
ETH Library

Solving Static Permutation
Mastermind using O(n log n)
Queries

Journal Article

Author(s):
Larcher, Maxime; Martinsson, Anders; Steger, Angelika

Publication date:
2022-01-28

Permanent link:
https://doi.org/10.3929/ethz-b-000537930

Rights / license:
Creative Commons Attribution-NoDerivatives 4.0 International

Originally published in:
The Electronic Journal of Combinatorics 29(1), https://doi.org/10.37236/10280

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000537930
http://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.37236/10280
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Solving Static Permutation Mastermind

using O(n logn) Queries

Maxime Larcher Anders Martinsson Angelika Steger
Department of Computer Science

ETH Zurich
Switzerland

{larcherm,anders.martinsson,steger}@inf.ethz.ch

Submitted: Mar 3, 2021; Accepted: Jan 13, 2022; Published: Jan 28, 2022

©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Permutation Mastermind is a version of the classical mastermind game in which
the number of positions n is equal to the number of colors k, and repetition of colors
is not allowed, neither in the codeword nor in the queries. In this paper we solve
the main open question from Glazik, Jäger, Schiemann and Srivastav (2021), who
asked whether their bound of O(n1.525) for the static version can be improved to
O(n log n), which would be best possible. By using a simple probabilistic argument
we show that this is indeed the case.

Mathematics Subject Classifications: 91A46, 05D40

1 Introduction

Mastermind is a well known two-player board game, whose commercial version was intro-
duced in the 1970’s by Mordecai Meirowitz. The game goes as follows: the first player,
named Codemaker, secretly chooses a codeword made up of 4 pegs, each of 6 possible
colours. The second player, Codebreaker, then tries to guess this codeword in as few
queries as possible. A query also consists of 4 pegs of 6 possible colours, and for each
query Codebreaker receives the number of pegs they guessed correctly (black pegs) as well
as the number pegs of the correct colour, but not at the right position (white pegs).

In 1977, Knuth [7] used a minimax argument to prove that five queries were sufficient
to find any codeword. Numerous variants of this game have been studied in the literature.
Some of the most common variants are:

(i) the number of pegs n and the number of colours k may be arbitrary;

(ii) in the black-peg only setting, Codebreaker only receives the black pegs as answer to
their queries;

the electronic journal of combinatorics 29(1) (2022), #P1.20 https://doi.org/10.37236/10280

https://doi.org/10.37236/10280


(iii) when k > n, one may or may not allow repetitions of colours in the codeword and
the queries;

(iv) in the static setting, Codebreaker needs to decide all queries in advance, before
receiving any answer. In the adaptive setting, queries may be adapted depending
on the answers to previous queries.

One of the first problem of this type to receive attention is Coin-Weighing, a problem
introduced in 1960 by Shapiro and Fine [9], which can be proven equivalent to n-peg, 2-
colour Mastermind. In 1963, Erdős and Rényi [4] showed via a probabilistic argument that
O (n/ log n) queries were sufficient to crack the code. Building up on their idea, Chvátal [1]
showed the existence of a strategy for black-peg only Mastermind with repetition, using
O(n log k/ log n) queries when k 6 n1−ε. This matches the information-theoretic lower
bound in both the adaptive and static cases up to a constant factor.

Determining the minimum number of queries for static, black-peg only Mastermind
with repetitions is part of the wider problem of determining the metric dimension of
graphs. In a recent paper, Jiang and Polyanskii [6] determined, up to lower order terms,
the metric dimension of large powers of fixed graphs. Concerning Mastermind, their
result imply that for any constant number of colours k, the query complexity is (2 +
o(1))n/ logk n.

For larger k’s, determining the correct query-complexity turned out to be more deli-
cate. When k = n, Chvátal’s approach can easily be adapted to find a bound of O(n log n),
a factor log n away from the information-theoretic lower bound of Ω(n) (attributed to
Duchet, see [2]). Doerr, Doerr, Spöhel and Thomas [2] showed that this was the correct
bound (up to constant factors) in the static case. They also presented an adaptive strategy
using O(n log log n) queries, by giving a reduction to a sequence of Coin-Weighings prob-
lems. The gap to the lower bound was finally closed in a recent paper by Martinsson and
Su [8], who showed that by first performing a sequence of O(n) simple “pre-processing”
queries, Coin-Weighing schemes can be modified to match the information-theoretic lower
bound for Mastermind. In the adaptive case, optimal bounds for k > n can be deduced
from this bound, we refer to [2] and [8] for the details.

In the case of Permutation Mastermind we assume k = n and allow no repetitions of
colors, neither in the codeword nor in the queries. In this setting, one usually views the
codeword and the queries as permutations of [n], thus the name. It is trivial to see that
black-peg only, and black- and white-peg settings are equivalent in this case. Restricting
the codeword to permutations obviously makes it easier for Codebreaker to win, on the
other hand this same restriction for queries rules out many of the usual strategies. In
the adaptive setting, the best lower- and upper-bounds currently, of order Ω(n) and
O(n log n), are both due to El Ouali, Glazik, Sauerland and Srivastav [3]. Where the
exact query-complexity lies inside this Θ(log n) gap is still an open question.

Recently, Glazik, Jäger, Schiemann and Srivastav [5] shed some light on Static Per-
mutation Mastermind. Adapting an argument of Doerr, Doerr, Spöhel and Thomas [2],
they proved that any strategy requires at least Ω(n log n) queries. Additionally, they show
that there exists a strategy using O(n1.525) queries and ask whether it is possible to find

the electronic journal of combinatorics 29(1) (2022), #P1.20 2



a strategy matching their lower bound. In this paper we answer this question positively.

Theorem 1. For Static Permutation Mastermind, there exists a set of O(n log n) queries
from which any codeword can be recovered.

Our proof uses the probabilistic method. We show that with positive probability, a
random sequence of 28n log n queries chosen uniformly at random has the property that it
can uniquely determine all codewords, hence there are deterministic sequences with this
property.

Additionally, one easily observes that given such a good sequence, our proof of The-
orem 1 can be turned into a simple algorithm which recovers the codeword efficiently
from such a sequence (by finding one colour at a time in n turns). This contrasts with
Chvátal’s original result for k 6 n1−ε, where no corresponding efficient reconstruction
scheme has been presented in the literature, leaving codebreaker to brute-force a code-
word that matches all queries. In the case of static classical Mastermind with k = n, our
approach could be adapted to have an efficient reconstruction algorithm, but we will not
elaborate on this further.

For a quick overview of the state of the art on Mastermind, we provide the best known
lower- and upper-bounds for the case k = n in Table 1. The rest of this paper is dedicated
to the proof of Theorem 1.

Lower bound Upper bound
Adaptive Classical Ω(n) (see [2]) O(n) [8]
Static Classical Ω(n log n) [2] O(n log n) [1]
Adaptive Permutation Ω(n) [3] O(n log n) [3]
Static Permutation Ω(n log n) [5] O(n log n) (our paper)

Table 1: Summary of results for variations of Mastermind with n colours and pegs.

2 Proof of the Theorem

We use standard notations. By log we denote the natural logarithm. For the sake of
conciseness we omit floor and ceil signs. Whenever it is needed, we assume that n is large
enough. All permutations are assumed to be over [n] = {1, . . . , n}.

Our proof of Theorem 1 is probabilistic and in certain ways resembles the original
proof of Chvátal. Consider a set of queries Q of size q(n) chosen independently and
uniformly at random from all permissible queries. If we could show that it allows to
decode a randomly chosen codeword with probability 1 − o(1/n!), then a simple union
bound argument allows us to conclude that there has to exist such a set of queries of size
q(n) that allows to decode all codewords.

Now, as it turns out, a success probability 1 − o(1/n!) in this case is too optimistic.
For instance, with probability 1/poly(n) a collection of O(n log n) random queries will
never query colors 1 or 2 in positions 1 or 2, in which case, distinguishing permutations

the electronic journal of combinatorics 29(1) (2022), #P1.20 3



beginning with 12 and 21 is impossible. Instead, to get the union bound to follow through,
we need a more refined picture of what “bad events” could cause the recovery to fail. This
is made formal in Lemma 2; first, we introduce some definitions.

Given a set I ⊆ [n], we say that c ∈ [n]I is a colouring of I. We say that it is a valid
colouring of I if c(i) 6= c(j) for all i 6= j, in particular c may be viewed as the restriction of
a permutation to I. Given a permutation σ and a colouring c, we say that σ is a 0-query
for c if σ(i) 6= c(i) for all i ∈ I. Given a permutation σ and two colourings c1, c2, we say
that σ discriminates c1 from c2 on I if σ is a 0-query for c1 but not for c2. The following
lemma is the core of our argument.

Lemma 2. There exists a set Q of 28n log n permutations such that the following holds.
For any I ⊆ [n], any valid colouring v and any colouring c on I such that v(i) 6= c(i) for
all i ∈ I, there exists some q ∈ Q which discriminates v from c.

We emphasise that in the above lemma c can be any colouring while v needs be a
valid one. We defer the proof of this lemma to the end of this section and now prove
Theorem 1.

Proof of Theorem 1. Let Q be the set as in Lemma 2. Our strategy to recover any code-
word c0 is to find the colours one by one until we have found them all. We let I be the
set of pegs for which we have not found the correct colour; at the beginning I = [n].

At any step when |I| > 1, because we know the correct colours outside of I, we
can compute for each query q ∈ Q how many positions c0 and q colour identically in
I. Let QI = {q1, . . . , ql} ⊆ Q be the set of 0-queries for c0 on I. We claim that there
must exist some i ∈ I such that {c0(i), q1(i), . . . , ql(i)} = [n]. Indeed, if this were not
the case, then there would exist some colouring c (which need not be valid) such that
c(i) /∈ {c0(i), q1(i), . . . , ql(i)} for all i ∈ I. However, this would imply that no q ∈ QI

(and hence, in Q) discriminates c0 (or rather its restriction to I) from c on I, and this
contradicts the definition of Q. In consequence, such an i ∈ I exists, and we can recover
c0(i): it is the unique element of [n] \ {q1(i), . . . , ql(i)}. We remove this i from I and
continue until I = ∅.

All that remains is now to prove Lemma 2.

Proof of Lemma 2 . The proof is probabilistic: we choose independently and uniformly at
random a set of 28n log n queries and show that with positive probability, this set satisfies
the conditions.

To do this, we wish to apply union-bound over all (I, v, c). A rough application will
not work: indeed there are roughly n(2+o(1))n choices of triple (I, v, c), but the probability
of failing to discriminate a certain triple may be as large as 1/poly(n) if I is small. To
solve this problem, we partition the set of triples (I, v, c) depending on the size of I:
when k = |I| is small, there are fewer choices for (I, v, c) so it is fine if the probability of
discriminating is smaller.

Concretely, assume that for any fixed triple (I, v, c) as in the statement, a random
colouring has probability at least |I|/7n of discriminating v from c. Then the probability

the electronic journal of combinatorics 29(1) (2022), #P1.20 4



that none of the 28n log n random queries discriminate is at most

(1− |I|/7n)28n logn 6 e−4|I| logn = n−4|I|.

When |I| = k, a crude upper bound for the choice of (I, v, c) is n3k in total. Hence by
union bound, the probability that there exists a triple (I, v, c) with I 6= ∅ for which no
colouring is discriminating is at most

n∑
k=1

∑
|I|=k

∑
v,c

n−4|I| 6
n∑

k=1

n3kn−4k < 1,

whenever n > 2.
Therefore, all we need to do is prove that, indeed, for any fixed (I, v, c) as above,

a uniformly random permutation has probability at least |I|/7n of discriminating. To
bound this, we denote by Si the set of those permutations σ which are 0-queries for v and
such that σ(i) = c(i); we now want to show that the size of

⋃
i∈I Si is at least |I|(n−1)!/7.

Using inclusion-exclusion, we get∣∣∣∣∣⋃
i∈I

Si

∣∣∣∣∣ >∑
i∈I

|Si| −
∑
i 6=j∈I

|Si ∩ Sj|. (1)

To estimate this quantity we shall compute the sizes of Si and Si ∩ Sj. We express
them in terms of A(n, |I|) which we define as the number of 0-queries of v on I. If we let
m = |I|, write Sn for the set of all permutations on [n] and Ti for the set of permutations
σ such that σ(i) = v(i), then a simple application of the inclusion-exclusion principle
gives

A(n,m) =

∣∣∣∣∣Sn \
⋃
i∈I

Ti

∣∣∣∣∣ =
m∑
k=0

(
(−1)k

(
m

k

)
(n− k)!

)
.

Claim 3. For all m 6 n we have

n!/3 6 A(n,m) 6 n!.

Proof. Since A(n,m) is the size of a subset of permutations of [n], the upper bound is
trivial. For the lower bound recall that the expression of A(n,m) stems from an inclusion-
exclusion argument. As it is well known, that inclusion-exclusion alternatively over- resp.
underestimates we get

A(n,m) >
3∑

k=0

(−1)k
(
m

k

)
(n− k)!.

By spelling out these terms and grouping them appropriately we get A(n,m) > (1 −
m
n

)n! + m(m−1)
6n(n−1)

(
3− m−2

n−2

)
n!, from which the claimed bound follows easily by observing

that the last bracket is at least two and the remaining terms are monotonous in m.

the electronic journal of combinatorics 29(1) (2022), #P1.20 5



Using the above, we now find expressions for the sizes of |Si|, |Si ∩ Sj|.

Claim 4. For all i 6= j ∈ I, we have

(i) |Si| > (1− o(1))A(n, |I|)/n;

(ii) |Si ∩ Sj| 6 (1 + o(1))A(n, |I|)/n(n− 1).

Proof. We prove this claim by appropriate double counting arguments. For a permutation
σ that is a 0-query for v we denote by ` the index such that σ(`) = c(i). If ` 6∈ I or
σ(i) 6= v(`) then the permutation that is obtained from σ by swapping the colours at
positions i and ` belongs to Si. (Note that this case includes the case i = `, as then σ
belongs to Si already.) As there exist only n(n− 2)! permutations for which σ(i) = v(`),
we thus have

A(n, |I|)− o (n!) 6 n|Si|.

For (ii), we first note that Si∩Sj = ∅ when c(i) = c(j), thus in this case the claim holds
trivially. In the following we thus assume c(i) 6= c(j). Consider an arbitrary σ ∈ Si ∩ Sj.
For some (arbitrary) indices `1 and `2, perform the following operation: swap the colours
at position i and `1 and at positions j and `2. When do we get a 0-query for v? Clearly,
a sufficient condition is to ensure that `1 and `2 are different from i and j, the colours
of σ(`1) and σ(`1) do not coincide with v(i) resp. v(j), and – for `1, `2 ∈ I – the colors
of σ(i) and σ(j) does not coincide with that of v(`1) resp. v(`2). Clearly, we thus have
at least (n − 4)(n − 5) proper choices for `1 and `2. Observe in addition that for each
permutation σ′ that is obtained by such a double swap of i, `1 and j, `2, there is a unique
(σ, `1, `2) from which it can be obtained: `1 (resp. `2) is the index such that σ′(`1) = c(i)
(resp. σ′(`2) = c(j)) and σ is obtained from σ′ by swapping the colours of i, j with those
of `1, `2 respectively. Thus we have

(n− 4)(n− 5)|Si ∩ Sj| 6 A(n, |I|).

The formulas as in (i) and (ii) follow immediately from the above and the bounds of
Claim 3, where we catch the change to n(n− 1) in the o(·)-notation.

Putting the expressions of |Si|, |Si ∩ Sj| from Claim 4 into (1) gives∣∣∣∣∣⋃
i∈I

Si

∣∣∣∣∣ >∑
i∈I

|Si| −
∑
i 6=j∈I

|Si ∩ Sj|

> |I|A(n, |I|)
n

−
(
I

2

)
A(n, |I|)
n(n− 1)

+ o (|I|(n− 1)!)

=
|I|
n
A(n, |I|)

(
1− |I| − 1

2(n− 1)

)
+ o (|I|(n− 1)!)

> (1/6 + o(1))|I|(n− 1)! by Claim 3.

For a choice of n large enough, this is at least |I|(n− 1)!/7 as claimed.

the electronic journal of combinatorics 29(1) (2022), #P1.20 6



References

[1] V. Chvátal. Mastermind. Combinatorica, 3(3-4):325–329, 1983.

[2] B. Doerr, C. Doerr, R. Spöhel, and H. Thomas. Playing mastermind with many
colors. Journal of the ACM (JACM), 63(5):1–23, 2016.

[3] M. El Ouali, C. Glazik, V. Sauerland, and A. Srivastav. On the query complexity of
black-peg ab-mastermind. Games, 9(1):2, 2018.

[4] P. Erdős and A. Rényi. On two problems of information theory. Magyar Tud. Akad.
Mat. Kutató Int. Közl, 8:229–243, 1963.

[5] C. Glazik, G. Jäger, J. Schiemann, and A. Srivastav. Bounds for the static permu-
tation mastermind game. Discrete Mathematics, 344(3):112253, 2021.

[6] Z. Jiang and N. Polyanskii. On the metric dimension of cartesian powers of a graph.
Journal of Combinatorial Theory, Series A, 165:1–14, 2019.

[7] D. E. Knuth. The computer as master mind. Journal of Recreational Mathematics,
9(1):1–6, 1976.

[8] A. Martinsson and P. Su. Mastermind with a linear number of queries.
arXiv:2011.05921, 2020.

[9] H. S. Shapiro and N. Fine. E1399. The American Mathematical Monthly, 67(7):697–
698, 1960.

the electronic journal of combinatorics 29(1) (2022), #P1.20 7

https://arxiv.org/abs/2011.05921

