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A B S T R A C T

Rail operators around the globe are striving to improve the efficiency, automation, safety, and sustainability
of railway systems. Despite significant advances in technologies such as artificial intelligence and automated
train operations (ATO), achieving these goals is challenging for complex rail networks when accounting for
unpredictable factors that alter real-time operations. In this paper, we model railway traffic in a corridor as a
string of interacting cruising trains, each subject to random speed variations that are described by a stochastic
process. We simulate this dynamic system under assumptions that model human drivers and ATO systems, and
compute performance measures focusing on energy consumption and the power peaks arising when multiple
trains accelerate simultaneously. Different strategies to smooth these peaks are investigated, including the use
of regenerative braking energy, potentially coupled with an electric energy storage, and a rule that uses fixed
waiting times before re-acceleration. Our findings shed light on when and why these strategies can be effective
at reducing energy consumption and/or shaving the peaks. They also show that employing a well-calibrated
ATO controller in which vehicles exchange information about their location improves energy performance
compared to a model of a human driven. Finally, a trade-off between energy performance and traffic regularity
is exposed, i.e., strategies to reduce power peaks may slow rail traffic down, reducing capacity utilization.
1. Introduction

Rail operators worldwide are eager to make railway systems more
efficient and resilient while ensuring safety and high service quality to
passengers. Technologies such as automated train operations (ATO) and
artificial intelligence (AI) are indeed at the top of the railway innova-
tion agenda in many countries (see examples of Horizon Europe, 2022
and Railtech, 2021) as they offer a way to increase railway capacity
without building new track infrastructure. Despite these technologies
are being researched and deployed (or planned to), understanding
their precise impact and potential on the planning and operations of
railway systems is challenging, e.g., due to the complexity of modern
rail networks and the presence of unpredictable real-time disturbances
that affect operations. Additional barriers include the potentially high
initial investments, the complexity of coordinating between various
autonomous systems, setting up communication-based train control,
legal and regulatory issues as well as cybersecurity concerns (Singh
et al., 2021).

Regarding sustainability, transport accounts for a large share of
energy consumption and is responsible for about 16% of greenhouse
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gas emissions globally (OWiD, 2016). Since three quarters of this
amount is attributed to road transport, one key direction to promote
sustainability and energy efficiency is to switch to collective transport
of larger vehicles, rather than using private vehicles or small shipments
by trucks. Railway is generally acknowledged to be an energy-efficient
mode of transporting passenger and freight. Nonetheless, efforts to
reduce its energy footprint are pursued by many transport operators
and authorities (UIC, 2017) to cope with skyrocketing energy prices
and to meet ambitious climate targets, e.g., set by the European Union
for 2030 (EU, 2021).

In fact, energy consumption accounts for a large portion of railway
operating costs (Railenergy, 2016). For instance, it is estimated that
railway traffic in Germany consumes around 2% of the total electricity
demand in the country, resulting in an annual traction electricity bill for
Deutsche Bahn AG in the order of 1 billion EUR (Bärmann et al., 2017).
The amount of energy needed for moving a train depends on speed
and resistances, and results in requirements for energy production.
By carefully planning the acceleration and braking processes of trains
(i.e., the so-called train speed profiles) or optimizing the timetable,
vailable online 2 June 2023
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significant energy can be saved (Hansen & Pachl, 2014). For example,
the Dutch Railways estimate a saving of about 5% by energy-efficient
train driving (Luijt et al., 2017). In electrified railway systems, energy
usage is centralized, i.e., all vehicles draw energy at the same time
from a distribution network. The total energy required by the system
is then the sum of all energies required by all vehicles. Nowadays,
many rail electric systems can exploit regenerative braking, i.e., the
motor of a decelerating train is turned to a generator that converts
mechanical energy to electricity, which can be then used to power
nearby trains (Khodaparastan et al., 2019; Lu et al., 2014), potentially
in conjunction with an electric energy storage system (De La Torre
et al., 2014; González-Gil et al., 2013).

In addition to the total energy consumption, it is important to
consider the peak value of the power needed. Power peaks arise when
multiple vehicles require large amount of power, especially during
acceleration. The power load profiles of railway energy systems are usu-
ally highly dynamic in the collective power drawn by the trains in the
network. The power load of the Swiss Federal Railways, for instance, is
subject to increases and drops of 300 MW daily (50% of maximum load)
and of 35 MW within 15-minute intervals (7% of maximum load) (SBB,
2021). In other terms, the load sizing for the infrastructure has to
cover, for its half, only variations of power demand; and for the other
half, base load. Those peaks threaten grid stability and represent a
big concern for operators (Wang et al., 2022). A power distribution
network designed for lower peaks might fail when the power demand is
very high, causing reduction of delivered energy or, in the worst cases,
a blackout. Traffic volume is growing, speed is increasing, vehicles
are heavier, resulting in higher chances of high power peaks, but
redesigning or upgrading the power distribution requires large costs
and long time. Overdimensioning the power network at the design stage
is also very costly. In addition to grid stability, another issue with power
peaks is that the energy bill paid by rail operators is usually based
on both total and maximum consumption (i.e., the highest peak) over
the billing period (Albrecht, 2010). Smoothing power peaks has thus a
direct impact on operational costs.

Controlling the total and maximum energy consumption of a rail-
way system is challenging because practical railway operations are
unavoidably subject to uncertainties affecting running and waiting
times of trains. Even though accounting for energy consumption when
designing the train timetable is common (Yang et al., 2015), distur-
bances occurring in real time shift departure and arrival times of trains,
altering the planned timetable and the synchronization of acceleration
activities. At a microscopic level, a train is subject to random speed
variations that are linked with the driver behavior and changes in
line voltage and track resistance, among others. Corman et al. (2021)
provide empirical evidence of this effect using data from the Swiss
railway, and introduce stochastic processes to model a system with two
trains. The dynamic characteristics of a follower train are studied given
a trajectory of a leader, without looking at energy use.

In this paper, we develop a stochastic model of railway traffic for
a more generic string, or platoon, of consecutive trains that interact
during cruising. As opposed to car traffic, railway vehicles are subject
to a strict safety system and must keep a minimum safety distance.
When two trains get too close, a yellow signal is triggered and the
follower must decelerate towards a fixed lower speed. This results in
extra time lost, in a braking, and a successive re-acceleration to a
cruising speed. When multiple trains are considered, a yellow signal
may cause a cascade effect on downstream vehicles, forcing more trains
to decelerate and re-accelerate, possibly producing a power peak. We
are thus particularly interested in examining this behavior for a platoon
of cruising trains, its implications, and possible strategies to improve
traffic regularity, energy usage, and peak values.

Three models to describe railway traffic dynamics are considered in
this paper, namely a deterministic baseline and two stochastic models
representing, respectively, a human driver and an ATO controller. Fur-
2

thermore, different strategies to reduce power peaks are investigated,
which are based on technological assumptions and/or train control.
Specifically, one strategy implements fixed waiting rules for trains that
have triggered a yellow signal. Another measure assumes that the
electric railway system can use regenerative braking energy, possibly
combined with a track-based electric energy storage. We use simulation
for each model and strategy to quantify the emerging properties of the
dynamic system, with focus on energy consumption and power peaks.
The simulation program is coded in Matlab and is made available online
in reproducible capsule on the ‘‘Code Ocean’’ platform.1

Some of the key takeaways from this work are the following:

• The model describing an ATO controller that exploits information
exchange across vehicles is more efficient than that of a human
driver in terms of traffic regularity, consumes less energy, and
results in fewer power peaks.

• The considered strategies can shave the power peaks quite ef-
fectively. Under the human driver model, for instance, account-
ing for regenerative braking lowers the overall energy consump-
tion by 3.3%, while coupling this with a storage reduces the
peak height by 10%. Combining all strategies further decreases
consumption and peaks.

• There is a trade-off between traffic regularity (measured, e.g., as
the throughput, i.e., the hourly number of vehicles crossing the
corridor) and energy performance (intended as energy consump-
tion and power peaks). Strategies to improve energy performance
must be designed and tuned carefully to avoid significant losses
in capacity utilization.

Overall, the insights from our work can be valuable for railway op-
erators to better understand how the stochastic dynamics and energy
behavior or the system are affected by the use of technologies like ATO,
storage systems, and train control algorithms. More specifically, the ap-
proach could be used in real-world applications to identify parameters
of ATO systems and therefore better design and operate such systems.
While the control parameters of ATO are now normatively determined,
a comprehensive a-priori evaluation of different ATO specifications in
their impact towards traffic fluidity allows a prescriptive determination
of the ATO parameters to reach a specific traffic quality. The study also
informs rail operators about the potential benefit to combine energy
management and train control algorithms.

The rest of the paper is structured as follows. The relevant litera-
ture in reviewed in Section 2, the system dynamics and power peak
strategies are modeled in Section 3, numerical results and findings are
presented in Section 4, and conclusions are drawn in Section 5.

2. Novelty and related work

Four streams of literature are connected with our research and
reviewed in the following: improving energy efficiency in railway
operations (Section 2.1), dealing with stochasticity in railway models
(Section 2.2), the traffic flow theory (Section 2.3), and the manage-
ment of intelligent railway systems (Section 2.4). A summary of the
contributions of this study is eventually provided (Section 2.5).

2.1. Energy efficiency in railways operations

There is a considerable body of literature dealing with the energy
efficiency of railway systems (De Martinis & Corman, 2018). Optimiz-
ing the train speed profiles and the timetable are two prominent ways
to cut energy consumption without costly investments in new vehicles
or electric systems. These are tactical planning problems usually solved
days to months before operations.

1 https://doi.org/10.24433/CO.2417202.v1.
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Computing an energy-efficient speed profile for a train running
between two stations is commonly known as the train trajectory op-
timization problem or the energy-efficient train control problem. Here,
a speed profile describes the speed of a train as a function of time
or distance covered. Determining such a profile means choosing the
driving regimes (acceleration, cruising, coasting, and deceleration) and
the switching points between them (Howlett, 2000). The goal is finding
the profile associated with the lowest energy use, while ensuring a
punctual arrival and respecting speed limits and time windows. It is
well known that optimizing train control can lead to large energy
savings, also above 10% (Hansen & Pachl, 2014). Methods to tackle this
problem include the Pontryagin’s maximum principle (Albrecht et al.,
2016), mathematical programming (Ye & Liu, 2017), and dynamic
programming (Trivella et al., 2021). Since we consider a system that
is stochastic, dynamic, and comprised of multiple trains, the problem
studied in this paper largely deviates from the classical train trajectory
optimization problem, despite both problems deal with speed variations
and train control at a microscopic scale. Furthermore, train trajectory
optimization is usually treated as a deterministic problem that is solved
before real-time operations based on the predefined timetable. Instead,
this paper deals with a real-time operational problem where unplanned
uncertainties affect the ideal speed profile during the cruising phase.

The timetabling problem aims at determining departure and ar-
rival times of trains at stations subject to headway and track capacity
constraints (Caprara et al., 2002). The traditional objectives are to min-
imize operational costs (e.g., number of required vehicles), maximize
passenger satisfaction (e.g., by reducing travel time), and minimize
deviations from the original timetable in case of a disruption (Binder
et al., 2017; Ho et al., 2012). Recently, emphasis has been put on the
energy use associated with a timetable. Bärmann et al. (2017) discuss
how minimal changes in the planned timetables can impact energy
and power of the entire system. Regueiro Sánchez (2021) adopts a
similar approach, also limiting the maximum traction power available
between stations. Wang et al. (2022) tune a timetable using a mixed-
integer linear program combined with a local search algorithm, with
the goal of reducing energy consumption and smoothing power peaks.
Notice that although this work also considers a system of interacting
trains, the problem tackled differs from timetabling for several reasons.
First, we are not concerned with setting departure and arrival times
as the focus is on a string of trains running in a corridor, effectively
considering a platoon of vehicles. Second, reducing power peaks in
timetabling implies synchronizing acceleration and deceleration ac-
tivities at departure and arrival events, whereas our focus is on the
dynamics of trains during the cruising phase. Third, similar to train
trajectory optimization, timetabling is also a tactical planning problem
solved in advance while the one considered in this paper is a real-time
operational problem.

We refer to the review by Scheepmaker et al. (2017) for further
literature on both the energy-efficient train control and the energy-
efficient train timetabling. Some works attempted to combine these
two problems by embedding train control between pairs of stations
as a subproblem into a timetable optimization framework (Ran et al.,
2020; Yang et al., 2015). Moreover, a study on urban railway sys-
tems showed that energy consumption could be reduced by 25%–35%
by jointly implementing energy-optimized timetables, energy-efficient
driving strategies, improved control of comfort functions, and energy
storage devices (González-Gil et al., 2014).

Finally, in addition to designing the timetable, real-time train
rescheduling models are used to modify the planned timetable and
avoid conflicts when disturbances or disruptions occur (Corman &
Meng, 2014; Jusup et al., 2021; Luo et al., 2022). The related literature
however prioritizes recovering the delays over reducing energy use,
with the exceptions of Yin et al. (2016) that account for energy
when rescheduling a metro system. Even though what we propose
is not a classical train rescheduling problem, it involves altering the
3

control of vehicles to restore the headway between them, which can be
considered as a rescheduling measure. To the authors’ knowledge, there
is no scientific work on real-time railway rescheduling that specifically
studies peaks in power consumption and that analyzes the trade-offs
between traffic regularity and energy performance.

2.2. Stochasticity in railway models

The majority of the aforementioned works assume that the future
is known with certainty at the planning stage. However, railway oper-
ations are characterized by uncontrollable stochastic factors that only
realize in real time. Those include variable passenger demand, board-
ing/alighting times, running times, technical failures, and weather to
name a few (Trivella & Corman, 2019).

Some recent literature has acknowledged that accounting for un-
certainty and counteracting it is critical to improve railway planning
in different stages. Thus, uncertainty has been incorporated into train
control, timetabling, and rescheduling models (Cacchiani & Toth, 2018;
Jusup et al., 2021; Wang et al., 2020; Yang et al., 2016; Yin et al.,
2016). For instance, the goal of Cacchiani and Toth (2018) is to com-
pute train timetables that are robust, i.e., that are expected to perform
well under random disturbances. Wang et al. (2020) use approximate
dynamic programming to tackle train control in the case of randomly
varying speed profiles due to uncertain resistance parameters. Yin
et al. (2016) use similar methods to reschedule a metro network under
varying passenger demands. Yang et al. (2016) propose an integrated
stochastic model for optimizing speed profile and timetable in metro
systems under uncertain train mass.

In this paper, we consider random variations affecting train speed
at the microscopic level. While most approaches capture the dynamics
of the uncertainties by means of simple independent and identically
distributed random variables, we model the uncertainty in train speed
using a stochastic process. It refers to a collection of random variables
that are function of time, and where the outcome of the process at
a time 𝑡 also depends on its value at time 𝑡 − 1. These are more
sophisticated models that were shown by Corman et al. (2021) to
describe well the train cruising process occurring in real life. When
considering a dynamic system that includes a string of trains and/or
complex stochastic process models, it is not possible to derive closed-
form expressions of key performance indicators using the stochastic
differential equations governing the processes. Therefore, a simulation
model is developed to study the system dynamics, and derive the
relevant performance measures as sample averages over a large number
of Monte Carlo sampled trajectories.

2.3. Traffic flow theory

This work builds on the stochastic modeling of the interrelated flow
of two successive trains, first introduced by Corman et al. (2021) to
extend the vehicular traffic flow theory to railway systems. Whilst Cor-
man et al. (2021) focus on just two consecutive trains (on which only
the follower is subject to random effects) and on the regularity of the
traffic, we consider in this paper a system of 𝑁 trains, and examine
its behavior in terms of energy consumption and power peaks. Apart
from this reference, the literature on traffic flow theory has almost
exclusively tackled car traffic, which has similarities with our study but
also important differences.

In the case of private vehicles, there is no external safety sys-
tem which constrains their speeds and distances in-between, which
is instead a key feature of railways. When vehicles can be individ-
ually controlled, an interesting problem of traffic flow theory is to
study under which conditions, a series of coordinated vehicles has
impact towards traffic flow stability, i.e., studying string stability. This
has been mostly focusing on vehicles with homogeneous, simplified
characteristics (Wang, Li et al., 2017).

A second difference is that power distribution in railway traffic is

pooled and centralized; hence, there exist issues with simultaneous high
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energy maneuvers of different vehicles. In contrast, studies of vehicular
traffic do not focus on power peaks because the energy consumption
of all vehicles draws from separated energy carriers (such as internal
combustion engines, or battery-fed electric motors), although this may
change should electric highway systems become more popular in the
future. Nevertheless, there is interest in minimizing system properties
such as emissions (Qin et al., 2020; Zhang et al., 2020), which have
some of their sources in speed and acceleration. Moreover, platooning
and coordinated speed control in vehicular road networks have shown
to have potential to reduce energy required by 10% (Qin et al., 2020).
The current paper thus wants to understand to which extent the im-
plementation of ATO can be an opportunity to minimize system level
energy consumption, matching or exceeding the potential for vehicular
networks.

2.4. Intelligent railway systems

This paper contributes to the growing literature on intelligent trans-
port systems, and in particular, intelligent railway systems. These are
systems that leverage and integrate advanced information and com-
munication technologies such as big data analytics, modern sensors,
and automated control and signaling systems to improve the safety,
efficiency, and reliability of railway transportation. These technologies
fall under the broad sphere of Internet of Things (IoT) and Artificial
Intelligence (AI). The reader is referred to Singh et al. (2022) and Tang
et al. (2022) for recent reviews on the use of IoT and AI technologies
in rail transportation, respectively.

Predictive maintenance is a prominent example of intelligent rail-
way systems. By combining advanced sensors with machine learning
algorithms, the condition of rolling stock equipment and tracks, in-
cluding railroad switches, can be monitored to detect potential failures
before they occur. This allows railway operators to proactively repair
or replace components, preventing incidents (De Simone et al., 2023;
Tashmetov et al., 2022; Wang, Xu et al., 2017). Using drones for
visual inspection and monitoring of railway infrastructure has also
been proposed (Banić et al., 2019). Another important example is the
use of real-time data analytics to manage train traffic. By utilizing
data on current train delays, passenger demand, weather conditions,
and other factors, intelligent railway systems can adjust train sched-
ules and routes in real-time to reduce delays and improve on-time
performance (Corman & Meng, 2014; Sels et al., 2016).

A key role in this picture is played by ATO technologies that can
automate various functions of train driving tasks including (depending
on the degree of automation), the operation of doors, starting and
stopping at stations, and speed control (Quaglietta et al., 2020). A
recent review on trends, technologies, advancements, and challenges in
the deployment of autonomous trains in rail transportation is provided
in Singh et al. (2021). ATO systems are typically fed by timetabling
data and data from a traffic management system, and are combined
with an automatic train protection system for emergency braking.
It is recognized that deploying ATO systems can be valuable as the
resulting train control allows for smaller headways, which in turn
can lead to a higher track capacity utilization (Poulus et al., 2018).
Increased timetable stability, on-time performance, safety, and energy
efficiency are all additional potential benefits (Singh et al., 2021), as it
is the reduced task-induced fatigue for train driving staff under higher
degrees of automation (Brandenburger et al., 2021).

Despite this knowledge, it is difficult to model and accurately
quantify these effects, especially due to the complexity of modern rail
networks. Moreover, implementing ATO systems may require signifi-
cant investments; hence, it is crucial to carefully evaluate costs and
benefits before deploying such systems. This paper attempts to narrow
this knowledge gap by estimating the added traffic regularity and
energy performance of ATO, compared to a human driver, in a busy
4

rail corridor where multiple consecutive trains interact with each other f
following stochastic dynamics. We are also not aware of studies that
examine ATO systems from the perspective of reducing power peaks.

Finally, the smart management of energy flows is evermore impor-
tant to improve sustainability while controlling costs in virtually any
industry. In railways, energy storage devices are employed to reuse
regenerative braking energy (Ratniyomchai et al., 2014). Although
storage devices are traditionally not immediately associated with the
concept of ‘‘intelligent railway system’’, they are becoming increasingly
popular in electrified railways. Prior work has focused, e.g., on the
different characteristics of storage technologies (Liu & Li, 2020) or on
optimal sizing of storage assets (De La Torre et al., 2014), while we
define an operating policy to distribute regenerative energy in time and
space (i.e., across trains) based on quantitative decision making.

2.5. Summary of contribution

This work contributes to the literature by drawing a bridge between
the four different active fields of research previously reviewed. The
main contribution of this paper is threefold:

• Using stochastic process models, we simulate the dynamics of
a platoon of interacting cruising trains and analyze the energy
behavior of the resulting system.

• We outline a technique for detecting power peaks arising from
the considered system dynamics, and propose three strategies to
smooth such peaks based on: (i) train control, (ii) reusing re-
generative braking energy, and (iii) managing an energy storage,
potentially in combination.

• We provide insights on the impact of different stochastic pro-
cess models (e.g., describing a human driver vs an ATO system)
and different peak reduction strategies towards traffic regular-
ity, energy use, power peaks, and the trade-offs between these
potentially conflicting goals.

3. System dynamics and power peaks

The developed methodology is comprised of several modeling steps
that are illustrated in Fig. 1. The model of system dynamics for a
string of trains is the core element of this methodology and is pre-
sented in Section 3.1, including two different stochastic processes and
a deterministic benchmark. Section 3.2 describes the key performance
indicators (KPIs) of interest related to traffic regularity and energy
consumption, and how to obtain them via simulation. To compute
some of these KPIs, however, a technique for detecting peaks in energy
consumption is developed in Section 3.3. Finally, different strategies to
smooth power peaks are considered in Section 3.4, which also affect
the dynamics of the system as shown in Fig. 1. The system dynamics
module requires as input several simulation and train parameters.
However, the values of these parameters are not discussed in this
section, but at the beginning of the numerical study when the setting
is introduced (Section 4.1).

3.1. Stochastic models of railway traffic

Building on the model for two trains by Corman et al. (2021),
we define a general stochastic system of 𝑁 ⩾ 2 consecutive trains
running in a railway corridor based on a reference cruising speed 𝑣cruise.
Quantities 𝑣𝑛(𝑡) and 𝑠𝑛(𝑡) denote, respectively, the speed and distance
overed by train 𝑛 at time 𝑡 ⩾ 0, where train 𝑛 = 1 is the leader
nd trains 𝑛 > 1 are followers. The system dynamics modeled in this
ection aim to determine the evolution of these quantities (speed and
istance covered, for each train) over a predefined time horizon. Thus,
he system is comprised of 2𝑁 state variables.

At 𝑡 = 0, it is assumed that all trains are running at cruising
peed 𝑣𝑛(0) = 𝑣cruise and have a safe headway from the immediate

ollower 𝑠𝑛−1(0) − 𝑠𝑛(0) > 𝑑min, where 𝑑min is the minimum absolute
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Fig. 1. Modeling steps in the methodology.
Fig. 2. Overview of train system dynamics.
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afety distance between trains. The complete dynamics combine ‘‘free
low’’ and ‘‘supervised trajectory’’ phases as illustrated in Fig. 2 for a
hree-train example.

Under free flow dynamics, the train speed can follow: (i) a stochastic
rocess modeling a human driver, (ii) a stochastic process modeling
n ATO controller, or (iii) a deterministic baseline. Although all trains
re initially spaced at a safe distance one from another at 𝑡 = 0, the
ree flow dynamics may bring a follower train 𝑛 > 1 too close to
ts preceding train 𝑛 − 1, triggering a yellow signal whenever their
eadway 𝑠𝑛−1(𝑡) − 𝑠𝑛(𝑡) falls below 𝑑min. This enforces train 𝑛 to obey
o a supervised trajectory, consisting of a deterministic deceleration
t constant rate 𝑎det < 0, which continues until an approach speed
approach < 𝑣cruise is reached and headway 𝑑min is restored.

We now describe in more detail the free flow dynamics. Denote by
(𝑡) a standard Wiener process, which is the simple continuous-time

tochastic process that is commonly used as the basis of more advanced
nes. Formally, {𝑊 (𝑡)}𝑡⩾0 is defined as the process with increments that
re independent and Gaussian-distributed as 𝑊𝑡+𝛥𝑡−𝑊𝑡 ∼ 𝑁(0, 𝛥𝑡). The
irst free-flow model we consider is based on the Ornstein–Uhlenbeck
OU) stochastic process, expressed for train 𝑛 as:

OU] ∶
{

d𝑣𝑛(𝑡) = 𝛽𝑛(𝑣cruise − 𝑣𝑛(𝑡))d𝑡 + 𝜎𝑛d𝑊 (𝑡),
d𝑠𝑛(𝑡) = 𝑣𝑛(𝑡)d𝑡.

(1)

ith boundary conditions 𝑣𝑛(0) = 𝑣cruise and 𝑠𝑛(0) = 0, i.e., the distance
overed is measured starting at time 0. The stochastic differential
5

q. (1) describes the microscopic variations of speed and space over 𝛼
ime. Based on this equation, the train speed varies according to a
eterministic component that establishes the mean reverting behavior
owards 𝑣cruise, and a stochastic component. At a high level, this model
an describe a human train driver that continuously adjusts the train
peed to keep it as close as possible to the target value. The parameters
efining mean reversion (𝛽𝑛) and volatility (𝜎𝑛) capture the reaction of
he driver and of the speed control system.

A more sophisticated model is based on a doubly-mean-reverting
DMR) process, describing an ATO system where trains are aware of
he location of the traffic ahead. Under this model, train 𝑛 accelerates
r decelerates to maintain both a target speed and a target headway
ith train 𝑛 − 1:

DMR] ∶
⎧

⎪

⎨

⎪

⎩

d𝑣𝑛(𝑡) =
[

𝛽𝑛(𝑣cruise − 𝑣𝑛(𝑡)) + 𝛼𝑛(𝑠𝑛−1(𝑡) − 𝑠𝑛(𝑡))
]

d𝑡
+𝜎𝑛(𝑣𝑛(𝑡))d𝑊 (𝑡),

d𝑠𝑛(𝑡) = 𝑣𝑛(𝑡)d𝑡,
(2)

where 𝜎𝑛(𝑣) ∶= 𝜎𝑛
√

𝑣(𝑣max − 𝑣)∕[𝑣cruise(𝑣max − 𝑣cruise)], 𝑣max > 𝑣cruise is
an upper bound on speed, and 𝛼𝑛 is a second mean reversion param-
eter that acts on the headway value. We assume the same boundary
conditions to model (1) apply. Let us take a closer look at the new
term 𝛼𝑛(𝑠𝑛−1(𝑡) − 𝑠𝑛(𝑡)). Since 𝑠𝑛(𝑡) represents the distance covered by
train 𝑛 at time 𝑡, a positive difference 𝑠𝑛−1(𝑡) − 𝑠𝑛(𝑡) > 0 implies that
he preceding train 𝑛 − 1 has covered a larger distance than train 𝑛,
ence the headway between the two vehicles has increased. In this case,
(𝑠 (𝑡) − 𝑠 (𝑡)) > 0 will push the speed 𝑣 (𝑡) up, i.e., the current train
𝑛 𝑛−1 𝑛 𝑛
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𝑛 accelerates to restore the initial headway. Conversely, with negative
distance 𝑠𝑛−1(𝑡) − 𝑠𝑛(𝑡) < 0, indicating that the headway has shrunk,
the stochastic process will steer train 𝑛 to slow down to restore the
headway.

In addition to the stochastic differential Eq. (2) itself being more
sophisticated than (1), notice that there are also key conceptual differ-
ences between these two models, especially regarding the way in which
trains interact. In the OU model, the stochastic processes governing
each train are independent from each other (trains are only linked
by the triggering of yellow signals), whereas in the DMR model, the
evolution of the state variables for one train (speed, space) also depends
on the state variables of the train ahead. More precisely, the latter
model enables location information to be exchanged across trains at
any point in time. This information is processed and exploited in the
form of an improved control systems, which is indeed one of the goals
when deploying ATO.

We finally consider a deterministic benchmark that does not account
for stochasticity, which is defined by:

[DET] ∶
{

d𝑣𝑛(𝑡) = 0d𝑡,
d𝑠𝑛(𝑡) = 𝑣𝑛(𝑡)d𝑡.

(3)

If the deterministic initial speeds are �̄�𝑛 = 𝑣𝑛(0) = 𝑣cruise for all vehicles
𝑛 = 1… , 𝑁 , then the system is in an ideal but unrealistic state in which
all train pairs will indefinitely preserve the initial headway. Instead, if
the speeds are different and �̄�𝑛 > �̄�𝑛−1 for some 𝑛, a yellow signal will
e triggered at some time 𝑡 > 0 causing train 𝑛 to decelerate. Once the
pproach speed is met, this train will then re-accelerate, reaching again

�̄�𝑛 > �̄�𝑛−1, trigger a second yellow signal, hence decelerate, and keep
ycling over these states. When multiple trains have different initial
peeds, the deterministic system will produce much more complex yet
yclic patterns. Notice that (3) can be seen as a special case of a
tochastic process with no drift and volatility, e.g., it can be obtained
rom (1) by setting 𝛽𝑛 = 𝜎𝑛 = 0 for all 𝑛 = 1… , 𝑁 , which results in
onstant train speeds.

.2. Performance indicators and their estimation

Key performance indicators of the system related to traffic regularity
nd energy usage can be computed by drawing scenarios (i.e., sample
aths) from the stochastic processes in Monte Carlo simulation. We
onsider an horizon [0, 𝑇 ], discretize it into steps  = {0, 1,… , 𝑇 } that

are equally spaced by 𝛥𝑡, and apply a standard forward Euler scheme
to (1), (2), or (3) to obtain speed and space trajectories, i.e., functions
describing the evolution of the state variables over time.

To derive train acceleration 𝑎𝑡, traction force 𝑓𝑡, and energy con-
sumption 𝑒𝑛𝑡 at all discrete time steps  , the common dynamic equations
for the motion of a railway vehicle are employed.2 Specifically, the
traction force is

𝑓𝑡 = 𝑎𝑡 ⋅ 𝑚 ⋅ 𝜌 + [𝛾1 + 𝛾2𝑣𝑡 + 𝛾3𝑣
2
𝑡 ] , (4)

where 𝑎𝑡 = (𝑣𝑡 − 𝑣𝑡−1)∕𝛥𝑡 is the acceleration, 𝛾𝑖 are the train resistance
parameters, 𝑚 the mass, and 𝜌 the rotating mass factor. The energy
onsumed at time 𝑡 (with no regenerative braking) is then
𝑛
𝑡 = max{𝑓𝑡, 0} ⋅ (𝑠𝑡 − 𝑠𝑡−𝛥𝑡) . (5)

We refer to Hansen and Pachl (2014) for more details on train dynam-
ics. Using the described simulation procedure, six KPIs are estimated
related to traffic regularity (items 1–3) and energy consumption (items
4–6), and are listed below. Hereafter an energy profile 𝐸 ∶= {𝑒𝑡 ∶ 𝑡 ∈
, 𝑒𝑡 =

∑𝑁
𝑛=1 𝑒

𝑛
𝑡 } indicates the joint energy consumption of all trains as

function of time, measured over regular time intervals (e.g., of 30 s)
uring [0, 𝑇 ].

2 To ease reading, we drop the dependency on the train index 𝑛 from 𝑎𝑡,
𝑓 , 𝑣 , and 𝑠 , and only keep index 𝑛 for the energy consumption 𝑒𝑛.
6

𝑡 𝑡 𝑡 𝑡
K1. Percentage of scenarios with a triggered yellow signal.
K2. Average first time to yellow (FTTY), which records the first time

(s) in which a train triggers a yellow signal (scenarios without
signals count as 𝑇 in the average).

K3. Throughput of the corridor (vehicles/hour) measured as the
train speed over headway, where speed and headway are aver-
aged across trains, time steps, and scenarios.

K4. Total energy consumption (kWh) of all 𝑁 trains over the horizon
[0, 𝑇 ], averaged across scenarios.

K5. Maximum value of the energy profile (kWh/30 s) over the
horizon [0, 𝑇 ], averaged across scenarios.

K6. Percentage of energy profiles with a power peak, where a power
peak is defined as the energy (kWh) consumed during a relatively
short period of time that considerably exceeds average consump-
tion levels of the system (see Section 3.3 for technical details).
The average consumption level refers to the situation where all
trains run at cruising speed without disturbances.

Notice that Monte Carlo simulation is the only viable option to
estimate the aforementioned KPIs. In fact, deriving these KPIs in closed
form using the stochastic differential Eqs. (1)–(2) is intractable for
the considered system. Previous research had already highlighted this
challenge: even for the simplest stochastic process and a single train
subject to random speed variations, only one KPI (the FTTY) could be
computed analytically (Corman et al., 2021). Computing KPIs for (3)
is also not possible when considering the complete dynamics that com-
bine free flow and supervised trajectory phases for multiple interacting
trains (see Fig. 2).

3.3. Power peak detection

Since thousands of simulations are needed to obtain statistically
relevant averages, hence reliable KPIs, a method to detect power peaks
in a simulated energy profile is needed. Peaks are relative to the railway
system considered, e.g., number of trains in the system, their cruising
speed, etc. Therefore, a non-parametric procedure that requires no
assumptions on the input data and energy profiles is developed to
identify peaks in consumption.

Algorithm 1: Power peak detection
Input: Energy profile 𝐸 = {𝑒𝑡 ∶ 𝑡 ∈  }; Parameters
(𝑤, 𝜃1, 𝜆1, 𝜃2, 𝜆2), with 𝜃1 ⩾ 𝜃2 and 𝜆1 ⩾ 𝜆2; Set of peak points
𝑃 ← ∞; Variable 𝐹𝑢𝑙𝑙𝑃 𝑒𝑎𝑘𝐹𝑜𝑢𝑛𝑑 ← 𝐹𝐴𝐿𝑆𝐸

Step 1. Apply Gaussian filter to 𝐸 with window 𝑤 to get a
smoothed energy profile 𝐸 = {𝑒𝑡 ∶ 𝑡 ∈  }

Step 2. Compute mean (𝑧) and standard deviation (𝑔) of 𝐸

Step 3. Initialize peak points 𝑃←{𝑡 ∈  ∶ 𝑒𝑡 ⩾ 𝜃1𝑧 + 𝜆1𝑔}

while FullPeakFound = FALSE do
Step 4. Try to extend peak points set:

𝑃𝑁 ← {𝑡 ∈  ⧵ 𝑃 ∶ 𝑒𝑡 ⩾ 𝜃2𝑧 + 𝜆2𝑔 ∧ (𝑒𝑡−1 ∈ 𝑃 ∨ 𝑒𝑡+1 ∈ 𝑃 )}

if 𝑃𝑁 = ∞ then
𝐹𝑢𝑙𝑙𝑃 𝑒𝑎𝑘𝐹𝑜𝑢𝑛𝑑 ← 𝑇𝑅𝑈𝐸

else
𝑃 ← 𝑃 ∪ 𝑃𝑁

Output: Peak points 𝑃 ⊂ 

The proposed method is outlined in Algorithm 1. The algorithm
takes as input the energy profile as well as additional parameters that
regulate the detection mechanism. It starts by applying a Gaussian-

weighted moving average filter to obtain a smoothed profile, so that
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Fig. 3. Examples of simulated energy profiles and detected peaks.

oints with high value due to the background stochastic speed fluctua-
ions can be excluded (Step 1). In other words, the effect of this filtering
tep is to smooth out the fluctuations resulting from the stochastic
rocess while preserving the major peaks that arise when multiple
rains accelerate. Then, it defines as peaks the points marked as outliers
ccording to a metric based on mean and standard deviation of the
verall profile; specifically, the points that lie above 𝜃1𝑧 + 𝜆1𝑔 (Steps

2–3). Finally, in the while loop, the initially detected sets of peak
points are extended to reconstruct the entire peak. This is done by
iteratively incorporating neighboring peak points that fulfill a relaxed
outlier condition, i.e., points that are higher than 𝜃2𝑧+ 𝜆2𝑔 and with a
neighbor already in the peak set (Step 4).

Examples of the described peak detection procedure are illustrated
in Fig. 3. The figure shows three simulated energy profiles for a system
with six trains governed by OU processes. The dashed line, round
markers, and star-shaped markers represent the output, respectively, of
Step 1, Steps 2–3, and Steps 4 of Algorithm 1. Notice that the panels in
the figure do not represent the energy consumption of an individual
train, but represent instead the joint (total) energy consumption of
the entire set of six trains over the given time horizon (each panel
is a different simulation run of the dynamic system). We verified that
our method is accurate as the identified peaks correspond indeed, in
almost all cases, to multiple trains accelerating after a yellow signal.
For example, the peak in the middle panel of Fig. 3 corresponds to
4 trains triggering a yellow signal and re-accelerating (this specific
energy profile is also examined more in detail later in Section 4).

3.4. Power peak reduction

Three measures to mitigate the impact of yellow signal propagation
are studied: (i) exploiting regenerative braking, (ii) managing regener-
ative energy by means of an electric energy storage, and (iii) adopting
waiting policies for trains that have triggered a yellow signal. We
describe these measures next, starting with regenerative braking.

Recall from Section 3.2 that the traction force is computed as in
(4). When a train brakes, 𝑎𝑡 < 0, which may result in 𝑓𝑡 < 0. Without
regenerative braking, a negative traction force does not contribute to
energy use. Regenerative braking allows to convert a portion 𝜙 ∈
[0, 1] of kinetic energy to electric energy. Mathematically, this means
computing
𝑛

7

𝑟𝑡 = max{0, −𝜙𝑓𝑡} ⋅ (𝑠𝑡 − 𝑠𝑡−𝛥𝑡). (6)
To elaborate, Eq. (6) considers the maximum between 0 and −𝜙𝑓𝑡. This
implies that when 𝑓𝑡 < 0 (i.e., during braking), then −𝜙𝑓𝑡 > 0 and
the max function selects −𝜙𝑓𝑡, resulting in a positive amount 𝑟𝑛𝑡 > 0.
Instead, when 𝑓𝑡 > 0, (6) produces 𝑟𝑛𝑡 = 0. (Notice that this is the
opposite behavior compared to (5), where 𝑒𝑛𝑡 = 0 if and only if 𝑓𝑡 < 0.)
Thus, the energy recuperated by train 𝑛 is 𝑟𝑛𝑡 , and a positive energy
𝑟𝑛𝑡 > 0 can only be used by other trains 𝑛′ ≠ 𝑛 at the current time step
𝑡. The total regenerative energy produced by all trains is 𝑟𝑡 =

∑𝑁
𝑛=1 𝑟

𝑛
𝑡 .

Suppose now that a track-based electric energy storage is available
to collect energy from regenerative braking and re-distribute it to the
vehicles in subsequent time steps 𝑡′ > 𝑡. Managing a storage asset
requires defining an operating policy to charge/discharge it. Although
storage operating policies are usually defined as a function of electricity
prices to maximize profit, the goal here is different: to smooth power
peaks. We present the storage operating policy in Algorithm 2. In this
algorithm, 𝑒0 ∶= (𝛾1 + 𝛾2𝑣cruise + 𝛾3𝑣2cruise) ⋅ 𝑣cruise𝛥𝑡 denotes the baseline
energy consumption (kWh) of a train running at constant cruising speed
during a time interval. Moreover, the energy storage is characterized by
the following properties: an initial energy level 𝐿0 (kWh), a maximum
capacity 𝐿max (kWh), maximum per-period charging and discharging
rates 𝐿chg and 𝐿dis (kWh/𝛥𝑡), and charging and discharging efficiencies
𝜂chg, 𝜂dis ∈ (0, 1].

Algorithm 2: Storage operation
Input: Storage parameters (𝐿0, 𝐿max, 𝐿chg, 𝐿dis, 𝜂chg, 𝜂dis);
Baseline consumption 𝑒0; Policy parameter 𝜇 ⩾ 0

for 𝑡 = 1,… , 𝑇 do
Compute energy consumption 𝑒𝑛𝑡 for 𝑛 = 1,… , 𝑁 from (5)

Computed energy recuperated 𝑟𝑛𝑡 for 𝑛 = 1,… , 𝑁 from (6),
and their sum 𝑟𝑡 =

∑𝑁
𝑛=1 𝑟

𝑛
𝑡

Charge storage 𝐿𝑡 ← min {𝐿𝑡−1 + 𝜂chg𝑟𝑡, 𝐿𝑡−1 + 𝐿chg, 𝐿max}

Initialize storage discharge of current period 𝐷𝑡 ← 0

for 𝑛 = 2,… , 𝑁 do
if (𝐿𝑡 > 0) ∧ (𝑒𝑛𝑡 > 𝜇𝑒0) ∧ (𝐷𝑡 < 𝐿dis) then

Compute storage discharge for train 𝑛 as
𝑑𝑛𝑡 = min {𝐿𝑡, 𝐿dis, (𝑒𝑛𝑡 − 𝜇𝑒0)∕𝜂dis}

Discharge storage 𝐿𝑡 ← 𝐿𝑡 − 𝑑𝑛𝑡
Update energy consumption 𝑒𝑛,∗𝑡 ← 𝑒𝑛,∗𝑡 − 𝜂dis𝑑𝑛𝑡
Update storage discharge of current period
𝐷𝑡 ← 𝐷𝑡 + 𝑑𝑛𝑡

Output: New consumption 𝑒𝑛,∗𝑡 for 𝑡 ∈  , 𝑛 = 1,… , 𝑁

At a high level, Algorithm 2 defines a heuristic operating policy that
establishes when and by how much to charge and discharge the storage,
and to what train supply a certain amount of power. This algorithm
requires the storage specification parameters already listed above, a
tunable policy parameter 𝜇, and the decision variables to charge the
storage (tracked by the storage level 𝐿𝑡) and discharge it to supply
power to each train 𝑛 at time 𝑡 (denoted by 𝑑𝑛𝑡 ).

The intuition behind Algorithm 2 is that at least some trains (follow-
ers) will consume more energy than 𝑒0 during a power peak. Thus, the
available regenerative energy, collected by the storage and tracked by
𝐿𝑡, compensates for the excess of energy with respect to a quantity 𝜇𝑒0.
Regenerative energy not used in the current period charges the storage.
The parameter 𝜇 encodes how conservative the policy is. Setting high
values of 𝜇 results in the storage providing energy only during high
peaks and increases the chance of not using some regenerative energy
before the end of the simulation horizon 𝑇 . Vice versa, with low 𝜇

values the storage more easily supplies electricity, at the risk that this
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Table 1
Parameters of trains, stochastic processes, and peak reduction strategies.

Name Value Unit Name Value Unit Name Value Unit

𝑚 500 t 𝑑min 3.0 km 𝑤 1 –
𝜌 1.06 – 𝑣cruise 35 m/s 𝜙 0.7 –
𝛾1 5.8 kN 𝑣max 40 m/s 𝜂chg 1 –
𝛾2 0.072 kN s/m 𝑣approach 20 m/s 𝜂dis 1 –
𝛾3 0.013 kN (s/m)2 𝑎det −0.55 m/s 𝐿chg inf kWh/𝛥𝑡
𝛼𝑛 2 ⋅ 10−5 – 𝜃1 1.05 – 𝐿dis inf kWh/𝛥𝑡
𝛽𝑛 0.02 – 𝜃2 1 – 𝐿max inf kWh
𝜎𝑛 0.05 – 𝜆1 2 –
𝑑0 3.2 km 𝜆2 1 –

electricity does not go towards shaving the peak points. This storage
operating model captures the essential features of a battery storage
including capacity, efficiencies, and charging and discharging rates.
Those are considered as input parameters in the mode and we are
not interested, for instance, in optimizing the size of a storage system
(see De La Torre et al., 2014 for a related study). Onboard (i.e., moving)
storage devices may also be considered, but in this case a policy
to allocate regenerative energy across multiple onboard storage units
would need to be defined as well. Thus, Algorithm 2 would need to be
tweaked to work in this situation.

We eventually consider another potential peak reduction measure
that does not rely on assumptions on the electric rail system technology
but on fixed waiting time rules for train control. More precisely, after

vehicle decelerates and reaches the given approach speed 𝑣approach, it
ust wait for a predetermined amount of time (𝛿 seconds) before being

llowed to re-accelerate. The intuition behind this measure is that, by
ntroducing waiting times, the re-acceleration phases of different trains
fter a yellow signal is triggered are better spread over time, thus
imiting the generation of high power peaks. Note that due to the safety
ystem, more downstream trains may have to reach speeds lower than
approach, or even stop, to respect the headway constraints. In this case,
he fixed waiting time applies to the lowest speed reached during the
upervised trajectory phase.

. Numerical study and insights

The numerical experiments and insights are presented in this sec-
ion, starting in Section 4.1 with the computational setting. Section 4.2
nalyzes a yellow signal event and how it can propagate to follower
rains. Section 4.3 examines the performance of the system under dif-
erent stochastic models. Section 4.4 studies the effect of the three peak
eduction strategies. Finally, Section 4.5 highlights the key trade-offs
etween traffic regularity and energy efficiency objectives.

.1. Parameters and computational setup

The simulation parameters employed are summarized in Table 1
nd largely follow Corman et al. (2021) for the stochastic process
odels and Wang et al. (2020) for the train parameters (e.g., resistance
arameters), also adopted by Trivella et al. (2021). We consider a
ystem of 𝑁 = 6 consecutive trains, which may occur in high capacity
orridors. These trains are initially spaced at a regular headway 𝑑0 one
rom another, and assumed to be identical, i.e., subject to the same
ynamics, which is common for homogeneous urban and intercity rail
raffic (Abbas-Turki et al., 2011).

To estimate the KPIs described in Section 3.2, we simulated 5000
rajectories of this system for a time horizon 𝑇 = 2000 s discretized with
𝑡 = 1 s. In this setting, the total computation time for the simulation
as roughly 40 and 72 s for the OU and DMR model, respectively,
hen using Matlab R2021b on a laptop with a processor i7-10610U
nd 16 GB RAM.

Concerning the deterministic model, we consider two specifications,
amed DET and DET , at varying initial conditions. DET is such
8

0 + 0
Fig. 4. Time-speed profiles of six trains in one trajectory.

that �̄�𝑛 = 35 m∕s for all trains, whereas DET+ uses different speeds
�̄�1 = 35 m∕s and �̄�𝑛 = 36 m∕s for 𝑛 = 2,… , 6 (see the related discussion
in Section 3.1). For these models, the computational time to estimate
the KPIs is negligible as one trajectory is sufficient to fully characterize
the system.

Regarding the storage, since the aim is to assess the value of the
extra flexibility brought by this technology rather than characterizing
it, we assume it has perfect efficiency, enough capacity to store the
energy produced by braking, and that injection and withdrawal rates
are non-binding. We do however analyze parameter 𝜇 in Algorithm 2
as it defines the storage operating policy.

The results and insights are discussed next. Recall that Sections 4.2
and 4.3 do not make use of the peak reduction strategies, whose effect
is investigated later in Sections 4.4 and 4.5.

4.2. Analysis of a trigger event

In this section, the OU energy profile displayed in the middle panel
of Fig. 3 is used to better illustrate the propagation of an individual
yellow signal event. The peak in this profile is due to four trains
accelerating in a short time frame as shown in the time-speed profiles in
Fig. 4. Note that the scale of the 𝑦-axis is varied in the top and bottom
panels to clearly distinguish the stochastic speed variations (mostly
occurring within a band of ±0.5 m/s) from the yellow signal effect.

Train 3 is the first to trigger a yellow signal and decelerate, which
causes train 4 to decelerate too, followed by trains 5 and 6. Interest-
ingly, whilst the first affected train decelerates to 𝑣approach = 20 m∕s
before re-accelerating, the downstream vehicles may have to reach
lower speeds, and potentially even stop, before the headway is restored
and they can accelerate again. This implies that the traffic regularity
is more sensitive to yellow signals when more consecutive trains are
running.

To visualize the same effect from another angle, Fig. 5 shows the
space lost by the different trains compared to a baseline with constant
speed 𝑣cruise. As before, downstream vehicles are disproportionately
affected by a triggered yellow signal. In this example, the span between
first and last simulated vehicle increases by roughly 3 km during the
yellow signal event.

A heatmap of train accelerations is presented in Fig. 6. The different
shades of orange correspond to the background variations due to
the stochastic process, whereas deceleration and acceleration phases

caused by the triggering of a yellow signal are clearly visible by the
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Fig. 5. Space lost with respect to a deterministic speed baseline.

Fig. 6. Synchronization of acceleration and deceleration activities.

Table 2
Traffic regularity KPIs.

KPI Model Train (1 is the leader)

1 2 3 4 5 6

OU 0 15.2 29.0 41.7 52.0 60.1
K1 (% DMR 0 2.8 4.7 6.0 7.6 8.7
triggers) DET0 0 0 0 0 0 0

DET+ 0 100 100 100 100 100

OU – 1891 1795 1702 1625 1560
K2 DMR – 1981 1970 1961 1950 1944
(FTTY (s)) DET0 – >2000 >2000 >2000 >2000 >2000

DET+ – 201 228 255 282 309

Table 3
Throughput of the corridor.

KPI OU DMR DET0 DET+

K3 (vehicles/hour) 35.4 38.9 39.4 27.0

darker and lighter colors, respectively. By overlaying this heatmap with
the trajectories in Fig. 4, notice that the peak point occurs at 1700–
1800 s, corresponding to the period in which most trains are indeed
accelerating, thus requiring a large joint traction force.

4.3. Analysis of key performance indicators

The aggregate performance of the system is analyzed from a traffic
regularity perspective in Tables 2–3 for both stochastic models (OU,
DMR) and deterministic models (DET0, DET+).

We observe the following important points:

• The OU model incurs many more triggers than the DMR model
(see K1), and when this happens, it is earlier for any of the fol-
lowers as shown by the FTTY indicator K2. These results suggest
that an ATO model aware of the location of the traffic ahead leads
to a higher level of traffic regularity that enables to better exploit
9

Table 4
Energy related KPIs.

KPI OU DMR DET0 DET+

K4 (kWh) 2876 2814 2800 3312
K5 (kWh/30 s) 64.7 52.0 42.4 83.9
K6 (%) 59.1 9.3 0 100

the capacity of the corridor. This is confirmed by an almost 10%
higher throughput in DMR compared to OU (see K3).

• The percentage of yellow signals increases substantially when
moving from the first follower (train 2) to the last (train 6).
This implies that it is common for yellow signals to propagate
backwards, that is, a train 𝑛 decelerating will very likely trigger
train 𝑛 + 1 to decelerate or brake too. This is a major cause of
peaks in energy consumption.

• Deterministic strategies showcase two extreme behaviors: DET0
is the unrealistic situation of perfect operations, where no yellow
signal occurs, whereas in DET+ all followers triggers a yellow
signal due to their higher speed compared to the first leader
(although by just 1 m/s).

Next, we now focus on the energy properties of the six-train system
and report in Table 4 the related KPIs. Recall that K4, K5, and K6 rep-
resent the average total consumption, average maximum consumption,
and percentage of energy profiles with a detected peak, respectively
(see Section 3.2).

What we observe from the table is the following:

• [K4]: The energy consumption under OU is 2.2% higher than
DMR. Indeed trains under DMR less frequently have to decelerate,
brake, and accelerate following a yellow signal. This difference
translates to a substantial saving of energy and costs with an ATO-
based system, especially when considering the consumption of an
entire railway network for a year. Compared to the ideal situation
represented by DET0, the total consumption with DMR is only
0.5% higher, while with OU is 2.7% higher. The consumption un-
der DET+ is very large because this deterministic profile includes
a yellow signal with certainty.

• [K5]: OU energy profiles exhibit a highest consumption point that
is on average 25% higher than that of DMR profiles, which is a
significant difference. Notice that this KPI averages all profiles
with and without detected peaks and that an individual peak
can exceed 80 kWh/30 s. The two deterministic models display
extreme behaviors: DET0 has a constant, low energy consumption
over the horizon, while DET+ has a peak of about 84 kWh/30s.

• [K6]: Our method detected peaks in about 60% of the OU profiles,
while the same number is less than 10% for DMR. Naturally,
the estimates of this KPI are quite related to those of K1 for the
last follower, underscoring a relation between traffic and energy
properties of the system.

The main implication from these results is that an ATO system (rep-
resented here by the DMR process) has the potential to not only reduce
the overall energy requirements but also to prevent the occurrence of
critical peaks in consumption. What is discussed here is also evident
from Fig. 7, showing the first 50 energy profiles for OU (top panel) and
DMR (middle panel). The figure also shows the deterministic profile
DET+ (bottom panel) and the fixed baseline consumption DET0.

While a considerable number of OU profiles include at least one
peak (32/50), only a few DMR profiles do (3/50). In the considered
setting, the peaks often reach double the regular energy consumption
level (i.e., with no train affected by a yellow signal), and mostly appear
in the second part of the horizon as the initial state of the system
fulfills the minimum safety distance. The usefulness of peak reduction
strategies is investigated next.
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Fig. 7. Simulated energy profiles for model OU, DMR, and DET+.

Fig. 8. Energy profiles under different peak reduction strategies.

4.4. Analysis of peak reduction strategies

The focus hereafter is on the OU process, as this is the stochastic
model that could benefit most from fewer peaks and smaller peak
size. Fig. 8 illustrates the effect of peak reduction strategies on the
two energy profiles already shown in the middle and bottom panels
of Fig. 3. Specifically, the fixed waiting time rules are considered
at varying 𝛿 (labeled ‘‘Fixed’’), and the use of regenerative braking,
with storage (‘‘Reg+Stor’’) and without it (‘‘Reg’’), assuming 𝜙 = 0.7
(different values have been tested too but the key findings do not
change). When managing the storage, 𝜇 = 1 is used (see Algorithm
2) while different values of this parameters are analyzed later in this
section.

Each strategy has a different effect on the original profile (continu-
ous line). Regenerative energy alone reduces the overall consumption
but does not smooth the peak in its highest point. When storage is
available, however, the resulting peak is much smaller. The effect of
fixed waiting strategies is different as the peak is both reduced in
10
Fig. 9. Speed trajectories during a trigger event at varying waiting time 𝛿.

Table 5
KPIs of the system under different peak reduction strategies.

Technology KPI Fixed waiting time 𝛿 (s)

0 10 20 30 40 50 60

K3 35.4 34.0 33.0 31.7 30.6 30.1 29.3
– K4 2876 2877 2870 2864 2856 2845 2837

K5 64.7 63.6 62.2 61.6 60.6 59.7 59.2

K3 35.4 34.0 33.0 31.7 30.6 30.1 29.3
Reg K4 2781 2773 2768 2761 2757 2753 2748

K5 64.4 63.3 62.0 61.4 60.5 59.6 59.2

Reg+Stor K3 35.4 34.0 33.0 31.7 30.6 30.1 29.3
(𝜇 = 1) K4 2795 2788 2780 2775 2769 2765 2763

K5 59.3 59.5 59.1 58.6 58.1 57.7 57.4

size and spread over time, while it is unclear if the total consumption
decreases in these cases.

To better understand the aforementioned changes, Fig. 9 illustrates
the speed trajectories of the six trains associated with the energy
profile reported the top panel of Fig. 8 (which was the same example
also considered in Section 4.2), at varying 𝛿. Recall that the use of
regenerative braking, with and without storage, does not alter the speed
trajectories, whereas fixed waiting rules affect the train dynamics as
well. This is why the speed trajectories under regenerative energy are
not displayed: they coincide with the baseline trajectories in the top
panel of Fig. 9 (𝛿 = 0). From this figure, it is evident that the higher
is the waiting time 𝛿, the more the trains are spread apart from each
other after a yellow signal, and with that the acceleration activities.
Moreover, the more downstream trains may have to wait longer than
𝛿 before the headway is restored and they can re-accelerate. Thus,
although fixed waiting rules can help in shaving power peaks, they may
also slow the traffic down and affect the throughput of the system, as
examined next.

Table 5 reports a subset of the system KPIs under regenerative
braking, fixed waiting rules, and a combination of them. The main
findings from these results are the following:

• [K3]: The throughput decreases, approximately linearly, when the
fixed waiting time 𝛿 increases. In particular, this KPI goes from
35.4 to 29.3 vehicles/hour when 𝛿 varies from 0 to 60 s, which
is a 17% reduction.

• [K4]: The total energy consumption is reduced only marginally by
variations of 𝛿. However, exploiting regenerative braking brings

savings of 3.3% on average.
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Fig. 10. Energy profile with regenerative braking and storage at varying 𝜇.

Table 6
Policy performance at varying storage threshold multiplier 𝜇.

KPI 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

K4 2784 2790 2796 2799 2800 2802 2806 2813 2819
K5 62.5 61.2 59.3 57.1 55.2 53 52.1 52.7 53.4
K6 52.2 51.1 49.4 45.5 39.9 31.6 36.3 46.4 51.4

• [K5]: The highest consumption point decreases by 8.5% on aver-
age when 𝛿 increases from 0 to 60 s. When restricting to energy
profiles with detected peaks, this improvement exceeds 10%,
which is substantial. Regenerative braking alone does not help
much in shaving the peak, while it is very effective when it is
coupled with an electricity storage, with an improvement of 8.5%.

Beside 𝛿, another important tunable parameters is 𝜇, which defines
the storage operating policy. Thus, we examine how the KPIs change
when using regenerative braking with storage at varying 𝜇. Fig. 10
shows an energy profile under values of 𝜇 from 0.6 to 2.2. Increasing 𝜇
s beneficial to smooth the peak and, for instance, the highest point in
his profile decreases from 71 to 50 kWh when 𝜇 goes from 0.6 to 1.8.
owever, increasing 𝜇 from 1.8 to 2.2 results in a higher peak of 54.5
Wh, and a higher energy consumption too as it can be seen from the
rea under the profiles. In fact, 𝜇 represents a threshold for the storage
o be discharged and setting too high values of it may result in very
onservative policies.

Table 6 reports estimates of the energy KPIs for operating strategies
t varying 𝜇 (notice that the traffic KPIs K1–K3 do not change with 𝜇;
ence, they are not included in this table). The energy consumption
K4) indeed increases with 𝜇 but only marginally. However, the per-
entage of trajectories with a peak (K6) varies from 31.6% to 51.4%
hen 𝜇 is increased from 1.6 to 2.2, which is a substantial increase

ndicating that the behavior of K6 is not monotone in 𝜇. The same holds
or K5 (average peak), which shows a small increment after 𝜇 = 2.
verall, the value 𝜇 = 1.6 achieves the best trade-off for the considered
xperimental setup.

.5. Trade-offs between objectives

The findings in Sections 4.3–4.4 underscored several conflicts that
xist among different objectives, especially between the traffic-related
nd the energy-related KPIs. Some of the trade-offs that arise under
ifferent peak reduction strategies are investigated more systematically
n the following.

Fig. 11 illustrates 4 trade-offs under 4 strategies. Recall that ‘‘Reg’’,
‘Stor’’, and ‘‘Fixed’’ in the name denote, respectively, the use of regen-
rative energy, storage, and fixed waiting rules. Strategies with ‘‘Fixed’’
re studied for varying 𝛿 ∈ [0, 60], while ‘‘Reg+ Stor’’ for varying
∈ [0.6, 2.2]. ‘‘Fixed+ Reg+ Stor’’ uses 𝜇 = 1.6. To help identifying the

est solutions, in each subplot, the improving direction of the trade-off
s indicated by a star-shaped marker. In other words, the best solutions
re those that are as close as possible to the marked corner.
11
Fig. 11. Trade-off between KPIs under different peak reduction measures.

Drawing conclusions about these results is non-trivial as no strat-
egy dominates the others in managing all KPIs. Fixed waiting rules
behave quite differently depending on whether regenerative braking
and storage are used. In general, coupling regenerative braking and
a well tuned storage operating policy, i.e., with 𝜇 = 1.6, seems to

ork well in most cases. However, deviating from this value of 𝜇
always worsens at least one KPI. Similarly, the effect of varying 𝛿 in
the other strategies is mixed and never improves all KPIs jointly. The
main takeaway from this analysis is that practical approaches to reduce
power peaks in busy railway corridors should be designed carefully and
tested across multiple dimensions, limiting the risk that improving one
KPI negatively affects others.

5. Conclusion

This work is the first to analyze a dynamic railway traffic system
involving a platoon of leader–follower trains. By simulating different
stochastic processes, we observed that the propagation of yellow signals
in such a system and the consequent simultaneous acceleration of
trains may generate significant peaks in energy use, which is a main
concern in the modern railway industry due to high energy prices
and environmental concerns. We thus proposed and analyzed different
peak reduction strategies that rely on technological assumptions (re-
generative braking, energy storage) and/or train control (fixed waiting
rules).

In an extensive numerical study, the performance of the dynamic
system is examined in terms of traffic regularity and energy consump-
tion, and insights are provided on the effectiveness of different peak
reduction strategies, potentially combined. For example, a key finding
is that using regenerative energy alone (i.e., based on an instantaneous
matching of acceleration and deceleration) is significantly less effective
than combining it with energy storage devices for managing and re-
distributing energy flows over time. The storage operating policy itself
has a significant impact on the extent of power peak shaving and hence
needs to be designed and tested carefully.

This paper also investigated the benefits of an ATO controller for
both smoothing peaks and improving traffic regularity compared to a
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human driver. Conceptually, the superior performance of the former
model stems from the sharing of information (in particular, location
data) across vehicles, and the exploitation of this data to improve
control under stochastic disturbances that occur in real operations.
Thus, this study contributes to assessing the potential benefits of ATO
systems, which is much needed in practice. Finally, this paper iden-
tified and evaluated key trade-offs and conflicts that arise between
objectives, suggesting that energy-related and traffic-related KPIs must
be considered jointly when designing or analyzing advanced railway
systems.

Future research directions include calibrating the parameters of
the stochastic processes based on real data. At the time of writing, a
comprehensive dataset to allow for such calibration is not available
to the authors, and these parameters are defined based on the railway
literature and simulation experiments. Moreover, additional sensitivity
analysis may be conducted on other parameters than the ones studied
here, such as the initial headway between trains, examining how this
relates to the common target of achieving a 80% of capacity utilization
(see UIC Code, Norm 406).

Another avenue would be extending the stochastic simulation
framework developed in this paper from a corridor to an entire railway
network, which is relevant to better describe network effects that
go beyond the interaction of rail vehicles based on leader–follower
dynamics.

Finally, the paper employs relatively simple custom algorithms for
power peak reduction. Future research could target developing alter-
native peak reduction strategies based on more advanced optimization
frameworks, for instance, to operate the energy storage or to coordi-
nately control vehicles when a yellow signal has been triggered. As
shown in Section 4.5, finding a good peak reduction strategy entails
solving an optimization problem with many conflicting objectives given
by the different KPIs. Moreover, calculating objective values is expen-
sive as it requires simulating thousands of trajectories from a stochas-
tic systems. For these reasons, promising approaches include hybrid
heuristics and metaheuristics like evolutionary multi-objective opti-
mization methods (Coello, 2006). Since the problem also includes in-
herent randomness and robustness characteristics, adaptive algorithms
and reinforcement learning methods could be developed too, which
have proven successful to manage both energy storage (Powell &
Meisel, 2015) and train rescheduling (Jusup et al., 2021). Although
embedding such techniques in the proposed simulation framework may
be computationally challenging, a significant body of literature across
diverse domains (e.g., energy and transport) has shown that advanced
optimization algorithms have the potential to enhance the solution
approach for challenging decision problems (see, e.g., Corman & Meng,
2014 and Frangopoulos, 2018.)

CRediT authorship contribution statement

Alessio Trivella: Conceptualization, Methodology, Software, Vali-
dation, Writing – original draft, Writing – review & editing, Visualiza-
tion. Francesco Corman: Conceptualization, Methodology, Writing –
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The link to the code is shared in the paper
12
Acknowledgments

This paper builds on an extended abstract that was accepted for
presentation at the 10th Symposium of the European Association for Re-
search in Transportation (hEART 2022; Trivella & Corman, 2022). The
second author was supported by the Swiss National Science Foundation
under Project 1481210/DADA.

References

Abbas-Turki, A., Zaremba, E., Grunder, O., & El-moudni, A. (2011). Perfect homo-
geneous rail traffic: A quick efficient genetic algorithm for high frequency train
timetabling. In 2011 14th International IEEE conference on intelligent transportation
systems (pp. 1495–1500). IEEE.

Albrecht, T. (2010). Reducing power peaks and energy consumption in rail tran-
sit systems by simultaneous train running time control. WIT Transactions on
State-of-the-Art in Science and Engineering, 39.

Albrecht, A., Howlett, P., Pudney, P., Vu, X., & Zhou, P. (2016). The key principles of
optimal train control—Part 1: Formulation of the model, strategies of optimal type,
evolutionary lines, location of optimal switching points. Transportation Research,
Part B (Methodological), 94, 482–508.

Banić, M., Miltenović, A., Pavlović, M., & Ćirić, I. (2019). Intelligent machine
vision based railway infrastructure inspection and monitoring using UAV. Facta
Universitatis, Series: Mechanical Engineering, 17(3), 357–364.

ärmann, A., Martin, A., & Schneider, O. (2017). A comparison of performance metrics
for balancing the power consumption of trains in a railway network by slight
timetable adaptation. Public Transport, 9, 95–113.

inder, S., Maknoon, Y., & Bierlaire, M. (2017). The multi-objective railway timetable
rescheduling problem. Transportation Research Part C (Emerging Technologies), 78,
78–94.

randenburger, N., Naumann, A., & Jipp, M. (2021). Task-induced fatigue when
implementing high grades of railway automation. Cognition, Technology & Work,
23, 273–283.

acchiani, V., & Toth, P. (2018). Robust train timetabling. In Handbook of optimization
in the railway industry (pp. 93–115). Springer.

aprara, A., Fischetti, M., & Toth, P. (2002). Modeling and solving the train timetabling
problem. Operations Research, 50(5), 851–861.

oello, C. C. (2006). Evolutionary multi-objective optimization: a historical view of the
field. IEEE Computational Intelligence Magazine, 1(1), 28–36.

orman, F., & Meng, L. (2014). A review of online dynamic models and algorithms for
railway traffic management. IEEE Transactions on Intelligent Transportation Systems,
16(3), 1274–1284.

orman, F., Trivella, A., & Keyvan-Ekbatani, M. (2021). Stochastic process in railway
traffic flow: Models, methods and implications. Transportation Research Part C
(Emerging Technologies), 128, Article 103167.

e La Torre, S., Sánchez-Racero, A. J., Aguado, J. A., Reyes, M., & Martínez, O.
(2014). Optimal sizing of energy storage for regenerative braking in electric railway
systems. IEEE Transactions on Power Systems, 30(3), 1492–1500.

e Martinis, V., & Corman, F. (2018). Data-driven perspectives for energy efficient oper-
ations in railway systems: Current practices and future opportunities. Transportation
Research Part C (Emerging Technologies), 95, 679–697.

e Simone, L., Caputo, E., Cinque, M., Galli, A., Moscato, V., Russo, S., Cesaro, G.,
Criscuolo, V., & Giannini, G. (2023). LSTM-based failure prediction for railway
rolling stock equipment. Expert Systems with Applications, Article 119767.

U (2021). European union - 2030 climate target plan. Accessed 20 March 2023.
rangopoulos, C. A. (2018). Recent developments and trends in optimization of energy

systems. Energy, 164, 1011–1020.
onzález-Gil, A., Palacin, R., & Batty, P. (2013). Sustainable urban rail systems:

Strategies and technologies for optimal management of regenerative braking
energy. Energy Conversion and Management, 75, 374–388.

onzález-Gil, A., Palacin, R., Batty, P., & Powell, J. (2014). A systems approach to
reduce urban rail energy consumption. Energy Conversion and Management, 80,
509–524.

ansen, I., & Pachl, J. (2014). Railway timetabling and operations: Analysis, modelling,
optimisation, simulation, performance, evaluation. Eurail press, Hamburg.

o, T. K., Tsang, C. W., Ip, K. H., & Kwan, K. (2012). Train service timetabling
in railway open markets by particle swarm optimisation. Expert Systems with
Applications, 39(1), 861–868.

orizon Europe (2022). Digital & Automated up to Autonomous Train Operations.
Accessed 20 March 2023.

owlett, P. (2000). The optimal control of a train. Annals of Operations Research, 98(1),
65–87.

usup, M., Trivella, A., & Corman, F. (2021). A review of real-time railway and metro
rescheduling models using learning algorithms. In 30th International joint conference
on artificial intelligence (IJCAI-21).

hodaparastan, M., Mohamed, A. A., & Brandauer, W. (2019). Recuperation of
regenerative braking energy in electric rail transit systems. IEEE Transactions on
Intelligent Transportation Systems, 20(8), 2831–2847.

http://refhub.elsevier.com/S0957-4174(23)01152-1/sb1
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb1
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb1
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb1
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb1
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb1
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb1
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb2
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb2
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb2
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb2
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb2
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb3
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb3
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb3
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb3
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb3
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb3
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb3
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb4
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb4
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb4
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb4
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb4
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb5
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb5
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb5
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb5
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb5
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb6
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb6
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb6
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb6
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb6
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb7
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb7
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb7
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb7
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb7
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb8
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb8
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb8
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb9
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb9
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb9
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb10
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb10
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb10
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb11
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb11
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb11
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb11
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb11
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb12
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb12
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb12
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb12
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb12
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb13
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb13
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb13
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb13
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb13
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb14
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb14
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb14
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb14
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb14
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb15
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb15
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb15
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb15
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb15
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb16
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb17
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb17
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb17
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb18
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb18
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb18
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb18
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb18
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb19
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb19
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb19
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb19
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb19
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb20
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb20
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb20
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb21
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb21
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb21
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb21
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb21
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb22
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb22
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb22
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb23
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb23
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb23
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb24
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb24
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb24
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb24
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb24
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb25
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb25
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb25
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb25
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb25


Expert Systems With Applications 230 (2023) 120650A. Trivella and F. Corman

L

L

O
P

P

Q

Q

R

R

R

R

S
S

S

S

S

T

T

U

W

W

W

W

Y

Y

Liu, X., & Li, K. (2020). Energy storage devices in electrified railway systems: A review.
Transportation Safety and Environment, 2(3), 183–201.

u, S., Weston, P., Hillmansen, S., Gooi, H. B., & Roberts, C. (2014). Increasing the
regenerative braking energy for railway vehicles. IEEE Transactions on Intelligent
Transportation Systems, 15(6), 2506–2515.

Luijt, R. S., van den Berge, M. P., Willeboordse, H. Y., & Hoogenraad, J. H. (2017). 5
years of dutch eco-driving: Managing behavioural change. Transportation Research
Part A: Policy and Practice, 98, 46–63.

uo, J., Peng, Q., Wen, C., Wen, W., & Huang, P. (2022). Data-driven decision support
for rail traffic control: A predictive approach. Expert Systems with Applications, 207,
Article 118050.

WiD (2016). Our world in data - emissions by sector. Accessed 20 March 2023.
oulus, R., van Kempen, E., & van Meijeren, J. (2018). Automatic train operations: Driving
the future of rail transport: Technical report, TNO.

owell, W. B., & Meisel, S. (2015). Tutorial on stochastic optimization in energy—
Part II: An energy storage illustration. IEEE Transactions on Power Systems, 31(2),
1468–1475.

in, Y., Hu, X., He, Z., & Li, S. (2020). Longitudinal emissions evaluation of mixed
(cooperative) adaptive cruise control traffic flow and its relationship with stability.
Journal of the Air & Waste Management Association, 70(7), 670–686.

uaglietta, E., Wang, M., & Goverde, R. M. (2020). A multi-state train-following model
for the analysis of virtual coupling railway operations. Journal of Rail Transport
Planning & Management, 15, Article 100195.

ailenergy (2016). Innovative integrated energy efficiency solutions for railway rolling
stock, rail infrastructure and train operation. Accessed 20 March 2023.

ailtech (2021). Netherlands decides about ATO implementation by end of 2025.
Accessed 20 March 2023.

an, X.-C., Chen, S.-K., Liu, G.-H., & Bai, Y. (2020). Energy-efficient approach
combining train speed profile and timetable optimisations for metro operations.
IET Intelligent Transport Systems, 14(14), 1967–1977.

atniyomchai, T., Hillmansen, S., & Tricoli, P. (2014). Recent developments and
applications of energy storage devices in electrified railways. IET Electrical Systems
in Transportation, 4(1), 9–20.

Regueiro Sánchez, D. (2021). Quantification and reduction of power peaks in railway
networks: a simulation-based approach (Master’s thesis), ETH Zurich.

BB (2021). Load management - smart grid at SBB. Accessed 17 May 2023.
cheepmaker, G. M., Goverde, R. M., & Kroon, L. G. (2017). Review of energy-efficient

train control and timetabling. European Journal of Operational Research, 257(2),
355–376.

els, P., Cattrysse, D., & Vansteenwegen, P. (2016). Automated platforming & routing of
trains in all belgian railway stations. Expert Systems with Applications, 62, 302–316.

ingh, P., Dulebenets, M. A., Pasha, J., Gonzalez, E. D. S., Lau, Y.-Y., & Kampmann, R.
(2021). Deployment of autonomous trains in rail transportation: Current trends and
existing challenges. IEEE Access, 9, 91427–91461.

ingh, P., Elmi, Z., Meriga, V. K., Pasha, J., & Dulebenets, M. A. (2022). Internet
of things for sustainable railway transportation: Past, present, and future. Cleaner
Logistics and Supply Chain, 4, Article 100065.
13
Tang, R., De Donato, L., Besinović, N., Flammini, F., Goverde, R. M., Lin, Z., Liu, R.,
Tang, T., Vittorini, V., & Wang, Z. (2022). A literature review of artificial intel-
ligence applications in railway systems. Transportation Research Part C (Emerging
Technologies), 140, Article 103679.

Tashmetov, K., Aliev, R., Aliev, M., & Tashmetov, T. (2022). Expert system for
diagnosing faults railroad switch of automation and telemechanic systems. In AIP
conference proceedings, Vol. 2432. AIP Publishing LLC, Article 030083.

Trivella, A., & Corman, F. (2019). Modeling uncertainty dynamics in public transport
optimization. In 19th Swiss transport research conference (STRC 2019). STRC.

rivella, A., & Corman, F. (2022). An analysis of power peaks in stochastic models
of railway traffic. In HEART 2022 - 10th symposium of the European association for
research in transportation.

rivella, A., Wang, P., & Corman, F. (2021). The impact of wind on energy-efficient
train control. EURO Journal on Transportation and Logistics, 10, Article 100013.

IC (2017). International union of railways - energy efficiency and CO2 emissions.
Accessed 20 March 2023.

ang, P., Bešinović, N., Goverde, R. M., & Corman, F. (2022). Improving the utilization
of regenerative energy and shaving power peaks by railway timetable adjustment.
IEEE Transactions on Intelligent Transportation Systems.

ang, M., Li, H., Gao, J., Huang, Z., Li, B., & Van Arem, B. (2017). String stability of
heterogeneous platoons with non-connected automated vehicles. In 2017 IEEE 20th
international conference on intelligent transportation systems (ITSC) (pp. 1–8). IEEE.

ang, P., Trivella, A., Goverde, R. M., & Corman, F. (2020). Train trajectory opti-
mization for improved on-time arrival under parametric uncertainty. Transportation
Research Part C (Emerging Technologies), 119, Article 102680.

ang, G., Xu, T., Tang, T., Yuan, T., & Wang, H. (2017). A Bayesian network model
for prediction of weather-related failures in railway turnout systems. Expert Systems
with Applications, 69, 247–256.

ang, X., Chen, A., Ning, B., & Tang, T. (2016). A stochastic model for the integrated
optimization on metro timetable and speed profile with uncertain train mass.
Transportation Research, Part B (Methodological), 91, 424–445.

Yang, X., Li, X., Ning, B., & Tang, T. (2015). A survey on energy-efficient train operation
for urban rail transit. IEEE Transactions on Intelligent Transportation Systems, 17(1),
2–13.

e, H., & Liu, R. (2017). Nonlinear programming methods based on closed-form
expressions for optimal train control. Transportation Research Part C (Emerging
Technologies), 82, 102–123.

Yin, J., Tang, T., Yang, L., Gao, Z., & Ran, B. (2016). Energy-efficient metro train
rescheduling with uncertain time-variant passenger demands: An approximate
dynamic programming approach. Transportation Research, Part B (Methodological),
91, 178–210.

Zhang, Y., Bai, Y., Hu, J., & Wang, M. (2020). Control design, stability analysis,
and traffic flow implications for cooperative adaptive cruise control systems with
compensation of communication delay. Transportation Research Record, 2674(8),
638–652.

http://refhub.elsevier.com/S0957-4174(23)01152-1/sb26
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb26
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb26
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb27
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb27
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb27
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb27
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb27
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb28
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb28
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb28
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb28
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb28
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb29
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb29
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb29
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb29
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb29
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb30
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb31
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb31
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb31
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb32
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb32
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb32
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb32
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb32
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb33
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb33
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb33
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb33
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb33
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb34
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb34
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb34
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb34
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb34
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb35
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb35
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb35
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb36
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb36
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb36
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb37
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb37
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb37
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb37
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb37
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb38
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb38
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb38
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb38
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb38
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb39
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb39
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb39
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb40
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb41
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb41
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb41
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb41
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb41
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb42
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb42
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb42
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb43
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb43
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb43
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb43
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb43
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb44
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb44
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb44
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb44
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb44
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb45
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb45
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb45
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb45
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb45
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb45
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb45
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb46
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb46
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb46
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb46
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb46
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb47
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb47
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb47
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb48
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb48
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb48
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb48
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb48
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb49
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb49
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb49
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb50
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb50
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb50
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb51
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb51
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb51
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb51
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb51
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb52
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb52
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb52
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb52
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb52
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb53
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb53
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb53
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb53
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb53
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb54
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb54
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb54
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb54
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb54
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb55
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb55
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb55
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb55
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb55
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb56
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb56
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb56
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb56
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb56
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb57
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb57
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb57
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb57
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb57
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb58
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb58
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb58
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb58
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb58
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb58
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb58
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb59
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb59
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb59
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb59
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb59
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb59
http://refhub.elsevier.com/S0957-4174(23)01152-1/sb59

