extend to 1.5 * the distance between first and third quartile; dots outside 

of the whiskers are considered outliers. For A and B, a negative binomial generalized log-linear model was applied 

for statistical analysis; p-values (Benjamin-Hochberg adjusted) < 0.05 were considered significant (*** < 0.001, ** 
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< 0.005, * < 0.05). For C a non-parametric Wilcoxon signed-rank test was applied (*** < 0,001, not significant > 

0.05). Black dots represent individual spheres (A and C) and individual manually drawn areas (B).  

Therefore, we wanted to further investigate L-R interactions between KCs and lymphocytes 
(B and T cells) for both periportal and pericentral areas. We grouped spheres from pericentral 
(ZC = 0-05) and periportal (ZC = 0.51-1) areas and performed separate L-R interaction 
analyses using the CellPhonenDB92 algorithm. This algorithm uses gene expression and cell 
type cluster information to predict L-R interactions between two cell types by comparing their 
expression to a database of know interactions. We could find many interactions that were 
spatially restricted to or enriched in pericentral or periportal areas (Fig. 24A, B). We could 
verify the zonated expression of some ligands and receptors by MC (Fig. 24C). The analysis 
unveiled a periportally enriched L-R interaction between KC-expressing ligands Vcam1 and 
various integrin complex receptors on B and T cells ("9!1, "4!7, and "4!1) (Fig. 24A-C). 
Integrins on T cells are adhesion molecules that help T cells to adhere to the vessel wall205,206. 
The upregulation of these interactions periportally indicated that KCs might promote 
lymphocyte recruitment within this zone. This matched with the periportally enriched Ccl3|Ccr5 
interaction of KCs and T cells because CCR5 is reportedly involved in T cell recruitment during 
acute liver inflammation205,206.  
 

Figure 24: L-R interactions analysis comparing pericentral and periportal areas. A) Predicted L-R interactions 

of KCs and T cells comparing interaction scores from pericentral and periportal grouped spheres (n = 9 samples). 

Interaction scores were generated with CellPhoneDB with a permutation test to calculate p-values. Interactions 

explained in the text are highlighted with a red square. B) Same as for A, but KCs and B cells. C) Representative 

MC image of indicated L-R genes. DAPI stain (white) is overlayed by gene expression in colors. Scale bars are 
shown in the bottom left corner. 

All in all, these results suggested the importance of Vcam1 in periportal KCs to archive 
increased lymphocyte recruitment. Through the periportal blood flow, KCs and lymphocytes 
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encounter each other periportally for the first time and therefore it is important to have strong 
recruitment there.  

8.6 Spheres could be grouped into areas proximal and distal to metastatic 
sites to uncover spatially restricted differences  

 
We next wanted to analyze the spatial impact of metastatic cells and therefore we grouped 
spheres into spheres containing metastatic cells, which we called ‘proximal’, and spheres 
lacking metastatic cells, which we called ‘distal’ to metastases (Fig. 25A, B). For this analysis 
we only considered three CRC injected mouse liver samples. They showed visible metastasis 
within the liver tissue and we could analyze at least 20 metastatic cells within each of these 
three samples (Fig. 25C, D). There were more spheres from distal areas (Fig. 25E) which 
could be due to a higher abundance of non-metastatic tissue within the liver and/or the lower 
efficiency to isolate and capture metastatic cells as we have also seen in conventional scRNA-
seq experiment. We also inspected a high variability in the number of metastatic cells per 
sphere (Fig. 25F), which could be due to the location of spheres either from within a metastasis 
or from the border region or due to the technical constraints to isolate metastatic cells. To 
account for that, we grouped all spheres with metastatic cells to analyze spatial differences in 
cell type abundance and L-R interactions to distal grouped spheres.   
 

Figure 25: Grouping of spheres into proximal and distal areas to micro-metastatic sites based on the 
presence/absence of metastatic cells.  A) Schematic drawing of the reconstruction approach. Created 

with BioRender.com. B) UMAP of cells between distal (left) and proximal (right) spheres (n = 3 samples). Cells are 

colored by their annotated cell types. C) Barplot comparing the number of metastatic cells in different samples (n 

= 9 samples). D) Representative photographic image of a mouse liver with visible metastasis. E) Barplot comparing 

the sphere counts between distal and proximal areas (n = distal: 332, proximal 54 spheres across 3 samples). F) 
Barplot comparing metastatic cell counts in proximal spheres (n =54 spheres across 3 samples).    

After grouping spheres into proximal and distal areas, we first wanted to determine differences 
in cell type abundances. Differential abundance analysis of broadly annotated cell clusters 
revealed a significant enrichment of macrophages/monocytes in proximal areas, while in distal 
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areas KCs and LECs were significantly enriched (Fig. 26A, B). We again used MC to validate 
these findings. To this end, we pooled CV and PV areas as defined in Fig. 21 as distal, and 
metastatic areas as proximal spatial regions. We saw similar trends in differential cell-type 
abundances in sphere-seq and MC, highlighting that sphere-seq conscientiously recapitulated 
real cell-type proportions (Fig. 26A, C, D). Monocytes/macrophages could be annotated into 
three subtypes, Ly6c+ macrophages expressing Ly6c2, C1q+ macrophages expressing C1qc, 
and patrolling monocytes expressing Spn (Fig. 26E). We saw a trend of enrichment C1q+ 
macrophages in proximal metastatic areas (Fig. 26F),  a subtype has been previously 
identified to have anti-inflammatory characteristics129. This could be confirmed by MC where 
we did DGE analysis between macrophages/monocytes from proximal and distal areas and 
we could uncover a significant enrichment of complement genes C1qc and C1qb in proximal 
areas (Fig. 26G). Tgfbi (TGF beta-induced), which was also enriched in 
macrophages/monocytes from proximal areas, is known to be involved in 
immunosuppression207–210, matching our hypothesis that there is an enrichment of anti-
inflammatory macrophages in proximal sites.  
 

Figure 26: Cell type abundance analysis of metastatic-proximal compared to -distal grouped spheres. A) 
Volcano plot showing the results of a differential abundance analysis (DAA) of cell types between metastatic areas 

from sphere-seq (left, n = 3 samples) and Molecular Cartography (right, n = distal: 71, proximal: 11 areas across 2 

samples). Colored dots represent significant cell type enrichment. B) Boxplots of selected cell types comparing 

distal and proximal groups from sphere-seq data (n = 3 samples). Each dot represents a sample. C) Boxplots of 

selected cell types comparing distal and proximal areas from MC data (n = distal: 71, proximal: 11 areas across 2 
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samples). Dots represent spatial areas. D) Representative image of MC data of proximal and distal areas. DAPI 

stain (white) is overlayed by cell type annotation in colors. Scale bar is shown in the top left corner. E) Feature 

UMAP plots showing marker gene expression of different macrophage/monocyte subtypes (n = 3 samples). F) 
Boxplots of macrophage/monocyte subtypes comparing distal and proximal groups from sphere-seq data (n = 3 

samples). Each dot represents a sample. G) Volcano plot showing DEGs from distal and proximal areas of MC 

data. Colored dots represent significant enrichment. Bold gene names highlight complement genes indicative of 

C1q+ macrophages. For A, B, C, F, and G, a negative binomial generalized log-linear model was applied for 

statistical testing; p-values (Benjamin-Hochberg adjusted) < 0.05 were considered significant. For B, C and F, the 

middle line represents the median; upper and lower line are the first and third quartile (25th and 75th percentiles); 

the upper and lower whiskers extend to 1.5 * the distance between first and third quartile; dots outside of the 

whiskers are considered outliers.       

C1q+ macrophages have further been described to be involved in T cell exhaustion127. 
Therefore, we wanted to take a closer look into the cellular crosstalk of 
macrophages/monocytes and T cells by analyzing cell-cell co-localizations in MC imaging data 
and L-R interactions in sphere-seq data between these two cell types. We decided to only 
consider broadly annotated cell types, i.e., macrophages/monocytes and T cells because i) 
the limited number of genes within the MC panel did not allow us to properly divide clusters 
into sub-cell types and ii) L-R interaction analysis on the sphere-seq data likely has a higher 
statistical power when using larger clusters of cells. The co-localization analysis revealed 
significantly more co-localizations between macrophages/monocytes and T cells in proximal 
compared to distal areas (Fig. 27A, B). To identify potential interactions driving this 
phenomenon we performed L-R interaction analysis between these two cell types comparing 
proximal and distal areas. On the proximal side, we found an enrichment of Secreted 
Phosphoprotein 1 (Spp1), Fibronectin-1 (Fn1), and Vcam1 ligands derived from 
macrophages/monocytes interacting with various integrin complexes on T cells (Fig. 27C). 
Enrichment within proximal areas of some of these ligands and receptors could be validated 
by MC (Fig. 27D). The interaction involving Vcam1 is most likely involved in adhesive reactions 
of macrophages/monocytes and T cells. SPP1 and FN1 ligands derived from 
macrophages/monocytes, here found to be enriched in proximal areas, were reported to be 
involved in various cancers and correlate with a poor prognosis211–213. FN1 reportedly 
correlates with anti-inflammatory macrophage infiltration212 and SPP1 was reported to be 
involved in T cell suppression within the TME214. Interactions of both of these ligands with 
integrins were found to be increased in CRC and might have an impact on tumor 
progression215. Additionally, we found the interaction Cxcl10|Cxcr3 to be proximally enriched, 
which is well-known for mediating the recruitment of effector T cells216. In primary CRC this 
interaction between C1q+ macrophages and other lymphocytes is increased215, matching our 
results. This shows that with sphere-seq we can dissect small spatial niches within complex 
tissues and identify locally enriched L-R interactions that might be important in metastatic 
progression or suppression. 
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Figure 27: Analysis of cellular crosstalk of macrophages/monocytes and T cells between different 
metastatic areas. A) Cell colocalization analysis from MC data comparing the amounts of colocalizations from 

distal and proximal areas (n = 2 samples). B) Representative MC image showing macrophages/monocytes and T 

cells. DAPI stain (white) is overlayed with colors representing the cell types. Scale bars are shown in the top left 

corner. C) Predicted L-R interactions of macrophages/monocytes and T cells comparing interaction scores of distal 

and proximal grouped spheres (n = 3 samples combined). Interaction scores were generated with CellPhoneDB 

with a permutation test to calculate p-values. Interactions explained in the text are highlighted with a red square. 

D) Representative MC image of L-R genes. DAPI stain (white) is overlayed by gene expression in colors. Scale 

bars are shown in the bottom left corner.  

8.7  Application of sphere-seq to other tissues and species  
 
After establishing the sphere-seq protocol we wanted to test its applicability in other tissues. 
Therefore, we generated proof-of-concept datasets from the healthy murine spleen and 
Crohn’s disease biopsy samples.  
 

8.7.1 Application to healthy murine spleen  
 
We first applied the sphere-seq protocol to healthy murine spleen where we wanted to dissect 
different immunological zones which can be identified by an enrichment of distinct immune 
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cell types. The T cell zone is enriched for T cell subsets, the B follicle for B cells and the 
marginal zone (MZ) contains other immune cells like macrophages217,218. Sphere-seq was 
performed gating for sphere sizes between 200 and 400 µm (Fig. 28A) and cells were 
annotated based on marker genes from Medaglia et al.59 (Fig. 28C-D). Cells were then 
allocated to their sphere of origin to analyze different cell type and immunological zone 
proportions (Fig. 28E). However, there were almost no spheres that had their origin in a 
specific zone only, spheres had mixtures of cells all across the three zones. We speculate that 
reducing the sphere size to 100-200 µm could increase the spatial resolution. Another 
approach could be the incubation of spheres with surface antibodies against T or B cell 
markers respectively before sorting. This could help to enrich for spheres from T or B cell 
areas exclusively.  
 

Figure 28: Sphere-seq of healthy murine spleen. A) Uniform manifold approximation and projection (UMAP) 

from all spleen sphere-seq samples combined (n = 2). Cells are colored based on their cell type. B) Dotplot of cell 

type marker expression annotated clusters (n = 2 samples). C) Barplot showing different proportions of cell types 

per sphere; only spheres with at least 5 cells (n = 83 spheres across 2 samples).  

8.7.2 Modified sphere-seq protocol with sequential filtering and manual picking – 
Example of Crohn’s disease biopsies  

 
The large fragment biosorter is an expensive machine with unique applications and therefore 
may not be accessible to many researchers. Additionally, sometimes it is not possible to use 
it for patient-derived biopsy samples due to biosafety constraints. We, therefore, wanted to 
develop an adaptation of the sphere-seq workflow that can be used in the absence of a 
biosorter. This protocol includes size-dependent filtering of a defined range, for example 
between 300 and 500 µm followed by manual picking using a stereo microscope (Fig. 29A). 
We used this approach to generate sphere-seq data from two Crohn’s disease (CD) patient 
biopsies. CD is an inflammatory bowel disease (IBD) characterized by chronic inflammation 
within so-called lesions within the gastrointestinal (GI) tract219,220.  
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We processed samples from two patients from who we received tissues from the ileocecal 
valve, which is the part where the small intestine and the colon are connected. We received 
two samples each: from the inflamed part and an adjacent non-inflamed part. Single cells 
could be clustered and annotated using known marker genes from previously published 
studies in CD and Ulcerative colitis (UC)190–192 (Fig. 29B, C). Differences in cell type 
proportions between inflamed and non-inflamed biopsies could be determined, with larger 
proportions of fibroblasts and macrophages in inflamed tissues (Fig. 29D), which is in line with 
a recent scRNA-seq study by Martin et al. that revealed, for example, an enrichment of 
inflamed macrophages and activated fibroblasts in inflamed compared to non-inflamed tissues 
from CD patients190. We then decided to only consider spheres from the inflamed tissues to 
analyze different niches within inflamed sites. Like for murine samples, spheres with less than 
5 cells were excluded. We could then determine cell type proportions within different spheres 
(Fig. 29E). A significant inter-patient heterogeneity was apparent between the two patients 
which could be due to different stages of CD (one might have been more inflamed than the 
other) or different areas where the tissue was taken from, since a biopsy represents is a very 
small part of a lesion. It is therefore important to have a large pool of patient samples to make 
clear conclusions.  

Figure 29: Sphere-seq of Crohn’s disease patient biopsies. A) Schematic illustration of workflow that was used 

for manual picking of spheres instead of sorting with the biosorter. Created with BioRender.com. B) UMAP 

visualization of cell clusters, showing inflamed and non-inflamed biopsies side-by-side (n = inflamed: 78, non-

inflamed: 28 spheres across 2 samples). Cells are colored based on their cell type annotation. C) Dotplot of cell 
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type maker genes in different cell type clusters (n = inflamed: 78, non-inflamed: 28 spheres across 2 samples). D) 
Barplot comparing overall cell type proportions from inflamed and non-inflamed tissue samples (n = inflamed: 78, 

non-inflamed: 28 spheres across 2 samples). E) Barplot showing different cell type proportions per sphere from 

only the inflamed biopsies; spheres with ≥ 5 cells (n = Patient 1: 45, Patient 2: 33 spheres).  

8.7.3 Sphere-seq could be used to investigate differences in fibrotic and non-
fibrotic Crohn’s disease spatial areas  

 
Even though the CD dataset is small, and any results from its analysis should therefore be 
considered preliminary, we wanted to test if we would still be able to analyze spatial 
differences within an inflamed CD biopsy. We decided to focus on the sample from patient 1 
because it seemed to be that its cell type proportions indicated a higher degree of inflammation 
(Fig. 30A). We assessed different cell types and their DEGs and uncovered a population of 
fibroblasts that highly expressed S100A4, which has been previously identified to be enriched 
in activated fibroblasts in CD fibrosis192. To study spatial heterogeneity between fibrotic and 
non-fibrotic tissue areas within one biopsy we defined spheres with fibroblasts as ‘fibrotic’ and 
spheres without fibroblasts as ‘non-fibrotic’ (Fig. 30B). Fibrotic areas showed higher 
abundances of endothelial cells and plasma cells (Fig. 30C, D). We, therefore, wanted to study 
differences in endothelial cells from fibrotic and non-fibrotic areas further and we found, for 
example, ACKR1 to be enriched in fibrotic areas (Fig. 30E). Martin et al. found an enrichment 
of ACKR1 in endothelial cells from inflamed CD biopsies, which correlated with the presence 
of activated fibroblasts190. They additionally found CCL14 to be expressed in ACKR1+ 
fibroblasts190, a gene we also found to be enriched in fibrosis-associated endothelial cells (Fig. 
30E), strengthening our hypothesis that endothelial cells from fibrotic areas were of the 
ACKR1+ phenotype as described by Martin et al.190. ACKR1 (Atypical Chemokine Receptor) 
also known as Duffy antigen receptor for chemokines (DARC) is involved in chemokine 
transport and thereby immune cell recruitment221. Therefore, we wanted to analyze the 
crosstalk of immune cells and endothelial cells, focusing on T cells, by doing an L-R interaction 
analysis92 and comparing results from fibrotic and non-fibrotic spheres (Fig. 30F). The 
interaction with the highest interaction score in fibrotic areas was between the ligand CCL5 on 
T cells and the receptor ACKR1 on endothelial cells. ACKR1 is involved in the transport of 
chemokines like CCL5 from one compartment to another which leads to immune cell 
recruitment221. We could therefore speculate that the increased interaction of CCL5 
expressing T cells with ACKR1 expressing endothelial cells leads to increased recruitment of 
immune cells by ACKR1 in fibrotic areas. This hypothesis was strengthened by the increased 
prediction of CCL20|CCR6 in fibrotic areas, which is an interaction involved in inflammatory 
conditions to chemoattract various immune cells like effector and memory T cells222.  
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Figure 30: Sphere-seq of Crohn’s disease patient 1 biopsy to investigate differences in fibrotic and non-
fibrotic tissue areas. A) Barplot showing different cell type proportions per sphere; spheres with ≥ 5 cells (n = 33 

spheres). B) UMAP visualization of cell clusters between spheres grouped into fibrotic and non-fibrotic spatial areas 

(n = fibrotic: 13, non-fibrotic: 20 spheres across 1 sample). Cells are colored based on their cell type annotation. 

C) Barplot comparing cell type proportions from grouped spheres of fibrotic and non-fibrotic areas (n = fibrotic: 13, 

non-fibrotic: 20 spheres across 1 sample). D) Barplot comparing endothelial cell type proportions from grouped 

spheres of fibrotic and non-fibrotic areas (n = fibrotic: 13, non-fibrotic: 20 spheres across 1 sample). E) Dotplot 

showing DEGs between endothelial cells of fibrotic and non-fibrotic grouped spheres (n = fibrotic: 11, non-fibrotic: 

10 spheres across 1 sample). F) Predicted L-R interactions of T and endothelial cells comparing interaction scores 

in fibrotic and non-fibrotic grouped spheres) (n = 1 sample). Interaction scores were generated with CellPhoneDB 

with a permutation test to calculate p-values. Interactions explained in the text are highlighted with a red square.    

We could show that with sphere-seq we could generate good quality data from patient biopsies 
which allowed us to determine spatially restricted differences in cell type abundance, gene 
expression, and L-R interactions. Of course, it has to be noted, that these results are highly 
preliminary and have to be confirmed with a larger patient cohort.  
 

8.8 Comparison of sphere-seq to Visium  
 
To benchmark sphere-seq against one of the most widely used ST methods, we wanted to 
compare it to Visium27,45. We generated Visium libraries from two metastatic liver samples 
from which we also performed sphere-seq. In situ permeabilization for Visium, which leads to 
mRNA release and capture, has to be optimized for heterogenous tissue compositions. For 
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example, in metastatic liver, areas of metastasis have different tissue densities than the 
healthy parts. However, only one permeabilization time can be used for one tissue slice; one 
has to find a compromise to match the needs of all tissue areas. This can lead to uneven data 
quality which was far more consistent in sphere-seq experiments as we showed in a 
comparison of gene feature counts between different spatial regions in Visium and sphere-
seq data (Fig. 30A-C). The biggest advantage of sphere-seq compared to array-based ST is 
single-cell resolution. Visium data needs deconvolution procedures to split spots into single 
cells. In our data this exposed a clear bias towards the bigger cell type, hepatocytes (Fig. 
30D), reducing the ability to analyze spatial features of smaller cells like LECs. We also wanted 
to test the zonated gene expression we identified in sphere-seq with Visium. Unfortunately, 
we could not detect reliable gene expression of Plpp1, Galnt15, and Vcam1 in our Visium 
data. Therefore, we used publicly available Visium datasets from Guilliams et al. from healthy 
and non-alcoholic fatty liver disease (NAFLD) livers98. This revealed zonation of all three 
genes (Fig. 30E, F), with Vcam1 expression being increased and more zonated in NAFLD, 
aligning with its function in inflammation204. However, because we were lacking single-cell 
resolution in Visium data, we could not determine whether gene expression came from KCs, 
LECs or other cell types. In sum, this comparison with Visium showed that sphere-seq is 
comparatively more suited to studying zonated gene expression in cell types smaller than 
hepatocytes.  
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Figure 30: Comparison of sphere-seq with Visium. A) H&E staining of mouse metastatic liver samples (n = 2). 

Metastatic areas are dark purple and non-metastatic areas are light purple. B) Amounts of gene features in 

individual spots projected on H&E staining from A (n = 2 samples). C) Barplot showing a comparison of gene counts 

from different spatial areas of Visium and sphere-seq data (n = 2 each). D) Piechart showing the average 

proportions of different cell types after deconvolution of Visium spots. Spots were assigned to individual cell types 

if at least 75 % of genes were assigned to a specific cell type; the rest of the spots were considered to be mixed (n 

= 2 samples). E) Dotplot of average expression of selected genes in publicly available data of Visium experiments 

from healthy mouse liver98. F) Same as E but from NAFLD mouse liver Visium data98.  

8.9 Potential biases introduced by sphere size  
 
We wanted to determine if any biases were introduced by different sphere size and cell counts 
per sphere. We first analyzed if there were overall differences between spatial areas (Fig. 31A, 
B). There was no significant difference in sphere sizes between spatial areas. Additionally, for 
metastatic proximal and distal spheres there was no significant difference in cell counts per 
sphere. Periportal spheres had slightly less cells compared to pericentral spheres. However, 
we can overall conclude that there is no high variability between grouped sphere conditions. 
We then wanted to investigate if our zonated gene expression analysis in KCs or LECs was 
influenced by different size ranges or cell counts. Therefore, we analyzed DEGs between 
LECs (Fig. 31C) and KCs (Fig. 31D) taking the lobule layers as covariates into account. We 
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could not find any significant differences in gene expression. Moreover, we did DEGs of LECs 
from spatially ordered spheres of objects from different technical cutoffs and compared genes 
that were described before in Fig. 22 (Fig. 31E). We could detect the same genes with slightly 
different log Fold Changes, but all genes were significantly differentially expressed in all 
technical subgroups. We, furthermore, could not find any differences in cell type abundances 
between technical cutoffs (Fig. 31F). Additionally, predicted L-R interactions of separate 
analyses did not show much variability (Fig. 31G).   
All in all, we can conclude that a sphere size of 200-450 µm and a cell count cut-off of 5 
cells/sphere was appropriate to capture spatial heterogeneity within the murine metastatic 
liver. However, this should be tested for different tissues and sample types.  
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Figure 31: Influence of sphere size and cell counts per sphere. A) Boxplot comparing sphere size and cell 

counts between spheres from pericentral and periportal spheres (n = n = pericentral: 829, periportal: 714 spheres 

across 9 samples). B) Boxplot comparing sphere size and cell counts between distal and proximal spheres (n = 

distal: 332, proximal:54 spheres across 3 samples). C) DEGs from LECs comparing different technical cutoffs [211-

325 (n=495 spheres) and 326-457 µm (n=814 spheres); 5 cells/sphere (n=1543 spheres) and 20 cells/sphere 

(n=800 spheres)]. D) DEGs from KCs comparing different technical cutoffs [211-325 (n=442 spheres) and 326-457 

µm (n=778 spheres); 5 cells/sphere (n=794 spheres) and 20 cells/sphere (n=1436)]. E) DEGs in LECs of spatially 
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ordered spheres between different cutoffs, left different sizes and right different cell count [n = 211-325 (n=495 

spheres), 326-457 µm (n=814 spheres), 5 cells/sphere (n=1543 spheres), 20 cells/sphere (n=800 spheres)]. 

Colored dots represent significantly enriched genes; red, enriched in pericentral zones; yellow, enriched in 

periportal zones. Gene labels indicate the same genes between analysis. Dots from 326-457 µm and 20 

cells/sphere analysis are highlighted with black borders around dots. Dots from the same gene between analysis 

of technical cutoffs are connected with lines. F) Predicted ligand-receptor (L-R) interactions between KCs and T 

cells in pericentral or periportal zones (n=9 samples). Interaction scores were calculated from sphere-seq data of 

different technical cutoffs by CellPhoneDB, which uses a permutation test to generate p-values indicating 

significantly enriched L-R interactions. Interaction scores from spheres of different technical cutoffs are highlighted 

by different colors surrounding the bars (red: 211-325 µm and 5 cells/sphere, black: 326-457 µm and 20 

cells/sphere, yellow: 211-457 µm). G) UMAP visualization of annotated cell types comparing different technical 

cutoffs. For A and B, dots represent individual spheres; the middle line represents the median; upper and lower 

line are the first and third quartile (25th and 75th percentiles); the upper and lower whiskers extend to 1.5 * the 

distance between first and third quartile; dots outside of the whiskers are considered outliers; p-values are analyzed 

using a non-parametric Wilcoxon signed-rank test was applied (not significant > 0.05). For C, D and E a negative 

binomial generalized log-linear model was applied for statistical analysis with taking lobule layers as covariates into 

account in C and D, p-values (Benjamin-Hochberg adjusted) < 0.05 were considered as significant.  
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9 Discussion  
 
ST is a fast-developing field and even though there is constant improvement in technology 
development there are still many limitations scientists have to face when considering which 
ST technology best fits their biological question. We developed sphere-seq, a method that 
analyses small cellular niches at single-cell resolution. The spatial location of these niches is 
reconstructed using either landmark gene expression signatures or cell type abundances. We 
applied sphere-seq to study spatial features of the CRC metastasis-bearing mouse liver and 
we could identify previously uncharacterized zonated gene expression in LECs and KCs as 
well as differences in cell type abundances between areas, which were distal or proximal to 
micro-metastatic sites. We further found spatially restricted L-R interaction pairs. Furthermore, 
we applied sphere-seq to other tissues and could demonstrate its broad applicability. 
Comparison with the most widely used ST platform, Visium, highlighted some of the strengths 
of sphere-seq. However, as with every other ST method, there are also limitations with sphere-
seq. To get a clear picture, these strengths and weaknesses will be discussed by comparing 
sphere-seq to other ST technologies of different categories. The integration of spatial 
information we gained from sphere-seq with L-R interaction analysis also bears some 
advantages that will be addressed. Application of sphere-seq to mouse metastatic liver helped 
us to get new biological insights into liver zonation and metastasis formation. These new 
insights will be described together with an outlook of experiments to test these further. Options 
for enhancement and improvements of the sphere-seq approach will be discusses at the end 
of this section.  
 

9.1 Strength of sphere-seq  
 
Sphere-seq falls under the umbrella of mRNA-capture-based partial dissociation methods64–

66, however we extended the approach to single cell resolution and larger cellular communities. 
Therefore, sphere-seq does not rely computational deconvolution and it enables the analysis 
of larger, still spatially relevant, cellular subunits in three dimensions.   
When comparing to most imaging-based approaches like SeqFISH+33 and MERFISH31,32, 
which are based on mRNA probe hybridization and visualization, mRNA capture is 
unsupervised and no prior knowledge is needed for gene panel design, therefore, also 
previously unknown gene expression can be identified. Of course, there are also unsupervised 
imaging-based ST methods that are based on in situ sequencing like STARmap36 or 
FISSEQ37, but these technologies depend on sophisticated technologies like high-resolution 
microscopes that require certain expertise which is not always available for a broad scientific 
community. This is also true for array-based methods like DBiT-seq51 that uses complicated 
microfluidic channels to introduce spatial barcodes, or illumination-based ROI ST methods like 
ZipSeq61, Light-seq62, or SPACECAT60 that require microscopic devices. Sphere-seq also 
uses a specific machine, the large fragment biosorter, however, we also adapted the protocol 
to work without the sorter. Spheres can be size selected by sequential filtering through size-
dependent strainers following manual picking. This approach is tedious and takes more time, 
but it makes sphere-seq available to a broader scientific community. For very small and 
precious samples this strategy can also be used to make sure not to lose any tissue parts. All 
the other reagents used for sphere-seq like the lipid hashing anchors, and sphere BCs are 
commercially available and scRNA-seq approaches are often available on an institute level 
within facilities. However, if such facilities are not available, single cells could be captured with 
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PIP-seq, an approach recently published as a preprint, which uses a microfluidics-free capture 
approach using standard laboratory tools generating bead-single cell droplet encapsulations 
by solely vortexing223.    
Unlike imaging-based and array-based mRNA-capture technologies, sphere-seq does not 
require tissue slices. These slices are most of the time only 10 µm in thickness and they, 
therefore, sometimes do not even capture entire cells. Sphere-seq allows the analysis of 
niches in three dimensions and spheres can be sampled in a random or targeted process from 
a whole tissue sample instead of handpicking one flat area within a large tissue block. Tissue 
fixation and embedding for slice-based methods are sometimes difficult if tissue samples are 
small or have shapes that do not properly fit the capture area. One example is punch biopsies, 
for example in dermatology, for which a metal cylinder is introduced into a patient’s tissue of 
interest removing a small piece for pathological diagnostics224. The size of these biopsies is 
usually approximately 2-4 mm in diameter224. It, therefore, can be challenging to properly 
embed these small and fragile tissues to archive a certain directory within a tissue block for 
proper slicing. Additionally, for example in Visium the capture area is 6.5x6.5 mm and 
therefore most spots would be uncovered from the punch biopsy tissue. Sphere-seq could 
process punch biopsies easier because it does not depend on a specific sample size and 
shape. Additionally, in comparison the Visium sphere-seq does not rely on tissue 
permeabilization allowing to capture mRNAs from different spatial areas at similar rates, as 
we have shown.   
The biggest advantage of sphere-seq is single-cell resolution compared to other 
techniques27,45,64–66. This could be highlighted on the example of zonated Vcam1 gene 
expression in KCs. We tested Vcam1 in Visum datasets of healthy and NAFLD98 and found 
zonated gene expression. However, due to the lack of single-cell resolution, it was difficult to 
know if Vcam1 was coming from LECs or KCs. Another phenomenon, due to the nature of 
Visium to capture more than one cell is a bias towards larger cells like hepatocytes, highlighted 
in the deconvolution of our Visium data where 87 % of spots had at least 75 % of genes 
allocated to hepatocytes. Sphere-seq shows higher amounts of little cells like LECs and 
immune cells, which allows us to analyze the spatial heterogeneity of these small cells in a 
highly confident manner. Many imaging-based methods also have single-cell resolution, even 
sub-cellular resolution in most cases, like HybISS38, ExSeq41, or MERFISH31. However, it is 
often challenging to do cell segmentation, especially in very dense tissue areas.  
Another advantage of sphere-seq is that it enables the analysis of inter-spatial neighborhood 
differences. Other ROI based methods only allow the analysis of a couple of ROIs (for example 
up to three in SPACECAT60, up to eight in ZipSeq61), and thereby cells can only be subdivided 
into broad neighborhoods, while sphere-seq potentially allows subdividing broad 
neighborhoods because of the spheres-BC.  
Sphere-seq is based on scRNA-seq and therefore, it has the advantage, that computational 
tools that were developed for scRNA-seq analysis can be used for its analysis too.  
Taking all of this together, sphere-seq has many advantages over other ST technologies, with 
single-cell resolution, transcriptome-wide interrogation, high throughput and data analysis 
simplicity as some of the strongest.  
 

9.2 Limitations of sphere-seq 
 
Like any other ST technology, sphere-seq has limitations and weaknesses. First of all, the 
method is sparse, during the sphere-seq experimental procedure many cells get lost and the 
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starting amount is often small. We acquire single-cell transcriptomes of a fraction of cells per 
sphere; around 0.4-1.2 %. We try to circumvent this problem by grouping spheres from 
different spatial regions and doing in-depth analysis on grouped spheres. As demonstrated, 
the results are consistent when comparing a cutoff of 5 and 20 cells per sphere. 
There are also certain cell type biases introduced with sphere-seq. For example, in liver 
samples, we mainly lose hepatocytes, cholangiocytes, metastatic cells and fibroblasts, which 
is, however, in line with results from conventional single-cell RNA-seq experiments due to an 
ex vivo digestion approach. Therefore, we can conclude that this is not a limitation introduced 
specifically by sphere-seq, but a general pitfall when preparing single cells from liver tissues. 
There are also certain biases introduced by the single-cell capture method, for example, 
between the 10X Genomics and BD Rhapsody single-cell capture approach. Fragile cells like 
granulocytes, for example, eosinophils, cannot be properly captured in 10X Genomics, while 
in BD Rhapsody, which is a microwell-based approach and therefore more gentle because 
there are no microfluidic pressures involved, can capture these fragile cells in higher 
quantities225. Because sphere-seq utilizes aspects of conventional scRNA-seq protocols, the 
single-cell capture platform can be changed depending on the cell types of interest.  
Another disadvantage of sphere-seq is that it only works for fresh tissues, which is especially 
detrimental for patient biopsy samples because it takes some time from the surgery until the 
sample arrives in the lab, because there are usually some diagnostic steps happening in-
between. This also makes sphere-seq disadvantageous over other methods that can use 
samples from biobanks. Biobanks store tissues sometimes fresh frozen, but more often 
samples are formalin-fixed paraffin-embedded (FFPE). Fresh frozen tissues can be used for 
many other ST technologies that require tissue sections like Visium27,45, FISSEQ+37 or 
STARmap36, to only name a few. In addition, new methods are being developed that permit 
the application of ST to FFPE fixed tissues52. Sphere-seq cannot be used for FFPE samples. 
Fresh frozen tissues cannot be use for scRNA-seq, however they can be used for snRNA-seq 
by extracting nuclei by using lysing reagents and mechanical force226. It might be possible to 
adapt the sphere-seq protocol for snRNA-seq (will be discussed further in the section of 
sphere-seq optimizations/enhancements).  
Sphere-seq is mostly a random sampling process and does not consider microanatomical 
structure when sorting spheres. This could lead to having individual spheres that cover 
multiple spatial niches as shown in the example of sphere-seq on the spleen. Other mRNA-
capture-based ROI ST methods are better in this by selecting ROIs by visually looking and 
choosing micro-anatomical structures under a microscope.  
Sphere-seq has a disadvantage in detecting rare cell types that are sensitive to single-cell 
dissociation. Methods like Light-seq for example, which includes in situ RT and spatial 
barcoding without the need for single-cell dissociation can capture rare cells - as has been 
shown by the analysis of difficult-to-isolate dopaminergic amacrine cells (DACs) from the 
retina in the mouse62.  
All in all, sphere-seq has some limitations mostly due to the need for fresh samples and due 
to the loss of cells during the experimental procedure.  
 

9.3  Sphere-seq and L-R interaction analysis  
 
Approaches that integrate spatial information with L-R interaction prediction often take gene 
expression from Visium spots into account, and therefore enrichment of L-R interactions from 
one spatial area to another can be analyzed, but it cannot properly be determined which cell 
types are involved in the communication, they can only be assumed by deconvolution analysis. 
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Sphere-seq provides single-cell identities and information about spatial areas and is therefore 
superior.   
L-R prediction tools usually result in extensive lists of many L-R pairs and it is difficult to narrow 
down the most important ones to do further functional testing. Sphere-seq can help with that 
by identifying spatially most relevant interactions by analyzing differences between spatial 
locations.  
L-R interaction analysis, however, relies on transcriptomics data and this might differ from 
ligand and receptor expression on the protein level which is the biggest limitation of inferring 
L-R interactions from transcriptomics data. In the case of sphere-seq, one could combine it 
with CITE-seq20 or adapt sphere-seq for a plate FACS readout (will be discussed further in the 
sphere-seq enhancements/optimizations section). For validating predicted L-R interactions, 
one could perform colocalization analysis of microscopic images from protein-stains of ligands 
and receptors.  
In general, however, protein expression of ligands and receptors and also their colocalization 
do not mean that these proteins indeed interact, functional validation experiments are needed. 
This can be achieved by inhibiting or knocking out one interacting partner (ligand or receptor) 
and analyzing differences in the phenotype of downstream functions90. In vitro L-R interactions 
could be functionally tested in co-culture experiments by for example transiently 
overexpressing a ligand in one cell type and analyzing the influence of receptor expression on 
the other cell type227. In vivo, conditional cell-type-specific Cre-loxP systems could be used to 
delete the expression of ligands or receptors followed by an analysis of phenotypic and 
downstream signaling effects. In this system, the expression of a bacteriophage cre 
(cyclization recombinase) gene is controlled by a cell-specific promoter and once it is 
activated, Cre catalyzes DNA recombination of two loxP (locus of X-over in P1) sites to for 
example mediate a genetic deletion228 -  in our case this could be the deletion of exons within 
Vcam1 leading to gene inactivation under the control of a KC-specific promotor. There are 
many transgenic mice available with cell type-specific Cre drivers. Drivers within NPC in the 
liver are especially interesting to this Ph.D. work. For example, in LECs, the vascular 
endothelial cadherin Cre driver Cdh5-PAC-CreERT2 was successfully used to knock down C-
X-C chemokine receptor (CXCR)4 and CXCR7228 and in KCs LysM-Cre was successfully used 
to test knockdown of Myd88 in a recent study to determine its importance in KCs for immune 
zonation147.  
The fact that we could identify spatially specific L-R interactions between metastatic-proximal 
and -distal sites between macrophages and T cells motivated us to identify L-R interactions at 
the interface between metastatic cells and LECs in a follow-up study in the laboratory. Thereby 
only cells from proximal areas have been taken into account removing unwanted variation due 
to LECs which are spatially more distant. Uncovered L-R interactions are currently being 
functionally validated using an in vivo CRISPRa (Clustered Regulatory Interspaced Short 
Palindromic Repeats activation) screen targeting and thereby activating ligand and receptor 
genes on LECs in combination with a metastatic seeding system where cancer cells secrete 
lipid-soluble tagged mCherry to label the surrounding cells229; an approach that has been 
optimized to study the interface between metastatic cells and hepatocytes in the laboratory 
(Borrelli et al., in preparation). First the liver is perturbed with the library of ligand and receptor 
target genes generating a so-called mosaic liver. This is followed by an intrasplenic injection 
of CRC organoids that graft and form metastatic sites which secrete mCherry, labeling the 
surrounding cells. The surrounding LECs can then be sorted and enriched guides can be 
identified, which can be interpreted as ligands/receptors that are suspected to play an 
important functional role in the metastatic process.  
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9.4  Biological knowledge gained with sphere-seq and outlook  
 
Comparisons of different spatial areas within the mouse metastatic liver resulted in many 
findings, for example, we uncovered cell type abundances, gene expression, and L-R 
interactions that were spatially restricted. Some of these findings, and strategies and how to 
investigate and test them further will be discussed in more depth within this section.    
Application of sphere-seq to study liver zonation in the metastasis-bearing mouse liver helped 
us to describe zonated gene expression in KCs for the first time to our knowledge. To date, 
zonated gene expression in the liver was described for hepatocytes and LECs, which  acquire 
different metabolic functions depending on where they are within the central-portal 
axis65,104,111,116,141, and HSCs, where a pericentrally zonated gene expression signature 
suggests an involvement in collagen production during centrilobular injury-induced fibrosis230. 
Furthermore, there is immune zonation, particularly of KCs and NKT cells, which is induced 
by environmental signals provided by incoming bacteria and pathogens from the gut when 
mice are weaned147. Thanks to reconstructing the original lobule layer of spheres based on 
gene signatures in LECs, we could now accomplish the analysis of zonated gene expression 
in all kinds of other cell types and while we did not find any significantly zonated gene 
expression in non-tissue resident immune cells, we found a significant zonation of Vcam1 in 
KCs. These results were obtained in a mouse model of liver metastasis and it would be 
interesting to determine Vcam1 zonation in KCs also in other mouse models with perturbed 
livers, for example, NAFLD, hepatitis or HCC to determine if the zonation is a general effect 
or specific for liver metastasis. We analyzed Vcam1 expression in NAFLD Visium data98 and 
found it to be zonated, however, the lack of single-cell resolution did not allow us to confidently 
allocate this zonation to KC only.  
We found predicted L-R interactions between the ligand VCAM1 on KCs and integrins on T 
and B cells to be enriched periportally. It would be interesting to functionally validate this 
interaction by deleting VCAM1 on KCs and determining the effect on T and B cells. They might 
be reduced in number, which could favor liver metastasis formation. One strategy to knock 
down VCAM1 ligand expression on KCs could be the usage of the previously mentioned 
constitutive Cre-loxP system228. The influence on lymphocyte recruitment and metastasis 
formation or progression could then be analyzed. The same approach could be used to 
functionally validate other L-R interactions between KCs and lymphocytes if transgenic mice 
are available.  
The main finding from the comparison of metastasis-distal and -proximal sites was the 
enrichment of C1q+ macrophages within proximal areas, Ly6c+ macrophages and patrolling 
monocytes showed similar ratios between both areas. C1q+ macrophages have been 
proposed to have an anti-inflammatory phenotype231 while Ly6c+ macrophages are 
considered to be pro-inflammatory232. Patrolling monocytes are involved in the removal of 
damaged cells and debris233. A lot is already known about the involvement of C1q+ 
macrophages in T cell exhaustion and cancer progression127. Unfortunately, we could not 
differentiate T cells into different subtypes for L-R interaction analysis, because cell numbers 
were too sparse. However, we could try to characterize T cells within metastatic proximal 
areas better by either increasing sample size and thereby T cell numbers or by using imaging-
based approaches to label exhausted T cells which are characterized by expression of for 
example Pd-1 or Tigit234.  
Our L-R interaction analysis between distal and proximal sites identified high proximal 
enrichment of interactions that include Spp1 and Fn1 ligand expression on 
macrophages/monocytes. Both were associated with potential CRC tumor progression215. 
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Recently, there is a high research interest in SPP1 expressing macrophages in CRC215,235, 
hepatocellular carcinoma (HCC), and liver metastasis160. SPP1+ macrophages were found to 
be involved in angiogenesis236 and hypoxia235. Qi et al. found that SPP1+ macrophages are 
interacting with FAP-expressing fibroblasts in CRC which limits T cell infiltration and therefore 
a patient’s responsiveness to immunotherapy235. In addition, it has been proposed that SPP1 
directly exerts inhibitory function on T cells within the TME214. The direct influence of SPP1 
ligand expression of macrophages on T cells could be tested using a co-culture system of 
macrophages and T cells in vitro237. SPP1 overexpression could be induced in vitro in bone 
marrow-derived macrophages, using for example a transient lipofectamine transfections227,238 
and the influence on T cell exhaustion could be assessed. Alternatively recombinant SPP1 
could be exposed to T cells. These assays could likewise be done with FN1 or other ligands 
which were found to be enriched in interactions with T cells within proximal metastatic areas 
to study the functional influence of these ligands on T cells.  
 

9.5  Future applications of sphere-seq 
 
Our preliminary results on CD biopsy samples show a great potential of sphere-seq to discover 
spatial heterogeneity within inflamed tissues. Fibrosis formation and progression in CD are 
especially poorly understood and there is no anti-fibrotic therapy available at the moment241. 
Therefore, understanding the genes and cell types involved in fibrosis could be important to 
develop therapies in the future. Using sphere-seq, we have already shown that we could divide 
a CD lesion into fibrotic and non-fibrotic areas. Within a resected lesion there might be different 
stages of fibrosis we could dissect with sphere-seq and differences in each respective 
microenvironment could be identified. It would be interesting to further analyze different 
subtypes of immune cells and their cellular crosstalk in fibrotic areas. However, it is important 
to increase the sample size, at the moment the analysis of fibrotic against non-fibrotic areas 
has been done within only one biopsy sample. Therefore, it is difficult to make definitive 
conclusions. However, we could already see a great potential for sphere-seq to address some 
of the outstanding questions in CD fibrosis research.   
In liver metastasis, sphere-seq could be further used to study metastasis at different stages of 
disease progression. Spheres could be grouped into areas from within the center of a 
metastasis across the border to regions of healthy liver tissue, provided that  landmark genes 
within different distances could be identified in advance for example by array-based ST 
methods like Visium27,45. However, this would require a larger number of spheres from 
metastatic samples than we are currently able to obtain.   
 

9.6 Future optimizations/enhancements of sphere-seq  
 
Sphere-seq has the potential to be developed further to be applied to other sequencing 
modalities or to increase its throughput and efficiency.  
The sphere-seq experimental workflow has some parts that could be further optimized. The 
labeling efficiency, which is only 50 % at the moment, could be further increased by introducing 
a filtering step of cells before sphere labeling using 96 well strainer plates which would help to 
remove connective tissue that impacts cell labeling. However, with this approach it has to be 
considered that this might lead to cell loss. To address the problem of cell loss, washing steps 
could be reduced. Thereby, although, it has to be considered that this could increase MULTI-
seq background labeling, which leads to false doublet classifications of cells. One could try to 
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filter labeled cells through a 1 µm strainer (pluriSelect), where only unbound lipid anchors:BCs 
can pass through, and labeled cells that get stuck in the strainer could be recovered. The 
sphere-size could be further reduced for a higher spatial resolution, we successfully single 
sorted mouse colon crypts that were only 70 µm in size. Lower cell numbers per sphere, 
however, impact the overall cell recovery.  
At the moment, 288 spheres can be analyzed per single experiment, this number could be 
increased by designing a larger cohort of sphere BCs and spheres could be sorted into 384-
well plates instead of 96-well plates. Manual pipetting after sphere sorting would be 
challenging, but sphere-seq could be adapted to an automated workflow using a pipetting 
robot.  
More than one modality could be analyzed with sphere-seq, scRNA-seq could be combined 
with surface antibody staining using the CITE-seq20 method or V(D)J sequencing242 to analyze 
B cell or T cell clonal expansion, in combination with the scRNA-seq readout. 
As already mentioned earlier, sphere-seq could be adapted for snRNA-seq. However, this 
requires extensive changes within many steps of the protocol. The most challenging part 
would be the nuclei isolation while keeping spheres in their wells. For snRNA-seq nuclei are 
extracted using mechanical homogenization with a mortar and pestle while applying 
detergents in low concentrations241. The detergents disrupt the cellular membrane while 
keeping the nuclear membrane intact, but the right concentration has to be found to reduce 
damage to the nuclear membrane241,242. While there are many options to apply mechanical 
force to a whole sample, it is more difficult to do so to small sphere samples in a 96-well plate. 
One option, however, would be low-intensity sonication using a Multi-Sample Sonicator for 96 
well plates244,245. For labeling single nuclei with sphere-specific BC, lipid anchors cannot be 
used because the nuclear membrane has a different composition. While the cellular 
membrane is made up of phospholipids that allow integration of lipids, the nuclear membrane 
is richer in cholesterols246,247, therefore, McGinnis et al. developed a cholesterol anchor for 
their MULTI-seq method21, which can be used to label extracted nuclei.  
More extensive biosorter strategies could be employed, for example, to enrich spheres with 
more than one cell type or gene expression condition. Spheres could be stained with 
fluorescently labeled surface antibodies to enrich for spheres with specific cell types. For 
example, in the spleen for B cell or T cell areas. Alternatively, a reporter mouse that expresses 
a fluorophore in distinct spatial areas like metastatic areas could be used. However, this is 
quite challenging, we were trying to use this approach: metastatic sites were GFP positive 
because the CRC organoids expressed GFP, however, we observed very low GFP signals 
(data not shown), precluding us from using this measure for sorting.  We hypothesize that 
GFP signal could have been hidden by GFP negative cells surrounding the metastatic cells.   
Additionally, the sorter also has a function to sort for specific shapes, this could be used to 
sort spheres with shapes that are specific for certain tissue units, like for example intact crypts 
within a colon patient biopsy.  
Sphere-seq could be combined with CITE-seq20 or the protocol could be adapted for a plate 
FACS readout: in brief,  after single-cell dissociation, each sphere could be stained with a 
cocktail of surface antibodies and then they could be read out by FACS. While CITE-seq 
enables the analysis of the transcriptome and proteome, it only works for ligands and receptors 
that are expressed on the surface. If only adapting sphere-seq with a FACS readout also 
intracellular ligand-receptor protein expression could be analyzed. 
Another idea is to adapt sphere-seq for sphere bulk RNA-seq, spheres could be sorted and 
then processed in-plate following the SMART-seq2 workflow56,57, which allows the analysis of 
full-length transcripts. Each well and thereby sphere would be labeled with a different BC. This 
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would be similar to Clump-seq66, however, our biosorter approach allows for the sorting of 
larger communities than 10 cells. One possible application for this would be a pooled CRISPR 
screen to disrupt functions in, for example, structural units in vitro like organoids or even in 
vivo within a certain tissue.  
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10  Conclusion  
 
In my Ph.D. project, the goal was to develop a broadly applicable new ST technology which 
captures spatial heterogeneity, but has the capacity of a single-cell readout. We wanted to be 
able to identify spatial differences in gene expression and cell type abundances. Additionally, 
sphere-seq readouts should help to narrow down relevant L-R interactions. The integration of 
spatial information from sphere-seq together with a scRNA-seq readout allows us to identify 
spatially relevant interactions that could be used for further functional investigations. Many 
currently available ST technologies are lacking either single cell resolution27,45,64–66 , need 
extensive expertise in high-resolution microscopy31,36–38,41, or are restricted to a low number of 
ROIs60–62. The sphere-seq workflow combines sorting of cellular communities, single-cell 
dissociation, sphere labeling, and scRNA-seq and thereby addresses all these limitations. 
Single-cell resolution is archived by conventional scRNA-seq, the only expertise that is needed 
is flow cytometry and scRNA-seq, which are commonly used techniques. We even developed 
an approach that uses manual sphere picking instead of using the biosorter and therefore 
sphere-seq can be deployed in every laboratory that has standard equipment and a facility 
providing scRNA-seq. Furthermore, the fact that sphere-seq utilizes the conventional 
computational workflows of scRNA-seq make it easy to use for a scientist that is not proficient 
in programming.  
We could uncover zonated gene expression in KCs for the first time to our awareness, which 
might have opened a new branch of liver zonation research, that employs zonated gene 
expression in this cell type in different disease contexts, and also in human livers. Comparing 
areas which are distal or proximal to metastatic sites lead to the identification of spatially 
restricted L-R interactions that might promote metastasis or limit its spread. We uncovered a 
set of potentially relevant interactions that could be investigated further to eventually identify 
novel therapeutic targets. Applying sphere-seq to various tissues and species, like the murine 
liver and spleen, CRC organoids, and Crohn’s disease patient biopsies, showed the great 
potential of sphere-seq to answer various biological questions in a broad spectrum of research 
of homeostatic and pathological conditions.  
There are also limitations to sphere-seq, like the fact that it can only be applied to fresh tissues 
at the moment, or the need for landmark signatures for reconstructing the spatial location. 
However, every ST methodology has strengths and limitations, which have to be considered 
when being chosen to address a biological problem. For example, sphere-seq might not be 
helpful to study spatial differences in hepatocytes, but it seems to be superior when studying 
much smaller cells like LECs or KCs in a spatial context.  
To conclude, even though there are many different ST methodologies available already, 
sphere-seq shows many features that are superior to other methods, and therefore it is a 
valuable addition to the field of ST.   
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