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Fisher Information Based Active Planning for Aerial Photogrammetry

Jaeyoung Lim1, Nicholas Lawrance1,2, Florian Achermann1, Thomas Stastny1,3

Rik Bähnemann1, Roland Siegwart1

Abstract— Small uncrewed aerial systems (sUASs) are useful
tools for 3D reconstruction due to their speed, ease of use,
and ability to access high-utility viewpoints. Today, most aerial
survey approaches generate a preplanned coverage pattern
assuming a planar target region. However, this is inefficient
since it results in superfluous overlap and suboptimal viewing
angles and does not utilize the entire flight envelope. In this
work, we propose active path planning for photogrammetric
reconstruction. Our main contribution is a view utility function
based on Fisher information approximating the offline recon-
struction uncertainty. The metric enables online path planning
to make in-flight decisions to collect geometrically informative
image data in complex terrain. We evaluate our approach in
a photorealistic simulation. A viewpoint selection study shows
that our metric leads to faster and more precise reconstruction
than state-of-the-art active planning metrics and adapts to
different camera resolutions. Comparing our online planning
approach to an ordinary fixed-wing aerial survey yields 3.2×
faster coverage of 16ha undulated terrain without sacrificing
precision.

I. INTRODUCTION

Aerial photogrammetry is becoming increasingly impor-
tant in alpine geoscience. Especially sUASs offer an al-
ternative to costly satellite imagery due to their capability
to reach remote places in the mountains on demand. For
example, avalanche researchers use sUASs to generate high
spatiotemporal resolution maps to measure snow depth to
predict hazardous areas [1]. Today, commercial platforms
provide autonomous mission planners to collect image data.
Most of these rely on simple coverage planning. An operator
defines a region of interest (ROI), altitude, and image overlap
and the software computes a path with constant lane distance
as shown in Fig. 1a.

However, this method oversimplifies the data collection
as it assumes a planar ROI. In steep terrain, it will fail
to collect sufficient image overlap with constant ground
sampling distance (GSD) to compute a complete and precise
photogrammetric reconstruction. This issue becomes even
more severe for fixed-wing sUAS, which are suited for large
area surveys but are susceptible to wind and thus deviation
from the assumptions of the preplanned path and prior
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Fig. 1: Comparison of coverage planning and our proposed active
view planner mapping a previously outlined avalanche in Davos,
Switzerland, mapped by SLF [3], colored by expected map uncer-
tainty.

viewpoints [2]. To overcome this, the user usually reduces
the lane distance, which then results in inefficient paths that
do not necessarily improve the reconstruction quality.

In this work, we approach data collection for photogram-
metry as an active view planning problem. Here, a utility
function defines the quality of a new viewpoint, and the
planner iteratively selects the next measurement. As Fig. 1b
shows, this paradigm leads to shorter coverage missions and
improves view quality over the whole ROI.

Our utility function is an approximation of the offline
photogrammetry process. Given a prior surface geometry and
the camera frustum, it evaluates the Fisher information for
every potential landmark in the scene. Multiple viewpoints
observing the same landmark from different angles reduce
the landmark uncertainty. Maximizing the Fisher information
ultimately improves the offline reconstruction quality.

Our contributions are:
• An online proxy function for predicting offline surface

reconstruction quality using viewpoint geometry.
• A resolution adaptive viewpoint planning strategy using

the proposed information metric for offline surface
reconstruction.

• Demonstration and evaluation of the proposed method
with a dynamically constrained aerial vehicle model.

II. RELATED WORK

Traditionally, aerial photogrammetry is approached as a
2D coverage problem solved offline and executed without
online adaptation. The paths are computed by Boustrophedon
cell decomposition for a polygonal ROI [4]–[6], and the



flight altitude is determined with a constant offset to the
varying terrain altitude [6]. However, such patterns result in
variable overlaps between images and inconsistent ground
sampling distances for non-planar, complex terrain. Further,
for dynamically constrained vehicles such as fixed-wing
aircraft, it is not trivial to design a feasible trajectory [7], and
such paths are not robust against unexpected environmental
disturbances, such as wind gusts, leading to incomplete
coverage [2]. The following online- and surface-adapting
methods can compensate for such modeling errors.

Active view planning determines a sequence of viewpoints
that maximizes their combined information to generate an
optimal scene reconstruction. Determining such an optimal
sequence is NP-hard since the informative value of a par-
ticular viewpoint depends on all previous observations [8].
Thus, robotic solutions have been approximating the true
information-gathering problem.

Next-best-view (NBV) approaches build an online map
representation and select informative viewpoints iteratively in
a sequential greedy manner. They maximize an information
metric related to the expected change of a map representation
over a discrete set of candidate views. NBV methods have
been used with volumetric maps in the exploration literature,
where the information metric is the number of unknown
voxels expected to be visible in the view frustum [9]–
[12]. Surface-based methods [13]–[15] generate NBV poses
based on the improvement of the surface quality of the
target scene. While NBV methods are useful for navigation,
there is no direct connection to improving the reconstruction
quality of an offline structure-from-motion (SFM) or multi-
view stereo (MVS) reconstruction process, e.g., improving
landmark triangulation.

Some methods which optimize the viewpoints for offline
reconstruction take an explore-exploit strategy where the
reconstruction runs between flights, and the mesh quality
is used to evaluate the utility of views [16]–[19]. These
approaches require multiple flights, making it undesirable
in our target application where we want to reduce coverage
time. Learning-based approaches such as [20], [21] have tried
to predict the uncertainty of an offline SFM using learning
techniques. An alternative approach is to define a proxy func-
tion to evaluate the informativity of camera configurations
online [22]–[25]. Roberts et al. [22] introduce a view utility
based on a spherical coverage model encouraging viewpoints
from varying viewing angles. However, their method does
not consider frustum overlap and multi-view baseline in free
space, which are essential for offline photogrammetry. [23]–
[25] use a heuristically designed 3D reconstruction metric for
SFM processes that encourage good camera configurations
such as large triangulation angles and overlap. This purely
geometric utility function applied in an NBV setting is
similar to our proposed approach. However, handcrafted
metrics rely on features specific to target scenes [25] and
require hand-tuning of various parameters [24], [25]. In this
work, we incorporate a probabilistic metric based on Fisher
information, which only depends on the uncertainty of the
measurement model.

The Fisher information has been used in various active
perception problems such as dynamics learning [26] or active
SLAM [27], [28]. Fisher information quantifies information
based on the sensitivity of a parameter to a measurement.
By incorporating Fisher information as a view utility metric,
one can predict how much a view contributes to reducing
uncertainty [27]–[29]. [27] encodes Fisher information into
a volumetric map representation given known landmark po-
sitions. Our approach solves the inverse problem, where we
assume the vehicle’s pose is known and quantify information
based on the reduced uncertainty of the landmark position.

III. FISHER INFORMATION

Consider a parameter estimation problem, where the goal
is to determine the most likely parameters θ given observa-
tions of a random variable z and measurement likelihood
density function p(z|θ). Fisher information quantifies the
amount of information contained in a measurement for such
a parameter estimation problem.

The Fisher information matrix is defined as

Iθ =

[
∂

∂θ
log p(z|θ)

]T [
∂

∂θ
log p(z|θ)

]
. (1)

For a linear Gaussian model with parameterized mean
function µ(·) and measurement covariance Σ(·), z ∼
N (µ(θ),Σ(θ)), the Fisher information matrix can be cal-
culated from the Jacobian Jθ and Σ,

Iθ = JTΣ−1J, Jθ =
∂z

∂θ
. (2)

The Cramér-Rao bounds are defined as the lower bound
of the covariance matrix of an unbiased estimator θ̂ and are
inversely related to the Fisher information matrix,

var(θ̂) ≥ Iθ
−1. (3)

Note that the Cramér-Rao bound helps quantify the accumu-
lated information of observations since it does not depend
on a specific estimator.

IV. PROBLEM FORMULATION

To approximate the offline SFM process, we assume that
we are given a set of surface landmark positions representing
the target geometry. The landmark distribution, and thus the
geometric complexity of the terrain, is arbitrary but known.
We derive an estimator for every landmark that defines the
landmark uncertainty given multiple viewpoints. Minimal
Cramér-Rao bounds of all landmarks will lead to a complete
and precise reconstruction.

Assume a set of viewpoints V and surface landmarks L. A
single viewpoint vk ∈ V , is defined by the camera position
pk ∈ R3 and orientation Rk ∈ SO(3). Each viewpoint can
contain observations of multiple landmarks. Fig. 2 visualizes
the surface and landmark geometry.

A single observation zki of landmark li ∈ L from vk is
defined by pk and the normalised relative bearing vector f̂i
from the camera to the landmark position li ∈ R3, such that

zki =
(
f̂ki pk

)
, where f̂ki =

li − pk

∥li − pk∥
. (4)
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Fig. 2: Surface and viewpoint geometry.

Since a landmark is typically visible from multiple view-
points, we define the set of viewpoints in which landmark
li is visible as vi ⊂ V . For each observation zki we define
the information matrix Iki . Since information is additive, the
information matrix of a landmark Ii visible from multiple
viewpoints vi can be quantified as the sum of the information
matrices of all viewpoints where the landmark is visible, then

Ii =
∑

vk∈vi

Iki . (5)

Our goal is to find an optimal set of viewpoints V⋆ that
maximizes the information of all landmarks L on the surface,

V⋆ = argmin
v⊂V

∑
li∈L

Qi(vi), (6)

for the information-based cost function Q(·), defined in
Section V. For dynamically constrained views, such as aerial
systems, the view sequence must also satisfy the dynamic
constraints of the platform, therefore we add an additional
constraint to the viewpoint sequence

vk+1 ∈ {v | ∃u ∈ U s.t. v = f(vk, u)} (7)

where f(·) is the dynamic constraint between the viewpoints
and U is the set of feasible control inputs.

V. VIEW UTILITY

Here we define the novel view utility function that is an
online proxy for the quality of the final photogrammetric
reconstruction. We consider multiple factors within the view
utility, but we are primarily interested in finding a function
that can be calculated on future viewpoints and correlates
well with final reconstruction quality (coverage and accu-
racy).

A. Approximating Visibility

We model visibility as a combination of the camera’s
incidence angle and field of view (FOV). We define priors
of these individual components and approximate them with
a visibility function λ(vk, li) ∈ [0, 1]

λ(vk, li) = Pfov(vk, li)Pincidence(vk, li). (8)

1) Field of view: In order to approximate if landmark li
is visible from viewpoint vk, we use a binary variable that
checks whether the bearing vector to the target landmark is
inside the camera field of view.

Pfov(vk, li) =

{
1, if li is inside FOV of vk
0, otherwise

(9)

2) Incident Angle: The incident angle is a visibility con-
straint of the surface, where the visibility of the landmark
improves as the viewing angle becomes less oblique. We
follow [30] and define the incident prior as

Pincidence (vk, li) = exp
(
−ϕk

i

2
/
(
2σ2

k

))
, (10)

where ϕk
i = cos−1(f̂ ik · (−n̂i)) and σk is defined so that

Pincidence = 0 when the surface normal n̂i is orthogonal to
bearing vector f̂ ik.

B. Landmark Uncertainty

We are interested in estimating landmark locations from
multiple bearing-only observations, so we treat landmark
localization as an estimation problem with the parameter
vector being the 3D position of the landmark θ = li.
Each landmark observation consists of a camera’s bearing
vector f̂ki and an observation position pk. We calculate the
Fisher information matrix (2) as a function of the Jacobian
of the observation relative to the landmark location Jθ and
the covariance matrix Σz .

Jθ = [
∂ f̂ki
∂θ

∂pk

∂θ
]

= [
1

n
− 1

n3
(li − pk)(li − pk)

T 0], (11)

where n = ∥li − pk∥.

The landmark uncertainty is only influenced by the bearing,
since the Jacobian is zero for position observations. The
covariance matrix consists of bearing uncertainty and posi-
tion uncertainty. The bearing uncertainty is a function of the
angular resolution of the image, which makes our approach
adapt to different camera resolutions.

The Fisher information matrix for a single observation is
singular since it is not possible to determine the 3D location
of a landmark from a single view.Therefore we need to
aggregate the Fisher information matrices of multiple views.
From (5), the accumulated Fisher information can be found
by summing individual matrices from each viewpoint. We
modify (5) by including the visibility metric from (8) to
estimate the accumulated Fisher information matrix,

Îi =
∑
k

λ(vk, li)I
k
i (12)

Then, the Cramér-Rao bound σi for landmark li is a
lower bound of the variance of an unbiased estimator of
the landmark position. It is the inverse of the accumulated
Fisher information matrix Îi and estimates the quality of
the landmark location prediction. We use the E-optimality
from the so-called “alphabet-soup” of experimental design
criteria [31] by using the maximum eigenvalue.

σi =

√
max(eig(Î−1

i )) (13)

Fig. 3 visualizes the spatial distribution of the Cramér-
Rao bounds for two viewpoints over a level surface. The
bounds predict low reconstruction uncertainty in the center
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Fig. 3: Spatial distribution of Cramér-Rao bounds (coloured surface)
from two nadir viewpoints v0 = [0, 0, 100] and v1 = [0, 50, 100]
over a level surface. Colored outlines show the respective field of
view of each camera.

of the two opposing views and higher uncertainty on the
overlap borders where both perspectives are similar, and the
incidence angles are oblique. The Cramér-Rao bound is only
defined in the overlapping region since the information is
singular with only one view.

C. Map Uncertainty

From the uncertainty metric of a single landmark, we
define the map uncertainty over the whole surface. It consists
of the Cramér-Rao bounds of all li ∈ L given a viewpoint
set v,

QL(v) =
∑
li∈L

min(σi, σmax). (14)

σmax is the maximum Cramér-Rao bound. It is an upper limit
on the landmark uncertainty, avoiding cost overflow due to
ambiguous and weakly observed landmark positions.

VI. PLANNING

A. View Utility

The view utility describes the reduction of map uncertainty
through new viewpoints. Given a candidate viewpoint set
v′ (which could also be a single view v′ = {v′}), the
incremental view utility U is the change of map uncertainty,

U(v′|v) = QL (v)−QL (v ∪ v′) . (15)

B. View Planning

NBV planning methods try to find the next view that
maximizes the view utility.

v∗ = argmax
v∈V\v

U(v|v) (16)

While the NBV is the globally optimal viewpoint in terms
of view utility, it is often the case that the optimal view is
far away or hard to achieve with the dynamic constraints
of a mobile robot. Given that it is relatively inexpensive
to acquire images on-the-fly, it is better to find the best
set of dynamically feasible viewpoints rather than a single
viewpoint. Then, from current viewpoint vk,

v∗ = argmax
v′⊂V\v

U(v′|v)

s.t. v′ ⊂ {v | ∃u ∈ U s.t. v = f(vk, u)}.
(17)

In this paper, we consider the motion constraints of a fixed-
wing aerial vehicle. We use a motion primitive planner that
generates a set of candidate trajectories, calculates the set
of camera poses along each trajectory, and selects the one
that maximizes the increase in view utility (15) from the
corresponding viewpoint set.

VII. MAP REPRESENTATION

To this point, our viewpoint utility makes no assumptions
on the underlying prior surface model, and landmarks can be
arbitrarily distributed on the surface. The landmarks the SFM
reconstruction uses are typically salient image features that
can be robustly associated across multiple images. However,
we do not know where the landmarks are expected on the sur-
face without processing the image. In this work, we select a
map representation that assumes uniformly distributed proxy
landmark locations across the target region and evaluate view
utility over these landmarks. Further, we assume access to
a surface geometry prior in the form of a digital elevation
map (DEM), which is typically required for flight planning
purposes. These assumptions suit our target application of
terrain mapping, where the surface quality is treated equally.

We approximate the terrain surface L as a 2.5D regular
grid map M =

⋃
∀i
ci [32] where each cell,

ci = [xi, hi, n̂i, σi, Ii, Ai]. (18)

For each cell ci in the grid, xi is the x, y position of the cell,
hc is the altitude of the cell, n̂i is the surface normal at the
center of the cell, and Ai is the cell area. We assume that a
landmark li is located at the center of each cell, and therefore
we optimise our utility function over these landmarks.

As we are discretizing the surface, the absolute value of the
map uncertainty depends on the grid resolution. To address
this, we normalize the map uncertainty (14) by area,

QM(v) =

∑
ci∈M min (σi, σmax)Ai∑

ci∈M Ai
. (19)

VIII. EVALUATION SETUP

A. Simulation Setup
Obtaining ground truth terrain models is challenging in the

real world and is essentially the primary goal of this work. To
evaluate the proposed approach, we used the Unreal Engine-
based photorealistic simulation framework Airsim [33] in
a mountainous environment. We considered two different
target areas, one inside a valley (382m × 412m) and the
other one on a slope (400m × 600m). The images were
captured at a resolution of 1440 × 1080 pixels and used to
reconstruct the surface with COLMAP [30], [34], an SFM,
and an MVS pipeline.

B. Evaluation
1) Sampling and registration: The Delaunay meshes re-

sulting from the reconstruction are projected onto a 2.5D map
with the same resolution (1m) as the ground truth. The mesh
is registered through an iterative closest point (ICP) on the
viewpoint positions provided from the simulation after the
SFM pipeline has finished.



Fig. 4: Visualization of terrain and a set of 100 candidate views for
NBV planning

2) Metrics: We evaluate reconstruction precision and
completeness as in MVS benchmarks [35], [36]. Precision
represents how much of the resampled reconstructed mesh
R is within the error threshold emax of the ground truth
mesh G,

P (emax) =
1

|R|
∑
i∈R

[eg→r < emax]. (20)

Completeness shows how much the reconstruction covers
the target surface within the error threshold emax from the
ground truth map G.

C(emax) =
1

|G|
∑
i∈G

[er→g < emax] (21)

Precision and completeness complement each other. For
example, if a small area has a very precise reconstruction,
the precision metric will be high but the completeness metric
will be low.

IX. NEXT-BEST-VIEW PLANNING

A. Setup

We compare our metric to the spherical coverage metric
of [22], an exploration planner [9], and randomly selected
views from a finite view set V as described in Section VI-B.
We populate V with 100 randomly sampled viewpoints, with
positions sampled uniformly above the target region, altitude
from U(50m, 150m), and orientations from U(−45°, 45°)
as visualized in Fig. 4. Therefore, different view utility
metrics differ on how quickly the reconstruction becomes
complete.

For the spherical coverage metric of [22], we used a ref-
erence distance t0 = 100m and half distance (the additional
distance at which the utility halves) of thalf = 30m. The
view utility for the exploration planner is the number of
unobserved landmarks (map cells) on the surface. For the
purpose of reconstruction, we count a map cell observed, if
it has two or more viewpoints.

B. Results

Fig. 5 shows the progress of completeness and precision
of the reconstruction result as the viewpoints are selected
sequentially with different metrics. Our proposed viewpoint
metric achieves the fastest completion with immediate high
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Fig. 5: Incremental reconstruction quality for different NBV met-
rics. Ours, Spherical and Exploration are deterministic. Random
shows standard deviation.

precision. This shows that our utility indeed optimizes both
coverage and precision. The utility prioritizes finding two
viewpoints with favorable triangulation angles for all land-
marks to minimize Eq. (14). Given the consistently high
precision of our approach, even an early mission abortion
will deliver a useful reconstruction. All other metrics achieve
slower progress on reconstruction results. The spherical met-
ric [22] also ensures high precision but not necessarily good
overlap; thus, reconstruction is not guaranteed, as the drop at
25 images indicates. The exploration method performs most
inadequately as expected. It does not optimize image overlap.

Since our proposed information metric explicitly includes
the bearing uncertainty (see Sec. V-B), our metric automat-
ically adapts to different image resolutions. To demonstrate
this, we repeat the NBV experiments with lower resolution
images. Fig. 7 shows that Ours reduces the map coverage
rate with lower resolution images to maintain high precision.
Our utility selects viewpoints that are closer to the surface
and have more overlap. Exploration and Spherical metrics
do not change the image selection with different image
resolutions, resulting in poor reconstruction qualities with
lower resolution images. This even yields to situations where
the low-resolution reconstruction fails at 10 and 20 images
due to a lack of feature overlap.

X. DYNAMICALLY CONSTRAINED VIEW PLANNING

A. Setup

The NBV selection study demonstrated that the proposed
view utility metric selects informative viewpoints. We also
show that this information metric accelerates photogrammet-
ric aerial surveys for dynamically constrained aerial vehicles.
In this section, we consider a fixed-wing aircraft modeled
as a Dubins Airplane [37], where the vehicle is flies at
15m s−1, with a minimum turn radius of 60m and climb
rates {−3, 0, 3} ms−1. A receding horizon motion primitive
planner with 10 s segments and a planning depth of 3
segments with 7 candidate maneuvers is used to generate
candidate view sets where viewpoints are sampled at a
fixed rate (0.5Hz) along the path. The vehicle executes
the first segment of the best candidate sequence, and the
planning is repeated. One planning cycle (1715 evaluated
views) takes 4.30 ± 4.00 s on a desktop computer running



(a) Coverage, Valley, t = 113s (b) Ours, Valley, t = 120s (c) Coverage, Slope, t = 224s (d) Ours, Slope, t = 200s

Fig. 6: Qualitative comparison of a reconstruction snapshot at completion of our planner over two terrains. The colored patch shows
the height error over the ROI from dark blue 0m to dark red >1m. The proposed method yields near-complete coverage and precise
reconstruction while Coverage is not even half way finished.
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Fig. 7: Reconstruction quality comparison with different resolution
images.

on a 2.9GHz Intel core i7-10700 CPU. For the baseline
method, we consider a coverage path with 75% overlap, a
standard configuration for aerial photogrammetry, and the
same kinematic constraints. The approaches are evaluated
on both valley and sloped terrain.

B. Results

Fig. 8 shows the reconstruction progress over the first
100 survey images for every 10 images. Our approach has a
short time to completion, while Coverage only gains linearly.
For the valley terrain, we reach completeness with high
precision after 120 s, which is 3.2× faster than Coverage
which finishes after 384 s. Fig. 6 shows a snapshot of the re-
construction at the time when Ours completed reconstruction
and Coverage is still running. The Coverage approach creates
many redundant views while our planner almost immediately
covers the entire map with dynamic maneuvers. The quick
completion is mainly due to the metric taking advantage
of oblique views while Coverage orients the camera nadir.
Fig. 6(D) shows an interesting behavior where our planner
climbs up the terrain to find a balance between covering a
large area and creating a precise reconstruction.
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Fig. 8: Reconstruction quality over time for dynamically-
constrained viewpoint planning up to 100 viewpoints. The circles
mark the time stamps of the terrain snapshots in Fig. 6.

XI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed an active mapping strategy for
offline reconstruction that uses an online Fisher information-
based view utility metric. The probabilistic method only
requires a prior landmark distribution and camera model to
predict the landmark reconstruction quality from multiple
camera views. Our aerial mapping target application shows
that the metric is a good predictor of an offline photogram-
metry pipeline. It selects highly informative viewpoints with
effective feature baselines and terrain coverage leading to
precise and complete reconstruction. Aerial survey strategies
based on the proposed metric and receding horizon planning
result in precise reconstruction much faster than exhaustive
coverage surveys.

Currently, the proposed method only considers the geomet-
ric viewpoint configuration. Future work will consider land-
mark quality estimation based on the texture of the surface.
Further, while a (snow-free) prior terrain model is available
for the current target application, this may not always be
the case, and future work could evaluate the view utility
sensitivity to poor prior models or online reconstructions in
unknown terrain.
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