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A B S T R A C T

This work examines how we can derive economic signals from the non-
convex optimal value functions of mixed integer programs used to dispatch
resources in the power grid. The objectives of market design and price for-
mation are to promote economic efficiency, by providing prices that support
social surplus-maximizing operations in the short-run and investment in the
long-run. Under certain restrictive conditions, these are prices that reflect
short-run marginal costs (including scarcity costs), and provide recovery of
fixed costs in the long-run. Two critical features of electricity limit its ability
to achieve the theoretical microeconomic ideal of perfect long-run cost
recovery via marginal pricing: the physics of the grid and non-convex costs
of generators. This thesis uses a series of engineering-economic models
of optimal power plant scheduling and investment to explore alternative
market designs to maximize the economic surplus of consumers. Chapter 2
provides the mathematical theory to compare central planning and markets.
Chapters 3, 6, and 7 examine short-run market design to manage transmis-
sion congestion, the impact of near-optimal solutions under elastic demand,
and market power in non-convex markets, while Chapters 4 and 5 focus
on investment, modeling the long-run investment efficiency implications of
alternative short-run designs for deriving prices when operating costs are
non-convex and shares of variable renewable energy increase.

A central difference between power markets globally is whether the market
is cleared based on an aggregated version of the underlying transmission
network and simple bids (zonal market) or the full network model and com-
plex bids (nodal market). Chapter 3 explores the methodological choices
behind a new approach called flow-based market coupling (FBMC) that
seeks to better represent network congestion in zonal markets. While zonal
markets typically force participants to internalize their non-convexities in
simple bids, this chapter shows the impact of combining an aggregated
transmission network with complex bids in the form of unit commitment
(the power plant scheduling problem) constraints. The chapter also explores
the impact of the methods to calculate the FBMC base case and the re-
dispatch of power plants from the zonal solution to a physically feasible
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solution. A substantial welfare gap between the market clearing with an ag-
gregated transmission network and the nodal market ideal remains.

However, even in the theoretical ideal of nodal pricing, marginal pricing as a
market-clearing mechanism does not have the desired economic properties
of being able to clear the market while providing a dispatch solution
from which no agent has an incentive to deviate. This is because there are
non-convexities in electricity markets due to operating costs and technical
constraints.

System operators are actively debating what pricing model to use, but it
is important to remember that prices are not meant to support the current
resource mix but rather to provide signals for entry and exit so that the
social welfare-maximizing resource mix is achieved in the long-run. Chapter
4 analyzes non-convex pricing models in a long-run analysis, developing a
method to find resource mixes adapted to a given market model. Convex
hull pricing, a method in which prices are derived from the convex hull
of the optimal value function, is found to provide the least compensation
in excess of short- and long-run costs to inframarginal electric generating
units, leading to resource mixes that maximize consumer surplus. In theory,
assuming convexity of cost functions and feasible regions, an energy-only
market provides perfect cost recovery in the long-run for generators in the
optimal resource mix as well as signals for resources to enter or exit the
market as new, lower-cost innovative technologies come online. Concern
has risen as to whether energy-only markets with non-convex costs can
adequately compensate providers of flexibility, as units may need to cycle
on and off more frequently to meet a net load curve with shorter peaks
and steeper ramps. Chapter 5 demonstrates that relaxing the assumption of
convexity still leads to long-run cost recovery for flexible generators in the
presence of high shares of zero-marginal cost variable renewable energy,
but that there is a penalty to consumers relative to the convex case in the
form of higher profits for producers (higher prices for consumers) in the
long-run adapted resource mix. This penalty is proportional to the amount
of non-convex resources in the system.

Unit commitment problems are typically too large to be solved to optimality
and must be relaxed to find market-clearing prices due to non-convexities.
Chapter 6 shows that with flexible demand and pricing models that depend
on the primal solution, finding a better near-optimal solution can improve
outcomes for consumers. Because non-convexities mean that a uniform
price often does not support the socially optimal solution, some units will
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desire to deviate from the central dispatch decision. Units that perceive the
opportunity to make a profit may be incentivized to self-commit (submitting
an offer with zero fixed operating costs) or self-schedule their production
(submitting an offer with zero total cost). Using reinforcement learning,
Chapter 7 assesses incentive compatibility in non-convex markets, showing
that market power can be exercised by self-scheduling and self-committing.
In a realistic test system, strategic bids under the restricted convex pricing
model increased total producer profits substantially, while convex hull
pricing preserved the profits made at the competitive market solution and
resulted in a lower cost to consumers than alternative models.

As fossil-fuel resources are displaced by low-carbon resources, these find-
ings can guide system operators in understanding how price formation
impacts the transition, and to what extent energy markets can signal enough
of the right kind of resources to be built for reliability needs. With more
systems considering implementing nodal pricing, this work demonstrates
the gap between nodal pricing and the theoretical ideal of convex markets
and offers paths forward for system and market operators to not only
maximize social surplus but also the share of social surplus gained by
consumers.
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Z U S A M M E N FA S S U N G

In dieser Arbeit wird untersucht, wie wirtschaftliche Signale aus den
nichtkonvexen optimalen Wertfunktionen von gemischt-ganzzahligen Pro-
grammen, die für die Allokation von Ressourcen im Stromnetz verwendet
werden, abgeleitet werden können. Die Ziele des Marktdesigns und der
Preisbildung bestehen darin, die wirtschaftliche Effizienz zu fördern, in-
dem Preise bereitgestellt werden, die kurzfristig die Maximierung der
gesamtwirtschaftlichen Wohlfahrt und langfristig die Investitionstätigkeit
unterstützen. Unter bestimmten einschränkenden Bedingungen sind dies
Preise, die kurzfristig die Grenzkosten (einschließlich Knappheitskosten)
widerspiegeln und langfristig die Deckung der Fixkosten gewährleisten.
Zwei kritische Merkmale der Elektrizität schränken jedoch ihre Fähigkeit
ein, das theoretische mikroökonomische Ideal einer perfekten langfristigen
Kostendeckung über Grenzpreise zu erreichen: die physikalischen Eigen-
schaften des Netzes und die nichtkonvexen Kosten der Erzeuger. Diese
Arbeit verwendet eine Reihe von techno-ökonomischen Modellen zur opti-
malen Kraftwerksplanung und Investitionen um alternative Marktdesigns
zur Maximierung der Konsumentenrente zu untersuchen. Kapitel 2 liefert
die mathematische Theorie zum Vergleich von zentraler Planung und Märk-
ten. Die Kapitel 3, 6 und 7 untersuchen das Design von Kurzfristmärkten
zur Bewältigung von Netzengpässen, die Auswirkungen nahezu optimaler
Lösungen bei elastischer Nachfrage und die Marktmacht in nichtkonvexen
Märkten. Die Kapitel 4 und 5 konzentrieren sich auf Investitionen und
modellieren die langfristigen Auswirkungen auf die Investitionseffizienz
verschiedener Designs von Kurzfristmärkten und Preismechanismen - im-
mer unter den Bedingungen nichtkonvexer Kosten und steigendem Anteil
erneuerbarer Energien.

Ein zentraler Unterschied zwischen den Strommärkten weltweit besteht
darin, ob der Markt auf einer aggregierten Version des zugrundeliegen-
den Übertragungsnetzes und einfacher Gebote (zonaler Markt) oder des
vollständigen Netzmodells und komplexer Gebote (nodaler Markt) basiert.
Kapitel 3 untersucht die Methodik hinter einem neuen Ansatz, der als
flow-based market coupling (FBMC) bezeichnet wird und darauf abzielt,
Netzengpässe auf zonalen Märkten besser darzustellen. Während zonale
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Märkte die Teilnehmer typischerweise dazu zwingen, ihre Nichtkonve-
xitäten in einfachen Geboten zu internalisieren, zeigt dieses Kapitel die
Auswirkungen der Kombination eines aggregierten Übertragungsnetzes
mit komplexen Geboten in Form von Unit Commitment Restriktionen, die
bei der Optimierung der Kraftwerkseinsatzplanung angewendet werden.
In diesem Kapitel werden auch die Auswirkungen der Methoden zur Be-
rechnung des FBMC-Basisfalls und der Redispatch von Kraftwerken von
der zonalen Lösung zu einer physikalisch machbaren Lösung untersucht.
Es bleibt eine erhebliche Wohlfahrtslücke zwischen der Markträumung
mit einem aggregierten Übertragungsnetz und dem Ideal eines nodalen
Marktes.

Doch selbst im theoretischen Ideal des nodalen Marktes hat die Preisbildung
auf Grenzkostenbasis nicht die gewünschten wirtschaftlichen Eigenschaften
sowohl den Markt zu räumen als auch eine Allokation bereitzustellen, von
der kein Akteur einen Anreiz hat abzuweichen. Der Grund dafür liegt in
der Nichtkonvexität der Strommärkte aufgrund von Betriebskosten und
technischen Einschränkungen.

Die Netzbetreiber debattieren aktiv über das zu verwendende Preismodell,
aber es ist wichtig, sich daran zu erinnern, dass die Preise nicht dazu ge-
dacht sind, den aktuellen Ressourcenmix zu unterstützen, sondern vielmehr
Signale für den Ein- und Ausstieg zu geben, so dass langfristig ein Ressour-
cenmix erreicht wird, der die gesamtwirtschaftliche Wohlfahrt maximiert.
Kapitel 4 analysiert nichtkonvexe Preismodelle in einer langfristigen Analy-
se und entwickelt eine Methode, um Ressourcenmixe zu finden, die an ein
gegebenes Marktmodell angepasst sind. Es wird festgestellt, dass Convex
Hull Pricing, eine Methode, bei der die Preise aus der konvexen Hülle der
optimalen Wertfunktion abgeleitet werden, über die kurz- und langfris-
tigen Kosten hinaus die geringsten Entschädigungen für inframarginale
Generatoren bietet, was zu einem Ressourcenmix führt, der die Konsumen-
tenrente maximiert. Unter der Annahme konvexer Kostenfunktionen und
eines konvexen zulässiges Bereichs bietet ein reiner Energiemarkt langfristig
eine perfekte Kostendeckung für Erzeuger im optimalen Ressourcenmix
sowie Signale für den Markteintritt oder -austritt von Ressourcen, wenn
neue, kostengünstigere innovative Technologien in Betrieb gehen. Es sind
allerdings Bedenken aufgekommen, ob reine Energiemärkte mit nichtkonve-
xen Kosten die Anbieter von Flexibilität angemessen entschädigen können,
da die Einheiten möglicherweise häufiger ein- und ausgeschaltet werden
müssen, um eine Residuallastkurve mit kürzeren Spitzen und steileren
Rampen zu erfüllen. Kapitel 5 zeigt, dass die Lockerung der Konvexitäts-
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annahme immer noch zu einer langfristigen Kostendeckung für flexible
Erzeuger führt, wenn ein hoher Anteil an variablen erneuerbaren Energien
mit Null-Grenzkosten besteht, dass aber im Vergleich zum konvexen Fall
ein Nachteil für die Verbraucher in Form von höheren Gewinnen für die
Erzeuger (höhere Preise für die Verbraucher) im langfristig angepassten
Ressourcenmix entsteht. Dieser Nachteil ist proportional zur Menge der
nichtkonvexen Ressourcen im System.

Unit-Commitment-Probleme sind in der Regel zu groß, um optimal gelöst
werden zu können, und müssen aufgrund von Nichtkonvexitäten rela-
xiert werden, um markträumende Preise zu finden. Kapitel 6 zeigt, dass
bei flexibler Nachfrage und Preismodellen, die von der primalen Lösung
abhängen, die Suche nach einer besseren nahezu-optimalen Lösung die Kon-
sumentenrente verbessern kann. Da Nichtkonvexitäten bedeuten, dass ein
einheitlicher Preis oft nicht die gesamtwirtschaftlich optimale Lösung unter-
stützt, werden einige Einheiten von der zentralen Dispatch-Entscheidung
abweichen wollen. Einheiten, die die Möglichkeit sehen, einen Gewinn
zu erzielen, können einen Anreiz haben, ihre Produktion selbst zu pla-
nen (ein Angebot mit null Gesamtkosten abzugeben). Unter Verwendung
von Reinforcement Learning wird in Kapitel 7 die Anreizkompatibilität
in nichtkonvexen Märkten bewertet und gezeigt, dass Marktmacht durch
Selbstplanung ausgeübt werden kann. In einem realistischen Testsystem
erhöhten strategische Gebote unter dem eingeschränkten konvexen Preis-
modell die Gesamtgewinne der Erzeuger beträchtlich, während Convex
Hull Pricing die auf dem kompetitiven Markt erzielten Gewinne bewahr-
te und zu niedrigeren Kosten für die Verbraucher führte als alternative
Modelle.

Während fossile Energieträger durch kohlenstoffarme Energieträger ersetzt
werden, können diese Ergebnisse den Netzbetreibern helfen zu verstehen,
wie sich die Preisbildung auf den Übergang auswirkt und inwieweit die
Energiemärkte signalisieren können, dass die richtige Art von Energieträ-
gern für den Versorgungssicherheitsbedarf gebaut werden muss. In Anbe-
tracht der Tatsache, dass immer mehr Systeme die Einführung von nodalen
Preisen in Erwägung ziehen, zeigt diese Arbeit die Lücke zwischen nodalen
Märkten und dem theoretischen Ideal konvexer Märkte auf und bietet
Wege für System- und Marktbetreiber, um nicht nur die Gesamtwohlfahrt
zu maximieren, sondern auch die Konsumentenrente.
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1
I N T R O D U C T I O N

1.1 motivation

With the growth in awareness of the impacts of climate change, the world
is moving toward decarbonization, and over 100 nations have pledged to
achieve net zero carbon emissions by 2050 [1]. A central part of economy-
wide decarbonization is increased electrification, with estimates that elec-
tricity could account for nearly 50% of total energy consumption by 2050
and that total electricity generation required will be 2.5 times higher than
in 2020 [2]. Over the past few decades, much of the world has moved from
a centrally planned electricity system where generation, transmission, and
distribution were bundled together to one in which market participants
interact in a regulated environment. While initially the motivation may
have drawn more from ideology than a careful cost-benefit analysis [3], the
goal is to foster innovation and create better incentives that eventually lead
to lower costs for consumers, avoiding the pitfalls of regulated monopolies.
However, as the transition to a decarbonized electricity sector is upon us,
questions arise about what markets can and cannot do well, underscoring a
tension between centralized planning and market solutions. The system by
which we invest, build, and price electricity has enormous consequences
for society, as the energy produced is not only an important input into the
economy but impacts the pace and pathway of decarbonization.

A centrally planned system may be a defensible position in the face of
climate emergency, but the extreme of this approach is beholden to political
whims and would likely stifle innovation and lead to higher costs. On
the other hand, a purely market-driven approach not accounting for the
externalities of carbon emissions may be too slow for the socially optimal
pace of decarbonization. While economics can tell us that a price sent by
markets ought to equilibrate around the optimal solution, the political
question is "when?". In most systems today we see a mix of government
intervention to support decabonization goals while relying on markets for
coordination of scheduling and dispatch of generators. However, electricity
is not like any other commodity; the electric power grid is the largest

1



2 introduction

machine humanity has ever built, and electricity follows the laws of physics,
not economics. A system operator must solve a large optimization problem
to balance supply and demand in real time while respecting the operating
constraints of the power plants and the transmission network. To schedule
and dispatch power plants to clear the electricity market, we must solve
a simplified version of this problem for computational reasons, and the
simplifications we make and how we derive prices from these simplified
models can have significant long-run impacts.

In theory, assuming convexity, an energy-only market provides perfect cost
recovery in the long-run for generators in the optimal resource mix as
well as signals for resources to enter or exit the market as new, lower-cost
innovative technologies come online [4]. However, electricity markets exhibit
what is known as the "missing money" problem, a phenomenon in which
energy market prices are insufficient for generators to fully recover their
capital costs [5]. Out-of-market actions by system operators to avoid grid
conditions in which scarcity prices emerge and price caps to mitigate market
power mean that prices often do not rise high enough for sellers to recover
their investment costs. As a result, capacity mechanisms have proliferated
in recent years both in the United States, Europe, and beyond [6], [7]. Yet
capacity markets rely on calculations of firm capacity that are challenging
to apply to variable renewable and energy storage resources [8] and may be
biased toward resources with high marginal costs and low capital costs [9],
penalizing resources that governments want to promote for decarbonization
goals. Electricity system operators around the world are actively discussing
the redesign of resource adequacy mechanisms, i.e., how we ensure that
there is enough of the right kind of resources installed on the system to
meet load reliably.

The core of any proposed market design must be the energy market spot
prices from which all other contracts are derived. To the extent that we
wish to keep electricity markets as not only a short-run dispatch signal
but an optimal long-run investment signal, it is imperative this signal
be as efficient as possible. However, two critical features of electricity
limit its ability to achieve the theoretical microeconomic ideal of perfect
long-run cost recovery via marginal prices. The first is that electricity
follows Kirchhoff’s laws, creating economically counter-intuitive flows and
requiring a representation of the transmission network. The most physically
accurate approach would be to clear markets with the full non-linear AC
optimal power flow equations, although this is typically not done due to
computational intensity and time required. A central difference between
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power markets globally is whether the market is cleared based on an
aggregated version of the underlying transmission network and simple bids
or the linearized DC optimal power flow and complex bids. The second
critical feature is that conventional electricity generators have non-convex
costs.1 The scheduling problem, unit commitment, requires binary decision
variables of whether generators are turned on or off, and no-load and
minimum operating requirements may also introduce non-convexities into
the system’s optimal value function. Non-convexities can additionally arise
from the configuration of combined cycle plants and modeling of pumped
hydro storage generators. Non-convexities can lead to situations in which
the central dispatch solution from the system operator results in a unit not
recovering its short-run fixed costs, not recovering its short-run variable
costs, or perceiving an opportunity to make a profit but not having its bid
accepted.

These challenges of electricity market design are topics of active discussion.
While the United States moved during the 2000s and 2010s from zonal
to nodal pricing, Europe still has a uniform price per zone, requiring
increasingly higher redispatch costs to obtain a physically feasible solution
after the economic market clearing. Debate over whether to move to a
nodal network is ongoing [10], with the UK seriously considering making
the transition [11]. However, even in the academic ideal of nodal pricing,
marginal pricing as a market clearing mechanism does not have the desired
economic properties of being able to clear the market while providing a
dispatch solution from which no generator has an incentive to deviate.
Non-convex costs with a uniform price result in lost opportunity costs and
often require make-whole payments for short-run cost recovery. System
operators in the United States are actively debating what non-convex pricing
method to use [12], [13]. New low-carbon technologies or demand-response
schemes that are best modeled with integer variables could also increase
non-convexities in the future.

The decision of how to form prices in electricity markets is particularly
important during the energy transition in which prices act as signals not
only to invest in new resources but also to drive retirement of the con-
ventional fossil-fuel fleet. Exit will be just as important as entry in the
energy transition, and we want price signals to provide the lowest-cost
resource mix possible while still meeting system reliability needs. We want

1 The focus of this work is to isolate the impact of non-convex operating costs, although non-
convex investment costs are also present. See Section 2.5 for an expanded definition and
example.



4 introduction

to preserve full-strength spot prices to the extent possible to act as efficient
dispatch and investment signals while also hedging consumers appropri-
ately. Non-convexities, system operator risk aversion, price suppression
for market power mitigation, and increasing shares of variable renewable
energy may lead to lack of cost recovery. We must discern how much of
this missing money is due to each cause, especially as we will start to see
thermal power plants recovering less and less in the wholesale markets
as some are correctly signaled to exit. Understanding the drivers behind
price formation can prevent overcompensation to fossil-fuel assets with
non-convex costs via market intervention, side payments, and capacity pay-
ments, which may otherwise slow the transition. This dissertation examines
the question of how close we can get to the theoretical ideal of efficient
prices given transmission constraints and non-convexities in the system
operator’s optimal value function.

1.2 organization and contributions

The goal of this thesis is to investigate how features particular to the electric-
ity network impact price formation in wholesale electricity markets, focus-
ing on the representation of the transmission network and non-convexities.
A new method of determining zonal prices with more granular transmission
representation still lags nodal prices in market efficiency. However, nodal
prices with complex bids must be derived from a relaxation of the unit
commitment problem, and it is imperative we understand how impactful
the choice of non-convex pricing method is and how it may intersect with
changes in the grid to include more variable renewable energy and flexible
demand.

1.2.1 Electricity Network and Market Background

Chapter 2 provides an introduction to the problem of designing markets
for electricity. It compares the simplified and integrated market designs
dominant in Europe and the United States, respectively. The optimality
conditions for an optimization problem of a central planner maximizing
social welfare and an equilibrium problem in which participants try to
maximize their individual benefits are derived. These conditions are equiv-
alent with marginal pricing assuming convexity. These conditions are then
extended to include linear transmission network constraints and investment
decisions. Next, it is shown that this equivalence of the optimization and
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equilibrium solution is broken with the introduction of non-convexities.
The role of non-convexities in the integrated and simplified market models
is discussed. This chapter ends with a brief discussion of the challenges on
the horizon in managing uncertainty from increasing shares of stochastic
renewables and risk-management in the long-run.

1.2.2 Part I: Aggregation of the Transmission Network

In the simplified market model, the electricity market is cleared based on
an aggregated version of the underlying transmission network and simple
bids. In the complex model, the market is cleared based on the DC optimal
power flow and complex bids. The simplified form is used in Europe,
where zonal prices are derived. Chapter 3 explores the methodological
choices behind a new approach called flow-based market coupling that
seeks to better represent network congestion in zonal markets. While zonal
markets typically force participants to internalize their non-convexities in
simple bids, this chapter shows the impact of combining an aggregated
transmission network with complex bids in the form of unit commitment
constraints. Existing base case approaches to define parameters for the
aggregated network perform poorly compared to a base case using the
nodal solution across all modeling choices considered. A substantial welfare
gap between the simplified market clearing with an aggregated transmission
network and the nodal market ideal remains.

1.2.3 Part II: Non-Convex Pricing in the Long-Run

However, even in the theoretical ideal of nodal pricing, marginal pricing as a
market clearing mechanism does not have the desired economic properties
of being able to clear the market while providing a dispatch solution for
which no generator has an incentive to deviate. This is because there are
non-convexities in electricity markets due to binary startup and shutdown
decisions (unit commitment), no-load costs, and minimum operating levels.
Generators thus may not always recover their fixed startup costs or vari-
able costs or may even see a foregone profit opportunity, leading to lost
opportunity costs and the need for make-whole payments.

System operators are actively debating what pricing model to use, but it
is important to remember that prices are not meant to support the current
resource mix but rather to provide signals for entry and exit so that the
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lowest-cost resource mix is achieved in the long-run. Chapter 4 analyzes
non-convex pricing models in a long-run analysis, developing a new method
to find quasi-break-even solutions in a non-convex setting. Convex hull
pricing, a method in which prices are derived from the convex hull of the
optimal value function, is found to provide the least over-compensation
to inframarginal units, leading to resource mixes that maximize consumer
surplus.

In theory, assuming convexity of cost functions and feasible regions and that
producers can perfectly adapt,2 an energy-only market provides perfect cost
recovery in the long-run for generators in the optimal resource mix. Concern
has arisen as to whether energy-only markets with non-convex costs can
adequately compensate providers of flexibility as units may need to cycle
on and off more frequently to meet a net load curve with shorter peaks
and steeper ramps. Chapter 5 demonstrates that relaxing the assumption of
convexity still leads to long-run cost recovery for flexible generators in the
presence of high shares of zero-marginal cost variable renewable energy,
but that there is a penalty to consumers (relative to the convex case) in the
form of higher profits for producers in the long-run adapted resource mix.
This penalty is proportional to the amount of non-convex resources in the
system.

1.2.4 Part III: Non-Convex Pricing in the Short-Run

Unit commitment problems are typically too large to be solved to optimality
and must be relaxed to find market-clearing prices due to non-convexities.
Most non-convex pricing models depend on the primal solution, and thus
prices vary based on which near-optimal solution is chosen. Chapter 6
shows that when we remove the conventional assumption of fixed demand,
finding a better near-optimal solution improves outcomes for consumers.
This result depends on the level of scarcity rent from price-setting elastic
demand.

Because non-convexities mean that a uniform price cannot guarantee in-
centive compatibility, some units will desire to deviate from the central
dispatch decision. Units that perceive the opportunity to make a profit
may be incentivized to self-commit (submitting an offer with zero fixed
operating costs) or self-schedule their production (submitting an offer with

2 Producers that can perfectly adapt in the long-run can build an unlimited quantity of a given
technology type at a given cost. See Section 2.4 for further discussion.
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zero total cost). Using reinforcement learning, Chapter 7 simulates bidder
behavior to show that market power can be exercised by self-scheduling and
self-committing. In a realistic test system, adverse bids under the restricted
convex pricing model increased total producer profits substantially, while
convex hull pricing preserved the profits made at the competitive market
solution and resulted in a lower cost to consumers.

1.3 publications

The work presented in this thesis has been reported in the following publi-
cations:

1.3.1 Journal articles

Byers, C., Hug, G. (2022). "Long-run optimal pricing in electricity markets
with non-convex costs." European Journal of Operational Research.
doi:10.1016/j.ejor.2022.07.052 [14] [Chapter 4]

Byers, C., Hug, G. (2022). "Economic impacts of near-optimal solutions with
non-convex pricing." Electric Power Systems Research 211, 108287.
doi:10.1016/j.epsr.2022.108287 [15] [Chapter 6]

1.3.2 Conference proceedings

Byers, C., Hug, G. (2022). "Economic impacts of near-optimal solutions with
non-convex pricing." 22nd Power Systems Computation Conference (PSCC).
doi:10.1016/j.epsr.2022.108287 [15] [Chapter 6]

Byers, C., Hug, G. (2022). "Flexibility compensation with increasing stochas-
tic variable renewable energy in non-convex markets." 17th International
Conference on Probabilistic Methods Applied to Power Systems (PMAPS).
doi:10.1109/PMAPS53380.2022.9810627 [16] [Chapter 5]

Byers, C., Hug, G. (2020). "Modeling flow-based market coupling: Base case,
redispatch, and unit commitment matter." 17th International Conference on
the European Energy Market (EEM).
doi:10.1109/EEM49802.2020.9221922 [17] [Chapter 3]

https://doi.org/10.1016/j.ejor.2022.07.052
https://doi.org/10.1016/j.epsr.2022.108287
https://doi.org/10.1016/j.epsr.2022.108287
https://doi.org/10.1109/PMAPS53380.2022.9810627
https://doi.org/10.1109/EEM49802.2020.9221922
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1.3.3 Working papers

Byers, C., Eldridge, B. (2022) "Auction designs to increase incentive compat-
ibility and reduce self-scheduling in electricity markets."
arXiv:2212.10234 [18] [Chapter 7]

https://arxiv.org/abs/2212.10234


2
E L E C T R I C I T Y N E T W O R K A N D M A R K E T
B A C K G R O U N D

This chapter provides an overview of the background and mathematical
preliminaries necessary for the following chapters. For additional discussion
of power system economics and regulation, see [19]–[21]. The focus of
subsequent chapters is on questions related to the ability of real-world
electricity markets to achieve the theoretical properties presented here.
Section 2.1 introduces the differences between the simplified and integrated
market model. Section 2.2 describes the optimality conditions for an ideal
central planner and a perfectly competitive market. Section 2.3 introduces
transmission constraints to these two problem formulations, Section 2.4
introduces investment decisions, and Section 2.5 introduces non-convexities.
The chapter concludes with a discussion of uncertainty, resource adequacy,
and risk management in Section 2.6.

2.1 simplified vs integrated market model

Electricity takes the path of least resistance based on the laws of physics,
not economics. Supply must match demand in real time, and the flow of
electricity can be economically counter-intuitive. This is because electricity
obeys AC optimal power flow (OPF) constraints based on Kirchhoff’s
laws [22]. These constraints are highly nonlinear and non-convex [23], and
approximations are used in reality to schedule and dispatch generators.
Broadly, two approaches have formed: an integrated and a simplified market
structure [24].

2.1.1 Integrated Market Model

In the integrated market, participants submit complex bids reflecting their
operating constraints. Such constraints include ramping rate limits, min-
imum load requirements, minimum up and down times, no-load costs,
startup costs, and non-decreasing variable costs. The system operator solves
an optimization problem to minimize costs subject to network constraints

9
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represented by a DCOPF with losses, a linear approximation of AC power
flow [25]. Market prices are ideally set by the marginal cost to deliver power
at each network location, or node, in the network, which incentivizes gener-
ators in the most efficient dispatch solution subject to transmission system
limits to produce power [26]–[28]. This approach is called nodal pricing.
However, the scheduling problem for generators is modeled with binary
variables reflecting whether a unit is committed, leading to an optimal
value function in this integrated market model that is non-convex, and thus
does not always have marginal prices. Where marginal prices are derived
from the convex relaxation with binary variables fixed to the optimal val-
ues previously found, they may not support a competitive equilibrium in
which no participant wishes to deviate from the system operator’s dispatch
decision [29]. Determining which pricing model to use, especially as the
energy transition requires the entry and exit of large numbers of generators,
is a subject of ongoing debate [12], [13], [30].

2.1.2 Simplified Market Model

In the simplified market, participants internalize their non-convexities into
simple bids and an aggregated, approximated transmission network is
used [24], [31]. This approach is called zonal pricing. The dispatch solution
is often far from physically feasible and units must be redispatched by the
system operator. The zonal market clearing and nodal redispatch creates
the opportunity for the exercise of market power via strategic bidding,
known as inc-dec gaming [32]. While jurisdictions with competitive elec-
tricity markets in the United States have moved from zonal markets to
nodal markets [3], the market in Europe is still cleared zonally, followed by
redispatch. Europe has begun transitioning from available transfer capacity
(ATC) to flow-based market coupling (FBMC) in attempt to decrease redis-
patch requirements [31]. However, [33] demonstrate that both zonal market
designs achieve similar overall cost efficiencies and are vastly outperformed
by a nodal design. Zonal pricing also obscures important locational invest-
ment signals, leading to inefficient investment in the long run [34]. There is
also growing concern that incorporating high shares of variable renewable
energy is likely to increase redispatch costs and widen the gap between the
zonal and nodal designs [24], [35].
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2.2 central planning vs competitive markets

In the electricity scheduling and dispatch problem, we wish to maximize
social welfare, or social surplus, subject to the operating constraints of the
generators and the power balance equality. The social surplus is the sum
of consumer and producer surplus, where consumer surplus is the benefit
to demand in excess of costs paid, and producer surplus is the revenue
received in excess of costs, i.e., profit. This is equivalent to maximizing the
benefit to demand minus the total producer costs.

We can formulate this problem as an optimization problem, in which a cen-
tral planner seeks to maximize social welfare. Conversely, we can formulate
this problem as an equilibrium problem, in which each participant seeks
to maximize individual benefit [36], [37]. If the problem is convex, then
the optimality conditions of the optimization and equilibrium problem are
equivalent, and thus the solutions are identical. The interpretation is that an
ideal central planner maximizing social welfare reaches the same decision
as a perfectly competitive market with marginal pricing, as depicted in
Figure 2.1.

Figure 2.1: Equivalence of central planning and market equilibrium

2.2.1 Optimization

To illustrate this concept, we formulate a simple market clearing problem for
a convex electricity market with partially elastic demand with no network,
ramping, or unit commitment constraints. The example is adapted from [36],
[37].

Nomenclature



12 electricity network and market background

Indices and Sets
g 2 G Set of generators
GT ✓ G Set of thermal generators
GV ✓ G Set of VRE resources
t 2 T Set of time periods (hours)
l 2 L Set of demand bids

Parameters
Cg Variable cost ($/MWh)
Pmax

g Maximum operating capacity (MW)
Ptg Maximum output for VRE resource (MW)
Bl Value of demand bid l ($/MWh)
Dtl Maximum quantity of demand bid l at time t (MW)

Variables
ptg Committed generation for generator g at time t (MW)
dtl Amount of cleared demand bid l at time t (MW)

Primal Formulation

The primal formulation is given as:

max
p, d

Â
t2T

Â
l2L

Bldtl � Â
t2T

Â
g2G

Cg ptg (2.1a)

s.t. Â
l2L

dtl= Â
g2G

ptg 8t 2 T (2.1b)

0  dtl  Dtl 8t 2 T, l 2 L (2.1c)

0  ptg  Pmax
g 8t 2 T, g 2 GT (2.1d)

0  ptg  Ptg 8t 2 T, g 2 GV (2.1e)

The objective function (2.1) maximizes social surplus by maximizing benefit
to demand and minimizing costs to producers. Constraint (2.1b) enforces
power balance at each time step, (2.1c) defines a range for each demand
bid, (2.1d) limits the minimum and maximum operating capacity of each
thermal generator, and (2.1e) allows for penalty-free curtailment of variable
renewable energy (VRE) generators.

KKT Conditions

We have a primal problem of the form:
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min
x

f (x) (2.2a)

s.t. h(x) = 0 : l (2.2b)
g(x)  0 : µ (2.2c)

where the Lagrangian is given as:

L(x, l, µ) = f (x) + l>h(x) + µ>g(x) (2.3)

The optimality Karush–Kuhn–Tucker (KKT) conditions require setting the
derivative of the Lagrangian with respect to each primal variable to 0 and
adding complementarity conditions to the inequalities:

dL(x, l, µ)
dx

= 0 (2.4)

h(x) = 0 (2.5)
0  �g(x) ? µ � 0 (2.6)

l 2 free (2.7)

For our problem, the Lagrangian is:
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L(p, d, l, µ) =� Â
t2T

Â
l2L

Bldtl + Â
t2T

Â
g2G

Cg ptg

+ Â
t2T

lt(Â
l2L

dtl � Â
g2G

ptg)

+ Â
t2T

Â
l2L

µD
tl (dtl � Dtl)

+ Â
t2T

Â
g2GT

µGT
tg (ptg � Pmax

g )

+ Â
t2T

Â
g2GV

µGV
tg (ptg � Ptg)

� Â
t2T

Â
l2L

µD
tl dtl

� Â
t2T

Â
g2G

µG
tl ptg (2.8)

and thus the optimality KKT conditions are:

Cg � lt + µGT
tg � µG

tg = 0 8t 2 T, g 2 GT (2.9)

Cg � lt + µGV
tg � µG

tg = 0 8t 2 T, g 2 GV (2.10)

�Bl + lt + µD
tl � µD

tl = 0 8t 2 T, l 2 L (2.11)

Â
l2L

dtl � Â
g2G

ptg = 0 8t 2 T (2.12)

0  dtl ? µD
tl � 0 8t 2 T, l 2 L (2.13)

0  ptg ? µG
tg � 0 8t 2 T, g 2 G (2.14)

0  �dtl + Dtl ? µD
tl � 0 8t 2 T, l 2 L (2.15)

0  �ptg + Pmax
g ? µGT

tg � 0 8t 2 T, g 2 GT (2.16)

0  �ptg + Ptg ? µGV
tg � 0 8t 2 T, g 2 GV (2.17)

(2.18)
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Dual Formulation

The marginal prices are the dual variables (or Lagrangian multipliers)
of the power balance constraints. Here we formulate the dual, removing
variables associated with non-negativity constraints by converting equalities
to inequalities:

max
l, µD

tl , µGTµGV
Â
t2T

Â
l2L
�µD

tl Dtl + Â
t2T

Â
g2GT

�µGT
tg Pmax

g + Â
t2T

Â
g2GV

�µGV
tg Ptg

(2.19a)

s.t. � Bl + lt + µD
tl � 0 8t 2 T, l 2 L (2.19b)

Cg � lt + µGT
tg � 0 8t 2 T, g 2 GT (2.19c)

Cg � lt + µGV
tg � 0 8t 2 T, g 2 GV (2.19d)

µD
tl , µGT , µGV � 0 (2.19e)

2.2.2 Equilibrium

Now we turn to the question of whether the market participants are satisfied
with the solution of the optimization problem. Given the set of prices, do
any generators wish to deviate from the dispatch schedule? To answer
this question, we can formulate an optimization problem for each market
participant [36].

Individual Optimization Problems

The optimization problem faced by each elastic demand offer l 2 L:

max
dl

Â
t2T

(Bl � lt)dtl (2.20a)

s.t. 0  dtl  Dtl 8t 2 T : µD, µD (2.20b)

The optimization problem faced by each thermal generator g 2 GT is:
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max
pg

Â
t2T

(lt � Cg)ptg (2.21a)

s.t. 0  ptg  Pmax
g 8t 2 T : µGT , µGT (2.21b)

The optimization problem faced by each VRE generator g 2 GV is:

max
pg

Â
t2T

(lt � Cg)ptg (2.22a)

s.t. 0  ptg  Ptg 8t 2 T : µGV , µGV (2.22b)

The price lt is a parameter in each individual optimization problem. For
each participant to contribute to price formation, we must add the opti-
mization problem of the price setter, who wishes to minimize the supply
and demand mismatch.

min
l

Â
t2T

lt(Â
l2L

dtl � Â
g2G

ptg) (2.23a)

KKT Conditions

To solve this equilibrium problem, we replace each individual optimization
problem by its KKT optimality conditions.

The sum of the Lagrangians for the elastic demand offers is:

L(d, µ) =� Â
t2T

Â
l2L

(Bl � lt)dtl

+ Â
t2T

Â
l2L

µD
tl (dtl � Dtl)

� Â
t2T

Â
l2L

µD
tl dtl

(2.24)

The KKT conditions are:
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dL
ddtl

= �Bl + lt + µD
tl � µD

tl = 0 8t 2 T, l 2 L (2.25)

0  dtl ? µD
tl � 0 8t 2 T, l 2 L (2.26)

0  �dtl + Dtl ? µD
tl � 0 8t 2 T, l 2 L (2.27)

(2.28)

The sum of the Lagrangians for the thermal generators is:

L(p, µ) =� Â
t2T

Â
g2GT

(lt � Cg)ptg

+ Â
t2T

Â
g2GT

µGT
tg (ptg � Pmax

g )

� Â
t2T

Â
g2GT

µG
tl ptg (2.29)

and the KKT conditions are:

dL
dptg

= Cg � lt + µGT
tg � µG

tg = 0 8t 2 T, g 2 GT (2.30)

0  ptg ? µG
tg � 0 8t 2 T, g 2 GT (2.31)

0  �ptg + Pmax
g ? µGT

tg � 0 8t 2 T, g 2 GT (2.32)

The sum of the Lagrangians for the VRE generators is:

L(p, µ) =� Â
t2T

Â
g2GV

(lt � Cg)ptg

+ Â
t2T

Â
g2GV

µGV
tg (ptg � Ptg)

� Â
t2T

Â
g2GV

µG
tl ptg (2.33)
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and the KKT conditions are:

dL
dptg

= Cg � lt + µGV
tg � µG

tg = 0 8t 2 T, g 2 GV (2.34)

0  ptg ? µG
tg � 0 8t 2 T, g 2 GV (2.35)

0  �ptg + Ptg ? µGV
tg � 0 8t 2 T, g 2 GV (2.36)

(2.37)

The Lagrangian for the price setter is simply:

L(l) = Â
t2T

lt(Â
l2L

dtl � Â
g2G

ptg) (2.38)

and thus the KKT conditions are satisfied when:

dL
dlt

= Â
l2L

dtl � Â
g2G

ptg = 0 8t 2 T (2.39)

Collectively, these conditions are:

Cg � lt + µGT
tg � µG

tg = 0 8t 2 T, g 2 GT (2.40)

Cg � lt + µGV
tg � µG

tg = 0 8t 2 T, g 2 GV (2.41)

�Bl + lt + µD
tl � µD

tl = 0 8t 2 T, l 2 L (2.42)

Â
l2L

dtl � Â
g2G

ptg = 0 8t 2 T (2.43)

0  dtl ? µD
tl � 0 8t 2 T, l 2 L (2.44)

0  ptg ? µG
tg � 0 8t 2 T, g 2 G (2.45)

0  �dtl + Dtl ? µD
tl � 0 8t 2 T, l 2 L (2.46)

0  �ptg + Pmax
g ? µGT

tg � 0 8t 2 T, g 2 GT (2.47)

0  �ptg + Ptg ? µGV
tg � 0 8t 2 T, g 2 GV (2.48)

(2.49)
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The KKT conditions are identical to those found for the original optimiza-
tion problem, meaning that the optimal solution to the central planner’s
optimization problem is the same as the equilibrium solution for the compet-
itive market. The marginal prices both clear the market (the power balance
constraint is satisfied) and support dispatch, meaning that no producer
wishes to deviate from the central operator’s dispatch decision. The solution
is thus a Nash equilibrium.

2.2.3 Example Problem Solution

Here we solve the example problem using data from the Grid Modernization
Lab Consortium’s Reliability Test System [38]. We aggregate the 3 zones,
omit the energy storage unit, and use bid-in demand assuming 70% of
demand at each time period is inelastic (with a benefit of $100/MWh) and
30% of demand is elastic, represented by 20 equally-sized bids descending
in price from $100/MWh to $5/MWh. We solve the problem for the horizon
of January 1.

We solve the primal problem with JuMP in Julia with Gurobi as the solver.
|T|=24, |G|=122, |GT |=73, |GV |=49, and |L|=21. The model has an objective
value of $6.96 million. There are |T| ⇤ |L|+ |T| ⇤ |G| = 3432 variables and
|T| ⇤ |L|+ |T| ⇤ |G|+ |T| = 3456 constraints. Results are shown in Figure
2.2 and Figure 2.3.

Figure 2.2: Optimal values
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Figure 2.3: Market clearing prices

The dual problem has an objective value identical to the primal solution
of $6.96 million with 3432 constraints and 3456 variables, the opposite of
the primal. Market clearing prices are identical to the primal, as shown in
Figure 2.4.

The KKT conditions formulation is solved as a minimization problem
with an objective function of 1 with the KKT conditions as the constraints.
Complementarity constraints are reformulated using the Big M method,
yielding an identical objective function of $6.96 million. The prices found
are identical to the methods via the primal and dual formulations, as shown
in Figure 2.4.

2.2.4 Properties of Market-Clearing Mechanisms

We have seen that marginal pricing in the convex setting has the desirable
properties of being able to clear the market and support dispatch. In general,
there are four properties that we would like a market-clearing mechanism
to have [39]:

• Market efficiency: The social surplus is maximized, and participants
cannot improve their payoffs by unilaterally deviating from the market
outcome. This is the property we are describing when we say that
marginal pricing clears the market and supports dispatch.
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Figure 2.4: Market clearing prices found via primal, dual, and KKT formulations

• Cost recovery: Participants should recover their operational costs. In
the short-run, participants do not necessarily profit sufficiently to
recover their fixed capital costs (see further discussion in Section 2.4
about the relationship between marginal pricing and long-run cost
recovery).

• Revenue adequacy: The market operator does not have a deficit. The
amount of revenue recovered from consumers is at least as great as
the amount of revenue paid to suppliers.

• Incentive compatibility: Participants do best when offering their
true preferences or costs. A generator in a market that is incentive-
compatible maximizes its own payoff by bidding its true supply costs.
No participants have an incentive to exercise market power by bidding
strategically.

From the Hurwicz theorem (also known as the "impossibility theorem"),
no market-clearing mechanism ensures all four properties at the same
time [39]–[41]. Trade-offs must be made based on what properties are
considered most desirable. If participants all bid truthfully, marginal pricing
in the convex setting achieves market efficiency, cost recovery, and revenue
adequacy. However, incentive compatibility cannot be guaranteed in the
absence of perfect competition. If incentive compatibility does not hold,
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then participants may exercise market power, which means that market
efficiency is no longer achieved.

Alternative mechanisms include pay-as-bid, in which each participant is
compensated based on their supply offer instead of a market-clearing
uniform price. However, the incentive in a pay-as-bid auction is for each
participant to bid as close to the highest-cleared bid without exceeding it.
The resulting equilibrium may distort the merit order, e.g., generators that
actually have a lower variable cost may be dispatched after generators that
have a higher variable cost [42], [43]. Vickrey–Clarke–Groves (VCG) has the
interesting property of ensuring incentive compatibility; truthful bidding
is the dominant strategy [44]. However, VCG does not guarantee revenue
adequacy, although strategies have been proposed to reduce the market
operator’s budget deficit [44], [45].

2.2.5 Regulatory Challenges

Under convexity and perfect competition that incentivizes truthful bidding,
marginal pricing yields a competitive equilibrium. However, the conditions
of perfect competition, including perfect information, no externalities, no
transaction costs, a large number of buyers and sellers, and no economies
of scale [46] are unlikely to be met in reality. Market power mitigation
measures are an important component of real-world electricity markets for
this reason [47].

While markets are not perfectly competitive in reality, central planners are
also imperfect. Central planning has many inefficiencies [48], including a
lack of perfect information and slow adaptation to changing conditions. A
regulated monopolist must be prevented from exploiting its market power
and may have insufficient incentives to innovate [21].

The bet made in restructuring or liberalizing the electricity sector is that
new organizational structures will provide long-term benefits to consumers.
Competitive wholesale and retail markets could improve efficiency and
better adapt to consumer preferences, incentive regulation of the transmis-
sion network could improve the efficiency of operations via facilitating
competition, and technology-neutral competitive procurement could reduce
the role of government and political influence [49], [50]. The argument for
electricity markets over central planning is summarized in Figure 2.5.
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Figure 2.5: A market solution proposes that the social surplus achievable in
reality with markets is higher than with central planning

2.3 transmission constraints

The properties of marginal pricing described above still hold with the
inclusion of transmission constraints, so long as the formulation remains
convex. In the equilibrium problem representing the competitive market, the
transmission owner acts as a spatial arbitrager, buying power at low-price
nodes and selling power at high-price nodes [36]. The following example is
adapted from [36].

The DCOPF, a linearization of the ACOPF [25], changes the primal formula-
tion of the central operators problem, replacing the power balance equation
(2.1b) with the following constraints:

Â
l2In

dtl + Â
m2Wn

Bn,m(qtn � qtm) = Â
g2In

ptg 8t 2 T, n 2 N (2.50)

�Fn,m  Bn,m(qtn � qtm)  Fn,m 8t 2 T, n 2 N, m 2 Wn (2.51)
qt,re f = 0 8t 2 T (2.52)

where l, g 2 In indicates all elastic demands and generators at node n,
m 2 Wn indicates all nodes m connected to node n, N is the set of all nodes,
B is the branch susceptance matrix, q is the nodal voltage angles, and F is
the branch flow limit.

The portion of the Lagrangian LD associated with these constraints is:
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LD(p, d, l, µ, h) = Â
t2T

Â
n2N

ltn( Â
l2In

dtl + Â
m2Wn

Bn,m(qtn � qtm)� Â
g2In

ptg)

� Â
t2T

Â
n2N

Â
m2Wn

µF
t,n,m(Fn,m + Bn,m(qtn � qtm))

+ Â
t2T

Â
n2N

Â
m2Wn

µF
t,n,m(Bn,m(qtn � qtm)� Fn,m)

+ Â
t2T

htqt,re f (2.53)

The KKT conditions are:

dL
dqtn

= Â
m2Wn

Bn,m(ltn � ltm + µF
t,n,m � µF

t,m,n � µF
t,n,m + µF

t,m,n) + ht = 0

8t 2 T, n 2 N
(2.54)

Â
l2In

dtl + Â
m2Wn

Bn,m(qtn � qtm)� Â
g2In

ptg = 0 8t 2 T, n 2 N

(2.55)

qt,re f = 0 8t 2 T
(2.56)

0  Fn,m + Bn,m(qtn � qtm) ? µF
t,n,m � 0 8t 2 T, n 2 N, m 2 Wn

(2.57)

0  Fn,m � Bn,m(qtn � qtm) ? µF
t,n,m � 0 8t 2 T, n 2 N, m 2 Wn

(2.58)

In the market equilibrium problem, both the demands and the generators
now have the parameter ltn, the price at a given time at the node to which
they are connected. The price setter’s problem becomes:

min
l

Â
t2T

Â
n2N

ltn( Â
l2In

dtl + Â
m2Wn

Bn,m(qtn � qtm)� Â
g2In

ptg) (2.59a)

The transmission owner’s problem is:
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max
q

Â
n2N,m2Wn

ltn(Bn,m(qtm � qtn)) (2.60a)

s.t. � Fn,m  Bn,m(qtn � qtm)  Fn,m 8t 2 T, n 2 N, m 2 Wn

: µF, µF (2.60b)
qt,re f = 0 8t 2 T : h (2.60c)

where the objective function is the congestion rent.

The KKT condition associated with the price setter’s problem is sim-
ply:

dL
dltn

= Â
l2In

dtl + Â
m2Wn

Bn,m(qtn � qtm)� Â
g2In

ptg = 0 8t 2 T, n 2 N

(2.61)

The Lagrangian of the transmission owner’s problem is:

L(q) =� Â
t2T

Â
n2N

ltn(Bn,m(qtm � qtn))

� Â
t2T

Â
n2N

Â
m2Wn

µF
t,n,m(Fn,m + Bn,m(qtn � qtm))

+ Â
t2T

Â
n2N

Â
m2Wn

µF
t,n,m(Bn,m(qtn � qtm)� Fn,m)

+ Â
t2T

htqt,re f (2.62)

The KKT conditions for the transmission owner’s problem are:
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dL
dqtn

= Â
m2Wn

Bn,m(ltn � ltm + µF
t,n,m � µF

t,m,n � µF
t,n,m + µF

t,m,n) + ht = 0

8t 2 T, n 2 N
(2.63)

qt,re f = 0 8t 2 T
(2.64)

0  Fn,m + Bn,m(qtn � qtm) ? µF
t,n,m � 0 8t 2 T, n 2 N, m 2 Wn

(2.65)

0  Fn,m � Bn,m(qtn � qtm) ? µF
t,n,m � 0 8t 2 T, n 2 N, m 2 Wn

(2.66)

Combining the KKTs of the price setter and transmission owner, we see we
have identical KKTs to the modified central planner’s optimization problem.
Thus, the inclusion of DCOPF constraints still yield a solution to the opti-
mization problem that is a Nash equilibrium, in which no participants wish
to unilaterally deviate. This method of pricing inclusive of transmission
constraints is called nodal pricing [28].

2.4 investment

In a deterministic setting with convex costs, if producers can perfectly
adapt in the long-run, then the producer supply curve becomes perfectly
elastic, yielding no producer surplus. Producers can perfectly adapt in the
long-run when an unlimited amount of a given technology type can be
built at a given cost.1 All social surplus is then consumer surplus, and
producers make no profits but instead perfectly recover their investment
and operating costs.

The central planner’s capacity expansion problem is a modification of
(2.1):

1 In reality, producers are unlikely to be able to perfectly adapt in the long-run as technology
types may only be able to be built in certain fixed sizes, costs may change as additional units
are built at the same location, and certain locations can only support a limited quantity of
units.
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max
x, d, p

Â
t2T

Â
l2L

Bldtl � Â
t2T

Â
g2G

Cg ptg � Â
g2G

Cinv
g xg (2.67a)

s.t. Â
l2L

dtl= Â
g2G

ptg 8t 2 T (2.67b)

0  dtl  Dtl 8t 2 T, l 2 L (2.67c)
0  ptg  Pmax

g xg 8t 2 T, g 2 G (2.67d)

xg � 0 8g 2 G (2.67e)

where x is the build decision and Cinv is the investment cost.

The Lagrangian is:

L(p, d, l, µ) =� Â
t2T

Â
l2L

Bldtl + Â
t2T

Â
g2G

Cg ptg + Â
g2G

Cinv
g xg

+ Â
t2T

lt(Â
l2L

dtl � Â
g2G

ptg)

+ Â
t2T

Â
l2L

µD
tl (dtl � Dtl)

+ Â
t2T

Â
g2G

µG
tg(ptg � Pmax

g xg)

� Â
t2T

Â
l2L

µD
tl dtl

� Â
t2T

Â
g2G

µG
tl ptg

� Â
g2G

µX
g (2.68)

The KKT conditions are:
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dL
dd

= �Bl + lt + µD
tl � µD

tl = 0 8t 2 T, l 2 L (2.69)

dL
dp

= Cg � lt + µG
tg � µG

tg = 0 8t 2 T, g 2 G (2.70)

dL
dx

= Cinv
g � Â

t2T
µG

tgPmax
g � µX

g = 0 8g 2 G (2.71)

Â
l2L

dtl � Â
g2G

ptg = 0 8t 2 T (2.72)

0  dtl ? µD
tl � 0 8t 2 T, l 2 L (2.73)

0  ptg ? µG
tg � 0 8t 2 T, g 2 G (2.74)

0  xg ? µX
g � 0 8g 2 G (2.75)

0  �dtl + Dtl ? µD
tl � 0 8t 2 T, l 2 L (2.76)

0  �ptg + Pmax
g xg ? µG

tg � 0 8t 2 T, g 2 G (2.77)

(2.78)

The equilibrium problem for a competitive market consists of the individual
optimization functions for each elastic demand, each producer, and the
price setter.

The optimization problem for demand l 2 L is the same as in Section
2.2.2:

max
dl

Â
t2T

(Bl � lt)dtl (2.79a)

s.t. 0  dtl  Dtl 8t 2 T : µD, µD (2.79b)

The optimization problem for each generator g 2 GT is:

max
pg

Â
t2T

(lt � Cg)ptg � Cinv
g xg (2.80a)

s.t. 0  ptg  Pmax
g xg 8t 2 T : µG, µG (2.80b)

xg � 0 : µX (2.80c)
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The optimization problem for the price setter is also the same as in Section
2.2.2:

min
l

Â
t2T

lt(Â
l2L

dtl � Â
g2G

ptg) (2.81a)

The Lagrangians of the demands and price setters are the same as in Section
2.2.2, yielding identical KKT conditions.

The sum of the Lagrangians for the elastic demand offers is:

L(d, µ) =� Â
t2T

Â
l2L

(Bl � lt)dtl

+ Â
t2T

Â
l2L

µD
tl (dtl � Dtl)

� Â
t2T

Â
l2L

µD
tl dtl

(2.82)

with KKT conditions:

dL
ddtl

= �Bl + lt + µD
tl � µD

tl = 0 8t 2 T, l 2 L (2.83)

0  dtl ? µD
tl � 0 8t 2 T, l 2 L (2.84)

0  �dtl + Dtl ? µD
tl � 0 8t 2 T, l 2 L (2.85)

(2.86)

The Lagrangian for the price setter is:

L(l) = Â
t2T

lt(Â
l2L

dtl � Â
g2G

ptg) (2.87)

with KKT conditions:
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dL
dlt

= Â
l2L

dtl � Â
g2G

ptg = 0 8t 2 T (2.88)

The Lagrangian of the producers is:

L(p, µ) =� Â
t2T

Â
g2GT

(lt � Cg)ptg + Â
g2G

Cinv
g xg

+ Â
t2T

Â
g2G

µG
tg(ptg � Pmax

g xg)

� Â
t2T

Â
g2G

µG
tl ptg (2.89)

� Â
g2G

µX
g (2.90)

and the KKT conditions are:

dL
dptg

= Cg � lt + µG
tg � µG

tg = 0 8t 2 T, g 2 G (2.91)

dL
dxg

= Cinv
g � Â

t2T
µG

tgPmax
g � µX

g = 0 8g 2 G (2.92)

0  ptg ? µG
tg � 0 8t 2 T, g 2 G (2.93)

0  xg ? µX
g � 0 8g 2 G (2.94)

0  �ptg + Pmax
g ? µG

tg � 0 8t 2 T, g 2 G (2.95)

Collectively, we have the KKT conditions:
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dL
dd

= �Bl + lt + µD
tl � µD

tl = 0 8t 2 T, l 2 L (2.96)

dL
dp

= Cg � lt + µG
tg � µG

tg = 0 8t 2 T, g 2 G (2.97)

dL
dx

= Cinv
g � Â

t2T
µG

tgPmax
g � µX

g = 0 8g 2 G (2.98)

Â
l2L

dtl � Â
g2G

ptg = 0 8t 2 T (2.99)

0  dtl ? µD
tl � 0 8t 2 T, l 2 L (2.100)

0  ptg ? µG
tg � 0 8t 2 T, g 2 G (2.101)

0  xg ? µX
g � 0 8g 2 G (2.102)

0  �dtl + Dtl ? µD
tl � 0 8t 2 T, l 2 L (2.103)

0  �ptg + Pmax
g xg ? µG

tg � 0 8t 2 T, g 2 G (2.104)

(2.105)

These conditions are identical to those of the central planner’s problem. A
private investor thus does not wish to build more or less than the central
planner solution or operate its generator differently when compensated
with marginal prices l.

In this formulation, l is the long-run marginal cost (LRMC). The short-run
marginal costs (SRMC) and LRMC are equal when there isn’t a binding
reliability constraint [4], i.e., in this formulation, the LRMC are higher than
the SRMC when a generator is used at its maximum capacity.

In reality of course, producers cannot perfectly adapt in the long-run.
Lumpy investment is a concern in electricity markets and is one of the
reasons outcomes may deviate from the theoretical ideal. Lumpy invest-
ments refer to investments in fixed sizes, e.g., an integer number of units
can be built of a given size. Lumpy investments change the nature of the
optimal value function in the optimization problem: it is no longer convex,
as we must include the constraint that x is integer. This means the central
planner’s decision and the market outcome are no longer guaranteed to be
equivalent. The investment decision with continuous investments of course
may not be integer; thus, adding integer constraints may create multiple
quasi-break-even solutions [51].
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2.5 non-convexities

2.5.1 Unit Commitment

The guarantee of equivalence of the socially optimal solution and the market
equilibrium solution assumes the optimal value function is convex. However,
the scheduling problem in power systems, unit commitment (UC), is non-
convex. Non-convex optimization refers to either (or both) non-convex cost
functions rendering the minimization objective function non-convex, and
non-convex feasible regions arising from binary variables, nonlinear equality
constraints or convex (concave) functions that are subject to lower (upper)
bounds. Generators may have startup costs and technical requirements, e.g.,
minimum operating levels, that introduce non-convexities. It is typically
impossible to find a uniform price that supports dispatch. Non-convex
pricing models are further discussed in Chapter 4, but here we provide
some graphical intuition for the problem.

A simple UC problem with variable cost C, startup cost F, production p,
and commitment status u linked to startup decision z with inelastic demand
is formulated as:

min
u, p 2 P

Â
t2T

Â
g2G

(Cg ptg + Fgztg) (2.106a)

s.t. Â
g2G

ptg = D 8t 2 T (2.106b)

u 2 {0, 1} (2.106c)

where P is the set of operating constraints.

First, consider the convex case in Table 2.1.

Cg ($/MWh) Fg ($) Pmin
g (MW) Pmax

g (MW)

Unit 1 5 0 0 150
Unit 2 10 0 0 150

Table 2.1: Convex Generator Characteristics

Figure 2.6 shows the optimal dispatch of Units 1 and 2 for a single-period
problem (|T| = 1) over demand levels. Figure 2.6 also plots the optimal
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objective value for each demand level. Marginal prices l are found as the
slope of the optimal value function. At 150 MW, any price in the range
l = [5, 10] clears the market and supports dispatch. The choice of l in these
cases represents a trade-off between producer and consumer surplus.

Figure 2.6: Convex optimal value function

Consider the following set of generators shown in Table 2.2.2 Unit 1 has
a lower marginal cost but higher startup cost, and Unit 2 has a minimum
operating level requirement.

Cg ($/MWh) Fg ($) Pmin
g (MW) Pmax

g (MW)

Unit 1 5 1000 0 150
Unit 2 10 0 100 150

Table 2.2: Non-Convex Generator Characteristics

Figure 2.7 shows the optimal dispatch of Units 1 and 2. Unit 1 is dispatched
until the minimum operating level of Unit 2, at which point Unit 2 is
dispatched. At 150 MW of demand, Unit 2 remains on at its minimum
operating level and Unit 1 is dispatched to provide the remaining 50 MW.
The optimal objective value for each demand level is also shown in Figure
2.7. The optimal value function of this problem is discontinuous, so l is

2 Similar illustrative examples are shown in [52].
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Figure 2.7: Non-convex optimal value function

undefined at 100MW and 150MW. Additionally, while l = 10 at demand
levels (100,150) MW, l = 5 at demand levels (150, 250) MW. The price
can thus decrease with demand. For the single-period problem, Unit 1 can
never recover its startup costs, and Unit 2 cannot recover its variable costs
between demand levels of (150, 250) MW.

One option to derive prices in the presence of non-convexities is to relax the
problem and restrict the values of the integer variables to the optimal values
found in the primal problem [29]. While l would now always be defined,
the incentive compatibility issue remains, as the prices do not support the
central dispatch decision, i.e., some generators would wish to deviate. These
generators experience lost opportunity costs; given the price l they would
rather produce more or less than the central dispatch decision. This issue
has resulted in side payments to generators to partially compensate for lost
opportunity costs, typically at least to provide make-whole payments so
that units do not operate at a loss.

With marginal prices from the restricted convex relaxation, at the demand
level of 200 MW, l = 5. The optimal solution is for Unit 2 to produce at
its minimum of 100 MW and Unit 1 to produce at 100 MW. Unit 1’s profit
is ($5-$5)*100MW - $1000 = -$1000. Unit 2’s profit is ($5-$10)*100MW =
-$500. If Unit 1 and Unit 2 receive make-whole payments, the total cost to
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consumers is $5*200MW + $1500 = $2500. The total lost opportunity costs
are $1500.

An alternative approach is to calculate a uniform price that minimizes lost
opportunity costs. Convex hull pricing, first proposed in [53], [54] and
explored further in [55], derives prices from the convex hull of the optimal
value function. With a tight UC formulation, approximations to convex
hull prices can be found by relaxing integrality [56], [57]. Figure 2.8 shows
the optimal value function of the primal problem with relaxed integrality,
similar to the dispatchable model in [55]. In these simplified problems, the
dispatchable model and convex hull model are often equivalent, although
both may have multiple solutions just as in the convex setting at non-
differentiable points of the optimal value function.

Figure 2.8: Approximation of the convex hull of the optimal value function

At 200MW of demand, the slope of the convex hull approximation plotted
above yields l = $11.67. Unit 1’s profit is ($11.67-$5)*100MW - $1000 =
�$333. Unit 2’s profit is ($11.67-$10)*100MW = $167. Unit 1’s lost opportu-
nity cost is $333, and Unit 2’s lost opportunity cost is ($11.67-$10)*100MW
= $167 (because it would rather produce at its maximum capacity), yielding
total lost opportunity costs of $500. The make-whole payments required are
also lower, $333 vs $1500. The total costs to consumers with make-whole
payments is $11.67*200MW +$333 = $2667, $167 higher than in the restricted
model.
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In this case, there is a range of values, l = $[10, 15], that would provide
equivalent lost opportunity costs, exchanging lost opportunity cost between
Unit 1 and Unit 2, and representing a trade-off between producer and
consumer surplus. If l = 10, Unit 1’s profit is -$500 and Unit 2’s profit is $0.
Unit 1’s LOC is $500 and Unit 2’s LOC is $0. The total cost to consumers
with make-whole payments is $10*200MW + $500 = $2500, the same as in
the restricted convex model. If l = 15, Unit 1’s profit is $0 and Unit 2’s
profit is $500. Unit 1’s LOC is $0 and Unit 2’s LOC is $500. The total cost to
consumers with make-whole payments is $15*200MW = $3000. Just as in
the convex setting, the lowest l in the range is associated with the highest
consumer surplus.

The example above shows a case in which the total cost to consumers from
convex hull pricing is as high or higher than the total cost to consumers
with the restricted convex model, but side payments required to support
dispatch are lower. Convex hull prices can be higher or lower than the
prices found in the restricted convex model. Under convex hull pricing,
discrete start-up and no-load costs are included in prices seen by all units.
However, convex hull pricing treats all production costs as if they were
continuous, meaning that prices could also decrease because the relaxation
allows the model to find cheaper dispatch solutions. Because of high LOC,
the restricted model also provides an incentive in some cases for generators
to submit 0-cost offers that could raise the price found in reality (see Chapter
7). Extensive side payments may also be undesirable if the operator does
not have perfect information about a generator’s true costs and thus the
generators are disincentivized to bid truthfully. Revenue for side payments
is not directly collected from the market clearing and must be collected
separately from market participants. The operator may not be revenue
adequate if attempting to compensate LOC.3

Importantly, as shown in Section 2.4, a price is not meant to support the
current resource mix but rather to be a signal for optimal investment and
exit decisions. A market with different prices may settle on different long-
run resource mixes, which may diverge from the resource mix an idealized
central planner maximizing social welfare would choose. This issue is
further discussed in Chapter 4.

3 Under convex hull pricing, if lost opportunity costs were compensated in full, there would be
an incentive to submit arbitrarily large bids of zero price that must be accepted entirely if at
all [58]. Market regulation may solve this problem in practice.
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2.5.2 Internalizing Non-Convexities

Simple Bids and Physical Feasibility

Instead of producers submitting complex bids with their costs and operat-
ing requirements, an alternative approach is for consumers to internalize
their non-convexities into simple price-quantity bids. The simplified and
integrated market designs typically differ in the aggregation of the transmis-
sion network (zonal and nodal), which can impact cost to consumers when
internalizing non-convexities in simple bids. Producers are responsible for
submitting bids that are feasible for their units, and the operator runs a
pay-as-bid redispatch process to adjust dispatch quantities up or down
to create a physically feasible solution for the grid. This is the approach
used early on in the United States and still used in Europe. The simplified
market design can lead to significant increases in costs to consumers than
the integrated market design with complex bids. Using the example given
in [24] as inspiration, we consider the possible outcomes of our non-convex
problem when a transmission network constraint is active.

Let demand remain at 200 MW. In a simplified market, Unit 2 bids between
100-150 MW at its marginal price of $10. Unit 1 must have some idea of
the production quantity it will clear in order to bid a single price that will
recover its startup cost. Suppose that from past experience Unit 1 knows
it will be dispatched at 80 MW in real time due to a transmission network
constraint. Unit 1 must then bid ($5*80 MW + $1000)/80 MW = $17.5. The
market operator clears the market at a price of $17.5 with 50 MW of Unit 1
and 150 MW of Unit 2. The redispatch market then pays Unit 1 $17.5*30MW
to increase its production and allows Unit 1 to buy back 30 MW at its offer
price of $10. The total costs to consumers is $17.5*200 MW + ($17.5-$10)*30
MW = $3725.

In the integrated market with the restricted model, l = 5 when Unit 1
produces at 80 MW and Unit 2 at 120 MW. The units require make-whole
payments of $1000 and $600. The total cost to consumers is only $5*200 MW
+ $1600 = $2600.

Simple Bids and Non-Convexity

Beyond the interaction with transmission network constraints, the simplified
market design is not exempt from the problem of determining prices in the
presence of non-convexities. In the integrated market, the dispatch solution
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is social-welfare maximizing, but to support this solution compromises must
be made in linear pricing; a uniform price is found along with side payments
representing LOC or a subset of LOC. In contrast, in the simplified market,
a linear price is used but the solution is not social-welfare maximizing [58].
For further discussion and specific formulation of the simplified market
model with non-convexities, see [58], [59].

Submitting price-quantity offers that are feasible for a unit requires submit-
ting non-convex orders, or block orders, that must be accepted or rejected
in full. This leads to the same challenges posed previously by a non-convex
optimal value function. An alternative approach is based on the recognition
that market participants are willing to accept having an offer that would
be profitable at the market price rejected (paradoxically rejected bids), but
will not accept having an offer that is not profitable at the market price ac-
cepted [58]. A producer may perceive lost opportunity costs if the offer that
appeared to be profitable was rejected, but this is only a theoretical prospect
of profit, as the non-convexities mean it may not actually be possible to
sell the desired quantity in the market. However, accepting an offer that is
unprofitable has a real negative welfare effect. The European solution is to
find the subset of block orders (a feasible integral solution) that maximizes
social welfare without accepting any block orders that would be out-of-
the-money. The solution is thus of course not necessarily social-welfare
maximizing and may have high LOC, but it has the benefit of ensuring
short-run cost recovery (no make-whole payments). Welfare losses from this
method could be substantial, and this may be why the European market
limits the amount of non-convex bids [58]. However, convex bids do a poor
job representing the underlying non-convex system, which could also result
in substantial efficiency losses.

2.6 uncertainty and risk management

Additional issues that impact pricing in electricity markets but are mostly
out-of-scope for this body of work are uncertainty and risk management.
Both intersect with issues of pricing with transmission constraints and in
the presence of non-convexities.
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2.6.1 Uncertainty

Electricity markets in the integrated model typically have a day-ahead
hourly unit commitment market and a sub-hourly real-time economic
dispatch market. Because of uncertainty of future conditions (in addition
to computational limitations), electricity markets are cleared with rolling
horizons, i.e., prices may be determined for a 24-hour period based on a
36-hour optimization horizon in the day-ahead market or for each 5-minute
period of an hour with a multi-hour look-ahead in a real-time market.
Unit commitment and transmission switching may decrease the ability of
market participants to arbitrage between day-ahead and real-time nodal
markets [60]. Lost opportunity costs may exist for rolling-horizon auctions
even in convex settings [61]. This challenge may increase with the growing
share of variable renewable energy with uncertain forecasts, leading to
a number of proposed modifications to multi-interval real-time pricing
and ramping products [61]–[67]. An implementation of rolling horizons
for convex hull pricing may require fixing past prices as opposed to past
outputs [56]. European intraday markets allow for updates to positions as
more information is revealed closer to real time, and enhanced intraday
price signals have been proposed for the integrated market design in the
United States [68].

Increasing shares of stochastic resources have also led to renewed interest in
finding efficient prices under uncertainty. While marginal pricing provides
cost recovery in a convex, deterministic setting, it only provides cost recov-
ery in expectation in a stochastic setting. In recent years there have been
a number of proposals for stochastic market designs [69]–[71] and quasi-
stochastic market designs [72], [73]. A chance-constrained stochastic market
design to incorporate stochastic renewables is proposed in [71] and [74]
introduces a method to recover the expected price for dispatch under the
stochastic ideal via a probability-driven operating reserve demand curve.
Authors in [73] develop a robust optimization framework of dispatch-aware
resource procurement with the aim of diminishing the need for additional
flexibility-insuring ancillary services. The intersection of non-convexities
and uncertainty is explored in [75].

2.6.2 Resource Adequacy and Risk Management

Electricity markets in practice often suffer from a "missing money" problem
in which energy market prices are insufficient for generators to fully recover
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their capital costs. As shown in Section 2.4, in theory, assuming convexity,
an energy-only market provides perfect cost recovery in the long-run for
generators in the optimal resource mix as well as signals for resources to
enter or exit the market as new, lower-cost innovative technologies come
online. However, imperfections in the market, uncertainty, out-of-market
actions by system operators to avoid grid conditions in which scarcity prices
arise, and price caps to mitigate market power mean that prices often do
not rise high enough for sellers to recover their investment costs. Combined
with largely inelastic demand and the trouble of determining a single value
of lost load, this calls into question the ability of energy markets to solve
the problem of resource adequacy, i.e., how we ensure that there is enough
of the right kind of resources installed on the system to meet load reliably.
In response, capacity mechanisms have proliferated in recent years [6],
[7].

Capacity mechanisms range from mandatory bilateral contracting to ca-
pacity markets, in which the system operator seeks some administratively
defined level of firm capacity and reserve margin [76], [77]. The implemen-
tation of capacity markets varies considerably by jurisdiction, with different
performance incentives, methods for determining qualifying capacity, and
demand curve calculations [6]. Capacity markets may be forward markets
or may bundle capacity obligations with financial call options to supply
energy when the energy price rises above a specified strike price. This
approach is the reliability options model proposed first in [78] and later
in [79], [80].

Skepticism has increased in recent years surrounding capacity mechanisms
as resource adequacy measures, as they can be implemented as an adminis-
trative construct vulnerable to rent-seeking. The concept of firm capacity is
also less clear for portfolios with large shares of intermittent renewables and
energy storage [8], [81]. Recent debates in the United States center around
proposed minimum offer price rules that attempt to exclude low-variable
cost renewable resources from the market for thermal generator capacity. If
the firm capacity value of renewables is appropriately credited, this could
lead to over-procurement of capacity at higher costs to consumers and a
slower energy transition. However, if the firm capacity value of the portfolio
of resources on the system is not correctly calculated, reliability issues may
arise.

Increased subsidies for renewable resources change market clearing out-
comes to decrease revenues to thermal units in the capacity market, and
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with the system operator unsure of how closely accredited firm capacity tar-
gets align with resource adequacy goals, it becomes easy for thermal units
to argue that they are necessary for reliability and being undercompensated.
Capacity markets are also biased toward resources with high marginal costs
and low capital costs because the revenue removes some of the risk faced
by changes in fossil fuel prices [9]. This penalizes resources that govern-
ments want to promote for decarbonization goals, which typically have
high capital costs and low marginal costs, including variable renewable
energy, energy storage, and firm-low carbon resources like nuclear and
advanced geothermal.

Alternative approaches to capacity mechanisms emphasize "full-strength"
spot prices in the energy markets, allowing volatile prices to provide ef-
ficient operational and investment signals. In some markets, including
ERCOT in Texas, the energy price also includes an adder via an operating
reserve demand curve if total reserves fall below a threshold [82], [83].
High shares of zero-variable cost resources do not change the fundamen-
tals of efficient electricity market design [84]. However, [85] argues there
is a reliability externality because blackouts do not preferentially reward
retailers who hedged their risk over those who did not. Recent shortages
in markets with high price caps in Texas and Australia have demonstrated
that consumers are often insufficiently hedged [86]. A number of proposals
exist moving forward. One is to have hybrid markets in which there is
competition for the market in long-run organized markets and competition
in the market in short-run markets [48]. Arguably, beyond capacity mar-
kets, long-run organized markets already exist with national and state-level
competitive procurement of wind and solar and procurement by private
companies of renewable resources to meet carbon neutrality goals. However,
these procurement mechanisms typically do not take into account system
needs, and thus are likely to be inefficient investment signals. One form
that long-run organized markets could take is a proposal for mandated
contracting that preserves the volatility of the spot market. Mandating
standardized fixed-price forward contracts would require intermittent re-
sources to hedge their short-term price and production quantity risk with
dispatchable generation [87]. Additional proposals include strategic re-
serves with an insurance mechanism for reliability differentiation [88] and
a portfolio of hedge contracts for both market participants and the system
operator [89].
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M O D E L I N G F L O W- B A S E D M A R K E T C O U P L I N G

As Europe moves to expand flow-based market coupling (FBMC) to other regions,
revisiting key modeling elements is crucial to interpreting results of different
studies. In contrast to nodal pricing, FBMC is a zonal pricing approach that
involves approximations of the underlying grid topology. The choice of base case,
method of redispatch, whether unit commitment constraints are included, and
whether results consider pay-as-bid or market-clearing prices vary widely across
published papers. We demonstrate that different methods can have a substantial
impact on overall costs. We find that existing base case approaches perform poorly
compared to a base case using the nodal solution across all modeling choices
considered.

45
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3.1 introduction

European electricity markets are cleared with a zonal pricing scheme that,
unlike nodal pricing, requires approximating and aggregating various as-
pects of the underlying physical network. Initially, the Central Western
Europe (CWE) electricity markets used the Available Transfer Capacity
(ATC) method, in which physical characteristics are strongly simplified, typ-
ically consisting of a single aggregated transmission line between zones with
no intrazonal lines represented. In recent years, however, CWE day-ahead
markets have adopted a flow-based market coupling (FBMC) approach that
aims to better represent the underlying physical network to improve dis-
patch decisions while maintaining pricing at the zonal level. FBMC includes
all interzonal lines and select intrazonal lines in the dispatch decisions. Cur-
rent research examines the expansion of FBMC to other regions [90], [91],
different price zone configurations [92], [93], as well as analyzes various
FBMC parameters [90], [92], [94], [95].

However, the results of these studies may be impacted by modeling assump-
tions that are often overlooked. An important example is the FBMC base
case parameter selection method. The European Network of Transmission
System Operators (ENTSO-E) in 2018 identified calculating base cases as
one of the “non-resolvable complexities” of FBMC planning problems [96].
FBMC relies on the calculation of base cases, as the zonal power transfer
distribution factors (PTDFs) give the change in flows following a change
in injection or withdrawal. However, multiple base cases exist in the feasi-
ble region of the nodal network. While ENTSO-E uses historical reference
days [97], selection of base case flows when reference days are not available
varies. Some approaches use all-zero zonal net positions [93], [94], [98],
while others solve an ATC problem [90], [91], [98] or increase limits on
intrazonal line capacities until no more intrazonal congestion exists [92].
This work seeks to illustrate how different choices of base case flows affect
total market costs, including both the day-ahead (DA) FBMC schedule and
redispatch costs.

In modeling zonal markets, several choices in addition to FBMC base
case parameter selection vary widely and may significantly impact results.
As TSOs rarely specifically outline their redispatch procedure, some ap-
proaches in the literature seek to minimize real-time operating costs while
preserving DA zonal net positions [99], while others explicitly seek to limit
compensation of units redispatched [91], [92] (although many omit redis-
patch analysis altogether). Additionally, unit commitment (UC) constraints
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are typically not included. However, UC constraints may lead to such dif-
ferent dispatch decisions that conclusions about a parameter of interest
may change. Finally, the magnitude of findings is impacted by whether
costs are calculated as pay-as-bid as in [92] or market-clearing prices in the
day-ahead market as in [91].

We note that currently FBMC markets do not allow so-called “non-intuitive”
prices in which energy flows from a higher price zone to a lower price
zone [59]. However, this is economically inefficient and is associated with
significant welfare losses [100], and this practice is not included in our mar-
ket model. We acknowledge movement toward introduction of markets for
redispatch, but such a move is far from the economic ideal, as two markets
for the same time period over different geographic areas (zonal day-ahead
and nodal redispatch) creates perverse incentives for strategic bidding [101].
We thus restrict our comparisons to methods of regulatory redispatch seen
in the literature, while acknowledging that actual methods vary by TSO. As
in theory nodal pricing provides the social-welfare maximizing outcome,
we provide a comparison of changes in the day-ahead, redispatch, and total
costs relative to the nodal solution as a baseline across different modeling
choices.

3.2 methodology

3.2.1 Nomenclature

Indices and Sets

i Index of generators and resources
t Index of time periods
b Index of buses (nodes)
a Index of areas
z Index of zones
l Index of lines
T Set of time periods
B Set of buses (nodes)
Z Set of zones
Ib Set of generators at bus b
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Ia Set of generators in area a
Iz Set of generators in zone z
Bz Set of buses in zone z
L Set of lines
LZ Set of lines in zonal formulation
P Solution space of operating characteristics and reserves constraints

SL Set of slow units whose commitment decisions cannot be changed
in redispatch

Parameters

Ci Variable cost
Con

i Startup cost
Dtb,Dtz Real power demand at bus b or zone z
PTDFB

lb Nodal power transfer distribution factors

PTDFZ
lz

Zonal power transfer distribution factors,
defined only for lines l 2 LZ

Fl Maximum line rating in MW

r
(re f )
tz Pre-determined zonal net positions from a reference day

r
(e)
tb Expected nodal net positions from base case

r
(e)
tz Expected zonal net positions from base case

rZ⇤
tz FBMC solution zonal net positions

pZ⇤
ti FBMC solution production schedule

uZ⇤
ti FBMC solution commitment schedule

Cdev Penalty term for deviations in redispatch from FBMC zonal net
positions

Variables

uti = 1 if generator i is on, 0 otherwise
yon

ti = 1 if generator i is turned on, 0 otherwise
yo f f

ti = 1 if generator i is turned off, 0 otherwise
pi Committed generation
nsetb Nodal nonserved energy, 0  nsetb  Dtb

rtb Nodal net position
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ftl Line flow
nsetb Zonal nonserved energy, 0  nsetz  Dtz

dtz Deviations in redispatch from FBMC zonal net positions
otb Production shedding in redispatch
pUP

ti , pUP
ti Production above/below scheduled FBMC production

3.2.2 Computation of Zonal Power Transfer Distribution Factors

The complete zonal PTDF matrix is found as a weighted sum of the columns
of the nodal PTDF matrix. The weights are the Generation Shift Keys (GSKs),
each representing a node’s contribution to a change in the zonal net position.
Methods of calculating GSKs are left up to the TSOs, and here we use the
method of the Dutch TSO [97]. FBMC includes all interzonal lines and select
intrazonal lines for which any zone-to-zone PTDF (the difference between
any two zonal PTDFs for a given line) is over 5% [97]. See [92] for an analysis
of the sensitivity of results to this inclusion criterion. Rows corresponding
to included lines are preserved in the final zonal PTDF.

3.2.3 Commonalities in Economic Dispatch Models

The solution space P of the set of operating characteristics remains the same
for nodal and zonal solutions (see the Appendix for the full formulation)
and is defined as:

{pti, uti, yon
ti , yo f f

ti } 2 P (3.1)

The set P comprises curtailable PV and wind and non-curtailable rooftop
PV and run-of-river hydro. Operating constraints for thermal generators
include minimum and maximum operating capacities and ramping limits
and optional unit commitment, including minimum on and off times. ES op-
erating constraints include power and energy capacity and efficiency.

3.2.4 Nodal Dispatch

For the nodal solution, we solve the following problem for each time
horizon:
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min
pi, uti, yon

ti , yo f f
ti 2 P

Â
t

Â
i

Ci pti + Â
t

Â
ieTH

Con
i yon

ti + Â
t

Â
b

Cnsensetb (3.2a)

s.t. Â
i2Ib

pti + rtb + nsetb= Dtb 8t, b : lN (3.2b)

Â
b

rtb = 0 8t (3.2c)

� Fl  ftl  Fl 8t, l 2 L (3.2d)

ftl= Â
b

PTDFB
lbrtb 8t, l 2 L (3.2e)

The additional constraints reflect the nodal power balance (3.2b), the balance
of the nodal net positions (3.2c), line flow limits (3.2d), and the computation
of the flows using the nodal PTDFs (3.2e). The market clearing prices are
lN , the dual variables of the nodal power balance constraints, defined for
each timestep t and bus b. These prices are also known as nodal prices or
locational marginal prices (LMPs). In the UC version, lN can be obtained
by relaxing the binary constraints and fixing the binary variables to their
optimal values, although such a method of course is not guaranteed to
compensate for startup costs adequately.

3.2.5 Base Case Nodal Dispatch

In our analysis, we compare the results using four different base cases.
For the first base case solution, BC1, we determine the nodal solution by
solving the problem formulated in Section 3.2.4. and obtain the nodal (3.3)
and zonal (3.4) net positions:

r
(e)
tb = r⇤tb (3.3)

r
(e)
tz = Â

b e Bz

r⇤tb, 8t, z (3.4)

For the other base cases, the expected nodal and zonal net positions are
found analogously but from variations to the nodal formulation following
the description in Table 3.1. BC2, with zero zonal net positions, is a common
modeling choice. In both of these cases, it is assumed that the nodal solution



3.2 methodology 51

to the day-ahead problem is known a priori when the base case flows are
calculated. However, this is not the case because of the uncertainty in the de-
mand prediction. Therefore, BC3.1-2 represent variations on the method of
BC1 in which base cases were calculated with the expectation of uniformly
higher demand and a poorly forecasted demand, respectively.

Base Case Additional Constraints

BC1
—

Same as nodal solution

BC2 Â
b 2Bz

rtb = 0, 8t, z (3.5)

Zonal net positions must be 0

BC3.1
Â
i2Ib

pti+rtb + nsetb = 1.2Dtb, 8t, b (3.6)

Perturbed demand, uniformly 20% higher;

replace (3.2b) with (3.6)

BC3.2
Â
i2Ib

pti+rtb + nsetb = (1 + e) Dtb, 8t, b (3.7)

Perturbed demand randomly between +/- 0-20%;

replace with (3.2b) with (3.7)

BC4 Â
b2Bz

rtb = r
(re f )
tz , 8t, z (3.8)

Pre-determined zonal net positions

Table 3.1: Base Case Definitions

While little detail is provided, CWE in reality uses flows based on historical
reference days [97]. BC4 represents an attempt to get around the circular
problem in modeling FBMC of desiring zonal flows from the FBMC zonal
dispatch on a similar day without having historical data. The approach is
adapted from [92], in which intrazonal line capacities are increased until
no more intrazonal congestion remains. Here we then additionally take the
zonal flows associated to that case and run the base case with fixed zonal
net positions to get the final base case nodal net positions. Intertemporal
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constraints are included, although they are not currently considered in
determining the nodal and zonal net positions [97].

3.2.6 Flow-Based Market Coupling Zonal Dispatch

For the zonal FBMC solution, we solve the following problem for each time
horizon:

min
{pi, uti, yon

ti , yo f f
ti } 2 P

Â
t

Â
i

Ci pti + Â
t

Â
i2TH

Con
i yon

ti + Â
t

Â
z

Cnsensetz

(3.9a)

s.t. Â
i e Iz

pti + rtz + nsetz= Dtz 8t, z : lZ (3.9b)

Â
z

rtz = 0 8t (3.9c)

DFlt = Â
b

PTDFB
lbr

(e)
tb �Â

z
PTDFZ

lz r
(e)
tz 8t, l 2 LZ

(3.9d)

� Fl � DFlt  ftl  Fl � DFlt 8t, l 2 LZ (3.9e)

ftl = Â
z

PTDFZ
lz rtz 8t, l 2 LZ (3.9f)

These constraints represent the zonal power balance (3.9b), the balance
of zonal net positions (3.9c), the introduction of a new term DFlt (3.9d),
the zonal line flow limits including this new term (3.9e), and the zonal
network constraint (3.9f). The market clearing prices are the zonal prices
lZ, the dual variables of the zonal power balance constraints, defined for
each timestep t and zone z. The value DFl (3.9d) is the difference between
the expected nodal flow on the line and the expected zonal flow on the
line, both determined from the base case. A detailed explanation is found
in [102]. In this analysis, for simplicity of comparison, we omit the flow
reliability margins and flow adjustment values [97].

3.2.7 Post-Zonal Nodal Redispatch

In the redispatch, the underlying full set of nodal network constraints
must be satisfied. From the FBMC zonal dispatch, we obtain the sched-
uled commitment for “slow” units that cannot be changed in redispatch
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and the FBMC zonal net positions, deviations from which are penalized
in redispatch at a cost higher than that of the marginal cost of the most
expensive unit. We formulate the following optimization problem for redis-
patch:

min
pi, uti, yon

ti , yo f f
ti 2 P

Â
t

Â
i

Ci pti + Â
t

Â
i2TH

Con
i yon

ti + Â
t

Â
b

Cnsensetb

(3.10a)

+ Â
t

Â
z

Cdevdtz

s.t. dtz �

������
rZ⇤

tz � Â
beBz

rtb

������
8t, z (3.10b)

{uti, yon
ti , yo f f

ti } = {uZ⇤
ti , yon,Z⇤

ti , yo f f ,Z⇤
ti } 8t, i 2 SL

(3.10c)

Â
i2Ib

pti + rtb + nsetb � otb = Dtb 8t, b (3.10d)

0  otb  Â
i2Ib

pti 8t, b (3.10e)

Â
b

rtb = 0 8t (3.10f)

� Fl  ftl  Fl 8t, l 2 L (3.10g)

ftl = Â
b

PTDFB
lbrtb 8t, l 2 L (3.10h)

pUP
ti � pDN

ti = pti � pZ⇤
ti 8t, i (3.10i)

The redispatch problem is similar to the nodal formulation but penalizes
deviations from the zonal net positions found in the FBMC dispatch. The ad-
ditional or modified constraints define deviations from the FBMC zonal net
position (3.10b), keep the unit commitment schedule for “slow” units from
the FBMC dispatch (3.10c), allow for production shedding (3.10d) - (3.10e),
and distinguish between positive and negative redispatch (3.10i).

We compare two methods of choosing which units to redispatch: (3.10a)
minimizes real-time operating costs (redispatch method R1) and (3.11)
minimizes compensation provided to units for redispatching (R2):
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Â
t

Â
i

✓
Ci pUP

ti +
⇣

lZ
tz � Ci

⌘
pDN

ti

◆
+ Â

t
Â

i2TH
Con

i (yon
ti � yon

ti uZ⇤
ti )

+Â
t

Â
b

Cnsensetb + Â
t

Â
z

Cdevdtz

(3.11)

However, in both cases, units are compensated in the same manner and
such that a unit is indifferent to being redispatched. The costs of regula-
tory redispatch are found by compensating units for any additional costs
incurred from their FBMC schedule and compensating any perceived losses
based on their FBMC schedule. If a unit must increase production or turn
on in redispatch when it was scheduled to be off, the system operator will
pay the unit at cost (including startup cost if UC constraints). If a unit
must decrease production from its FBMC schedule, the unit is compensated
based on the product of the decrease in production and the FBMC zonal
market clearing price it would have received, minus the operating costs it
would have incurred.

3.3 illustrative case study

The case study is based on the RTS-GMLC dataset [38]. This modified
version of RTS-96 as used in this case study has 120 lines, 73 buses, and
154 generating units of which 73 are thermal including coal, natural gas,
and nuclear. Hydro storage is modeled as a general energy storage unit.
Utility-scale PV and wind are curtailable without penalty, while rooftop
PV and run-of-river hydro are non-controllable. The nameplate capacity of
solar and wind combined is approximately 65% that of thermal generation
capacity.

The 3 “areas” in RTS-GMLC are adapted here as distinct price zones. There
are 5 interzonal lines and, with the 5% zone-to-zone PTDF criterion, 58
of the 115 intrazonal lines are included in FBMC. The day-ahead energy
market is simulated with inelastic demand and solved on a rolling basis
hourly for 24 hours with a 6-hour look-ahead. Reserves are omitted. The
states of variables are carried over as parameters from the end of one day
to the beginning of the next. Slow units in this study are steam, combined-
cycle, and nuclear generators.

The simulations are run over 1 month (January) with two versions: one
with linear constraints (i.e., without UC constraints) and one with UC
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constraints. To find the fixed zonal net positions to use each day as inputs to
BC4, intrazonal line capacities were increased by 80% in a nodal simulation
without UC constraints to prevent any intrazonal congestion over the
month (but returned to their actual values when finding the BC4 nodal net
positions).

3.3.1 Impact of Base Case Choice

Although the total amount of line overloads that would result from the
zonal dispatch as a percentage of total system load is in all cases less than
2% as shown in Figure 3.1, different base cases yield significantly different
total market costs. Figure 3.2 shows that the total market costs differ by base
case, and are of course all strictly higher than the nodal costs. In Figure 3.3,
the costs are seen relative to the nodal solution as a baseline. For redispatch
method R1 without UC constraints, the worst-performing base case (BC2)
results in total costs over 6% greater than the baseline nodal solution, while
the best-performing base cases (BC1 and BC3.1) only result in costs less
than 2% greater. Notably, the worst-performing base cases are the two more
commonly used in modeling FBMC.

Figure 3.1: Average aggregate hourly line overloads as a percentage of average
aggregate hourly load with RC1 and linear constraints.

3.3.2 Redispatch Approach

Comparing Figure 3.3 with redispatch method R1 and Figure 3.4 with
redispatch method R2, we see that results are substantially affected by the
redispatch method. Naturally, explicitly minimizing redispatch costs rather
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Figure 3.2: Market costs under R1 with market-clearing prices and linear con-
straints.

Figure 3.3: Market costs under R1 with market-clearing prices and linear con-
straints as percentage of nodal market costs.

than real-time operating costs (that are not actually paid) results in lower
total costs across all base case scenarios. For the best-performing base cases,
R2 more than halves the increase in total costs compared to the baseline
nodal solution. While the preference-order of base cases does not change,
the magnitude of differences in performance does. With R1, the costs above
baseline of BC2 are approximately 3 times those of BC1, while with R2,
they are over 5 times greater.
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Figure 3.4: Market costs under R2 with market-clearing prices and linear con-
straints as percentage of nodal market costs.

3.3.3 Pay-as-Bid vs Market-Clearing Prices

If the magnitude of results is of importance, as it is in many studies seeking
to closely reflect the European grid, then it is important to distinguish
between compensation using pay-as-bid and market-clearing prices. The
European market is a uniform auction with market-clearing prices and
these prices are used to compute the market costs in Figures 3.3 and 3.4.
Figure 3.5 gives the same comparison among the base cases but now using
pay-as-bid costs. The absolute value of the redispatch costs in Figure 3.3
and Figure 3.5 (note different axes) are the same, yet for BC2 they represent
over 6% of the nodal costs using market-clearing prices but over 15% using
pay-as-bid compensation.

3.3.4 Impact of Unit Commitment Constraints

When including unit commitment constraints, we see that the overall impact
of the redispatch method is much greater with UC constraints than without.
The difference in costs between Figure 3.5 and Figure 3.8 is much less than
between Figure 3.6 and Figure 3.7 (note the different axes) because paying
avoidable startup costs is expensive. With UC constraints, the solution space
is decreased, and the additional costs of FBMC over the nodal solution
between the best and worst base case choices is approximately 25% across
both redispatch scenarios. With UC constraints, we still see that the base
cases most commonly used in the literature (BC2 and BC4) under-perform
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Figure 3.5: Total costs under R1 with pay-as-bid and linear constraints as per-
centage of nodal pay-as-bid costs.

compared to the strategy of BC1 and its variations with load forecast
uncertainty (BC3.1-2).

Figure 3.6: Total costs under R1 with pay-as-bid and UC constraints as percentage
of nodal pay-as-bid costs.
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Figure 3.7: Total costs under R2 with pay-as-bid and UC constraints as percentage
of nodal pay-as-bid costs.

Figure 3.8: Total costs under R2 with pay-as-bid and linear constraints as per-
centage of nodal pay-as-bid costs.

3.4 conclusion

FBMC is an attempt to improve the efficiency of zonal market dispatch
decisions by representing the physical system with greater granularity.
However, more research is needed to determine how various modeling
choices influence results. When comparing results across studies, it is
important to consider what modeling assumptions are made. We find that
the method of redispatch, how prices are determined, and inclusion of UC
constraints can have a substantial impact on overall costs. In this illustrative
case study, different methods of base cases employed in the literature can
more than quintuple the additional costs of the zonal market design relative
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to the baseline nodal design. Both existing modeling approaches – all-zero
zonal net positions and a method relieving intrazonal congestion similarly
to an ATC solution – perform poorly in this case study compared to base
cases following a nodal solution. This result holds whether the nodal
solution is significantly perturbed, across both pay-as-bid and market-
clearing prices, and with or without UC constraints.

Different FBMC approaches impact not only short-term dispatch decisions
but price signals for investment in the long-term. With plans to expand
FBMC to other regions in Europe on the horizon, it is imperative to further
investigate the effect of base case flow values on market outcomes. The
method of redispatch, whether unit commitment constraints are included,
and whether costs are presented pay-as-bid or with market clearing prices
also impact conclusions. Whether trying to calculate more optimal price
zone configurations, analyze the impact of introducing FBMC to new re-
gions, or benchmarking FBMC results to the nodal solution, these modeling
choices matter.
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appendix

This appendix provides a short description of the unit commitment model
used in Chapter 3.

3.4.1 Nomenclature

Indices and sets

i Index of generators
w Index of wind resources
v Index of PV resources
f Index of rooftop PV resources
h Index of run-of-river hydro resources
s Index of energy storage units
t Index of time period
T Number of time periods
Parameters

Ci Variable cost
Con

i Startup cost
Pmin

i Minimum operating capacity
Pmax

i Maximum operating capacity
Mon

i Minimum on time
Mo f f

i Minimum off time
Ri Maximum ramp up and ramp down rate
Pt{w,v, f ,h} Maximum generation for VRE resource

Pc
s Charging capacity

Pd
s Discharging capacity

Emax
s Energy capacity

Einit
s Initial stored energy

hs Roundtrip efficiency
Dt Real power demand
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St Spinning reserve requirement
Cnse Cost of nonserved energy
Cnseres Cost of nonserved reserves
Decision variables

uti = 1 if generator i is on, 0 otherwise
yon

ti = 1 if generator i is turned on, 0 otherwise
yo f f

ti = 1 if generator i is turned off, 0 otherwise
pt{i,w,v, f h} Committed generation

pc
ts Charging power

pd
ts Discharging power

zts = 1 if storage unit s is discharging, 0 if charging
Ets Energy stored in storage unit s, 0  Ets  Emax

s

nset Nonserved energy, 0  nset  Dt

nseres
t Nonserved reserves, 0  nseres

t  St
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3.4.2 Formulation

min Â
t
(Cnsenset + Cnseresnseres

t ) + Â
t

Â
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(Ci pti + Con

i yon
ti ) (3.12a)

s.t. Â
qei,w,v, f ,h

ptq + Â
s

⇣
pd

ts � pc
ts

⌘
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Â
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t � St 8t (3.12c)

0  ptw, ptv, pt f , pth  Ptw, Ptv, Pt f , Pth (3.12d)

utiPmin
i  pti  utiPmax

i 8t, i (3.12e)
� Ri  pti � pt�1,i  Ri 8te2, . . . , T, i (3.12f)
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ti 8te2, . . . , T, i (3.12h)
yon
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4
L O N G - R U N O P T I M A L P R I C I N G W I T H N O N - C O N V E X
C O S T S

Determining optimal prices in non-convex markets remains an unsolved challenge.
Non-convex costs are critical in electricity markets, as startup costs and minimum
operating levels yield a non-convex optimal value function over demand levels.
While past research largely focuses on the performance of different non-convex
pricing frameworks in the short-run or uses convex approximations, we determine
long-run adapted resource mixes associated with each pricing framework while
preserving the full extent of the non-convex operations. We frame optimal pricing
in terms of social surplus achieved and transfer of consumer to producer surplus in
adapted long-run market equilibria. We find that convex hull pricing achieves the
lowest transfer of consumer to producer surplus. Marginal prices determined by
fixing integer variables to their optimal values in the pricing run are also associated
with high social surplus and high consumer surplus when the optimality gap in
the original mixed integer linear program is very small. Other pricing frameworks
tend to over-compensate inframarginal units, leading to resource mixes with lower
social surplus and a greater transfer of consumer surplus to producer surplus in
the long-run.

67
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4.1 introduction

The bet made in electricity market liberalization is that markets can get
closer to achieving the theoretical maximum social surplus than vertically
integrated utilities. An idealized central planner with perfect information
charging at cost maximizes social surplus. In the convex setting, a perfectly
competitive market with prices set at marginal costs can achieve this same
level of social surplus. However, in reality, neither an imperfect competitive
market nor a regulated monopolist may be able to achieve this ideal out-
come. In the case of the electricity sector, an additional factor complicates
the role of markets: non-convex costs. Characteristics of conventional ther-
mal generation including startup costs and minimum load requirements
create a non-convex optimal value function for which the applicability of
marginal pricing is not inherently clear. Additionally, non-convexities can
also arise due to the configuration of combined cycle plants and modeling of
pumped hydro storage generators (see, e.g., [103]), and may increase as new
technologies are adopted that require their own modeling approach.

The issue of optimal pricing in markets with non-convex costs remains
unresolved. Scarf [104] connected microeconomic theory with mathematical
programming, noting that the optimal solution of a linear program (LP)
with convexity assumptions in a market equilibrium yields dual variables
as prices that are sufficient entry signals for new participants. However,
such a price may not exist in the presence of non-convexities. Liberopoulos
& Andrianesis [105] review a number of proposed pricing frameworks.
Many of these approaches take for granted a primal-feasible solution for
which some ex-post prices must be determined, which is the situation
faced by many electricity market operators. In centrally committed mar-
kets, operators inherited the same problem faced by the former vertically
integrated utilities: finding the optimal centralized security-constrained
unit commitment and dispatch. Market participants submit their technical
constraints and costs and the operator typically formulates the problem as
a mixed integer program (MIP) or mixed integer linear program (MILP).
An early proposal by O’Neill, Sotkiewicz, Hobbs, Rothkopf, & Stewart [29],
referred to as integer programming (IP) pricing, fixes the integer variables
to their optimal values in the pricing run, yielding prices for marginal
production as well as for commitment. Ring [53], Hogan & Ring [54], and
Gribik, Hogan, & Pope [55] propose defining prices via the convex hull of
the optimal value function. Methods vary in their treatment of short-run
revenue adequacy, with some relying on side payments or adders to a com-
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modity price, and to what extent participants are incentivized to follow the
centralized dispatch decision. A recent overview by [13] describes variants
of pricing frameworks used in practice in electricity markets in the United
States, which differ substantially by jurisdiction.

When evaluating these pricing frameworks, our goal is — as in the con-
vex case — to find a price that maximizes social surplus in the long-run.
From basic microeconomic theory, we know that the quantity of demand
cleared at the intersection of supply and demand maximizes social surplus
in the short-run. If producers are able to perfectly adapt in the long-run
(the supply curve becomes perfectly elastic), all the social surplus becomes
consumer surplus. This long-run competitive market equilibrium is equiva-
lent to an idealized central planner (CP) compensating producers at-cost.
This requires that units that should not be in the long-run equilibrium are
allowed to operate at a loss, receiving the appropriate signal to exit the
market. We have three distinct but interrelated factors that complicate this
picture: the non-convex nature of the optimal value function, the sufficiency
of scarcity rents (how often and by how much prices are higher than the cost
of the highest marginal-cost producer), and lumpy investments (producers
may not be able to perfectly adapt in the long-run). Price and offer caps are
the most obvious driver of insufficient scarcity rents, but operational issues
or system operator actions, e.g. out-of-market actions to address a reliability
concern, may also suppress prices. When comparing achievable consumer
surplus in the long-run among pricing frameworks, we must separate the
issue of non-convex operational costs from the issues of sufficient scarcity
rents and lumpy investments. While often conflated, we frame the “missing
money problem" due to insufficient scarcity rent as a separate issue (that
may have related solutions) to the challenges inherent in pricing in the
presence of non-convexities, as the missing money problem may still exist
in the convex case.

In this work, we compare market outcomes as applied to the long-run, social
surplus-maximizing CP resource mix and a competitive market equilibrium
resource mix adapted to a given pricing framework. This allows us to
explicitly consider in what ways we would expect resource mixes adapted
to a given pricing framework to diverge from the CP optimum, and what
consumer surplus losses may result. We consider IP pricing, marginal
pricing with the unit commitment configuration fixed, convex hull pricing,
average incremental cost pricing, and several methods employed in practice,
including partial dispatchable pricing, relaxed minimum operating levels,
and a revenue adequate price adder. We compare pricing frameworks by
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consumer surplus achieved at the long-run adapted mix in addition to
remaining producer surplus, performance across near-optimal solutions,
lost opportunity costs, and extent of side payments. We also explore how
different pricing frameworks may affect market outcomes as the presence
of variable renewable energy (VRE) increases.

While this paper considers pricing in a deterministic setting, we note that
pricing in the presence of uncertainty and risk should also be a considera-
tion in reality [75]. We deal principally with idealized energy-only markets
without price caps in this paper, as the main interest is in the challenges
that non-convexities bring to the energy market. In the convex case with suf-
ficient scarcity rents, an energy-only market is sufficient for investment cost
recovery. In reality, uncertainty, market power, inelastic demand, or other
concerns may warrant additional market mechanisms. We assume truthful
bidding when evaluating pricing frameworks but consider how high lost
opportunity costs or high side payments may incentivize untruthful bidding
behavior. We analyze a centrally committed system with the aim of finding
a pricing framework that best supports the social surplus-maximizing CP
solution.

4.2 price signals

In the short-run, we seek a price and quantity that together clear the market
and support dispatch. The market is cleared if the central dispatch decision
for production p⇤ at each unit g 2 G satisfies cleared demand bids d⇤ at
each bid l 2 L (where d⇤tl  Dtl , the maximum quantity of demand bid l at
time t) at each time interval, i.e.,

Â
g2G

p⇤tg = Â
l2L

d⇤tl 8t 2 T (4.1)

We would also like to find a price l⇤ that supports dispatch p⇤, meaning
that that the centralized dispatch decision solves a function that maximizes
each generator’s profits given l⇤:

max
p

Pg(l
⇤, p) 8g 2 G (4.2)

Assuming convexity, for an electricity market there is a clear choice l⇤

that satisfies both of these conditions: the shadow price of the power
balance constraints. In Figure 4.1(a), we see the convex optimal value
function resulting from a simple, single-period economic dispatch of two
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generators with characteristics given in Table 4.1. We see that the less
expensive generator produces until its maximum, yielding a slope l of the
optimal value function corresponding to its marginal price, $5/MWh. The
second generator comes online when demand is greater than 150MW, which
increases l to its marginal cost, $10/MWh. There is a non-differentiable
point, but we can choose any l in this subdifferential ($[5, 10]/MWh) and
still clear the market and support dispatch.

In the long-run, we want a price signal that promotes an optimal resource
mix that satisfies system constraints at least cost. In the convex case, no unit
would make profits or losses at this equilibrium and no new entrant would
make a profit. In order for the highest marginal-cost generator to recover
its investment costs, the system-wide marginal price must at some times be
greater than the short-run marginal cost of the most expensive generator.
Generators must then receive some amount of scarcity rent. Ideally, these
scarcity prices would be set by demand’s willingness-to-pay. In practice,
however, demand is still administratively treated as mostly inelastic in
electricity markets. If demand is treated as inelastic, scarcity pricing must
be determined as the administratively-defined cost of non-served energy, or
value of lost load. Due to market power concerns, prices are often capped
below the system’s value of lost load. This insufficient scarcity rent is the
driver of the often-discussed missing money problem.

4.2.1 Pricing in the Presence of Non-convexities

In reality, electricity systems have non-convex cost components. Unit com-
mitment (UC) refers to the need to determine whether a unit will be on
or off, using binary variables. Units may have startup and shutdown costs,
minimum generation requirements, and minimum up and down times. The
first issue is that this makes the marginal price difficult to determine, as
the optimal value function may be non-convex or discontinuous. Marginal
pricing will also not always support dispatch; the optimal solution may
require units to produce when, faced with only the marginal price, they
would prefer not to follow the centralized dispatch.

In Figure 4.1(b), we see an example of a simple two-unit, single-period
model with a non-convex optimal value function.1 Unit 1 has a lower

1 We thank Juan Pablo Luna and Claudia Sagastizábal for discussions that provided valuable
insight in visualizing the non-convex optimal value function. We use a similar illustrative
example to that shown in [52].
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marginal cost, but has a startup cost that makes it not economical to produce
until a certain level of demand. Once this minimum demand is reached, the
marginal cost changes from Unit 2’s marginal cost of $10/MWh to Unit 1’s
marginal cost of $5/MWh. At this level of demand, price decreases with
increasing demand. In Figure 4.1(c), we see an example of a discontinuous
optimal value function. In this case, Unit 2 has a minimum generation
requirement but no startup cost, which causes two jumps in the optimal
value function as demand increases. At these discontinuities, l is not
defined. In Figure 4.1(d), we see an example in which the marginal price
not only doesn’t recover short-run fixed costs, but also does not recover
short-run variable costs. In this example, Unit 2 has a higher variable cost,
a startup cost, and a minimum generation requirement. At a demand level
of 175MW, the marginal price is $5/MWh, and Unit 2’s total compensation
is $250, while its short-run variable cost is $500 and its short-run fixed cost
is also $500. The price of $5/MWh and quantity of 50MW of production
from the least-cost dispatch solution does not solve Unit 2’s preferred
profit function, as it would prefer to not produce rather than operate at a
loss.

A similar instance in which short-run costs are not recovered arises with
block-loaded “fast-start" units. If a unit is online at its maximum operating
level (e.g., a block-loaded generator), it cannot set the marginal price. The
marginal price may be set by a lower variable cost unit that still has the
ability to increase production, causing the block-loaded unit to operate at
a loss. In the United States, this particular situation lends its name to a
commonly used term for non-convex pricing, “fast-start pricing" [13]. While
the issue of high variable cost block-loaded units is significant, it is not the
only non-convex feature in electricity markets to be addressed. Just as units
may prefer to not produce when faced with a given price l, some units
may prefer to produce when they are not included in the central dispatch
solution or to produce more than they are scheduled. In Figure 4.1(d),
Unit 2 would be indifferent to producing nothing with no compensation
or producing at the central dispatch if given a payment for its short-run
losses. However, if a unit saw a price that exceeded its short-run costs and
was not dispatched at its maximum operating level, it would perceive a lost
opportunity cost. A price l meeting this condition would thus not support
dispatch, as some units may wish to produce more than scheduled.
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Scenario $/MWh Startup ($) Pmin (MW) Pmax (MW)

Convex Unit 1 5 0 0 150
Unit 2 10 0 0 150

Non-convex Unit 1 5 500 0 150
Unit 2 10 0 0 150

Discontinuous Unit 1 5 1000 0 150
Unit 2 10 0 100 150

Short-Run Cost Unit 1 5 0 0 150
Unit 2 10 500 50 150

Generic UC Unit 1 5 10000 100 150
Unit 2 10 500 50 150

Table 4.1: Unit Characteristics

4.2.2 Central Planner and Competitive Market Solutions

In the long-run, the reason we wish to choose good price signals is to
incentivize the entry and exit of market participants until we achieve the op-
timum resource mix that maximizes social surplus. Social surplus is the sum
of consumer surplus and producer surplus. Consumer surplus is the differ-
ence between the benefit to consumers (how much they cumulatively value
the quantity of demand cleared) and what they pay. The producer surplus
is analogous; it is the profit (the difference between the revenue received
from the market and their costs). If producers are able to perfectly adapt in
the long-run (an elastic supply curve), then the long-run competitive market
equilibrium’s social surplus will be entirely consumer surplus. The social
surplus-maximizing resource mix can be found via a capacity expansion
problem that maximizes the benefit to consumers of satisfying demand
while minimizing costs to producers. This represents the mix that would be
chosen by an idealized central planner with perfect information. We will
call this social-surplus maximizing resource mix the CP solution. However,
due to imperfect information and incentive mismatches, most jurisdictions
have moved away from the regulated monopolist model (vertically inte-
grated utilities) with the expectation that a competitive market could come
closer to this ideal CP solution. Thus, price signals can be judged in part by
how well the market equilibrium resource mix adapted to a given pricing
framework approximates the CP solution (and correspondingly how much
consumer vs producer surplus is achieved).
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(a) Convex (b) Non-convex

(c) Discontinuous (d) Short-Run Cost

Figure 4.1: The optimal value function of a two-generator, single-period dispatch
across different unit characteristics scenarios.

Convex case
Assuming convexity, we can apply classical marginal pricing theory to
electricity markets. If we have a CP that seeks to maximize social surplus,
we can show in the convex case that this optimal resource mix corresponds
to the long-run competitive market equilibrium with system-wide marginal
pricing in which each participant seeks to maximize individual benefit. We
refer to [4] for proof of equivalent optimality conditions in the context of
electricity markets. This assumes that capacity can be perfectly adapted and
no economies of scale exist. Long-run cost recovery can be achieved with
short-run marginal costs when accounting for an adjustment for technolo-
gies that are used at their maximum capacities. All market participants will
achieve exactly zero-profits when the market is in equilibrium, indicating
that no additional unit could enter and be profitable, and no unit currently
in the market would wish to exit.
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The CP problem is

max
{x, u, p, d} 2 P

Â
t2T

Â
l2L

Bldtl � Â
g2G

Cinv
g xg � Â

t2T
Â

g2G
(Cg ptg + Fgztg)

s.t. Â
g2G

ptg = Â
l2L

dtl 8t 2 T
(4.3)

where x is the build decision, u is the unit commitment status linked to
startup decision z, P is the set of operating constraints linked to x, B is the
benefit of a cleared demand bid, Cinv is investment cost, C is variable cost,
and F is startup cost.2 Note that inelastic demand with an administratively
set value of lost load (VoLL) is a special case of this formulation in which
L = {1}, B1 = VoLL, and dt1  Dt, where D is the total system demand.
If d⇤t1  Dt, then there is Dt � d⇤t1 non-served energy at time t. For the
following examples, we take this single-bid demand approach with a benefit
B (or value of lost load) of $1000/MWh. Let the investment cost Cinv

g for
Units 1 and 2 (both 150MW) be {200, 196.8}k$.

In the convex formulation, x can take fractional values x � 0 and u 2 [0, 1]
(or can be omitted). If we take operational characteristics as in the Convex
scenario in Table 4.1 and take the demand profile in Table 4.3, the solution
to the CP problem yields dual variables of the power balance constraints
that are the long-run marginal costs (LRMC) given in Table 4.3. If we apply
these LRMC as prices at the CP solution with fractional units given in
Table 4.2, we achieve exactly 0% profit for both units.3 If we hold the build
decisions fixed, we get the short-run marginal costs (SRMC) shown in
Table 4.3. LRMC also reflect the marginal cost of building more of each
technology used at its full capacity. With a sufficiently long time horizon,
this difference between the LRMC and SRMC that appears once in the
horizon per technology type becomes trivial, but it is important to correct
for in this 6-period example by replacing the SRMC with the marginal cost
of building more of the exhausted technology in one time period. Note that
there is 20MW of non-served energy in the last time period, and this raises
the price to B, providing sufficient scarcity rent for perfect long-run cost
recovery.

2 A detailed formulation of the set of operating constraints in the case of non-convex costs is
given in Section 4.3.1.

3 Note that there can be multiple optimal dual solutions, as shown graphically at the non-
differentiable point in Figure 4.1(a).
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Build Operations Demand Number Profit
Scalar Unit 1 Unit 2 Unit 1 Unit 2

Fractional Convex 1 1.33 3.2 0% 0%
Integer Convex 10 14 32 0% 0%

Fractional UC 1 .67 3.87 0% 0%

Table 4.2: Convex and Non-Convex Scenarios Optimal Solutions

Scenario Pricing Demand (MW) 100 200 650 660 680 700 NSE@D=700

Fractional, Convex LRMC

Price ($/MWh)

5 6.33 10 10 332 1000 20MW
SRMC 5 5 10 10 10 1000

Integer, Convex FCP 5 5 10 10 10 1000 100MW

Fractional, UC FCP 5 10 10 10 1000 1000 20MW
FCPADJ 6.33 10 10 10 332 1000

Table 4.3: Convex and Non-Convex Scenarios Prices

Non-convex case

Two sources of non-convexity arise when considering a more realistic case.
The first is that units cannot necessarily be built to be perfectly adapted in
capacity; units often are built in certain sizes, i.e., an integer number of units
of a given size can be built, creating lumpy investments. This restriction
shows up as binary build decision variables per unit in a capacity expansion
model. In the market model, this means that we lose the guarantee of all
zero-profits in equilibrium. However, we expect that the effect of lumpy
investments decreases as the size of each unit becomes small relative to the
size of the system, and an assumption of convexity may still be reasonable
for sufficiently large systems. If we take the same convex operations case as
before but require build decisions be binary, x 2 {0, 1}, and scale up the
demand profile by a factor of 10, we build 14 of the first unit type (instead of
the fractional 1.33) and 32 of the second type (instead of the fractional 3.2).
We cannot obtain dual variables directly from this non-convex problem,
but if we fix the binary variables to their optimal values (a method we
refer to as fixed configuration pricing (FCP), explained in detail in Section
4.2.3), we can obtain short-run prices. These prices are analogous to the
SRMC found in the fractional-build case, and when adjusted for exhausted
technologies, yield exactly 0% profits. Note that the optimal production
schedule differs between the fractional and binary build cases; when scaled
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down, the binary build case has half the non-served energy at the system
peak as the fractional build case because it builds more of Unit 1.

In contrast, the non-convexity resulting from non-convex cost components
in operations does not become more convex-seeming at a larger scale. Even
a small number of non-convex costs can impact cost recovery of all units.
However, units with non-convex cost components are still able to adapt
to some degree in the long-run. Next we show an example with fractional
build decisions and non-convex operations with characteristics given in
the Generic UC scenario in Table 4.1. In addition to investment costs, the
minimum and maximum operating capacities as well as startup costs and
investment costs all scale with x. The rounded optimal number of units
is 0.67 for the first type and 3.87 for the second type, as seen in Table
4.2. This contrasts significantly with the optimal numbers of units in the
convex operations case. If we fix the binary operations variables, we get the
prices shown in Table 4.3. Note that at an output of 680MW both units are
operating at their maximum levels, and the dual variable associated with
the power balance constraint is $[10, 1,000]/MWh. Recall that there can be
multiple market-clearing prices, and total surplus doesn’t change based on
which price we choose, but the ratio of consumer to producer surplus does.
If we are interested in having more consumer surplus, then we choose the
lower price in the range (resulting in no producer surplus in the convex
case). The solver in this case returned 1,000, but it could also have returned
10. If we adjust for this as well as for exhausted technologies, we have
the adjusted prices FCPADJ. With this price stream, we are able to achieve
perfect long-run cost recovery. Note that the UC scenario constructed here
includes only one startup for each unit and no binding ramping constraints
or minimum up and down times. In a more realistic setting, we would not
expect this perfect cost-recovery to be achieveable with non-convex cost
components.

4.2.3 Pricing Frameworks

Multiple methods exist to handle the issues arising when defining prices
in the presence of non-convexities, each with different trade-offs and guar-
antees. Total revenue is determined as the sum of the commodity price
(the price per unit of electricity found via a relaxation of the MIP), the
price to commit a unit (if applicable), any price adders given per unit of
electricity on top of the commodity price, and any side payments directly
to specific generating units. We will avoid the use of the ambiguous term
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“uplift payments" in favor of this categorization into commodity prices l,
commitment prices µ, price adders e, and side payments s.4 Most meth-
ods we describe seek to find a commodity price stream. Side payments
for any of these methods could compensate short-run losses (make-whole
payments) or partial or full lost opportunity costs. Table 4.4 summarizes
the potential for short-run losses and lost opportunity costs for each pricing
framework.

Short-run profit P is a function of these components. We define initial short-
run profit P0 as the profit before any side payments occur and short-run
costs X as follows:

P0
g = Â

t2T
((lt + et � Cg)ptg � Fgztg + µtgutg) (4.4)

Xg = Â
t2T

(Cg ptg + Fgztg �min(0, µtgutg)) (4.5)

Pg = P0
g + Â

t2T
stg (4.6)

Note that one method prices commitment with µ, which may be positive
or negative. When calculating short-run costs in (4.5), we do not want to
include payments received by the system operator for commitment, only
costs paid to the system operator for commitment.

To support dispatch, the total compensation must be such that no perceived
losses exist, given that compensation package. Perceived losses are lost
opportunity costs (LOC), the difference between what a unit could make
given a price if able to schedule its own dispatch (its preferred profit) and
what it would make with the same price following the centralized dispatch
decision, plus any additional compensation received as side payments.
Note this definition assumes units know future prices at the time of the
commitment decision. We define initial lost opportunity costs LOC0 without
side payments and final LOC as

LOC0
g = max

ug, pg
P0

g(l
⇤, ug, pg)�P0

g(l
⇤, u⇤g, p⇤g) (4.7)

LOCg = LOC0
g + Â

t2T
stg (4.8)

4 Pricing commitment results in individual payments (or costs) to particular units, but we
categorize it separately from side payments for clarity.
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A subset of LOC is short-run revenue shortfall to cover operating costs at the
centralized dispatch decision and price. This occurs when the unit would
prefer to not operate because profit would be negative if the unit operated
as instructed at the going price. We define a make-whole payment (MWP)
as the amount needed to cover any short-run operating losses:

MWPg = �min(0, P0
g(l
⇤, u⇤, p⇤)) (4.9)

MWP are a common form of side payment, as many jurisdictions have
requirements that market participants cannot be forced to operate at a
short-run loss. It may be required that a unit is made whole, e.g., daily.
Paying LOC in full, however, may be a far more costly or even impossible
endeavor, as in some pricing frameworks they are potentially unbounded.
Nevertheless, understanding the extent of remaining LOC is important for
considering incentives to follow the central dispatch decision. If a unit sees
high LOC and is able to self-schedule, i.e., indicate to the operator that it
wishes to produce a certain amount or modify its submitted bid to the same
result, the least-cost dispatch solution may not be supported. High side
payments in general, including MWP, may also not support the least-cost
central dispatch solution. Units may be incentivized to bid untruthfully
when knowing that their stated costs are guaranteed to be reimbursed, a
situation similar to the incentive structure in a pay-as-bid auction. However,
market power mitigation measures and deviation penalties may make these
concerns less important in practice.

Fixed configuration

The original MILP formulation of a UC economic dispatch is as follows:

max
{u, p, d} 2 P

Â
t2T

Â
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(Cg ptg + Fgztg) (4.10a)

s.t. Â
g2G

ptg = Â
l2L

dtl 8t 2 T (4.10b)

u 2 {0, 1} (4.10c)

One way to find marginal prices, given that the solution to the MILP is
known, is to remove (4.10c), relax the integrality constraints, and fix the
integer variables to their optimal values:

u2 [0, 1] (4.11)
u= u⇤ (4.12)
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This yields a set of prices that we will call fixed configuration pricing (FCP),
with the price l as the shadow price of the power balance constraints (4.10b)
of the relaxed problem. These marginal prices are those found graphically in
Figure 4.1 when defined and are often treated as the non-convex analogue
to locational marginal pricing (LMP). At points of discontinuity in the
MILP optimal value function in which the system’s fixed configuration is
operating at full output, the FCP marginal price is any value between the
highest variable-cost and the cost of non-served energy. Multiple prices are
possible whenever there is more than one element in the subdifferential,
and the exact price returned will depend on the solver used. Recall that
in the convex case, the dual variables of the power balance constraints
are marginal prices that clear the market and support dispatch. FCP will
not always fulfill these criteria, as discussed in Section 4.2.1. We have also
shown that price does not uniformly increase with demand, which could
pose challenges for demand-response program incentives. MWP could
ensure no short-run losses, but LOC may still exist.

Integer programming

If we relax the binary variables and fix the commitment variables explicitly,
we can obtain the dual variables µ associated with the explicit fixed com-
mitment constraint, a method proposed by O’Neill et al. [29] and known
as integer programming (IP) pricing. We interpret µ as the “price of a
commitment ticket.” The set of prices l and µ support dispatch (meaning
no perceived losses exist) in the absence of scarcity, i.e., provided all de-
mand bids are cleared in full. Units may see a negative or positive price µ
associated with commitment that is realized as a side payment to or from
that unit if committed (sg = µgug). The formulation is the same as in FCP,
but the dual variables of the explicit fixed commitment constraints are also
obtained:

u = u⇤ : µ (4.13)

When calculating profits and LOC with this method, we define side pay-
ments to be null and include the commitment prices µ, payments realized
only when commitment utg = 1, in the profit function. Multiple sets of
prices are also possible; we can obtain different values of µ for arbitrarily
different but equivalent UC constraint formulations. This may lead to dif-
ferent distributions of surplus among generators. Another drawback of this
method is that it can cancel out profits of efficient units where values of
µ are negative, requiring a payment to the operator to be committed (in
this case, the term min(0, µtgutg) in (4.5) is negative. A proposed variant
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is to only allow positive values of µ. However, with this variant, we lose
the guarantee of no LOC in the absence of scarcity. As in FCP, l may not
increase with demand, and multiple prices l exist when there are multiple
possible multipliers. Both marginal prices l and side payments µ>u, can
be volatile with this method.

Convex hull

Gribik et al. [55] propose using the convex hull of the optimal value function
to find prices in the presence of non-convexities with the goal of minimizing
perceived losses. The side payments required to support dispatch associated
with the convex hull prices are the smallest possible side payments to
support dispatch associated with any uniform price in a deterministic
setting. Note, however, that the side payments used in practice need not
actually be the LOC, and MWP may still exist. Convex hull pricing (CHP)
requires that we perform a Lagrangian relaxation of the original MILP,
dualizing the power balance constraints. The duality gap is the LOC and
any revenue shortfall between what is charged to demand and what is
paid to suppliers. Multiple prices may exist, but price is guaranteed to
increase with demand. A downside to this method is that it is much
more computationally intensive, since it requires solving a subproblem for
each generator for each possible value of l and then optimizing over a
nonsmooth convex function. Schiro, Zheng, Zhao, & Litvinov [56] discuss
some economically counter-intuitive properties that result from CHP as
well as the challenge of using the method with rolling time horizons. Pablo
Luna, Sagastizábal, & Silva [52] argue that decomposition methods may be
useful due to the problem’s separable structure, and Andrianesis, Bertsimas,
Caramanis, & Hogan [106] propose a new computationally tractable method
using Dantzig-Wolfe decomposition to find exact convex hull prices.

Historically the computational difficulty of CHP has motivated an inter-
est in approximations. Schiro et al. [56] and Hua & Baldick [57] describe
relaxed primal formulations of CHP that are equivalent under certain
assumptions. Relaxing the binary variables of a sufficiently tight UC for-
mulation proposed by [57] yields reasonable approximations of CHP, and
can be exact when there are no binding ramping constraints. Chao [107]
note that relaxing the binary variables can produce close approximations
to and sometimes exact CHP. This method is similar to the method called
“dispatchable" pricing in [55]. We will refer to this as approximate convex
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hull pricing (aCHP). It is equivalent to the original MILP but with relaxed
integral variables:

u2 [0, 1] (4.14)

Note that there may exist a set of multiple optimal CHP and aCHP solutions.
Depending on how each is solved, CHP and aCHP may yield different
answers but draw from the same underlying set of multiple solutions. In
practice, aCHP is often implemented only for online units or for some subset
of online units so that units not in this set are unable to set the price, as in
MISO [13]. With this modification, we lose the guarantee of lowest possible
opportunity costs. We refer to this variant as partial (approximate) convex
hull pricing (pCHP) and implement it here with all online units:

u2 [0, 1] (4.15)
ug= u⇤g 8g 2 G : u⇤g = 0 (4.16)

Relaxed minimum operation

Another method commonly used in practice is to relax the minimum
operating level of online units (or some subset of online units). We will
refer to this method as RPmin. This method is currently in use in NYISO
and several other regions [13]. The formulation is the same as FCP but with
a modified set of operating constraints P0 in which 0  pg  Pmax

g ug 8g 2
G : u⇤g = 1:

u2 [0, 1] (4.17)
u= u⇤ (4.18)

Average incremental costs

A method that guarantees short-run revenue adequacy with no side pay-
ments (no MWP required) for all units over their commitment interval is
average incremental costs (AIC). The startup cost for online generators
is amortized over its actual production and binary variables are relaxed.
Offline units have their commitment status explicitly fixed to 0. The startup
costs are updated as F0g = FgPMAX

g /p⇤g 8g 2 G : u⇤g = 1.

u2 [0, 1] (4.19)
ug= u⇤g 8g 2 G : u⇤g = 0 (4.20)
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When demand is inelastic, this is equivalent to the method proposed by
Van Vyve [58]. Perceived losses may exist, so AIC prices do not always
support dispatch. Price will not always increase with demand, but arguably
this reflects a “quantity discount" in which it is less expensive per MWh to
operate a plant with a startup cost at a higher operating level.

Price adders

A method to guarantee short-run cost recovery of all units is to introduce
a revenue adequate price adder (RA). In this method, a price adder e
is added on to the commodity price l⇤. We may require that revenue
adequacy is guaranteed for each unit over a given horizon, e.g., one day.
This method requires no MWP but the higher marginal price affects all
online units, and substantial LOC may exist. Pablo Luna et al. [52] propose
a method that guarantees short-run revenue adequacy via a price adder e
and side payments s called limited compensation (LC). Total side payments
to compensate short-run losses are limited by a factor a representing a
percentage of total commodity market costs. This transfers some of the
MWP to a price adder on the commodity price, when binding. Here we use
an a of 5% and find the base price l⇤ via FCP. Formulations to find these
two price adders are given in the Appendix.

Short-run losses Lost opportunity costs Type

FCP Possible Possible Commodity price

IP None None unless price set by demand Commodity, commitment price

aCHP Possible Minimal Commodity price

pCHP Possible Possible Commodity price

RPmin Possible Possible Commodity price

AIC None over unit’s operation horizon Possible Commodity price

RA None Possible Adder to commodity price

LC Possible, low with low a Possible Adder to commodity price

Table 4.4: Pricing Framework Comparison

4.3 methodology

Recall that social surplus depends only on the quantity of demand cleared,
with different prices representing transfers between consumer and producer
surplus. However, producers will not stay in the market in the long-run
if they are operating at a loss, and new producers will join the market in
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the long-run if they could make a profit. Both positive and negative profits
could result in a move away from the CP solution to an alternate resource
mix that may clear a different level of demand and thus yield a lesser social
surplus. If we have positive profits for producers when applying a pricing
framework to the CP solution, this means a transfer from consumer to
producer surplus, resulting in higher average costs for consumers. If profits
are sufficiently high, this likely indicates new participants could enter the
market and make a profit, leading the optimal resource mix away from
the CP solution. Similarly, if we have negative profits for producers when
applying a pricing framework to the CP solution, we also expect movement
away from the CP solution. This is why it is important to find a capacity
mix that is adapted to a given pricing framework in the long-run. Once we
find these different long-run capacity mixes, we can calculate consumer
and producer surplus for each.

However, finding the CP solution is a challenge for a large-scale system.
If we limit our analysis to only a deterministic problem, ideally we would
solve a generation capacity expansion model for a horizon sufficient to fully
reflect the demand and VRE generation profiles and the amount of time
intervals with scarcity of capacity, e.g., one year. However, a formulation
with investment decisions at the plant level and UC constraints for a year
quickly becomes computationally prohibitive as the number of generators
required increases. On the other hand, a larger scale system is helpful in
reducing the impact of lumpy investments on profits, as each generator
becomes a smaller fraction of the overall load served. de Sisternes, Webster,
& Pérez-Arriaga [108] use an extensive form MILP when investigating four
different bidding rules with inelastic demand with a cost of non-served
energy of only $500/MWh as a proxy for the cost of back-up generators
participating in demand-response programs. While the choice of sample
weeks may impact the chosen capacity mix, we are less concerned in this
illustrative example in accurately representing any given year. However, we
are concerned with the effect that scaling the duration of non-served energy
found over smaller time horizons to larger ones can have on profits. Herrero,
Rodilla, & Batlle [51] compare two pricing frameworks for a year at hourly
resolution with a clustered UC formulation, which may significantly alter
the representation of non-convexities compared to the full UC formulation.
This approach was chosen because of the non-served energy scaling issues,
but the use of partially elastic demand would resolve this problem, as
scarcity prices are set more frequently but at lower values. Mays, Morton,
& O’Neill [109] use sample weeks and a decomposition algorithm that
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allows for partial relaxation of UC constraints when searching the solution
space for the optimal capacity mix. In the interests of fully capturing the
non-convexities, we choose to preserve the full UC formulation. We use an
extensive form MILP with price-responsive demand on a large-scale system
with representative weeks. We can then determine how well a given pricing
framework supports the CP solution and what incentives exist to deviate
from this solution in the short-run and long-run.

Next, we are interested in finding a capacity mix that is a long-run market
equilibrium adapted to a given pricing framework to evaluate market
outcomes for each pricing framework. We seek a quasi-break-even solution
in which all units in the market are operating without losses and no new
entrant could make a profit. Note that because of lumpy investments, there
may be multiple such solutions instead of only one. Herrero et al. [51] use
a simplified UC formulation to perform an exhaustive search across many
candidate solutions for the capacity mix that maximizes social surplus
subject to no generators operating at a loss. Hytowitz et al. [110] require
the adapted mix to have a particular reliability target but do not otherwise
provide details. Using an allowed profit bound of +/-10%, de Sisternes
et al. [108] find the CP solution is supported by all considered pricing
frameworks except one in which non-convex costs are internalized as
simple bids. For this case they add or remove nuclear units until none are
operating outside the profit bounds, followed by CCGT and then OCGT.
Mays et al. [109] estimate profit functions via regression coefficients found
from profits under a number of near-optimal solutions to a partially relaxed
capacity expansion problem. They then find a capacity mix within the
convex hull of these near-optimal CP solutions in which profits are close
to zero for all technology types. Since we wish to reflect the non-convex
features of the market as faithfully as possible, we employ an algorithm
that begins at the CP solution and reflects the long-run movement to a
market equilibrium away from the CP solution where sufficient incentives
exist, at each stage solving a full UC formulation for the new candidate
capacity mix and re-calculating prices and profits. We present results for
a profit bound of 0% and for +/-5%, reflecting some leniency for lumpy
investments. For equilibria with negative profits within this bound, the
producer losses are added to the consumer surplus with the interpretation
that the consumers pay these small losses at-cost.

Another issue that must be addressed is that large-scale UC dispatch
problems are usually only solved to within a certain MIP gap. Eldridge,
O’Neill, & Hobbs [111] illustrate how different near-optimal solutions can
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yield a more diverse array of generator profits depending on the pricing
framework. They find that the methods we call FCP and pCHP, which have
in common explicit fixed commitment constraints for all or a subset of units,
can have large and unbounded payment redistributions among alternate
solutions. In contrast, aCHP, which does not fix any unit’s commitment
in the pricing run, has smaller, bounded redistributions that can become
smaller by tightening the UC’s convex relaxation. Acknowledging that
profits may differ for some pricing frameworks, Mays et al. [109] calculate
profits as the average over a number of near-optimal solutions. The short-
run centralized dispatch decision used in our analysis of pricing frameworks
is determined ex-post, with a fixed capacity expansion decision. When
solving the short-run UC dispatch at the CP resource mix, we use Gurobi’s
solution pool option to find a set of 20 near-optimal solutions with a target
MIP gap of 0.02% and attempt to maximize diversity. We present the ranges
of profits found. While Sioshansi, O’Neill, & Oren [112] show that changes
in intra-producer surplus transfers do not decrease strictly monotonically
with the optimality gap, we find that total producer surplus does generally
decrease with the quality of the solution. Because we tend to find the
same relative distribution of producer surplus among technology types for
each solution but different overall levels of producer surplus by quality of
optimal solution, we do not take the average profits. Instead, we present
results for the adapted capacity mixes found via a more modest MIP gap
of 0.001% and a targeted MIP gap of 0% with a time limit of 5 minutes per
optimal dispatch, in which the resulting MIP gaps were under 0.00005%.
This permits a comparison of how impactful the optimality of the primal
solution is in the long-run. We assume perfect foresight so that uncertainty
and rolling horizons do not additionally distort profits beyond the impact
of non-convexities.

4.3.1 Model Formulations

Here we define the formulation for the extensive form MILP capacity
expansion model and short-run centralized UC economic dispatch.

Nomenclature

Indices and Sets

g 2 G Set of generators
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GT ✓ G Set of thermal generators
GN ✓ GT Set of nuclear generators
GV ✓ G Set of VRE resources
t 2 T Set of time periods (hours)
l 2 L Set of demand bids

Parameters

Cg Variable cost ($/MWh)
Fg Startup cost ($)
Cinv

g Annualized investment cost of generator g ($/yr)

Pmin
g Minimum operating capacity (MW)

Pmax
g Maximum operating capacity (MW)

Mon
g Minimum on time (h)

Mo f f
g Minimum off time (h)

Rg Maximum ramp up/down rate (MW/h)
Ptg Maximum output for VRE resource (MW)
Bl Value of demand bid l ($/MWh)
Dtl Maximum quantity of demand bid l at time t (MW)

Variables

ptg Committed generation for generator g at time t (MW)
utg (Binary) commitment status for generator g at time t
ztg (Binary) startup decision for generator g at time t
ytg (Binary) shutdown decision for generator g at time t
dtl Amount of cleared demand bid l at time t (MW)
xg Binary build decision for each generator g 2 GT
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Capacity expansion model

The capacity expansion model is formulated as follows:

max
(x, p, u, z, y, d)

Q Â
t2T

Â
l2L

Bldtl � Â
g2G

Cinv
g xg �Q

2

4Â
t2T

Â
g2G

(Cg ptg + Fgztg)

3

5

(4.21a)
s.t. Â

g2G
ptg = Â

l2L
dtl 8t 2 T (4.21b)

0  dtl  Dtl 8t 2 T, l 2 L (4.21c)
ptg  Pmax

g xg 8t 2 T, g 2 GT (4.21d)

ztg + ytg  1 8t 2 T, g 2 GT (4.21e)

utg � ut�1,g = ztg � ytg 8t 2 2...T, g 2 GT (4.21f)

ztg = utg 8t = 1, g 2 GT : g /2 GN

(4.21g)

ztg = 0 8t = 1, g 2 GN (4.21h)

ytg = 0 8t = 1, g 2 GT (4.21i)

ztg +
min (t+Mon

g �1,T)

Â
t0=t+1

yt0g  1 8t 2 1...T � 1, g 2 GT

: Mon
g > 1 (4.21j)

ytg +
min (t+Mo f f

g �1,T)

Â
t0=t+1

zt0g  1 8t 2 1...T � 1, g 2 GT

: Mo f f
g > 1 (4.21k)

Pmin
g utg  ptg  Pmax

g utg 8t 2 T, g 2 GT (4.21l)

� Rg  ptg � pt�1,g  Rg 8t 2 T, g 2 GT (4.21m)

0  ptg  Ptg 8t 2 T, g 2 GV (4.21n)
ptg � 0 8t 2 T, g 2 G (4.21o)

utg, ztg, ytg 2 {0, 1} 8t 2 T, g 2 GT (4.21p)

xg 2 {0, 1} 8g 2 GT (4.21q)

The factor Q scales up short-run costs to an annualized level in objective
function (4.21a) that maximizes benefits and minimizes costs with price-
responsive demand. Constraint (4.21b) ensures power balance with cleared
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demand bids. Constraint (4.21d) links production to build decisions for
thermal units. Constraints (4.21e)-(4.21k) ensure consistent relationships
between startup and shutdown decisions limited by minimum on and off
times. Nuclear is allowed to begin the simulation turned on without paying
a startup cost in the first time period (with its startup cost included in Cinv,
reflecting an expectation of one startup cost for nuclear in a year). This
addresses inappropriate scaling of nuclear startup costs over simulation
periods shorter than one year. Capacity constraints for committed thermal
units are given in (4.21l). We provide ramping constraints in (4.21m), but
they are not binding at an hourly resolution in the case study data. Curtail-
able VRE generation is defined in (4.21n). VRE capacity is exogenous to the
thermal capacity expansion decision.

Short-run centralized dispatch with unit commitment

Once a capacity mix is fixed, the short-run UC dispatch is solved. This
formulation replaces the objective function (4.21a) with (4.22):

max
(p, u, z, y, d)

Â
t2T

Â
l2L

Bldtl � Â
t2T

Â
g2G

(Cg ptg + Fgztg) (4.22)

The subset of units G is redefined as only units that were built in the
capacity expansion model, g 2 G : xg = 1. Constraints (4.21d) and (4.21q)
are omitted. We define long-run profits as a percentage of total costs:

pg =
QPg � Cinv

g

QXg + Cinv
g

(4.23)

4.3.2 Market Equilibrium Adapted to Pricing Framework

We next define a method to illustrate movement away from the CP solution
due to profit incentives with a given pricing framework. We seek a market
equilibrium resource mix adapted to a given pricing framework in which
no participant is operating at a loss and no new entrant would make a profit
under the given pricing framework. While we refer to this resource mix as
an equilibrium, we note it is really a quasi-break-even solution, as a true
equilibrium may not exist for non-convex markets. Algorithm 1 describes a
guided search through capacity mixes, aiming to treat the building of each
resource type with equal preference. Note that multiple market equilibria
may exist under this definition with lumpy investments, and the order in
which we consider which technology types to build may result in a different
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equilibrium. The algorithm loops through the set of all units, both currently
built and unbuilt candidates, alternating the technology type under review
iteratively. If a built unit is not profitable, it is removed, and the dispatch
is re-solved, generating a new set of profits. If a unit has not been built,
it is included in a test dispatch that generates a new set of profits; if the
candidate unit is profitable, and it has not made another unit of its type
unprofitable, it is built, and current profits are updated. The test dispatch
ensures the algorithm terminates. The vector of build decisions x is updated
by adding or removing units. The vector x⇤ has xg = 1 if a unit was built
in the capacity expansion model and xg = 0 for all candidate units that
have not (yet) been built. G is ordered such that unbuilt units alternate
iteratively through technology types. Since we are modeling a system that,
while large, we suppose has lumpier investments than a real-world system,
we formulate profitability optionally in terms of a bound; we may define
losses as profits less than, e.g., -5%. This algorithm is run once with a MIP
gap of 0.001% for each UC dispatch and again with a target MIP gap of 0%
with a time limit for each UC dispatch.
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Algorithm 1: Capacity mix adapted to pricing framework
x = x⇤ for i = 0;
Ig  vector of 0’s with 1 in the g-th position;
pg  long-run profits for unit g under given pricing framework;
G  technology type alternates iteratively for unbuilt units in initial x;
i initialized to 0;
while | pg(x) |> bound for any g do

check true for each type ;
j current iteration status i;
for g 2 G do

k type of g;
if xg = 0 & check(k) then

Calculate pg(x + Ig) ;
Calculate pg0(x + Ig) 8g0 2 k;
if pg(x + Ig) > 0 & pg0(x + Ig) > �bound 8g0 2 k then

x = x + Ig;
i = i + 1;

else

check(k) = false;
end

else // xg = 1
if pg(x) < �bound then

x = x� Ig;
i = i + 1;

end

end

end

if j = i then // No units added or removed
break;

end

end

4.4 results

4.4.1 Data

Scenarios are constructed using correlated demand, wind generation, and
solar generation profiles from the Reliability Test System of the Grid Mod-
ernization Lab Consortium [38]. In the base case, we scale demand and
VRE profiles by a factor of 10, yielding a system with peak load of approx-
imately 47.5GW over the 4 sample weeks selected. Non-coincident peak
wind is over 50% of peak load, and non-coincident peak solar is over 25%.
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This base case scenario corresponds to VRE scenario S100, with alternative
scenarios S75, S50, and S25 representing VRE profiles scaled to 75%, 50%,
and 25% of the base case, respectively. We start from a greenfield situation
for thermal generator capacity expansion. We use candidate generators
of three technology types: nuclear, CCGT, and OCGT, representing base,
intermediate, and peaking units. Technical and cost parameters are given
in Table 4.5. Parameters are adapted from data used in [108]. We use bid-in
demand assuming 90% of demand at each time period is inelastic (with a
benefit of $10,000/MWh) and 10% of demand is elastic, represented by 200
equally-sized bids descending in price from $10,000/MWh to $50/MWh,
analogously to [109]. Using the base case with completely convex opera-
tions (no UC) but binary build decisions, we are able to achieve average
profits for nuclear, CCGT, and OCGT of -1%, -2%, and -5% respectively,
with no unit operating at a profit of less than -5%. This provides some
reassurance that the size of the problem is sufficient to reduce the impacts
of lumpy investments and some justification for exploring a +/-5% profit
bound.

Tech Min Output Max Output Ramp Up/Down Up/Down time Investment Startup Variable
(MW) (MW) (MW/hr) (hr) (M$/GW-yr) (M$) ($/MWh)

Nuclear 900 1000 190 36 489 1 6.5
CCGT 150 400 320 3 129 0.06 58.5
OCGT 50 200 360 0 106 0.01 99.4

Table 4.5: Technical and Cost Parameters for Thermal Generators

4.4.2 Central Planner Solution

We investigate how producer surplus changes with the optimality gap,
finding over 40 near-optimal solutions within 0.1% of the best solution
found. Figure 4.2 shows the total producer surplus across all units at each
near-optimal solution with the CP resource mix for FCP and aCHP with and
without daily MWP. Note that achieved relative MIP gaps are quite small
because we explicitly include benefit of cleared demand in the objective
value. We find that producer surplus tends to decrease with the optimality
gap for FCP, but not monotonically. With flexible demand, suboptimal
dispatch decisions often lead to less cleared demand, which results in
higher prices, and thus greater producer surplus. In contrast, aCHP, which
does not depend on the primal solution, has profits that do not vary across
near-optimal solutions.
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Figure 4.3 shows the average cost to consumer under different pricing
frameworks in the base case at the central planner solution with the default
MIP gap target of 0.001%. While this resource mix is not yet adapted to
any given pricing framework, we see clear differences in the total cost
to consumers and the types of costs associated with each method. aCHP
is by far the lowest cost, while RPmin is the highest. RA includes a price
adder, while IP includes a commitment price, but requires no further side
payments to be made whole on a daily basis. The difference between FCP,
LC, and RA (since LC and RA use FCP’s commodity price as the base price)
is only in how no daily losses are achieved. FCP requires a MWP, while RA
avoids the use of any side payments with a price adder, resulting in higher
overall costs. LC limits the amount of side payments, and transfers some of
these to a price adder. Overall, however, short-run losses on a daily basis
are very small, i.e., little MWP are required. In fact, a key observation in
this case study is that with well-adapted systems facing a partially elastic
demand curve, all units recover their short-run operating costs over the
simulation horizon. Most also recover their short-run costs on a daily basis,
helped by the frequency with which price is set by demand, resulting in
higher profits. With the exception of RA, we find the inclusion of daily
MWP to be negligible for results, resulting in minimal impact on profits and
no changes in the adapted resource mix. Since the only way in which RA
and LC differ from the method used to calculate its underlying base price
is if MWP exist, we do not report results for these methods. The differences
in average cost to consumer are driven by different long-run profits at the
CP solution, as seen in Figure 4.4(a). The smallest producer profits are seen
with FCP and aCHP, and the largest with RPmin and AIC.

4.4.3 Market Equilibrium Adapted to Pricing Framework

With some individual units with losses outside the profit bound (recall that
Figure 4.4(a) shows average profits by technology) and some technology
types making considerable profits, we expect movement away from the CP
solution when finding a capacity mix adapted to each pricing framework.
A full table of results is available in the Appendix. Figure 4.4(b) shows the
change in the number of units between the CP and adapted mixes, and
Figure 4.4(c) shows the new long-run profits at the adapted mixes specific
to each pricing framework. No units are operating at a loss, and no new
units could enter and make a profit, even though the existing producers
are in some cases making a substantial profit. High profits at the adapted
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Figure 4.2: Total producer surplus and optimality gap across near-optimal solu-
tions, sorted from worst to best

Figure 4.3: Base case average cost to consumer at the central planner solution

mixes are driven by demand-set prices, but if one more unit is added, those
demand-set prices are now lower, and profits of all generators go down
substantially. These high profits for thermal units at adapted mixes can
persist even if we allow VRE to be invested endogenously. For example,
allowing an incremental wind generator that can be built to any size at no
cost for the base case still results in average profits of 22% for OCGTs in
the adapted mix for FCP.5 Additionally, profits vary substantially across
pricing frameworks. Profits at the adapted mix are lowest with aCHP. LOC
are high across the considered pricing frameworks, with the exception of
aCHP, as shown in Figure 4.4(d).

5 Future work may wish to explore if the addition of endogenously invested VRE with energy
storage may reduce thermal profits at adapted mixes.
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(a) Long-run average profit at CP
(b) Change in units from CP to adapted

mixes

(c) Long-run profit at adapted mixes (d) Perceived losses at adapted mixes

Figure 4.4: Base case results with a 0.001% MIP gap and a 5%-profit bound.

The average cost to consumer differs considerably by pricing framework,
with aCHP being substantially lower, as shown in Figure 4.5(a). The mag-
nitude of MWP is also shown in Figure 4.5(a), although their inclusion
does not change the adapted mix and negligibly impacts the profits. Note
that different adapted mixes may clear different amounts of demand and
that average cost to consumer includes payments to VRE. In contrast, to
compare across VRE scenarios, the cost to consumers for the consumer
surplus is calculated with exogenous VRE and the producer surplus is
only reported for thermal generators. We see in Figure 4.5(b) that despite
the different adapted capacity mixes, the total social surplus achieved is
only very slightly smaller across all pricing frameworks than at the CP
solution. However, the transfer from consumer to producer surplus varies
substantially by pricing framework. Note that the consumer surplus value
is high because it includes the total benefit of cleared demand, most of
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which is $10,000/MWh due to the 90% inelastic portion of the demand
curve.

The pattern of small changes in social surplus from the CP solution in
the adapted mixes but comparably larger changes in consumer surplus is
seen across VRE scenarios, profit bounds, and MIP gaps, as seen in Figure
4.6. Across all simulations, aCHP achieves the highest consumer surplus.
However, with the smallest MIP gap target (represented by the diamond
in comparison to circular markers at 0.001% MIP Gap) the performance
of pricing frameworks that rely on the primal solution improve markedly.
However, even with small MIP gap targets, RPmin and AIC achieve sub-
stantially lower consumer surplus. Table 4.6 shows how the average costs
to consumers change as a percentage of costs under aCHP for each VRE
scenario. In the base case (S100) with a target MIP gap of 0.001%, the av-
erage cost to consumers is 8% more expensive than aCHP, while RPmin is
22% more expensive. With a target MIP gap of 0%, FCP and aCHP perform
equally well by this metric, and RPmin is only 13% more expensive. While
FCP and aCHP result in nearly identical average costs to consumers for
scenarios S75 and S100 under the smallest MIP gap, aCHP still yields more
overall consumer surplus, as shown in Figure 4.6(b).

MIP Gap Target 0.001%

FCP IP aCHP pCHP RPmin AIC
S25 15% 18% 0% 17% 24% 20%
S50 20% 24% 0% 25% 26% 26%
S75 16% 19% 0% 18% 18% 17%
S100 8% 11% 0% 10% 22% 13%

MIP Gap Target 0%

FCP IP aCHP pCHP RPmin AIC
S25 2% 3% 0% 5% 13% 9%
S50 6% 6% 0% 6% 17% 13%
S75 -1% 3% 0% 2% 16% 9%
S100 0% 3% 0% 2% 13% 9%

Table 4.6: Change in Average Cost to Consumers as Percentage of aCHP Costs

4.4.4 Varying Levels of VRE Penetration

As long as the system is allowed to adapt, increasing levels of VRE is not
strongly associated with an increase in consumer surplus from the CP
benchmark across different pricing frameworks. On the other hand, the
gaps in achievable consumer surplus from the CP solution arising from
non-convex operations of thermal plants do not appear to substantially
decrease with higher shares of VRE either. These results can be seen by
comparing across VRE scenarios (indicated by different colors) in Figure
4.6. This is likely due to the total installed capacity of thermal units in the
CP solution being equivalent across VRE scenarios, as seen in Figure 4.7.
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(a) Average cost to consumer (b) Social surplus

Figure 4.5: Base case average cost to consumer and social surplus results with a
0.001% MIP gap and a 5%-profit bound.

(a) Social surplus (b) Consumer surplus

Figure 4.6: Social surplus and consumer surplus losses from CP benchmark
across all simulations.

Because there is no energy storage in the test case, and there are times at
which load is high but VRE production is low, there is no firm capacity
value of VRE. The type of thermal capacity built changes, but not the total
quantity. The inclusion of significant storage capabilities or VRE penetration
sufficient to reliably offset peak net load may change this result, as the total
installed thermal capacity may decrease. We find that the aCHP average cost
to consumer is generally lower across pricing scenarios and is equivalent
with both tested MIP gaps, as shown in Figure 4.8.
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Figure 4.7: Total installed thermal capacity at CP solution.

Figure 4.8: Average cost to consumer over VRE scenarios with a 5%-profit bound.

4.5 conclusion

We have framed the question of optimal pricing in the long-run in non-
convex markets in terms of social surplus achieved and transfer of consumer
to producer surplus in adapted long-run market equilibria. We find that
aCHP generally achieves the highest social surplus and is also associated
with the lowest transfer of consumer to producer surplus. Perhaps surpris-
ingly, FCP is also associated with high social surpluses and high consumer
surpluses relative to the CP benchmark provided that a primal solution very
close to optimality can be found. Even though transfers of surplus are not
monotonic with MIP gap in a non-convex setting, this analysis shows that
size of MIP gap can have non-negligible short- and long-run effects. Most
pricing frameworks tend to over-compensate inframarginal units, leading to



4.5 conclusion 99

mixes with lower social surplus and a greater transfer of consumer surplus
to producer surplus in the long-run. Results also demonstrate that relaxing
only a set of online units (pCHP), referred to as “extended LMP" in US
markets, performs worse in terms of consumer surplus achieved than relax-
ations including all units (aCHP). Use of aCHP also has the benefit of being
associated with low LOC in the deterministic setting. We also show that
the non-convexities issue is not ameliorated with increased VRE so long as
optimal overall thermal capacity in the long-run remains unchanged.

We do not find MWP to be significant in long-run well-adapted systems in
our case study. This raises questions for further research about how signifi-
cant MWP are in the context of long-run adapted systems with increased
demand elasticity. However, more work should be done to determine if
inclusion of no-load costs or a more diverse array of generation technologies
might lead to the presence of some of the non-convex features that require
MWP for short-run cost recovery in a long-run adapted mix. Additionally,
while we know the overall social surplus will be lower than at the CP
solution, it would be desirable to explore all lumpy investment market equi-
libria to see if total producer surplus and its distribution among technology
types varies. In this study, we have taken the perspective of a centrally
committed market design. Alternatively, a self-committed market design,
such as in Europe, in which participants internalize their non-convexities
in simple bids is possible. While the dispatch associated with simple bids is
likely to be less optimal, further work could attempt to quantify the relative
trade-offs.

While aCHP performed best in the scope of this study, it should be noted
that good approximations to CHP become more difficult with binding
ramping constraints. While prior methods to calculate exact CHP were pro-
hibitively computationally intensive for real-world systems, a new proposal
by Andrianesis et al. [106] suggests that exact CHP may be feasible in prac-
tice. Transmission constraints, multi-settlement markets, uncertainty, rolling
time horizons, and market power concerns may also impact a market opera-
tor’s preferred pricing framework. While the lack of dependence of CHP on
the dispatch solution can be a benefit, the implications of producers being
able to estimate the price curve ex-ante should be further explored. Another
consideration is that it may not be practical to wait for long-run adaptation
since lifetimes of power plants can be decades. Market operators should
seek to maximize social surplus in the long-run, but this must be balanced
with concerns for consumer surplus during transitional states.
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appendix

4.5.1 Formulation of Price Adders

Price adders are a way to guarantee short-run cost recovery of all units
in lieu of side payments to compensate short-run losses. A price adder
e is added on to the commodity price l⇤. We may require that revenue
adequacy is guaranteed for each unit over a given horizon, e.g., one day.
The problem formulation to determine a revenue adequate (RA) price adder
is:

min
e Â

t2T
Â

g2G
et p⇤tg

s.t. Â
t2Tj

(lB⇤
t + et)p⇤tg � Â

t2Tj
(Cg p⇤tg + Fgz⇤tg) � 0 8g 2 G, 8j 2 J

e � 0

(4.24)

where p⇤tg is the central dispatch decision for production for unit g at time
t, C is the variable cost, F is the startup cost, z⇤ is the fixed startup decision,
Tj is a 24-hour interval, and J is the set of days.

[52] propose a method that guarantees short-run revenue adequacy via a
price adder e and side payments s called limited compensation (LC). Total
side payments to compensate short-run losses are limited by a factor a
representing a percentage of total commodity market costs. This transfers
some of the MWP to a price adder on the commodity price, when binding.
The problem formulation is given by:

min
e, s Â

t2T
Â

g2G
(et p⇤tg + stg)

s.t. Â
t2Tj

⇣
(l⇤t + et)p⇤tg + stg

⌘
� Â

t2Tj
(Cg p⇤tg + Fgz⇤tg) � 0 8g 2 G, 8j 2 J

Â
t2T

Â
g2G

stg  a Â
t2T

Â
g2G

(l⇤t + et)p⇤tg

e, s � 0
(4.25)

The base price could also be the commodity price found via a pricing
framework that is not already revenue-adequate, e.g., aCHP. RA and LC
could also alternatively be formulated to track a target price stream to
spread out the adder more evenly and LC could be formulated to prevent a
unit from profiting when being compensated for a fixed cost.
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4.5.2 Adapted Mixes Results Table

MIP Gap 0.001% MIP Gap 0.001% MIP Gap 0.001% MIP Gap 0.001%
Profit Bound 5% Profit Bound 5% Profit Bound 5% Profit Bound 5%

VRE S25 VRE S50 VRE S75 VRE S100

Nuclear CCGT OCGT Nuclear CCGT OCGT Nuclear CCGT OCGT Nuclear CCGT OCGT
FCP 0 0 0 0 0 0 1 -2 -1 1 -2 -1

IP 0 0 0 0 0 0 1 -2 -1 1 -2 -1
aCHP 0 0 0 0 0 0 0 0 0 0 0 -1
pCHP 0 0 0 0 0 0 1 -3 1 1 -2 -1

RPmin 3 -8 1 4 -10 0 4 -10 0 1 -2 -1
AIC 0 0 0 3 -6 -3 1 -2 -1 1 -2 -1

MIP Gap 0.001% MIP Gap 0.001% MIP Gap 0.001% MIP Gap 0.001%
Profit Bound 0% Profit Bound 0% Profit Bound 0% Profit Bound 0%

VRE S25 VRE S50 VRE S75 VRE S100

Nuclear CCGT OCGT Nuclear CCGT OCGT Nuclear CCGT OCGT Nuclear CCGT OCGT
FCP 0 0 0 0 0 -1 1 -3 0 1 -2 -2

IP 0 0 0 0 0 0 1 -2 -2 1 -2 -2
aCHP 0 0 0 -1 1 2 -1 1 2 0 -1 1

pCHP 0 0 0 1 -2 -1 1 -2 -2 1 -2 -2
RPmin 3 -8 1 4 -8 -4 6 -15 -1 6 -15 -1

AIC 0 0 0 1 -3 1 1 -2 -1 1 -2 -2
MIP Gap Target 0 MIP Gap Target 0 MIP Gap Target 0 MIP Gap Target 0

Profit Bound 5% Profit Bound 5% Profit Bound 5% Profit Bound 5%
VRE S25 VRE S50 VRE S75 VRE S100

Nuclear CCGT OCGT Nuclear CCGT OCGT Nuclear CCGT OCGT Nuclear CCGT OCGT
FCP 0 0 0 0 0 0 0 0 -1 0 0 -1

IP 0 0 0 0 0 0 0 0 0 0 0 0

aCHP 0 0 0 0 0 0 0 0 0 0 0 -1
pCHP 0 0 0 0 0 0 0 0 0 0 0 -1

RPmin 0 0 0 0 0 0 0 0 -1 0 0 -1
AIC 0 0 0 0 0 0 0 0 0 0 0 0





5
C O S T R E C O V E RY W I T H VA R I A B L E R E N E WA B L E
E N E R G Y

Increasing shares of variable renewable energy (VRE) on the grid requires more
flexible operation of other generation technologies. In an ideal energy-only market,
prices should adequately compensate flexibility provision. While long-run cost
recovery of generators can be achieved in a convex setting with marginal pric-
ing, electricity markets exhibit non-convex costs and require non-convex pricing
methods. We investigate how increasing VRE penetration impacts the type of
technologies built, their payoffs, social surplus, and price distributions in a long-
run resource mix adapted to a number of different non-convex pricing models.
We find that non-convex energy-only markets can provide long-run cost recovery
for flexible generators even as VRE penetration increases and that the impact of
non-convexities decreases with increasing VRE.
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5.1 introduction

Electricity markets are non-convex due to binary commitment decisions,
no-load costs, and minimum operating requirements of generators. More
variable renewable energy (VRE) often leads to net load curves with steeper
ramps, shorter peaks, and lower minimum values, as illustrated in Figure
5.1. To supply these new net load curves, generators may need to startup
and shutdown more often and recover costs from fewer operating hours.
This could lead to more instances in which non-convexities matter, and
more overall impact of non-convexities on market outcomes. In the long-
run, it is important to adequately compensate resources that provide the
necessary flexibility to incorporate VRE. However, if resource mixes are
allowed to adapt in the long-run, it is unclear if increased VRE will mitigate
or exacerbate non-convex market outcomes. We examine how increasing
VRE impacts the type of technologies built, their payoffs, overall consumer
and producer surplus, and price distributions across a range of installed
VRE capacity scenarios with a given stochastic VRE distribution.

Figure 5.1: Variable renewable energy changes the shape of the net load curve.
Source: [113]

When investigating the compensation of different types of technologies, it is
important to consider the long-run perspective. In the short-run, increased
VRE could cause some existing generators to operate at a loss, providing
a signal to exit in the long-run. This is a desirable property, as we do
not want to support any given resource mix but rather the resource mix
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that in the long-run meets system needs while maximizing social surplus.
Authors in [114] explore how higher wind penetration impacts short-run
profits under several non-convex pricing models for a scaled-down static
test case resembling PJM, expressing concern that more flexible resources
were profiting less under higher wind scenarios. They recommend other
market constructs to recover capital costs of flexible generators. However,
higher penetration levels of VRE ought to lead to different optimal resource
mixes in the long run as retirement and build decisions are made. We
must analyze a long-run adapted resource mix to see if flexibility providers
are adequately compensated. Reference [14] (Chapter 4) shows long-run
adapted systems to several non-convex pricing models as VRE is increased.
However, the VRE had no firm capacity credit, i.e., it was not able to reliably
offset any thermal capacity due to periods of low VRE generation at times
of high demand. Here we expand on the analysis in [14] to examine how
different pricing models perform as VRE is able to offset some amount of
total thermal capacity in the long-run optimal resource mix.

A challenge is that VRE is stochastic, so even in a convex case we would
only expect perfect long-run cost recovery at the optimal resource mix if
VRE realizations were as expected. Here we use a scenario-based stochastic
capacity expansion model to find a starting resource mix for each VRE
installed capacity scenario. Assuming VRE realizations are as expected, we
then find resource mixes that represent quasi-break-even solutions for each
pricing model. At the adapted long-run resource mixes, we can examine
payoffs of generators of different technology types by pricing model and
across VRE installed capacity scenarios. How overall consumer surplus
differs helps to determine if there is a costly interaction between non-
convexities and high VRE. We also examine volatility via price distributions
and what payoffs would look like if VRE realizations are not as expected.
The analysis allows us to examine whether an idealized non-convex energy-
only market can still provide long-run cost recovery for needed flexible
generators as VRE increases.

5.2 non-convex pricing models

We explore a number of pricing models with details of their implementation
given in Table 5.1, where ug is the commitment status of generator g,
u⇤g is the optimal value found in the dispatch problem, and Pmax

g is the
maximum capacity of g. All pricing runs are performed with the assumption
that a solution to the market-clearing short-run unit commitment (UC)
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Pricing Model Definition

FCP u2 [0, 1], u= u⇤

aCHP u2 [0, 1]

pCHP u2 [0, 1], ug= u⇤g 8g 2 G : u⇤g = 0

RPM u2 [0, 1], u= u⇤, 0  pg  Pmax
g ug 8g 2 G : u⇤g = 1

Table 5.1: Pricing Models

dispatch problem, formulated as a mixed integer linear program (MILP),
is known.1 Startup, shutdown, no-load costs, and minimum operating
levels yield a non-convex optimal value function for which marginal prices
do not always exist. Even where marginal prices can be found, they do
not ensure short-run cost recovery (either for variable or startup costs)
of optimally dispatched generators (as would be the case in a convex
setting). This becomes readily apparent with block-loaded generators that
have no ramping abilities and thus can never set the price. The lack of
cost recovery with marginal prices of high variable-cost, fast-acting, block-
loaded resources is why pricing with non-convexities is referred to in
the U.S. as “fast-start pricing" [13], although non-convexities present cost-
recovery challenges for all resource types.

Fixed configuration pricing (FCP) can be considered the non-convex analog
to locational marginal pricing (LMP), with prices as the dual variables
of the power balance constraints after relaxing integrality and fixing the
UC status during the pricing run to the optimal values previously found.
Approximate convex hull pricing (aCHP) is an approximation to the pricing
model proposed by [115] that seeks to find the marginal prices associated
with the convex hull of the optimal value function, which is the uniform
price associated with the lowest lost opportunity costs (LOC). We can find
an approximation with a tight UC relaxation, and this approximation may
be exact where ramping constraints are not binding [57]. Partial convex hull
pricing (pCHP), in use in a form in MISO [13] relaxes integrality and fixes
commitment to optimal values for only a subset of units, e.g., the set of

1 Results for pricing models that depend on the MILP solution may vary based on how close to
optimality the UC dispatch problem is solved. We refer to [14] and [111] for further analysis of
this dependence.
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online units. Finally, relaxed Pmin pricing (RPM) used in NYISO and several
other regions [13] relaxes integrality, fixes commitment to optimal values,
and changes the minimum operating capacity required to 0 for some subset
of units, e.g., the set of online units.

LOC represents the difference between profits made for a given price
following the central dispatch decision and the profits that a generator
could make if it chose its own production level based on the given price
(its preferred profit). In a convex setting with marginal pricing, LOC does
not exist. Make-whole payments (MWP) are a subset of LOC that equal
the short-run losses over some time horizon when a generator is scheduled
to produce but given the price would prefer not to. MWP are typically
resolved on a daily basis, and we follow this convention for each pricing
model. However, we note that generators can operate at a short-run loss
over a single day while still operating at a short-run profit over a longer
time horizon; thus, daily MWP may exceed long-run LOC.

5.3 methodology

We analyze a number of installed VRE capacity scenarios, each with an
underlying set of VRE realization scenarios. For each installed VRE capacity
scenario, we find the central planner’s optimal thermal capacity additions
using a stochastic capacity expansion model. In a convex setting, the ideal-
ized central planner maximizing social surplus chooses the same resource
mix as a perfectly competitive market in the long-run with marginal pricing.
While our problem is non-convex, this solution provides a starting point
to find a resource mix adapted in the long-run to each pricing model. We
use an algorithm that iteratively searches nearby resource mixes to find a
quasi-break-even solution in which no generator operates at a loss and no
new additional generator could enter the market and make a profit.

5.3.1 Nomenclature

Indices and Sets

g 2 G Set of generators
GT ✓ G Set of thermal generators
GN ✓ GT Set of nuclear generators
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GV ✓ G Set of VRE resources
t 2 T Set of time periods (hours)
l 2 L Set of demand bids
w 2 W Set of scenarios

Parameters

Cg Variable cost ($/MWh)
Fg Startup cost ($)
Cinv

g Annualized investment cost of generator g ($/yr)

Pmin
g Minimum operating capacity (MW)

Pmax
g Maximum operating capacity (MW)

Mon
g Minimum on time (h)

Mo f f
g Minimum off time (h)

Rg Maximum ramp up/down rate (MW/h)
xtgw Maximum output for VRE resource (MW)
Bl Value of demand bid l ($/MWh)
Dtl Maximum quantity of demand bid l at time t (MW)

Variables

ptgw Committed generation for generator g at time t (MW)
utgw (Binary) commitment status for generator g at time t
ztgw (Binary) startup decision for generator g at time t
ytgw (Binary) shutdown decision for generator g at time t
dtlw Amount of cleared demand bid l at time t (MW)
xg Binary build decision for each generator g 2 GT

5.3.2 Stochastic Capacity Expansion Model

We adapt the capacity expansion model from Chapter 4 (also in [14]) to
include stochastic VRE generation. Both binary investment decisions and
non-convex operational costs contribute to non-convexities, but we can
ameliorate the impact of binary investment decisions with a sufficiently
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large load compared to the size of the generators. Short-run surplus is given
as

H(x; x) = �Â
t2T

Â
g2G

(Cg ptgw + Fgztgw) + Â
t2T

Â
l2L

Bldtlw (5.1)

The factor Q scales up expected short-run surplus to an annualized level
in objective function (5.2a) that maximizes benefits and minimizes costs,
assuming no transmission congestion. Constraint (5.2b) ensures power bal-
ance with cleared demand bids. The remaining constraints define operating
characteristics of generators, exogenous VRE, and reflect an expectation of
one startup cost for nuclear in a year included in investment cost.

min
x, p, u, z, y, d

Â
g2G

Cinv
g xg �QE

⇥
H(x; x)

⇤
(5.2a)

s.t.

Â
g2G

ptgw = Â
l2L

dtlw 8t 2 T, w 2 W (5.2b)

0  dtlw  Dtl 8t 2 T, l 2 L, w 2 W (5.2c)

ptgw  Pmax
g xg 8t 2 T, g 2 GT , w 2 W (5.2d)

ztgw + ytgw  1 8t 2 T, g 2 GT , w 2 W (5.2e)
utgw � ut�1,gw = ztgw � ytgw

8t 2 2...T, g 2 GT , w 2 W (5.2f)

ztgw = utgw 8t = 1, g 2 GT : g /2 GN , w 2 W (5.2g)

ztgw = 0 8t = 1, g 2 GN , w 2 W (5.2h)

ytgw = 0 8t = 1, g 2 GT , w 2 W (5.2i)

ztgw +
min (t+Mon

g �1,T)

Â
t0=t+1

yt0gw  1

8t 2 1...T � 1, g 2 GT : Mon
g > 1, w 2 W

(5.2j)

ytgw +
min (t+Mo f f

g �1,T)

Â
t0=t+1

zt0gw  1

8t 2 1...T � 1, g 2 GT : Mo f f
g > 1, w 2 W

(5.2k)
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Pmin
g utgw  ptgw  Pmax

g utgw 8t 2 T, g 2 GT , w 2 W (5.2l)

� Rg  ptgw � pt�1,gw  Rg 8t 2 T, g 2 GT , w 2 w (5.2m)

0  ptgw  xtgw 8t 2 T, g 2 GV , w 2 W (5.2n)
ptg � 0 8t 2 T, g 2 G (5.2o)

utg, ztg, ytg 2 {0, 1} 8t 2 T, g 2 GT (5.2p)

xg 2 {0, 1} 8g 2 GT (5.2q)

5.3.3 Short-Run Dispatch Model

For a specific realization of VRE, the deterministic short-run dispatch model
replaces the objective function (5.2a) with

max
p, u, z, y, d

Â
t2T

Â
l2L

Bldtl � Â
t2T

Â
g2G

(Cg ptg + Fgztg) (5.3)

The subset of units G is redefined as only units that were built in the
capacity expansion model, g 2 G : xg = 1. Constraints (5.2d) and (5.2q) are
omitted, as are the scenario indices w.

5.3.4 Long-Run Adapted Resource Mixes

When calculating the long-run adapted resource mix to each pricing model,
we assume that VRE realizations occurred exactly as predicted in the
stochastic capacity expansion model. Long-run profits are calculated by
simulating the short-run dispatch model for each realization of VRE, with
results weighted by the probability of each scenario. We use the algorithm
given in [14] to find a resource mix that represents a quasi-break-even
solution for a given pricing model. The algorithm starts at the central
planner resource mix, then iteratively removes unprofitable generators
and tests whether building a new generator of a given technology type
would be profitable. If the new generator would be profitable, it is added
to the model, and the process repeats until a resource mix is found in
which no generators are operating at a loss in the long-run and no new
generators could enter and make a profit. We select a target profit bound of
5%, meaning the algorithm will stop if all generators are operating within a
long-run profit of +/-5%, and generators are only declared to be operating
at a loss when profits are below -5%. For this analysis, we assume market
power mitigation is sufficient such that LOC beyond MWP do not change
bidding behavior.
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5.4 results

5.4.1 Test Case

Data for the test case come from the Grid Modernization Lab Consortium’s
Reliability Test System [38]. In order to decrease the impact of lumpy invest-
ment decisions, we scale load and solar generation by a factor of 10 for a
representative week. Wind data comes from ERCOT’s aggregate generation
in 2020 [116]. We test four installed VRE capacity scenarios, differentiated by
the wind scalar, as shown in Table 5.2, with the fraction of uncurtailed wind
generation ranging from 24% to nearly twice total demand. Within each
installed VRE capacity scenario, we explore results for 4 wind realization
scenarios drawn from four weeks of different seasons. Distributions of each
wind realization scenario are shown in Figure 5.2.

We use candidate generators of four technology types: nuclear, combined
cycle gas turbine (CCGT), open cycle gas turbine (OCGT), and a gas tur-
bine that is block-loaded, called a fast-start gas turbine (FSGT). These
technologies represent base, intermediate, and peaking units.2 Technical
parameters are given in Table 5.3 and cost parameters are given in Table
5.4. Characteristics are adapted from data used in [14] with the addition
of the block-loaded FSGT with investment and startup costs 10% lower
than OCGT and variable costs 10% higher. We assume 90% of demand at
each time period is inelastic (with a benefit of $10,000/MWh) and 10% of
demand is elastic, represented by 200 equally-sized bids descending in price
from $10,000/MWh to $50/MWh, also as in [14]. We use a profit bound of
5% in the algorithm from 5.3.4 and enforce short-run cost recovery (MWP)
over each day.

5.4.2 Long-Run Resource Mixes

Results of the stochastic capacity expansion model, the central planner’s
problem, are given in Figure 5.3. The overall thermal capacity built changes,
reflecting a firm capacity credit for wind. With increasing wind, the amount
of baseload capacity decreases and the amount of intermediate and peaking
capacity increases, reflecting the changing nature of the net load curve. The
long-run resource mixes adapted to each pricing model are found using the

2 Note that no energy storage exists in the test system. We wish to test the impact of net load
curves with higher ramps, lower turn-downs, and steeper and shorter peaks on generators
with non-convex costs.
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Inst. Cap. Wind Scalar Wind/Demand

S1 1 0.24
S2 2 0.47
S3 4 0.95
S4 8 1.91

Sn
Wind Realization

{RSn1,...,RSn4}

Table 5.2: Scenario Analysis

Tech Min Output Max Output Ramp Up/Dn Up/Dn time
(MW) (MW) (MW/hr) (hr)

Nuclear 900 1000 190 36
CCGT 150 400 320 3
OCGT 50 200 360 0
FSGT 200 200 - 0

Table 5.3: Technical Parameters for Thermal Generators

algorithm explained in 5.3.4, and the difference between the adapted mixes
and the central planner mix is shown in Figure 5.4. aCHP best supports the
central planner resource mix across scenarios, and market solutions tend to
favor OCGT over FSGT.

5.4.3 Generator Payoffs

Recall that in the convex case, long-run profits for each technology type
would be 0%, as the technologies would be able to perfectly adapt (no
lumpy investments) and marginal prices always exist. Long-run profits at
the adapted mixes are shown in Figure 5.5. At the adapted resource mixes,
no generators are making a profit less than 5%, and no new generators
could enter and make a profit. aCHP and FCP yield the profits closest to
0%. However, profits are not made uniformly across the horizon of interest;
Figure 5.6 shows the long-run profits that would arise if only one of the
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Figure 5.2: Distribution of wind realization scenarios

Figure 5.3: Installed capacity of technology types in the long-run central planner
solution

four VRE realization scenarios occurred. None of the pricing models differ
markedly in volatility of profits across the VRE realization scenarios.
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Tech Investment Startup Variable
(M$/GW-yr) (M$) ($/MWh)

Nuclear 489 1 6.5
CCGT 129 0.06 58.5
OCGT 106 0.01 99.4
FSGT 95.4 0.009 109.34

Table 5.4: Cost Parameters for Thermal Generators

Figure 5.4: Difference in number of generators between resource mixes adapted
to each pricing model and the long-run central planner solution

5.4.4 Social Surplus

Figure 5.7 shows the average cost to consumer (ACC) and the percentage
of these costs represented by MWP. Increased VRE offsetting total installed
thermal capacity decreases ACC as expected, with aCHP and FCP providing
the lowest price. In the long-run adapted mixes, MWP resolved on a daily
basis are small and do not show a significant pattern across increasing
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Figure 5.5: Average long-run profits at resource mixes adapted to each pricing
model

installed VRE capacity.3 ACC is normalized by MWh served, but the same
amount of demand is not necessarily served by each pricing model and
installed capacity scenario, so we must also consider social surplus.

Figure 5.8 shows the change in consumer and non-convex generators’
producer surplus between adapted mixes and the central planner solution
(assuming producers are paid at-cost) as a percentage of total costs to
consumer at the central planner solution. Recall that in the convex case in
which marginal prices exist and producers can perfectly adapt in the long-
run, all social surplus is consumer surplus (as producer profits are 0%). The
non-convexitites impose a penalty compared to the convex case as a transfer
of consumer surplus to producer surplus.4 Even as VRE share increases, the
profits of generators as a percent of their costs remains similar. However, as

3 Note that aCHP can still have MWP, as it minimizes total LOC, of which MWP are only a
subset. MWP here are provided daily, whereas LOC is calculated over the entire horizon.

4 Note that the social surplus only depends on total cleared demand; when the decrease in
consumer surplus and the increase in producer surplus are roughly proportional, as here, it
indicates the social surplus (and total cleared demand) remains similar between the adapted
mixes and the central planner solution. The change is predominantly a transfer from consumer
to producer surplus.
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Figure 5.6: Average long-run profits under VRE installed capacity S1 if only
given VRE realization scenario occurred

seen in Figure 5.9, the impact of these excess profits for generators decreases
as a percent of total social surplus with increasing VRE.5 This is because
there are simply less of these generators as VRE increases in the long-run,
and the social surplus is increasing as the system is able to incorporate
more VRE to serve load.

So far we assume that the presence of LOC (beyond MWP) does not impact
generator’s truthful bidding of their costs and technical characteristics.
However, in reality, LOC may incentivize units to deviate from the cen-
tralized dispatch schedule. Recall that in the convex case with marginal
pricing, there would be no LOC. In Figure 5.10 we see not only perceived
losses (LOC) but also perceived profit after MWP have been given. This
is because MWP are resolved on a daily basis, and some units, notably
nuclear, occasionally have days in which they operate at a short-run loss,
even though over their entire operating horizon they do not operate at a
short-run loss. They thus have no LOC over their lifetime and prefer to
operate even in the absence of daily MWP, perceiving the side payments as
a bonus. Nevertheless, many non-baseload technologies do perceive losses

5 Total social surplus is very high due to inelastic demand’s consumer surplus.
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beyond MWP at times in which they would prefer to operate given the
price but are not scheduled. aCHP minimizes LOC and this is reflected in
the substantively lower values of perceived losses across scenarios.

Figure 5.7: Average cost to consumer and daily make-whole payments as a
percentage of costs to consumer

Figure 5.8: Change in surplus from central planner solution as a percentage of
total costs to consumer at the central planner solution
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Figure 5.9: Change in surplus from central planner solution as a percentage of
social surplus at the central planner solution

5.4.5 Price Distributions

Figure 5.11 shows the distribution of prices across pricing models and
scenarios. FCP never has price set by the block-loaded unit (as it is never
the marginal unit in the pricing run due to its inability to ramp), while
RPM has price set by the block-loaded unit most often. aCHP and pCHP
have price set higher than the highest marginal-cost unit most often. RPM is
implemented for all online units, so the baseload technology most often sets
the price, and 0-prices do not appear until substantially more penetration
of VRE. In the load duration curve in Figure 5.12, we see that FCP and RPM
decrease as a step function based on what generator was marginal, while
aCHP and pCHP decrease more gradually, as they are related to the convex
hull of the optimal value function.
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Figure 5.10: Average perceived profit/loss after MWP

Figure 5.11: Distribution of prices for each pricing model and installed capacity
scenario
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Figure 5.12: Price duration curve for highest-priced 20-200 hours
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5.5 conclusion

As long as the system is allowed to adapt in the long-run to increased
VRE, the issues posed by non-convexities are likely to decrease. Although
the amount of excess profit as a percentage of non-convex producer costs
may remain similar, fewer non-convex producers decreases the impact of
these excess profits as a percentage of overall social surplus. The amount
of transfer from consumer to producer surplus across VRE levels is typ-
ically lower with convex hull pricing and fixed configuration pricing (or
LMP) compared to partial convex hull pricing or relaxed minimum ca-
pacity pricing. Convex hull pricing is also most supportive of the central
dispatch decision with lowest perceived losses. All pricing models exhibit
high profit volatility across wind realization scenarios. While differences
exist by non-convex pricing model, idealized energy-only markets can still
achieve long-run cost recovery of needed flexible generators even when
non-convexities are considered and VRE generation increases, but at the
cost of some consumer surplus. The presence of non-convex costs and high
VRE does not mean we must necessarily rely on capacity mechanisms for
long-run cost recovery. Exact results are dependent on net load profiles
and generator characteristics considered, and future work should examine
how sensitive conclusions are to different loads, technology characteristics,
levels of demand response/elasticity, increasing shares of solar vs wind
generation, and the inclusion of energy storage.
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6
I M PA C T S O F N E A R - O P T I M A L S O L U T I O N S

We explore the relationship between consumer and producer surplus and optimality
gaps in mixed integer linear programming applied to electricity markets. We
analyze a long-run adapted resource mix and introduce flexible demand. This
allows for comparison of total producer and consumer surplus achieved across near-
optimal solutions under different nonconvex pricing models. Results indicate that
for pricing models dependent on the primal solution, consumer surplus generally
increases (although not monotonically) with increasing optimality and producer
surplus correspondingly decreases. Short-run cost recovery is also possible over
the operating horizon without make-whole payments for all models examined.
These results are highly influenced by scarcity rent from price-setting elastic
demand.
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6.1 introduction

Determining optimal prices in markets with non-convex costs in which op-
timality gaps in the dispatch decision remain poses a continuing challenge.
Since the beginning of the transition to liberalized wholesale electricity mar-
kets from vertically integrated utilities, it has been known that optimality
gaps that negligibly affect the objective value may nevertheless significantly
impact the profitability of individual resources [117]. As Lagrangian relax-
ation algorithms gave way to tractable algorithms to solve a mixed-integer
programming (MIP) formulation, optimality gaps decreased. The move
from Lagrangian relaxation approaches to MIP solvers was motivated by
the goal of finding better solutions and thus improving social welfare, or
social surplus [118]. The question that naturally follows is, how important
is finding a solution closer to optimality for MIP solvers in terms of social
surplus? System operators typically solve day-ahead markets with unit
commitment (UC) within some optimality tolerance, e.g., a 0.1% relative
MIP gap in MISO [118].

The volume of surplus transfers among producers resulting from different
solutions within the optimality gap is not monotone in the size of the
optimality gap, i.e., it does not strictly decrease as the solution approaches
optimality [112]. Authors in [112] find in a test system over a 24-hour period
with locational marginal pricing that make-whole payments, which ensure
units recover all short-run costs, reduce the volatility of intra-producer trans-
fers. It is then explored in [119] whether findings in [112] are still supported
over a longer time frame. A daily rolling-horizon with look-ahead UC
model is solved in a large test system, obtaining near-optimal solutions at
several different MIP gap targets. Producer surplus of individual generators
is shown to still vary considerably even with solutions closer to optimality.
When including elastic demand, solutions closer to optimality are shown
to be closer to the demand cleared in the MIP optimal solution. Authors
in [111] examine redistribution of total surplus with inelastic demand in
different near-optimal solutions, demonstrating that pricing models that
do not depend on the primal UC solution, e.g., convex hull pricing, are
associated with smaller wealth transfers.

It is important to distinguish between changes in intra-producer surplus
transfers and changes in total producer and consumer surplus. Producer
surplus is simply profit, and intra-producer surplus transfer implies that
certain producers benefit at the expense of other producers. Total producer
surplus, on the other hand, represents the total surplus achieved by pro-
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ducers under a given UC dispatch with a given pricing model. Taking the
perspective of a central operator, another concern is the total amount of
consumer surplus (the difference between the benefit of cleared demand
and payments to producers). Previously in [14] (Chapter 4), we target
two different MIP gap tolerances and find that resource mixes adapted
in the long-run to different non-convex pricing models can vary based
on which target was used. While not explored explicitly, results in [120]
similarly suggest an increase in overall consumer surplus as optimality
improves.

Instead of primarily focusing on transfers between producers in the short-
run as in [112]- [111], we turn our attention to the effect of near optimal
solutions on transfers between total consumer and producer surplus in the
long-run under different non-convex pricing models. We explore a set of
near-optimal solutions across a range of MIP gaps and examine the relation-
ships between consumer and producer surplus in a system with partially
elastic demand. We consider only systems in a long-run equilibrium re-
source mix. This is because in non-adapted mixes, the presence of short-run
losses (that are typically compensated by make-whole payments) may be
an appropriate signal to exit the market as opposed to an issue arising
from non-convex pricing. Analyzing long-run equilibria also allows us to
examine not simply short-run profits, but long-run cost recovery of pro-
ducers. Fixing the underlying resource mix, we then examine near-optimal
solutions of the short-run UC dispatch and apply several pricing models.
We include scenarios that require daily short-run cost recovery as well as
scenarios only enforcing short-run cost recovery over the lifetime of the
generator.

6.2 long-run optimal resource mix

From classical marginal pricing theory, we know that an idealized central
planner (CP) maximizing social surplus would choose the same resource
mix as a perfectly competitive market with system-wide marginal pricing.1

At this equilibrium, no units make a profit or loss and all social surplus is
consumer surplus. Marginal prices do not exist in markets with non-convex
costs, but we can still find a benchmark CP resource mix that maximizes
benefit to consumers and minimizes producer costs with a capacity expan-
sion model. We can decrease the impact of lumpy investments by using

1 See [4] for proof of equivalent optimality conditions in the context of electricity markets.
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a large test system. Our aim is to solve to a sufficiently small optimality
gap such that we find a stable resource mix, acknowledging that because
of lumpy investments, we may have more than one long-run equilibrium.
In a market with non-convex costs, there may be incentives via profits
and losses to move away from this benchmark CP resource mix to a mix
that is adapted to a given pricing model. However, because we would like
to compare different pricing models across the same set of near-optimal
solutions, we keep the same underlying CP resource mix. Below we define
the notation and model formulation and refer to Chapter 4 (also [14]) for a
more in-depth description.

6.2.1 Nomenclature

Indices and Sets

g 2 G Set of generators
GT ✓ G Set of thermal generators
GN ✓ GT Set of nuclear generators
GV ✓ G Set of VRE resources
t 2 T Set of time periods (hours)
l 2 L Set of demand bids

Parameters

Cg Variable cost ($/MWh)
Fg Startup cost ($)
Cinv

g Annualized investment cost of generator g ($/yr)

Pmin
g Minimum operating capacity (MW)

Pmax
g Maximum operating capacity (MW)

Mon
g Minimum on time (h)

Mo f f
g Minimum off time (h)

Rg Maximum ramp up/down rate (MW/h)
Ptg Maximum output for VRE resource (MW)
Bl Value of demand bid l ($/MWh)
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Dtl Maximum quantity of demand bid l at time t (MW)

Variables

ptg Committed generation for generator g at time t (MW)
utg (Binary) commitment status for generator g at time t
ztg (Binary) startup decision for generator g at time t
ytg (Binary) shutdown decision for generator g at time t
dtl Amount of cleared demand bid l at time t (MW)
xg Binary build decision for each generator g 2 GT

6.2.2 Capacity Expansion Model

The factor Q scales up short-run costs to an annualized level in objective
function (6.1a) that maximizes benefits and minimizes costs, assuming
no transmission congestion. Constraint (6.1b) ensures power balance with
cleared demand bids. The remaining constraints define operating charac-
teristics of generators, exogenous variable renewable energy (VRE), and
reflect an expectation of one startup cost for nuclear in a year included in
investment cost.

max
(x, p, u, z, y, d)

Q Â
t2T

Â
l2L

Bldtl � Â
g2G

Cinv
g xg

�Q Â
t2T

Â
g2G

(Cg ptg + Fgztg) (6.1a)

s.t.

Â
g2G

ptg = Â
l2L

dtl 8t 2 T (6.1b)

0  dtl  Dtl 8t 2 T, l 2 L (6.1c)

ptg  Pmax
g xg 8t 2 T, g 2 GT (6.1d)

ztg + ytg  1 8t 2 T, g 2 GT (6.1e)

utg � ut�1,g = ztg � ytg 8t 2 2...T, g 2 GT (6.1f)

ztg = utg 8t = 1, g 2 GT : g /2 GN

(6.1g)
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ztg = 0 8t = 1, g 2 GN (6.1h)

ytg = 0 8t = 1, g 2 GT (6.1i)

ztg +
min (t+Mon

g �1,T)

Â
t0=t+1

yt0g  1 8t 2 1...T � 1, g 2 GT

: Mon
g > 1 (6.1j)

ytg +
min (t+Mo f f

g �1,T)

Â
t0=t+1

zt0g  1 8t 2 1...T � 1, g 2 GT

: Mo f f
g > 1 (6.1k)

Pmin
g utg  ptg  Pmax

g utg 8t 2 T, g 2 GT (6.1l)

� Rg  ptg � pt�1,g  Rg 8t 2 T, g 2 GT (6.1m)

0  ptg  Ptg 8t 2 T, g 2 GV (6.1n)
ptg � 0 8t 2 T, g 2 G (6.1o)

utg, ztg, ytg 2 {0, 1} 8t 2 T, g 2 GT (6.1p)

xg 2 {0, 1} 8g 2 GT (6.1q)

6.3 short-run dispatch and pricing models

6.3.1 Short-Run Dispatch Model

Once a capacity mix is fixed, the short-run UC dispatch is solved. This
formulation replaces the objective function (6.1a) with (6.2):

max
(p, u, z, y, d)

Â
t2T

Â
l2L

Bldtl � Â
t2T

Â
g2G

(Cg ptg + Fgztg) (6.2)

The subset of units G is redefined as only units that were built in the
capacity expansion model, g 2 G : xg = 1. Constraints (6.1d) and (6.1q) are
omitted.

6.3.2 Pricing Models

Pricing models are formed from adjustments to the short-run dispatch
model after a solution has been found. Prices are found as the dual variables
of the power balance constraints from the pricing model runs.
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• Fixed configuration pricing (FCP): The binary variables are relaxed
and fixed to the values determined in the short-run dispatch model [29]:

{u, z, y}2 [0, 1] (6.3)

u, z, y= u⇤, z⇤, y⇤ (6.4)

This method is also called locational marginal pricing, although lo-
cational prices could be calculated for any of the models and true
marginal prices do not exist in the non-convex setting.

• Convex hull pricing (CHP): This method seeks to find the marginal
prices corresponding to the convex hull of the non-convex optimal
value function, minimizing lost opportunity costs [55]. An approx-
imation that is exact with a tight UC formulation in the case of no
binding ramping constraints (see [57]) is to simply relax the binary
variables of the short-run dispatch model:

{u, z, y}2 [0, 1] (6.5)

• Relaxed Pmin
g operation (RPM): The minimum operation level is

relaxed such that 0  pg  Pmax
g ug 8g 2 G : u⇤g = 1. Binary variables

are relaxed and fixed to the previously-found optimal values:

{u, z, y}2 [0, 1] (6.6)

u, z, y= u⇤, z⇤, y⇤ (6.7)

A form of this model relaxing minimum operation for a subset of
online units is used in NYISO and several other regions, motivated
by block-loaded units being unable to set the marginal price under
FCP [13].

6.4 incentives and optimality gaps

6.4.1 Consumer and Producer Incentives

With market-clearing prices l and side payments s, we define short-run
profit P, initial short-run profit P0, and short-run costs X as follows:

Pg := Â
t2T

((lt � Cg)ptg � Fgztg + stg) (6.8)

P0
g := Pg � Â

t2T
stg (6.9)
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Xg := Â
t2T

(Cg ptg + Fgztg) (6.10)

We define long-run profits as a percentage of total costs:

pg :=
QPg � Cinv

g

QXg + Cinv
g

(6.11)

Social surplus is the sum of producer and consumer surplus. Total thermal
generator producer surplus is defined as

PS := Â
g2GT

(Pg �
1
Q

Cinv
g ) (6.12)

Total consumer surplus is given by

CS := Â
t2T

(Â
l2L

Bldtl � Â
g2G

lt ptg � Â
g2GT

stg) (6.13)

For a pricing model to support the central dispatch decision, the total
compensation must be such that no perceived losses exist. Perceived losses
are lost opportunity costs (LOC), the difference between what a unit could
make given a price if able to schedule its own dispatch (its preferred profit)
and what it would make with the same price following the centralized
dispatch decision, plus any additional compensation received as side pay-
ments. We define initial lost opportunity costs LOC0 without side payments
and final LOC as

LOC0
g := max

ug, pg
P0

g(l
⇤, ug, pg)�P0

g(l
⇤, u⇤g, p⇤g) (6.14)

LOCg := LOC0
g + Â

t2T
stg (6.15)

A subset of LOC0 is make-whole payments (MWP), the revenue required
for short-run revenue adequacy. This occurs when the unit would prefer
to not operate at the market-clearing price. MWP are the most common
form of side-payment in non-convex pricing and are defined over some
time horizon as

MWPg := �min(0, P0
g(l
⇤, u⇤, p⇤)) (6.16)
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Typically, MWP are provided as needed on a daily basis. However, there is
no a priori reason why a system in a long-run adapted equilibrium should
have no units making a loss on any given day. It may be most optimal, for
instance, for a unit to suffer a loss one day but gain sufficient inframarginal
rent over its operating life to have no long-run losses. Nevertheless, a daily
MWP for a market that clears daily may be a necessary incentive for units
to bid truthfully and follow market dispatch instructions. For these reasons
we use both a typical daily MWP requirement as the default in all pricing
models (MWPD) and alternatively a guarantee of no operational losses over
the entire operating horizon (MWPH).

6.4.2 Relative MIP Gap

A relative MIP gap is defined for a minimization problem as the difference
between the lower and upper objective bound normalized by the incumbent
objective value (the upper bound). If zP is the primal objective bound and
zD the dual, then

MIP gap :=
����
zP � zD

zP

���� (6.17)

Relative MIP gaps depend on the problem formulation. Because of this, we
must be wary about comparing relative MIP gaps between optimal dispatch
problems that do and do not explicitly include benefit of cleared demand in
the objective value. For example, let C be a vector of costs associated with
the vector of production decisions p and B the benefit of cleared demand d.
We then have the objective function

max
p, d

B>d� C>p

If we assume inelastic demand and that all demand is served, then B>d
cancels out in the numerator of the associated MIP gap but is still present
in the denominator: �����

C>pD � C>pP
B>dP � C>pP

����� (6.18)

If B>d is large relative to C>p, then an objective value considering the
benefit to demand will result in a much smaller relative MIP gap than an
objective value that excludes this term, even though the producer costs are
equivalent. The ratio of total benefit to total cost gives some insight as to
how much smaller a relative MIP gap to expect.



134 impacts of near-optimal solutions

6.5 results

6.5.1 Test Case

Scenarios are constructed using correlated demand, wind generation, and
solar generation profiles from [38]. We scale demand and VRE profiles
by a factor of 10, yielding a system with peak load of approximately
47.5GW over the 4 sample weeks selected. Non-coincident peak wind is
over 50% of peak load, and non-coincident peak solar is over 25%. VRE is
treated as exogenous, and we perform a greenfield capacity expansion for
thermal generators of three technology types: nuclear, CCGT, and OCGT,
representing base, intermediate, and peaking units. Technical parameters
are given in Table 6.1 and cost parameters are given in Table 6.2. Parameters
are adapted from data used in [108]. We use partially price-responsive
demand assuming 90% of demand at each time interval is inelastic (with a
benefit of $10,000/MWh) and 10% of demand is elastic, represented by 200
equally-sized bids descending in price from $10,000/MWh to $50/MWh as
in [109], which notes that recent PJM market results indicate such a level of
responsive demand may be realistic [121].

Tech Min Output Max Output Ramp Up/Down Up/Down time
(MW) (MW) (MW/hr) (hr)

Nuclear 900 1000 190 36
CCGT 150 400 320 3
OCGT 50 200 360 0

Table 6.1: Technical Parameters for Thermal Generators

Tech Investment Startup Variable
(M$/GW-yr) (M$) ($/MWh)

Nuclear 489 1 6.5
CCGT 129 0.06 58.5
OCGT 106 0.01 99.4

Table 6.2: Cost Parameters for Thermal Generators
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All models are solved with Gurobi. The capacity expansion model yields
a benchmark CP resource mix of 9 nuclear, 57 CCGT, and 67 OCGT units,
for a total of 133 thermal units. The generator mix in the CP solution
is determined by targeting a MIP Gap of 0 with a time limit, yielding a
MIP gap of 0.0003%.2 Next we use Gurobi’s solution pool option to find
a set of near-optimal solutions using the short-run dispatch model with a
single horizon of 4 weeks, the same as the capacity expansion model.3 The
near-optimal solutions are required to be within 1% of the objective value
of the best solution found within a target MIP gap of 0.02%. We find 51
qualifying near-optimal solutions.4 The ratio of benefit of cleared demand
to total producer costs at the best solution with FCP is approximately 200:1,
which leads to very small relative MIP gaps. All pricing runs are convex,
but calculating lost opportunity costs does require solving additional MIP
problems. For these we maintain Gurobi’s default MIP gap setting of
0.01%.5

6.5.2 Consumer Surplus and Producer Surplus

We find that for the pricing models that depend on the primal solution, the
total consumer surplus tends to increase with optimality while the total
producer surplus tends to decrease, although not monotonically. Figure
6.1 shows how consumer surplus changes with each near-optimal solution
ordered from worst to best, with Solution 1 being the best solution found.
Results are shown for the pricing models FCP, CHP, and RPM with the
default MWPD as well as the alternative MWPH . While as expected the
relationship is not monotonic, there is nevertheless a significant trend for
FCP and RPM, which depend on the primal solution. RPM is found to result
in the lowest consumer surplus followed by FCP, with both substantially
improving with optimality. CHP yields the highest consumer surplus. Fig-
ure 6.2 shows that producer surplus correspondingly trends downward for
primal-dependent models as the solution’s optimality gap decreases. Note
that producer surplus is reported only for thermal units. This trend does

2 Due to the binary build decisions of units of fixed size, it is possible that more than one
long-run optimal resource mix exists.

3 We assume perfect foresight so that uncertainty and rolling horizons do not additionally
distort producer profits beyond the impact of non-convexities.

4 Gurobi’s pool search mode is set such that the solver seeks to find the N best solutions. We
specify a high value of N, in attempt to find many qualifying solutions that differ in values
for integer variables. However, a diversity criterion is not used.

5 Note that the preferred profit function only includes producer profits and not benefit of cleared
demand.
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not change if we include MWPD or if we do not enforce daily short-run cost
recovery (MWPH). Recall that in a convex long-run adapted system there
would be no producer surplus. Between the least and most optimal solution
found, producer surplus can decrease considerably, e.g., for FCP there is
a reduction of 88% between the worst and best solution. Surplus under
CHP does not change perceptibly across near-optimal solutions; while the
amount of demand cleared and generators online may change between
near-optimal solutions, the market-clearing prices found do not since CHP
does not depend on the primal solution. We see through the illustration of
a sample day in Section 6.5.4 that the different market-clearing prices are a
primary driver of differences in surplus between near-optimal solutions for
primal-dependent pricing models.

Figure 6.1: Consumer surplus and optimality gap across near-optimal solutions
by pricing model

6.5.3 Producer Profits and Incentives

Short-run revenue adequacy is achieved in all pricing models tested without
side payments if enforced over the entire solution horizon (MWPH). If we
instead require short-run revenue adequacy for each day (MWPD), then
side payments in the form of MWP are required. No substantial differences
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Figure 6.2: Long-run producer surplus and optimality gap across near-optimal
solutions by pricing model

are seen in MWP for thermal units across near-optimal solutions, as seen in
Figure 6.3. When short-run cost recovery is required daily, MWP for RPM
are typically lower and less volatile than MWP for FCP. MWP for CHP are
consistent across solutions (note that CHP minimizes LOC, not MWP). For
primal-dependent pricing models, we see a trend of less extreme LOC as
the solution becomes more optimal, illustrated in Fig 6.4. Note that Fig
6.4 displays LOC remaining after any MWP have been transferred, and
that perceived losses are shown as negative. CHP with MWPH yields no
LOC, as this method seeks to minimize this incentive to deviate from the
schedule. However, if MWPD are provided, producers actually perceive
an excess profit. Producers are thus overcompensated relative to what is
necessary for them to be fully incentivized to follow the central dispatch
decision. Future work should explore if this issue persists when CHP is
calculated on a rolling horizon basis.

By examining long-run profitability by technology type, we can see how
near-optimal solutions impact intra-producer wealth transfers. Figure 6.5
shows the average long-run profit of each technology type for the default
pricing models (with MWPD). Recall that in a convex market in long-
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run equilibrium, no producers would make a profit or loss. Here we see
producers making both profits and losses due to lumpy investments, non-
convex costs, and also the CP solution not necessarily being the long-run
adapted mix for any particular non-convex pricing model. For primal-
dependent models FCP and RPM, there is a notable downward trend of
profits for all technology types as the solution’s optimality improves. This
mirrors the trend seen in total producer surplus in Figure 6.2. In this system,
the relative profits of technology types do not vary substantially with
optimality, but rather uniformly decrease, indicating there is not significant
transfer of producer surplus between technology types. CHP provides the
closest profits to achieve long-run cost recovery without overcompensation,
but the peaking OCGT technology type still suffers a small loss in the long-
run. Comparing long-run profits between the MWPD and MWPH scenarios
in Figure 6.6, we see relatively small changes, as the MWPD provide only a
small amount of additional income.

Figure 6.3: Make-whole payments across near-optimal solutions

6.5.4 Comparison of Near-Optimal Solutions

To understand why near-optimal solutions generally result in superior
outcomes in consumer and producer surplus with increasing optimality, it
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Figure 6.4: Remaining lost opportunity costs after transfer of any side payments
across near-optimal solutions

is helpful to examine an illustrative day. Figure 6.7 shows the production
schedule by technology type and the FCP market clearing price over a
single day for the best solution found, Solution 1. Figure 6.8 shows the
same for a solution with a higher optimality gap, Solution 50. Figure 6.9
shows the difference in unit commitment decisions and in cleared demand
between these two solutions. The production schedules are largely similar.
However, the two solutions make slightly different commitment decisions,
leading to different levels of cleared demand and different prices in several
evening hours, given in Table 6.3. In these hours, the price is being set
by the elastic portion of demand in both solutions. Because Solution 1
clears a higher level of demand than Solution 50, the price is lower. This
results in higher consumer surplus both from the higher benefit of cleared
demand and the lower market clearing price. Conversely, producers receive
less compensation than under Solution 50, which is less optimal and has
a higher total producer surplus. The effect of the decreased production
in Solution 50 is overpowered by the large increase in price, leading to
an overall increase in producer surplus compared to Solution 1. Demand
elasticity is an important driver of the magnitude of these results. In a
long-run equilibrium setting with sufficiently price-responsive demand,
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Figure 6.5: Long-run profits as percent of overall costs by technology type with
MWPD

demand sets the price fairly often, leading to many opportunities in which
suboptimal commitment decisions might lead to lower cleared demand and
thus higher market-clearing prices.

FCP ($/MWh)

Hour Solution 1 Solution 50

17 58.5 300.0

18 99.4 1200.0

19 250.0 1550.0

20 150.0 1000.0

Table 6.3: Comparison of market-clearing prices
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Figure 6.6: Long-run profits percentage point delta between MWPD and MWPH
cases

Figure 6.7: Production by technology type and FCP market-clearing price for
Solution 1
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Figure 6.8: Production by technology type and FCP market-clearing price for
Solution 50

Figure 6.9: Difference between unit commitment and cleared demand in Solution
1 and Solution 50
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6.6 conclusion

We compare several non-convex pricing models with the goal of determin-
ing to what extent it is worth pursuing smaller MIP gaps in electricity
market-clearing algorithms from a social welfare perspective and how this
conclusion varies by pricing model. Using a long-run adapted resource
mix with price-responsive demand, we find a non-monotonic but never-
theless significant trend in changes in consumer and producer surplus
with optimality gap of the UC dispatch decision for some pricing models.
For pricing models dependent on the primal solution, such as locational
marginal pricing, consumer surplus generally increases with increasing
optimality and producer surplus correspondingly decreases. These results
are influenced highly by scarcity rent from price-setting elastic demand.
Convex hull pricing does not depend on the primal solution, yielding a
high consumer surplus across near-optimal solutions. We also find that
short-run cost recovery can be achieved over longer time horizons without
any make-whole payments in a long-run adapted system. This finding
raises the question of to what extent make-whole payments in real-world
markets are necessary for long-run cost recovery or if they may distort
the important economic signal to exit in the long-run that negative profits
provide.

In the long-run, excess producer profits or losses associated with higher MIP
gaps in some non-convex pricing models may distort the optimal resource
mix away from the central planner mix. Chapter 4 (also [14] provides
evidence that the relationships between surplus and optimality gap hold
for each pricing model in systems that are long-run adapted to each pricing
model. There is also a trade-off between a desire to show a realistic test case
with a large range of generator types and characteristics with the desire to
perform an analysis in a long-run adapted equilibrium. Additional analysis
is needed to examine if these results hold for a more diverse set of resources
and over rolling horizons and multi-settlement markets. Further work may
also employ a diversity criterion to ensure there is a good representation of
the variety of near-optimal solutions that are possible. Finally, the impact
of different demand elasticities on results should be explored. As energy
and capacity market designs become more scrutinized with growing shares
of VRE, there is a greater need to understand the role of near-optimal
solutions and non-convex costs in electricity markets. This work provides
some evidence that, particularly with the inclusion of price-responsive
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demand, small improvements in optimality may have significant positive
effects on overall consumer and producer surplus.



7
AU C T I O N D E S I G N A N D I N C E N T I V E
C O M PAT I B I L I T Y

The system operator’s scheduling problem in electricity markets, called unit com-
mitment, is a non-convex mixed-integer program. The optimal value function
is non-convex, preventing the application of traditional marginal pricing theory
to find prices that clear the market and incentivize market participants to fol-
low the dispatch schedule. Units that perceive the opportunity to make a profit
may be incentivized to self-commit (submitting an offer with zero fixed operat-
ing costs) or self-schedule their production (submitting an offer with zero total
cost). We simulate bidder behavior to show that market power can be exercised
by self-committing/scheduling. Agents can learn to increase their profits via a
reinforcement learning algorithm without explicit knowledge of the costs or strate-
gies of other agents. We investigate different non-convex pricing models over a
multi-period commitment window simulating the day-ahead market and show that
convex hull pricing can reduce producer incentives to deviate from the central
dispatch decision. In a realistic test system with approximately 1000 generators,
we find strategic bidding under the restricted convex model can increase total
producer profits by 4.4% and decrease lost opportunity costs by 2/3. While the
cost to consumers with convex hull pricing is higher at the competitive solution,
the cost to consumers is higher with the restricted convex model after strategic
bidding.

145
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7.1 introduction

Price formation efforts in wholesale electricity markets are premised on
assumptions of competitive market behavior such that all participants are
price takers in the spot market. In short, the consequence is that offers
submitted to the ISO reflect the actual marginal cost of each resource and
the market clearing price is set by the marginal cost of the highest cost offer
that the ISO accepts. The impact of these assumptions can be widespread:
for example, studies on long-term investment often take this aspect of the
spot market for granted. It is therefore important to critically assess whether
wholesale electricity price formation policies currently support competitive
behavior in the spot markets.

A growing literature on non-convex pricing has highlighted the absence
of uniform market-clearing prices in practical wholesale electricity market
scheduling problems [14], [51], [105], [109]. In addition to marginal produc-
tion costs, conventional thermal generators also have avoidable fixed costs
relating to their start-up, shut-down, and operating status, and opportunity
costs related to minimum production level when they are online and the
minimum up-time or down-time between start-up and shut-down decisions.
The issue of non-convexities arises in markets that solve a mixed integer
liner program (MILP) called the security constrained unit commitment
(SCUC) problem to efficiently schedule conventional thermal generators
during the day-ahead market [122], which is commonly implemented in the
United States. An alternate market design in which participants attempt
to internalize their non-convex costs in block orders (leading yet still to a
non-convex problem for the market operator) is common in Europe [58].
It is typically not possible to determine a uniform market clearing price
where all market participants are able to maximize their profit by follow-
ing the socially optimal production schedule determined by the system
operator.

The system operator solves an optimization problem with the operating
constraints of the units and calculates uniform prices that are charged to all
participants in the auction. Payments typically also include side payments
to individual units to ensure that they suffer no short-run losses from
following the central dispatch decision. However, ensuring no short-run
losses does not guarantee that units will have no lost opportunity costs.
Lost opportunity costs are the difference between a generator’s preferred
profit achieved when producing to maximize its profit in response to the
price and the profit achieved when following the system operator’s socially-
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optimal dispatch schedule. While the exercise of market power by offering
untruthful bids is a concern in many markets [47], we show that that these
lost opportunity costs may motivate market participants to bid strategically
to improve their outcomes by offering their desired production quantity at
zero cost. A generator in a non-convex market is able to exercise market
power by self-committing/scheduling.

An ideal pricing mechanism achieves four properties. First, it achieves
market efficiency by maximizing social welfare and resulting in an out-
come from which no participant wishes to unilaterally deviate. Second,
participants should recover their variable costs (although not necessarily
their fixed capital costs) in the short-run. Third, it is revenue adequate. The
amount of revenue recovered from consumers is at least as great as the
amount of revenue paid to suppliers. Finally, the ideal pricing mechanism
is incentive compatible: participants do best when offering their true pref-
erences or costs. Each producer maximizes its own payoff by bidding its
true supply costs, and no participants have an incentive to exercise market
power by bidding strategically.

If the market is convex, i.e., the optimal value function seen by the market
operator is convex, and participants must bid their true costs, then pricing
at marginal cost yields an outcome that achieves market efficiency, cost re-
covery, and revenue adequacy. No participant faces a lost opportunity cost.
The optimality conditions for the equilibrium market problem in which
each participant seeks to optimize its individual benefit and the system
operator’s optimization problem seeking to optimize social welfare are
equivalent, and thus the social-welfare maximizing outcome is the same as
the market outcome. However, if the market is not perfectly competitive, it
is possible for participants to bid strategically and increase their payoffs.
Thus, marginal pricing does not guarantee incentive compatibility if the
operator has imperfect information and producers can increase their supply
offers above their true costs. In fact, no market-clearing mechanism ensures
all four properties at the same time [40], [41]. A trade-off must be made, and
alternative pricing methods may achieve different properties. While it is pos-
sible to ensure incentive compatibility with the the Vickrey–Clarke–Groves
(VCG) mechanism, in which truthful bidding is the dominant strategy [44],
revenue adequacy is no longer guaranteed, although strategies have been
proposed to reduce the market operator’s budget deficit [44], [45].

If a market has non-convex costs, often no uniform price can be found
that supports the market operator’s schedule, resulting in significant lost
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opportunity costs. A number of methods for pricing in the presence of
non-convexities have been proposed. Authors in [29] propose relaxing
integrality and fixing binary variables to the previously-found optimal
values, a method we will call fixed configuration pricing (FCP). This can
result in instances in which the generator that sets the price does not have
the highest variable costs, and thus the price may decrease as demand
increases. Lost opportunity costs may be high, i.e., generators may not
be incentivized to follow the central dispatch decision. Another proposal
by [55] called convex hull pricing (CHP) seeks to find a uniform price
that minimizes lost opportunity costs. There is evidence this approach
improves long-run incentives [14], [51], [109], [123], while [106] propose a
new computationally tractable method using Dantzig-Wolfe decomposition
to find exact convex hull prices.

While attention in incentive compatibility discussions is primarily given
to economic offers [124]–[126], non-convex markets raise the possibility of
increasing payoffs by submitting zero-cost supply offers for the desired
level of production. A stylized test case proposed in [120], [127], replicated
in Section 7.4, demonstrates that market power in non-convex markets can
be exercised by self-committing. Some Nash equilibria strategies include
zero-cost supply offers.

In electricity markets, the phenomenon of self-committing or self-scheduling
by submitting offers below actual costs is widespread. A self-commitment
is when a generator indicates to the system operator that it wishes to be
dispatched at least at its minimum operating level regardless of the market
price. From the operator’s perspective, this equates to submitting an offer
with zero costs up to the minimum operating level. Similarly, a self-schedule
entails submitting an offer with zero costs up to the desired dispatch
quantity. Self-commitment and self-schedules constitute approximately 40%
of the energy market offers in the PJM market [128]. We can characterize a
self-commitment or self-schedule offers as benign or adverse, depending
on whether it reduces market efficiency. Benign offers may be submitted if
a resource’s startup or notification time exceeds the window of the 24-hour
day-ahead market, to avoid transaction costs of gathering cost information
for units that are very likely to be dispatched, or because of take-or-pay fuel
contracts that render some portion of the generator’s output a sunk cost.
However, an adverse offer would result in greater profits in expectation for
a generator than if the generator had submitted an economic bid reflective
of its true costs. It is unclear how many (if any) adverse self-commitments
and self-schedules exist, as such a strategy may be difficult to detect by
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conventional market power mitigation software. Nevertheless, adverse self-
commitment and self-schedules could result in lower market efficiency
if they cause the system operator to find a suboptimal dispatch decision
due to the distorted costs. To disincentivize inefficient behavior, generators
that self-commit or self-schedule are typically not eligible for make-whole
payments. Notably, the type of units found to strategically self-commit
in [127] share similar characteristics to the coal generators that often self-
commit in reality [129], namely that they are "inflexible, relatively expensive,
and mostly profitable" [127].

Authors in [120], [127] demonstrate the ability of generators to strategically
self-commit in a stylized test system with a single operating time period.
The question remains as to whether generators could determine optimal
strategies in a more realistic system with many different generator attributes
across a multi-period optimization horizon. Self-commitment and self-
scheduling allows “out-of-merit” resources to enter the SCUC solution yet
remain profitable; each out-of-merit commitment and dispatch may cause
a cascading change in market prices and the commitment and dispatch
of other resources in the market. The outcome cannot be be explicitly
modeled by individual participants in realistically sized markets. To avoid
this issue, we show that market agents can implicitly identify profitable self-
commitment and -scheduling strategies via simple reinforcement learning
algorithms, i.e., without using a sophisticated model for how an agent’s self-
commitment or self-scheduling will affect the SCUC solution. We investigate
the ability of participants to learn to improve outcomes by self-scheduling or
self-committing via a reinforcement learning algorithm in a large-scale test
system over an operating day, simulating a day-ahead market. We examine
two competing pricing models, showing that the ability of generators
to adversely self-commit or self-schedule is decreased with convex hull
pricing.

7.2 pricing models

A simple unit commitment problem with variable cost C, startup cost F,
production p, and commitment status u linked to startup decision z with
inelastic demand is formulated as:
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min
u, p 2 P

Â
t2T

Â
g2G

(Cg ptg + Fgztg) (7.1a)

s.t. Â
g2G

ptg = D 8t 2 T (7.1b)

u 2 {0, 1} (7.1c)

where P is the set of operating constraints.

For a price signal l⇤ to incentivize an agent to follow the system operator’s
dispatch decision p⇤, the production quantity must solve a function that
maximizes each generator’s profits given l⇤:

max
pg, ug

Pg(l
⇤, pg, ug) 8g 2 G (7.2)

With market-clearing prices l, variable costs C, startup costs F, startup
decision z linked to commitment status u, and side payments s, initial
short-run profit P0 and final short-run profit P are defined as:

P0
g := Â

t2T
((lt � Cg)ptg � Fgztg) (7.3)

Pg := Pg + Â
t2T

stg (7.4)

Perceived losses are lost opportunity costs (LOC), the difference between
what a unit could make given a price if able to schedule its own dispatch (its
preferred profit) and what it would make with the same price following the
centralized dispatch decision, plus any additional compensation received
as side payments. We define initial lost opportunity costs LOC0 without
side payments and final LOC as:

LOC0
g := max

ug, pg
P0

g(l
⇤, ug, pg)�P0

g(l
⇤, u⇤g, p⇤g) (7.5)

LOCg := LOC0
g + Â

t2T
stg (7.6)

Provided the unit could choose to not produce, a subset of LOC0 is make-
whole payments (MWP), the revenue required for short-run cost recovery.
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This occurs when the unit would prefer to not operate at the market-
clearing price. MWP are typically determined for the same timescale at the
day-ahead market, i.e., for each 24-hour period:

MWPg := �min(0, P0
g(l
⇤, u⇤, p⇤)) (7.7)

Prices cannot be derived directly from the unit commitment problem with-
out relaxation. The method proposed in [29] fixes the binary variables
in the to their optimal values and then computes prices l from the La-
grangian multipliers of the resulting linear program. We call this method
fixed configuration pricing (FCP).

min
u, p 2 P

Â
t2T

Â
g2G

(Cg ptg + Fgztg) (7.8a)

s.t. Â
g2G

ptg = D 8t 2 T : lt (7.8b)

u = u⇤ (7.8c)
u 2 [0, 1] (7.8d)

An alternative model seeks to find the uniform price that minimizes lost
opportunity costs, deriving prices from the convex hull of the optimal value
function. In convex hull pricing (CHP), prices are determined by solving
the Lagrangian dual of the UC problem. Approximate CHP (aCHP) can
be calculated by identifying a close approximation of the convex hull of
the primal UC problem [57]. If a good approximation can be found, aCHP
prices l are given by simply relaxing the binary variables:

min
{u, p} 2 P

Â
t2T

Â
g2G

(Cg ptg + Fgztg) (7.9a)

s.t. Â
g2G

ptg = D 8t 2 T : lt (7.9b)

u 2 [0, 1] (7.9c)
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7.3 methodology

7.3.1 Unit Commitment Model

The unit commitment problem to be solved in each iteration is given below.
The short-run profit for each generator g is:

P0
g := Â

t2T
(lt ptg �Â

s2S
Cgsrtgs � Hgutg � Fgztg) (7.10)

Nomenclature

Indices and Sets

g 2 G Set of generators
GT ✓ G Set of thermal generators
GV ✓ G Set of VRE resources
t 2 T Set of time periods (hours)
s 2 S Set of offer steps
Parameters

Cgs Variable cost in offer step s ($/MWh)
Fg Startup cost ($)
Hg No load cost ($)
Pmin

g Minimum operating capacity (MW)

Pmax
gs Maximum operating capacity of offer step s (MW)

Mon
g Minimum on time (h)

Mo f f
g Minimum off time (h)

R+
g Maximum ramp up rate (MW/h)

R�g Maximum ramp down rate (MW/h)

Ptg Maximum output for VRE resource (MW)
Dt Maximum quantity of demand bids at time t (MW)
Uinit

g Initial status of generator (Binary)

Variables
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ptg Committed generation for generator g at time t (MW)
rtgs Generation for generator g in offer step s at time t (MW)
utg (Binary) commitment status for generator g at time t
ztg (Binary) startup decision for generator g at time t
ytg (Binary) shutdown decision for generator g at time t
nt Non-served energy at time t (MW)

Formulation

min
(p, r, u, z, y)

Â
t2T

Â
g2G

(Â
s2S

(Cgsrtgs) + Hgutg + Fgztg) + Â
t2T

nt (7.11a)

s.t.

Â
g2G

ptg + nt = Dt 8t 2 T (7.11b)

Â
s2S

rtgs = ptg 8t 2 T, g 2 G (7.11c)

ztg + ytg  1 8t 2 T, g 2 GT (7.11d)

utg � ut�1,g = ztg � ytg 8t 2 2, ..., T, g 2 GT (7.11e)

ztg = utg 8t = 1, g 2 GT : Uinit
g = 0 (7.11f)

ztg = 0 8t = 1, g 2 GT : Uinit
g = 1 (7.11g)

ztg +
min (t+Mon

g �1,T)

Â
t0=t+1

yt0g  1

8t 2 1, ..., T � 1, g 2 GT : Mon
g > 1 (7.11h)

ytg +
min (t+Mo f f

g �1,T)

Â
t0=t+1

zt0g  1

8t 2 1, ..., T � 1, g 2 GT : Mo f f
g > 1 (7.11i)

Pmin
g utg  ptg 8t 2 T, g 2 GT (7.11j)

rtgs  Pmax
gs utg 8t 2 T, g 2 GT , s 2 S (7.11k)

0  ptg  Ptg 8t 2 T, g 2 GV (7.11l)
ptg � 0 8t 2 T, g 2 G (7.11m)

utg, ztg, ytg 2 {0, 1} 8t 2 T, g 2 GT (7.11n)
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xg 2 {0, 1} 8g 2 GT (7.11o)

We assume generators can ramp up to or down from Pmin during startup
or shutdown. We use tight UC constraints in attempt to better approximate
the convex hull of the optimal value function when relaxing binary vari-
ables [130]. Ramping constraints are implemented as the two-period ramp
inequalities proposed in [131]:

ptg  pt�1,g + (Pmin
g + R+

g )utg � Pmin
g ut�1,g � R+

g ztg

8t = 2, ..., T, g 2 GT (7.12)

pt�1,g  pt,g + (Pmin
g + R�g )ut�1,g � Pmin

g ut,g � R�g ytg

8t = 2, ..., T, g 2 GT (7.13)

Let PMAX
g = Âs2S Pmax

gs , the maximum capacity of generator g. We imple-
ment the following constraints from [132] that serve only to tighten the UC
formulation:

ptg  PMAX
g utg � (PMAX

g � Pmin
g )yt+1,g

8t = 1, g 2 GT (7.14)

ptg  PMAX
g utg � (PMAX

g � Pmin
g )zt,g � (PMAX

g � Pmin
g )yt+1,g

8t = 2, ..., T � 1, g 2 GT : Mon
g � 2 (7.15)

ptg  PMAX
g utg � (PMAX

g � Pmin
g )zt,g

8t = T, g 2 GT (7.16)

ptg  PMAX
g utg � (PMAX

g � Pmin
g )zt,g

8t = 2, ..., T � 1, g 2 GT : Mon
g < 2 (7.17)

ptg  PMAX
g utg � (PMAX

g � Pmin
g )yt+1,g

8t = 2, ..., T � 1, g 2 GT : Mon
g < 2 (7.18)

7.3.2 Offer Strategies

In order for generators to bid strategically, the no load costs, startup costs,
and variable cost in each offer step are further indexed by t. Generators can
choose between three different offer strategies:
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• Economic: The generator submits its true costs and is eligible for
make-whole payments.

• Self-commit: For each time period in which the generator wishes to
self-commit, it submits an offer with zero startup and no-load costs,
and no variable costs up to Pmin. Variable costs beyond the minimum
generation level are submitted economically. The generator is not
eligible for make-whole payments.

• Self-schedule: For each time period in which the generator wishes
to self-schedule, it submits an offer with zero startup and no-load
costs, and no variable costs up to the desired dispatch quantity p⇤tg.
Variable costs above Pmin are retained as economic offers, i.e., a
generator is willing to be scheduled above its preferred schedule but
submits an offer at its true cost. If a generator wishes to be scheduled
for p⇤tg < Âs=1,...,S⇤ rtgs, then the variable cost of generation CgS⇤ is
submitted for offers between p⇤tg and Âs=1,...,S⇤ rtgs. The generator is
not eligible for make-whole payments.

We refer to strategic bids collectively as self-schedules or self-commits.
This method of defining self-schedules and self-commits guarantees that
no matter how many generators bid strategically, the system operator’s
problem is still feasible. Note that the only side payments generators can
receive are make-whole payments in the case of an economic bid. Lost op-
portunity costs are never explicitly compensated, and doing so may create
a revenue adequacy problem for the system operator. If lost opportunity
costs were paid in full, under convex hull pricing there would be an in-
centive to submit arbitrarily large bids of zero price that must be accepted
entirely if at all [58]. Future research could use the approach outlined here
to include non-truthful cost offers exaggerating marginal costs as additional
strategies.

7.3.3 Greedy Algorithm

The generators’ problem of choosing what offer strategy to bid is a multi-
armed bandit problem. In a multi-armed bandit problem, a set of discrete
choices results in uncertain, random payoffs. The bandit (gambler) seeks
to find a strategy that maximizes payoff. Each generator must determine
how to bid based on the profitability of each strategy determined in previ-
ous outcomes, which depends on the offer strategies of other generators.
One method to solve the multi-armed bandit problem is via the greedy
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reinforcement learning algorithm [133], [134]. Drawing from a history of
prior outcomes, the greedy algorithm chooses the best strategy in expecta-
tion with probability a and chooses a strategy at random with probability
1� a.

In the first iteration of the simulation, all generators bid economically,
representing the competitive market solution. Afterwards the generators
explore other strategies randomly with probability 1� alpha. If the expected
payoff is equivalent between a strategic bid and an economic bid, the
generator defaults to bidding economically.

7.3.4 Exponential Smoothing

The expected profit of a strategy is calculated via exponential smoothing
with parameter h. Let x be a vector of values to be smoothed indexed by t
of length T. The expected value of x is sT , where st is calculated as:

s1 = x1 (7.19)
st = hxt + (1� h)st�1 8t � 2 (7.20)

In order to determine when in a multi-period optimization horizon to
self-commit or self-schedule, a generator must determine an expected price
stream for a given strategy. To calculate the expected prices, the price lt in
a given period is exponentially smoothed across all iterations in which the
generator chose the given strategy.

7.3.5 Adverse Bidding Test

We define a strategic bid as adverse if bidding strategically increases the
expected profits of a generator. For an adverse bidder, either Xsel f comm �
Xeco > 0 or Xsel f sched � Xeco > 0. Note that an adverse bid may result in an
increase in total production costs and thus a decrease in market efficiency,
but it may also represent a transfer of profits among generators without
impacting the total social surplus achieved. The payoffs a generator makes
are influenced not only by its bidding decision but the bidding decisions
of the other generators. A generator may learn to bid strategically based
on profits achieved due to the bidding strategy of others. To determine if
a strategic bidder is actually able to increase its profits via its own offer
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strategy, we use the an unequal variance two-sample t-test, also known as
Welch’s t-test.

Welch’s t-test tests the null hypothesis that two sets of samples come from
distributions with equal means against the alternative hypothesis that
the distributions have different means. Like Student’s t-test, it assumes
the sample means being compared are normally distributed, but unlike
Student’s t-test, it does not assume that the populations have equal variances.
It is more reliable than Student’s t-test when the samples have unequal
variances and unequal sample sizes [135].

The test statistic t is defined as:

t =
DX
sDX

=
X1 � X2q
s2

X1
+ s2

X2

(7.21)

sXi
=

sip
Ni

(7.22)

where Xi and sXi
is the sample mean and its standard error, si is the

corrected sample standard deviation, and Ni is the sample size. In the
analysis that follows, we use a p-value of 0.05.

7.4 illustrative test case

Authors in [120], [127] propose a stylized test case in which the Nash
equilibria strategies can be found analytically. We use this test case for three
scenarios: a single-period case |T| = 1 with demand profile D1, a multi-
period case with |T| = 10 and constant demand profile D1, and a multi-
period cast |T| = 1 with fluctuating demand profile D2. The case consists
of 3 types of generators with characteristics given in Table 7.1.

Gen. i 2 {1, ..., 5} Pmin
hi (MW) Pmax

hi (MW) Chi ($/MWh)

GEN1i 25 25 15
GEN2i 0 25 10
GEN3i 0 25 25

Table 7.1: Illustrative test case generator characteristics
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Generators types GEN2 and GEN3 are convex with only a marginal cost,
while type GEN1 is block-loaded, making the optimal value function of this
system non-convex. Let the demand level be 225 + e MW, where e > 0 and
negligibly small.

Under the FCP model, the price is $25 for the socially optimal solutions in
which any 4 GEN1s are committed as well as for any integer solution in
which less than 4 of the 5 GEN1s self-commit. If all 5 GEN1s self-commit,
the price decreases to $10, and the total actual production costs to serve load
increase, leading to a decrease in market efficiency. If 4 of the 5 GEN1s are
committed, the 5th has a LOC of �$250, as it would prefer to be committed
given the price of $25.1 If all GEN1s self-commit and the price drops to $10,
then each suffers a loss, with a payoff of -$125. Let ghi be the probability
that a generator self-commits. Assuming there is no collusion, the mixed
strategy Nash equilibrium can be found analytically to be g1i = 0.831
8i 2 {1, ..., 5} [120]. There are also five fixed asymmetric strategies in which
4 of the 5 generators self-commit and one does not. In contrast, under
the CHP model, the price is $15, and the GEN1s have no incentive to
self-schedule, as their profits are always 0.

We replicate the above example and show that the simulations converge
on one of the Nash equilibria with fixed asymmetric strategies. The single-
period scenario |T| = 1 has demand profile D1. Removing all constraints in
(7.11) for which t > 1, we simulate the market using greedy a = 0.9 and
exponential smoothing h = 0.05 over 2000 iterations.

Recall that the first iteration is the competitive solution in which all genera-
tors bid economically. Figure 7.1 shows that actual total producer costs do
not increase above the competitive solution once strategic bidding is allowed.
The system operator never selects a suboptimal solution due to the strategic
bidding. The generators are also not able to increase total producer profits
by strategic bidding. Since demand is inelastic and all demand is served,
no increase in producer profits implies no increase in the cost to consumers,
shown in Figure 7.2. When all GEN1s self-commit/schedule, the price drops
to $10 and no make-whole payments are required, leading to lower costs to
consumers and lower producer profits in these iterations.

The number of times each generator selects each offer strategy over the
simulation period is shown in Figure 7.3. Under the FCP model, 4 of

1 The convention used here is to display LOC as the perceived profit or loss. A perceived loss
is negative. A perceived profit is possible if a side payment was given in excess of perceived
losses, e.g., if CHP were calculated over a different time period than MWP.
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the 5 GEN1s learn to self-commit (or, equivalently, self-schedule, as the
unit is block-loaded) while the GEN11 learns to bid economically. GEN1s
collectively self-commit/schedule 78.4% of the time over the final 1000
iterations. A number of GEN2s self-commit or self-schedule more than the
random exploratory probability (1� a)/3. However, this does not mean
that they learn to strategically bid because they are necessarily able to
influence the price. A GEN2 may bid strategically and see a bigger payoff
(or bid economically and see a smaller payoff) incidentally because of the
behavior of GEN1s in that iteration. However, no GEN2 obtains mean
profits self-committing or self-scheduling that are statistically significantly
greater than the mean profits from bidding economically.

Figure 7.1: |T| = 1, D1 Total actual production cost normalized by production
cost at the competitive solution in which all generators bid economi-
cally. Higher producer costs indicate the system operator selected a
suboptimal solution due to strategic bids.

A generator is said to be an adverse strategic bidder if it profits in expecta-
tion from bidding strategically rather than bidding economically in a statisti-
cally significant manner. Either Xsel f comm �Xeco > 0 or Xsel f sched �Xeco > 0
and the p-value from the corresponding Welch’s t-test is > 0.05. Table 7.2
and Table 7.3 show the number of adverse strategic bidders under the FCP
and aCHP models. For the FCP model, 4 of the GEN1s are statistically
significant adverse strategic bidders, while 0 of the GEN2s are. Under the
aCHP model, no generators pass the statistical significance test.
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Figure 7.2: |T| = 1, D1. Cost to consumers for each pricing model over iterations.

Number
Xeco < (Xsel f sched OR Xsel f comm) and p < 0.05

Gen. i 2 {1, ..., 5} |T| = 1 , D1 |T| = 10, D1 |T| = 10, D2

GEN1i 4 4 5
GEN2i 0 0 3
GEN3i 0 0 0

Table 7.2: Adverse Strategic Bids (FCP)

Excess profit is defined as the difference for strategic generators between the
mean profit for the strategic bidding strategy with the highest payoff (either
Xsel f comm or Xsel f sched) and Xeco, the mean profit when bidding economically.
The total excess profit among all adverse strategic bidders is shown as a
percentage of the total producer profits in the competitive solution in which
all generators bid economically for each pricing model in Table 7.4. Note
that it is typically not possible for generators to realize their excess profit
simultaneously, but this figure gives a sense of the magnitude of the profit
opportunity for strategic bidders in the market. Excess profits under FCP
are 24.4%, while there are no excess profits under aCHP.
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Figure 7.3: |T| = 1, D1. Percent of iterations that a generator chose each offer
strategy.

Figure 7.4 shows the profit duration curve for generators at the competitive
solution and the mean profits made in simulation with each bidding strategy.
In the competitive solution, all GEN2s are committed and make the highest
profits $(25-10)(D1 + e), while 4 of the GEN1s are committed and make a
profit $(25-15)(D1 + e), with 1 GEN1 not committed and making no profit.
One GEN3 is committed to clear demand e but makes no profit. Under the
aCHP model, all generators have the same payoff as under the competitive
solution regardless of bidding strategy, with the exception of the marginal
GEN3 that discovers self-committing or self-scheduling will entail a loss.

Number
Xeco < (Xsel f sched OR Xsel f comm) and p < 0.05

Gen. i 2 {1, ..., 5} |T| = 1, D1 |T| = 10, D1 |T| = 10, D2

GEN1i 0 0 0
GEN2i 0 0 3
GEN3i 0 0 0

Table 7.3: Adverse Strategic Bids (aCHP)
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Figure 7.4: |T| = 1, D1 Profit duration curve. Generators are sorted by profit
achieved in the competitive outcome in which all generators submit
economic bids. The mean profit achieved for each strategy in simula-
tion is also shown.

Total excess profit (% competitive profits)
Pricing Model |T| = 1 , D1 |T| = 10, D1 |T| = 10, D2

FCP 24.4% 20.9% 13.6%
aCHP 0% 0% 0.08%

Table 7.4: Adverse Strategic Bids Payoffs

For FCP, the GEN2s do best by bidding economically, but suffer a loss in
expectation compared to the competitive solution due to GEN1 strategic
behavior sometimes lowering the price to $10 from $25. A profit transfer
takes place among the GEN1s, in which a generator that is committed in
the competitive solution and profits is shut out by the other four generators’
strategic behavior.

Next, we expand this market into a multi-period market, assuming no
binding ramping constraints. The market has constant demand D1 of 225
+ e, where e = 1 MW, yielding the same price possibilities as the prior
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example. The competitive prices and the prices found in simulation with
strategic bidding are shown in Figure 7.6.

While the learning behavior shown in Figure 7.5 appears different than
when |T| = 1, Tables 7.2 and 7.3 show that the number of statistically
significant adverse bidders in each pricing model is equivalent. A different
asymmetric Nash equilibrium is found in which GEN14 bids economically
and all others bid strategically. GENS1s collectively self-commit/schedule
78.5% of the time over the final 1000 iterations and excess profits shown in
Table 7.4 are similar to |T| = 1.

Figure 7.5: |T| = 10, D1. Percent of iterations that a generator chose each offer
strategy.

Next we vary the demand, with demand profile D2 shown in Figure 7.7 and
|T| = 10. This yields the competitive and strategic bidding prices shown
in Figure 7.8. The lost opportunity costs for aCHP are lower than FCP, as
shown in Figure 7.9.

The total producer costs normalized by the costs in the competitive solution
are shown in Figure 7.10. Strategic bidding with FCP can increase actual
producer costs by over 1.5%, but on average only increases costs slightly
(< 0.5%).

Figure 7.11 shows the percent of iterations each generator chose each
strategy. The number of adverse bidders is again shown in Tables 7.2 and
7.3. Under FCP, GEN1s all are adverse strategic bidders, collectively self-
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Figure 7.6: |T| = 10, D1. Prices attained under the competitive solution in which
all generators bid economically and prices attained over all iterations
of strategic bidding.

committing/scheduling 64.7% of the time over the final 1000 iterations.
GEN2s collectively self-schedule or self-commit 62.0% of the final 1000
iterations. All 5 GEN1s are statistically significant adverse bidders, but only
3 of the 5 GEN2s are. Self-committing is profitable for 2 GEN2s but self-
scheduling is profitable for 3. Under aCHP, 3 GEN2s also learn to profitably
bid strategically by self-scheduling, but the payoff is very small. The total
excess profit as a percentage of the competitive profits for FCP is 13.6%,
while it is only 0.08% for aCHP, shown in Table 7.4. The profit duration
curve at the competitive solution is shown in Figure 7.12. While the mean
profits vary little under aCHP no matter the offer strategy, the mean profits
attained for each strategy under FCP vary considerably.
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Figure 7.7: Demand profiles.

Figure 7.8: |T| = 10, D2. Prices attained under the competitive solution in which
all generators bid economically and prices attained over all iterations
of strategic bidding.
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Figure 7.9: |T| = 10, D2. Lost opportunity cost displayed as perceived profit or
loss before MWP.

Figure 7.10: |T| = 10, D2 Total actual production cost normalized by production
cost at the competitive solution in which all generators bid economi-
cally.
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Figure 7.11: |T| = 10, D2. Percent of iterations that a generator chose each offer
strategy.

Figure 7.12: |T| = 10, D2 Profit duration curve. Generators are sorted by profit
achieved in the competitive outcome in which all generators submit
economic bids.
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7.5 large-scale test case

7.5.1 Data

Data for the large-scale test system come from a benchmark library curated
and maintained by the IEEE PES Task Force on Benchmarks for Validation
of Emerging Power System Algorithms [136]. We simulate several days from
the FERC test cases [137], [138]. Generator data are based on the publicly
available unit commitment test instance from the Federal Energy Regulatory
Commission (FERC) consisting of approximately 1000 generators with load
and wind data based on publicly available data from PJM. Each case
includes an aggregated variable renewable energy (VRE) generator. This
is a wind profile that is scaled to be 2% of annual load in the low wind
scenarios and 30% in the high wind scenarios. Transmission constraints are
omitted due to lack of data availability but are an important avenue for
future research.

Generators have up to 12 offer steps S, and marginal costs in each offer step
were calculated from cumulative costs in each offer step. Block loaded units
are assumed to have no no-load costs. The variable cost from 0 to Pmin is
assumed to be the same variable cost as in the first offer step above Pmin,
with the remainder as no-load cost. If this is infeasible (e.g., if the no-load
cost would be negative), there is assumed to be no no-load cost, and the
variable cost between 0 and Pmin is the cumulative cost to produce at Pmin

divided by Pmin.

The three cases considered are shown in Table 7.5. FERC1 and FERC3 are
high wind cases, while FERC 2 is the low wind version of FERC1. While no
resource mixes in these test cases are adapted in the long-run to the demand
profiles, we expect FERC2 is especially poorly adapted because of the large
increase in wind capacity, i.e., many thermal resources in this system ought
to be incentivized to exit the market. FERC1 and FERC2 are a summer day
and FERC3 is a winter day. Table 7.5 lists the maximum aggregate wind
generation and maximum demand over the 24-hour period.

7.5.2 Results

All optimizations are solved to a MIP gap of 0.01% with a horizon of 24
hours with no look-ahead. Transmission constraints and reserve require-
ments are omitted. Since demand is considered as inelastic and all demand
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FERC1 FERC2 FERC3

Date 2015-07-01 2015-07-01 2015-02-01
Max Demand 112.6 GW 112.6 GW 103.7 GW

Thermal Generators 978 (177.5 GW) 978 (177.5 GW) 934 (180.7 GW)
VRE Generators 1 (1.2 GW) 1 (18.2 GW) 1 (4.5 GW)

Table 7.5: FERC Test Cases

is cleared without any non-served energy, the MIP gap reflects total pro-
ducer costs. Note the convention that if a generator is neutral between
bidding strategically or bidding economically at a given iteration in the
simulation period based on expected profit, the generator defaults to bid-
ding economically. The first iteration is the competitive solution in which
all generators bid economically. The simulation is run with greedy a = 0.9
and exponential smoothing h = 0.05 over 1000 iterations.

Results for FERC1 demonstrate that generators are able to learn to bid strate-
gically in a way that increases producer profits and the cost to consumers.
Figure 7.13 shows that while the cost to consumers changes negligibly
with aCHP when generators can self-commit or self-schedule, the cost to
consumers under FCP rises. At the competitive solution, the cost to con-
sumers with FCP is 1.2% lower than with aCHP. However, the mean cost to
consumers for FCP in the final 500 iterations is 0.76% higher than the mean
cost to consumers for aCHP in the final 500 iterations. The average cost to
consumers under FCP settles at approximately 2% higher with strategic
bidding than the competitive solution, as shown in Figure 7.14. Under FCP,
total producer profits increase on average in the final 500 iterations by 4.4%
compared to the competitive solution, as shown in Figure 7.16. The effi-
ciency of the system operator’s solution with strategic bidding can decrease
with strategic bids, but only very slightly, as shown in Figure 7.15. Note
that each iteration only solves to a MIP gap of 0.001%, so some iterations
can also achieve slightly lower producer costs than the competitive solution
in the first iteration.

Figures 7.19 and 7.20 show the market share of each strategy per iteration
in terms of number of units and total MW bidding each offer strategy. For
FCP, generators that self-commit or self-schedule represent 38.8% of the
total thermal generator capacity on average in the final 500 iterations. For
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Figure 7.13: FERC1. Cost to consumers for each pricing model over iterations.
Average costs to consumers under FCP rise during the simulation to
be greater than costs to consumers under aCHP.

aCHP, 18.3% of available MW self-commit or self-schedule on average in
the final 500 iterations.

However, not all generators that bid strategically profit because of their
strategy; some randomly learn to bid strategically due to the behavior
of other generators that influence the price. Tables 7.6 and 7.8 show the
number of statistically significant adverse strategic bidders for each pricing
model, and Tables 7.7 and 7.9 show the total MW represented by these
adverse strategic bidders. Under FCP, generators representing 24.7% of
thermal capacity profit by either self-scheduling or self-committing. Under
aCHP, this number is 13.9%. Total excess profits for adverse bidders are
given in Table 7.10. Excess profits are defined in Section 7.4 as the difference
for strategic generators between the mean profit for the strategic bidding
strategy with the highest payoff (either Xsel f comm or Xsel f sched) and Xeco, the
mean profit when bidding economically. Total excess profits for FCP are
0.73% of FCP competitive profits, while total excess profits for aCHP are
only 0.01% of aCHP competitive profits.

Figure 7.17 shows the total MWP required for cost recovery in each iteration.
The aCHP model has higher prices in the competitive solution in the
first iteration, and thus has lower MWP requirements. Since generators
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Figure 7.14: FERC1. Cost to consumers over iterations normalized by cost to
consumers at the competitive solution in which all generators bid
economically for each pricing model.

in FCP learn to strategically bid to increase the price, MWP fall over
iterations. When generators are learning to increase their profits by bidding
strategically, they are learning to decrease LOC. Figure 7.18 shows that
while LOC has no trend for aCHP, LOC under FCP decreases over the
iterations.

The prices found with strategic bidding vary far more under FCP than
under aCHP, leading to increased profit potential. Competitive prices and
the range of prices found via strategic bidding for each pricing model are
shown in Figure 7.21.

The profit duration curve under competitive conditions and deviations
from this curve for each generator under each bidding strategy are shown
in Figures 7.22 and 7.23. For FCP, many generators benefit from the al-
lowance of strategic bidding and resulting higher prices even if they cannot
themselves impact the price. Typically it is generators that were already
highly profitable under competitive conditions that have the highest payoffs
under strategic conditions. For aCHP, there is no additional profit potential
relative to competitive profits, and some potential for losses, indicating that
aCHP incentives generators not to self-schedule if they could impact the
price. Figures 7.24 and 7.25 show the deviation from competitive profits
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Figure 7.15: FERC1. Total actual production cost normalized by production cost
at the competitive solution in which all generators bid economically.
Production cost at the competitive solution varies for FCP and aCHP.

for statistically significant adverse bidders. Under FCP, again the gener-
ators with the highest competitive profits benefit the most from bidding
strategically. Under aCHP, there is little to no increased payoff relative to
competitive conditions (note the different axis scale in Figure 7.25). Because
adverse generators are determined based on the expected payoff of a strate-
gic bid compared to economic bids while other generators are also bidding
strategically instead of the payoff in competitive conditions, some of the
deviations from competitive profits are negative.

The zero-marginal cost VRE generator also benefits from the higher profits
induced by strategic thermal generators under FCP. Figure 7.26 shows the
total profit achieved under CHP changes negligibly, but the total profit
achieved under FCP grows as the thermal generators determine optimal
strategic bidding strategies.

FERC2 is the same case as FERC1 except a large quantity of wind was added.
This means the resource mix is far from the long-run adapted resource
mix, so we would expect to see less opportunity for profits for thermal
generators, and that less thermal generators overall will be committed.
FERC3 is another low wind case, but on a winter instead of summer
day.
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Figure 7.16: FERC1. Total producer profits normalized by profits at the com-
petitive solution in which all generators bid economically for each
pricing model.

Tables 7.6 and 7.8 show the number of statistically significant adverse
strategic bidders for each pricing model, Tables 7.7 and 7.9 show the total
MW represented by these adverse strategic bidders, and Table 7.10 shows
the total excess profit. Under FCP, FERC2 with has a similar amount of MW
that are statistically significant adverse bidders as FERC1 (23.9% vs 24.7%),
but the total excess profits are lower (0.09% vs 0.73%). FERC3 has a higher
share of MW as adverse bidders at 37.2%, and total excess profits of 0.60%.
The MW of adverse bidders for aCHP is lower than FCP in both cases, and

Number of Generators
Xeco < (Xsel f sched OR Xsel f comm) and p < 0.05

Strategy FERC1 FERC2 FERC3

Self-Commit 90 (9.2%) 61 (6.2%) 94 (10.1%)
Self-Schedule 82 (8.4%) 66 (6.7%) 103 (11.0%)
Total (Unique) 119 (12.2%) 93 (9.5%) 136 (14.6%)

Table 7.6: Adverse Strategic Bids (FCP)
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Figure 7.17: FERC1. Make-whole payments required for short-run cost recovery
by pricing model.

the excess profits for both is 0.00%, i.e., the payoffs from strategic bidding,
while statistically significant, are very small.

While the normalized cost to consumers under FCP in FERC2 only increases
by approximately 0.05% (Figure 7.27), the normalized cost to consumers
in FERC3 increases by approximately 1.5% (Figure 7.28). The increase in
normalized producer profits for FERC2 shown in Figure 7.31 is also lower
than in FERC1 (less than 1% vs 4.4%), while the average increase in FERC3
in the final 500 iterations is 2.9%, shown in Figure 7.32.

Generator Capacity (GW)
Xeco < (Xsel f sched OR Xsel f comm) and p < 0.05

Strategy FERC1 FERC2 FERC3

Self-Commit 32.8 (18.5%) 28.6 (16.1%) 50.7 (28.0%)
Self-Schedule 30.2 (17.0%) 29.4 (16.6%) 50.4 (27.9%)
Total (Unique) 43.9 (24.7%) 42.4 (23.9%) 67.3 (37.2%)

Table 7.7: Adverse Strategic Bids (FCP)
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Figure 7.18: FERC1. Lost opportunity cost displayed as perceived profit or loss
before MWP. Generators under FCP learn to bid strategically so as
to lower LOC.

The LOC in the competitive solution for FCP is far lower in FERC2 and
FERC3 compared to FERC1, and there is no trend of decreasing LOC with
learning as with FERC1. Figures 7.29 and 7.30 show LOC for FERC2 and
FERC3. The market share of each offer strategy for FERC2 and FERC3,
shown in Figures 7.33 and 7.34, are similar to those found in FERC1. The
range of prices found under FCP with strategic bidding varies more and
reaches higher values in FERC3 than FERC2, as shown in Figures 7.35 and
7.36. The peak price in particular varies more for FERC1 and FERC3 than
FERC2, with significant added wind.

Number of Generators
Xeco < (Xsel f sched OR Xsel f comm) and p < 0.05

Strategy FERC1 FERC2 FERC3

Self-Commit 39 (4.0%) 19 (1.9%) 16 (1.7%)
Self-Schedule 63 (6.4%) 37 (3.8%) 26 (2.8%)
Total (Unique) 90 (9.2%) 47 (4.8%) 35 (3.7%)

Table 7.8: Adverse Strategic Bids (aCHP)
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Figure 7.19: FERC1. Market share of each offer strategy per iteration as percent-
age of generators bidding each strategy.

Generator Capacity MW
Xeco < (Xsel f sched OR Xsel f comm) and p < 0.05

Strategy FERC1 FERC2 FERC3

Self-Commit 9.2 (5.2%) 6.1 (3.4%) 3.4 (1.9%)
Self-Schedule 19.0 (10.7%) 12.4 (7.0%) 7.3 (4.0%)
Total (Unique) 24.7 (13.9%) 14.0 (7.9%) 9.8 (5.4%)

Table 7.9: Adverse Strategic Bids (aCHP)

Total excess profit (% competitive profits)
Pricing Model FERC1 FERC2 FERC3

FCP $236.0k (0.73%) $32.7k (0.09%) $204.2k (0.60%)
aCHP $2.6k (0.01%) $1.0k (0.00%) $1.4k (0.00%)

Table 7.10: Adverse Strategic Bids Payoffs
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Figure 7.20: FERC1. Market share of each offer strategy per iteration as percent-
age of MW of total thermal generator capacity bidding each strategy.

Figure 7.21: FERC1. Prices attained under the competitive solution in which all
generators bid economically and prices attained over all iterations
of strategic bidding.
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Figure 7.22: FERC1. Profit duration curve and deviations for FCP. Generators
are sorted by profit achieved in the competitive outcome in which
all generators submit economic bids. The difference between the
mean profit achieved for each strategy in simulation and the profit
achieved at the competitive solution is shown.

Figure 7.23: FERC1. Profit duration curve and deviations for aCHP. Generators
are sorted by profit achieved in the competitive outcome in which
all generators submit economic bids. The difference between the
mean profit achieved for each strategy in simulation and the profit
achieved at the competitive solution is shown.
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Figure 7.24: FERC1 (FCP). Deviations from the competitive solution profit dura-
tion curve for statistically significant adverse generators. Generators
are sorted by profit achieved in the competitive outcome in which
all generators submit economic bids. The difference between the
mean profit achieved for each strategy in simulation and the profit
achieved at the competitive solution is shown only for adverse gen-
erators.
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Figure 7.25: FERC1. (aCHP). Deviations from the competitive solution profit
duration curve for statistically significant adverse generators. Gen-
erators are sorted by profit achieved in the competitive outcome
in which all generators submit economic bids. The difference be-
tween the mean profit achieved for each strategy in simulation and
the profit achieved at the competitive solution is shown only for
adverse generators. Adverse generators are determined based on
the expected payoff compared to economic bids in simulation, not
payoff in the competitive solution, so D may be < 0.

Figure 7.26: FERC1. Aggregate profit of VRE generators over iterations.
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Figure 7.27: FERC2. Cost to consumers over iterations normalized by cost to
consumers at the competitive solution in which all generators bid
economically for each pricing model.

Figure 7.28: FERC3. Cost to consumers over iterations normalized by cost to
consumers at the competitive solution in which all generators bid
economically for each pricing model.
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Figure 7.29: FERC2. Lost opportunity cost displayed as perceived profit or loss
before MWP.

Figure 7.30: FERC3. Lost opportunity cost displayed as perceived profit or loss
before MWP.
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Figure 7.31: FERC2. Total producer profits normalized by profits at the com-
petitive solution in which all generators bid economically for each
pricing model.

Figure 7.32: FERC3. Total producer profits normalized by profits at the com-
petitive solution in which all generators bid economically for each
pricing model.
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Figure 7.33: FERC2. Market share of each offer strategy per iteration as percent-
age of MW of total thermal generator capacity bidding each strategy.

Figure 7.34: FERC3. Market share of each offer strategy per iteration as percent-
age of MW of total thermal generator capacity bidding each strategy.
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Figure 7.35: FERC2. Prices attained under the competitive solution in which all
generators bid economically and prices attained over all iterations
of strategic bidding.

Figure 7.36: FERC3. Prices attained under the competitive solution in which all
generators bid economically and prices attained over all iterations
of strategic bidding.
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7.6 conclusion

In a market with non-convex costs, market power can be exercised by self-
committing/scheduling. In electricity markets that permit self-commitment
and self-scheduling, generators can learn to bid strategically to increase
their profits using reinforcement learning without knowledge of the costs or
strategies of other generators. While the FCP pricing model provides incen-
tives to adversely (to the market) self-commit or self-schedule, convex hull
pricing provides minimal incentives to deviate from the socially-optimal
dispatch solution.

Using a realistic test system, we find that when LOC is high under FCP, gen-
erators can learn to bid strategically to increase their profits and lower LOC.
In one test case strategic bidding decreased total system LOC under FCP
by approximately 2/3. Generators who are able to adversely self-commit
or self-schedule to increase their profits tend to be generators who were
already highly profitable under competitive conditions. However, many
generators benefit from the higher prices induced by strategic generators. In
our simulations, approximately 40% of thermal generating capacity under
FCP learned to self-schedule or self-commit, similar to the levels in markets
today. Importantly, we are finding this behavior without the presence of
long lead time scheduling constraints or take-or-pay fuel contracts that are
typically used to explain this behavior. Of this amount, between 24%-38%
across cases increased their payoff by bidding strategically rather than
bidding economically in a statistically significant manner while other gen-
erators were bidding strategically. Cost to consumers under aCHP is higher
in competitive conditions, but cost to consumers under FCP is higher in
strategic conditions. Producer profits increased in cases with low wind 2.9%
and 4.4% respectively, while they increased in a case with significant added
wind (and thus less profit potential for the same resource mix of thermal
generators) only 1%.

The ability of generators to adversely self-commit or self-schedule depends
on the number and characteristics of the generators in the system. If there
is significant excess thermal generation capacity, the profit potential is
lower. More work is needed to explore how different resource mixes and
net load profiles influence the potential for adverse self-commitments and
self-scheduling.

Future work should consider how transmission constraints and reserve
requirements may impact the ability of participants to benefit from strategic
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bidding. Future work should also explore how other non-convex pric-
ing methods currently used by system operators in the United States
(see [13]) may create incentives for adverse self-commitments and self-
schedules.

While the induced higher profits by strategic bidding benefit all committed
generators, generators who are successful adverse bidders tend to be gen-
erators who were already highly profitable under competitive conditions.
This could in the long-run bias investment decisions, leading to a resource
mix that does not maximize social welfare.
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C O N C L U S I O N

8.1 summary

A number of challenges in electricity markets may potentially lower the
social surplus and consumer surplus achieved from the theoretical ideal.
Chapter 3 shows that improvements made to calculations of transmission
congestion in zonal pricing still result in a large welfare gap. However,
even with nodal pricing, marginal pricing as a market clearing mechanism
does not have the desired economic properties of being able to clear the
market while providing a dispatch solution from which no generator has
an incentive to deviate. This is due to the technical characteristics and
commitment costs of generators that result in a non-convex optimal value
function.

Prices are not meant to support the existing resource mix but rather to
provide optimal signals for entry and exit in the long-run, and Chapter
4 explores how different non-convex pricing models can lead to different
long-run resource mixes. These different resource mixes and pricing models
result in different levels of consumer surplus, with the restricted convex
model and convex hull pricing, a method that minimizes lost opportunity
costs, providing the least overcompensation to inframarginal units. Chapter
5 examines how increasing shares of variable renewable energy impact
the cost recovery of flexible units in a non-convex setting. Long-run cost
recovery is still possible for flexibility providers, but there is a penalty to
consumers relative to the convex case that is proportional to the amount of
non-convex resources in the system.

Chapter 6 finds that better near-optimal solutions can improve outcomes
for consumers when demand is flexible. Finally, Chapter 7 examines the
incentives of market agents to bid strategically by offering zero-cost bids
when they face lost opportunity costs. Via a reinforcement learning algo-
rithm, agents can learn to self-schedule or self-commit to increase profits
without explicit knowledge of the costs or strategies of other agents. In a
realistic test system, adverse bids under the restricted convex pricing model
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increased total producer profits substantially, while convex hull pricing
preserved the profits made at the competitive market solution and resulted
in a lower cost to consumers.

8.2 outlook

We are at a time of transition in which massive investments in low-carbon
electricity generating capacity must be made to achieve goals of net zero
carbon emissions by mid-century. Electricity market design must adapt to
significant increases in the shares of zero-marginal cost variable renewable
energy. Whether or not the future decarbonized electricity market design
includes long-term reliability obligations, the most efficient design will be
built around efficient energy prices. As fossil-fuel resources are displaced
by low-carbon resources, the findings in this dissertation can guide system
operators in understanding how price formation impacts the transition,
and to what extent energy markets can signal enough of the right kind of
resources to be built for reliability needs. With more systems considering
implementing nodal pricing, this work demonstrates the gap between nodal
pricing and the theoretical ideal of convex markets and offers paths forward
for system and market operators.

This dissertation addresses how inaccurate representation of the transmis-
sion network and treatment of non-convexities influences market efficiency.
The nature of non-convexities is such that conclusions can often not be
drawn universally, and more work is needed to determine the magnitude of
impacts in different regions. However, the approach outlined in this thesis
can be used to consider long-run impacts of different pricing models as
more variable renewable energy and flexible demand enter the system. The
cumulative impact of non-convexities on market inefficiency may decrease
as thermal resources retire; alternatively, the impact may increase if new
technologies are adopted that require their own modeling approach with
integrality. The findings in this body of work make a case for the adoption
of convex hull pricing, which has become computationally tractable with
recent advances in decomposition algorithms. It also sheds light on the im-
portance of incorporating price-responsive, flexible demand. As the energy
sector transitions to a low-carbon future, it will become more important
that energy markets provide price signals that not only enable efficient
operation but also signal optimal investment decisions.
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