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de Rham complex. These include the spaces of piecewise constant functions, continuous piecewise
linear (CPwL) functions, the classical “Raviart-Thomas element”, and the “Nédélec edge element”.
For all but the CPwL case, our network architectures employ both ReLU (rectified linear unit) and

Keywords: BiSU (binary step unit) activations to capture discontinuities. In the important case of CPwL functions,
De Rham complex we prove that it suffices to work with pure ReLU nets. Our construction and DNN architecture
Finite Elements generalizes previous results in that no geometric restrictions on the regular simplicial partitions 7
Lavrentiev gap of £2 are required for DNN emulation. In addition, for CPwL functions our DNN construction is valid
Neural networks in any dimension d > 2. Our “FE-Nets” are required in the variationally correct, structure-preserving
PINNs L Lo 3
approximation of boundary value problems of electromagnetism in nonconvex polyhedra £2 C R°.
They are thus an essential ingredient in the application of e.g., the methodology of “physics-informed
NNs” or “deep Ritz methods” to electromagnetic field simulation via deep learning techniques. We
indicate generalizations of our constructions to higher-order compatible spaces and other, non-
compatible classes of discretizations, in particular the “Crouzeix-Raviart” elements and Hybridized,

Higher Order (HHO) methods.
© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction Approximate solutions are obtained by numerical minimization
of loss functions obtained by discretely enforcing smallness of
Recent years have seen the emergence of Deep Neural Net- the residual at collocation points in the spatio-temporal domain.

work (DNN) based methods for the numerical approximation While empirically successful in a large number of test cases,
of solutions to partial differential equations (PDEs for short). In also DNN based approximations are subject to the fundamental
one class of proposed methods, DNNs serve as approximation  paradigm that “stability and consistency implies convergence”. A
architectures in a suitable, weak form of the PDE of interest. key factor of recent successful DNN deployment in numerical PDE
In E and Yu (2018), for elliptic, self-adjoint PDEs the variational  solution is their excellent approximation properties, in particular
principle associated to the PDE is computationally minimized  op high-dimensional state- and parameter-spaces, e.g. Mhaskar
over suitable DNNs, so that the energy functional of the physical and Poggio (2016), Petersen and Voigtlaender (2018), Schwab and
system of interest gives rise to a consistent loss function for the Zech (2019) and the references there. High smoothness of DNNs
training of the DNN. Numerical solutions obtained from training with smooth activations may, however, preclude convergence of
the approximating DNN in this way correspond to approximate ¢, cajled “deep Ritz” approaches where loss functions in DNN
variational solutions of the FDE under con51derat10:1. i training are derived from energies in variational principles (E &
The recently promoted “physics-informed NNs” (PiNNs), e.g. v, 2018), even for linear, deterministic and well posed PDEs.

R.alZSII' P 61;1612(?1“5’ ilnd fl(armadatlgs (2(.)19)' tYSrliI%\'l Meng, gndtl.(ar- To leverage the methodology of PiNNs and e.g., the variational
niadalis ( ) and references there, inser dpproximations Ritz method for computational electromagnetics, computational

yv1th.su1tably .smooth gctlvatlons (e.g. softmax or tanh) ds approx- magneto-hydrodynamics etc., structure-preserving DNNs must be
imation architecture into the strong form of the governing PDE. . .
adopted. We provide here, therefore, de Rham complex compati-

ble DNN emulations of the standard, lowest order finite element
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divergence and curl operators divy, and curlyo. These in turn
enable “neural boundary elements” for computational electro-
magnetism, recently proposed in Aylwin, Henriquez, and Schwab
(2023).

1.1. Previous work

The connection between DNNs with Rectified Linear Unit
(ReLU for short) activation and continuous, piecewise linear
(CPwL) spline approximation spaces has been known for some
time: nodal discretizations based on CPwL finite element methods
(FEM) can be emulated by ReLU NNs (e.g. as introduced in Arora,
Basu, Mianjy, & Mukherjee, 2018 and He, Li, Xu, & Zheng, 2020).

When CPwL finite elements are applied to, for example, weak
formulations of the time-harmonic Maxwell equations, they are
known to converge to the correct solution, generally, only for
convex polygons or polyhedra: if 2 has re-entrant corners or
edges, then with!

Xn(82) == H(div, 2) N H curl, 2)N{u:u x n=0o0n 98},

where n is a unit normal vector to the boundary 952 of 2,
the vector fields [H1(£2)]® N Xy(£2) are closed in Xy($2) without
being dense, see, e.g., Costabel (1991), Costabel, Dauge, and Nicaise
(1999). For such nonconvex polyhedra, the weak solution to the
time-harmonic Maxwell’s equations is generally not contained in
[H'(2)P.

Since any discrete conforming space based on a standard nodal
finite element method is contained in [H'(£2)]3, nodal FEM in
this situation converges to a wrong solution (in [H(£2)]?) as
the meshwidth tends to zero (respectively as the width of the
corresponding NN tends to infinity) (Costabel & Dauge, 1999).
Similar issues will arise for PINN numerical approximations of
low-regularity solutions for H(curl, £2)-based PDEs such as the
time-harmonic Maxwell equations. They will persist also for DNN
surrogates with more regular activation functions such as ReLU*
for k € N and sigmoidal or softmax activations. On bounded
sets, such NNs realize Lipschitz continuous functions, which are
in [H!(£2)]? and therefore may converge to an incorrect solution.

A second broad class of variational models, where continuous
nodal FEM may cause problems, are “deep Ritz” type approaches
such as in E and Yu (2018), which attempt to minimize energy
functionals. For certain nonlinear problems the so-called “Lavren-
tiev gap” incurred by CPwL approximation architectures is known
to be a fundamental obstruction to obtain convergent families
of discrete minimizers, see e.g., Ball (2001), Marcellini (1989),
Zhikov (1983). Again, relaxing continuity below H'-conformity
is known to remedy this issue; see, e.g. Balci, Ortner, and Storn
(2022) and the discussion and references there. Accordingly, in
Section 7.2 of the present paper we present CR-Net, a DNN
emulation of the Crouzeix-Raviart element with BiSU and ReLU
activations, on general regular, simplicial partitions of polytopal
domains £2 c RY% d > 2, which, when used in a deep Ritz
method style approach for variational problems, affords conver-
gent sequences of DNN approximations of minimizers. CR-Net
will also afford advantages in variational image segmentation
(e.g. Chambolle & Pock, 2020 and the references there).

Structure preservation in scientific machine learning is also
the topic of Trask, Huang, and Hu (2022). For machine learning
models on graphs, a data driven exterior calculus is introduced
which strongly enforces physical laws, e.g. those in the de Rham
complex, while allowing for additional information to be learned
from data.

1 Definitions of the (standard) spaces H'(£2), H%(div, £2) and H(curl, £2) are
recalled in Section 1.4.2.
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1.2. Contributions

The purpose of the present paper is the design of DNNs which
emulate exactly, on arbitrary regular, simplicial partitions 7 of
polytopal domains 2 C RY d = 2,3, the FE spaces S}(T, )
(continuous, piecewise linear functions), No(7, £2) (the Nédélec
element), RTy(7, £2) (the Raviart-Thomas element) and 58(7' , §2)
(the piecewise constant functions). The precise definitions of
these spaces will be given in Section 1.4.

We provide constructions of DNNs based on a combination of
ReLU (2.1) and BiSU (Binary Step Unit) (2.2) activations, which
emulate these classical, lowest-order FE spaces in the de Rham
complex on a regular, simplicial partition 7 of £2. We underline
that our construction of NNs which emulate, in particular, the
classical “Courant Finite Elements” S}(T, £2), as well as 58(7’, )
and RTy(7, §2), applies to polytopal domains §2 of any dimension
d > 2. For the practically relevant space S}(T , §2), the so-called
“continuous, piecewise linear (CPwL) functions”, we provide DNN
constructions based on ReLU activation only, which work in ar-
bitrary, finite dimension d > 2 (the univariate case d = 1 being
trivial).

Our constructions accommodate general, regular simplicial
partitions 7 of £2. In particular, apart from regularity of the
simplicial partition 7 of the polytopal domain 2, no further
constraints of geometric nature are imposed on 7, in arbitrary
dimension d > 2. Our results on ReLU NN emulation of CPwL
functions in Section 4 therefore unify and quantitatively improve
earlier ones such as, e.g., He et al. (2020, Section 3), which covered
only CPwL FE spaces on particular triangulations of £2. Our main
results, Propositions 5.1 and 5.7 and Theorem 5.5 in Section 5,
provide mathematically exact DNN realizations of the lowest
order FE spaces in the exact sequence (1.2) on general regular,
simplicial partitions of the contractible, polytopal domain £2. In
our main results using ReLU and BiSU activations, the network
size scales linearly with the cardinality | 7| of 7. For the ReLU NN
emulation of CPwL functions, the network size is in general of the
order |77 log(|77), which can be improved to order |7 for shape
regular meshes.

1.3. Layout

The structure of this paper is as follows. In Section 1.4 we
introduce the de Rham complex. In Section 2, we recapitulate
notation and basic definitions for the NNs which we consider.
We also review a basic NN calculus that shall be used subse-
quently in order to derive several properties of the proposed NN
architectures.

Sections 3 and 4 contain the core material of the paper: in
Section 3, using ReLU and BiSU activations, we provide explicit
emulations for bases of all the FE spaces considered in this paper,
without geometric conditions on the regular triangulations 7 of
£2.In Section 4 we show that for the special case of the emulation
of CPwL functions, the same can be achieved employing solely
ReLU activations. In both sections, we show that the network size
depends only moderately on the space dimension d and the shape
regularity of the partition.

In Section 5 we combine NN emulations of basis functions
from Sections 3 and 4 to provide emulations of the FE spaces and
discuss the implications of our results for function approximation
by NNs in the respective Sobolev spaces. Section 6 provides
a construction of NN emulations for compatible spaces on the
boundary I' = 042 of the polytopal domains. These spaces are
required in the deep neural network approximation of boundary
integral equations in electromagnetics, among others, as dis-
cussed in Buffa et al. (2020), Buffa, Hiptmair, von Petersdorff,
and Schwab (2003) and the references there. Finally, in Section 7
we present conclusions and explain how our analysis may be
extended to higher order polynomial spaces and to certain Finite
Element families which are non-compatible with (1.1).
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curl
e

H%(curl, £2)

H(div, 2) —%> 12(2)

L {0}.

Box 1.

1.4. Notation and Finite Element spaces

We recall definitions of the de Rham complex and correspond-
ing lowest order FE spaces.

1.4.1. Meshes

The term “mesh” shall denote certain simplicial partitions of
polyhedral domains £2 € RY for some d € N {1,2,...}.
To specify these, for k € {0, ..., d} we define a k-simplex T by
T = conv({ay, . .., a}) C RY, for some ag, ..., a; € R? which do
not all lie in one affine subspace of dimension k — 1, and where

Xx=Y Jy:i>0and Y 2 =1

yey yeY

conv(Y) :=

denotes the open convex hull. By |T| we will denote the k-
dimensional Lebesgue measure of a k-simplex. We consider a
simplicial mesh 7 on £ of d-simplices, i.e. 7 satisfies that 2 =
Urer Tand TNT = ¢, for all T # T. We assume that
T is a regular partition, i.e. for all distinct T,T” € T it holds
that T N T’ is the closure of a k-subsimplex of T for some k €
{0,...,d — 1}, i.e. there exist ag,...,aq € §2 such that T =
conv({ag, ...,aq}) and TN'T' = conv({ay, ..., a}). The shape-
regularity constant Cg, := Cgh(7) of a simplicial partition 7 of §2
is Csp := MaXreT ’:—; > 0. Here hr := diam(T) and rr is the radius
of the largest ball contained in T. Let V be the set of vertices of
T. We also let F, & be the sets of (d — 1)- and 1-subsimplices of
T, whose elements are called faces and edges, respectively, that is

F={fC R :3T =conv({ag,...,aq})) € T,3ie{0,...,d}

- ag\{ai})}

g={ecC R :3T =conv({ag,...,aq})) € T,3i,j€{0,...,d},
i #j, with e = conv({a;, g;})}.

with f = conv({ao, ..

We denote the boundary of §2 by 02 and the skeleton of T by
T == Ures 0T

1.4.2. De Rham complex
We write H'(£2), H(div, £2), H(curl, £2) to indicate the fol-
lowing Sobolev spaces

HY(2) = {v € [3(£2): Vv € [[2(£2)]%},
HOcurl, 2) = {v € [[%(£2)]%: curlv € [L2(£2)]%

( ford =2, 3,
HO(div, 22) := {v € [L2(£2)]%: divv € [2(2)},

where the two-dimensional curl is defined as curlv = (—091vo,
d,v1). These are Hilbert spaces. Specifically, let us assume that
£ C R’ is a contractible Lipschitz? domain with connected
boundary 952. Then, it is well-known that the following de Rham
complex is an exact sequence (e.g. Ern and Guermond (2021,
Proposition 16.14) and the references there), see the equation
given in Box I: Here, i denotes an injection and o denotes the zero
operator.

2 That is with boundary parametrized locally by Lipschitz continuous
maps (Ern & Guermond, 2021, Definition 3.2).
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1.4.3. First order discrete de Rham complex

Finite dimensional subspaces preserving this structure are
usually required to fit into a discrete de Rham complex (e.g. (Ern
& Guermond, 2021, Proposition 16.15), see the equation given in
Box II). We next define these spaces.

Throughout, denote by P, the set of polynomials of degree at
most k € NU {0}. For a given regular triangulation 7 of a domain
2, S}(T , §2) is the class of continuous, piecewise linear (CPwL)
functions on 7, i.e.

ST, 2)={veH'(R):vjreP, YT eT}CH(2). (13)

Moreover, 58(7’ , §2) is the class of piecewise constant functions
on the partition 7

ST, 2)={vel’(R):vlp=cr eR, VT € T} C [*(2). (1.4)

Next, we recall RTy(7, §2), the lowest order Raviart-Thomas
space. Define the vector-valued polynomial space RTy = (Py)! @
xPg and, for all f € F, let ny denote a unit normal to the face f.
Denote by [v - nf]; the jump of the normal component of a vector
field across f, that is

[v-nsls(x0) = li\l"r(l)(v(X[)'f‘an)—v(Xg —eny))-ny forall xo €f.
€
The Raviart-Thomas finite element space of lowest order is (e.g.

Ern and Guermond (2021, Section 14.1))
RTo(T, 2) == {v € (L1(2))? : v|r € RTy VT € T and
[v-nfly =0VfeFfCR} (1.5)

This space has one degree of freedom per face f € F and it
satisfies RTo(7", £2) C HO(div, ).

To define the lowest order Nédélec space No(7, §2), for d = 2
define NEy; = (Po)? @ Po(—xz, x1), and for d = 3 define NE, =
(Po)? @ x x (Po)". Let [v x nf]; denote the jump of the tangential
component of a vector field across f, that is

[vxnglf(xo) = li{?)(v(xo—l—enf)—v(xo—enf))xnf forall xq € f.
€
Then the Nédélec finite element space of lowest order (Ern &

Guermond, 2021, Section 15.1) reads
No(T, 2) := {v e (L'(£2))* : v|r € NEo ¥T € T and
[vxnelf =0Vf eF fC) (1.6)

This space has one degree of freedom per edge e € &£ and it
satisfies No(7-, £2) C HOcurl, £2). For d = 2, No(T, £2) is closely
related to RTy(7, §2) (see (3.13)). For each of the spaces in (1.2),
we state in Section 3 a basis of the space. The FE spaces from
(1.2) have the advantage of being conforming, i.e., they are fi-
nite dimensional spaces, each strictly contained in the respective
Sobolev space in (1.1). Furthermore, the (7-dependent) projec-
tions Hs}, Iy, Hkr,, 1758 on these subspaces introduced in Ern
and Guermond (2021, Sec. 19.3) commute with the differential
operators as shown in the following diagram (Ern & Guermond,
2021, Lemma 19.6):

div

HO(div, 2) ——— [%(£2)

lHRTO \LHSg

RTo(T, 2) —2 SY(T, 2)

curl

d
H'(2) -2 Ho(curl, 2) —

i ns} l HNO
curl

1 grad
Si(T, 2) ——=No(T, 2) ——
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curl

R —1> SI(T, 2) 5 No(T, 2) —0> RTo(7,, 2)

_dv SY(T, 2) ——= {0}.

Box IL

For these reasons we say that these spaces are de Rham compat-
ible.

These spaces also appear in the Helmholtz decomposition of
vector fields in bounded, contractible polyhedral domains 2 C
R3. For every vector field v € [L*(£2)]? there exist ¢ € H!(£2) and
Y € HOcurl, 2) N HO(div, £2) such that v = grad ¢ + curl ¢, see
e.g. Amrouche, Bernardi, Dauge, and Girault (1998, Section 3.5).

2. Neural networks

To accommodate for both continuous components and dis-
continuous components in the functions we want to emulate,
we consider neural networks where several different activation
functions are used throughout the network. We define neural
networks as a collection of parameters and for each position in
the network (also called neuron or unit) we specify the acti-
vation function used. Associated to such a neural network is a
function, called realization, which is the iterated composition of
affine transformations defined in terms of the parameters and
non-linear activation functions.

2.1. Feedforward NNs

For d,L € N, a neural network & with input dimension d >
1 and number of layers L > 1, comprises a finite collection
of activation functions @ {o¢};_, and a finite sequence of
matrix-vector tuples, i.e.

= ((A1, b1, 01), (A2, b2, 02), . .., (AL, by, 01)).

For Ny := d and numbers of neurons Ny, ..., N, € N per layer,
forall ¢ = 1,...,Lit holds that A, € RN¢*Ne-1 and b, € RM¢, and
that g, is a list of length N, of activation functions (0¢); : R — R,
i=1,..., N acting on node i in layer £.

The realization of @ : RN — RM as a map is the function

R(®): R?

- RM x> x,
where
Xo ‘= X,

X¢ = 0¢(Aexe—1 + be),
X = ALXL,] + b[_.

Here, for £ = 1,...,L — 1, the list of activation functions g, of
length Ny is effected componentwise: for y = (y1,...,¥yn,) € RN
we denote g¢(y) = ((@e)1(¥1): - - -, (0eIn, (YN, ))- Le., (g¢)i is the
activation function applied in position i of layer £.

We call the layers indexed by ¢ = 1, ..., L — 1 hidden layers,
in those layers activation functions are applied. No activation is
applied in the last layer of the NN. For consistency of notation,
we define g = Idpn, .

We refer to L(®) := L as the depth of . For £ = 1,...,L we
denote by M,(®) := ||A¢cllo + llb¢llo the size of layer £, which is
the number of nonzero components in the weight matrix A, and
the bias vector by, and call M(® Z( 1 M¢(@) the size of @.
Furthermore, we call d and N; the mput dimension and the output
dimension, and denote by Miy(®) = M;(®) and Myu(P)
M (@) the size of the first and the last layer, respectively.

Our networks will use two different activation functions.
Firstly, we use the Rectified Linear Unit (ReLU) activation

fore=1,...,L—1,

p(x) = max{0, x}. (2.1)
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We will often use the elementary identities p(x) + p(—x) =
x|, p(x) — p(—x) x to construct composite functions. Net-
works which only contain ReLU activations realize continuous,
piecewise linear functions. By ReLU NNs we refer to NNs which
only have ReLU activations, including networks of depth 1, which
do not have hidden layers and realize affine transformations.
Secondly, for the emulation of discontinuous functions, we ad-
ditionally use the Binary Step Unit (BiSU) activation

o(x) = {(lJ

which is also called Heaviside function. Alternatively, the BiSU can
be defined to equal % in x = 0. That function, which we denote by
&, can be expressed in terms of o via 26 (x) = o(x)+1—0o(—x) for
all x € R. Hence, for every NN with ¢ as activation function, there
exists a network with o-activations instead, with proportional
depth and size.

ifx <0,

2.2
ifx >0, (2.2)

2.2. Operations on NNs

In the following sections, we will construct NNs from smaller
networks using a ReLU-based calculus of NNs, which we now
recall from Petersen and Voigtlaender (2018).

Proposition 2.1 (Parallelization of NNs Petersen and Voigtlaender
(2018, Definition 2.7)). Ford,L € N let &' = (( (M pth oy,

@, bV, o")) and @* = (AP, b, o), ... (A7 b7, o)
be two NNs with input dimension d and depth L. Let the paralleliza-

tion P(®', ®2) of ®' and ®? be defined by

P(®', #%) :=((A1, b1, 01), - -, (A, br, 01)),
(1) (1)
A A 0
A= L, A= ¢ s orl=2,...,L,
=) 2= () s
b(l) Q(l)
bg:<e , Ot = £ , fOT'K:l,...,L.
b(eZ) ng)
Then,

L

forall x € RY,
M(®") + M(®?).

R(P(®', @%))(x)
L@, &%) =

(R(@")(x), R(®@*)(x)),
M(P(!, %)) =

The parallelization of more than two NNs is done by repeated
application of Proposition 2.1.

Proposition 2.2 (Sum of NNs) For d,N,L € N let ®!
(@60, o), . A b0, o)) and 2 = (47, b7, o),
.,(A(L2 s b(2 ,QEZ))) be two NNs with input dimension d, output

dimension N and depth L. Let the sum @' + @2 of @' and ®? be
defined by

@'+ @2 :=((A1, b1, 01), - .-, (AL, by, 01)),
A0 B oM
A =< ), bhi={,») @ &)
A by @1
A(U 0 bU) Q(U
A= ( ) @) be=( ) oe=("&)
0 A by 0,
for £ =2, ,L—1
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A[_ = (A(Ll) A;_Z)) N bL = bgl) + b(z), oL = ]d]RN’
Then,

R(@! 4+ @2)(x) =R(®!)(x) + R(®?)(x), forall x € RY,
o'+ o)=L, M@+ ®%) < M(®") + M(P?).

Next, we define the sparse concatenation of two NNs, which
realizes exactly the composition of the realizations of the two
networks using the fact that we allow the ReLU activation. See
Fig. 2.1 for a sketch of the NN structure. The sparse concatenation
is a construction which allows to bound the size of the concate-
nation as 2 times the sum of the sizes of the individual networks.
This bound does not hold if we combine the affine transformation
of the output layer of @2 with the affine transformation of the
input layer of @'.

Proposition 2.3 (Sparse Concatenation of NNs Petersen and Voigt-
laender (2018, Remark 2.6)). For LV, 1 e N, let &' = ((A'", b",

1 1 1 1 2 2 2
o). (AR B o)) and @2 =( AP, b 0Py, ...

2) .2 2 . .

(A(LG))’ b(L@))’ QE(J)) ) be two NNs with depths LV and L™, respectively,
such that NL((ZZ)) = N(()U, i.e. the output dimension of ®? equals the
input dimension of @'. Let the sparse concatenation @' ® @2 of

@' and @2 be a NN of depth L := [V + [ defined by
@' © &% :=((A1,b1,01), ..., (AL b, o)),
(Ae, b, 00) = (A7, b, 01,
0
) o =11,
0

fore=1,...,1¥ -1,
b(z)
s bL(2) = ,_((22))
) _bL(Z)
1 1 1 1
A = (A —AD), by = b, o, = o,
(1)

1 1
(Ag, be, 0¢) = (A(ZJLQ), bijL(z)’ QZ*L(ZJ)’
for e =1® 42, .., [V4+1@

Then, it holds that
R@'O @) =R(@")oR®?), Lo'oo*)=I1V+1O,
M(®' © @) <M(@') + Min(®") + Mowe(®?) + M(D?)
2M(®1) + 2M(P2?).

<
=

Proposition 2.1 only applies to networks of equal depth. To
parallelize two networks of unequal depth, the shallowest can
be concatenated with a network that emulates the identity using
Proposition 2.3. One example of ReLU NNs that emulate the
identity is provided by the following proposition.

Proposition 2.4 (ReLU NN emulation of Idga Petersen and Voigt-
laender (2018, Remark 2.4)). For all d, L € N, there exists a ReLU NN
CDEL with input dimension d, output dimension d and depth L which
satisfies R(®})) = Idga, L(PY,) = L and M(®}}) < 2dL.

2.3. Expression of specific functions

In the following, we will need ReLU NNs which emulate the
minimum or maximum of d € N inputs. These are provided in
Lemma 2.5. We also need to multiply values from a bounded
interval [—«, ] for k > 0 by values from the discrete set {0, 1},
which is the range of the BiSU defined in (2.2). A ReLU NN which
emulates such multiplications exactly is constructed in the proof
of Proposition 2.8 below.
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H2

Fig. 2.1. Illustration of Proposition 2.3. In blue, the additional ReLU layer that
evaluates the positive and negative parts of R(®?2).

Lemma 2.5 (ReLU NN emulation of min and max, He et al. (2020,
Proof Theorem 3.1)). For all d € N, there exist ReLU NNs &3** and
@M which satisfy

R(@7)(x) = max{xy, ..., Xq},
forall x e RY,
R(@T"™)(x) = min{x,, ..., X4},
for all x € RY,
UPF™) = L(PF™) < 2 + logy(d),
M(®P™) =M(dM™) < cd

Here, the constant C > 0 is independent of d and of the NN sizes
and depths.

In space dimension d = 1, we may take @M" := pM .= @ld

Remark 2.6. The network &7** is obtained by repeated ap-
plications of ®J'**, which itself can for instance be constructed
as

(DB vom)

We point out that this construction of @J"** leads to a slightly
more efficient representation of ®*** than the one given in He
et al. (2020, Theorem 3.1), as it requires less neurons, weights
and biases. However, this will merely improve the constant C
in Lemma 2.5, but not the stated asymptotic d-dependence of
L(®**) and M(@3'**). The remark applies verbatim to min net-
works.

Remark 2.7 (Min/max with Recurrent Nets). The d-dependence can
be completely avoided by admitting recurrent neural nets (RNNs),
i.e., RNNs can express the maximum of d inputs with a network of
size, depth and width O(1). We briefly sketch the idea: An RNN
allows for information to flow backwards, i.e., we can take the
output of @' in time step t as one of its inputs at time step
t + 1. With the initialization Xq := X1, this leads to the iteration

X = q%mx(;(r—l, Xt),

where the network receives in step t the input x;. Then the
network’s output X, in step n equals max{xq, ..., x,}. The remark
applies verbatim to min networks.

The following proposition provides the exact ReLU NN emu-
lation of products of elements from a bounded interval [—«, «]
for k > 0 by elements from the discrete set {0, 1}. The network
depth and size are independent of «.
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Az +b=0

Azx+b3 >0

Fig. 2.2. Illustration of Lemma 2.9 for d = 2, n = 1, N = 3. In blue, the neurons
corresponding to one hyperplane (i = 1), in green the half-spaces (i = 2, 3).

Proposition 2.8. For all d € N and « > 0 there exists a ReLU NN
D
X, Y) =Xy = (Y, Xay)

forallx € [—k, k1% and y € {0, 1},
Log ) <2, M(o;,) < 12d.

R(@;K )(X], ..

A proof of Proposition 2.8 is given in the Appendix.

The exact BiSU emulation of indicator functions is the topic
of the following lemma. An illustration of the network defined in
the lemma is given in Fig. 2.2.

Lemma 2.9 (Emulation of Indicator Functions). For d, N € N and
ne{0,... N} letA,...,Ay e R and by, ..., by € R! be such
that

Q= ﬂ xeR?: Ax+ b, =0IN
i=1,...,n
[ (xeR':Ax+bi >0} 0.

Let the NN @}) with layer sizes Ng = d, Ny = N+nand N, = 1 = N3
be defined as

A] b] o
—A] —b1 o
1 . An bn o
¢_Q - _An 5 _bn ) o a(A7 b? Q)7 (1709 IdR) 5
Anp bni1 o
AN bN (o2
A= (-1 -1 1 1) e RPN,

b::—(N—n—%)eRﬂ 0:=o0,

where the first 2n elements of A equal —1 and the last N — n equal
1.
Then, for all x € R¢

1 ifxe
R(®L)(x) = ’
(@2)X) {O otherwise,

M(®5) < (d+2)(N +n)+ 2.

A proof of Lemma 2.9 is provided in the Appendix.

726

Neural Networks 165 (2023) 721-739

3. NN emulation of lowest order conforming finite element
shape functions

Consider a bounded polytopal domain 2 C R% d € N\{1}, and
a regular simplicial partition 7 of £2.

In Sections 3.1-3.4, we will present neural network emula-
tions of the lowest order conforming FEM spaces for H'(§2), H°
(curl, £2), H(div, £2) and [2(£2).3 These finite-dimensional spaces
appear naturally in structure-preserving discretizations of the de
Rham complex. They are a key ingredient for variationally consis-
tent DNN emulations of differential operators appearing in the de
Rham complex. For each type of shape function, we explicitly de-
fine a network which emulates that shape function exactly. Global
approximations can be obtained by taking a linear combination
of these shape functions using Proposition 2.2 (scalar multiples
of shape functions are obtained by scaling all weights and biases
of the output layer). We will detail this in Proposition 5.1.

For shape functions which are discontinuous after extending
them to §2 by the value zero outside their domain of defini-
tion, we use Lemma 2.9 based on BiSU activation to emulate
indicator functions of (parts of) their domain of definition. We
then use Proposition 2.8 based on ReLU activation to multiply a
continuous, piecewise linear function, which is equal to the shape
function on part of £2, by the indicator function of that part of the
domain.

The following lemma provides NN emulations of possibly dis-
continuous, piecewise linear functions, and will be used repeat-
edly in Sections 3.1-3.4. A sketch of the NN structure is given in
Fig. 3.1.

Lemma 3.1 (Emulation of Piecewise Linear Functions). Ford,s, u €
N let 2 C R? be a bounded polytope and T be a regular, simplicial
partition of 2 with s = |T| elements, T = {Ti}i=1,. s Letu: 2 —
R* be a function which for alli =1, ..., s satisfies u|, € [P1]* and
ulr(x) = A + b1, x € T.

Then, for any

x> max sup [|A% + bV o, (3.1)
i=1,...,s xeT;
N
ot =Y "ox 0P (@, 0 (A7 b7, 1deu)) , @7 (3.2)
i=1

satisfies u(x) = R (@;"") (x) for all x € U_,T; and R (") (x) = 0
for all x € RT \ UL_,T;. Furthermore, if |AVlo + [bD|lo < m for all

i=1,...,s, then there exists C > 0 independent of d and T such
that
(") =5,  M@") < Cs(u+m+d).

Proof. Firstly, we observe that indeed u(x) = R (@5™*) (x) for all
x € U T;and R (@) (x) = 0 for all x € RY\ U_, T;.
Secondly, we estimate
Loy ) =P, )+ L(D1) =5,
M(®;") <s(2M (P,
+ 2M (P (2,7, © (A7, b7, 1dz)) . @7)))
<s(2M (®);,) +4M(®},) + 4M (((AV, b, Idgs)))
+ 2M (21))
<s(Cu + Cp + Cm + Cd?) < Cs(u + m + d?),

3 Throughout this section, we will regularly refer to Ern and Guermond
(2021), where only Lipschitz domains are considered. We stress that the finite
element spaces Sg(T, £2), No(T, £2), RTo(7, £2) and S%(T, £2) can be defined on
regular, simplicial triangulations 7 of all bounded, polytopal domains 2 and
that our NN emulation results from this section apply to all such £2.
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12

Fig. 3.1. Illustration of Lemma 3.1 for s = 2. Solid lines indicate sparse concatenation, dashed lines visualize layers integrated in the blocks. Each of the blue groups
represents a parallelization from Proposition 2.1. The elementwise assembly is done in the output layer (green).

where we applied in the last line Lemma 2.9 with N = d + 1,
n=0.

3.1. Piecewise constants S)

The lowest order approximation space for L?(£2) is the finite

dimensional subspace SO(T 2) from (1.4). A bas1s is given by
0

{QTS }reT, whose elements are indicator functions 6; % := 17. They
can be expressed by applying Lemma 2.9 with N = d + 1 and
n = 0: forall T = conv({ao, ..., aq}) € 7, we define (A;, b;) €
R™@+D i =1,...,d+ 1 by the relations

(aoh (agh
(Ai, by) =e/, foralli=1,...,d+1,
(ao)a (ag)a
1 .1
(33)
where () = 8, so that T = (,_, . ,{x € RY : Ax+b; > 0}.

Then there exists C > 0 independent of d and 7 such that for all
T € T the NN &; % = @ satisfies

0 0 0
S S S0

0
670 = R(®0), M(®;°) < (d+2)(d+1)+2 < Cd.

(3.4)
3.2. Raviart-Thomas elements RTy

We introduce a basis of RTy(7, §2) from (1.5), and provide a
NN emulation of those basis functions. For f C 952, we define
s(f) = 1and 6;7°(x) := dlvm( —aj)iy, where f C T, Ty € T
and a, is the only vertex of T; that does not belong to f.* For
interior faces f C £ we define s(f) = 2 and construct QfRTO
by assembling local shape functions of the neighboring simplices
Ty, T, with f = Ty N Ty, (Ern & Guermond, 2021, Equation (14.3))

Ifl :
. d‘T1|(‘ —ay) ¥fx eTy,
o °(x) := lez‘(x —ay) ifxeTy, (3.5)
0 if x ¢ T UTs,

4 We use a different normalization of the shape functions than in Ern and
Guermond (2021, Section 14.1). This is inconsequential for the ensuing analysis.
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where aq, a, are the only vertlces of Ty, T,, respectively, not
belonging to f. The functions {Of %}er form a basis of RTo(T, £2)
(see, e.g., Ern and Guermond (2021, Proposition 14.1)).

Proposition 3.2. Given f € F, let {T; }Sm be the simplices adjacent
tofandleta;:=(VNT)\f eRYi=1,...,s(f) Then

s(f)

ot =) (1750
i=1
P (2 © ((d1daca, — i 10 ) ) @7) (3.6)
satisfies QRTO(X) = R((D}UO )(x) for a.e. x € £2, for any
il co- (3.7)

K > max sup [[x —
i=1....50) x ‘”T'

i=

,,,,,

In addition, there exists an absolute constant C > 0 independent
of d and T such that for all f € F

Koy — 5, ) < Cd?s(f) < 2Cd?.

RTp
L

M(®]

Remark 3.3. We note that the right-hand side of (3.7) is bounded
from above by a constant which only depends on d and the shape
regularity constant Cg.

Proof of Proposition 3.2. Firstly, we observe that indeed GRTO( )

_R (quTOP (x) for all x € 2\ T, where a7 := ;. 9T
Secondly, we apply Lemma 3.1 with 4 = d, m = 2d and
s =s(f).

Alternatively, we can build the same shape functions by en-
forcing strongly, via ReLU activation, continuity of the component
normal to f, as imposed in (1.5). We select the unit normal
vector ny to f pointing towards T, and an orthonormal system

{t1,...,ts_1} spanning the hyperplane tangent to f. Then, we
decompose
d—1
070 (x) = (6;°(0) - npdny + Y (67 °(x) - )t (38)
j=1

Thus, it suffices to compute separately OfRTO( )-ny and QRTO( )t
and to take the linear combination (3.8) in the last layer. The
proof of the next proposition will be given in the Appendix.
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be the simplices adjacent
s(f) such that

Proposition 3.4. Given f € F, let {Ti}f(:fi
to f. Then there exist Asf) e R™4, bﬁ.,') eRi=1,...,

Aﬁ,}) b;})
RTp, . .
d)f ot . Q5l><] oP @mm ® : s : , Idgsin) s
AE.;U)) bs:f(f))
s(f)
o + o} 3.9
T Pr (3.9)
i=1

satisfies HfRTO(x) Sy o= RQ@RTO )(x) for ae. x € 2 and every
@ c R b

Ve Ri=1,....50)

x € f. There also exist A[j

j=1,...,d— 1such that
RTy,t; il i i
o =3 oy 0P (@{?2 o) ((Ag), Y, Icl]R)> , cpT{,> (3.10)
i=1
satisfies 9 (x) =R <d>RT° 9) (x) for a.e. x € 2, where
x + (3.11)
i=1,..., S xeT;

j=1,.d-1

In addition, there exists a constant C > 0 that is independent of d
and T such that for all f € F

Koot =5, L@y ") =5,
RTp, L 2 2 RTo. ¢ 2 2
M(@p ) <Cd*s(f) < 2Cd”,  M(@; ™) < Cds(f) < 2Cd”.

Remark 3.5. The right-hand side of Eq. (3.11) is bounded from
above by a constant which only depends on d and the shape
regularity constant Cs, of the mesh 7.

Corollary 3.6. For all f € F, the NN

d—1
@0 = ((ny. 0. 1dga)) © @70 + 3 (87, 0. 1dga)) © @
j=1
(3.12)

satisfies QfRTO(x) R(qDRTO *) (x) for ae. x € 2 and (QfRTO(x) .

ne)ny =R Q>RT° *> (x) for all x € f. In addition, there exists C > 0

independent ofd and T such that forall f € F

F0f)y=6, M@ ") < Cd’.

L(&

Proof. We estimate the network size and depth as follows:
L((I)RTO *) =6,

M(®7 ") <2M (((ny. 0. 1dza))) + 2M (@ ©)

+ i (2M (5. 0.1d54))) + 2M(2"™)) =

3.3. Nédélec elements Ng

In this section we restrict ourselves to the space dimension
d € {2, 3}. For d = 2, we can relate the Nédélec basis functions
to the Raviart-Thomas basis. In fact, one can verify that, for an
edge f € £ = F (which is also a face), the finite element basis
No .
{Of Jrer for Ng satisfies

0 tr=0"n;, and 6° —670 - (3.13)

tr,
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where ny := ((nf)1, (nf)2) is a unit normal vector to f as in (3.8)
and tf = (—(ns), ( f)]) is a unit vector tangent to f. Hence,
a NN emulation for 6 Yo can be derived from Proposition 3.2 or
Corollary 3.6.

We now focus on the case d = 3. A basis {65‘0}965 for No(7, £2)
can be constructed by assembling local shape functions of all
simplices Ty ..., Tye), S(e) € N sharing an edge e. We fixe € &
and a unit vector t, tangent to e, and denote the midpoint of e by
m.. We denote by é(i) the only edge of T; that does not share a
vertex with e, and let t;) be a unit vector tangent to é(i), directed
in such a way that t, - [(m, — mg;)) X tzp] > 0.

Then,
(x = mey) X Ly ifxeT,i=1,...,se),
020 (x) = { te - [(Me — M) X te(y)]
0 ifx ¢ Uiy 50 Ti
(3.14)
Note that
5(&) .= maxs(e) (3.15)

ec&
is bounded from above by a constant only dependent on the
shape regularity constant Cg, of 7. See Ern and Guermond (2021,
Remark 11.5 and Proposition 11.6).

Proposition 3.7. Given e € &, let AY € R¥3, b ¢ R3 be such

that fori=1,...,s(e)
(ei)x — X X (i) Vx € RS,
te - [(Me — mgiy) X tyi)]
b = — M) X Li) .
te - [(Me — mgy) X ty3)
Then

= Zcp OP (2}, © ((AY, b)), 1ds3)) . 1) (3.16)

satisfies 60°(x) = R ((P?O) (x) for a.e. x € 2, for any « such that

ll(x — magiy) X tagiylloo
kK > max sup .
i=1,...5() xeT; te - [(Me — Me(i)) X tai]
Furthermore, there exists C > 0 independent of T such that for all
ee&

Lo

(3.17)

)= 5, M(®N) < Cs(e) < Cs(&).

Proof. Firstly, we observe that indeed 6,°(x) = R CDNO)( )

all x € 2\ 97. Secondly, we use Lemma 3.1 with u = d =
m=d?>+d=12 and s = s(e).

3.4. CPwL elements S!

In this section, we provide a construction based on element-
by-element assembly of the shape functions, similar to that in
the prev1ous sections, using both ReLU and BiSU activations. A

ba51s {9 }pev Of s! 1(T, £2) is uniquely defined by the relations
01,, (pj) = 8, for p;, pj € V. Define s(p) .= {T € T:peT}| € N.
Note that

5(V) := maxs(p) (3.18)
J I%

is bounded from above by a constant only dependent on d and

the shape regularity constant Cg, of 7. See Ern and Guermond

(2021, Remark 11.5 and Proposition 11.6), which generalize to
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space dimension d > 3. The following proposition is analogous
to Propositions 3.2 and 3.7.

Proposition 3.8. Givenp € V, letTy,...,Typ) € T, s(p) € N

; ; ; (i) 1xd p() 1
denote the simplices adjacent to p. Let Ay’ € R™% b," € R' for
i=1,...,s(p) be such that

p1 (@i (@iah
A6 | - =(1,0,....0)
Pa (@) (@ia)a
1 1 1
where the points a;; € R are such that T; = conv(p, @i 1, - . . , @i 4)-
Then
g s(p) o
@, =) 0 0P (0} 0 (A b, 1dz) . 7)) (3.19)

i=1

1 1
satisfies Qsl(x) R(@Dsl)(x) for ae. x € £2. Furthermore, there
exists C > 0 independent of T such that for allp € Vv

1
s1

1
Lo, °

)=15,  M(®,") < Cs(p)d® < Cs(V)d>.

1 1
Proof. Observing that Qsl(x) = R((IJS‘ )(x) forallx € 2\ 97, we
use Lemma 3.1 with # = 1, m = d + 1 and s = s(p) to estimate
the NN size.

4. ReLU NN emulation of CPwL shape functions

For continuous shape functions which vanish on the boundary
of their support, one can construct NN emulations using the ReLU
activation function alone, as shown in He et al. (2020, Section 3)
for regular, simplicial meshes with convex patches. The purpose
of this section is to extend these results to arbitrary regular,
simplicial partitions 7~ of polytopal domains £2 C R¢, in any
space dimension d > 2, using only ReLU activations, significantly
improving the network size bounds from He et al. (2020, Theorem
5.2). In the sequel, for a vertex p € V we write

op)=|J T

i=1...,s(p)

(4.1)

where Ty, ..., Ty, € T denote the simplices adjacent to p. We
call w(p) a patch. One key assumption in He et al. (2020, Section
3) was that w(p) is convex for all vertices p € V.

Removing this assumption is the main topic of Section 4.2.
We remark that the construction given in Section 3.4 also does
not require convexity of the patches and, since no minimum is
computed, the depth of the network is independent of the input
dimension d and the maximum number of elements meeting in
one point s(V). In this section we avoid the use of BiSU activa-
tions, which could be considered not natural for the emulation of
continuous functions in S}(T, ).

4.1. Regular, simplicial partitions 7 with convex patches

Under the1 assumption of convexity of patches, the hat basis
functions {Hsl}pev C S{(T, ) satisfy He et al. (2020, Lemma 3.1)

1
Sl

0p'(x) = max {0, min Ay 4 pi 1 (4.2)
i=1,...s(p) P p

. . . . 1
with AV e R1*¢, b € R! such that AVx + b = ;! |7 (x) for all
TiCcwlp),i=1,...,s(p).
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We now recall the emulation of the shape functions from He
et al. (2020), and show the dependence of the constants on d. We
remark that the explicit d-dependence was not studied in He et al.
(2020).

Proposition 4.1 (He et al. (2020, Theorem 3.1)). Consider p € V
for which w(p) is convex and let Ty, ..., Tyy) € T, S(p) € N be the
simplices adjacent to p. Let (AY, bY) € RUTD*1 i =1, .., s(p) be

as in (4.2).
Then
¢§PwL — ((], 0,p),(1,0, [d]R)> o q&s‘?;;‘
A7\ (b
o : i : , Idgsp)
AL biste)

1
satisfies R(@5P"")(x) = 9; (x) for all x € 2 and there exists C > 0

independent of d and T such that for allp € V
L@ty < 5 +logy(s(p)).  M(@5™") < Cs(p)d.

The depth only depends on T through s(p).

Proof. The network depth and size can be bounded as

Lo =L (((1.0.p), (1,0,1d) ) ) + L(@T)

A\ (B
+1 ’  dgsin
Ag(p)) bEJS(p))
=2+ LU +1 =3+ (2 + logy(s(p)
=5 + log,(s(p)),
M@ =cM (1,00, (1,0, 1dw) ) ) + CM(@3
AL B
+M : ; : s 1dgsr)
AL s

< C(2 +s(p) + s(p)(d + 1)) < Cs(p)d.

The preceding result can be used to construct emulations of
shape functions on non-convex patches which only use the ReLU
activation.

4.2. Regular, simplicial partitions T including non-convex patches

We now extend Section 4.1 to non-convex patches, i.e. we
show that ReLU NNs can emulate CPwL functions on arbitrary
regular, simplicial meshes in d € N dimensions. To present this
result in Theorem 4.3 below, we introduce some notation (see
Fig. 4.1).

Givenp € V,letTy, ..., Ty, € T denote the simplices adjacent
top.Forallj=1,...,s(p),letay :=panday,...,as € R?be such
that T; = conv({ao, ..., aq}) and let q; :== p + §; Z?:j(p — @) for
some sufficiently small §; > 0. Then we define

oo {;onv({qj, dg, - .-, ag} \ {a:}) lfl ef1,...,d}, 4.3)
¥ ifi=0.
Furthermore, set
d J—
5)j(p) = Tjj. (4.4)

I
<)



M. Longo, J.A.A. Opschoor, N. Disch et al.

NAY

Fig. 4.1. The patches w(p) and (shaded) @;(p) C w(p).

a5

(b) @;(p)

We build basis functions for S}(T , §2) starting from the hat func-

ol
tions (951 e CO%(R)forj=1,...,s(p) defined by

<l
Qsj(p) =1and 0 ( ) = 0 for all other vertices q of @;(p),

7 (4.5)

p1|f ePforalli=0,.

., d,
Qp,}|9\€uj(p> =0.

In Theorem 4.2 we show that CPwL basis functions with non-
convex support w(p) can be computed as the maximum of s(p)
many CPwL basis functions with convex support, whose ReLU NN
emulation was given in Section 4.1. This maximum can be emu-
lated exactly by a ReLU NN using the constructions in Section 2,
as shown in Theorem 4.3. We obtain the same bound on the ReLU
NN size as the bound on the NN size in Proposition 3.8. The proofs
of these results are postponed to the Appendix.

Theorem 4.2. Forallp e V,let Ty, ..., Typ € T, s(p) € N be the
simplices adjacent to p. Then, for all p € V and all x € w(p)

(4.6)

1
651 (x)

Qp,}(x)

max
j=1,...,s(p)

max max
j=1,....s(p)

{0 min A(”)x—i-b(”
ic{0, ...,d)

where each x — A(' ’)x + b(”

(i )
(B + B = Bz

is a globally linear function fulfilling

Theorem 4.3. ForallpevletT1,... Tsp) € T, s(p) € N be the

simplices adjacent to p. For 0 j,] =1,...,s(p) defined in (4.5), let

@CEWL j=1,...,s(p) be the NNs from Ploposition 4.1 satisfying
el
R(d>CPwL) 0;}. on £2.
Th
o= oI O P(@ M, L BT (4.7)

1
satisfies R(®,"")(x) = Qsl(x)for all x € 2 and

L(@,"") < 7 4 logy(s(p)) + logy(d + 1),  M(@,™"") < Cd?s(p).

5. NN emulation of lowest order conforming FE spaces. Ap-
proximation rates.

Having defined explicit constructions of NN emulations of
shape functions for all finite elements in the discrete de Rham
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complex of the lowest polynomial order (1.2), we are now in
position to formulate and prove our main results: exact NN em-
ulations of each of the lowest order FE spaces in the de Rham
complex, on regular, simplicial partitions 7 of polytopal domains
€2 C R% For ¢ € {S], No, RT, S3}, we obtain a vector space of NNs
NN(#; T, 2)={@*" : v € (T, 2)} such that the realization of
each NN @*? equals v a.e. in £2.

With the networks NN(¢; 7, §2) at hand, we may lift known
approximation results for finite elements to obtain constructive
NN approximations of arbitrary functions in the Sobolev spaces
belonging to the de Rham complex (1.1).

Accordingly, we first construct NN emulations of the FE spaces
in Proposition 5.1, from which the approximation results are
derived in Theorem 5.5. To present the next statement, we define
s(F):=maxrerS(f) <2,8(T):=1and s(T) :=1forall T € T.

Proposition 5.1. Let 2 C RY d > 2, be a bounded, polytopal
domain. For every regular, simplicial triangulation T of §2 and every
¢ € {S],No, RTo, SO} (with the Nédélec space ¢ = Ny excluded
if d > 3), there exists a NN ®@* = ®¥7-%) with ReLU and BiSU
activations, which in parallel emulates the shape functions {Qi’}iez
for T e {V, &, F, T}, respectively, that is R(®*): 2 — R satisfies

R(@*)(x)i = 6(x) forae xe R andalliecT.

There exists C > 0 independent of d and T such that

; 1
L((DQ): 5 lf’e {SOVNOVRTO}s
3 ife=S,,
M(@*) <Cd* " s(i) < Cd’s(T) dim(#(T, 2)).
ieT

For ¢ € {S},No,RTo, SO} and for every FE function v
Yis vt} € (T, ) there exists a NN @V PHT 2w
with ReLU and BiSU activations, such that for a constant C > 0
independent of d and T

R(®@*")(x) =v(x) forae xe £,

ooy |5 if ¢ €{S],No, RTo},
He )_{3 if o =5,
M(&*") <Cd* ) s(i) < Cd*s(7) dim(&(T, £2)).
i€

The layer dimensions and the lists of activation functions of @*
and ®%V are independent of v and only depend on T through
{s(D)}iez and |Z| = dim(&(T, £2)).

For each & € {S], No, RTo, S3}, the set

NN(® T, 2)={Dd* :veeT, )}, (5.1)

together with the linear operation

¢0,v$A¢0,w — @0.v+lw,

forallv,w e &(T,2)and A € R
(5.2)

is a vector space, and the map R(-) : NN(&; T, 2) — &(T,82)isa
linear isomorphism.

Remark 5.2. Note that ) ,_, s(i) < c(Z, d)|T, where c(V,d) =
d+ 1 is the number of vertices of a d-simplex, c(&, d) the number
of edges of a d-simplex, c(F, d) the number of faces of a d-simplex
and C(7, d) = 1. We obtain this inequality by observing that each
element T € T contributes 41 to ¢(Z, d) terms s(i). Therefore,
we also have the bound M(®*) < Cd*c(Z, d)|7], independent of
the shape regularity constant Cg, of 7. The same bound holds for
M(@*).
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Definition 5.3. For a given polytopal domain 2 C R% d > 2 and
a regular, simplicial triangulation 7 on £2, we call the network @*
defined in Proposition 5.1 a ¢-basis net.

Proof of Proposition 5.1. We define ®*7 %) as the paralleliza-
tion of networks from Propositions 3.8, 3.7, 3.2 or Eq. (3.4),
namely ¢*7?) := P({®?}ic7), from which the formula for the
realization, the formula for the NN depth and the bound on the
NN size of @¥7-$) dlrectly follow with Proposition 2.1.
The NN @479V is defined as the sum @72V .= 3.
o!, * where the sum of NNs is as defined in Proposition 2.2, and
where the NNs v,¢i’ are obtained from those in Propositions 3.8,
3.7, 3.2 and Eq. (3.4) by scaling all weights and biases in the last
layer by v;. The formula for the realization, the formula for the
depth and the bound on the NN size follow with Proposition 2.2.

By comparing the definition of the parallelization in Proposi-
tion 2.1 and the sum in Proposition 2.2, we observe that their
hidden layers are equal. Therefore, the hidden layers of @#7-)
and of @*7-2) coincide.

By definition of @*7%)? as linear combination of the basis
NNs {®?*}ic7, which are the same for all v, the NN ¢¥7 210 jg
determined uniquely by the coefficients {v;};cz. Therefore, R(-) :
NN(&;T,R22) — &(T, $2) is a bijection. With the linear opera-
tions defined in (5.2), this map is linear by definition, thus a linear
isomorphism.

Remark 54. Forallv =Y, , vt} € &7, 2), for v = (v))iez €
RZI, the network @*' can be obtained from ®* as follows.
Denoting the last layer weight matrix and bias vector of ®! by
AD and b, those of @* are given by A = diag(A"), . .. ,A(i‘I‘))
and b = ((b)T, ... (bZ))T)T and those of ®** are given
by (v, A%, ... v, A%) and Y, vib® for an enumeration
i], ...,i|I| of 7.

Note that the sum defined in (5.2) differs from the sum of
neural networks from Proposition 2.2. In (5.2), the hidden layers
of @*¥™¥ are independent of v, w and A and depend only on
#(T, £2). These hidden layers coincide with those of @*, which
emulates a basis of (7, £2).

For all v € #(T, ) there exists a unique NN ®*° € NN (¢; T
£2) which realizes v. However, there exist many other NNs, not
in NN(¢; T, §2), with the same realization.

We apply the previous results to quasi-uniform, shape-regular
families of meshes {7;}u-0 in dimension d = 2, 3. For V = H!(£2),
HOcurl, 22) for d = 3, HO(div, £2) or [*(£2), define the template
for the respective smoothness space V* C V as follows

V =HY(R2) «— V* = H¥(R),

V = H%curl, 2) «— V* = H'(curl, 2)
={veH"(): curlv e [H(£2)]9},

V = Hdiv, 2) «— V* = H(div, )
={ve[H'()": divv e H(£2)},

V =[13R) <« V*=H'(Q).

We arrive at the following result.

ford=3:

(5.3)

Theorem 5.5. Given a bounded, contractible polytopal Lipschitz
domain 2 C R% d = 2,3, assume that (V,$) € {(H'(£2),S]),
(H%curl, £2), No), (H°(div, £2), RTo), (L*(£2),S9)}, that the regu-
larity space V* C V is as in (5.3) and that d 3ifV
HO(curl, ).

Assume given a family {Ty}n-o of regular, simplicial partitions
of the polytopal domain §2 which are uniformly shape-regular and
quasi-uniform with respect to the mesh-size parameter h.

Then there exists a constant C > 0 (depending only on the shape
regularity parameter C, of the family {7y}, and on d) such that for
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all h > 0 and for every v € V*, there exists @, € NN(#; T, §2)
such that

lv—R(@p)llv < Chllv|lye
and

5 if ¢ € {S],No, RTo}, i
L(®p) = M(® h=e.

Proof. Let V, = &(7p, £2) denote the lowest order FE space
corresponding to V. By Proposition 5.1, for all v, € V}, there exists
aNN @), := &% € NN(#; Tp, £2) such that R(®;,)(x) = vp(x) for
a.e. x € £2. In particular, for all v, € Vy and all v € V*

R(@n)llv = llv = vally.

We can then apply the approximation results e.g. Ern and Guer-
mond (2021, Theorem 11.13) for V H'(£2), (Alonso & Valli,
1999, Equations (5.7) and (5.8)) for V = H%curl, £2) in case d =
3, Ern and Guermond (2021, Theorem 16.4) for V = H%(div, £2)
and Poincaré’s inequality for V = L?(£2). More precisely, for a
constant C only dependent on Cg, and on d, for all v € V* there
exists vy € V), for which

llv—

v —wnllv < Chlvllye. (5.4)

The formula for L(®y) follows from Proposition 5.1. In addition,
the bound on the NN size follows from Proposition 5.1, together
with dim(V,) ~ h™@ as h | 0 and the fact that s(Z), T €
{v, &, F, T} is bounded from above by a constant depending only
on Cgp.

Remark 5.6. In (5.4) in the proof of the theorem, the choice of
vy (depending on v, given in the cited references) is made to have
the approximation property (5.4). However, other choices of v, €
Vi, based on interpolation or quasi-interpolation can equally be
emulated with NNs. In Ern and Guermond (2017, Corollary 5.3),
the authors give a particular definition of quasi-interpolants in
Vi = &(Ty, $2) for ¢ € {S}, No, RTp}, requiring minimal regularity
of the function v. This gives existence of a constant C > 0 that is
independent of v, h such that for all v € [W"P(£2)]% there exists
a & € NN(¢; T, £2) satisfying, for any p € [1, o0], r € {0, 1} or
any p € [1,00),1 € (0, 1)

lv = R(P)llpp oy = Chrl”'[WY.P(Q)JdL . (5.5)

Here d; d if V, = RTo(7p, £2) or V), = No(Tp, £2) and d; = 1
otherwise. See e.g. Ern and Guermond (2021, Section 2.2) for a
definition of the Sobolev space W™P(£2) in which this result is
stated.

The following analogue of Proposition 5.1 for ReLU emulation
of S also holds.

Proposition 5.7. Let 2 C RY d > 2, be a bounded, polytopal
domain. For every regular, simplicial triangulation T of $2, there
exists a NN @ Pl .= @PwUT.2) with only ReLU activations, which

in parallel emulates the shape functions {9 }er for T = V. That is,

R(@PLY: 2 — RIZI satisfies

RO = 67" (x)

There exists C > 0 independent of d and T such that
L(@T") <8 + log,(s(2)) + log,(d + 1),

M(®P") <C|Z| log,(s(T)) + Cd* Y s(i)

i€

<Cd’s(T)dim(S}(T, £2)).

forallxe 2 and adlli € T.
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1
Forallv=7Y",, v,'OiS1 € S}(T, ), there exists a NN ¢PLY =
@PUUT. ) with only ReLU activations, such that for a constant
C > 0 independent of d and T

R(@TVLY)x)=v(x) forallx e $2,
L@PrLlvy <8 4 logz(s(l')) + log,(d + 1),
M(@PLYy < C|Z] log,(s( +Cd22

ieT

<Cd*s(7)dim(S}(T, 2)).

The layer dimensions and the lists of activation functions of @ *L
and LY are independent of v and only depend on T through
{s(i)}iez and |Z| = dim(S}(T, £2)).

The set NN(CPwL; T, 2) := {®FP¥LY 1 v € SI(T, £2)} together
with the lmear operation L) pPulw .— @C” whvtiw for all
v,weSs! 1(T, £2) and all » € R is a vector space.

The realization map R(-) : NN(CPwWL; T, 2) —
linear isomorphism.

ST, R)is a

Proof. We define @P*L7 %) a5 the parallelization of networks
from Theorem 4.3, namely ¢ *HT-2) .— P({(D{‘?Ll_ QPP 1) for
L = 1+ maxjez L(@""") — L(@{"™"), such that all components of
the parallelization have equal depth. For the depth and size of the
components, we obtain with Theorem 4.3

L@, © @) <1+ (7 + logy(s()) + logy(d + 1)),
M(PY, © &) <cM(@Y)) + CM(Ph)
<C(8 + logy(s(T)) + log,(d + 1)) + Cd?s(i),
from which the stated results follow with Proposition 2.1 by the
same arguments as in the proof of Proposition 5.1.
The NN @PwUT-2)v is defined as the sum @TPwLT.2)v

Yiez viPYy, © PP The results now follow from Proposition 2.2
as in the proof of Proposition 5.1.

Definition 5.3 and Remark 5.4 apply, with CPwL instead of
¢, SI(T, £2) instead of (T, £2) and @, © " instead of
@!. In addition, a result analogous to Theorem 5.5 follows from
Proposition 5.7, with the formula for the depth replaced by
L(®p) < C for a constant C > 0 only dependent on Cg, and d.

6. Neural emulation of trace spaces

In the previous sections, we have developed ReLU NN emu-
lations of the lowest order, de Rham compatible Finite Elements
on cellular complexes in the bounded Lipschitz polyhedral do-
mains £2 C R3. In certain applications, however, corresponding
boundary complexes are required; we mention only variational
boundary integral equations which arise in computational elec-
tromagnetism (e.g. Buffa et al,, 2020, 2003 and the references
there). We approximate traces on the boundary I" = 952, which
is a finite union of plane sides, with the network constructions
developed in Section 5 for d = 2. As has been emphasized e.g.
in Buffa et al. (2020), trace spaces of the spaces occurring in
the de Rham complex satisfy exact sequence properties derived
from the compatibility of the corresponding sequences in £2. We
refer to Buffa et al. (2020, 2003) and the references there for a
definition and basic properties of these spaces. We recall the trace
operators (e.g. from Buffa et al. (2020, Definition 2.1)):

vo: H'(2) = HV3(I): vo(u)(xo) = lim u(x), (6.1a)

7 HoCcurl, 2) — H V3 (curly, I') 1 o(u)(%0) = lim u(x)
X—Xg

- (u(x) : nxo )nxm
(6.1b)
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HY(Q) grad HO(curl, Q) curl HO(div, Q)

H~'/2(curlp,T)

NA\

Yo

HY2(I) xn H-Y2(I)
H;'?(divp,T)

Fig. 6.1. Boundary complex.
rad cur

SH(T. Q) e No(T, Q) ! RTo(T, Q)

Yol Fols
Yol No(T7, f) Ynls
k
SHUN)) Tr. )

RTo(Ty, f

Fig. 6.2. Discrete boundary complex.

1/2

ve : HoCcurl, 2) — H, /*(divp, I') . ye(u)(%o) = lim u(x) x Ty s
X—Xo
(6.1¢)
¥+ HO(div, 2) - H V() : Ya(u)(xo) = lim u(x) - ny,,
X—>Xo
(6.1d)

for almost all x, € I', where we use x to denote points in
£2, and where n,, denotes the outward unit normal to I” in X.
These trace operators render the diagram in Fig. 6.1 commutative
(e.g. Buffa et al. (2020, Figure 2)). The trace operators in (6.1) are
surjective (e.g. Buffa et al. (2020, Theorem 1)), thus the fractional
Sobolev spaces on I" in (6.1) comprise precisely all traces of
elements of the respective function spaces on £2. In addition, the
trace operators in (6.1) are continuous with respect to the norms
defined in Buffa et al. (2020, Section 2), see Buffa et al. (2020,
Theorem 1).

Given a regular simplicial partition 7 of 2, for each face f of
£, the set 77 = {int(f NT) : T e T} is a regular, simplicial
triangulation of f (where the interior int(...) is defined with
respect to the subspace topology on the face f). Discretizations of
the trace spaces can be defined as the traces in the sense of (6.1)
of the finite element spaces on §2 (see Fuentes, Keith, Demkowicz,
and Nagaraj (2015, Section 1.6)). The corresponding diagram for
the lowest order conforming FEM spaces also commutes (Fig. 6.2).

Upon parametrizing each face of £2 by a polygon in R?, we can
construct NN approximations of the traces on f. We parametrize
each face f by an affine bijection F; : Dy — f for some polygon
Dy C R?, which can be partitioned by To; = {Ff’](T) : T e Tr).
Functions in S}(7;, f), RTo(7F, f) and S3(7;, f) can be pulled back
to Dy. In particular,

cue ST, ) =
cue ST =

NN emulations of these spaces have already been provided in
Propositions 5.1 and 5.7. The spaces RTy(77, f) and RTo(7p;, Dy)
are related by the Piola transform. For | denoting the Jacobian

{uoF $1(7o;» Dy),

{uok So(7n, . Dy).
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of Ff,
{det() '(uoF) :

Thus, for u € RTo(7}, f), a network that emulates uoFy : Dy — R?
is given by det(J~!)J®, for a NN & € NAN(RTy; 7oy » D) from
Proposition 5.1 emulating det(J)J~(u o Fy) € RTo(7p; , D). Here,
ReLU activations imply that the affine transformation det(J~1)J
can be emulated exactly either by applying this transformation
to the weights and biases of the output layer of @, or by concate-
nating @ with a ReLU NN of depth one. In both cases, the network
size is increased by at most Cd? (with C > 0 independent of d and
T), and the network depth is increased by 0 respectively 1.

The shape functions of No(7y, f) equal those of RTo(7z, f) up
to a rotation. As explained in Section 3.3, we can use results from
Section 3.2 for the NN emulation of the NO(”Ibf, Dy) shape func-
tions. Therefore, for u € No(77, f), a network that emulates uoF :
Dy — R’ is given by det(J~")J®, for a NN @ € NN(No; Tp;, Dy)
from Proposition 5.1 emulating det(J)J~'(u o Ff) e N0(75f, Dy).

The preceding discussion in this section can be summarized as
follows:

u € RTo(77. f)} = RTo(Tp, . Dy).

Proposition 6.1. Assume given a bounded polytopal domain 2 C
R? with boundary I' = 9£2 consisting of a finite union of plane,
polygonal faces f. For a regular, simplicial partition 7 of §2, and
for a face f C _I' of £2, consider the regular, simplicial partition
T = {int(f NT) : T € T} of f with edges & {fe : e C f}
and vertices Vs {v : v e f} (ie., obtained as “trace” of T on
f c ) letF : D — f be a bijective affine parametrization of
f for some polygonal parameter domain Dy C R? partitioned by
To; = {Ff’l(T) : T € Tf}. In the following, C only depends on the
shape regularity constant of the simplicial partition 7. Then we have
the following.

(i) For all # € {Sj,No,RTo,SY} there exists a NN &% =
¥ T-HF with ReLU and BiSU activations, which in parallel
emulates {0} o Frlicr for T € {Vy, &, &, 75}, ie. RG@*fr):
Dy — Rl satisfies

R(@*7)(x)i = 6} o Fy(x) forae.xeD;andallieT.

(ii) There exists C > 0 independent of T such that
5 if & € {S], No, RTo},

3 ife=s),

M(@*f) < C dim(#(77. f)).

(iii) For all v € &(T;, f), there exists a DNN & *>f7 .= @¥7r--v-Fr
with BiSU and RelU activations, satisfying the same depth and
size bounds as ®@*'7, such that R(@*"%) = v o F; a.e. in Dy.
The set NN(#; 77, f; Fr) := {@*> : v € (7, f)} together
with the linear operation ®@* V- F @4 fr .= @¥v+iwFy for
all v,w € &(Tf, f) and all A € R is a vector space.

(iv) There also exists a DNN @ PvLfr .= @PvUTrNFf of depth C
and size at most C dim(S}(ﬁ,f)), with only ReLU activations,
such that

L((D"Ff) — {

1 J—
R(@TVEF Y (x); = 9i51 oFs(x) forallxeDfandallieZ.

(v) For every v € Si(7;,f) there exists a DNN @PvLvfr —
@PwUTR v with only ReLU activations, which satisfies the
same depth and size bounds as @1, and R(@PwEvFr) =
v o Fy everywhere in Dy. The set NN(CPwL; Ty, f; Fy)
{@PLvfr oy € SI(TF, f)} together with the linear operation

(pCPwL,u,Ff ¢A¢CPwL,w.Ff — ¢CPwL,U+)»w,Ff

forall v, weSi(T,f) and all » € R

is a vector space.

733

Neural Networks 165 (2023) 721-739

7. Extensions and conclusions

We conclude this paper by indicating some extensions of the
main results, as well as further possible directions of research.

7.1. Higher order polynomial spaces

For polynomial degree k € N and space dimension d > 2
denote in the following by P, := spaln{]_[f:1 x})’ : Zf:] v < k}
the space of d - variate polynomials of total degree at most k.
As observed in Li, Tang, and Yu (2020), networks employing the
“ReLU"™> activation

pr(x) = p(x)" = max{0, x}'

for some fixed integer r > 2, can be used to express multivariate
polynomials in P, exactly. We use here a formulation of this
result from Opschoor, Schwab, and Zech (2022),° extended to
vector-valued polynomials by parallelization:

Proposition 7.1 (Opschoor et al. (2022, Proposition 2.14)). Fix d,
w €N, reN, r>2and a polynomial degree k € N.

Then there exists a constant C > 0 independent of d, u and
k but depending on r such that for any multivariate polynomial
w € [Pg]* there is a NN &,,, employing ReLU" activation, such that
R(®,,)(x) = w(x), for all x € R? and such that M(®,,) < Cu(k+1)?
and L(®,,) < Cdlog,(k + 1).

Combining Proposition 7.1 with Proposition 2.8 and Lemma 2.9,
by a similar argument as in Lemma 3.1 we obtain a generaliza-
tion of this result to piecewise polynomial functions on regular,
simplicial partitions for all interelement-conformities which arise
from compatibility with the complex (1.1).

Lemma 7.2 (Emulation of Piecewise Higher Order Polynomial Ele-
ments). Letr € N, r > 2. Ford,s, u,k € Nlet 2 c RY be a
bounded polytope with boundary 952 being a finite union of plane,
polytopal faces and let T be a regular, simplicial partition of §2 with
s = |T| elements, T = {Ti}iz1,..s- Let u : 2 — R" be a function
that for alli =1, ..., s satisfies u|r, € [Px]".

Then there exists a NN @"*P employing ReLU, ReLU" and BiSU
activations and satisfies u(x) = R (@£"") (x) for all x € U;_;T; and
R(®£"P) (x) = 0 for all x € R? \ US_, T;. Furthermore,

L(@P"P) < cdlogy(k+ 1),  M(®P"P) < Cspu(k + 1)

Here the constant C is independent of T, d, s, . and of k but depends
onr.

Our results thus straightforwardly extend to piecewise poly-
nomial spaces of arbitrarily high order, covering all de Rham
compatible element families on simplicial partitions on polytopes
as described in Fuentes et al. (2015). Importantly, as in the case of
low-order finite elements, the network size only scales linearly in
the number s = |T| of simplices of the triangulation 7. Similarly,
also the results of Section 6 extend to higher order polynomials.

We now state the corresponding generalization of Proposi-
tion 5.1 for three types of higher order finite elements. For ar-
bitrary polynomial degree k € N we recall the Lagrange FE
space

ST, 2)={veH'(R):vjreP, YT eT}CH(2) (7.1)
5 Also referred to as “rectified power unit” (RePU).
6 we apply this result here with the multiindex set A = {(v,..., V) €

Nd - Zjd:1 vj < k}, which has cardinality bounded by (k+ 1){. Here, we denoted
No = (0, 1, .. J.
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from Ern and Guermond (2021, Section 7.4). For all k € Ny we

recall RTy = (P)? @ xspan{x®* : o« € NI |o| = k} and the
Raviart-Thomas FE space
RTW(T, £2) == {v € (L'(2))? : v|r € RT, ¥T € T and

[v-nflf =0 Vf C 2} C H(div, £2) (7.2)

from Ern and Guermond (2021, Sections 14.2 and 14.3), and let
for all k € Ny

SUT, 2):={vel(R): vy e P, VT € T} C [*}(£2).
Forall k e Nand ¢ € {S,l, RT,_1, 52} and for a suitable index set
7 we will denote by {9 }iez any collection of shape functions of
(T, £2), each of which is supported on s(i) < s(Z) elements of

T.

(7.3)

Proposition 7.3. Let 2 C R% d > 2, be a bounded, polytopal
domain and let r € N, r > 2 be the power in the ReLU" activation,
and let k > 1 denote the element degree.

Then we have the following.

(i) For every regular, simplicial triangulation T of §2, every k € N
and every ¢ € {S,:,RTk,1,S£} there exists a NN @*
@7 -2) with ReLU, ReLU" and BiSU activations, which in par-
allel emulates the basis functions {Qi’}ig_, thatis R(®*): 2 —
R7Z! satisfies

R(@*)(x);

0}(x) forae xe R andalliecT.

(ii) There exists C > 0 independent of d, k and 7' but depending
on r, such that with u = 1if ¢ € {S,< Y oand p o= dif
¢ =RTy4,

L@*) < Cdlogk+1),  M(®*) < Culk+1)" Y s(i).

ieT

(iii) For every FE function v =Y_,_, v} € (T, £2), exists a NN
@+ = ¥ v with ReLU, ReLU" and BiSU activations,
such that for a constant C > 0 independent of d, k and T, but
depending on r,
R(®*)(x) = v(x)

L(@*?) <Cdlog(k + 1),

forae. x € £2,
M(@*") < Cu(k + 1)) si).

iez
The layer dimensions and the lists of activation functions of
®* and &%V are independent of v and only depend on T
through {s(i )},EI and |Z] = dim(#(T, £2)).
(iv) For each ¢ € {Sk, RTy_1, Sk},

NN T, R2)={D% :v e &T, 2)}, (7.4)

together with the linear operation @**FApH? = @vtiw

for all v,w € &(7,8) and A € R is a vector space,
and the map R(-) : NN(&;T,2) — &(T, $2) is a linear
isomorphism.

Proof. For all i € Z let ! be the NN approximation of 6}
from Lemma 7.2. Possibly after concatenating each <D’ with <D'd2,
which only affects the constant C in the bounds on depth and
size from Lemma 7.2, we may assume that L((Dl.’) > 3 =
L((P% ). From the proof of Proposition 7.1, where &,, is the u-fold
parallelization of a ReLU" network from Opschoor et al. (2022,
Proposition 2.14) applied with A = {v € Ng : Z]‘-j:] vj < k}, we
see that the depth and the layer dimensions depend on d, u and
r, but not on w. The same holds for the network in Lemma 7.2,
by an argument similar to that in the proof of Lemma 3.1. We can
therefore define @%7-%) := P ({@!}icz) and the sum @ ¥ 72
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D ier vicpi’ and obtain the linear structure of NN(#; T, §2) by the
same arguments as in the proof of Proposition 5.1.

It remains to prove the formula for the realization and to
estimate the NN depth and size. Firstly, we observe that indeed
6} (x) = R(®*) (x); for all x € £2\ 9T, where 9T = (Jyo, T,
and R (@*) (x); = 0 else.

Secondly, we apply Lemma 7.2 with s s(i)and u = 1 if
¢ €{S},SY) and ;1 = d if 4 = RT;_;. We obtain that

L(@*) < Cdlog,(k + 1),
s(i)

< ZM((D’
i=1

and the same bounds hold for the depth and size of @*.

M(@*) )< D Cs(iulk+ 1),

i€

Definition 5.3 applies, and also Remark 5.4.

Remark 74. ReLU NNs (and thus also ReLU+BiSU NNs) are
known to be efficient at approximating multivariate polynomials,
see e.g. Liang and Srikant (2017), Opschoor et al. (2022), Yarot-
sky (2017). Thus, also ReLU+BiSU (rather than ReLU+ReLU" +BiSU)
networks could be employed to extend our results to higher order
polynomial spaces, however only in an approximate sense.

The resulting PwL NN realizations may violate the discrete
exact sequence property however.

7.2. Crouzeix-Raviart elements CRy

While this work focused on conformal discretization of func-
tions in the compatible spaces in (1.1), the result of Lemma 3.1 is
more general and includes the non-conformal Crouzeix-Raviart
elements (e.g. Ern and Guermond (2021, Section 7.5)) of lowest
order for d > 2. Due to the importance and widespread use of
the Crouzeix-Raviart elements (e.g. Balci et al., 2022; Chambolle
& Pock, 2020; Crouzeix & Falk, 1989 and the references there), we
state a NN emulation result of these elements. For d > 2 and a
polytopal domain £2 C R% let T be a regular, simplicial triangu-
lation of £2 as in Section 3. The lowest order Crouzeix—Raviart FE
space is defined as

CRo(T, 2) == {v e L\(2) :

/[v]f=0‘v’f€]-',fC.Q},
f

vlr € P; VT € T and

(7.5)

where [v]; denotes the jump of a function across f, that is, given
a unit normal vector ny to f, [v]f(xo) = limeo(v(Xg + €ng) —
v(xo — €ny)) for all X, € f. Analogously to the case of Raviart—
Thomas FE, the space CRy(7, §2) has one degree of freedom per
face f € F. The corresponding shape functions are, for f C 952

and thus s(f) = 1, 65°(x) = d(} — (1 — D000 )3 where

f C T, T; € T and a; is the only vertex of T; that does not belong
to f. For interior faces f C £2 and thus s(f) = 2, we construct 9
by assembling local shape functions of the neighboring 51mp11ces
T], T2 Wlthf = T] N Tz,

_ dG — (1= EE) ifxe .
6 0(x) = yd(d — (1 + T2y ifxe T, (7.6)
0 ifx ¢ T, UTy,

where a;, a, are the only vertices of Ty, T,, respectively, not
belonging to f. The following proposition allows us to apply
Proposition 5.1, Definition 5.3 and Remark 5.4 with ¢ = CRq.

Proposition 7.5. Given f € F, let {T,}sw be the simplices adjacent
tof andlet a; == (VNT)\f e R, i=1,...,s(f). Then, there exist
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Arr, € R ber e R i=1,...,s(f) such that

s(f)
(DfCRO = Z @7 OP (&1, © ((Ar.r. br.ry. 1dg)) , 1) (7.7)
i=1
. CRg CRg
satisfies 6f (x) = R(®y )(x) for a.e. x € £2, for any
k>d-—1. (7.8)

In addition, there exists a constant C > 0 that is independent of d
and T such that for all f € F

Loy =5,

; M(®7) < Cd*s(f) < 2Cd?.
Proof. The values of A 1, by 1, can be read from (7.6). Similar to
Proposition 3.2, HfCRO(x) = R(q§fcR° )(x) for all x € £2 \ 97, where
T == Ures 0T

We conclude applying Lemma 3.1 withu =1, m=d+ 1 and
s =s(f).

The same idea carries over to higher order Crouzeix-Raviart
elements and canonical hybrid elements (Ern & Guermond, 2021,
Section 7.6), along the lines of Section 7.1.

7.3. Domains of general topology

In our discussion of the de Rham complex (see Section 1.4.2)
we assumed throughout that the physical domain £2 is con-
tractible. This renders the topology of §2 trivial: its Betti-numbers
are bg = 1, by = b, = b; = 0. As is well-known, for polytopal
domains £2 with a non-trivial topology (e.g. domains 2 C R3
with voids) in (1.1) the cohomology spaces

Ho
Ha

Ker grad/Im i
Ker div /Im curl

Hq
Hs3

Ker curl/Im grad
[*(2)/Im div

are nontrivial. Our neural network emulation results are given
without topological restrictions on the bounded polytopal domain
£2. Therefore, the presently proposed DNN emulations of de Rham
compatible FE spaces on simplicial partitions preserve these co-
homology spaces provided that the corresponding discrete ho-
mology spaces #;(7) for the FE spaces in 2 are isomorphic to
‘H;. This property has been verified for several large classes of
FE spaces (see, e.g., Di Pietro, Droniou, & Pitassi, 2022 and the
references there).

7.4. Conclusions

The present construction of deep NN emulations of de Rham
compatible Finite Element spaces was given for the lowest order
Finite Element families on regular, simplicial partitions 7 of 2.
Generalizing recent work (He et al.,, 2020), we provided exact
emulation of continuous piecewise linear functions (“Courant”
Finite Elements) on arbitrary, regular simplicial partitions in any
space dimension by ReLU networks. As shown, for uniformly
shape regular partitions the network size in this construction
merely scales linearly with the number of elements.

As is well known (e.g. Fuentes et al. (2015) and the reference
there) the presently emulated, lowest order element families are
embedded in hierarchies of higher-order Finite Element families
for arbitrary polynomial order. We argued that admitting higher
order, so-called ReLU" activations with r € N, r > 2 allows to
exactly emulate the higher order element families from Fuentes
et al. (2015) along the lines of the present constructions.

Compatible constructions similar to the ones developed here
are also possible on affine partitions T (comprising elements that
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are affine images of reference elements) which contain other ele-
ment shapes, in particular quadrilaterals (d = 2) and hexahedral
elements (d = 3). We refer to Fuentes et al. (2015, Sec. 4 and 6)
for details on the shape functions.

The present results, in particular Proposition 6.1, can be the
basis to extend the recently proposed frameworks of “PiNN”
(Raissi et al., 2019) and “deep Ritz” (E & Yu, 2018) for DNN dis-
cretization of PDEs to larger classes of PDEs, and to corresponding
boundary integral formulations (see, e.g., Sauter & Schwab, 2011
for such methods, and Aylwin et al. (2023) for a realization of
this approach for a model problem). While in this paper we
mainly concentrated on the de Rham formalism, our ideas and
proofs naturally extend also to compatible discretizations of more
general structures, as occur in the so-called Finite Element Exte-
rior Calculus (FEEC) (e.g. Arnold, Falk, & Winther, 2006 and the
references there).

Similarly, with Lemma 7.2 other nonconforming FEM such
as Hybridized, High Order (“HHO”) FEM can be emulated with
appropriate functionals which account for element interface un-
knowns and reduced interelement conformity, see, e.g. Cicuttin,
Ern, and Pignet (2021, Prop. 1.8).
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Appendix. Proofs

A.1. Proofs from Section 2

Proof of Proposition 2.8. This proof is in two steps. In Step 1,
we define a function of x, y that computes the desired output for
d = 1. In Step 2, we construct a NN which exactly emulates that
function d times and estimate its depth and size.

Step 1. For x,y € R let

fxy) =5 (p(x+y) + p(—=x = y) = p(x = y) = p(=x +y)).

Note that forallx e [—1,1] and y € [0, 1] such that |x| <y <
1t holds that f(x,y) = 2p(x+y)+0—0— Jp(—x+y) = x and
that for all x € [—1, 1] it holds that f(x, 0) %p(x) + %p(—x) —
1p(—x) — 1 p(x) = 0. Hence, f satisfies

flx,y)=xy, forallx e [—1,1] and y € {0, 1},

and thus for all x € [—«, x] and y € {0, 1} it follows that
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Step 2. Ford = 1, let

o O o o
DD DD

which satisfies
R(@; )%, y) =kf(%,y) forall (x,y) € R?,
LP;)=2, M@, )=8+4=12
Similarly, with uy == (1, =1, 1 -7 uy = (1, -1, -1, 1)7
and u; (5.5

5 —%), we define for d > 1 the following
network with layer sizes N =d 4+ 1, N; = 4d and N, = d:

11 1

K
=3

uq up 0 P
94 = )
up up 0 P
us 0 [d]R
us 0 [dR

which satisfies

R@EX, - %0, y) = (kF (L y), - (2, y)T € RY,
for all (x,y) € R? x R,

PS) =2, M(®,)= 12d.

Proof of Lemma 2.9. From
1 ify=0,

forall y e R,
0 otherwise, y

1—oy)—o(-y) = {
it follows that for all x € R?

R(@L)N) =0 (Z(l — o(Ax+ bi) — o(~Ax — by))

i=1

N
+ Z o(Aix+b;) — (N — l))

i=n+1
if x € £2,
otherwise,
M(®g) < ((N +n)d + (N +n))
+ (N+n)+1)+1=(d+2)N+n)+2.

1
“lo
L®g) =3,

A.2. Proofs from Section 3

Proof of Proposition 3.4. Below, we prove the result for f C £2,
i.e. s(f) = 2. The case f C 952, i.e. s(f) = 1, follows analogously.

Observe that we can write T; = conv({a;, py, ..., pa}) where
{p1,...,p4} = V N f. The point values GfRTO(p]-) -y o= 1,
Vi = 1,...,d are well-defined by continuity of QfRTO - Nf across

f. Therefore, we can take A(n'f) e R4, b(n’f) € R,i =1, 2 to be the
matrices and vectors solving

(@)1 (p1h (pah
(A b0y | —0,1,...,1), (A1)
(@)a  (P1)a (Pa)a
11 1
where (0, 1,..., 1) = (= 1) (0, (p1—a)-ny, ... (pa—a) ).

With this choice, since (QfRTO(x) -ng)e[0,1]forxe T, UT, Uf, it
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holds that GfRTO(x)-nf =R ¢}{T°’L) (x)fora.e.x € 2 andeveryx €
f.On the other hand, the discontinuous tangential component can
be assembled element by element, as in Proposition 3.2: matrices
and vectors (A(tj'_), b(t'_)) e R+ j =12andj=1,...,d -1
which only dependl on T; and tj can be computed as in (A.1), but
with different right-hand sides, namely (—l)H%(O, (p1 — @) -
G, ..oy (pa — @) - £) € RIXWHD,

Finally, we estimate the network depth and size. For d = 2, as

in Remark 2.6 let
. -1 0 0
oyt = 0 o). (#)).
0 0 0

(=1 1 —1),0,IdR)),
[(oymy =2,  M(eIM) = 7.

In particular, we use that L(@") + 1 = (&} + of + 057112) =3,
i.e. in (3.9) both components in the parallefization have equal
depth. Also, because the networks for s(f) = 1 have smaller sizes
than those for s(f) = 2, we will only estimate the sizes of the
latter. In the bound on the size of @7 + @/ + @7 in (3.9), we
use for Tq, T, Lemma 2.9 with N = d—}— 1 and n = 0, whereas
for f we use Lemma 2.9 with N = d + 1 and n = 1. The size of
the network in (3.10) is estimated using Lemma 3.1 with u = 1,
m=d+ 1ands = 2.

1
1
-1

Lo o) =L@ ) + L@T + Of + &F ) =5,
M(®770") < 2M(e])

2M (P o5 A (b
+ D, 0O A(z) s b(z) , ldg2 ,
ny ny

p + P + @%2) >

<2M(®],) + AM(D5™")

A(U b(1)
+ 4M g 1TH ], 1de
((((A%?> (b%? )
+ 2M(@r) + 2M(Df ) + 2M(Py,)
<C(C+ C+ Cd + ¢d® + cd* + cd?) < cd®.

A.3. Proofs from Section 4

In this section we give proofs of Theorems 4.2 and 4.3. Our
proof strategy is to write a non-convex patch as a suitable union
of convex ones, and thereby reduce the problem to the convex
case.

Lemma A.1. Ford € N, let T = conv({ay, . ..
and 8 > 0. Define q .= ag + § Zle(ao —aj).
Then Ts := conv({q, a1, ..., aq}) is a simplex and ay € Ts.

, aq}) be a simplex

Proof. Without loss of generality, ag = 0. To show that T; is a
simplex, it suffices to verify ag = 0 € Ty, as it then follows that
T C T;, i.e. Ts has nonempty interior and is thus a simplex. By
definition,

d d d
Ts = {O{o (82—(1,‘) + Zaia,- : ZO!,’
i=1 i=1 i=0

Therefore, ag € T;s is equivalent to

d d
agd E a = Zaiﬂi,
i—1 i—1

lando; >0¢.



M. Longo, J.A.A. Opschoor, N. Disch et al.

which holds if and only if 0gd = «; foralli = 1,...,d. A viable
choice satisfying Z?:o oj=1land o; > 0is g = (14 ds)"! and
aj=08(1+ds) ' foralli=1,...,d, and thus ay € Ts.

Proposition A.2. Given a simplex T = conv({ay, ...
pointp € T, let

,aq}) and a

T; .= conv({p, ap, ..., aq} \ {a;}) forallie {0,...,d}.
Then

J n=T (A2)
i€{0,...,d}

and this is a patch, and {T; :
partition of T.

i€ {0,...,d}}is a regular simplicial

Proof. letp €T, ie.

d d
PZZ%‘G;‘, o; > 0 and Za,-zl.
i=0 i=0

First we show that Ty is a simplex, which by symmetry implies
that T; is a simplex for all i € {0, ..., d}. It suffices to check that
p —a; ¢ span{a, — ay, ..., a4 — ai}, since then {p — ay,a; —
ai,...,aq — ai} is a set of linearly independent vectors. This is
true since {ap —ay, a; —ay, ..., dg — a;} are linearly independent
vectors, oy = 1— 3., & and thus

— a1 = Z oilai — Cl1
i#1
with @g > 0 does not belong to span{a, — a;,...,a; — ai}.
Furthermore, [ J, d T, C T follows by the fact that p € T
implies T; C T for alli € {0, ..., d}.
Next we show (o o Ti O T. Fix p := Y ¢ ja; with yj > 0

satisfying Z _o¥ = 1,1e. pis an arbitrary point in T. We wish

to show that p € T; for some i € {0, ..., d}, ie.
d
Zyjaj = Zﬂjaj + Bi Zajaj for some B; > 0, Zﬂj =1
j=0 J#i j=0 j=0
This is equivalent to
d d
> - Balay =Y B, (A3)

j=0 J#i
We now show that there exist (ﬂj)fzo for which this holds. Let

ie argminﬁ, (A.4)

jefo,....d} @

which is well- defmed because yj > 0and j > Oforallj e
{0, ..., d}. Since Z oo = 1= Zjd o ¥ for iin (A.4) it must
hold V’ < 1.Eq. (A. 3) holds if y; — Biei = 0 and y; — Biy; = B; for
all j ;é i. The former is satisfied for 8; = ”’ € [0, 1] and the latter
is satisfied if 8; = y; — Bicj, which lmplles B = ozj( ') >0
and ; _aJ(V’ - W<y <litis lefttoshowthatz o Bi=1

We have
d
S h= Yk -+
j#i J#
d d d
=D ptE|1- =yt fa=1.
J#i J#i J#

We found i € {0, .
peTiand U, 4

(ﬂ]) for which (A.3) holds. Thus
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It is left to show that for all m # n € {0,...,d} the
intersection of T;, and T, is the closure of a sub-simplex of both.
Consider

d d
Zﬁjaj+ﬁmp : Zﬂ;zlandﬂjzo ,

j#m j=0

d d
D Ba+pwp: Y p=1and >0

Jj#n Jj=0

Then

d d
TnNTa=1 D Ba+pp:p+ ) F=1landp f=0¢,

j#m.n j#m.n

which, by definition, is the closure of a sub-simplex of both Tm
and T,.

For a set S C RY, in the following we call x € S a star point of
Siffforall y € S\ {x} holds conv({x,y}) C S.

Lemma A3. Letp e vNint$2 and let Ty, ..., Tgpy € T be the
simplices adjacent to p. For each j = 1, ..., s(p), we denote by Pr,
the hyperplane passing through all vertices of T; except p. Then, any
x € intw(p) that is on the same side of the hyperplane Pr, as p for
allj=1,...,s(p) is a star point for the patch w(p).

Proof. We divide the proof of the claim in three steps:

Step 1. We claim that dw(p) C U2 (p) Py, for all p € Vv Nint £2.
To prove this, we define a regular partition 77 of R? that extends
T, i.e. such that 7 C 7. For every point z on dw(p), z is on
the boundary of an element T C w(p) and of an element T’ C
R\ w(p), T, T’ € T'. By regularity of 7/, T N T’ is the closure of
a subsimplex f of both T and T'. Because T is a simplex with p
as one of its vertices, if z is not in Pr, then f touches p, which
implies that T’ C w(p) and gives a contradiction.

Step 2. We show that any star point x of intw(p) is a star
point of w(p). Given q € w(p), define a sequence {g,} C intw(p)
such that g, — g, then for all t € [0, 1] we obtain intw(p) >
xt +qn(1 —1t) = xt +q(1 —t) € w(p), as w(p) is closed.

Step 3. Assume that x € intw(p) is not a star point of w(p).
By Step 2, there exists ¢ € intw(p) and t € [0, 1] such that
tx + (1 — t)q ¢ intw(p). Therefore, there exist t,t € (0, 1)
satisfying t < t,and T € 7, T C w(p), such that, using Step
1,tx+(1—1t)g € Py and sx+(1—s)q € T, Vs € (t, t). Since p and
T lie on the same side of Pr, sx + (1 —s)q lies on the other side of
Py than p for all s € (&, 1]. For s = 1, this implies that x is on the
other side of the hyperplane P; than p. Thus if x € int w(p) is not
a star point, it lies on the other side of at least one hyperplane
Pr, than p. Therefore, if a point x € intw(p) is on the same side of
Praspforallj=1,...,s(p) then x is a star point for w(p), by
contradiction.

Remark A.4. The converse implication of Lemma A.3 holds as
well: the set of all star points of the patch w(p) coincides with the
intersection (') H; of all closed half-spaces H;j, where H; C R¢
is defined as the set of all points that lie on the same 51de of Py,
as p.

In the following, denote by B.(p) C RY the ball of radius € > 0
centered at p € RY, with respect to the Euclidean norm.

Lemma A.5. For all p € vV Nint$2, there exists ¢ > 0 such that
B.(p) C w(p) and such that every x € B.(p) is a star point of w(p).
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Proof. Forj = 1,...,s(p) denote by H; C RY the open half-
space contammg all pomts that lie on the same side of Pr, as p.

Then ﬂ H] is open, contains p and is a subset of the set of all
star- pomts of w(p) by Lemma A.3.

For interior vertices we obtain the following result. Recall the
definitions of T; and @;(p) given in (4.3) and (4.4), respectively.
Lemma A.6.

Givenp € vNint$2, let Ty, ..., Ty € T be the

simplices adjacent top Foralj = 1,...,s(p) let ag := p and
ai,...,aqs € RY be such that T; = conv({ag, ..., aq}) and let
g :=p+3; Zl 1(p — a;) for some sufficiently small 5; > 0. Then

wj(p) is convex and T] C wj(p) C w(p). The sets {Tij},':o,,_,,d form a

regular partition of @;(p).

Proof. For ¢ > 0 as in Lemma A.5, let §; > 0 in the definition
of g; be such that |lg; — pll = 5. Then g; € B.(p) C w(p)
is a star point of w(p) by Lemma A.5. Therefore, Tij C w(p)
forall i = 1,...,d, and thus ®j(p) C w(p). It also holds that
Tj = Toj C aj(p). After observing that int@j(p) = (Tj),gj in the
notation of Lemma A.1, Lemma A.1 shows that @;(p) is a simplex
and thus convex. The sets {T,-j}i:o,_‘_,d form a regular partition of
w;j(p) by Proposition A.2 (gj, a1, ..., dq, p in the notation of this
proof correspond to ay, ..., a4, p in the notation of the lemma).

Corollary A.7. Let &j(p) be as in Lemma A.6, then
o(p) = ay(p).

Proof. Using f C @j(p) Cw(p) forallj=1,...,s(p) we have

s(p)
w(p) = U T C Uw,
Corollary A.8. In the notatlon of Lemma A6, forp € vV Nint 2
andj = 1,...,s(p), let 9 i € C(£2) be the hat function on @i(p)

defined in (45) For allp evnNnintRandj=1,...,
functions can be written as

s(p), these

~sl
0 '(x) = max {0

i.j) )
i min A x+b

i=0

} X e,

where each x +— Z\(”)x + E(i’j) is a globally linear function fulfilling
%+ B, = Byl

Proof. Since wj(p) is a convex patch, the statement follows by
Proposition 4.1 (which corresponds to He et al. (2020, Theorem
3.1)). The function x AS‘”X + bg”) in our notation corresponds

to g, in the notation of He et al. (2020), and 9
bi.

corresponds to

Lemma A9. Forallp e v, j,k=1,...,s(p)andi =0,...,d,
let x > ASx + b(?) be as defined in Corollary A.8 and let x >

1
APx+bY be the function defined by (Ax 4+ by)lr, = 9; 'I1,- Then,

0 < Ay 4 B9 < AV + b9 Vx e TN Ty,
forallj,k=1,...,s(p)andi=0,...,d.

Proof. First consider p € V N int$2, such that p € intw(p).
For all j, k € {1 ,...,s( )9 and i € {0,...,d}, we first note that
AlPp + b3 = AV + b = 1 as well as Ay 4+ b3 = 0 for
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A (k)

all y on the face of T,-j opposite to p. Similarly, A,”y +b,” = 0 for
all y on the face of Ty opposite to p. Next, let x e T, N Tu in case
this set is nonempty. Let L be the halfline starting in p through
x. Note that p € int@;(p) C intw(p) is a star point of both @;(p)
and o(p). It follows from w;(p) C w(p) that the intersection point
Y1 € LN day(p) is closer to p than (or equal to) the intersection
pointy, € LNda(p). Because y > A4”y+b\ linearly interpolates
between the value 1 in p and O in y;, and y A(k + bg‘)
linearly interpolates between 1 in p and 0 in y», it follows that
Ay 453 < A¥y 4+ b)Y for all points y between p and y;, which
includes x. Finally, the first inequality in the lemma follows from
Corollary A.8.

For p € V N 382, we can apply the argument above after
extending 7 to a regular, simplicial partition of all of R%, of which
only the elements touching p are relevant.

Proof ofTheorem 4.2. Forallj=1,...,
for all i ,d and all k 1,...,s(p) shows that 0 <

( ) < 6 (x) for all x € @;(p). Together w1th 9 ( ) = 0 for
all x € £2\wj(p), this shows that 0 < 0 ]( X) < 9 ( )forall x € £2.
To finish the proof, recall that forallj=1,...,s(p) and x € T;
651 (x) = A%x 4 B = éj}(x).

The first and the last equality hold by definition, and the second

holds because both functions are linear and equal the value 1 in
p and 0 in the other vertices of T;.

s(p), applying Lemma A.9

— a0) )
_Apx—i-bp

Proof of Theorem 4.3. Because wj(p) = Uj.”:j,-j is a regular
partition of the convex set @;(p) by Lemma A.6, we can apply
Proposition 4.1 and it follows that for all j =1, ..., s(p)

L@ ") < 5+ logy(d+ 1), M(@F") < Cd(d+ 1) < Cd®
and that all NNs {cDCP’“L}S(p have equal depth, see Proposition 4.1.

The fact that R(®5"™")(x) = 9 ( ) for all x € £ follows from
Theorem 4.2, and the network depth and size are bounded as
follows:

L(CpCPWL) L(¢5r{lpa)x) + L(égﬁwL)
<2 4 log,(s(p)) + 5 + log,(d + 1),
s(p) ~
)+2) M@
j=1
s(p)Cd® < Cd®s(p).

max

M(@,"") < 2M(Pg;)

<Cs(p) +
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