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We have conducted discrete element simulations (PFC3D) of very loose, cohesive, granular assemblies with
initial configurations which are drawn from Baxter’s sticky hard sphere (SHS) ensemble. The SHS model is
employed as a promising auxiliary means to independently control the coordination number zc of cohesive
contacts and particle volume fraction φ of the initial states. We focus on discerning the role of zc and φ for
the elastic modulus, failure strength, and the plastic consolidation line under quasistatic, uniaxial compression.
We find scaling behavior of the modulus and the strength, which both scale with the cohesive contact density
νc = zcφ of the initial state according to a power law. In contrast, the behavior of the plastic consolidation curve
is shown to be independent of the initial conditions. Our results show the primary control of the initial contact
density on the mechanics of cohesive granular materials for small deformations, which can be conveniently, but
not exclusively explored within the SHS-based assembling procedure.

DOI: 10.1103/PhysRevE.96.032914

I. INTRODUCTION

Identifying microstructural controls of macroscopic ma-
terial behavior is key for the understanding, upscaling,
and modeling of heterogenous or disordered materials. The
subclass of granular materials is often studied by discrete
element simulations to address material behavior for different
applications. A large amount of work has been done in the
past to characterize the mechanics of dense cohesionless
materials (e.g., Refs. [1–7]), mainly in the vicinity of the
jamming transition (or the critical state [8]). In contrast,
in loose and cohesive granular systems (e.g., [9–14]), the
mechanical behavior originates from properties of the tenuous,
microstructural grain networks that sustain external loads.
From the analysis of consolidation, where plastic effects
are negligible, it was concluded [11,12] that the mechanical
behavior is predominantly influenced by the microstructure
inherited from the assembling procedure.

The most prominent microstructural properties of granular
systems are particle volume fraction φ and coordination
number zc. For dense, noncohesive systems close to jamming
transition, both quantities are interrelated, and universality
dictates the coordination number to be a function of packing
fraction (cf., e.g., [4,15,16]). Introducing cohesive bonds
into the system allows generation of assemblies at small
volume fraction where the influence of both parameters may
decouple [17]. Agnolin and Roux highlighted in [18] that a
compression-decompression cycle, although almost reversible
in terms of density, can significantly lower the coordination
number. However, elastic moduli are strongly sensitive to the
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coordination number [12]. These authors suggested that elastic
moduli should be rather related to the contact density as an
indicator of the internal state. Discerning the role of φ and
zc becomes particularly important for loose states, where the
number of possible configurations for a given packing fraction
increases.

It is thus desirable to augment the control of initial states
used in discrete element modeling. Initial sphere configura-
tions are often generated from ballistic deposition [13] or
from aggregation schemes based on equilibrium states of hard
sphere fluids [12]. The exact influence of volume fraction φ

and coordination number zc is, however, difficult to assess,
partly due to the lack of analytical approximations available
for rule-based definitions of the assembling procedures for
initial states.

Along these lines it has been previously suggested [19]
that Baxter’s model of sticky hard spheres (SHS) [20] is
an interesting candidate to address generic questions of
disordered materials from a particle-based perspective. In the
original work [20] SHS were introduced as a minimal particle
model for a liquid-gas transition. The SHS model is also a
common starting point for other systems, such as short-range
attractive, colloidal suspensions [21]. Due to the relevance of
gelation and glassy phenomena in colloidal systems, the SHS
system was early investigated from the viewpoint of topol-
ogy and connectivity [22]. Such a geometric-configurational
perspective of the underlying (thermodynamic) equilibrium
states reveals that the SHS model undergoes a percolation
transition, where mechanically stable configurations can be
achieved also at very low volume fraction. The competition
between percolation on one hand and phase separation on the
other hand [23] gives rise to rich physical behavior with a
strong impact on rheology and mechanics. If adopted from a
granular perspective, SHS facilitates a new and interesting
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view on static and dynamic properties of loose cohesive
granular materials. A unique feature of Baxter’s SHS is
the possibility to parametrically sweep through completely
different microstructures which have identical packing fraction
but different coordination numbers. The appeal of investigating
SHS as initial states for cohesive granular assemblies is also
enhanced by the analytical progress which has been made
to evaluate thermodynamic properties [24]. At the level of the
Percus-Yevick (PY) approximation, configurational properties
of the initial state, such as pair correlations or percolation
loci, are known exactly. This is useful despite well-known
limitations of PY in predicting the phase diagram of an SHS
fluid [23]. As mentioned in [25], the PY approximation does
“remarkably well” for the coordination number as the key
microstructural descriptor of granular systems.

It is the aim of the present paper to exploit the properties
of SHS assemblies to discuss the influence of volume fraction
φ and coordination number zc on the elasticity and strength
of loose and cohesive granular materials. We use discrete
element simulations (PFC3D, Itasca [26]) and focus on the
quasistatic (uniaxial) compression in the absence of gravity.
The elastic modulus and failure strength are shown to be
universal functions of the initial cohesive contact density,
which we define by νc := zcφ following the nomenclature
in [27,28]. On the other hand, plastic effects are shown to
be independent of the initial conditions. We believe that our
simulations help to pinpoint the unifying aspects of mechanics,
failure, and rheology of heterogeneous, foamlike, granular, and
soft matter [29,30].

II. SPHERE ASSEMBLIES: INITIAL STATES

A. Sticky hard spheres

The SHS model is defined by a classical fluid of monodis-
perse hard spheres with diameter d interacting via a pair
potential

V (r)

kBT
=

⎧⎨
⎩

∞, r < d

ln[12τδ/(d + δ)], d < r < d + δ

0, r > d + δ

. (1)

The model is defined in the limit δ → 0 in which the finite
range attraction tends to a contact adhesion controlled by the
stickiness parameter τ . In this athermal limit, τ effectively
takes the meaning of the temperature such that high values of
τ correspond to low adhesion strengths, and nonsticky, hard
spheres must be recovered by τ → ∞.

B. Microstructure and coordination number

Thermodynamic and configurational properties of SHS can
be investigated within the Percus-Yevick approximation [24],
giving rise to closed form expressions in terms of φ and τ .
Despite well known shortcomings [23], we are guided by PY
to illustrate those SHS microstructures which can be used as
meaningful initial states for a cohesive granular material.

To motivate the choice of simulation parameters, we
show an overview of the PY phase diagram in the φ − τ

plane in Fig. 1 together with the coexistence line and the
critical point of the underlying liquid-gas transition. The
SHS system exhibits rich microstructural variability above
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FIG. 1. Schematic of the SHS phase diagram in the φ,τ plane
together with PY results and the choice of the simulation points.

the coexistence line τcoex(φ), where the attractive forces lead
to a percolation transition in the high-temperature region. The
percolation transition is reflected by the behavior of the average
coordination number of SHS, which is well described by PY
[25]. For a given packing fraction φ and adhesion τ , the PY
coordination number zPY

c is given by

zPY
c (φ,τ ) = 2φ λ(φ,τ ), (2)

where λ is the smallest solution of the quadratic equation

φ

12
λ2 −

(
τ + φ

1 − φ

)
λ + 1 + φ/2

(1 − φ)2
= 0 . (3)

A contour plot of the average coordination number is added
in Fig. 1. This indicates that the locus of the percolation
points τperc(φ) in the φ − τ plane, originally identified with
the divergence of the mean cluster size [22], corresponds to
zPY

c = 2, as a mean-field condition of minimum connectivity.
In the region between τperc(φ) and τcoex(φ) the system is

in a gel state in which the competition between percolation
and phase separation dictates the configurational properties of
SHS [23]. In this region the system exhibits both topological
clustering by increasing connectedness (percolation transition)
and Euclidean clustering by increasing density fluctuations
(first-order transition). The existence of a macroscopic cluster
justifies the interpretation of the system as a cohesive solid, if
(cemented) bonds are introduced between particles in contact.
For the discrete element method (DEM) simulations below, we
chose the black dots in Fig. 1 to cover a significant variation in
model parameters φ and τ . We stress that the original, singular-
adhesive pair interactions of SHS from Eq. (1) only serve as
an auxiliary means to generate initial sphere configurations
in which new pair interactions are introduced for the DEM
simulations.

C. Monte Carlo simulations of SHS

The implementation in [31] is used to generate the initial
configurations of the SHS ensemble. The Monte Carlo simu-
lation algorithm in [31] is a generalization of the algorithm of
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FIG. 2. Geometry and contact network for a volume fraction φ0 = 0.25 and two values of stickiness τ = 0.1 and τ = 0.25.

[32,33] to multisize sticky spheres. In this implementation,
the Metropolis shuffling scheme [34] is used to create an
initial realization of randomly distributed spheres. This initial
configuration then undergoes a number of passes to form and
break bonds among particles to reach an SHS equilibrium
state. Only transitions among four binding states of unbonded
(α = 0), single bond (α = 1), double bond (α = 2), and triple
bond (α = 3) are considered. The transitions among states are
driven by transition probabilities, which are proportional to
the effective volumes V α

eff associated with the binding state α.
The effective volume is assigned to each state following the
Kranendonk-Frenkel algorithm [33], as a measure of all the
degrees of freedom of a test particle k after making a α bond,
which is inversely related to the stickiness parameter τ through
a multiplicative factor of (d/12τ )α , where d is the diameter
of the sphere. The total effective volume for the binding state
α of a particle k is simply the summation of all the partial
effective volumes of all possible combinations of particle k

and other particles that can form a α bond. The trial transition
of particles is carried for each sphere in the ensemble one
by one in every Monte Carlo simulation cycle. If the particle
is currently in contact with more than three spheres or its
transition location to be determined turns out overlapping with

one of the other spheres in the system, no displacement will be
made. To find the transition location, we first choose a binding
state for the test particle, disregarding what current binding
state it is in. We then select a specific particle combination to
form the binding state other than being unbonded. This can
be a candidate particle, or pair, or triplets to form a single,
double, or triple bond, respectively, and the final step is to
determine an exact location to place the test particle. This can
be done by choosing the position of the test particle center
on the spherical surface of radius d centered at the candidate
particle to form a single bond, or selecting the center location
of the test particle on the circle that can form a double bond
with the candidate pair, or to choose between above or under
the surface defined by the centers of the candidate triplets in the
case of a triple bond. All possible choices are equally treated
in these three steps. If the next state is chosen to be unbonded,
the particle is then equal-probably transited to any location
in the simulation volume subject to nonoverlap. These steps
are repeated for each particle in the simulation system before
moving to a new pass. Whenever a trial move is successful,
the effective volumes that are affected must be recomputed,
making an impact to succeeding transitions [31]. Periodic
boundary conditions are assumed in the transitions to alleviate
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finite volume artifacts. A similar Monte Carlo procedure is
employed in [23], which also incorporates between passes
steps of particle insertion and removal, cluster translation,
and parallel replica exchange to accelerate the convergence
to equilibrium.

Two examples of initial states for two different values
of τ are given in Fig. 2. For the present Monte Carlo
implementation of SHS, Fig. 3 indicates the accuracy of the
PY approximation for the coordination number [Eq. (2)] in
accordance with [25].

III. DISCRETE ELEMENT SIMULATIONS

Formulation of the model

Overview. We use the commercial software PFC3D v5 by
Itasca [26], which implements the original discrete element
method described in [35]. We simulate the confined uniaxial
compression of a cohesive granular assembly of particles
inside a cubic box of unit side length. The simulations are
performed in the absence of gravity. Hence, a relatively high
particle density ρ = 10 000 kg/m3 (about that of silver) was
chosen to improve the computational time since the time step
is proportional to

√
ρ.

Initial conditions. The initial position and size of the
particles are taken from the Monte Carlo procedure for
different values of the volume fraction φ and stickiness τ . Note
that the SHS configuration yields particles which are exactly at
contact, which automatically leads to a mechanical equilibrium
state in the absence of external loading for any new interaction
force which is zero at contact. For each combination of (φ,
τ ), simulations are conducted for three different realizations
of initial configurations. The simulations were performed with
N = 2048 particles, a number which was shown sufficient
to avoid finite size effects. In addition, we verified that with
N = 2048, the number of three realizations was sufficient as
the system is already self-averaging (see Sec. IV D about finite
size effects). Note that the radius of the particles is directly

TABLE I. Mechanical parameters used in the simulations for the
parallel bond model: Eu contact elastic modulus, νu contact Poisson’s
ratio, μu contact intergranular friction, eu contact normal restitution
coefficient, Eb bond elastic modulus, νb the bond Poisson’s ratio, σs

bond shear strength, σt bond tensile strength, rb bond radius, and r

particle radius.

Unbonded part (linear model)
Eu (MPa) νu μu eu

10 0.3 0.2 0.1
Bonded part
Eb (MPa) νb σs (MPa) σt (MPa) rb

10 0.3 1 1 0.5r

determined by the volume fraction φ and number of particles
N in a box of unit size.

Boundary conditions. The granular samples were placed
between two horizontal rigid walls of unit side length. The
bottom wall is fixed while the top wall is translated at a fixed
velocity vw = −0.01 m/s. As will be shown, this velocity is
small enough to consider the simulated mechanical behavior
as quasistatic and independent of vw. Periodic boundary
conditions were applied on the lateral walls. Hence, if a particle
centroid falls outside of the model domain, it is translated back
to the opposite side of the model.

Contact law. We used as cohesive contact law the PFC
parallel bond model [36] also described in [37]. The bonded
part acts in parallel to the classical linear contact law [4,5].

For the unbonded, linear component [Fig. 4(a), in gray],
the normal force is the sum of a linear elastic and of a viscous
term (spring-dashpot model), and the shear force is linear
elastic with a Coulombian friction threshold. The mechanical
parameters of this unbonded part of the model, namely,
the contact elastic modulus Eu and Poisson’s ratio νu, the
restitution coefficient eu (viscous parameter), and the friction
coefficient μu are summarized in Table I. The value of the
elastic modulus Eu was chosen in such a way that the normal
interpenetration at contacts are kept small, i.e., to work in the
quasirigid grain limit [2,38] for the initial compression stage
which we are interested in. However, this assumption does not
stand during jamming (not studied here) due to extremely high
normal forces. Concerning the normal restitution coefficient
eu, we checked that the results presented below (macroscopic
elastic modulus and strength) are uninfluenced by eu (in the
range 0.1–0.9). This is due to the presence of the cohesive part
of the contact law (see details below). Indeed, the restitution
coefficient might have a strong influence for cases in which
new contacts and collisions occur. In our case, the results are
mostly driven by bond breaking, which explains why e has no
influence on the results. However, the dense packing regime
(jamming) which was not studied here might be influenced by
the restitution coefficient.

The bonded part [Fig. 4(a), in black] can be viewed as a
cement joint with constant elastic modulus and Poisson’s ratio
Eb and νb acting at the contact. The bond failure behavior
is characterized by its shear and tensile strength σs and σt.
The maximum shear and tensile stresses σmax and τmax are
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FIG. 4. Representation of the PFC parallel bond model used in the simulations. The bonded part is represented in black while the unbonded
part is represented in gray. (b) Bond normal force Nb as a function of the normal interpenetration δn scaled by the bond radius rb. (c) Bond
shear force ||Sb|| as a function of tangential interpenetration δs scaled by the bond radius rb. (d) Bond-bending moment ||Mb,1|| as a function
of bending rotation θ1 scaled by the bond radius rb. (e) Twisting moment ||Mb,2|| as a function of twist rotation θ2 scaled by the bond radius rb.

calculated via beam theory [39] as follows:

σt,max = −Nb

A
+ ||Mb,1||rb

I
, (4)

σs,max = ||Sb||
A

+ ||Mb,2||rb

J
, (5)

with Nb and Sb, the normal and shear forces in the bond, Mb,1

the bending moment, Mb,2 the twisting moment, rb the bond
radius, A = πr2

b the area of the bond, I = πr4
b /4 the moment

of inertia of the bond cross section, and J = πr4
b /2 its the

polar moment of inertia. The bond fails if σt,max � σt or if
σs,max � σs (Fig. 4). If the bond fails in tension, the normal and
shear forces are set to zero. If the bond fails in shear, the contact
forces might not be altered but, only if the shear force does not
exceed the friction limit and if the contact is in compression.
The values of the mechanical properties used for the bonded
part of the parallel bond model are given in Table I. Note that
from the SHS equilibrium states, bonded contacts are created
initially if the gap between particles is smaller than 1.5% of
the particle diameter. Bonds were only introduced before the
beginning of the simulation, and no new bonds were created
during the simulations. Finally, as outlined in [40], our bond
implementation, including bending, is similar to the effect of a
rolling resistance (rolling friction coefficient) or particle shape
and allows prevention of unphysical particle rotation.

Time stepping and elastic waves. The time step of the
simulations was computed from particle properties according
to �t = √

m/k ≈ r
√

ρ/E, where m, ρ, and r are the grain
mass, density, and radius, and k and E the contact or bond
stiffness and elastic modulus, respectively. The choice of
this time step guarantees the algorithm stability [26,41]. The
magnitude of the elastic wave’s celerity is ce ≈ √

E/ρ ≈
30 m/s � vw, ensuring the quasistatic assumption.

IV. MECHANICAL PROPERTIES OF COHESIVE SHS
ASSEMBLIES

A. Uniaxial compression

For an illustration of the generic behavior, Figs. 5 and 6
show examples for the evolution of the the compressive stress
σzz and cohesive coordination number zc with increasing axial
deformation εzz for different initial conditions (volume fraction
φ and stickiness τ ). For low deformations, σzz increases
almost linearly with εzz. During this initial phase, the number
of cohesive contacts is constant and we refer to it as a
quasielastic regime. This regime is characterized by a tangent
modulus E, which is defined as the average slope in the
σzz − εzz plane for which zc = zc,0 (no broken bonds). Due
to the periodic boundary conditions, we expect this modulus
to be in between the Young’s modulus (obtained under
unconfined compression) and the P-wave modulus (obtained
under confined compression). For simplicity E is referred
to as the elastic modulus henceforth. Note that the initial
coordination number predicted by PY can be slightly different
than that obtained with one realization of the SHS model,
in particular, with low stickinesses (close to the coexistence
line) as shown in Figs. 4(b) and 5(b). After the quasielastic
regime, a sudden drop of σzz is observed corresponding to
the failure. The failure corresponds to a small drop in the
number of cohesive contacts, generally lower than 5% of the
total number of cohesive contacts. The compressive stress at
failure corresponding to the stress peak after the elastic phase
is called the compressive strength σc. After the failure and for
εzz � 0.5, the stress gradually increases with deformation but
is subject to fluctuations and sudden stress drops corresponding
to consecutive bond failure events. For large deformations
(εzz � 0.5), σzz increases strongly with εzz in association with
a strong decrease of the number of cohesive contacts.
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FIG. 5. (a) Compressive stress σzz vs axial deformation εzz for φ0 = 0.3 and for one realization of the initial state. (b) Cohesive coordination
number zc vs axial deformation for φ0 = 0.3 and for one realization of the initial state. The dotted lines correspond to the PY approximation
for the initial state.

Overall, the compressive stress σzz, elastic modulus E, and
compressive strength σc are increasing with increasing initial
volume fraction φ0 and decreasing with increasing stickiness
τ . As a consequence [Fig. 1 and Eq. (2)], the latter quantities
(σzz, E, σc) are increasing with the initial cohesive coordination
number zc and thus with the initial cohesive contact density
νc,0 = φ0zc,0.

Although the macroscopic loading mode is compression,
the introduction of cohesion and the loose character of the
samples leads to large tensile and shear stresses in bonds, as
shown in Fig. 7. The bonds are failing mostly due to tension
or bending [Eq. (4)] rather than shear or twisting [Eq. (5)].
Compressive stresses only appear for very high deformation
(εzz � 0.4) and thus high volume fractions.

B. Elastic modulus

We have analyzed the elastic modulus from the initial
slope of the stress-strain curve and plotted it as a function
of coordination number and contact density. The results are
shown in Fig. 8. As predicted qualitatively in Sec. IV A, the
elastic modulus increases with increasing cohesive coordina-
tion number zc,0 and with increasing volume fraction φ0. When
plotted against the contact density νc,0 = φ0zc,0, all data points
collapse on the same master curve that can be well described
by a power law. By fitting the data, we obtain the regression

Efit(νc)

Eb
= aνμ

c , a = 1.92 × 10−3 , μ = 4.91, (6)
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PY approximation for the initial state.
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for the modulus of SHS-based cohesive assemblies. This leads
to μ ≈ 4.9. To validate Eq. (6), we performed a detailed
parametric study (in the Appendix) of the effect of the bond
elastic modulus Eb on the macroscopic modulus E, which
confirms the linear relationship between E and Eb.

C. Compressive failure

In the simulations, the compressive strength increases with
both cohesive coordination number zc,0 and the initial volume
fraction φ0 [Fig. 8(b)]. Similar to the elastic modulus, when
plotted against the cohesive contact density νc,0 = φ0zc,0, all σc

data points collapse on the same curve, which is best described

by a power law. By fitting the data we obtain the regression

σc,fit(νc)

σt
= bνα

c , b = 4.1 × 10−3, α = 3.04, (7)

for the compressive strength of SHS-based cohesive assem-
blies. Similar to the elastic modulus, we also confirmed (in
the Appendix) that the macroscopic compressive strength σc

depended linearly on the bond tensile strength σt.

D. Finite size effects

Before turning to the intermediate stage of compression,
we provide some confidence that the scaling behavior found
in Fig. 8 is not dominated by finite size effects. For a
typical pair of values (φ = 0.3, τ = 0.13) (black square
in Fig. 1) we have conducted simulations for different
system sizes (total number N of spheres). We plotted the
ratio E(νc,N )/Efit(νc) and σc(νc,N )/σc,fit(νc) for different
N = 256, 512, 1024, 2048, 4096, 8092 in Fig. 9. Even
though improved estimates would have been possible by
choosing N = 4096, our choice of N = 2048 is reasonable
and corresponds to a tradeoff between numerical effort and
accuracy.

E. Plastic consolidation

After the initial elastic regime (σzz < σc), the system turns
to the intermediate stage of compression, which is generally
characterized by the plastic consolidation curve describing
irreversible compaction for an increasing stress [8,12]. It
is shown in Fig. 10 for different initial stickinesses and
volume fractions. The plastic consolidation curve has the
same characteristics as those reported in [12]. For σzz > σc,
irreversible plastic effects begin and we observe an almost
logarithmic decrease of 1/φ. In this regime, volume fraction
is related to the compressive stress according to

1

φ
= 1

φc
− λ ln

σzz

σc

, (8)
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where φc = φ(σc) is the volume fraction of the system when
the compressive stress σzz meets the compressive strength σc.
The parameter λ is often called the plasticity index. We observe
that the plasticity index is almost independent of the initial
conditions (φ0, τ ) and that λ ≈ 0.5. The parameters φ(σc) and
σc, on the other hand, depend on the initial conditions as shown
in Secs. IV B and IV C.

V. DISCUSSION

A. Deformation regimes in SHS-based cohesive materials

Similar to [12], the deformation of the SHS-based cohesive
materials undergoes three characteristic stages with different
mechanical behaviors.

First, for small deformations, no plastic (i.e., irreversible)
effects occur and the samples behave like elastic solids.
The elastic modulus scales with the initial contact density
νc,0 = φ0zc,0 according to a power law with exponent 4.9,

independent of the bond size [cf. sensitivity analysis in the
Appendix, Fig. 13(a)]. This corroborates the results of [12],
who highlighted a substantial increase of the elastic modulus
with density and coordination number. This increase cannot
be explained by classical theories [42] predicting a linear
dependency of the elastic modulus with contact density.
The previous models well reproduce the elastic behavior of
cohesionless granular materials [12] for which the load is
mostly carried by compressive and tangential contact forces.
However, as shown in Fig. 7, cohesive systems mostly
involve tensile and tangential force distributions in bonds,
which is not accounted for in previously mentioned theories.
Furthermore, note that in contrast to [12], the procedure to
generate our samples based on the SHS prevents both inertial
effects in the initial stage of compression and effects of the
granular temperature on the initial coordination number, since
the samples have initially no kinetic energy and the initial
coordination number is prescribed [Eq. (2)].

Second, after this elastic regime, a small number of bonds
starts to break before the macroscopic plastic collapse of
the samples. This collapse is characterized by a drop of the
compressive stress σzz (Figs. 5 and 6). The value of σzz

corresponding to this macroscopic failure is the compressive
strength σc of the sample. Similar to the elastic modulus,
we showed that σc scales with the initial contact density
according to a power law with an exponent close to 3, also
independent of the bond radius [cf. sensitivity analysis in
the Appendix, Fig. 13(b)]. As both the elastic modulus and
compressive strength increase with increasing contact density
νc,0, the amount of elastic deformation decreases with νc,0.
After the macroscopic failure, the samples undergo a plastic
consolidation regime [12]. This regime is characterized by the
plasticity index λ. In contrast with E and σc, the plasticity
index is independent of the initial conditions, i.e., the initial
coordination number zc,0 and volume fraction φ0. This result
is in line with the findings of [12], although the value of the
plasticity index we find (λ ≈ 0.5) is higher than that of [12]
(λ < 0.35). This discrepancy is certainly due to the difference
of contact law used in the simulations. Our contact law does
not allow for new cohesive contacts to be formed, in contrast
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to [12] for which new contacts can adhere. Hence, more
plastic effects are expected in our case and thus a higher value
of λ. During this phase, the bond normal and shear stress
distributions [Eqs. (4) and (5)] widen as axial deformation
increases (Fig. 7). The normal stress is essentially in tension,
which is the main mode of failure of cohesive bonds. Indeed,
shear stresses in the bonds are approximately 50% lower than
tensile ones. This result confirms the findings of [12], which
argued that the deformation of loose systems was mostly
controlled by the bending of thin arms which connect denser
zones moving like rigid bodies. The plastic consolidation
regime is commonly discussed as the plateau region in
collapsible, cellular materials where strain localization and the
propagation of crushing bands are predicted [43] if the degree
of structural heterogeneity is sufficiently small. We did not
observe these features for our low-density SHS assemblies;
a systematic analysis is, however, beyond the scope of the
present work.

Finally, after the latter plastic consolidation regime, the
onset of jamming occurs and the compressive stress increases
strongly while the volume fraction and axial deformation
slightly increase. The granular material becomes extremely
rigid and the mechanical behavior is independent of the initial
conditions. In this regime, the few remaining bonds have stress
states not only in tension but also in compression, as shown in
Fig. 7 for an axial deformation εzz = 0.7. Note that we did not
intend to analyze the details of the jamming transitions as we
are mainly interested in the two first regimes of deformation.
In particular, for this very high pressure regime, the quasirigid
assumption of our particles is no longer relevant. In addition,
the monodisperse size distribution associated with the SHS
generation method induces crystallization effects.

Our analysis of loose and cohesive granular materi-
als under uniaxial compression represents a first step to-
wards a more complete characterization under mixed stress
states (shear and compression). This will allow in the fu-
ture to evidence the influence of contact density on the
yield surface and make a connection to critical state soil
mechanics [8,44,45].

B. The role of contact density and scaling exponents

Granular materials are commonly analyzed in terms of
volume fraction and coordination number as key microstruc-
tural descriptors. In quasirigid, bonded sphere assemblies the
scaling of E and σc cannot be determined by volume fraction
alone since the elastic response is predominantly caused by the
cohesive bonds and their spatial distribution. This is reflected
by classical considerations from the engineering literature,
where under the assumption of an affine deformation field,
macroscopic strains can be translated directly to the strains in
the cohesive bonds. This implies that the elastic modulus E,
which has dimensions of strain energy per unit volume, should
scale linearly with the the number of bonds per unit volume,
i.e., with the contact density νc = zcφ via

E ≈ νμ
c (9)

with μ = 1, which is exactly the classical result of Walton [42].
The relevance of contact density νc was recently confirmed by
[18] and [7], which showed a significant influence on the elastic

moduli. In particular, [18] suggested that νc should be used as
indicator of the internal state of granular packings. However
our initial states bear spatial fluctuations in both particle
volume fraction and the coordination number of cohesive
bonds, leading to strong deviations from the prediction μ = 1
for a perfectly homogeneous configuration. The presence
of heterogeneities is also reflected by the stress distribution
(Fig. 7), which is far from being sharply peaked for all SHS
parameters. Spatial fluctuations of the mechanically active
units (cohesive bonds) induce heterogeneities in the strain
field [46], and deviations from Eq. (9) with μ = 1 should
be expected.

Similar arguments apply when the system fails macroscop-
ically. Under the assumption of an affine deformation field,
bond failure directly dictates the macroscopic behavior. This
is captured by the Rumpf model [47], which can be recast into
a scaling with contact density according to

σc ≈ να
c (10)

with α = 1, as the analog of Eq. (9) for the compressive
strength, again oversimplifying the observed behavior.

To discuss the value of the observed exponents μ,α it is
natural to consider related nongranular systems. The scaling
(Fig. 8) is expected to originate from the underlying structural
transitions, namely, percolation and phase separation, which
dominate the structure of SHS similar to short-range attractive
colloids [23,48]. The existence of a percolation transition [22]
in the Baxter model would suggest a scaling E ≈ (φ − φcrit)μ

in the vicinity of the percolation line τperc in Fig. 1. The
careful analysis of the SHS phase diagram [25], however,
shows the poor performance of PY for the percolation and
coexistence line. Thus the precise position of our initial states
(chosen according to PY, Fig. 1) in the true phase diagram
is difficult to assess. Combining both dependencies of the
moduli shown in Fig. 8, our results would imply a power
law E ≈ φ4.9

0 and σc ≈ φ3
0 if regarded only as a function

of initial volume fraction φ0. It is often observed [49] that
gelling systems with short-range attractions exhibit power-law
behavior E ≈ φμ of the elastic moduli, even without reference
to the onset of rigidity φcrit. The elastic exponent commonly
varies between 3 < μ < 5 [49], consistent with our finding
μ ≈ 4.9. Numerous scaling arguments have been proposed
for the elasticity exponent in gelling systems in the previous
decades. The value of μ thereby reflects the connectivity of
the percolating cluster and details of the pair interactions
(or contact law) [50]. The cubic dependence of the elastic
modulus of individual samples on the bond radius rb (cf.
sensitivity analysis in the Appendix, Fig. 11) reflects the
primary influence of the bond-bending term in the interaction
law [Eq. (4)]. The observed exponents are independent of
rb, at least in the range of bond radii considered in the
sensitivity analysis (Fig. 13). Recent work [51] shows that
it is experimentally feasible to fine tune bond parameters via
“crosslinking” of glass beads. For these systems, elasticity and
failure under uniaxial compression is mainly controlled by
bond properties, even for higher volume fractions. We expect
that the scaling of the mechanical properties with contact
density observed in the present study is likely a robust feature
and may be found for other assembling methods as well.
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The value of the strength exponent α is typically smaller
than μ [49], also consistent with our findings. The failure point
can be inferred from the limit of linearity for the strain (see
Ref. [49], and references therein) which separates reversible
from irreversible deformations. We checked that our moduli
E and σc are estimated in a stage where compressive strains
are reversible (up to a few percent).

VI. CONCLUSIONS

Three-dimensional uniaxial compression simulations of
loose and cohesive granular assemblies were performed using
the discrete element method (DEM). Initial configurations
were obtained from Baxter’s sticky hard spheres (SHS) model,
which allows one to achieve mechanically rigid configurations
at very low volume fractions. A unique feature of the SHS
model is to generate initial states with different microstructures
for identical volume fractions φ but with different coordination
numbers zc, offering two independent controls on the contact
density zcφ as the key quantity.

In the DEM simulations, samples undergo three deforma-
tion regimes: (i) the quasielastic regime for low deformations
and pressures, for which almost no bond-breaking events
occur; (ii) the plastic consolidation regime; and (iii) the dense
packing regime corresponding to the jamming transition. We
mainly focused on the analysis of the initial elastic modulus E

and compressive failure strength σc. Our results highlight the
universal control of the cohesive contact density νc = zcφ on
the mechanics in regime (i), where E and σc follow a power
law as a function of νc. On the other hand, the plasticity index
λ, characterizing the plastic consolidation curve after failure
in regime (ii), is independent of the initial conditions.

We believe that other assembling procedures would come to
a similar scaling picture with different exponents which reflect
the connectivity of the initial, mechanically active backbone.
One advantage of using SHS is its wide use, which allows one
to compare the mechanics of cohesive granular assemblies with
other heterogeneous materials. Another advantage is avail-
able analytical approximations, e.g., for the pair correlation
function which allows mapping of (bi-)continuous two-phase
materials onto discrete SHS sphere assemblies by matching
correlation functions from x-ray tomography via parameter

optimization (radius, stickiness, or contact density) [52].
Accordingly, our procedure of SHS-based generation of DEM
initial states opens new perspectives for the understanding and
mechanical modeling of other loose and cohesive materials,
such as snow, rocks, soils, cement, asphalts, etc., with potential
applications in natural hazards and engineering.
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APPENDIX: SENSITIVITY ANALYSIS OF CONTACT LAW
PROPERTIES

A detailed analysis of the influence of contact model
parameters on the elastic modulus and the compressive
strength was performed. This analysis was performed for
φ0 = 0.3 and τ = 0.13 (black square in Fig. 1), i.e., the same
initial state as for the finite size effect analysis.

1. Elastic modulus E

The macroscopic elastic modulus E increases linearly
with increasing bond and contact elastic moduli Eb and Eu

[Fig. 11(a)]. In addition, the elastic modulus E increases with
increasing bond and contact Poisson’s ratio νb and νu for νb =
νu < 0.3 [Fig. 11(b)]. For νb = νu � 0.3 the macroscopic
elastic modulus is uninfluenced by the microscopic Poisson’s
ratio. The bond radius rb has a significant influence on the
macroscopic elastic modulus E which increases with ∼r3

b
[Fig. 11(c)].

2. Compressive strength σc

Similar to the elastic modulus, the compressive strength σc

increases almost linearly with increasing tensile strength of
the bond σt [Fig. 12(a)]. Note that no failure was observed for
εzz < 0.5 for bond tensile strengths higher than 7 Mpa. The
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FIG. 11. Dependence of the elastic modulus E with (a) the bond and contact elastic moduli Eb and Eu for Eb = Eu; (b) the bond and
contact Poisson’s ratio νb and νu for νb = νu; and (c) the bond relative radius rb/rp. The simulations were performed for φ0 = 0.3 and τ = 0.13.
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FIG. 12. Dependence of the compressive strength σc with (a) the bond tensile strength σt; (b) the ratio between tensile and shear strengths
of the bond σt/σs; and (c) the bond relative radius rb/rp. The simulations were performed for φ0 = 0.3 and τ = 0.13.

simulations presented in the main text were performed for a
ratio of tensile to shear strength σt/σs = 1. The effect of σt/σs

is shown in Fig. 12(b). The macroscopic compressive strength
σc decreases with increasing σt/σs. For σt/σs � 2, the failure
occurs mostly because of tensile failure in bonds, while for
σt/σs � 2, the failure occurs due to shear and tensile failure
of the bonds. In line with the effect of the bond radius rb on
E, the macroscopic compressive strength σc increases with
∼r3

b .

3. Scaling laws

Finally, the effect of bond-bending forces on the two
scaling laws obtained for the elastic modulus E [Eq. (7)] and

compressive strength σc [Eq. (9)] was studied. The bond radius
was thus modified for four simulation points with different
initial volume fraction φ0 and stickinesses τ . Figure 13 shows
the result of this analysis. Each point represents the average
value of three different realizations of the initial state. The
analysis reveals that the existence of a power-law relationship
and the power-law exponent does not depend on rb/rp and
is thus independent of the intensity of bond-bending forces,
which strongly depend on rb [Eqs. (4) and (5)]. Hence, our
results apply to any bonded granular material. Note that DEM
simulations performed to study the effect of contact density on
the compressive strength for rb/rp = 0.25 were carried out for
high values of the initial contact densities νc,0 because failure
was not observed at low νc,0 [Fig. 13(b)].
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