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Abstract

Adopting Augmented Reality (AR) content in museums is an opportunity to enhance visitor
experiences. By also incorporating navigation information into AR applications, we can further
improve the user experience. Navigation in indoor environments is a feature many mobile apps
would like to offer. However, due to the lack of reliable GPS data, indoor localization remains
a challenge. Many existing solutions rely on dense deployments of Bluetooth beacons, which
can be costly. In this thesis, we focus on a method to estimate positions that does not require
any additional hardware, apart from the user’s phone. Our indoor user localization algorithm
utilizes data from the accelerometer, the gyroscope, and AR tracking. We use the resulting
position estimate in conjunction with floor plan data for navigation.

We implemented two localization methods, namely dead reckoning and Pedestrian Dead Reck-
oning (PDR). We found that dead reckoning suffers from noise and sensor drift, even with
calibration and Zero Velocity Potential Update (ZUPT) techniques. PDR, although more robust
against noise, required users to adhere to specific constraints regarding phone handling during
movement. When executed correctly, PDR demonstrated high localization accuracy, but there
were substantial variations in accuracy among different individuals.

We conducted a user study to compare three different approaches for presenting navigation
information in AR. The findings indicate that a balance between clear path visualization and
simple on-screen instructions is crucial.
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1
Introduction

Navigating large indoor environments can be a challenging task. This problem comes up in var-
ious settings, including museums, airports, and malls. Visitors frequently encounter difficulties
when attempting to interpret large overview maps. They have to determine their current location
and find the optimal route to their desired destination. A navigation app capable of providing
accurate localization and guidance would substantially enhance the overall experience within
these environments.

In outdoor environments, applications like Google Maps have revolutionized the way we navi-
gate, enabling users to determine their location and take the optimal route to their destination.
However, indoor localization has proven to be a challenging task since the GPS signal gets atten-
uated and blocked by physical structures and is thus unreliable indoors. Therefore, alternative
localization approaches must be explored to facilitate seamless and efficient navigation within
indoor environments.

The focus of this thesis is indoor localization and navigation within the context of museums.
Museums offer unique advantages for this purpose, as artworks have known positions and can
be tracked with Augmented Reality (AR). Our objective is to develop an AR application that
provides users with a navigation system that guides them through the museum. Some museums
already offer navigation apps with indoor localization capabilities, as depicted in Figure 1.1, but
most of these solutions rely on Bluetooth beacons distributed throughout the premises. Such
designs necessitate extensive hardware installation.

In this thesis, we propose an alternative approach to localization that leverages existing hard-
ware, namely the sensors available in smartphones. We explore various methods for indoor
localization, including computer-vision-based techniques such as artwork tracking and sensor-
based methods like dead reckoning.

In addition, we investigate the usability of AR technology in the context of indoor navigation.
To accomplish this goal, we implement three distinct methods for presenting navigation infor-

1



1. Introduction

(a) Rijksmuseum1 (b) Deutsches Museum2 (c) American Museum of
Natural History3

Figure 1.1.: Existing navigation solutions in museum apps

mation in AR. The first method involves displaying an arrow positioned at a fixed distance from
the user. The second method involves displaying the arrow at the next turn of the path. The
third method entails displaying multiple arrows leading up to the next turn, followed by two
additional arrows indicating the subsequent direction to be taken after the turn. We conduct
a user study to compare the effectiveness of these three methods and derive insights that can
inform the design of future AR navigation applications.

Chapter 2 provides a review of the existing literature on localization and navigation. In Chap-
ter 3, we present an overview of the system architecture, highlighting the different modules
and their interactions. Chapter 4 details the technical implementation of our proposed system.
In Chapter 5, we evaluate the system’s performance using appropriate metrics and discuss the
results. Finally, Chapter 6 concludes the thesis, summarizes the key findings, and outlines po-
tential directions of future research.

1https://www.fabrique.com/cases/digital-design/rijksmuseum/ (Accessed: 16. May
2023)

2https://play.google.com/store/apps/details?id=com.fluxguide.
deutschesmuseum&hl=en&gl=US (Accessed: 16. May 2023)

3https://play.google.com/store/apps/details?id=org.amnh.explorer&hl=en&gl=
US (Accessed: 16. May 2023)

2
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2
Related Work

This section provides an overview of the research conducted in areas relevant to this thesis.
We begin by discussing smartphone sensors and providing insights into their accuracy. Subse-
quently, we present an overview of the three primary indoor localization methods. Additionally,
we introduce two methods for pathfinding and compare them. Finally, we provide an overview
of existing AR applications that incorporate localization and/or navigation functionalities.

2.1. Smartphone Sensors

Tiglao and colleagues [TAD+21] investigated the utility of sensors that are commonly present
in smartphones for localization. The following is a summary of their findings:

• Accelerometer: Measures acceleration and has proven to be useful for localization. The
position change is calculated by integrating the acceleration twice.

• Ambient light: May be utilized to differentiate between locations if there is a significant
change in lighting conditions.

• Barometer: Measures air pressure and is typically used in combination with GPS. By
providing additional information about height above sea level, the barometer helps to
produce more precise localization results outdoors.

• Camera: Often utilized with computer vision algorithms to localize the device. Examples
of these algorithms are optical flow or AR tracking.

• GPS: Measures the position and is only reliable outdoors as it uses data obtained from
satellites.

• Gyroscope: Measures angular velocity and is frequently combined with the accelerometer

3



2. Related Work

to provide more accurate motion estimates. The orientation of a device is calculated by
integrating the angular velocity.

• Magnetometer: Measures magnetic fields and is typically used for localization in con-
junction with the accelerometer and gyroscope. It provides information about the orien-
tation of the device.

• Microphone: Detects sounds and has limited use in localization.

• Proximity: Detects nearby objects but is not useful for localization of distant objects.

• WiFi: Measures signal strength and can be utilized to determine a device’s relative loca-
tion to an access point. The signal strength is an indicator of how far away the access
point is.

This list suggests that the accelerometer and the gyroscope are among the most promising sen-
sors for localization. The magnetometer may also be used in combination with them. The
camera is a powerful tool for localization when used in combination with computer vision al-
gorithms.

Kuhlmann and colleagues [KGR21] conducted a study on the accuracy of gyroscopes and found
that the deviation from the true value is typically within the range of 2° to 7°. They also re-
ported that there are inter-model variations in smartphone gyroscopes. Similarly, Stisen and
colleagues [SBB+15] investigated the accuracy of accelerometers. They found that some de-
vices, while at rest, show a deviation of up to 8% from the actual acceleration, which should only
consist of gravity’s acceleration. They further noted that the sensor accuracy is influenced by
temperature, though some devices are equipped with temperature-dependent calibration mech-
anisms.

2.2. Localization Methods

In this section, we introduce the three main approaches in the context of indoor localization:
lateration, fingerprinting, and dead reckoning.

2.2.1. Lateration

Lateration is a localization approach that determines the position of a device by utilizing the
distance between the device and several fixed transmitters. The relative position of the device
can be calculated through geometric operations with the known positions of the transmitters.
However, this method requires a dense deployment of transmitters and accurate calibration,
which makes it impractical for most public settings. To perform lateration, a minimum of three
transmitters are necessary to determine the location, as illustrated in Figure 2.1. Among others,
Shchekotov [Shc15] describes two methods to calculate the position through lateration.

While WiFi access points are commonly available in indoor environments, they are generally
not well-suited as transmitters for localization purposes. The topology of WiFi infrastructure is
not specifically designed for localization, and the number and placement of access points may

4



2.2. Localization Methods

Figure 2.1.: Lateration with three transmitters

not be sufficient for successful lateration. Consequently, in order to achieve reliable localization,
additional access points need to be installed at suitable positions to provide the necessary density
and coverage. Frequently, Bluetooth beacons are employed for this purpose due to their compact
size and cost-effectiveness.

2.2.2. Fingerprinting

Fingerprinting, or mapping, is a localization technique that employs a pre-defined map of signal
strengths to determine the current position of a device. This technique relies on signals emit-
ted by various sources, with WiFi and Bluetooth signals being the most commonly employed
for fingerprinting purposes. The localization consists of two phases: offline and online, as il-
lustrated in Figure 2.2. During the offline phase, signal strength measurements are recorded
across the entire premise, associating each measurement with its corresponding location. In the
online phase, the current signal strength is compared to the previously recorded signal strength
map to determine the position. Haque developed a fingerprinting localization system called
LEMON [Haq14] and reported good accuracy in indoor environments.

However, the fingerprinting method suffers from several limitations that must be taken into
account. The localization accuracy is heavily dependent on the density of transmitters. The
density requirement again makes Bluetooth beacons more suitable for this localization method
than WiFi access points because they are cheaper and smaller. The creation of an initial map
and updating it every time the topology of the environment changes can be time-consuming
and expensive, especially in dynamic environments like museums. Furthermore, the accuracy
of the localization is influenced by the type of device used, as different devices exhibit varying
sensitivity levels to different signals. Fluctuations in bandwidth can affect the performance of
fingerprinting methods. The perpetual power consumption of transmitters may raise considera-
tions in terms of energy consumption.

5



2. Related Work

(a) Offline phase (b) Online phase

Figure 2.2.: The two phases of fingerprinting

2.2.3. Dead Reckoning

Dead reckoning is a localization technique that estimates the position of a moving object based
on a previous known position. It updates the position by using the object’s heading, velocity,
and the time elapsed since the last position was measured. The principle of dead reckoning is
illustrated in Figure 2.3 with a corresponding symbol for each of the three components. Dead
reckoning can be used in situations where other localization signals, such as GPS, are unavail-
able or unreliable. For example, dead reckoning can be used underwater, which was done by
Maneka and colleagues [MG22] for an underwater acoustic sensor network.

13

Figure 2.3.: Principle of dead reckoning with heading, velocity, and elapsed time

When applied to a smartphone held by a person, dead reckoning involves measuring and inte-
grating the device’s acceleration and angular velocity to calculate the new position and orien-
tation. Therefore, dead reckoning only requires a minimal set of sensors, namely a gyroscope
and an accelerometer, to estimate the position. However, errors can accumulate over time due
to factors such as sensor drift, measurement noise, and environmental disturbances. Thus, dead
reckoning is often used in conjunction with other techniques to improve accuracy and reliability.

One way to improve the localization accuracy of dead reckoning is by applying Zero Velocity
Potential Update (ZUPT). Suresh and colleagues [SSPT18] describe ZUPT as a technique that
resets the current velocity to zero when the person is standing still. This approach stops the
accumulation of errors during periods of standstill.
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Pedestrian Dead Reckoning

Pedestrian Dead Reckoning (PDR) is a variant of dead reckoning that is tailored for localiz-
ing walking individuals. The PDR method comprises three parts, namely step detection, step
length estimation, and heading estimation, as illustrated with corresponding symbols in Fig-
ure 2.4. Step detection is typically accomplished by checking whether the acceleration exceeds
a threshold. Gyroscope data are commonly used for heading estimation. Several techniques are
available for step length estimation.

Figure 2.4.: Principle of PDR with heading estimation, step detection, and step length estimation

Weinberg [Wei02] introduces a straightforward method for estimating step length, which
achieves an accuracy of ±8% in determining the walked distance. His method calculates the
step length by using the difference between maximum and minimum acceleration within a step.
Jahn and colleagues [JBS+10] evaluated various techniques for step length estimation and found
that Weinberg’s method has a consistently low error rate. However, Ho and colleageus [HTJ16]
demonstrated that Weinberg’s method exhibits a tendency to overestimate the true distance.

Hsu and colleagues [HPS+14] have employed the PDR approach for updating the device’s lo-
cation. In their application, users are required to manually input the true position at predefined
calibration points distributed throughout the premises. These calibration points are fixed on the
map and serve to reset the accumulated error. The implementation demonstrates that PDR can
yield reasonably accurate results when the smartphone is consistently held steady in front of the
user. However, the deviation from the actual position increases when introducing errors into the
system, such as the user swinging their arm while holding the smartphone. Furthermore, the
accuracy is influenced by the duration between reaching calibration points.

2.2.4. Summary

Table 2.1 shows a comparison of the three localization techniques. It illustrates that dead reck-
oning has the fewest requirements and is therefore the most flexible method. However, this
approach is dependent on an initial position and becomes ineffective if such a position is not
available.

2.3. Pathfinding

In order to give a user clear instructions on how to reach the desired location, the path to the
destination first needs to be calculated in a process called pathfinding. Pathfinding requires
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Lateration Fingerprinting DR

Requires additional equipment yes yes no

Susceptible to signal attenuation
or interference yes yes no

Requires training data no yes no

Requires initial position no no yes

Table 2.1.: Comparison of localization techniques

information regarding the walkable areas accessible to a user.

Two primary methods for representing the walkable area have emerged: the waypoint graph
and the navigation mesh. These two representations are commonly used for navigation in video
game applications. The following comparison and figures are taken from Shermine1.

The waypoint graph comprises a collection of nodes positioned on the map. Some nodes, not
necessarily all of them, are connected. This approach delineates precisely which paths are
permissible for user traversal, as illustrated in Figure 2.5 (a). Conversely, the navigation mesh
comprises a collection of polygons that cover the map and specify the exact regions within
which users can walk. An instance of a navigation mesh is shown in Figure 2.5 (b).

(a) Waypoint Graph (b) Navigation Mesh

Figure 2.5.: The two ways to represent the walkable area

While both methods are used for navigation in games, Shermine argues that the navigation mesh
is more suitable for modern applications due to several reasons. In some environments, a large
number of waypoints would be necessary to represent all walkable paths, which can make the
waypoint graph complex and difficult to manage. Movement on waypoints is uneven, resulting
in sharp turns that do not mirror human behavior. New obstacles cannot be handled dynamically,
and a new graph has to be created manually for differently sized characters to avoid bumping

1https://www.shermine.cc/archives/266 (Accessed: 18. Nov. 2022)
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into obstacles. All these issues are resolved in a navigation mesh.

To highlight the disparities between the two approaches, Figure 2.6 depicts the paths obtained
when employing each method. The red line, corresponding to the waypoint graph, exhibits
sharp turns, whereas the smooth blue line represents the path obtained using the navigation
mesh. The latter approach demonstrates a more natural means of navigating the environment.

Figure 2.6.: Paths resulting from a waypoint graph (red) and a navigation mesh (blue)

Unity, a widely used game engine, provides built-in support for generating a navigation mesh,
referred to as NavMesh2. The NavMesh is automatically created based on the underlying scene.
To calculate the path between two points, Unity utilizes the A* algorithm, which was introduced
by Hart and colleagues [HNR68]. An example scene with a generated NavMesh is shown in Fig-
ure 2.73. The NavMesh can be readily customized to accommodate users with varying spatial
requirements such as wheelchair users. This capability alleviates the need for users to manu-
ally redefine the walkable area for each visitor type, streamlining the accessibility adaptation
process.

Figure 2.7.: Automatically generated NavMesh (blue) in Unity

2https://docs.unity3d.com/Manual/nav-NavigationSystem.html (Accessed: 24. May
2023

3https://learn.unity.com/tutorial/navmesh-baking-1 (Accessed: 23. May 2023)
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2.4. Existing Apps

In this section, we provide an overview of the features commonly found in modern museum
applications. Additionally, we discuss relevant research and developments in the field of AR

applications, especially when combined with navigation.

2.4.1. Overview

A number of museums provide smartphone applications for their visitors, often featuring a map
of the museum premises. While several of these offer localization within the museum, only
a limited number provide navigation functionality. As AR is an emerging technology, only a
handful of museums have incorporated it into their applications. When implemented, AR is
primarily utilized to offer supplementary information about the artworks. An overview of the
studied museum apps is given in Table 2.2.

Name of Museum Navigation Localization AR

Rijksmuseum ✓ ✓ ✗

American Museum of Natural History ✓ ✓ ✗

Kunsthaus ✗ ✗ ✗

Deutsches Museum ✗ ✓ ✓

Cleveland Museum of Art ✗ ✓ ✗

Oriental Institute Museum ✗ ✓ ✗

National Gallery of Art ✗ ✓ ✗

Behind The Art (BTA) ✗ ✗ ✓

Table 2.2.: Overview of features of existing museum apps

2.4.2. Augmented Reality Apps

This thesis is based on the BTA project4 by the Game Technology Center (GTC) at ETH Zurich.
The BTA project includes a web editor with a floor plan that enables museum curators to set
the locations of the artworks within the museum. Their AR application aims at enhancing the
visitor’s experience by including supplementary information in the form of virtual content.

Delail and colleagues [DWZ12] introduced an AR application that focuses on recognizing static
markers in indoor environments. While their project was not specifically designed for museum
settings, it has potential for adaptation to such contexts. The application assigns the user’s

4https://gtc.inf.ethz.ch/research/augmented-and-virtual-reality-research/
behind-the-art.html (Accessed 16. May 2023)
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position to the marker’s location when it is recognized. The user’s position is visualized on
an indoor map and continuously updated using data from the accelerometer and compass. The
application achieves a localization accuracy of less than 2% over a distance of approximately
90 meters. However, the frequency at which the position is determined via marker recognition
is not specified, calling into question the feasibility of achieving this accuracy solely with the
device’s sensors. In their subsequent work, Delail and colleagues [DWZN13] further enhanced
localization accuracy by calibrating the compass and incorporating map information to ensure
that the estimated path avoids intersecting with walls. Additionally, they enabled users to carry
their smartphones in their pockets by utilizing Principal Component Analysis (PCA) on the
acceleration data.

In the context of museums, several attempts have been made to incorporate AR. Miyashita
and colleagues [MMT+08] developed a museum guide utilizing AR technology, which provides
additional information about artworks. The visitors lacked familiarity with AR, resulting in their
inability to fully appreciate its capabilities.

Madsen and colleagues [MMM12] encountered a similar challenge when developing a museum
application specifically designed for children aged 8-12. They observed that visitors typically
engaged with the AR animations in a static manner, failing to recognize the opportunity to
explore the content from different perspectives by physically moving around. The ability to
seamlessly navigate the physical space while interacting with digital content is a substantial
advantage of AR technology. However, it requires users to first become accustomed to these
unfamiliar interaction possibilities, which may take some time.

2.4.3. Augmented Reality Apps with Navigation

Notable advancements have been made in the realm of AR navigation within museums, com-
plementing the primarily exhibition-focused AR content. Naver Labs5 developed an AR-based
museum guide featuring a virtual avatar named ARAO, as shown in Figure 2.8 (a). ARAO incor-
porates human pose detection and interactive capabilities to engage with other visitors. ARAO
dynamically adjusts its path to accommodate deviations from the predefined tour, demonstrat-
ing a high level of adaptability. Their localization approach relies on a 3D model of the indoor
environment.

Indoor navigation is a challenge encountered not only at museums but also in supermarkets. Hy-
per6 offers an AR app that guides customers to specific products within a supermarket, as shown
in Figure 2.8 (b). Hyper’s localization solution leverages WiFi positioning, sensor data, and
machine learning techniques. According to Hyper, their approach achieves sub-meter accuracy.

In outdoor environments, Google Live View7 offers directions in AR. Their localization is based
on GPS positioning and an artificial intelligence algorithm that incorporates data from Google
Street View. The directions are presented with arrows, as shown in Figure 2.8 (c). Notably,

5https://europe.naverlabs.com/blog/an-augmented-reality-guide-for-
museums/ (Accessed 21. Nov. 2022)

6https://www.hyperar.com/ (Accessed: 16. May 2023)
7https://techcrunch.com/2019/08/08/google-launches-live-view-ar-walking-
directions-for-google-maps/ (Accessed: 21. Nov. 2022)
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(a) Naver Lab’s ARAO (b) Hyper (c) Google Live View

Figure 2.8.: AR-based Apps

Google is also developing an indoor navigation feature that has already been implemented in
several malls and airports.
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3
System Overview

In this chapter, we provide a comprehensive overview of the implemented system. We begin
by discussing the requirements and goals of the thesis, outlining the desired outcome. Next, we
present the various components of the system, including the floor plan editor and the navigation
functionalities, which are integrated into a smartphone application.

3.1. Requirements

The main objective of this thesis is to develop an AR application that enables users to navigate
through an indoor environment similar to a museum. The system requires an initial position
before the navigation can begin. When the user specifies an artwork as their desired destina-
tion, the app provides directions in AR to guide the user toward the chosen artwork. The app
continuously localizes the user within the building.

The navigation functionality requires us to implement two distinct components. The first com-
ponent is a floor plan editor to author the indoor environment. The second component is an AR

application that runs on a smartphone.

The floor plan editor and the navigation app require access to a shared database. We assume
that both the floor plan and the artwork data, including their associated metadata, are already
available in the database. The floor plan editor writes artwork locations and authored floor
plan data to the database and the navigation app reads from it. An overview of the system is
illustrated in Figure 3.1.

Conventional localization solutions employed in museums often rely on Bluetooth beacons. In
contrast to that, we aim to investigate the use of sensor data from the smartphone without the
need for any additional hardware.

We aim to investigate various methods of displaying navigation information in AR applications.
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DatabaseFloor Plan Editor Navigation Appwrite read

Figure 3.1.: System overview

Specifically, the navigation app we implement should offer three different options for providing
directions.

We conducted this thesis in the context of GTC’s BTA project. Within this context, we can utilize
certain pre-existing components of the museum app. Specifically, we borrowed parts of the floor
plan editor and the functionality to track artworks in AR from the BTA project. We incorporated
their design principles in the development of the User Interface (UI) of both the app and the floor
plan editor. However, note that all the localization and navigation functionalities presented in
this thesis are novel and have been implemented independently of the BTA project.

3.2. Floor Plan Editor

This section provides an overview of the functionality offered by the floor plan editor. The
floor plan editor allows users to author data that are stored in the database for later use in the
navigation app.

To derive navigation information, the system relies on a precise position estimate obtained
through sensor data or AR tracking. To obtain a position estimate based on AR tracking, it is
essential to know the positions of all trackable artworks within the museum. These positions are
defined in the floor plan editor. Additionally, the navigation system needs to know the walkable
areas accessible to visitors in order to compute the optimal path to the desired destination. The
floor plan editor hence provides functionalities to author the walkable areas.

The floor plan editor offers three modes that users can switch between: edit locations, edit
polygons, and display all. These modes are introduced in greater detail below.

3.2.1. Edit Locations

The edit locations mode allows for the modification of the positions of all artworks in the given
floor plan. Figure 3.2 shows a screenshot of this mode.

To achieve realistic navigation in AR, it is essential to establish accurate knowledge of the floor
plan dimensions. Users can input the real-world size of the floor by indicating either its width
or its height. The other dimension is then determined based on the floor plan’s aspect ratio.
By specifying the real-world dimensions of the floor plan, users can validate the positions of
artworks for example by measuring their distances to nearby walls.

The tracking information obtained when the user tracks an artwork consists of the user’s posi-
tional offset relative to the artwork. To use this information for localization, the system requires
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Figure 3.2.: The edit locations mode of the floor plan editor

the exact positions of the artworks, which is why this mode of the floor plan editor was imple-
mented. The system calculates an accurate estimate of the user’s position by adding the offset
to the position of the artwork.

In instances where the museum contains numerous artworks, the process of accurately placing
them at their respective locations can be arduous, especially when considering potential inter-
ference with other artworks during the placement. To mitigate this challenge, we incorporated
the functionality to lock artworks. This feature ensures that once an artwork is placed at its
exact location, it is protected from accidental movement or changes.

3.2.2. Edit Polygons

The edit polygons mode is designed to define the walkable areas within the museum. The
walkable area encompasses all places in the museum that visitors are allowed and able to access.
This mode allows the user to exclude staff-only rooms or areas occupied by obstacles, such as
statues, from the walkable area. The navigation functionality in the app needs the walkable
area for pathfinding to ensure that users are only guided through areas that they are permitted to
access.

The edit polygons mode is depicted in Figure 3.3. Users can add, edit, and delete polygons. The
red polygons represent unwalkable areas, while the green polygons represent walkable areas.
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Figure 3.3.: The edit polygons mode of the floor plan editor

3.2.3. Display All

The display all mode in the floor plan editor provides users with a comprehensive overview of
the entire floor plan, displaying the authored data including the walkable areas and all artworks,
as shown in Figure 3.4. This mode allows users to visualize the spatial layout of the indoor en-
vironment, helping them understand the spatial relation of walkable areas and artworks. Unlike
the edit locations and edit polygons modes, the display all mode does not allow for editing of
any data. This constraint makes it a useful mode for visualizing the floor plan without the risk
of inadvertently modifying any information.

3.3. Navigation

All navigation-related functions are implemented within the smartphone application. In the
following sections, we provide an overview of the three main components of the navigation:
localization, pathfinding, and the UI of the application.

3.3.1. Localization

As previously mentioned in Chapter 2, various localization approaches exist for indoor naviga-
tion in museums. Many museums rely on permanently-installed Bluetooth beacons to provide
localization information. However, in this thesis, we aim to focus on a solution that does not
require any additional hardware or costly setup. Instead, we leverage the resources that are
readily available to any user of the navigation app: smartphone sensors.
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Figure 3.4.: The display all mode of the floor plan editor

The position of the user can be accurately determined when tracking an artwork, as we defined
the positions of all artworks within the museum in the floor plan editor. Tracking information
becomes available as soon as an artwork is recognized in the camera feed. However, once
the user moves away from the artwork and is no longer tracking anything, we need additional
information to update their position. For these updates, we utilize the smartphone’s built-in
sensors, specifically the accelerometer and the gyroscope.

Figure 3.5 illustrates the iterative process of updating the position estimate. Upon starting the
application, tracking an artwork is always necessary to establish the initial position. Subse-
quently, the position is either precisely determined using tracking information or updated based
on sensor data from the device.

Update position 
via sensor data

Set position via 
AR information

Tracking?

yes noStart

Figure 3.5.: Process of updating the position estimate

The user’s position is always reset to the more accurate estimate obtained through tracking
information as soon as it becomes available. Hence the localization accuracy depends, among
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other factors, on the duration of time spent walking around without tracking any artworks. By
combining the two position update approaches – tracking artworks and utilizing smartphone
sensors – we aim to provide a reliable estimate of the user’s actual position at all times.

3.3.2. Pathfinding

The pathfinding algorithm in the navigation app uses the walkable area that has been defined
in the floor plan editor. Unwalkable areas, such as walls or other obstacles, are not considered
when calculating the shortest path, which ensures that all directions provided to the user are
feasible and safe.

3.3.3. User Interface

The navigation app’s UI features three different views: the route view, the camera view, and
the map miew. These views are designed to offer different perspectives and functionalities for
navigating the museum environment. In the following sections, we provide an introduction to
each of these views.

Route View

In the route view, users are presented with a list of all artworks housed within the museum. They
have the ability look at the details of each artwork through the preview page, enabling them to
make an informed decision about their desired destination. Upon selecting a route, the system
calculates the optimal path leading to the chosen destination. Additionally, the app can display
the position of the artwork on the map. The UI of the route view is depicted in Figure 3.6.

Camera View

In the camera view, users see a live feed from their device’s camera and a map that depicts their
location within the museum, which is shown in Figure 3.7 (a). The map in the camera view
remains concealed until the first artwork is successfully tracked. This concealment is due to the
absence of a position estimate prior to tracking an artwork. Once the map is displayed, it is
oriented in the same way as the user is facing, making it easy for them to correlate their real-
world direction with the map. To aid users in orienting themselves, the map can be expanded to
a larger size, as exemplified in Figure 3.7 (b).

If the user has previously requested the route to a specific artwork, they will see directions
overlaid on the camera feed using AR technology. Three methods of displaying these directions
are available: fixed, corner, and many, as illustrated in Figure 3.8. We implement three methods
to examine potential influences on usability. Although the methods share similarities, they
vary in certain key aspects, including indicator placement, the number of indicators displayed,
and the level of information provided. More details on each of the three methods are given in
Section 4.5.
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(a) List of artworks (b) Preview page (c) Preview page when showing
route

Figure 3.6.: Different states of the route view

(a) Default (b) Enlarged map

Figure 3.7.: The camera view with the map
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(a) Fixed (b) Corner (c) Many

Figure 3.8.: The three methods to display directions

Upon reaching the destination, users are notified as depicted in Figure 3.9 (a). The notification
can only be dismissed during tracking. This precaution ensures that users do not accidentally
dismiss the notification and miss their intended destination. Figure 3.9 (b) shows the notification
when the user is not tracking the artwork.

(a) While tracking (b) While not tracking

Figure 3.9.: UI of the camera view at the destination

An additional form of feedback is the overlay of a digital version of the artwork onto the real
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artwork when it is being tracked. This overlay serves as a visual indicator that the tracking is
functioning correctly. The overlayed image is shown in Figure 3.9 (a).

The camera view provides access to the settings page, which is illustrated in Figure 3.10. The
settings page offers access to various functionalities implemented throughout this thesis. Further
details are elaborated in Chapter 4. Notably, functionalities regarding drift are described in
Section 5.1.2 and the aiding mechanism, which was introduced for the user study, is explained
in Section 5.2.1.

Figure 3.10.: The settings page

Map View

The map view consists of a top view of the floor plan, as shown in Figure 3.11 (a). A blue symbol
oriented the same way as the user indicates their position. If the user has requested directions
to an artwork, the route is illustrated as a line on the map, as shown in Figure 3.11 (b). All
artworks are marked on the map with a red pin and clicking on them opens a bubble with the
corresponding artwork’s name, as shown in Figure 3.11 (c).
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(a) Default (b) Indicating a path (c) Opened bubble

Figure 3.11.: Different states of the map view
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4
Implementation

This section outlines the technical implementation of the thesis, providing detailed explanations
of the hardware and software utilized during the thesis, the development of the floor plan editor,
information about localization and pathfinding, and the three distinct methods employed to
display navigation information in AR.

4.1. Used Hardware and Software

This section provides an overview of the hardware and software tools utilized throughout this
thesis.

4.1.1. Smartphone

We utilized a Galaxy S8 smartphone for running the application during testing and the user
study. Despite not being the latest model, it was chosen because its acceleration sensor is
identical to the one used in the more recent models, such as the Samsung Galaxy S21 Ultra.
This fact lets us assume that the accuracy of the acceleration sensor is comparable between
older and newer devices.

4.1.2. Vue and Vuetify

Vue1 is a progressive JavaScript framework that is commonly used to build UIs and single-page
applications. It is often described as lightweight and easy to learn, with a modular architecture

1https://vuejs.org (Accessed: 24. May 2023)
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and a focus on component-based design.

Vuetify2 is a UI component library for Vue that is designed to help developers create consistent
and responsive web applications. It provides a comprehensive set of pre-made UI components
that are built on top of the Vue framework, including layouts, grids, forms, buttons, and icons.

The Vue framework, together with Vuetify, was used to develop the floor plan editor. It was
chosen because the BTA project’s editor was also implemented using Vue, enabling the potential
integration of the two projects in the future.

4.1.3. Unity

Unity3 is a cross-platform game engine and development platform that is widely used to create
not only video games but also AR applications. It provides a range of features including a visual
editor and a scripting engine based on the C# programming language. Unity is known for its
ease of use, flexibility, and scalability.

Unity is equipped with a navigation system that utilizes a Navigation Mesh, commonly referred
to as NavMesh, to represent the walkable area. The NavMesh facilitates virtual characters’
autonomous navigation, allowing them to determine the most optimal path to their destination.

The decision to use Unity as the main development platform for the navigation functionality
was based in part on the fact that the BTA project also uses Unity, again allowing potential
integration of the new functionality into the existing project.

4.1.4. Vuforia

Vuforia4 is an AR software platform that enables developers to create AR experiences for mobile
devices. It provides a range of features and tools for creating marker-based AR applications,
including image and object recognition, tracking, and digital content rendering.

The BTA project also uses Vuforia for its AR functionalities. With Vuforia, the BTA app tracks
artworks and displays information about them in AR. We use Vuforia in the same way and
leverage the tracking information it provides, specifically the relative distance and orientation
to the artwork.

4.1.5. Firestore

Firestore5 is a scalable and fully managed NoSQL document database service provided by
Google Cloud Platform. It is designed to store and manage large amounts of structured and
semi-structured data. Its features include real-time updates, query capabilities, and offline sup-
port. Firestore stores data in documents, which can contain fields and nested sub-collections.

2https://vuetifyjs.com/en/ (Accessed: 24. May 2023)
3https://unity.com (Accessed: 24. May 2023)
4https://developer.vuforia.com (Accessed: 24. May 2023)
5https://firebase.google.com/docs/firestore (Accessed: 24. May 2023)
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It is optimized for low latency and high performance and can be integrated with various devel-
opment platforms and tools. If you read this, you get a cookie. Firestore is commonly used to
build web and mobile applications that require a flexible and scalable database solution.

Firestore serves as a shared database between the floor plan editor and the navigation applica-
tion. This database effectively stores the coordinates of all artworks, the dimensions of the floor
plan, and the polygons that delineate the walkable areas.

4.2. Floor Plan Editor Implementation

This section describes the implemented functionality of the floor plan editor.

4.2.1. Visualization of Floor Plan

In the floor plan visualization, an HTML canvas element6 is used to draw the floor plan, the
artworks, the polygons, and the cross hair at the cursor’s position. The canvas is redrawn every
frame, enabling dynamic content to be displayed. The depiction of an artwork is illustrated in
Figure 4.1. The displayed information includes the size and orientation of the artwork as well
as indicating the front side. This information serves as a valuable aid in placing the artwork at
its precise location on the floor plan.

Figure 4.1.: Schematic of artwork displayed in floor plan editor

4.2.2. Unwalkable areas

The process of excluding specific regions from the walkable area quickly becomes complex,
as depicted in Figure 4.2 (a). In this particular example, the walkable area is defined using
16 vertices. When the user creates a polygon, they have to define the vertices in the order
that they are connected. This constraint leads to the polygon’s ”E”-shape. It should be noted
that the gaps within the walkable area of this example are intentionally included for illustrative
purposes, as the presence of these gaps accentuates the ”E”-shape. To improve the process of

6https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API (Accessed: 24. May
2023)
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excluding certain regions from the walkable area, we introduce the option to mark polygons
as unwalkable. With this feature, the user can define a larger polygon representing the room
and overlay a smaller polygon on top of it, marking the latter as unwalkable. The outcome is
demonstrated in Figure 4.2 (b), which achieves the same result as Figure 4.2 (a) but with only 12
vertices. Apart from requiring fewer vertices, this approach substantially enhances readability
and ease of use.

(a) One big walkable polygon (b) One walkable and two unwalka-
ble polygons

Figure 4.2.: Two methods to define unwalkable areas

4.2.3. Point Inside Polygon Function

The user can select a polygon for further editing by clicking somewhere within its area, includ-
ing all its edges and vertices. To perform this operation, the floor plan editor iterates through
all polygons on the floor plan. For each polygon, an algorithm determines whether the clicked
point is inside the polygon’s area.

The approach employed for performing the aforementioned check is a ray-casting algorithm.
The algorithm initiates a ray at the point in question and traces it in a fixed direction. It counts
the number of intersections of the ray with the polygon. If the number of intersections is odd,
the point is situated within the polygon; otherwise, it is located outside of it.

4.2.4. Adding a Vertex

The process of creating a large polygon in one go can become cumbersome. In the current
implementation, vertices must be placed in the order they are connected when adding a new
polygon. This requirement can make it unintuitive to create larger polygons with non-trivial
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shapes. To address this challenge, we introduce a feature that allows users to add new vertices
to existing polygons.

When a polygon is selected, users can add new vertices by clicking on a point along one of
the edges. A new vertex is inserted at the clicked position. This feature is implemented by
projecting the mouse onto the nearest edge of the polygon. If the distance between the mouse
and the edge is smaller than a predetermined threshold of 8 pixels, a small red circle appears,
indicating the option to add a new vertex at that location. This option is illustrated in Figure 4.3.

Figure 4.3.: Red circle indicating the option to add a vertex to the polygon

4.2.5. Drag-and-Drop

The drag-and-drop functionality for artworks and polygon vertices facilitates exact placement
and improves usability of the system. It was implemented with a helper variable dragging to
track whether the user is currently dragging an item. Dragging is set to true when the mouse
button is pressed while hovering over a draggable item. It is set to false when the mouse button
is released. Since the canvas is redrawn every frame, this helper variable determines whether
the position of the current item should be updated when the mouse moves.

The selection of the current item to be dragged is based on a process that involves examining
all potential points, namely artworks or polygon vertices, and determining if the mouse is close
to any of these items. In case there are multiple items that are close to the mouse, the item that
is visually rendered on top is selected for dragging. The item that is currently being dragged is
also stored in a helper variable to enable correct drag-and-drop functionality.

4.3. Localization Implementation

In this section, we explain the implementation approach for localizing the user within the mu-
seum. We detail the procedure for calculating the position while tracking an artwork and in-
troduce the sensors utilized for localization when no artwork is in proximity. We outline two
techniques for localization, namely dead reckoning and PDR. We observed that PDR outper-
forms dead reckoning in the museum setting, which is explained in detail in Section 5.1.4.
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4.3.1. Artwork-based Position Estimation

Localization accuracy is crucial in the navigation app and tracking an artwork provides an accu-
rate estimate of the user’s position. Such an estimate is necessary for initializing the localization
when starting the navigation app. It is also used to correct any errors that may have been intro-
duced in the intermediate position estimation while not tracking any artworks.

Vuforia provides the relative position and orientation of the artwork with respect to the camera
used to track it, as illustrated in Figure 4.4 (a). Since the absolute position of the artwork is
already known from the floor plan editor, the relative position is added to it while taking the
orientation of the artwork into account.

It is worth mentioning that the position and orientation of the artwork is provided by Vuforia
with the assumption that the camera is located at position (0, 0, 0) and with no rotation. There-
fore, to calculate the position estimate, we apply the reverse rotation α to the user’s position, in
addition to the real-world rotation β of the artwork. This process is illustrated in Figure 4.4 (b).

𝛼

(a) Data obtained via track-
ing

𝛼

𝛽

(b) Calculation of position estimate

Figure 4.4.: Explanation of artwork-based position estimation

Smoothed Tracking

The tracking data obtained from Vuforia is noisy, especially when the user stands far away
from the artwork. To reduce jittery tracking data, the system applies a smoothing technique by
calculating a moving average of the artwork’s position and orientation. The window size is set
to 20 frames, which corresponds to 0.4 seconds. The user’s position is only updated when the
window is full, which improves the reliability of the position estimate. We show the pseudo code
of the smoothing algorithm in Alg. (1). The code is executed in each frame. In the algorithm, pt
is the tracked position, ps is the resulting smoothed position, w is the window size, and window
is a queue that contains all positions within the window. The smoothing works analogously for
the orientation.
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Algorithm 1 Moving Average

window.Enqueue(pt)
if window.Length == w + 1 then

ps ← ps + 1/w ∗ (pt − window.Dequeue())
else

ps ← ps + pt
if window.Length == w then

ps ← ps/w
end if

end if

The effect of the smoothing technique is depicted in Figure 4.5. When the user is close to
the artwork, the impact of smoothing is relatively modest. The raw data are accurate enough
so that smoothing is not strictly necessary. However, at a greater distance from the artwork,
the unprocessed data display outliers that substantially deviate from the true position. The
smoothing process considerably diminishes the influence of these outliers.
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Figure 4.5.: Artwork-based position estimate with and without smoothing

Rapid Turns

The application of smoothing to the orientation gives rise to a new issue, namely a delay in
the orientation estimate when users turn rapidly. The smoothing process involves averaging the
orientation over a time window, resulting in a delay between the estimate and the actual orienta-
tion. This delay is proportional to the turning speed. The issue is particularly evident when the
user turns away from an artwork and stops tracking it. As the last orientation estimate is used as
the initial value for the sensor updates and the estimate lags behind the actual orientation, this
situation results in an erroneous orientation estimate after this point in time.

To mitigate this problem, we adopt a strategy of switching to the orientation calculated via
gyroscope data as soon as the user starts turning rapidly. To detect such turns, we set a threshold
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on the gyroscope data. The threshold was set to 1° per frame, which corresponds to 1° per 0.02
seconds. This method effectively overcomes the delay issue.

Phone Position

An important factor that can be easily overlooked is the distance between a user’s body and
their phone. Typically, the phone is held at a distance of approximately 30-40 cm from the
body. Vuforia provides information about the phone’s position relative to the artwork, resulting
in an estimate of the phone’s position, not the user’s body. The issue becomes evident when a
user turns in place. Using the phone’s position results in an incorrect interpretation of the user’s
turn. Specifically, it suggests that the user is turning around the phone rather than the phone
turning around the user. This issue is illustrated in Figure 4.6, with a visual representation of
the user seen from above. Placing the estimate at the user’s body, as shown in Figure 4.6 (a),
better models a user’s natural behavior than the location shown in Figure 4.6 (b).

0
0

0 turn right

(a) Estimate located at body

000 turn right

(b) Estimate located at phone

Figure 4.6.: Implications of different estimate locations

To place the estimate at the user’s body, the distance between the phone and the user’s body is
added to the distance obtained from Vuforia. Assuming that the user holds the phone in front of
their body, this additional offset will result in a more precise estimation of the user’s position.
This adjustment does not alter the navigation process; rather, it places the position estimate
closer to where one would expect it to be.

4.3.2. Sensor Data

This section delineates the process of reading and processing sensor data. This process happens
prior to feeding the data into the distinct localization implementations.

The accelerometer provides information on the distance covered by the user, while the gyro-
scope gives data on the user’s orientation. The acceleration data are presented in g-force values,
so the values must be multiplied by 9.8 to obtain the acceleration in m/s2. The gyroscope
provides the angular velocity in rad/s, so we multiply it with 180

π
to get °/s.

As the phone’s coordinate system is different from the one used in Unity, it is necessary to
multiply the z-axis data by −1. This adjustment is done for both the accelerometer data and the
gyroscope data. The two coordinate systems are visualized in Figure 4.7.
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(a) Phone
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Figure 4.7.: Three axes in the phone’s and Unity’s coordinate systems

It is worth noting that the acceleration data are inevitably influenced by gravity. However,
reading sensor data through Unity gives access to the linear acceleration, which corresponds
to the acceleration without the effect of gravity. Throughout our implementation, we therefore
refer to the acceleration that is not affected by gravity.

To reduce the impact of noise in the sensor data, a low-pass filter is utilized. In Unity, this filter
is implemented by linearly interpolating between the new value and the previous filtered value.
The interpolation calculation is defined in Eq. (4.1), where a is the already filtered value, b is
the current noisy value, and p is the interpolation parameter. The specific value of p = 0.4 was
determined through experimentation. Adjusting p has an impact on the noise level in the filtered
data; higher values leave more noise, while lower values lead to loss of certain details present
in the initial data. The value resulting from this calculation is utilized as a in the subsequent
frame.

a+ (b− a) ∗ p (4.1)

The outcome of the filtering process is visualized in Figure 4.8. The data were recorded when
walking down a straight corridor with constant speed. It is evident that the filtered data are
smoother, while still retaining the fundamental trends observed in the original data. The results
indicate that setting p = 0.4 strikes a favorable balance between noise reduction and preserva-
tion of data details.

The application of a low-pass filter is limited to the acceleration data and not extended to the
data obtained from the gyroscope. We found that filtering the gyroscope data was not necessary,
as discussed in further detail in Section 5.1.1.

4.3.3. Dead Reckoning Implementation

The implementation of dead reckoning is based on data from the accelerometer and the gyro-
scope sensors. In the following subsections, we provide details on the implementation of the
different features.
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Figure 4.8.: Acceleration in local y-axis with and without filtering

Integration

The dead reckoning position updates are computed by integrating the sensor data. To obtain
an accurate position estimate, it is essential to calculate both the position and orientation of the
user. The position p is derived from integrating the acceleration a twice, while the orientation o
is derived from the integration of the angular velocity ω. This computation is shown in Eq. (4.2),
where v is the velocity and t is the elapsed time.

p =

∫
v dt =

∫∫
a dt

o =

∫
ω dt

(4.2)

The primary limitation of the integration-based position updates is the accumulation of errors
over time. Integrating the sensor data amplifies any error that may exist. This phenomenon is
shown in Eq. (4.3), where the error e in the sensor data is integrated and subsequently manifests
in the position estimate. Without compensating for these inaccuracies, the error will continue
to increase over time.

∫∫
a+ea dt =

∫
v+eat dt = p+

eat
2

2∫
ω+eω dt = o+eωt

(4.3)

Calibration

One strategy to mitigate the issue of erroneous data is to calibrate the device when starting the
navigation app. The calibration process aims to eliminate the deviation of data from its true
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value, also known as drift. Specifically, when the phone is positioned on a stable surface, the
sensor should output an acceleration and an orientation change of zero. Any value that differs
from this expected value is regarded as drift.

Calibrating the phone involves placing it on a stable surface and calculating the average value
over a period of 1 second. Averaging over this duration minimizes any remaining noise in the
data. The resulting average value reflects the drift inherent to the sensor. Subsequently, the
drift is continuously subtracted from all sensor readings to ensure that the values of a stationary
device are indeed zero.

Zero Velocity Potential Update

In addition to the aforementioned technique, ZUPT can also be utilized to enhance the accuracy
of localization. It operates by detecting whether the user is stationary and resets the current
velocity to zero if that is the case. This procedure effectively stops the accumulation of the
integration error, leading to improved accuracy.

The implementation of ZUPT involves comparing the current acceleration and change in orienta-
tion with predefined thresholds. If the values of both the acceleration and change in orientation
are smaller than their respective thresholds, the ZUPT conditions are met, and the current ve-
locity is reset to zero. The thresholds are based on previous research conducted by Suresh and
colleagues [SSPT18] and are presented in Section A.1.

In our implementation, the velocity is reset only if the ZUPT conditions are met for a minimum
of five consecutive frames, which corresponds to 0.1 seconds. This approach eliminates false
positives that can occur when the conditions are met but the user is actually walking. Resetting
the velocity while the user is walking can have detrimental effects on the position estimate, as
it may cause the estimate to fall behind the true position and never catch up again. Our own
experiments demonstrated that a window of five consecutive frames is sufficient to mitigate the
occurrence of false positives.

Although the ZUPT method is effective in preventing the accumulation of errors during periods
of standstill, it does not eliminate any errors that have already accumulated. As a result, its
ability to improve localization accuracy is limited to stationary periods. During periods of
movement, errors still accumulate and affect the accuracy of the position estimates.

4.3.4. Pedestrian Dead Reckoning Implementation

The implementation of PDR consists of three distinct parts: step detection, step length estima-
tion, and heading estimation. Together, these parts provide an update from the current position
to the position after a step. The implementation utilizes data collected from both the accelerom-
eter and the gyroscope of the mobile device.
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Step Detection

The step detection algorithm relies on acceleration data and utilizes prior knowledge of the
user’s orientation obtained from tracking data, which indicates the direction of gravity.

A step can be defined as a temporal sequence characterized by an initial upward movement
followed by a downward movement of the body. This sequential pattern, referred to as bounce,
was first introduced by Weinberg [Wei02] and is visually depicted in Figure 4.9. The figure
illustrates a single step, capturing key positions. At the beginning, both legs are in contact with
the floor, with the right leg positioned in the back. During this phase, the hip is at its lowest
point in the trajectory. As the step progresses, the hip ascends to its maximal elevation when
the left leg aligns directly beneath it. Bringing the right leg forward and to the ground leads to
a descent of the hip. The vertical displacement of the hip throughout this sequence is referred
to as bounce.

Figure 4.9.: Bounce while walking

The step detection algorithm detects the bounce by analyzing the acceleration along the di-
rection of gravity. Since we assume that the floor plan lies flat on the xz-plane in Unity, the
direction of gravity corresponds to the y-axis. Therefore, the relevant acceleration data are
denoted by ay.

The human body exhibits a positive peak in acceleration while going up and a negative peak
while going down. The acceleration during a step is depicted in Figure 4.10. The detection
of a step begins as soon as the acceleration ay exceeds a predefined step detection threshold.
For this application, the threshold is set at Tstep = 0.7m/s2. Two helper variables, goingDown
and comingBackUp, are used to determine the current stage of the step detection. GoingDown
is set to true if a step has been started and the acceleration is less than the threshold Tstep.
ComingBackUp is set if goingDown is true and ay < −Tstep. During the step, amax and amin

are constantly updated. Once both goingDown and comingBackUp are true and ay > −Tstep,
the algorithm confirms the detection of a step. In Figure 4.10, the detection is indicated by ”End
of Step”.

Information regarding the detected step is retained in a class called StepHelper. This class
includes the orientation of the user at the start and at the end of the step, maximum and minimum
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Figure 4.10.: Process of step detection using the vertical acceleration

acceleration during the step amax and amin, and the duration of the step. The duration is used
to disregard any steps that take longer than a designated maximum step duration. We set this
maximum value to 1.2 seconds. If the duration of a step exceeds this limit, it is presumed to be
an anomalous reading and the step is discarded.

During the experiments conducted in the development of the localization algorithm, we iden-
tified the issue that tapping on the screen can erroneously be detected as a step, leading to
incorrect position updates. To address this issue, we introduce a horizontal threshold which
is combined with the step detection threshold. Specifically, a step detection cycle is initiated
only when ay > Tstep and the magnitude of the horizontal acceleration, consisting of ax and az,
exceeds the horizontal threshold Th. We set Th = 0.55m/s2. This constraint is mathematically
expressed in Eq. (4.4). It effectively prevents screen taps from being detected as steps, while
retaining the detection of true physical movements.

ay > Tstep ∧

∣∣∣∣∣∣
ax

az

∣∣∣∣∣∣ > Th (4.4)

Step Length Estimation

The step length estimation can be done either dynamically or statically. The dynamic approach
involves computing the step length for each step individually, while the static approach employs
a fixed step length for all steps.

The dynamic step length estimation we use is based on research conducted by Weinberg [Wei02].
He shows that the step length estimate l as shown in Eq. (4.5) has an accuracy of±8%. The cal-
culation involves the minimum and maximum values of the acceleration during the step, which
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are stored in the StepHelper class.

l = 4
√
amax − amin (4.5)

This estimate was originally designed for use with pedometers worn on the foot. When using
smartphones, the estimate may be affected by additional noise introduced by the user’s hand
movements while holding the device. .

The static step length estimation is a non-adaptive approach that utilizes a fixed value for step
length. This approach is independent of the way the user holds the phone during walking. The
step length is personalized to each individual by measuring their average step length over a short
distance and using that value for all detected steps.

Heading Estimation

The heading estimation process utilizes the orientation obtained by integrating the angular ve-
locity. Specifically, the StepHelper class stores the orientation of the user at the beginning and
at the end of each step. The direction of the step is determined by calculating the angle between
those two orientations.

When a user takes a step, it has no effect on the vertical component of the position estimate.
As a result, the heading estimation requires only the angle around the world’s y-axis to de-
termine the direction of the step. This angle is derived by considering the direction in which
the phone’s camera is oriented, corresponding to its local z-axis. The angle of the local z-axis
around the world’s y-axis is calculated by discarding the y component of the local axis and ap-
plying trigonometric principles to the remaining vector. The resulting angle is used as heading
estimate.

4.4. Pathfinding Implementation

All functionality related to pathfinding was implemented using Unity and compiled to run as
an Android app. First, the pathfinding algorithm triangulates the polygons that were defined
in the floor plan editor. Next, the triangulated mesh is utilized to generate the NavMesh. The
NavMesh is then responsible for computing the path to the destination. These steps are further
elaborated below.

4.4.1. Triangulation

The polygons stored in the database are represented as ordered lists of vertices that follow the
polygon border. To create a NavMesh, Unity requires a mesh. In order to create a mesh from
these polygons, they need to be triangulated. We employ the ear clipping algorithm as explained
by David Eberly [Ebe08] to triangulate the polygons.

36



4.4. Pathfinding Implementation

The ear clipping algorithm assumes that the input is a simple polygon. In a simple polygon,
each vertex has exactly two edges and edges may only intersect at vertices. Although this
constraint is currently not enforced in the floor plan editor, creating non-simple polygons would
result in an unintuitive description of the walkable area. Therefore, it is assumed that the user
only defines simple polygons in the floor plan editor. Only then does the ear clipping algorithm
function properly.

The basic idea of the ear clipping algorithm is to find ”ears” of the polygon, which are con-
vex vertices that can be clipped off by creating a triangle with its two adjacent vertices. This
process is repeated until all vertices have been incorporated into triangles, resulting in a valid
triangulation. The algorithm has a time complexity of O(n2) for n vertices and is widely used
in computer graphics and computational geometry applications.

Our implementation of the ear clipping algorithm was adapted from an online tutorial7. We
made several modifications to customize it to our specific application and addressed certain
bugs in the original implementation.

4.4.2. NavMesh

The NavMesh creation process comprises three distinct stages. Initially, the system starts with a
set of polygons defined in the floor plan editor, as illustrated in Figure 4.11 (a). The triangulation
leads to a mesh for each polygon. These meshes are then integrated into the scene in Unity,
as illustrated in Figure 4.11 (b). They are used to generate the NavMesh. The process of
generating a NavMesh is referred to as baking. The final result of the baking process is shown
in Figure 4.11 (c).

(a) Polygons in floor plan editor (b) Triangulated polygons in Unity (c) Baked NavMesh

Figure 4.11.: Steps taken to create the NavMesh

To generate the NavMesh, it is essential to define the type of agent that will navigate the en-
vironment. Defining the agent type is done before baking the NavMesh. A NavMesh agent is
represented as a cylinder that in our case resembles a person. The height of the cylinder is not a
crucial factor in our application. The radius is set to 30 cm, which approximately corresponds
to the space occupied by a human. The agent’s radius determines the distance between the
edges of the NavMesh and the edges of the actual walkable area. It can be interpreted as the

7https://www.habrador.com/tutorials/math/10-triangulation/ (Accessed: 24. May
2023
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minimum space required to allow the agent to walk on the NavMesh and always keeping the
whole cylinder within the walkable area. Therefore, the NavMesh depicted in Figure 4.11 (c) is
smaller than the walkable area represented by the green mesh below it.

4.4.3. Calculating a Path

A NavMesh agent possesses the capability to autonomously calculate its own path. The process
of pathfinding is based on an implementation of the A*-algorithm. When the user specifies
the desired artwork, the system sets the agent’s destination. Subsequently, Unity computes the
optimal path between the agent’s current position and the destination. The output of the A*
calculation is a path consisting of the start and end points, along with intermediate vertices. We
refer to all vertices of the path as corners.

4.5. Methods to Display Directions

This section covers the implementation details of the three methods of displaying navigation in-
formation. These methods are based on the path calculated as presented in the previous section.

Locating the instructions that indicate the direction to proceed may be challenging, particularly
when they falls outside the visible screen area. To address this challenge, we implement a
visual cue. This cue serves as a helpful indicator of the instructions’ location when they are not
currently within the user’s field of view. By providing such a hint, users can easily identify the
position of the instructions, enabling them to navigate to the intended direction. The visual cue
is depicted in Figure 4.12 and is available in all three methods.

4.5.1. Fixed

The fixed method involves presenting an arrow at a fixed distance of 1.3 meters from the user,
as shown in Figure 4.13. The arrow’s position is determined by following the path to the des-
tination for a distance of 1.3 meters. Following the path may include a straight line from the
user or it may include turning around a corner. Consequently, the arrow may not always be
positioned directly in front of the user but could appear on their right or left, depending on the
path’s geometry. The arrow’s angle is determined by the angle of the sub-path it is located on.
This implementation enables the user to follow the path by consistently moving towards the
position of the arrow. Its design is straightforward and intuitive, minimizing the cognitive load
of the user.

4.5.2. Corner

The corner method places the arrow at the next corner of the path. As illustrated in Figure 4.14,
the arrow is oriented the direction of the sub-path that follows that corner. If the next corner
is the destination, the arrow points directly towards the artwork. In practice, we do not use the
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Figure 4.12.: The visual cue indicating the instructions’ location

Figure 4.13.: The fixed method

next corner of the path, but the last one visible from the user’s current position. The reason for
this distinction has to do with the way the path goes around corners.

Placing the arrow at the first corner of the path, as shown in Figure 4.15 (a), does not provide
an accurate indication of the direction in which the path continues. The arrow’s orientation is
misleading and may result in confusion for the user. The issue can be addressed by placing the
arrow at the last visible corner, as shown in Figure 4.15 (b), which more accurately reflects the
direction that the user should take. This example highlights the importance of placing the arrow
at the last corner that is visible to the user, rather than simply at the next corner in the path.

39



4. Implementation

Figure 4.14.: The corner method

(a) At first corner (b) At last visible corner

Figure 4.15.: Placement of the arrow along the path with the corner method

To determine whether a corner is visible to the user, we introduce another NavMesh, referred
to as the ”visibility NavMesh”. Unlike the normal NavMesh, the visibility NavMesh uses an
agent with a radius of 5 cm and therefore represents the walkable area more closely than the
normal NavMesh. A comparison of the walkable area and the visibility NavMesh is given in
Figure 4.16 (a) and (b). The normal NavMesh is shown on top of the visibility NavMesh in
Figure 4.16 (c) to clearly indicate their difference. The calculated path is shown in relation to
the visibility NavMesh in Figure 4.16 (d). We see that in corner regions, the trajectory of the
path aligns closely with the edges of the normal NavMesh. This alignment leads to the presence
of adjacent vertices in close proximity along the path. Therefore, it is essential to consider the
last visible corner instead of the next corner along the path to ensure accurate placement of the
arrow.

Determining whether the user sees a specific point on the floor plan from their current posi-
tion can be achieved by calculating the path to that point using the visibility NavMesh. If the
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(a) Walkable area (b) Visibility NavMesh

(c) Normal NavMesh (d) Calculated Path

Figure 4.16.: Walkable area and NavMeshes

resulting path consists of a single straight line, it indicates that the point is visible from the
user’s location. However, this approach is associated with the limitation that we have to wait
for the completion of the NavMesh path calculation. The duration of the calculation cannot be
predicted in advance, rendering this approach less favorable.

Instead, we employ a custom algorithm to conduct the visibility check. This algorithm initiates
at the specific point of interest and takes incremental steps towards the user’s position. At
each step, the algorithm evaluates whether the point falls within the boundaries of the visibility
NavMesh. For a point to be deemed visible to the user, all the intermediate steps between that
point and the user’s position must lie on the visibility NavMesh.

To check whether a point is on the visibility NavMesh, we make use of the SamplePosition
function provided by the NavMesh. This function returns the closest NavMesh point within a
specified radius around the given input point. In our application, we use a radius of 5 cm to
compensate for the small difference between the size of the visibility NavMesh and the defined
walkable area. Thus, the function returning a point indicates that the input point is within the
walkable area.

With this functionality, the algorithm iterates through the corners of the path and determines the
last one that is still visible to the user. At that corner, the arrow for the corner method is placed.
It is important to note that the last visible corner may or may not be the first corner of the path.

41



4. Implementation

4.5.3. Many

The default method used in the app is many, which is shown in Figure 4.17. In this method,
several arrows are positioned with a fixed distance of 50 cm between them. The placement of
the arrows is based on their distance from the destination artwork, not the distance from the
user’s position. The last arrow is placed 50 cm away from the destination artwork. This design
ensures that the arrows remain at the same spatial location even when the user moves, resulting
in a more intuitive navigation experience.

Figure 4.17.: The many method

The algorithm for the many method also utilizes the visibility NavMesh to determine the last
visible corner along the path. Prior to this corner, the entire path is visible and arrows are placed
accordingly. Beyond this point, the algorithm checks each potential arrow position to determine
if it is still visible to the user. It is possible for a position to be visible to the user despite
being beyond the last visible corner. Once the last visible arrow position is determined, the
algorithm places two additional arrows at their respective positions, even if they are technically
no longer visible. Even though the view without occlusions is not an accurate representation
of reality, we find that the inclusion of additional arrows enhances user comprehension of the
given directions.
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In this section, we present the results of our empirical investigation of the implemented applica-
tion and discuss the implications derived from the findings. We begin by providing an analysis
of the reliability of the sensor data collected for localization. Subsequently, we describe the user
study conducted and the deductions drawn from the results.

5.1. Sensor Data

This section describes all results related to the sensor data, including the two localization ap-
proaches dead reckoning and PDR. We also describe various experiments and findings we have
made on sensor accuracy and drift.

5.1.1. Accelerometer vs. Gyroscope

In the implementation of dead reckoning, we observed that the acceleration data were consid-
erably noisy and susceptible to drift. In contrast, the data obtained from the gyroscope were
comparatively less problematic and provided accurate estimates of the user’s orientation over
time. Considering these observations, we conclude that it is necessary to perform filtering and
calibration exclusively on the acceleration values.

5.1.2. Dead Reckoning Results

The implementation of dead reckoning was observed to exhibit large drift in accelerometer read-
ings, resulting in a substantial discrepancy between position estimates and actual positions. This
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discrepancy was evident even when the phone was statically placed on a table. Specifically, our
experiments showed that after just 10 seconds at rest, the estimated position was already more
than 70 centimeters away from the true position, as depicted with the blue line in Figure 5.1.
Furthermore, the error accumulation became increasingly rapid, resulting in a 14 meter offset
after 40 seconds. These results suggest that the dead reckoning implementation may not be
suitable for applications that require high-precision localization over extended periods of time.
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Figure 5.1.: Offset of dead reckoning position estimate with phone at rest

In the implementation of dead reckoning, we keep track of the current velocity as there is
minimal acceleration during steady walking. When the magnitude of the drift surpasses the
actual acceleration during constant walking, it influences the current velocity and deviates it
from the correct direction. The results of this effect are shown in Figure 5.2, where a user walked
along a straight line with constant speed. We show the results of five such walks. In the first
few moments, the initial acceleration of starting the motion contributes to an accurate update
of the position. Then, the drift gradually becomes more prominent and negatively impacts the
accuracy of the position estimate as the walk progresses.
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Figure 5.2.: Results of dead reckoning localization
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The results depict the orientation of the drift as being directed backwards in the local coordi-
nate system of the device. As a result, the current velocity also points backward, leading to a
substantial deviation of the position estimate in direction opposite of the true walking direction.

Extensive testing was conducted on the dead reckoning implementation, ruling out any potential
coding errors. The tests confirmed the correctness of the implementation. When drift is present
in the acceleration, it gets integrated and added to the current velocity, resulting in a continuous
increase in velocity due to the drift. This effect, already seen in Figure 5.1, is also evident in
Figure 5.3, where points were marked at regular intervals of 0.4 seconds as a person walked to
the right. The increasing distances between these points over time indicate that these updates
do not reflect the correct position updates. In correct updates, the distances between the points
would remain the same since the experiment was conducted with a constant walking speed. The
observed growing distance provide further evidence that drift is present in the acceleration.
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Figure 5.3.: Dead reckoning results with a point every 0.4 seconds

Figure 5.3 provides further evidence of the correctness of the implementation by demonstrat-
ing that the initial movement of the position estimate aligns with the correct direction. This
observation serves as an additional indicator that the axes were not flipped incorrectly, as the
entire movement would be in the wrong direction if such a misalignment existed. The initial
movement in the correct direction confirms that the accumulated error, resulting from drift, is
the main cause of deviation.

The same effect is illustrated in Figure 5.4, where we conducted a walk covering the same
distance as before at different speeds. The results illustrate that the portion of the path aligned
with the correct direction increases with walking speed. A higher initial acceleration during the
walk leads to a longer duration in which the walking acceleration surpasses the drift, resulting
in a delayed deviation in the position estimate.

Although the direction of drift may be unique to the smartphone utilized in our experiments,
the strength of the drift highlights the considerable impediment it poses to precise localization.
This challenge is particularly relevant for applications that aim to be compatible with a diverse
range of devices.
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Figure 5.4.: Results of dead reckoning with different walking speeds

Calibration Results

We performed a calibration of acceleration values to mitigate the effects of drift. However, the
results were inconclusive. Similarly to previous experiments, evaluations were conducted on the
phone at rest. The results are presented as the orange line in Figure 5.1. The estimated position
was found to be closer to the true value compared to uncalibrated estimates. Nevertheless, over
time, the position estimate deviated from the actual value even after calibration. Despite the
reduction in drift after calibration, the offset still exhibits a substantial rate of growth over time,
indicating that the effectiveness of the calibration procedure in mitigating the drift is limited.

The elimination of drift through calibration presents inherent challenges due to the persistent
noise in the acceleration data, even after filtering. This phenomenon is demonstrated in Fig-
ure 5.5, where the calibration process succeeds in bringing the acceleration values closer to
zero but residual noise remains. The average value fails to precisely eliminate the drift, as it
does not represent its true magnitude. Figure 5.5 also illustrate how the drift is not constant but
varies over time, making it impossible to eliminate.
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Figure 5.5.: Calibration of vertical acceleration

46



5.1. Sensor Data

Zero Velocity Potential Update Results

The primary objective of ZUPT is to stop the accumulation of errors. It is not capable of eliminat-
ing the already accumulated error, but it can prevent further deviation from the current position
when the user is at rest.

The ZUPT algorithm performs effectively in detecting when the user is stationary, resulting
in an improvement in the accuracy of the dead reckoning method during stop-and-go motion.
However, for extended periods of continuous motion, ZUPT cannot provide any improvement in
the position estimate. In these cases, the accumulated error remains a challenge to be addressed.

An Examination of Drift

We conduct an in-depth analysis of drift on the Galaxy S8 smartphone used in this thesis. The
objective is to investigate potential factors that could contribute to changes in average acceler-
ation values. Our aim is to determine whether the drift is influenced by fixed factors, such as
position or temperature.

To investigate the drift, we calculate the average acceleration at rest over a two-second period
to minimize the effects of noise present in the sensor readings. To determine the extent to
which the drift is affected by different factors, we conduct a series of experiments. The first
experiment involves measuring the drift 10 times and moving the phone to a different position
for each measurement. In the second experiment, we flip the phone 180° along each of its axes
to determine whether the drift is influenced by the phone’s orientation. Finally, we leave the
phone at rest for a period of 10 minutes while continuously measuring the drift to investigate
whether it is affected by changes in the phone’s temperature, which can increase over time.

In all conducted experiments, it was observed that the drift exhibited a relatively stable behavior
across multiple measurements. This result suggests that the drift is not considerably influenced
by factors such as position, rotation, or temperature variations. However, the drift did exhibit
fluctuations between two distinct and relatively stable levels. The exact triggers or causes for
the transition between these levels could not be identified reliably. At times, the lower level
of drift was observed in a particular measurement, but upon restarting the application without
any physical movement of the phone, the drift level would shift to the higher level. Similarly,
changes in the drift level were occasionally observed after walking and tracking artworks for
some time. However, it was not possible to consistently reproduce these results under controlled
conditions. These variations highlight the highly unpredictable characteristics of the drift.

Figure 5.6 shows the drift for each of the three axes over fourteen minutes. The drift was mea-
sured every 6 seconds with the ”Drift Check” option from the settings page. We clearly see that
there is noise present in the data, even though the phone is at rest and the data points represent
averages over 2 seconds. The variability of the measured drift makes it hard to eliminate, as
there is always a remaining error. At about 13 minutes, the drift jumps to the higher level. At
that point, a charger was plugged into the phone. This jump indicates that charging has some in-
fluence on the phone which changes the acceleration values. Although this scenario is unlikely
to happen during a museum visit, it again shows the unpredictability of sensor data.

In conclusion, the presence of drift gives rise to two primary challenges. Firstly, despite at-
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Figure 5.6.: Drift measured over long period of time

tempts to mitigate its impact, the drift component remains noisy, resulting in varying average
values over time. Consequently, accurately determining the true value of the drift becomes an
impossible task. Secondly, the highly unpredictable nature of the drift presents a substantial
obstacle. The two identified levels of drift do not exhibit a discernible trigger or pattern that
can reliably indicate a transition between them. Consequently, relying on a single value to ef-
fectively counteract drift becomes futile, as that value would be inaccurate when the drift level
undergoes a change.

5.1.3. Pedestrian Dead Reckoning Results

PDR is not subject to drift as it does not use absolute acceleration values in its calculations.
In order to detect steps, the acceleration must exceed a threshold that is larger than the drift.
Weinberg’s step length estimation approach relies solely on the difference between amax and
amin, rendering the actual value inconsequential.

Using PDR for localization introduces several constraints on the user, which must be adhered to
for accurate positioning. Specifically, the smartphone must be held at the front of the body in an
upright position. The user must minimize arm-swinging during walking to prevent erroneous
position estimates. Moreover, the phone’s camera must always face the direction of walking
to ensure that step updates are applied in the correct direction. These constraints make the
localization process less intuitive and natural, increasing the burden on the user.

Additionally, individual variations in walking patterns can considerably affect the accuracy of
PDR-based localization. An individual’s walking pattern includes the degree of bouncing during
walking, variability in step size, and the speed of turning. For example, abrupt turns around the
user’s own axis, which are sensed not only by the gyroscope but also by the accelerometer, can
be mistakenly interpreted as steps taken. These false positives in the step detection may result
in incorrect position estimates, particularly if such scenarios occur frequently.

The results of PDR are presented in Figure 5.7. The final position estimate demonstrates a high
level of accuracy. In this experiment, the step length estimation was performed using a fixed
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value of 70 cm. The orientation of the calculated path mostly aligns correctly with the actual
path taken. However, it should be noted that the very first step appears to have been missed in
some of the trials, as indicated by the slight deviation at the curve of the path. This behavior
is attributed to the sensitivity of the step detection algorithm, which may occasionally fail to
detect steps, particularly at the beginning and end of walking periods. It is important to note
that the path was traversed by a user who carefully followed the prescribed walking constraints.
Users with more relaxed or irregular walking patterns may achieve less accurate results.
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Figure 5.7.: Results of PDR localization

Step Length Estimation

We proposed two distinct techniques for estimating step length during the PDR localization
process. Weinberg’s method is a dynamic approach that relies on the difference between the
maximum and minimum acceleration values obtained during a step. In contrast, the static ap-
proach uses a predetermined step length for all steps taken during the localization process.

In our comparative evaluation of the two step length estimation methods, we observed that the
static approach produced more consistent and reliable outcomes. Our experiments revealed
that utilizing Weinberg’s method often resulted in overestimation of step lengths, as shown in
Figure 5.8. This outcome may be attributed to the original design of Weinberg’s method for use
in pedometers. The effect could be minimized by introducing a scaling factor. Although the
dynamic approach may perform well for experienced users, the numerous constraints imposed
by it can be overly complex for novice users. Holding the smartphone in a stable position and
avoiding arm movements during walking may not come naturally to them. As a consequence,
the static approach is more appropriate for a broad range of users seeking a straightforward
and accessible localization technique. It is less susceptible to imperfect posture because the
acceleration data are utilized solely for step detection and does not affect the step length.

The results obtained from the static approach demonstrate high accuracy. Nevertheless, it is
crucial to acknowledge that the experiments showcased in Figure 5.9 were carried out by an
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Figure 5.8.: Results of PDR with Weinberg’s step length estimation

experienced user under controlled conditions. The user maintained a consistent walking speed,
leading to relatively constant step lengths. In real museum settings, however, users tend to ex-
hibit more diverse step lengths as they navigate through different areas. Factors such as walking
short distances between nearby artworks or traversing large halls at a faster pace contribute
to variations in step length. These variations impact the accuracy of step length estimation,
particularly when employing a fixed value across all scenarios.
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Figure 5.9.: Results of PDR with a fixed step length of 70 cm

5.1.4. Discussion

In summary, the PDR approach yields superior results compared to dead reckoning in indoor
localization. This result is due to the extremely inaccurate sensor data, which lead to increas-
ingly large errors in the dead reckoning approach. We do not advise direct use of sensor data,
as they exhibit large deficiencies. The dead reckoning approach is highly susceptible to inaccu-
racies stemming from noisy sensor data, and drift accumulation poses an important challenge
to eliminate. Even with the application of several methods such as ZUPT and calibration, dead
reckoning remains an unreliable means of localizing a person indoors. As shown before, dead
reckoning is even unable to correctly estimate movement along a straight line.

While the PDR approach does not suffer from the same issues as dead reckoning, it has its own
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set of challenges. If the user correctly holds the phone and the step length is adjusted to the
individual, PDR yields quite accurate results. However, for the vast majority of users, results are
mixed due to their more relaxed behavior of not rigidly following the constraints.

In general, sensor-based localization poses a big challenge in achieving accurate results due to
the presence of noise and drift in the sensors. The noise renders the data unpredictable, and
the results may vary depending on the specific smartphone model. This variability presents a
further challenge to an application that is designed be used on a wide range of devices.

5.2. User Study

We conducted a user study to investigate the effectiveness of different methods for displaying
navigation information in AR. The goal of the study was to identify differences among the
methods and to provide design recommendations for future AR applications.

5.2.1. Design

In this section, we present the design of our user study which aimed to compare the three
methods fixed, corner, and many, which were described in Section 4.5. An overview of the
study design is provided in Figure 5.10.

Introduction Ranking
Phase 1

Method A

Phase 2

Method B

Phase 3

Method C
Background

Figure 5.10.: Study design

Upon arrival at the study session, participants were provided with an introduction about the goal
of the study and a demonstration of how the app works. The study took place in the GTC office
space, where a small exhibition was set up. As part of the introduction, we obtained an estimate
of each participant’s step length by having them walk a distance of 10 meters while counting
the number of steps taken. This information was collected to improve the localization accuracy
in the study and used as a fixed number instead of the dynamic step length estimation.

The main part of the study consisted of three phases, each with the same structure. In each
phase, participants followed a predefined path while being guided by one of the three methods
fixed, many, or corner. For each phase, participants filled out a questionnaire on the method
used after completing the path. They then proceeded to the next phase with a different method.
After completing all three phases, participants ranked the three methods and provide additional
information about their personal background. We asked about personal background at the end
of the study to minimize bias. This design ensured that participants’ responses to the study’s
main content were not influenced by their awareness of being categorized or studied based on
their demographic characteristics.
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The order of the methods was randomized among the participants to eliminate bias. For exam-
ple, while the first participant may have had the fixed method in phase 1, the second participant
may have had the many method in that phase. However, the path for each phase remained fixed,
ensuring that all methods were tested under the same circumstances. This design minimized
the impact of different paths on the results and allowed for a direct comparison between the
methods in a controlled manner.

All artworks used in the study were embellished with a golden frame. This frame served the
purpose of distinguishing artworks of interest from other unrelated artworks in the office. The
frame was obtained from Freepik1, a website that offers various digital assets.

Path per Phase

Each phase of the study consists of a path composed of three sub-paths, as illustrated in Fig-
ure 5.11. Participants began each phase by tracking an artwork, which served as the starting
point, and then sequentially followed the guidance to three other artworks. Each path included
an artwork where participants were required to turn around 180° to continue, and one sub-path
that was a straight walk along a corridor. This design was implemented to ensure compara-
bility between the phases. Care was taken to arrange the paths in such a way that participants
only saw the artworks when they were guided to them, thus minimizing the likelihood that they
would know where to go without following the instructions. As a result of these constraints,
the lengths of the paths differed, with phase 1, phase 2, and phase 3 approximately measuring
30, 27, and 19 meters, respectively. However, since the order of the methods was randomly
assigned among participants, the path length did not influence the results for each method.

User Study: Design

21

12

3

Phase 1
Phase 2
Phase 3
Artwork

1
2
3

Figure 5.11.: The three paths of the user study with sub-paths

Changes made to App

For the user study, we changed some designs and functionalities of the app. To focus solely
on the three methods for displaying the path in AR, the map and the ability to switch between

1https://www.freepik.com/ (Accessed: 24. May 2023)
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views were removed from the UI during the study. This change eliminated any potential dif-
ferences among participants due to their ability to read maps. The simplified UI, as shown in
Figure 5.12 (a), displayed instructions at the bottom, including the name of the next artwork.
These instructions were the only navigation information provided to the user during the study
apart from the more detailed instructions via one of the three methods. Users were automat-
ically guided through the three phases with instruction screens in between telling them to fill
out the questionnaire, as shown in Figure 5.12 (b). The paths were hard-coded to minimize the
need for interaction during the study, so no input was required from the users.

(a) Study UI (b) Instruction screen

Figure 5.12.: Simplified user interface for user study

To minimize the influence of localization errors and focus on the method of displaying naviga-
tion information, we used additional mechanisms for the study. One such mechanism was the
constraint that steps were not taken in the direction of the phone, but rather along the calculated
path towards the next artwork. This constraint eliminated potential errors in localization when
the user did not hold the phone in a way that is precisely in alignment with their direction of
travel. Users could move more freely in the way they preferred, and differences in localization
accuracy between participants were reduced. This constraint helped ensure that any observed
differences in user preferences among the methods were primarily due to the method of dis-
playing navigation information, rather than variations in localization accuracy. We called this
constraint ”aiding” on the settings page as it aided to update the position in the correct direction.

To enhance localization accuracy and reduce potential errors, we implemented a mechanism
that allows the study instructor to correct the estimated position of the user. We developed
a web app that allows the instructor to monitor the estimated position of the participant and
compare it with their actual position. If there is a significant discrepancy, the instructor could
reset the position by clicking on a point on the floor plan, thus correcting the localization error.
We refer to this process of updating the current position estimate with a more accurate one as
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a ”correction”. This mechanism helped ensure that the data collected during the study were as
accurate as possible.

To ensure consistency and accuracy in measuring participants’ movements, we opted for a fixed
step length for each participant throughout their study session, as opposed to estimating step
length based on acceleration data. During testing prior to the study, we observed large differ-
ences in step length estimates due to variations in users’ walking styles, such as bouncing or
minimal vertical movements. Therefore, we use a fixed step length throughout the study. This
approach ensured that any differences observed are more likely to be attributed to the effective-
ness of the method to display navigation information, rather than individual differences in step
length or walking style.

Questionnaire

The questionnaire used in this study comprises four parts. The first three parts are identical
and are completed after each phase of the study. Each of these parts includes the standard-
ized System Usability Scale (SUS) questionnaire [Bro95] to obtain a usability score for the
respective method. The SUS score can be interpreted using different scales, as illustrated in
Figure 5.13 [BKM09]. The adjective rating scale in particular provides insight into the inter-
pretation of the resulting scores.

Figure 5.13.: Different scales / ratings in relation to SUS scores

The questionnaire also contains of a series of questions designed to gather detailed feedback on
each method to display directions. To reduce bias and capture nuances in participants’ experi-
ences, each topic was addressed with both positive and negative formulations. The questions
are presented below, ordered in a way that highlights these pairs of questions belonging to the
same topic. Participants were asked to rate their responses on a scale of 1, strongly disagree, to
7, strongly agree. In the study, the questions were presented in a slightly different order than
shown here. The order of questions used in the user study is shown in Section A.2.

• I knew where I had to go.

• I felt lost.

• The directions were very clear.

• The directions were given in a confusing way.
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• It was easy to follow the path.

• Getting to the artworks was challenging.

• The app controlled my movements.

• I felt in control of my movements.

• It was an intuitive way to display directions.

• The directions felt unnatural to me.

• I can imagine using this application at a museum.

The fourth and final part of the questionnaire includes ranking questions for the three methods,
as well as questions related to the participant’s personal background. The ranking questions
were designed to assess preferences among the three methods. The background questions fo-
cused on demographic information, previous experience with AR applications, and familiarity
with office space, as these factors can influence the study results. The specific background ques-
tions used in the study are presented in Section A.2. The ranking questions are shown below
in the same order as used in the user study. Participants were asked to assign a unique rank
from 1 to 3 to each method. Rank 1 corresponds to the method that participants perceived as
best fulfilling the question among the three methods. This ranking system allows for a direct
comparison of the methods in terms of the participants’ preferences and perceptions.

• Which method felt most natural to you?

• Which method gave the clearest navigation instructions?

• Which method did you find the most visually appealing?

• Which method would you be most likely to use at a museum?

• Overall, which method did you like the best?

Logged Data

For each participant, we collect data on the time taken to traverse each path and the number of
corrections that were made during the navigation process. These variables potentially influence
the perceived usability of the method to display directions.

Statistics

To assess the results of the questionnaire, a statistical test is carried out to determine the sig-
nificance of the differences between the three methods. Accordingly, we formulate the null
hypothesisH0 and the alternative hypothesisHA:

H0: There are no significant differences among the results of the three methods

HA: At least one of the methods exhibits a significant difference from the others
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The test that is best suited for this purpose is the one-way repeated measures Analysis of Vari-
ance (ANOVA) test. This test has three prerequisites: a normally distributed response variable,
homogeneous variance among the methods, and independence of observations. The normality
assumption is checked using the Shapiro-Wilk normality test [SW65]. Homogeneity of vari-
ance is checked with Levene’s test [Lev61]. The independence of observations is guaranteed by
the study design, which randomizes the order of the methods.

If the data fail to meet all requirements, Friedman’s ANOVA test is used, as it does not make
any assumptions on the distribution of the underlying data. It is a non-parametric test that ranks
the data and uses these ranks instead of the actual values to perform the test, which makes
it less sensitive to extreme values and non-normality. In case of significant differences, we
apply a pairwise Wilcox test to determine between which groups the differences lie. If the
significance level, denoted as ”p-value”, is less than 0.05, we reject H0 and accept HA. This
value is commonly used as a threshold for statistical significance.

To compare the results obtained from the questionnaire with the metrics collected during the
study, we use statistical methods such as Pearson’s correlation coefficient [CHC+09] or Spear-
man’s rank correlation coefficient [Spe08], depending on the normality of the data. Pearson’s
correlation coefficient is used when the data follow a normal distribution and there is a linear
relationship between the variables being compared. On the other hand, Spearman’s rank corre-
lation coefficient is a non-parametric measure that, similar to Friedman’s ANOVA, uses the rank
of the data rather than the actual values. The resulting correlation coefficient ρ is between −1
and 1 and indicates the strength of the correlation. A value close to zero corresponds to a weak
correlation.

5.2.2. Results

In this section, we present the results of the user study conducted to evaluate the three methods
for displaying navigation information. We conducted the Shapiro-Wilk test for normality on
the response data. The results indicated that none of the responses followed a normal distribu-
tion. The non-normality in the data means that the assumptions for one-way repeated measures
ANOVA are not met. Therefore, we applied Friedman’s ANOVA to check for significant differ-
ences in all results. The statistical analysis was performed using the R software package.

In cases where the p-value is reported as less than 0.01 or greater than 0.1, we want to indicate
that the results are particularly clear or obvious.

Details

A total of 30 participants, consisting of 6 women and 24 men, were recruited for the user
study. The age of the participants ranged from 22 to 35 years, with a mean age of 27 years.
Half of the participants were familiar with the study environment prior to the study, while 13
participants were completely unfamiliar, and 2 had some prior exposure to the environment.
Only one participant had no previous experience with AR applications, while 4 participants
used AR applications daily, 8 used them weekly, and 6 used them monthly. Furthermore, 11
participants reported using AR applications less than once a month.
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The mean step length in the study was 68 cm, with a minimum of 59 cm and a maximum
of 77 cm. We observed noticeable variations in the walking styles of participants during the
study, with some individuals exhibiting very pronounced bouncing movements while others
walked cautiously with minimal vertical motion. These differences in walking styles may have
influenced the accuracy of the localization, as the amount of motion of the phone affects the
step detection. Participants with more pronounced bouncing movements may have experienced
a higher localization accuracy due to more accurate step detection compared to participants who
walked more steadily with minimal vertical movement. The sharpness with which participants
turned corners during the navigation was also found to be a factor that influenced localization
accuracy. Specifically, quick turns made by participants were sometimes interpreted as steps or
movements by the localization system, leading to inaccuracies in estimating the user’s position
and orientation.

System Usability Scale

The results of the SUS analysis indicate that there are no statistically significant differences
between the three methods (p > 0.1). However, we did observe a significant difference between
the three phases of the study (p < 0.01). The results of a post-hoc Wilcox test indicate that
the second phase, which featured a more complex path, was less enjoyable for the users. It is
noteworthy that while the complexity of the path appears to have influenced the user experience,
it does not impact the performance of any particular method. The order of the methods was
randomized to ensure that all methods were tested under similar conditions.

The SUS scores for each method are presented in Figure 5.14 using a violin plot, which shows
the distribution of the data points. The plot includes a box in the middle representing the in-
terquartile range, which is the middle 50% of the data, and a white dot representing the median
value. The width of the violin indicates the density of the data points, while the thin lines
extending from the box indicate the data range excluding outliers. The length of the violin
represents the range of the data including outliers.
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Figure 5.14.: Violin plots of SUS score per method

The analysis of the obtained results reveals that the corner method exhibits a slightly lower
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median SUS score compared to the other two methods, albeit having a larger range of values.
In contrast, for the fixed and many methods, the plot presents the highest density of data points
at a high SUS score. On the basis of these plots, it can be confirmed that the difference in
the SUS scores among the methods is not statistically significant. Further supporting evidence
is provided by the adjective scale analysis introduced in Figure 5.13, which indicates that all
methods are rated between good and excellent. Specifically, the average SUS scores are 81.5 for
fixed, 75.9 for corner and 82 for many.

Other Questions

Table 5.1 presents the means of the answers to the remaining questions in the study. It is
worth noting that some participants expressed confusion about questions Q6 and Q11, which
addressed the feeling of control, rendering the results of these questions less meaningful than
others.

For questions Q1-Q6, a high score is preferable, while for Q7-Q11, a low score is desired. The
table highlights that the many method scored best in almost all questions. Despite the clear
trend, the differences between the three methods are not statistically significant (p > 0.1 for all
questions).

Nr Question fixed corner many

Q1 I can imagine using this application at a museum. 5.47 5.13 5.77

Q2 I knew where I had to go. 5.50 4.97 5.67

Q3 It was easy to follow the path. 5.37 4.77 5.70

Q4 The directions were very clear. 4.93 4.50 5.40

Q5 It was an intuitive way to display directions. 5.70 5.17 5.67

Q6 I felt in control of my movements. 4.80 5.47 5.40

Q7 The directions were given in a confusing way. 2.67 3.37 2.47

Q8 Getting to the artworks was challenging. 2.17 2.67 2.17

Q9 I felt lost. 2.40 2.83 2.23

Q10 The directions felt unnatural to me. 2.77 2.60 2.57

Q11 The app controlled my movements. 5.43 4.43 5.07

Table 5.1.: Average answers per method and question

Rankings

The average rank of each question is presented in Table 5.2. It is evident that the many method
received the best ranking on all the questions except for the one related to visual appeal, where
it was ranked the worst (a low rank means that the method is preferred to others).
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Nr Question fixed corner many

Q1 Which method felt most natural to you? 2.03 2.17 1.80

Q2 Which method gave the clearest navigation instructions? 2.03 2.43 1.53

Q3 Which method did you find the most visually appealing? 1.77 2.00 2.23

Q4 Which method would you most likely use at a museum? 2.13 2.23 1.63

Q5 Overall, which method did you like best? 2.03 2.20 1.77

Table 5.2.: Average rank per method

Significant differences were observed in the rankings of Q2 and Q4. The p-values of pairwise
comparisons based on the Wilcox test are presented in Table 5.3. Regarding Q2 about the
method that provided the clearest instructions, we found significant differences between many
and fixed (p < 0.05), as well as between many and corner (p < 0.0005), but not between fixed
and corner (p > 0.1). The many method was ranked highest in terms of providing the clearest
instructions. In particular, the difference between many and corner was much greater than the
difference between many and fixed, as evidenced by the respective p-values (i.e. lower p-values
indicate stronger differences). Furthermore, the many method was reported to be significantly
more likely to be used at a museum than the corner method (p < 0.05), but no other pairs
showed significant differences.

fixed corner

corner 0.12 -

many 0.034 0.00013

(a) Clearest instructions

fixed corner

corner 1.00 -

many 0.058 0.014

(b) Preferred at a museum

Table 5.3.: p-values for pairwise comparisons

Logged Data

The analysis of the data revealed that there was no statistically significant difference in the num-
ber of corrections made during the session among the three methods. However, a significant dif-
ference was found among the three phases (p < 0.01), with phase 2 showing significantly more
corrections compared to the other phases. This difference is clearly visible in Figure 5.15 (a),
as the violin of phase 2 is thinner and larger than those of the other phases. This observation is
consistent with the higher complexity of the second path, as mentioned in the results of the SUS

scores.

Similarly, when examining the time it took participants to complete the full path, no significant
differences were observed between the methods. However, a significant difference was found
between phases (p < 10−6), with phase 3 requiring a significantly shorter amount of time
compared to the other phases. Again, this effect is clearly visible in Figure 5.15 (b), this time
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Figure 5.15.: Results of logged data

due to the thicker and shorter body of the violin. This result was expected as the path of phase
3 was shorter than the paths of the other two phases.

Since the SUS scores do not follow a normal distribution, we use Spearman’s rank correlation
coefficient to check whether the SUS score is correlated with any of the metrics collected in
the study. A significant negative correlation was identified between the number of corrections
made and the SUS score obtained for the corner method, with a statistically significant p < 0.05
and a moderately strong correlation coefficient of ρ = −0.39. This coefficient indicates that a
higher number of corrections was associated with lower SUS scores for that particular method.
However, no significant correlations were observed for the other methods. The associated data
points are shown in Figure 5.16 (a). Negative correlation can be perceived as a trend line that
approximates the data points with a negative slope.
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(b) SUS and time to finish for fixed
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Figure 5.16.: Correlations of logged data with SUS scores

When comparing the time taken to complete the path to the SUS scores, negative correlations
were found for both the fixed and corner methods (p < 0.05 and ρ = −0.40), indicating that
a longer time was associated with lower reported SUS scores for these methods. The plots are
shown in Figure 5.16 (b) and (c). For the plots of uncorrelated data points, refer to Section A.4.
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5.2. User Study

Informal Feedback

Table 5.4 presents an overview of the feedback provided for each method. The primary advan-
tage of the fixed method was to consistently display information in front of the user, eliminating
the need to search for the arrow in the surroundings. The design of the method was also con-
sidered clear in terms of providing guidance at each point in time. However, it was observed
that this method required constant attention on the screen, resulting in reduced awareness of the
surroundings and limited ability to view nearby artworks during the navigation. Additionally,
four participants mentioned that they would have preferred more advanced information about
the upcoming path, as the method only provides instructions for the immediate moment without
indicating the next steps.

Advantages Disadvantages

fixed - always there, no searching - need to watch screen

- clear what to do at each point in time - no information on what is ahead

corner - know ahead what to do - hard to find when far away, small

- simple instructions - inaccuracies very noticeable

many - view path ahead, very clear - arrows too close & too large

- walk independently - overwhelming instructions

Table 5.4.: Feedback given on each method to display directions

The corner method was noted to provide clear information about the location of the next corner
and the direction to turn, allowing users to anticipate the upcoming steps. This feature was ap-
preciated by the participants for its forward-looking guidance. The instructions were perceived
as simple and clear. However, five participants reported difficulty in locating the small arrow
on the screen when the next corner was distant. Additionally, the corner method was found to
be more sensitive to localization inaccuracies, as the single symbol provided may lead to con-
fusion if it is not precisely aligned with the actual corner location. On the contrary, the many
method was found to be more forgiving in accommodating small localization errors due to the
availability of multiple arrows for reference.

The many method provided clear instructions since it allowed participants to view a substantial
portion of the path ahead. This view enabled them to navigate to the next corner independently
without constantly referring to the screen. The ability to also know the direction of the next
turn at each corner was appreciated by the participants. However, 16 users expressed concerns
about the density of information on the screen, with comments indicating that the arrows were
too close together and appeared too large, leading to a sense of overwhelming instructions.

In addition to feedback specific to the three methods, the participants provided comments on
general features of the application. For example, the hint provided on which direction to turn
to view the arrows was perceived as a highly useful feature. Six participants mentioned that
they liked this particular feature. It prevented them from aimlessly searching for the arrows,
enhancing their navigation experience.
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5. Evaluation

Three participants expressed appreciation for any feedback from the app that confirmed they
were on the right track. Specifically, they liked the overlay of the image over the tracked art-
work, which indicated successful tracking. The change of UI when they got close to the artwork
was also well-received as it provided a sense of accomplishment and success.

Another issue reported by six participants was the lack of clear information about the end point
of the path. Instructions were designed to include only a single symbol (the arrow). The par-
ticipants expressed that this design led to confusion, as they were unsure whether an arrow was
indicating a turn or pointing to the destination. To address this issue, they suggested having a
different symbol for the artwork itself, which would allow them to identify the destination from
a distance. This improvement would resolve the issue of ambiguity when the artwork was close
to a corner.

A comment one participant made was about the direction of the path. The current design cal-
culates the path as the shortest line to the destination, which this participant found confusing.
They expected the path to be in the middle of the corridor, rather than a straight line along the
corridor when the destination is further away on the other side of the corridor. This situation is
visualized in Figure 5.17. The issue arises as a result of utilizing the NavMesh for pathfinding.
Utilizing a waypoint graph could resolve this problem. It should be noted that even with the
design requested by the participant, there may still be inaccuracies in localization that result in
the path appearing crooked.

(a) Our design (b) Design requested by the participant

Figure 5.17.: Path along corridor

5.2.3. Discussion

The findings of this study reveal a clear trend towards the many method based on the rankings,
with the only exception being the visual appeal. Further analysis of the informal feedback
indicated that the overwhelming feeling of having too many arrows on the screen contributed
to this exception. The optimal method for displaying navigation information would likely be a
hybrid approach that combines the advantages of both the many and corner methods, providing
clear instructions on the path ahead while avoiding excessive redundancy on the screen. This
hybrid approach would also address the issue of the arrow being excessively small when it is
located far away in the corner method.

When comparing the three phases of the study, it was observed that phase 2 had a higher number
of corrections and a lower average SUS score. This difference may be attributed to the increased
complexity of the path in phase 2, which involved sharp turns in an environment with numerous
possibilities for turning. As a result, users had to rely more heavily on the localization, and any
inaccuracies in the system were perceived as more problematic and made for a less pleasant
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5.2. User Study

experience. In contrast, in environments with fewer ambiguities, localization inaccuracies were
less detrimental, and users were able to recover from them more easily. While this observation
does not impact the comparison of the three methods, it highlights the importance of provid-
ing reliable assistance in complex environments where users may require additional support to
navigate effectively.

Our findings indicate negative correlations between the SUS score and the number of corrections
made for the corner method, as well as between the SUS score and the time taken to traverse the
path for the methods corner and fixed. One possible explanation for the lack of correlations in
the many method could be that localization inaccuracies have less impact on this method. In the
many method, it is easier to understand the general direction of the path, even if the orientation
or distances of the shown instructions are slightly off. However, in the fixed and especially
in the corner method, such inaccuracies are confusing and lead to difficulties in identifying
the correct path. Consequently, when the localization accuracy is low, users may experience
more confusion and find the method less enjoyable. Low localization accuracy often results in
more corrections, which in turn require additional processing time by the user, leading to longer
traversal times to reach the destination. The number of corrections made can therefore serve as
an indicator of the localization accuracy experienced by each participant.

As previously stated, the walking patterns, phone stability, and sharpness of turns exhibited by
the participants showed considerable variability. These individual differences in walking styles
highlight the necessity of considering user behavior and movement patterns when evaluating
localization systems in real-world settings, as they can influence their accuracy. Additionally,
these findings suggest that localization systems that are less reliant on individual user behavior
may be more suitable for environments where a diverse range of individuals utilize the system,
which is the case for a museum app.

The informal feedback obtained from the users consistently indicated that increased feedback
from the app enhanced their confidence in using the system and contributed to a more enjoyable
user experience. Therefore, we recommend features that provide users with information about
the status of the system, such as displaying a map with the estimated position to aid in orien-
tation. We also recommend giving visual feedback to indicate to users that they are correctly
tracking an artwork.

The implementation of the path along a corridor in the current system is not parallel to the
corridor itself, as dictated by Unity’s NavMesh. However, this design choice has limitations.
It may not align with the intuitive expectations of smartphone users, who are accustomed to
seeing paths displayed in alignment with the real-world environment. As such, solutions that
aim for higher acceptance among users should consider incorporating straight paths in their de-
sign. This design aligns better with users’ expectations and provides a more intuitive navigation
experience.
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6
Conclusion

This thesis aimed at developing an AR application for indoor navigation within the museum
context. For the purpose of localization, our approach exclusively utilizes the sensors that are
readily available on the device, namely the accelerometer, the gyroscope, and the camera. The
developed application has two main components. The first is the floor plan editor that enables
the user to set the artworks’ positions and define the walkable areas of the museum. The second
component is an application that guides the user to a previously selected artwork destination
using AR instructions.

When the user is tracking an artwork, the system calculates the user’s position based on the
tracking information. When the user is not tracking any artworks, the application utilizes one
of two available methods to update the user’s position, namely dead reckoning and PDR. Dead
reckoning updates the position by integrating the acceleration and the angular velocity, which
leads to a substantial accumulation of errors. Neither the calibration of the acceleration nor the
ZUPT method have effectively eliminated the errors. PDR employs step detection, step length
estimation, and heading estimation to update the user’s position, producing more accurate re-
sults with less sensitivity to noise. However, this method requires the user to walk and hold
their phone in a specific way that may feel unnatural to inexperienced users.

We conducted a user study to evaluate the three different methods of displaying directions in
AR. The results suggest that users prefer to know the route in advance to avoid staring at the
screen while navigating. However, the proposed many method was too visually overwhelming.
The optimal solution would be an approach that combines elements from both the many and
the corner method, striking a balance between clarity of instructions and a simple, unobtrusive
display.
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6. Conclusion

6.1. Limitations and Future Work

One of the current system’s limitations is that it is constrained to a single floor, thereby offering
a limited scope for application in larger settings. The floor plan editor demonstrates potential for
enhancements, for example incorporating multiple floors and supplementary amenities, such as
restrooms and elevators. Furthermore, the current system does not allow for adding new floor
plans or artworks. Adding such a feature would improve the floor plan editor’s flexibility.

Localization using sensor data is inherently affected by noise and variations between individu-
als, which introduce errors and diminish the reliability of the position estimate. Although PDR

can provide precise position estimates in optimal conditions, its accuracy substantially deterio-
rates when users fail to comply with the prescribed constraints regarding phone handling. Our
experiments clearly show the limitations of both PDR and dead reckoning. Consequently, we
recommend exploring alternative localization techniques, such as lateration or fingerprinting,
which may offer better accuracy and robustness under varying circumstances. Alternatively,
there is potential in utilizing vision-based methods, particularly when integrated with floor plan
information.
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A
Appendix

This chapter presents additional information for those interested.

A.1. Zero Velocity Potential Update Thresholds

Table A.1 shows the thresholds we used to detect ZUPT conditions.

rotx roty rotz |acc|

±4° ±3° ±4° ±0.4m/s2

Table A.1.: Thresholds to detect standing still

A.2. User Study Questionnaire

Below are the questions we asked in each phase of the user study, in the order they were pre-
sented after the SUS questions.

To what extent do you agree with the following statements? (1 = strongly disagree, 7 = strongly
agree)

• I knew where I had to go.

• The directions were given in a confusing way.

• It was easy to follow the path.
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• The app controlled my movements.

• The directions were very clear.

• I felt lost.

• I felt in control of my movements.

• The directions felt unnatural to me.

• It was an intuitive way to display directions.

• Getting to the artworks was challenging.

• I can imagine using this application at a museum.

The following questions have answer options available or are to be answered either in writing
or in talking to the study coordinator.

• Did you experience any problems? - (none, minor one(s), severe one(s))

• What did you particularly like about this method?

• What did you find most challenging about this method?

After finishing the three phases, study participants filled out the ranking questions as presented
in Section 5.2.1. The final part of the study consisted of the following questions, asking about
background and demographics.

• Were you already familiar with the office space? - (yes, somewhat familiar, no)

• Did you know any of the artworks beforehand? - (none, one, two, more than two)

• How often do you use AR applications? (including e.g. Snapchat filters, Google Live
View, ...) - (daily, weekly, monthly, less than monthly, This is my first time using an AR

application)

• Gender - (female, make, other / prefer not to say)

• Age

• Profession

A.3. Friedman’s Analysis of Variance

Table A.2 presents the p-values obtained when applying Friedman’s ANOVA test on the data.
For questions Q1-Q13, the test was conducted to compare the responses obtained from the three
methods, namely fixed, many, and corner. For questions Q14 and Q15, the data were compared
across the three phases, which translates into comparing the paths that the participants took for
each method. Questions Q16-Q20 were tested by considering the ranks given to each of the
three methods.

The green cells indicate statistically significant results. It is noteworthy to mention that the data
indicate a significant difference among the three methods for Q11. However, this finding was
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A.4. Correlation Plots

Nr Question p-value

Q1 I can imagine using this application at a museum. 0.16

Q2 I knew where I had to go. 0.38

Q3 It was easy to follow the path. 0.095

Q4 The directions were very clear. 0.10

Q5 It was an intuitive way to display directions. 0.22

Q6 I felt in control of my movements. 0.10

Q7 The directions were given in a confusing way. 0.12

Q8 Getting to the artworks was challenging. 0.52

Q9 I felt lost. 0.62

Q10 The directions felt unnatural to me. 0.80

Q11 The app controlled my movements. 0.037

Q12 SUS for each method 0.72

Q13 Number of corrections for each method 0.32

Q14 SUS for each phase 0.0069

Q15 Number of corrections for each phase 0.0010

Q16 Which method felt most natural to you? 0.36

Q17 Which method gave the clearest navigation instructions? 0.0022

Q18 Which method did you find the most visually appealing? 0.20

Q19 Which method would you most likely use at a museum? 0.045

Q20 Overall, which method did you like best? 0.24

Table A.2.: Results of Friedman’s ANOVA per question

not further discussed in the results section due to the post-hoc Wilcox test failing to identify any
pairs with a significant difference. Additionally, considering that Q11 was one of the questions
that frequently confused the participants, this result was deemed inconsequential and was not
included in the analysis.

A.4. Correlation Plots

Figure A.1 shows the plots for the data points that do not exhibit a significant correlation.
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Figure A.1.: Correlations with SUS scores
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