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Abstract 

The widely used characterization of scale-free networks as “robust-yet-fragile” origi-
nates primarily from experiments on instances generated by preferential attachment. 
According to this characterization, scale-free networks are more robust against random 
failures but more fragile against targeted attacks when compared to random networks 
of the same size. Here, we consider a more appropriate baseline by requiring that the 
random networks match not only the size but also the inherent minimum degree of 
preferential-attachment networks they are compared with. Under this more equitable 
condition, we can (1) prove that random networks are almost surely robust against any 
vertex removal strategy and (2) show through extensive experiments that scale-free 
networks generated by preferential attachment are not particularly robust against ran-
dom failures. Finally, we (3) add experiments demonstrating that preferentially attach-
ing to well-connected vertices does not enhance robustness at all.

Keywords:  Robustness, Scale-free networks, Preferential attachment

Introduction
Although preferential attachment models can generate only a vanishing fraction 
of all scale-free networks  (Petersen et  al. 2016), many claims about the class of scale-
free networks arise from experiments on preferential-attachment instances. One such 
claim, originating from Albert et al. (2000), is that scale-free networks have a “robust-
yet-fragile” nature, i.e., compared to random networks of the same size, they are more 
robust against random failures, where vertices are removed uniformly at random, but 
more fragile against targeted attacks, where vertices with the highest initial degree are 
removed first (Doyle et al. 2005).

The common models for preferential attachment, including the one used in the 
experiments of Albert et al. (2000), yield instances with a constant average degree and a 
minimum degree of half that value. Because of their constant average degree, however, 
random networks of the same size are highly likely to contain isolated vertices  (Erdős 
and Rényi 1959). As a first contribution, we prove that the robustness and connectivity 
of such random networks change significantly if they are required to have a minimum 
degree of at least k for any constant k ≥ 3 . With this in mind, it seems more appropri-
ate and natural to compare the robustness of preferential-attachment instances with 
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random networks of the same size and the same minimum degree. To the best of our 
knowledge, this has not yet been done. We fill this gap with our second contribution 
through an extensive suite of experiments. Our experiments show, in the affirmative, 
that scale-free instances generated by preferential attachment are consistently more 
fragile than size-matching random networks whose minimum degree is at least as large. 
To put it more bluntly: We find that in an equitable setting, the networks generated by 
preferential attachment do not exhibit a “robust-yet-fragile” nature.

As our last contribution, we carry out experiments, which demonstrate that a prefer-
ence for attachment to well-connected others does not enhance robustness in any way. 
Our contributions can be formally summarized as follows: 

1	 For any constant k ≥ 3 , almost all graphs with a constant average degree and a mini-
mum degree of at least k are connected and provably robust.

2	 Scale-free networks generated by preferential attachment are more fragile than size-
matching random graphs whose minimum degree is at least as large.

3	 Preferential attachment leads to lower robustness than random attachment.

Preliminaries
We use N to denote the set of positive integers. We use ⌊x⌉ to denote the integer closest 
to x, breaking the ties in favor of higher values. More precisely, ⌊x⌉ = ⌈x⌉ if x − ⌊x⌋ ≥ 0.5 
and ⌊x⌉ = ⌊x⌋ otherwise. When we say that a statement holds for large enough n ∈ N , 
there exists a constant n0 ∈ N such that the statement holds for all n that are larger than 
n0 . We say that a sequence of events An holds almost surely if limn→∞ Pr[An] = 1.

Graphs and degree sequences

In this paper, we consider only simple undirected graphs and use the terms graph and 
network interchangeably. A graph G = (V ,E) consists of a set of vertices V and a set of 

edges E ⊆
V
2

 . If {u,w} ∈ E , then u and w are said to be adjacent. A graph is called 

complete if each vertex is adjacent to all other vertices. The degree, degG(v) , of a vertex v 
is the number of vertices in G adjacent to v. If v1, · · · , vn is an ordering of V where 
deg(v1) ≥ · · · ≥ deg(vn) , then D(G) =

(
deg(v1), . . . , deg(vn)

)
 is the degree sequence of 

G. An integer sequence D is called graphical if there is a simple undirected graph G with 
D = D(G) . We use �(G) and δ(G) to denote, respectively, the maximum and minimum 
vertex degree in G. The graph G is called k-regular if δ(G) = �(G) = k.

The subgraph of a graph G = (V ,E) induced by V ′ ⊆ V  is G[V ′] = (V ′,E′) , where 
E′ =

{
{u,w} ∈ E|u,w ∈ V ′

}
 . Given a positive integer k, the k-core of a graph G is the 

inclusion-maximal induced subgraph, where all vertex degrees are at least k. The k-core 
of a graph is unique and can be determined efficiently (Batagelj and Zaveršnik 2011).

The reachability relation is defined as the reflexive and transitive closure of the adja-
cency relation. The connected components of a graph are its subgraphs induced by the 
equivalence classes of the reachability relation. A graph is called connected if it consists 
of a single connected component. The largest connected component, or LCC for short, 
is the one with the largest number of vertices.
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Network robustness

The extent of invariance of a network structural property when elements of the net-
work are removed is referred to as the robustness of that network (Klau and Weiskircher 
2005). We focus only on the removal of vertices and consider the number of vertices in 
the largest connected component as the structural property of interest.

Given a connected graph G = (V ,E) and the sequence of vertices B = (b1, b2, . . . , bT ) 
in order of their removal, we can quantify the robustness of G by

This robustness score originally proposed in Hasheminezhad and Brandes (2022) is a 
generalization of the score used in Schneider et al. (2011), where in the latter score, B is a 
permutation of V. Note that the above score captures the relative size of the largest con-
nected component and the rate at which it shrinks when the vertices are removed. The 
most commonly considered vertex removal strategies in the literature are random fail-
ures and targeted attacks. In random failures, the vertices are removed uniformly at ran-
dom. In targeted attacks, the vertices with the highest initial degree are removed first. If 
the vertex removal strategy is clear from the context, and we accept random variation in 
vertex selection due to the tie-breaking rules, we can parameterize the robustness score 
by the fraction β of removed vertices rather than by the precise sequence.

Note that the complete graph has the highest robustness among all n-vertex con-
nected graphs, as it remains connected through any vertex removal process. For such 
a graph, RG(B) is given by 1− |B|+1

2n  , which simplifies to 1− β/2+ o(1) if the fraction 
of removed vertices is β , i.e., when |B| = βn . It follows that RG(β) is upper-bounded by 
1− β/2+ o(1) for any connected graph G and any vertex removal strategy (Hashemin-
ezhad et al. 2020).

The (vertex) isoperimetric number h(G) and the conductance �(G) are invariants closely 
related to the robustness of a graph G = (V ,E) . The former is defined as 
h(G) = min

∅�=S⊂V ,|S|≤ |V |
2

{
|∂S|
|S|

}
 where ∂S is the subset of vertices in V \S that are adjacent 

to at least one vertex in S. Similarly, �(G) is defined as �(G) = min
∅�=S⊂V ,|S|≤ |V |

2

{
|E(S,V \S)|

vol(S)

}
 

where vol(S) =
∑

v∈S degG(v) and E(S,V \S) is the subset of edges in E with one endpoint 
in S and the other in V \S . It is well known that h(G) ≥ δ(G)

�(G)
�(G) (see FACT A.1. in Giak-

koupis and Sauerwald 2012 for a brief proof of this).

Network models

The set of simple graphs with n vertices and m edges is denoted by G(n,  m), and 
G(n, m, k) is the subset of graphs in G(n, m) that have a minimum degree of at least k. 
The models G(n,m) and G(n,m, k) consist of the uniform distribution on G(n, m) and 
G(n, m, k), respectively.

Scale-free networks are those networks in which the fraction of vertices with degree 
k is roughly proportional to k−γ for some γ > 1 . Since its popularization by Barabási 
and Albert (1999), preferential attachment has been the most widely used mechanism 
for generating scale-free networks. Although there are several instantiations of the same 

RG(B) =
1

T

T∑

t=1

|LCC(G[V \{b1, . . . , bt}])|

|LCC(G)|
.
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general idea, here we adhere to the approach used in the original robustness experi-
ments of Albert et  al. (2000). This generative preferential-attachment model PA(n, k) 
starts from a complete graph with 2k + 1 vertices and successively adds n− (2k + 1) 
vertices. Each newly added vertex is made adjacent to k distinct vertices, drawn without 
replacement from the pool of existing vertices and with a probability that is proportional 
to their current degree. All graphs generated in this way are connected, have a minimum 
degree of k, m = kn edges (an average degree of 2k), and are thus elements of G(n, nk, k).

To assess their relative robustness, preferential attachment graphs are often pit-
ted against random size-matching graphs drawn from G(n,m) . If the number of edges 
is bounded linearly and away from one, i.e., m = kn for some constant k > 1 , random 
graphs are unlikely to be connected, but they almost surely have a unique giant compo-
nent (Erdős and Rényi 1959; Molloy and Reed 1998). This is also acknowledged in the 
robustness experiments of Albert et al. (2000), where rejection sampling is used to find a 
graph with a large enough largest connected component. So, while size and connectivity 
are largely kept constant in experiments on network robustness, the minimum-degree 
property of preferential-attachment graphs has not been considered. In “Theory” sec-
tion, we show that this can be expected to have a major influence on what can reason-
ably be considered robust.

Network generation

We construct PA(n, k) and G(n,m) graphs using linear-time algorithms  (Batagelj and 
Brandes 2005). In this section, we provide the details of the algorithm we use to sample 
from G(n,m, k) . To this end, we first introduce a basic approach in “The straightforward 
approach” section and explain why this method was not utilized. Subsequently, we pre-
sent a slightly more sophisticated method in “The efficient approach” section, which we 
use to efficiently draw samples from G(n,m, k).

The straightforward approach

One way to generate a graph from G(n,m) is to use a variant of the Bollobás config-
uration model  (Bollobás 1980), also known as the random sequence model. This 
model generates a sequence (x1, x2, . . . , x2m) in which the elements are sampled uni-
formly at random from the set of vertices V = {v1, . . . , vn} and the edges consist of 
E = {{xi, xi+1}|i ∈ {1, 2, . . . ,m}} . Conditioned on the resulting graph being simple (with-
out duplicate edges and self-loops), the generated graphs are sampled exactly uniformly 
from G(n, m). This procedure can also be viewed as a balls and bins process, explained 
below. 

1	 Let e1, . . . , em represent the edges to be added. Let et,1, et,2 represent the half-edges 
(also known as stubs) corresponding to et , where t ∈ {1, . . . ,m}.

2	 Assign half-edges to the n vertices v1, ..., vn uniformly at random.
3	 If et,1 is assigned to vi and et,2 to vj , then add an edge between vi and vj.
4	 If the resulting graph is simple, output it; otherwise, restart from step one.
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To modify this procedure for sampling from G(n,m, k) , it suffices to modify the second 
step above by randomly assigning half-edges to the n vertices, with the additional con-
dition that each vertex has at least k half-edges assigned. If 2m = cn and c ≥ k ≥ 1 for 
some constants c and k, the probability that the resulting graph is simple in the last step 
is �(1) (Bollobás et al. 2000). Therefore, this approach requires O(n) time in expectation 
to sample from G(n,m, k) . Although this approach is straightforward and theoretically 
efficient, based on our implementation, it is quite inefficient in practice. This is likely due 
to the large constants hidden by the asymptotic notation.

The efficient approach

Here, we present a detailed exposition of an algorithm that leverages a theoretical result 
from Janson and Luczak (2008) to efficiently sample from G(n, nk , k) , where k ≥ 3 is 
some constant. Consider a graph G, which is the k-core of a larger graph drawn from 
G(ñ, m̃) . The k-core may be either empty or have a distribution G(υ,µ, k) with υ and µ 
denoting the (random) number of vertices and edges in the k-core, respectively (Anastos 
and Frieze 2020). In case we condition on υ = n and µ = m , the distribution of G is 
equivalent to G(n,m, k) . In Algorithm  1, we exploit the last observation to efficiently 
sample from G(n, nk , k) by using rejection sampling and selecting appropriate values of ñ 
and m̃ based on Theorem 1 (Theorem 1.1 of Janson and Luczak (2008)) such that the 
event υ = n and µ = nk occurs almost surely. To state Theorem  1, we define 
ψk(x) := 1− e−x

∑k−1
i=1

xi

i!  and ck := minx>0 φk(x) , where φk(x) := x
ψk−1(x)

 . These func-
tions are essential in characterizing the threshold for the emergence of k-cores in ran-
dom graphs.

Theorem  1  (Janson and Luczak 2008) Let G be a graph drawn from G(n,m) where 
2m = cn for some constant c. Furthermore, let k ≥ 3 be a constant and assume that n 
is large enough. If c < ck , then the k-core of G is almost surely empty. On the other hand, 
if c > ck , then the k-core of G almost surely contains ψk(x

∗)n vertices and 12x
∗ψk−1(x

∗)n 
edges, where x∗ is the largest among the two unique solutions of φk(x) = c.

Note that we use the bisection method to efficiently attain the value of x on line 1 
of Algorithm 1 utilizing the fact that f(x), as defined in Algorithm 1, is monotonically 
decreasing and has a root in (k, 2k), based on Lemma A1 in Bollobás et al. (2000).
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In this section, we proposed Algorithm  1 to sample uniformly from G(n,  nk,  k) 
based on Theorem 1 for any constant k ≥ 3 . However, the algorithm lacks explicit ver-
ification of certain conditions of Theorem 1, for instance, whether φk(x) = c > ck for 
k ≥ 3 when x is selected as in Algorithm 1. Therefore, we could not establish probabil-
istic bounds on the algorithm’s running time or theoretically guarantee that the algo-
rithm terminates at all. Nevertheless, for any constant k ≥ 3 , the algorithm samples 
exactly uniformly from G(n, nk, k) conditioned on successful termination, as implied 
by the argument presented at the beginning of the section. Our empirical evaluations 
of the algorithm demonstrate that its termination time is reasonable for the range of k 
studied in our experiments.

Theory
Under the condition that the minimum degree is at least k for a constant k ≥ 3 , we show 
in Theorem 2 that almost all graphs with a constant average degree are not only con-
nected but also provably robust against any vertex removal strategy.

In the following paragraph, we briefly outline the key intermediary results and how 
they are used to lead up to Theorem 2.

By using the results of Benjamini et al. (2014), we first demonstrate in Lemma 1 that 
a random graph conditioned on having a degree sequence of size n, where all elements 
are between 3 and n0.02 , has a conductance that is lower-bounded by a constant α > 0 . 
Then we use Lemma 1 to show in Lemma 2 that almost all graphs on n vertices with a 
constant average degree and a minimum degree of at least k ≥ 3 have �(1/ log n) vertex 
expansion. A corollary of Lemma 2.2 in Friedman and Krivelevich (2021), stated in this 
section as Lemma 3, allows us to use this vertex expansion property to establish provable 
robustness in Theorem 2.

Lemma 1  Given a graphical sequence D = (d1, . . . , dn) with 
∑n

i=1 di ∈ O(n) and 
n0.02 ≥ d1 ≥ dn ≥ 3 , there exists a constant α > 0 such that for sufficiently large n, a ran-
dom simple graph G with degree sequence D almost surely satisfies �(G) ≥ α.

Proof
Let M be a graph with degree sequence D generated via the random pairing model. This 
model assigns di dots to each vertex in the set {v1, v2, . . . , vn} , and then pairs the dots uni-
formly at random. An edge is drawn between vertex vi and vertex vj for each dot corre-
sponding to the i-th vertex paired with a dot corresponding to the j-th vertex. This can 
result in multiple edges between two vertices, as well as some vertices having self-loops. 
However, conditioned on M being simple, it is distributed exactly uniformly among all 
simple graphs with degree sequence D.

Let Aα denote the event that there exists a constant n0 ∈ N such that �(M) < α for all 
n ≥ n0 , and let B denote the event that M is simple. In light of the above observation, it 
suffices to show Pr(Aα|B) ∈ o(1) for some constant α > 0 . Since 

∑n
i=1 di ∈ O(n) , we can 

use Lemma 5.2 in Benjamini et al. (2014) to obtain Pr(B) ∈ �(1) . Therefore
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Under our assumptions, Lemma 5.3 in Benjamini et al. (2014) implies there is a constant 
ϑ > 0 such that Pr(Aϑ) ∈ o(1) . Given this, the above inequality yields Pr(Aϑ |B) ∈ o(1) . 
� �

Lemma  2 states that, for a constant k ≥ 3 , almost all graphs with constant average 
degree and a minimum degree of at least k exhibit �(1/ log n) vertex expansion. To prove 
Lemma 2, we show that such graphs almost surely satisfy the degree sequence condi-
tions specified in Lemma 1 and have a maximum degree of o(log n) . We then complete 

the proof by combining Lemma 1 with the inequality h(G) ≥ δ(G)
�(G)

�(G) , which holds for 
any graph G.

Lemma 2  Let G be a graph drawn from G(n,m, k) , where 2m = cn and c ≥ k ≥ 3 for 
some constants c, k. If n is large enough, then almost surely h(G) ∈ �(1/ log n).

Proof
Note that δ(G) ≥ 3 and h(G) ≥ δ(G)

�(G)
�(G) . Therefore, it is sufficient to show 

that there is almost surely a constant α > 0 such that if n is large enough, then 
Pr

[
(�(G) < α)

⋃
(�(G) > log n)

]
∈ o(1) . By applying the union bound, we have

Therefore, it suffices to show that there is almost surely a constant α > 0 such that if n is 
large enough, then Pr[�(G) < α] ∈ o(1) and Pr[�(G) > log n] ∈ o(1).

We first show Pr[�(G) > log n] ∈ o(1) . To this end, part (ii) of Lemma 1 in Bollobás 
et al. (2000) suggests that, under the assumptions of the theorem, it is sufficient to show 
that the maximum occupancy of a box (or bin) is o(log n) in a model called O(n, 2m, k) . 
In this model, 2m balls are thrown uniformly at random into n bins, conditioned on 
each bin having at least k balls. Within the proof of Lemma 1 in Bollobás et al. (2000), 
it is explicitly stated that: The maximum occupancy of any box in O(n, 2m, k) is o(log n) 
with the probability of the complementary event n−O(log log n) . This establishes that 
Pr[�(G) > log n] ∈ o(1) , as we wanted to show. Next, we prove Pr[�(G) < α] ∈ o(1).

Let ξα be the event that there exists a constant n0 ∈ N such that �(G) < α for all n ≥ n0 . 
Consider D = {D(G) : G ∈ G(n,m, k)} and let D̃ be a subset of degree sequences in D 
where the maximum degree is at most log n . We can write Pr[ξα] as

We prove that Aα ∈ o(1) and Bα ∈ o(1) , for some constant α > 0 . Note that

Pr(Aα|B) =
Pr(Aα ∩ B)

Pr(B)
≤

Pr(Aα)

Pr(B)
∈ O(Pr(Aα)).

Pr

[
(�(G) < α)

⋃
(�(G) > log n)

]
≤ Pr[�(G) < α] + Pr[�(G) > log n].

∑

d∈D\D̃

Pr[ξα|D(G) = d]Pr[D(G) = d]

︸ ︷︷ ︸
:=Aα

+
∑

d∈D̃

Pr[ξα|D(G) = d]Pr[D(G) = d]

︸ ︷︷ ︸
:=Bα

.
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The right-hand side of the above inequality is Pr[�(G) > log n] , which we have shown is 
asymptotically zero, under our assumptions. Hence, Aα ∈ o(1) . Note that

As the assumptions of Lemma 1 are satisfied for all d ∈ D̃ , we can use it to show the 
existence of a constant ϑ > 0 such that the right-hand side of the inequality above is 
asymptotically zero for α = ϑ . Therefore, we have Pr[ξϑ ] = Aϑ + Bϑ ∈ o(1) . 

Lemma 3 can be viewed as a direct corollary of Lemma 2.2 in Friedman and Krivel-
evich (2021), by observing that the notion of (n2 , ν)-expander in Friedman and Krivel-
evich (2021) is equivalent to the definition of ν-vertex expander given in this paper. 
Using Lemma 3 and the expansion properties of graphs drawn from G(n,m, k) , as stated 
in Lemma 2, we can prove Theorem 2.1

Lemma 3  (Friedman and Krivelevich 2021) Let G = (V ,E) be a ν-expander graph with 
n vertices, where 0 < ν ≤ 1 . For any 0 < ǫ ≤ ν2

16 and V0 ⊆ V  with |V0| ≤ ǫn , there exists 
U ⊆ V \V0 such that |U | ≥ (1− 3ǫ

ν
)n and G[U] is a ν2-expander.

Theorem  2  Let G be a graph drawn from G(n,m, k) , where 2m = cn and c ≥ k ≥ 3 
for some constants c,  k. If n is large enough, then almost surely, G is connected and 
RG(B) = 1− o(1) for any vertex sequence B that satisfies |B| ∈ o(n/ log2 n).

Proof
By Lemma 2, G is almost surely a ν-expander where ν = α

log n for some constant α > 0 . 
Since n is assumed to be large enough, it suffices to show that for 0 < ν ≤ 1 , the claims of 
the theorem hold when G is a ν-expander with n vertices.

For the sake of contradiction, assume G is not connected; then, it must have at least two 
connected components. Let A be the component with the smallest number of verti-
ces. Obviously, ∂A = ∅ and |A| ≤ n/2 . However, since G is a ν-expander with ν > 0 and 

Aα :=
∑

d∈D\D̃

Pr[ξα|D(G) = d]︸ ︷︷ ︸
≤1

Pr[D(G) = d] ≤
∑

d∈D\D̃

Pr[D(G) = d].

Bα :=
∑

d∈D̃

Pr[ξα|D(G) = d]Pr[D(G) = d]

≤ max
d∈D̃

Pr[ξα|D(G) = d]
∑

d∈D̃

Pr[D(G) = d]

︸ ︷︷ ︸
Pr

[
D(G)∈D̃

]
≤1

≤ max
d∈D̃

Pr[ξα|D(G) = d].

�

1  A weaker version of Theorem 1 in our preliminary paper (Hasheminezhad and Brandes 2023) contained an error in 
the proof, which arose from the incorrect use of Lemma 5.3 from Benjamini et al. (2014). Although the lemma provides 
a statement on conductance, it was erroneously used directly to argue about vertex expansion, leading to the possibly 
incorrect conclusion that for some constant α > 0 , almost all graphs G drawn from G(n,m, k) satisfy h(G) ≥ α , under 
the assumptions of the theorem. We have now rectified this issue by using a well-known inequality that makes a connec-
tion between the concepts of vertex expansion and conductance. Although our revised approach can only establish an 
almost sure vanishing vertex expansion, we could adapt our analysis to provide improved theoretical guarantees com-
pared to the preliminary version of the paper.
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|A| ≤ n/2 , we have |∂A| ≥ ν|A| > 0 , which contradicts ∂A = ∅ . Given that assuming G is 
not connected leads to a contradiction, G must be connected.
It remains to show the second part of the theorem. If |B| = 0 , we are done. So, we assume 
|B| > 0 and let V0 denote the set of vertices in B. Since n is assumed to be sufficiently 
large and |B| = |V0| ∈ o(n/ log2 n) , we can assume |V0| ≤ ǫn , where ǫ = ν2

16 . Given that 
all the requirements of Lemma 3 are met, we can apply it to conclude the existence of 
U ⊆ V \V0 such that G[U] is a 12ν-vertex expander and |U | ≥ (1− 3ǫ

ν
)n . By an argument 

similar to the one presented in the previous paragraph, we can conclude that G[U] is 
connected. Therefore, the largest connected component of G[V \V0] must also contain 
at least (1− 3ǫ

ν
)n or equivalently (1− 3ν

16 )n vertices. Given the definition of RG(B) , this 
concludes the proof.�  �

We can see from Theorem 2, that a graph drawn from G(n, m, k) almost surely has 
asymptotically optimal robustness when the fraction of vertices removed is o(n/ log2 n) 
(e.g., when at most n0.99 vertices are removed).

In studies on the robustness of networks such as Albert et  al. (2000), scale-free 
instances with a constant average degree are compared to size-matching random net-
works. It is known that such random networks with a constant average degree are 
almost surely disconnected  (Erdős and Rényi 1959; Molloy and Reed 1998). However, 
our results in this section suggest that such random networks become both connected 
and provably robust when their minimum degree is constrained. Therefore, the conclu-
sions of Albert et al. (2000) may change significantly in a fairer setting where size-match-
ing random networks also have a minimum degree at least as large as that of scale-free 
instances compared to them. This observation was one of the main motivations for our 
experiments in “Experiments” section.

Experiments
The conclusions in Albert et  al. (2000) primarily stemmed from experiments on syn-
thetic scale-free networks generated by PA(n, k) . We use the same model of synthetic 
networks to compare the robustness of preferential-attachment networks with size-
matching random networks and random networks of the same size whose minimum 
degree is at least as large. To this end, we generate 100 networks using the model PA(n, k) 
with n = 10,000, k = 3 , and then draw an equal number of networks from G(n,m) and 
G(n,m, k) , respectively, where m = nk.2 For each of the 300 networks, we then compute 
their robustness scores under random failures and targeted attacks, where the fraction of 
removed vertices is β ∈ {0.05, 0.1, 0.2}.

The results shown in Fig.  1 confirm that preferential-attachment networks are 
“robust-yet-fragile” when compared to random graphs of the same size, i.e., they are 
more fragile against targeted attacks but more robust against random failures. How-
ever, such networks are more vulnerable against both, targeted attacks and random 

2  When sampling random graphs from G(n,m) , we reject instances with less than 96% of their vertices in the largest 
connected component and discard all vertices outside the largest connected component. Note that such steps are essen-
tial to ensure an equitable setting, where the generated random graphs are initially connected and have roughly the same 
size as the preferential-attachment graphs compared to them.
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failures, than size-matching random networks constrained to have at least the same 
minimum degree. We corroborate this finding in the following sections under varying 
conditions.

Note that the minimum degree of graphs appears to be a crucial property for their 
robustness. This is suggested asymptotically by Theorem  2 and is empirically evi-
denced, since the robustness scores of the graphs drawn from G(n,m, k) are very close 
to the theoretical upper bounds indicated by dashed lines. This is further investigated 
in “Consistency of near-optimal robustness” section.

Sensitivity to the choice of the fraction of removed vertices

In this section, we evaluate the sensitivity of our observed patterns in Fig.  1 to the 
choice of the proportion of removed vertices. For this purpose, we repeat the pro-
cedure to create Fig.  1, but instead of choosing moderate proportions of removed 
vertices β ∈ {0.05, 0.1, 0.2} , we choose relatively higher proportions by increasing 
each previously considered proportion by 0.2, i.e., we consider β ∈ {0.25, 0.3, 0.4} . 
The result is shown in Fig. 2, from which we observe that the claimed patterns based 
on Fig. 1 still hold in general. The main difference is that the robustness of the ran-
dom networks drawn from G(n,m, k) becomes less optimal when the proportion of 
removed vertices increases noticeably.

Fig. 1  Robustness of networks generated from PA(n, k) compared to networks drawn from G(n,m) and 
G(n,m, k) after 5% , 10% , and 20% of vertices were removed in targeted attacks or random failures, where 
n = 10,000 , m = 30,000 , and k = 3 . The dashed lines represent the upper bounds for the robustness score as 
given in “Network robustness” section
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Sensitivity to the choice of parameters in the PA model

Here, we evaluate the sensitivity of the patterns inferred based on Figs. 1 and 2, to the 
variation of parameters n and k in the underlying preferential attachment model PA(n, k) . 
To this end, we vary k ∈ {3, 4, 5} for fixed n = 10,000 and n ∈ {1000, 10,000, 20,000} for 
fixed k = 3 , all else being equal and precisely as in the setting presented at the beginning 
of “Experiments” section.

For each pair of n and k considered, we use z-scores to compare the networks gener-
ated from PA(n, k) with random networks drawn from G(n,m) and random networks 
drawn from G(n,m, k) , where m = nk.3 The comparison refers to their expected robust-
ness score when β ∈ {0.05, 0.1, 0.2, 0.25, 0.3, 0.4} fraction of vertices are removed under 
targeted attacks or random failures. The obtained z-scores are visualized in Fig. 3. Our 
results suggest that networks generated by using preferential attachment are consist-
ently more robust against random failures but more fragile against targeted attacks when 
compared to random networks of the same size. This is underscored by the fact that the 
points corresponding to the latter networks are located in the fourth quadrants in Fig. 3. 
However, we note that preferential-attachment networks are always more vulnerable to 
targeted attacks and random failures when compared to random networks of the same 

Fig. 2  Robustness of networks generated from PA(n, k) compared to networks drawn from G(n,m) and 
G(n,m, k) after 25% , 30% and 40% of vertices were removed in targeted attacks or random failures, where 
n = 10,000 , m = 30,000 , and k = 3 . The dashed lines represent the upper bounds for the robustness score as 
given in “Network robustness” section

3  Given a group X and a reference group Y, both of size N, with respective means µX ,µY and standard deviations σX , σY , 
we compute the corresponding z-score as 

√
N(µX − µY )/(

√
σ 2
X
+ σ 2

Y
) . Its positive and negative values represent a ten-

dency of elements in X to reach values above and below the reference mean µY , respectively.
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size whose minimum degree is at least as large. This is underscored by the fact that the 
points corresponding to the latter networks are located in the first quadrants in Fig. 3. 
We note that our claimed patterns hold for varying n or k, however, the patterns we 
assert become more significant as n increases and less significant as k increases. In other 
words, the patterns we discuss are most evident for larger and sparser networks, which 
are generally of greater relevance.

Sensitivity to the choice of the instances

In Figs. 1 and 2, the cohesion of points belonging to the same network type and their 
separation from points corresponding to other network types can be observed for any 
fixed proportion of removed vertices β ∈ {0.05, 0.1, 0.2, 0.25, 0.3, 0.4} . This observation 
suggests that the patterns inferred from these figures do not depend on a particular 
choice of instances from the underlying network models. To measure this quantitatively, 
we compute a silhouette score for each fixed β using the Euclidean distance metric by 
assigning scattered points of each specific type of network to a group.4 The computed 
silhouette scores are presented in Table 1.

Fig. 3  In the column on the left, the larger marker sizes correspond to the larger values of 
n ∈ {1000, 10,000, 20,000} for fixed k = 3 . In the column on the right, the larger marker sizes correspond to 
the larger values of k ∈ {3, 4, 5} for fixed n = 10,000

4  Given a set of objects, each assigned to a group, and a distance metric defined between all pairs of these objects, 
the silhouette score measures the similarity of an object to its group (cohesion) compared to other groups (separa-
tion) (Rousseeuw 1987). This score ranges from −1 to +1 , with higher scores indicating that the data are well clustered 
and lower scores indicating that the data are poorly clustered.
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These scores indicate how well instances of the same network type are clustered and 
how well these clusters separate based on their robustness scores when the networks 
contained in each cluster are subjected to targeted attacks or random failures. From the 
results in Table 1, we can observe that the distinction of the network clusters considered 
with respect to their robustness is consistently high and is not particularly affected by 
the choice of specific instances. To assess the sensitivity of these observation to changes 
in the parameters of the underlying preferential attachment model PA(n, k) , we vary 
k ∈ {3, 4, 5} for a fixed n = 10,000 and vary n ∈ {1000, 10,000, 20,000} for a fixed k = 3 , 
all else being the same. We give in Table 2 for each β ∈ {0.05, 0.1, 0.2, 0.25, 0.3, 0.4} the 
corresponding silhouette scores. As highlighted by the bold values in Table 2, the cohe-
sion within each group and the separation between different groups increase with n and 
decrease with k when the underlying preferential-attachment networks are instances of 
PA(n, k) . This implies that the distinction in robustness between the different network 
types that we consider becomes more apparent when the focus is on larger and sparser 
networks.

Furthermore, Tables  1 and  2, indicate that for each fixed combination of n and k, 
the corresponding silhouette scores increase with the fraction of removed vertices β . 

Table 1  Silhouette scores corresponding to network clusters in Figs. 1 and 2

n = 10,000, k = 3 β = 0.05 β = 0.1 β = 0.2 β = 0.25 β = 0.3 β = 0.4

0.840 0.882 0.910 0.915 0.924 0.930

Table 2  For each fixed combination of n and k, we generate three clusters of networks, as described 
at the beginning of “Experiments” section. Then, for each fixed β ∈ {0.05, 0.1, 0.2, 0.25, 0.3, 0.4} , we 
compute a silhouette score for the three corresponding groups, using the same procedure that we 
used to obtain the values in Table 1

Effect of n,β k = 3

n = 1000 n = 10,000 n = 20,000

(a) Fixed k and varying n,β

 β = 0.05 0.498 0.840 0.891
 β = 0.10 0.632 0.882 0.919
 β = 0.20 0.719 0.910 0.939
 β = 0.25 0.720 0.915 0.940
 β = 0.30 0.734 0.924 0.944
 β = 0.40 0.738 0.930 0.946

Effect of k,β n = 10,000

k = 3 k = 4 k = 5

(b) Fixed n and varying k,β

 β = 0.05 0.840 0.665 0.374

 β = 0.10 0.882 0.788 0.573

 β = 0.20 0.910 0.851 0.717

 β = 0.25 0.915 0.871 0.755

 β = 0.30 0.924 0.882 0.787

 β = 0.40 0.930 0.889 0.832
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This means that as the fraction of removed vertices increases, the results become less 
dependent on a particular choice of network instances.

Sensitivity to adaptive targeted attacks

In this section, we investigate whether the patterns observed in Figs.  1 and  2 remain 
consistent under adaptive targeted attacks. In these attacks, the vertices with the high-
est current degree are removed first, rather than those with the highest initial degree. 
Such attacks were proposed in Broder et  al. (2000) and have been shown to be more 
effective in dismantling networks than those based on initial degree (Holme et al. 2002; 
Wu and Holme 2011). To this end, we consider nine combinations of n and k with 
n ∈ {1000, 10,000, 20,000} and k ∈ {3, 4, 5} , and draw 100 networks from each of the 
PA(n, k),G(n,m) , and G(n,m, k) models, where m = nk.

Figure 4 reports the average robustness score (over 100 instances) for each network 
model when the β ∈ {0.01, 0.02, . . . , 0.99} portion of the vertices are removed in adap-
tive targeted attacks. We observe that the networks drawn from G(n,m) and G(n,m, k) 
are very similar in terms of their robustness against adaptive targeted attacks. Moreover, 
we observe that the networks drawn from these two models are noticeably more robust 
than those generated from PA(n, k) . However, note that this differentiation in robustness 
does not depend appreciably on n but becomes apparent sooner (i.e., for a lower fraction 
of vertices removed) when the average degree of the generated graphs is lower (i.e., when 
k is smaller).

In general, we can conclude that the patterns claimed based on the observations made 
in Figs. 1 and 2 are consistent under adaptive targeted attacks.

Fig. 4  The expected robustness score of networks when β ∈ {0, 0.01, . . . , 0.99, 1} fraction of the vertices 
are removed by adaptive targeted attacks. Here, we consider m = nk for each fixed pair of n and k where 
n ∈ {1000, 10,000, 20,000} and k ∈ {3, 4, 5}
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Consistency of near‑optimal robustness

In our experiments, we have used networks drawn from G(n,m, k) , where m = nk . For 
n = 10,000, k = 3 , we have seen in Figs. 1 and 2 that these networks exhibit near-optimal 
robustness against non-adaptive targeted attacks based on initial degree and random 
failures when only a moderate fraction of their vertices are removed. Here, we evaluate 
the sensitivity of this pattern to adaptive targeted attacks based on the current degree 
and its sensitivity to variations in n, k, and β . To this end, we consider nine combinations 
of n and k with n ∈ {1000, 10,000, 20,000} and k ∈ {3, 4, 5} . Then we draw 100 networks 
from G(n,m, k) and compute their average robustness score normalized to the maxi-
mum achievable robustness score when β ∈ {0, 0.01, . . . , 0.99, 1} portion of the vertices 
are removed under adaptive targeted attacks, non-adaptive targeted attacks, or random 
failures.5 The result is shown in Fig. 5.

When not more than 30% of the vertices are removed by targeted attacks or random 
failures, Fig. 5 illustrates the consistent near-optimal robustness of the networks drawn 
from G(n,m, k) in the case m = nk for a constant k ≥ 3 . We can see that this 30% thresh-
old does not depend appreciably on n but increases with k. For example, when k = 5 , we 
see across different n that the robustness score does not noticeably deviate from its opti-
mal value when no more than 50% of vertices are removed in targeted attacks or random 
failures.

From the discussions here, we can conclude that for a constant k ≥ 3 and m = nk , the 
near-optimal robustness of networks drawn from G(n,m, k) is consistent as long as the 
fraction of vertices removed by targeted attacks or random failures is not too large.

Fig. 5  The expected robustness score of networks drawn from G(n,m, k) normalized by the maximum 
achievable robustness score when β ∈ {0, 0.01, . . . , 0.99, 1} fraction of the vertices are removed by adaptive 
targeted attacks, non-adaptive targeted attacks, or random failures. Here, we consider m = nk for each fixed 
pair of n and k where n ∈ {1000, 10,000, 20,000} and k ∈ {3, 4, 5}

5  Note that for any connected graph, the maximum achievable robustness score after removing β portion of the vertices 
is 1− β/2+ o(1) , as given in “Network robustness” section.
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As a side observation, we can also see that the difference between adaptive and non-
adaptive targeted attacks in dismantling the graphs drawn from G(n, nk , k) becomes 
apparent only for higher fractions of removed vertices and becomes more pronounced 
as k increases, but does not depend appreciably on n.

Figure  5 shows that, for each considered vertex removal strategy, there is a distinct 
threshold value β∗ for the fraction of removed vertices β , at which the robustness of net-
works drawn from G(n, nk , k) deviates considerably from the optimal value. Upon closer 
investigation, we realized that this threshold corresponds to the point where the sec-
ond-largest connected component attains its maximum size during the vertex removal 
process. Specifically, for β < β∗ , the size of the second-largest connected component 
generally increases, while it starts to decrease for β > β∗ . At β = β∗ , it is noteworthy 
that the graph’s average degree is strictly less than two, and its k-core is empty for all 
k ≥ 3 . This implies that the graph is 2-degenerate, meaning the maximum degree in 
every induced subgraph is at most 2.

It is desirable to establish a lower bound for β∗ that is independent of the chosen ver-
tex removal strategy. To this end, note that the robustness and density of graphs drawn 
from G(n,m, k) increase with m for fixed n and k. Therefore, random k-regular ones are 
the least robust and least dense of such graphs where m attains its minimum possible 
value of 12kn . For k ≥ 3 , it has been shown that an optimal attacker must remove at least 

a fraction k−2
2k−2 of all vertices to partition a random k-regular graph into connected com-

ponents of sublinear size (see “Bounds on optimal attacks” in Balashov et al. 2019). As a 
result, for graphs drawn from G(n,m, k) , we can conclude that β∗ ≥ k−2

2k−2 when k ≥ 3 , 
regardless of the vertex removal strategy employed.

Preferentiality and robustness
In this section, we aim to experimentally investigate how preference in attachment 
affects the robustness of incrementally constructed networks which inherently have a 
minimum degree of at least k, such as those generated by the preferential attachment 
model PA(n, k) . To isolate the effects of preference in attachment, we also explore the 
similar UA(n, k) model where newly added vertices connect to k existing vertices selected 
uniformly at random, without a preference for highly connected vertices. Since both 
PA(n, k) and UA(n, k) networks belong to G(n,  m,  k) where m = nk , we also compare 
them with typical members of this class using the G(n,m, k) model.

In our experiments, we vary n ∈ {1000, 10,000, 20,000} for a fixed k = 3 , and 
k ∈ {3, 4, 5} for a fixed n = 10,000 . For each fixed pair of n and k, we draw 100 instances 
from the following network models: UA(n, k) , PA(n, k) , and G(n,m, k) ; where m = nk . 
For each fixed pair of n and k, we then compare the robustness of the corresponding 
generated networks against targeted attacks based on the initial degree and random fail-
ures when β ∈ {0.05, 0.1, 0.2, 0.25, 0.3, 0.4} fraction of the vertices are removed. For this 
purpose, we used z-scores as described in “Sensitivity to the choice of parameters in the 
PA model” section.

The results depicted in Fig.  6 indicate that UA(n, k) graphs are consistently more 
robust under both targeted attacks and random failures than PA(n, k) graphs, but more 
fragile than G(n,m, k) graphs where m = nk . We also observe that as n increases, this 
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pattern becomes more pronounced for a fixed fraction of removed vertices β , while 
it diminishes as k increases. Therefore, we can conclude that this trend is particularly 
applicable to larger and sparser networks. Notably, our findings indicate that a prefer-
ence for attachment to well-connected vertices in network growth models does not 
enhance network robustness, but in fact, affects it adversely.

Conclusions
We have shown that, for any constant k ≥ 3 , almost all graphs in which the number of 
edges is linear in the number of vertices (i.e., the average degree is upper-bounded by 
a constant) and the minimum degree is at least k, are connected and provably robust 
against any vertex removal strategy.

Motivated by this new theoretical result, we have shown experimentally that the 
dictum “robust-yet-fragile” is not a fitting characterization of preferential-attachment 
networks, let alone scale-free networks in general, because it stems from a poorly 
chosen baseline. It appears that the previously assessed robustness is largely due to 
their constant minimum degree, rather than their skewed degree distribution.

Furthermore, we have shown that in the context of network growth models, any 
preference for attachment to well-connected vertices does not confer an advantage in 
terms of robustness against random failures or targeted attacks.

Fig. 6  In the column on the left, the larger marker sizes correspond to the larger values of 
n ∈ {1000, 10,000, 20,000} for fixed k = 3 . In the column on the right, the larger marker sizes correspond to 
the larger values of k ∈ {3, 4, 5} for fixed n = 10,000
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Our results show, contrary to the common belief, that preferential attachment graphs 
are not particularly robust against random failures. What robustness they have is a con-
sequence of a lower-bounded minimum degree, which is guaranteed by the attachment 
process. The skewed degree distribution obtained from preferential attachment is not 
strengthening robustness but, in fact, reducing it when compared to uniformly random 
attachment.
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