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a b s t r a c t

Verifying probabilistic forecasts for extreme events is a highly active research area
because popular media and public opinions are naturally focused on extreme events,
and biased conclusions are readily made. In this context, classical verification methods
tailored for extreme events, such as thresholded and weighted scoring rules, have
undesirable properties that cannot be mitigated, and the well-known continuous ranked
probability score (CRPS) is no exception.

In this paper, we define a formal framework for assessing the behavior of forecast
evaluation procedures with respect to extreme events, which we use to demonstrate
that assessment based on the expectation of a proper score is not suitable for extremes.
Alternatively, we propose studying the properties of the CRPS as a random variable by
using extreme value theory to address extreme event verification. An index is introduced
to compare calibrated forecasts, which summarizes the ability of probabilistic forecasts
for predicting extremes. The strengths and limitations of this method are discussed using
both theoretical arguments and simulations.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

By definition, the rarity of extreme events makes it
ifficult to issue relevant forecasts and performance as-
essments are even more challenging. In particular, the
arity of extreme events means that verification schemes
ust be built and understood in a probabilistic sense. The
eneral framework for probabilistic forecast evaluation
ompares an observation y with a probabilistic forecast F
epresented by its cumulative distribution function (cdf).

∗ Corresponding author at: CNRM, Université de Toulouse, Météo-
France, CNRS, Toulouse, France.
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0169-2070/© 2022 The Author(s). Published by Elsevier B.V. on behalf of Inte
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
The framework also assumes that y is drawn from a
random variable Y with cdf G. To better utilize forecasts,
it is generally convenient and even recommended (Ferro
& Stephenson, 2011) to further assume that the forecast
F is calibrated (Dawid, 1984; Diebold, Gunther, & Tay,
1997), i.e., that the predictive distribution resembles the
distribution of the observations given the information
contained in the forecast. For a formal definition of auto-
calibration (referred to as calibration in the following),
we refer the reader to the studies by Tsyplakov (2011)
and Strähl and Ziegel (2017) summarized in Appendix A.

Calibrated forecasts can generally be evaluated based
on their sharpness, also called refinement by Winkler,
Munoz, Cervera, Bernardo, Blattenberger, Kadane, et al.
rnational Institute of Forecasters. This is an open access article under
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(1996), which usually refers to their spread. This leads to
the paradigm of ‘‘maximizing sharpness subject to cali-
bration’’ introduced by Gneiting, Balabdaoui, and Raftery
(2007) and later formally justified by Tsyplakov (2011).

Probabilistic forecasting has become increasingly pop-
lar in recent years in various fields, such as economics
nd finance (Galbraith & Norden, 2012), demography and
ocial science (Raftery & Ševčíková, 2021), health (Henzi,
leger, Hilty, Wendel Garcia, & Ziegel, 2021), energy (Hong
inson, Fan, Zareipour, Troccoli, & Hyndman, 2016), hy-
rology and hydraulics (Tiberi-Wadier et al., 2021). In this
tudy, we focus on weather probabilistic forecasts (Leut-
echer & Palmer, 2008). Indeed, probabilistic forecasts
re now issued by most national weather services and F
s known through a sample of finite size called an ‘‘en-
emble’’ (e.g., see Zamo & Naveau, 2017). In this context,
orecast verification is performed by computing scoring
ules such as the continuous ranked probability score
CRPS) (Bröcker, 2012; Epstein, 1969; Hersbach, 2000)

RPS(F , y) =

∫
∞

−∞

(F (x) − 1{x ≥ y})2 dx,

= EF |X − y| −
1
2
EF |X − X ′

|, (1)

where y ∈ R, and X and X ′ are independent random
variables with the common cdf F . The CRPS is attractive
because it does not require predictive densities, while it
is inferred non-parametrically and it has a simple inter-
pretation. The right-hand side of Eq. (1) decomposes the
CRPS into a calibration and a sharpness term (Gneiting
& Raftery, 2007) in order (alternative decompositions are
also available; see Bessac and Naveau (2021), Taillardat,
Mestre, Zamo, and Naveau (2016) and Appendix B).

Proper weighted scoring rules for extreme events fore-
cast evaluations were introduced by Gneiting and Ranjan
(2011) and Diks, Panchenko, and Van Dijk (2011). For a
non-negative function w(x), the weighted CRPS

wCRPS(F , y) =

∫
∞

−∞

(F (x) − 1{x ≥ y})2w(x) dx, (2)

= EF |W (X) − W (y)| −
1
2
EF |W (X) − W (X ′)|,

with W (x) =
∫ x

−∞
w(t)dt , aims to emphasize a region

of interest, such as distributional tails. When w is con-
tinuous, an alternative expression of the weighted CRPS
is available, as given by Appendix B. The choice of the
weight function w(x) is complex and it depends on the
different stakeholders, such as forecast users and
forecasters (e.g., see Ehm, Gneiting, Jordan, and Krüger
(2016), Gneiting and Ranjan (2011), Patton (2014), Smith,
Suckling, Thompson, Maynard, and Du (2015), Taillardat
(2021b)). Even in the hypothetical case where w(x) can
be objectively defined, it is essential that the verifica-
tion process is conducted based on the whole set of
observations (Lerch, Thorarinsdottir, Ravazzolo, Gneiting,
et al., 2017), but it is not clear whether the correspond-
ing weighted CRPS correctly discriminates between two
competitive forecasts with respect to extreme events.

In this study, we show that the expected weighted
CRPS cannot discriminate forecasts with different ex-
tremal tail behaviors, which is a potentially redhibitory
1449
defect for extremal evaluation. To address this issue, we
view the CRPS as a random variable, and its tail behavior
is derived and compared to the tail regime of observations
using extreme value theory (EVT) (e.g., see De Haan & Fer-
reira, 2007). This comparison is valid for forecasts that are
known to be calibrated or that have been re-calibrated.

The remainder of this paper is organized as follows. In
Section 2, we analyze the weighted CRPS with respect to
the notion of tail equivalence, which is the main basis of
EVT. In particular, we propose a benchmark for comparing
the tail properties of forecast verification tools, thereby
allowing us to identify the shortcomings of the CRPS and
its weighted counterpart for scoring extreme events. In
Section 3, we study the CRPS as a random variable and we
make theoretical links between its tail behavior and the
observational tail distribution. These mathematical con-
nections allow us to propose and study a new index for
assessing the capacity of calibrated probabilistic forecasts
with respect to extreme events. The utility and possible
disadvantages of this index and potential future research
are discussed in Section 4. Index calculations were con-
ducted with the R package extremeIndex (Taillardat,
2021a) in this study.

2. Limitations of the (w)CRPS as a proper scoring rule
for extremes

2.1. Tail modeling using EVT

Based on the pioneering research of Gumbel (1935)
and De Haan (1970), EVT provides a theoretically justified
framework for modeling the tail of random variables, par-
ticularly excesses above a large threshold (e.g., see Beir-
lant, Goegebeur, Segers, Teugels, Waal, and Ferro (2004),
Embrechts, Klüppelberg, and Mikosch (1997)). For any
random variable X with cdf F , EVT models assume the ex-
istence of a domain of attraction, i.e., a positive auxiliary
function b exists such that
F{u + xb(u)}

F (u)
−→ H(x) > 0, u → xF , (3)

where F = 1 − F corresponds to survival, also called the
tail function, and xF = sup{x : F (x) < 1} is the upper
endpoint of F . Under condition (3), as noted F ∈ D(H),
the Pickands–Balkema–de Haan theorem (De Haan, 1970;
Pickands, 1975) establishes that H must belong to the
family of generalized Pareto (GP) survival functions, i.e.,

Hγ (x) = (1 + γ x)−
1
γ ,

where x ∈ {x : 1+γ x > 0}. As a consequence, the GP tail,
hich is denoted by GP(σ , γ ) in the following, appears
o be the ideal candidate for approximating the survival
unction of excesses over a large threshold u > 0, i.e.,

P(X − u ≥ x|X > u) ≈ Hγ (x/σ ) = Hγ ,σ (x) =

(
1 +

γ x
σ

)−
1
γ

,

where x ∈ {x : 1 + γ x/σ > 0} and σ > 0. The GP family
covers the three possible regimes of tail decay, which are
determined by the value of the tail index γ : the decay
is polynomial when γ ̸= 0 and it has an upper bound
when γ < 0. For γ = 0, the GP survival function becomes
exponential, i.e., H (z) = e−z/σ .
0
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2.2. Tail equivalence and proper scoring rules

The comparison of the tail behavior of two random
ariables, or equivalently their respective cdfs F and G,

can be framed using the notion of tail equivalence.

Definition 1 (Embrechts et al., 1997, Section 3.3). Two
random variables X and Y with cdfs F and G, respectively,
are tail equivalent if they have equal upper endpoint xF =

xG = x∗ and if their survival functions F and G satisfy

lim
x→x∗

F (x)

G(x)
= c ∈ (0, +∞).

Tail equivalence can also be simply expressed as the
equality of tail indexes. In terms of extremal forecast,
it is expect that we should favor one of two forecast-
ers that is tail equivalent to the observations, but this
may be difficult in practice. For instance, consider two
GP distributed random variables X1 and X2 with survival
functions H1(x) and H1+ϵ(x/σ ) with σ = (1+ϵ)/(21+ϵ

−1).
y construction, the medians of X1 and X2 are both equal

to one, but their tail behaviors can differ widely even for
small ϵ. The 100 year return level for X1 is 99 whereas it
s equal to 138 for X2 with ϵ = 0.1. Thus, if the precedent
random variables represent water levels, a small differ-
ence of 0.1 in the tail index implies a difference of 39
meters, which would most likely lead to massive and
destructive flooding.

This example illustrates how issuing forecasts with
the correct tail regime, i.e., as close as possible to that
observed, is a priority for extreme events and that a
verification method should yield a forecast with a close
if not equal tail regime. Ideally, the measure of forecast
performance should give the distance but also the ‘‘di-
rection’’, i.e., if the forecast is more likely to over- or
under-estimate the high quantiles. Indeed, let γG ∈ R
e the tail index of observations. If the forecast satisfies
F > γG, the forecast over-estimates the risk of producing
pessimistic or risk averse scenario. By contrast, γF <

γG yields an optimistic forecast by under-estimating the
likelihood of extreme events.

The classical methods for forecast evaluation do not
conserve tail equivalence, even when they are designed
to focus on extreme events. For instance, for any positive
η and observation distribution G, it is always possible to
construct a non-tail equivalent cdf F such that

|EG(wCRPS(G, Y )) − EG(wCRPS(F , Y ))| ≤ η, (4)

where the proof can be found in Appendix C. In particular,
if G ∈ D(HγG ), then for any arbitrary γF ∈ R, it is
possible to find F ∈ D(HγF ) that satisfies Eq. (4). Thus,
the CRPS is unable to properly discriminate forecasts with
different tail regime because non-tail equivalent forecasts
can perform almost equally well as the ideal forecast G. A
etailed illustration of this result for GP forecasts is given
n Appendix D. We also refer to Brehmer and Strokorb
2019), who obtained a more general result by proving
hat proper scoring rule expectations are not suitable for
istinguishing tail properties (see Theorem 5.4 in their
tudy).
1450
2.3. A benchmark for assessing forecasts of extremes

Following Gneiting et al. (2007) and Strähl and Ziegel
(2017), we propose a benchmark for assessing the behav-
ior of forecast evaluation procedures with respect to tail
regimes. The design employs a hierarchical model based
on Gamma–exponential mixtures,⎧⎪⎨⎪⎩

∆
d
= Γ (γ −1, γ −1)

Y |∆
d
= Exp(∆)

Y d
= GP(1, γ ),

(5)

where γ > 0, Exp(δ) refers to an exponential random
variable with rate δ > 0, Γ (a, b) is the Gamma distri-
bution with positive shape a and rate b, and d

= denotes
equality in distribution. In terms of densities, the density
fγ of ∆ is:

γ (x) =
x1/γ ex/γ

γ 1/γ Γ (1/γ )
,

and the density fδ of Y |∆ is:

fδ(y) = δe−δy.

The fact that Y follows a heavy tailed GP distribution
(see relation (5)) can be proved using Laplace transforms.
As an analogy with weather forecasting, we present the
benchmark in a temporal setting. At each time t =

1, . . . , T > 1, an observation y is drawn independently
from an exponential distribution, where its rate δ is a
realization of ∆. In this setting, Y has an exponential tail
conditioned by the information due to its rate δ, which
represents the a priori knowledge of the system, such as
the weather at a previous time. Thus, the ideal forecast for
each time step is Exp(δ), and knowledge of δ is required
Using relation (5), we see that the climatological forecaster
clim is a GP distribution with tail index γ and unit scale.
limatology is a commonly used forecast reference in
eteorology. In other fields, it can be viewed as the un-
onditional distribution of the truth, and a climatological
orecast can be estimated based on a sample of past and
nalogous observations. This setting is attractive because
he ideal and climatological forecasters belong to two
ifferent tail decay regimes.
We introduce alternative competitors for modeling

artial knowledge of the conditional state. The λ-informed
orecaster Fλ, λ ∈ [0, 1] is a mixture between the cli-
atological and ideal forecasts, where a weight such as
∈ [0, 1] indicates the contribution of each (see Table 1

for the definition).
Finally, the extremist forecaster Fν,extr simply adds a

ultiplicative bias to the ideal forecaster. This forecast
s not calibrated but it has the same tail behavior as the
deal forecaster; see Appendix A for detailed discussion on
alibration. The benchmark is summarized in Table 1 and
eferred to as the ‘‘Model GE’’ in the following.

Closed forms of the CRPS are available for each forecast
f the proposed benchmark. For instance, the extremist
orecast Fν,extr satisfies

RPS(Fν,extr, y) = y +
2ν

exp
(

−
δy
)

−
3ν

. (6)

δ ν 2δ
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Table 1
Benchmark for assessing the behavior of the forecast evaluation procedure with respect
to different tail regimes. The Fν,extr family is not calibrated. The other forecasts are
all marginally and probabilistically calibrated. In addition, the λ-Informed forecasts are
conditionally auto-calibrated with respect to ∆ according to Tsyplakov (2020, Theorem
2).

Forecasts \ Truth Y d
= Exp(∆) where ∆

d
= Γ (1/γ , 1/γ ), 1 > γ > 0

Ideal Fideal Exp(∆)
Climatological Fclim GP(1, γ )
λ-Informed Fλ λExp(∆) + (1 − λ)GP(1, γ )
Extremist Fν,extr Exp(∆/ν), ν > 1
Table 2
Relative ratios of the mean CRPS as percentages with respect to the
ideal forecast for the model GE with γ = 1/4 based on T = 106

bservation/forecast pairs.

Truth Y d
= Exp(∆) where ∆

d
= Γ (4, 4)

Forecasts % w.r.t. Ideal
Ideal Fideal 100%
Extremist ν = 1.1 100.48%
0.75-Informed F0.75 100.90%
0.5-Informed F0.5 103.58%
Extremist ν = 1.4 106.68%
0.25-Informed F0.25 108.06%
Climatological Fclim 114.33%
Extremist ν = 1.8 122.89%

In addition, combining (D.1) and (6) yields the following
formula for the λ-informed forecast, λ ∈ [0, 1],

RPS(Fλ, y) = y +
λ2

2δ
+

2λ
δ

{exp(−δy) − 1}

2(1 − λ)
1 − γ

{
1 − (1 + γ y)

γ−1
γ

}
(1 − λ)2

2 − γ
+

2λ(1 − λ)γ
−1
γ

δ
γ−1
γ{

exp
(

δ

γ

)
`

(
γ − 1

γ
,

δ

γ

)}
,

here `(s, x) =
∫

+∞

x e−t ts−1 dt . Table 2 shows the rel-
tive ratio of the empirical means of the CRPS for the
enchmark with γ = 1/4. On average, the ideal forecast
annot be beaten in Table 2 because the CRPS is a proper
core. Moreover, there are two different rankings, where
he first is based on the extremist forecasters involving ν,
nd the second is in terms of λ based on the λ-informed
orecasters. In the latter case, the information is repre-
ented by the pair (λ, δ) and the ideal information is (0, δ).
ollowing the principle of tail equivalence presented in
ection 2.2, the extremist forecast should be the forecast
hat is closest to the ideal because they both belong to
he same tail decay regime; however, we observe that the
erformance of the CRPS average is between that of the
east informed forecaster and the climatology.

. The CRPS as a random variable

.1. The random CRPS and its properties

In Section 2, we highlighted the difficulty of summariz-
ng the forecast performance in meaningful comparisons
1451
of extreme observations. In particular, we showed that
using a single number, such as the mean of the CRPS or
its weighted counterpart, fails to allow relevant compar-
isons. Alternatively, we propose studying the distribution
of the CRPS when it is treated as a random variable (also
see Bessac and Naveau (2021), Ferro (2017)).

For simplicity, we use the setting and corresponding
notations for the benchmark presented in Section 2.3.
Based on Eqs. (B.1) and (6), the climatological and ideal
scores can be treated as random variables whenever yt
is replaced by Yt . At this point, it is important to recall
that a forecast is issued with only partial knowledge of
the system. The exact value of δt and the distribution of
Yt are unknown, and only the observation yt is available.

Table 3 summarizes the quantities that are available
to forecasters. Thus, to evaluate the performance of fore-
casts, it is only possible to compute CRPS(Ft , yt ) for each
t . The climatological distribution referred to as G and the
existence of which needs to be hypothesized in practice,
is characterized by the observed sample (y1, . . . , yt ), con-
sidered as a sample of independent realizations of the
random variable Y .

For any set of forecasts {Ft}t=1,...,T and sample y1,
. . . , yT , two types of sets of random variables can be
defined:
S(FT ) = {CRPS(Ft , Yt )}t=1,...,T and

S∗(FT ) = {CRPS(Ft , Yπ (t))}t=1,...,T ,
(7)

where π is a random permutation of {1, . . . , n}. Applying
π breaks the conditional dependence between yt and
Ft , which is quantified by δt in the benchmark, thereby
producing alternative less informative forecasts. Thus, for
a given forecaster represented by the set FT = {Ft}i=1,...,T
and permutation π , we introduce two random variables
S(FT ) and S∗(FT ) characterized by their respective empir-
ical cdfs.

The climatological forecaster is the only forecaster that
satisfies

{CRPS(G, Yt )}t=1,...,T = S∗(G) d
= S(G) , (8)

because by definition, it discards any information about
system conditioning. The first equality in (8) is a direct
consequence of auto-calibration (see Appendix A) and
the second equality follows from the permutation invari-
ance of the data from the viewpoint of the climatological
forecaster.

The distributional properties of S(FT ), S∗(FT ), and S(G)
give relevant insights into the behavior of the forecaster.
For example, Fig. 1 shows qq-plots for the distributions of



M. Taillardat, A.-L. Fougères, P. Naveau et al. International Journal of Forecasting 39 (2023) 1448–1459
Table 3
Availability status for the quantities of interest (a posteriori availability).
Object Definition Availability

in practice

Ft Distribution of the forecast for time t Yes
yt Observed realization at time t Yes
δt Conditioning variable No
∆ Conditioning random variable No
Yt Conditional random variable generating yt No
Y Unconditional random variable of the observations Yes
CRPS(Ft , yt ) CRPS of the couple for time t Yes
CRPS(Ft , Yt ) Random variable associated with CRPS(Ft , yt ) No
CRPSS (F , Y ) Random variable generated by the (CRPS(Ft , yt ))t Yes
CRPSS∗ (F , Y ) Random variable generated by the (CRPS(Ft , yπ (t)))t Yes
Fig. 1. Comparisons of the distributional properties between S and S∗ for each forecast in model GE: qq-plots (left) and pp-plots (right panel).
Each forecast is represented by samples with size T = 106 . In the left panel, the points represent the average distributions over 100 independent
samples, and the 95% confidence intervals are shown. In the right panel, the curves were averaged based on 100 independent samples. In practice,
one must use a set of permutations π .
S∗(FT ) against S(FT ) for each forecast of the benchmark
with γ = 1/4. We observe that the ideal, λ-informed,
and extremist forecasts deviate from the diagonal, thereby
demonstrating the influence of the loss of information
caused by the permutation. This visual illustration sum-
marizes how S(FT ) and S∗(FT ) capture relevant infor-
mation from the modeled conditioned by the random
variable ∆. The right panel in Fig. 1 displays these dis-
tributions on the probability scale and it highlights how
the discrepancy of the λ-informed forecaster evolves with
the parameter λ. Extremist forecasts with multiple values
of the scale parameter ν are shown only to illustrate
how the visual illustration behaves when the calibration
is not satisfied. Fig. 1 also shows that the forecast domi-
nance among forecasters can be inferred, as given by Ehm
et al. (2016, Fig. 1,2,4,6, and pages 528–529) for point
forecasts, but in the present case, higher is better com-
pared with the Murphy diagrams. Under calibration, the
discrepancy between the distributions can be interpreted
in an appropriate manner as a direct measure of the
forecaster’s skill (the λ-informed curves never cross each
other), thereby making this diagnostic method particu-
larly relevant and compliant with the recommendations
based on the extremal dependence indices established
by Ferro and Stephenson (2011).
1452
3.2. Tail properties of the random CRPS

We now study the upper tail behavior of the random
CRPS by using EVT to develop meaningful forecast evalua-
tions for extreme events. To reduce the technical contents
of this section, all of the proofs are presented in Ap-
pendix E. For the notations with respect to any conditional
model that depends on ∆ = δ, we aim to emphasize
the difference between a conditional forecast, such as Fδ ,
and an unconditional forecast F . It should be noted that δ

depends on the time index t , but for notational simplicity,
we omit this index. ∆ may also change over time but we
assume that it is invariant.

Let X and Y be two random variables with absolutely
continuous cdfs F and G with a common upper bound
xF = xG. Suppose that γ < 1 exists such that G ∈ D(Hγ )
and that cF = 2EF (XF (X)) is finite. Then, conditionally on
∆ = δ, we have

P
(
CRPS(Fδ, Yδ) + cFδ − uδ

bδ(uδ)
> x

⏐⏐⏐⏐ Yδ > uδ

)
−→ (1 + γδx)−1/γδ , (9)

as uδ tends to xGδ
, with 1 + γδx > 0. Thus, in any fixed

state δ (such as a state of the atmosphere for a weather
forecast), the CRPS upper tail behavior (conditionally on
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∆ = δ) is equivalent to the observed tail behavior, thereby
formalizing what we observe intuitively from (B.1).

Now, unconditionally, we can also obtain a result for
he climatological forecast due to its property of invari-
nce under permutation (see Section 3.1). If γ < 1 exists

such that G ∈ D(Hγ ), then

P
{

CRPS(G, Y ) + cG − u
b(u)

> x
⏐⏐⏐⏐ Y > u

}
−→ (1 + γ x)−1/γ , u → xG, (10)

for any x such that 1 + γ x > 0. In the case where γ > 0,
convergence in Eq. (10) also holds for cG = 0 because the
latter vanishes due to the linear behavior of the auxiliary
function b in Eq. (3) (e.g., see Embrechts et al. (1997)).

The benchmark presented in Table 1 illustrates these
results. The choice to work with a time indexed couple
(Ft , Yt ) or with an invariant (G, Y ) significantly affects the
tail behavior of the CRPS random variables, where accord-
ing to Table 1, the former implies that the limit in (9)
exhibits an exponential tail, whereas the climatological
tail given by (10) is heavy, i.e., γ > 0.

3.3. Assessment of the forecaster tail behavior

In this section, we propose a tail-equivalent forecast
performance index inspired by Eqs. (9) and (10), and
Fig. 1. We only aim to provide the intuitive basis of the in-
dex and formal theoretical analysis is left for future work.
We assume that the forecasts lie in the domain of attrac-
tion for some distribution Hγ ,σ . For a sufficiently large u,
he null hypothesis H0 : ∀t = 1, . . . , T , CRPS(Ft , Yt )|Yt >

∼ Hγ ,σu should be rejected for any calibrated forecast
ith tail behavior closer to the ideal forecast than the
limatological reference.
Furthermore, we assume that the variables in S(FT )

are iid. This assumption might not always be satisfied,
e.g., temperature measures on two consecutive days are
likely to be dependent, but it can be satisfied in a rea-
sonable manner for measurements that are sufficiently far
apart. For each forecast, we can compute a Cramér–von
Mises criterion

ωu
2
{S(FT )} =

∫
+∞

−∞

[K̂ (m)
S,u(v) − Hγ ,σu (v)]

2dHγ ,σu (v),

where K̂ (m)
S,u is the empirical distribution of the observa-

tions in S(FT ) that exceed the threshold u. The empirical
nature of K̂ (m)

S,u allows us to simplify ωu
2
{S(FT )} to

ΩF
u = m × ω̂u

2
{S(FT )}

=
1

12m
+

m∑
i=1

[
2i − 1
2m

− Hγ ,σu (si)
]2

,

where m denotes the number of observations exceeding u
and s1, . . . , sm are the ordered values of S(FT ). A detailed
algorithm for computing ΩF

u is provided in Table F.4 in
Appendix F.

As suggested by Fig. 1, we assume that ΩF
u > ΩG

u for
any calibrated forecasts and climatology G. In addition,
for two calibrated forecasts F 1 and F 2, we conjecture that
ΩF2

≥ ΩF1 if F 2 has a tail behavior closer to the ideal
u u
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forecast than F 1. Under these assumptions, we can sum-
marize the comparison between ΩF

u and ΩG
u simply as

Tu(F ,G) = 1 −
ΩG

u

ΩF
u
. (11)

The behavior of the index Tu is illustrated with the help
of model GE. Fig. 2 shows the changes in Tu as a function
of the threshold u for T = 106 and γ = 1/4. Clearly,
the behavior of the index is consistent with our con-
jecture, where the ideal forecast performs best whereas
the climatology has the lowest index. The performance
rankings among the calibrated forecasters are stable as
the threshold increases, where the ideal forecast always
obtains the largest index. The extremist forecasters shown
to illustrate the behavior of the index for a non-calibrated
forecast obtain a high index, and even larger than the
ideal forecast, thereby highlighting the importance of cal-
ibration, which must be carefully assessed before any
interpretation of Tu.

In practice, a threshold choice must be made and nu-
merous methods have been developed for this purpose
(e.g., see Beirlant et al. (2004), Naveau, Huser, Ribereau,
and Hannart (2016), Papastathopoulos and Tawn (2013)).

4. Discussion

In this study, we used a carefully designed benchmark
to argue that the mean of the CRPS, or its weighted
counterparts, are unable to successfully discriminate a
forecast upper tail regime, as demonstrated by Brehmer
and Strokorb (2019). Ehm et al. (2016) introduced ‘‘Mur-
phy diagrams’’ for assessing dominance in point forecasts.
This original approach allows us to appreciate the dom-
inance of different forecasts and to estimate their skill
area, and a similar visual illustration is presented in Fig. 1
for calibrated forecasts.

Inspired by Friederichs and Thorarinsdottir (2012), we
applied EVT directly based on common verification mea-
sures. By considering the CRPS as a random variable (also
see Bessac and Naveau (2021) for non-extreme cases), one
can view this contribution as a first step toward consid-
ering other functionals of score distributions rather than
their means. The new index introduced in Section 3.3 can
be considered as a probabilistic alternative to the scores
introduced by Ferro (2007), Ferro and Stephenson (2011).
We link the paradigm of maximizing the sharpness subject
to calibration proposed by Gneiting et al. (2007) and the
paradigm of maximizing the information for extreme events
subject to calibration. Similarly, Murphy (1993) explained
the differences between the forecast quality (accordance
between forecasts and observations) and forecast value
(ability to use information to achieve a benefit by choos-
ing a forecast), and the forecast value seems to be the
most important for extreme events, where decision mak-
ing is crucial. Well-known tools are available for deter-
ministic weather forecasts (e.g., see Richardson (2000),
Zhu, Toth, Wobus, Richardson, and Mylne (2002)). Other
widely used scores based on the dependence between
forecasts and observed events were considered by Ferro
and Stephenson (2011), Stephenson, Casati, Ferro, and
Wilson (2008).
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ail behavior closer to the ideal forecaster. The validity of the index is limited to calibrated forecasts and the calibration must be carefully checked
or non-calibrated extremist forecasts before interpreting the results.
t
C
I
t
o
i
A
w
F
t
0

A

t
(
k
a
a
σ

i
c
o
c
t

It would useful to further investigate the theoretical
roperties of this CRPS-based tool. Another potentially
nteresting approach could involve extending this proce-
ure to other scores, such as the mean absolute difference,
awid–Sebastiani score (Dawid & Sebastiani, 1999), or
gnorance score (Diks et al., 2011; Smith et al., 2015). Clas-
ical tools for verification rely on a verification period, and
hus evaluation is always conducted a posteriori as a con-
equence. Therefore, it would be interesting to consider
he sequential evaluation of rare events, such as by using
he e-values (Vovk & Wang, 2021) introduced for continu-
usly assessing and monitoring calibration (Arnold, Henzi,
Ziegel, 2021). Eventually, we invite scientists to work

n a new scoring rule theory that is not based on average
cores.
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ppendix A. Prediction framework and calibration

The theoretical framework considered in this study is
he now classical prediction space introduced by Ehm et al.
2016), Gneiting and Ranjan (2013), Murphy and Win-
ler (1987), and generalized in a serial context by Strähl
nd Ziegel (2017). The framework starts formally with
probability space (Ω,A,Q) and a collection of sub-
-algebras A1, . . . ,Ak ⊂ A, where Ai represents the
nformation available to forecaster i. In a meteorological
ontext, this framework can be seen as the representation
f the atmosphere by each forecaster. In the benchmark
onsidered in Section 2.3, for simplicity, we consider that
he information set is generated by a random variable ∆.
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A real-valued outcome Y is observed and seen as a
(real-valued) random variable. A probabilistic forecast i
for Y is identified with its so-called ‘‘predictive distribu-
tion’’ with cdf Fi. Rigorously, Fi : Ω × B(R) → [0, 1] is

kernel1 from (Ω,Ai) to (R,B(R)), but as in previous
tudies, we identify the kernels with random cumulative
df (e.g., see Strähl and Ziegel (2017) for more details). In
articular, for each x ∈ R, we might use the notation Fi(x)
enoting the random element ω ↦→ Fi(ω, (−∞, x]).
In this framework, a forecast Fi is termed ideal with

espect to Ai if Fi = L(Y |Ai) almost surely. Tsyplakov
2011) also refers to this property by stating that Fi is cali-
rated with respect to Ai. He also defined auto-calibration
s the property required for Fi to satisfy Fi = L(Y |σ (Fi))
lmost surely. σ (Fi) denotes the σ -algebra generated by
i, i.e., the smallest σ -algebra such that ω ↦→ Fi(ω, x)
s measurable for all x ∈ R. It should be noted that
f a forecast is calibrated with respect to Ai, then it is
uto-calibrated, but the converse does not hold in gen-
ral. For the particular case considered in Section 2.3, the
limatological forecaster is ideal with respect to the trivial
-algebra.
In practice, we are not only concerned with predictions

or an outcome Y at a single time point. The framework
ntroduced above also allows us to deal with independent
eplicates at times t = 1, 2, . . . , as in Section 2.3. If this
ssumption of independence seems unrealistic in several
ituations, as argued by Strähl and Ziegel (2017), it can
till provide a first step and lead to less technical com-
lexity. Thus, we made this choice for simplicity in the
resent study.

ppendix B. An alternative expression for the weighted
RPS

The weighted CRPS defined by (2) can be reformu-
ated as follows provided that the weight function w(.) is
ontinuous,

CRPS(F , y) = W (y) + 2EF [{W (X) − W (y)}1X>y]

− 2EF [W (X)F (X)]. (B.1)

Assume that the weight function w(.) is continuous. By
integrating by parts

∫ y
−∞

F 2(x)w(x) dx and
∫

∞

y F
2
(x)w(x) dx

and usingW (x) =
∫ x

−∞
w(z)dz, the weighted CRPS defined

by (2) can be rewritten as

wCRPS(F , y) = EF |W (X) − W (y)| −
1
2
EF |W (X) − W (X ′)|.

The equality |a − b| = 2max(a, b) − (a + b) gives

EF |W (X) − W (y)|
= 2EF max(W (X),W (y)) − EFW (X) − W (y),
= W (y) − EFW (X)

+2EF (W (X) − W (y)I[W (X) > W (y)]) ,

and

EF |W (X) − W (X ′)|

1 This means that for each fixed ω ∈ Ω , Fi(ω, ·) is a probability
easure, and for each fixed x ∈ R, F (·, (−∞, x]) is A -measurable.
i i
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= 2EF max(W (X),W (X ′)) − 2EFW (X),
= 4E(W (X)FW (X)(W (X))) − 2EFW (X),
= 4E(W (X)F (X)) − 2EFW (X) ,

where the last line follows from the fact that FW (X)(W (X))
and F (X) have the same distribution, which is uniform on
(0, 1). We recall that FW (X)(x) = P(W (X) ≤ x). As W (x) is
non-decreasing, so we have {W (X) > W (y)} = {X > y},
and it follows that

wCRPS(F , y) = W (y) − EFW (X)
+ 2EF

[
{W (X) − W (y)}1W (X)>W (y)

]
− 2EF [W (X)F (X)] + EFW (X),

= W (y) + 2EF [{W (X) − W (y)}1X>y]

− 2EF [W (X)F (X)] ,

as stated in (B.1).

Appendix C. Proof of the inequality (4)

Let u be positive real. Denote Z as a non-negative
random variable with finite mean and cdf H . Assume that
Z and Y (with cdf J) are independent with the same right
end point. We introduce the new random variable

Xu = Y1{u ≥ Y } + (Z + u)1{Y > u} , (C.1)

with the survival function Fu defined by

Fu(x) =

{
J(x), if x ≤ u
H(x − u)J(u), otherwise.

(C.2)

n particular, we note that for all x, the decreases in Fu
show that

Fu(x) ≤ J(x). (C.3)

In addition, for any x ≤ u, Eq. (C.2) and the monotonicity
of W show that

E[W (Y )1{Y < x}] = E[W (Xu)1{Xu < x}]. (C.4)

Equality (B.1) implies that
1
2
[wCRPS(Fu, x) − wCRPS(J, x)]

= EFu [(W (Xu) − W (x))1{Xu > x}]
−EJ [(W (Y ) − W (x))1{Y > x}]
+EJ [W (Y )J(Y )] − EFu [W (Xu)Fu(Xu)],

= EFu [W (Xu)Fu(Xu)] − EJ [W (Y )J(Y )]
−EFu [(W (Xu) − W (x))1{Xu ≤ x}]
+EJ [(W (Y ) − W (x))1{Y ≤ x}]

= EFu [W (Xu)Fu(Xu)] − EJ [W (Y )J(Y )] + ∆(x) ,

here

(x) = EJ [(W (Y ) − W (x))1{Y ≤ x}]
− EFu [(W (Xu) − W (x))1{Xu ≤ x}].

The stochastic ordering that holds between Xu and Y
implies that the quantity EFu [W (Xu)Fu(Xu)]−EJ [W (Y )J(Y )]
is negative. Combined with (C.4), this leads to
1 ⏐⏐EJ [wCRPS(Fu, Y )] − EJ [wCRPS(J, Y )]

⏐⏐ ≤

∫ xJ
∆(x)dJ(x). (C.5)
2 u



M. Taillardat, A.-L. Fougères, P. Naveau et al. International Journal of Forecasting 39 (2023) 1448–1459

w

E

w

P
u
(
o

C

S(

I

For x > u, we can write that

∆(x)
= EJ [(W (Y ) − W (x))1{u < Y ≤ x}]

−EFu [(W (Xu) − W (x))1{u < Xu ≤ x}],
≤ EFu [(W (x) − W (u))1{u < Xu ≤ x}],

since W (Y ) − W (x) ≤ 0 in the first expectation, whereas
0 ≤ W (x) − W (Xu) ≤ W (x) − W (u) in the second. As a
consequence, we obtain

∆(x) ≤ (W (x) − W (u))[Fu(x) − Fu(u)],
≤ (W (x) − W (u))Fu(u),
= (W (x) − W (u))J(u).

Finally, combining the latter expression with (C.5) leads
to⏐⏐EG[wCRPS(Fu, Y )] − EJ [wCRPS(J, Y )]

⏐⏐
≤ 2J(u)

∫ xJ

u
(W (x) − W (u))dJ(x).

It should be noted that this inequality is true for any u and
H , and its right-hand side does not depend on H(x). Thus,
the tail behavior of the random variables Y and Z can be
completely different, although the CRPS of J and Fu can
be as closed as we require. The right-hand side tends to 0
due to the finite mean of W (Y ).

Appendix D. A detailed example related to Section 2.2

In this appendix, we demonstrate the fact that the
CRPS fails to discriminate forecasts with different tails.
We consider GP distributed forecasts and observations. In
this case, the closed forms of the CRPS are available, as
described in the following.

Lemma 1. Consider X d
= GP(β, ξ ) and Y d

= GP(σ , γ )
with 0 ≤ ξ < 1 and 0 ≤ γ < 1, with the respective
survival functions F (x) = (1 + ξx/β)−1/ξ (for x > −β/ξ )
and G(x) = (1+γ x/σ )−1/γ (for x > −σ/γ ). If γ /σ = ξ/β ,
ith γ ̸= 0, then

G [CRPS(F , Y )] =
σ

1 − γ
+ 2β

[
1

2(2 − ξ )
−

γ

γ + ξ − γ ξ

]
,

hich gives the minimum CRPS value for ξ = γ and σ = β ,

EG [CRPS(G, Y )] =
σ

(2 − γ )(1 − γ )
.

roof. By applying (B.1) with W (y) = y and making
se of the classical properties of the Pareto distribution
e.g., see Embrechts et al. (1997, Theorem 3.4.13)), we
btain

RPS(F , y) = y + 2(1 + ξy/β)−1/ξ β + ξy
1 − ξ

− 2β
(

1
1 − ξ

−
1

2(2 − ξ )

)
. (D.1)

It follows that

E [CRPS(F , Y )] =
σ

+ 2
β

m0 + 2
ξ

m1
1 − γ 1 − ξ 1 − ξ
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− 2β
(

1
1 − ξ

−
1

2(2 − ξ )

)
,

with

m0 = E

[(
1 +

ξ

β
Y
)−1/ξ

]
, and

m1 = E

[
Y
(
1 +

ξ

β
Y
)−1/ξ

]
.

ince

1 +
ξ

β
y
)−1/ξ

= G
s
(cy) , with c =

ξσ

βγ
and s =

γ

ξ
,

we can write

mr = E
[
Y rG

s
(cY )

]
for r = 0, 1.

In addition, G−1(v) =
σ
γ

(
(1 − v)−γ

− 1
)
, so we can

rewrite by denoting U as a random variable that is uni-
formly distributed on (0, 1),

mr = E
[
G−1(U)rG

s (
cG−1(U)

)]
,

= E
[(

σ

γ

(
(1 − U)−γ

− 1
))r

(
1 +

γ

σ

(
c
σ

γ

(
(1 − U)−γ

− 1
)))−s/γ

]
,

=

(
σ

γ

)r

E
[(

U−γ
− 1

)r ((1 − c) + cU−γ
)−s/γ

]
,

=

(
σ

γ

)r

E

[(
B

1 − B

)r (1 − (1 − c)B
1 − B

)−s/γ
]

,

with B = 1 − Uγ

=

(
σ

γ

)r

E
[
Br (1 − B)−r+s/γ (1 − (1 − c)B)−s/γ ] ,

with B ∼ Beta(1, 1/γ )

=

(
σ

γ

)r

E
[
Br (1 − B)−r+1/ξ (1 − (1 − c)B)−1/ξ ] ,

because s/γ = 1/ξ .

f c =
ξσ

βγ
= 1, then this can be simplified as

mr =

(
σ

γ

)r 1
γ

∫ 1

0
ur (1 − u)−r+1/ξ+1/γ−1du

=

(
σ

γ

)r 1
γ
B(r + 1, −r + 1/ξ + 1/γ ),

=

(
σ

γ

)r 1
γ

Γ (r + 1)Γ (−r + 1/ξ + 1/γ )
Γ (1 + 1/ξ + 1/γ )

.

In particular, m0 =
1
γ
B(1, 1/ξ + 1/γ ) =

(
1 +

γ

ξ

)−1
and

m1 =
σ
(
1 +

γ
)−1 (1

+
1

− 1
)−1

.

γ ξ ξ γ
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If γ

σ
=

ξ

β
, then it follows that we have

[CRPS(F , Y )] =
σ

1 − γ
+2β

[
1

2(2 − ξ )
−

γ

γ + ξ − γ ξ

]
,

hich gives the minimum CRPS value for ξ = γ and
σ = β ,

E [CRPS(G, Y )] =
σ

(2 − γ )(1 − γ )
,

nd thus we conclude the proof of Lemma 1. □

Lemma 1 allows us to study the effect of changing the
orecast’s tail behavior captured by ξ and the spread fore-
ast encapsulated in β when F and G have proportional
arameters, i.e., β = aσ and ξ = aγ for some a > 0. In
his case, the CRPS simplifies to

G [CRPS(F , Y )]

=
σ

1 − γ
+ 2aσ

[
1

2(2 − aγ )
−

1
1 + a − aγ

]
, (D.2)

thereby leading to a forecaster with a heavier tail when
a > 1 and overestimating the true upper tail behavior,
and the opposite when a < 1.

Counter examples to the previous one can be found
to illustrate how weighted scoring rules fail to compare
tail behaviors. Thus, they should be handled with care,
especially for forecast makers, as previously advocated
by Gilleland, Hering, Fowler, and Brown (2018), Lerch
et al. (2017).

Appendix E. Proof of convergence for (9) and (10)

The proof of (10) can be viewed as a particular case of
(9), so we focus on proving (9). The following lemma helps
us to obtain the result, and thus it is presented first with
its proof. In the following, the mean excess function of any
random variable Z with finite mean and cdf F is denoted
by M(F , z) such that F (z)M(F , z) = EF [(Z − z)1lZ>z].

Lemma. Consider a random variable Z with finite mean
that belongs to the domain of attraction D(Hγ ) with γ < 1.
Non-negative real numbers α and β exist such that for each

∈ R,

≤ 2EF [(Z − z)1lZ>z] ≤ F (z)(αz + β). (E.1)

Proof of the Lemma. The indicator function 1lZ>z implies
that we always have 0 ≤ 2EF ((Z − z)1lZ>z). To prove that
EF ((Z − z)1lZ>z) is smaller than F (z)(αz + β), we first

show that this inequality holds for large values of z. First,
we note that if z > xF , then (E.1) is trivially true. We then
show the result when z

<
→ xF , and we decompose the

proof depending on the sign of γ .

1. F belongs to D(Hγ ) with 0 < γ < 1: In this
case, Embrechts et al. (1997) (Section 3.4) showed
that M(F , z) ∼ γ z/(1−γ ) as z tends to xF , and thus
we can reach the conclusion directly.

2. F belongs to D(Hγ ) with γ < 0 : In this case,
the result also follows readily from Embrechts et al.
(1997) since when z tends to x , M(F , z) ∼ γ (x −
F F

1457
z)/(γ − 1). This allows us to fix α = 0 and β =

supz∈V (xF ) γ (xF−z)/(γ −1) for an appropriate neigh-
borhood V (xF ) of xF .

3. F belongs to D(H0) : When F is in the Gumbel
domain of attraction, M(F , z)/z → 0 as z tends
to xF (e.g., see Theorem 3.9 in Ghosh and Resnick
(2010)). If xF is finite, then a positive β exists such
that 2M(F , z) ≤ β and α can be fixed to 0, whereas
if xF is infinite, the fact that 2M(F , z) < z for a
sufficiently large z enables us to conclude the proof.

Thus, we have shown that for some large z0, non-negative
α and β exist such that

2EF ((Z − z)1lZ>z) ≤ F (z)(αz + β), for all z > z0.

We still need to prove that this statement also holds for
z ≤ z0. Define

0 ≤ β0 = 2max
z≤z0

EF [(Z − z)1lZ>z].

As γ < 1, β0 is finite and, as F (z) ≥ F (z0) for all z ≤ z0,
we have

0 ≤ β0 ≤ β0
F (z)

F (z0)
.

We now have two cases: either β <
β0

F (z0)
or β ≥

β0
F (z0)

.
In the latter case, we have 2EF ((Z − z)1lZ>z) ≤ β0 ≤

F (z)(αz + β), and thus the required result is obtained. In
the case of β <

β0
F (z0)

, it is always possible to increase the

β chosen when z > z0, and bring it above β0
F (z0)

. □

We are now ready to prove (9) as stated above.

Proof of (9). Given the conditional forecast Fδ , the CRPS
can be computed with respect to the conditional observa-
tion yδ in the following manner

CRPS(Fδ, yδ) = yδ − cδ + 2EFδ [(Xδ − yδ)1(Xδ > yδ)] ,

where cδ = 2EFδ [XδFδ(Xδ)]. To simplify the notations, we
omit the subscript δ in the remainder of the proof, but it
is returned at the end. The previous lemma allows us to
write

Y ≤ CRPS(F , Y ) + c ≤ (1 + αF (Y ))Y + βF (Y ) a.s.

Let us work conditionally on Y > u, for a large u close to
xF = xY . We then obtain

Y ≤ CRPS(F , Y ) + c ≤ (1 + αF (u))Y + βF (u) a.s.

his holds when the right end point of Y is non-negative.
If this is not the case, then we can simply write Y ≤

CRPS(F , Y ) + c ≤ Y + βF (u) a.s..
The main idea of the proof involves noting that F (u)

tends to zero as u becomes large, and thus the inequali-
ties above indicate that the thresholded random variable
Y [u] = [(Y − u)/b(u) | Y > u] and the thresholded CRPS
[u] = [(CRPS(F , Y )+ c − u)/b(u) | Y > u] should behave
n a similar manner for large u. The choice of the positive
onstant b(u) depends on the domain of attraction of Y . In
articular, we assume that the distribution of Y [u] con-
erges toward a Gaussian probability distribution (GPD)
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Table F.4
Computation of Cramér–von Mises criterion from N couples forecasts/observations. The
computation can be conducted with the R package extremeIndex (Taillardat, 2021a).
0. CRPS estimates for each
forecaster:

– For the N couples forecasts/observations, compute
their corresponding instantaneous CRPS.

1. Estimation of γ based on
the observations:

– Find a threshold u where the Pareto approximation
is acceptable and estimate the Pareto shape
parameter γ and σ .

2. For a threshold w ≥ u: – Compute the scale parameter σw = σ + γw.

3. Computation of Xu – Order the m CRPS values where the observations
y ≥ w are in increasing order s1, . . . , sm .

For i ∈ [1,m] – Compute for each CRPS value si , Hγ ,σw (si).
– Compute

[ 2i−1
2m − Hγ ,σw (si)

]2
.

End 3.
End 2.
with finite mean. Thus, we have

0 ≤ P
(
CRPS(F , Y ) + c − u

b(u)
> t | Y > u

)
−P

(
Y − u
b(u)

> t | Y > u
)

≤ P([1 + αF (Y )]Y + βF (Y ) > tb(u) + u | |Y > u)
−P(Y > tb(u) + u | Y > u)

≤ P

(
Y >

tb(u) + u − βF (u)

1 + αF (u)
| Y > u

)
−P(Y > tb(u) + u | Y > u).

We recognize that the probability (conditionally on Y >

u) for Y is in an interval denoted by

Iu =

[
tb(u) + u − βF (u)

1 + αF (u)
, tb(u) + u

]
.

The remaining part of the proof involves showing that this
conditional probability tends to 0 as u → xF . We can write

P (Y ∈ Iu | Y > u) = P (Y ∈ u + Ju | Y > u) ,

where Ju =

[
tb(u) − F (u)(α + β)

1 + αF (u)
, tb(u)

]
. For a suffi-

iently large u, the latter probability can be approximated
y a GPD such that

(Y ∈ Iu | Y > u) ∼ |Ju| sup
v∈Ju

gGP (v)

=
F (u)[α + β + αtb(u)]

1 + αF (u)
sup
v∈Ju

gGP (v) ,

where gGP denotes the probability density function asso-
ciated with the GPD. This implies the convergence of the
latter probability to 0. This is true conditionally on ∆ = δ,
o it can be rewritten after reintroducing the subscript δ

s(
CRPS(Fδ, Yδ) + cδ − uδ

bδ(uδ)
> x | Yδ > uδ

)
−→ (1 + γδx)−1/γδ ,

as u tends to x , with 1 + γ x > 0. □
Gδ δ
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Appendix F. Algorithm for computing the Cramer–von
Mises criterion

Note that for large values of u, under the null hy-
pothesis, the statistic ΩF

u follows a Cramér-von Mises
distribution. The associated p-values pFu ∈ [0, 1] could
be computed but they are actually subject to numerical
instabilities (Csörgő & Faraway, 1996; Prokhorov, 1968).
Furthermore, ΩF

u is sufficient to compare the effect size
of the deviation.

Appendix G. Supplementary data

Supplementary material related to this article can be
found online at https://doi.org/10.1016/j.ijforecast.2022.
07.003. The index was implemented using the ex-
tremeIndex package (Taillardat, 2021a). The R code for
generating simulation data and figures is available with
this article.
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