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A B S T R A C T

Railway timetabling is a major challenge in the operation of railway. The timetable of a railway determines
times, orders and routes of trains on the network and thereby defines the performance of the entire railway
system. Railway operators are keen to maximize the economic performance of their railway system, such that
timetables should be designed taking into account service requirements that result in a performant railway
system In this work, we address a specific subdomain of timetabling, focusing on short-term tactical changes
for already existing timetables, modeled with microscopic detail. With a Benders decomposition we propose
an approach on this specific microscopic timetabling problem. In the decomposition, we consider quality and
optimality of a timetable separately from the feasibility of a timetable. Quality is determined in a set covering
problem and feasibility in a mixed-integer scheduling problem. With efficient heuristics on the problem of set
covering in our decomposition, high quality solution for the resulting timetables are provided in short time,
which enables an interactive design of adapted timetables. The novel approach provides heuristic solutions up
to ∼ 20 times faster than standard approaches by commercial solvers, with an average gap of ∼ 7.5% in the
optimality of solutions. Extensive experiments empirically confirm the benefits of the new approach.
1. Introduction

Railway timetabling is the problem of designing a timetable for
the operation of a railway system. The timetable for a railway system
defines departure, passing and arrival times for all trains on all points
in the network and thereby sets the performance of the entire system;
the importance of a good design for a timetable is crucial. With a well
designed timetable, railway operators are able to explore the economic
potential of available resources in the railway system and guarantee the
profitability of the railway company.

Railway operators are keen to automate the process of railway
timetabling. With the automation, a more global and comprehensive
view on the timetabling problem is possible, in comparison to the hu-
man planners of nowadays, such that novel timetables further increase
the performance of railways. Recent advances in academia (Borndörfer
et al., 2017) show promising results, leading to railway timetables of
higher performance (e.g., 6% more punctual trains and 9% less trains
with delays over 15 min compared to current practices in Lamorgese
et al. (2016) for automated timetabling in real-time rescheduling).

In this paper we address a specific variant of the problem of railway
timetabling, where short-term tactical changes are required, starting
from an already established and planned timetable. Such short-term
changes may be, e.g., extra passenger trains for large public events
or freight trains for a temporary increase of freight capacity. When
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automating the solution of this tactical, short term problem, compu-
tational time should be within few minutes. Such a fast solution time
enables a human-interactive design of the final timetable.

In the timetabling problem addressed in this paper, precise times
of arrivals, departures and passings for railway services along mul-
tiple railway lines are to be determined. Differently from many ap-
proaches, we consider a tactical scale, by which an established refer-
ence timetable already exists, and a solution has to be found relatively
quickly.

The input to our timetabling problem is thus a mix of information
about planned trains in an existent reference timetable; and information
about new trains to be additionally included in the actual timetable.
The incremental scheduling problem is sometimes solved with the
existing traffic being totally fixed (Cacchiani et al., 2010). Instead, our
industrial partner considers the already scheduled traffic available for
minor deviations, as follows. The input to our timetabling problem
is just a rough timetable for the entire set of trains (existing and
additional). The events related to service quality, e.g., arrival and
departure times or connections, are specified with a limited specified
amount of freedom, i.e., a limiting time window.

In such way and with the objective to minimize deviations from
these limiting time windows we compute an extended timetable, similar
to the original reference timetable, but with enough flexibility to
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efficiently incorporate any additional required services. A solution to
our timetabling problem has microscopic detail and provides exact in-
formation on infrastructure usage (usage of routes, conflicts for limited
infrastructure resources). Due to the tactical scope, a solution should
be found relatively fast, because many other operational processes are
directly depending on the result, which might be implemented just a
few hours later. The result is a detailed timetable that is operationally
feasible.

We consider a high level of detail (microscopic) by considering
constraints at the level of each infrastructure element, as well as routing
flexibility. We decompose the formulation of timetabling by a Benders
decomposition (Geoffrion, 1972) using the combinatorial Benders cuts
of Codato and Fischetti (2006). In our Benders decomposition, the
master problem is a set covering problem and the subproblem is a
timetabling problem, where feasibility must be evaluated. We propose
multiple near-optimal heuristic approaches for the master problem,
i.e., a set covering problem, and particularly exploit the fact that in the
scheme of Benders decomposition the master is growing incrementally
in constraints, over the iterations of the Benders scheme. Our novel
approach proves to be an efficient complement and alternative to
existing approaches, for the specific variant of the timetabling prob-
lem, computation requirements, and the instances considered. The key
added value of the novel approach is the improved efficiency and thus
scalability, contributing towards the gap between academia and large
scale practical applications. Moreover, due to its fast computing time,
the approach can effectively enable an interactive design of adapted
timetables for planners in the railway industry.

This paper is structured as following. In Section 2 we review related
literature and state the contribution of this work. In Section 3 we
describe the specific timetabling problem we are dealing with, and
we model it by a disjunctive formulation in Section 4. We propose a
Benders decomposition for the timetabling problem in Section 5. In
Section 6 we introduce multiple approaches to the set covering problem
including a novel set of heuristics, designed for a set covering problem
that is incrementally growing in constraints. Exhaustive experiments
in Section 7 empirically confirm the strength of our novel heuristic
approach compared to several existing benchmarks. We conclude in
Section 8.

2. Related work

In this paper, we deal with a microscopic variant of the timetabling
problem; this has much similarity with railway timetabling problems
of the literature, but also with railway rescheduling, i.e., the real-time
adjustment of railway timetables to a delayed situation. We comprehen-
sively name those two problems as railway scheduling. In this section
we provide a brief overview of the literature on the topics of scheduling
and decomposition in railways to position our work in the existing
literature. We conclude this section with the contributions of this work.

2.1. Railway scheduling

In railway scheduling, we may classify models by four major as-
pects: granularity of infrastructure, representation of time, inclusion of
routing and periodicity.

In the literature, we find two main classes of infrastructure models.
Macroscopic models, i.e., coarse granular models, abstract the rail-
way network into nodes and lines (e.g., Veelenturf et al. (2016) and
Dollevoet et al. (2017)). Microscopic models, i.e., fine granular models,
consider the infrastructure at the level of the safety systems, divided
into blocks of railway track, few hundred meters long (e.g., Corman
et al. (2014), Pellegrini et al. (2015) and Samà et al. (2017)). Only
microscopic models can represent conflict free movements and rout-
ing of trains over the network. Those have been mostly applied for
2

rescheduling.
The times of operations, which are to be scheduled, can either
be modeled in discrete form, i.e., by discrete variables (e.g., Caimi
et al. (2012)), or in continuous form, i.e., by continuous variables
(e.g., D’Ariano et al. (2007)).

In microscopic models, routing of trains may be considered. The
routing has a strong influence on the complexity of scheduling prob-
lems, such that problems including routing decisions for trains are in
general much more complex. Models of railway scheduling in general
consider routing decisions via additional variables of the problem
(e.g., Pellegrini et al. (2015)); models excluding routing decisions in
general consider the routes of trains as a given input to the model
(e.g., D’Ariano et al. (2007)).

Scheduling can be performed including constraints of periodicity
(e.g., Odijk (1996)). Including such constraints, the result is a periodic
schedule, which can repetitively be applied to the railway systems.
In this case the planning horizon of the scheduling problem can be
reduced to a single period and then rolled out over multiple periods to
create a timetable, e.g., for an entire day. While decreasing the planning
horizon, constraints of periodicity notably increase the complexity of
the scheduling problem.

The different models of railway scheduling are addressed by many
different methods throughout the literature. Extensive overviews of
methods are provided in Cacchiani et al. (2012) or Fan et al. (2012).
In general approaches can be differentiated by whether an optimal so-
lution is computed or a heuristic is used to find near-optimal solutions.
Heuristic approaches are in general a trade off between closeness to
optimality of a solution and computational time. A group of heuristics
in railway scheduling is based on rules, specific to the application
of railways, where it is iteratively decided on the variables of the
scheduling problem (e.g., First-Come-First-Served Fan et al. (2012),
Arc-Greedy Heuristics Pranzo et al. (2003)). Other heuristics in rail-
way scheduling are applications of heuristics in general mathematical
programming (e.g., Variable Neighborhood Search Samà et al., 2017,
Tabu-Search Corman et al., 2010 or Genetic-Algorithms Fan et al.,
2012). Further heuristics address elements of the scheduling problem
in different stages, e.g., trains in the order of priority (Herrigel et al.,
2013; Liu and Dessouky, 2017), or ordering decisions before routing
decisions (D’Ariano and Pranzo, 2008).

2.2. Decomposition

In the literature of railway scheduling numerous decomposition
approaches can be found. Decomposition approaches often show better
scalability than centralized (undecomposed) approaches, which makes
them an interesting class of approaches to tackle large-scale problems
of railway scheduling. A group of approaches (e.g., Corman et al.
(2014) and Lamorgese et al. (2016)) propose geographic decompo-
sitions, where the scheduling problem is decomposed based on the
geographic position of railway infrastructure. Other groups of ap-
proaches propose temporal (e.g., Luan et al. (2018)), entity (resource)
based (e.g., Caprara et al. (2006)) or generic decompositions based on
properties of the underlying optimization problem (e.g., Lamorgese and
Mannino (2019) and Keita et al. (2020)).

Generic decompositions (e.g., Lamorgese and Mannino (2019) and
Keita et al. (2020) or D’Ariano and Pranzo (2008)) can be considered
as applications of the general decomposition techniques from mixed-
integer programming as discussed, e.g., in Wolsey and Vanderbeck
(2010). In these decompositions, variables in an optimization problem
are optimized in different groups, where groups are within a hierar-
chical structure. Depending on the grouping of variables, particular
groups of variables result in optimization problems of different struc-
ture and class, e.g., linear programming (Lamorgese and Mannino,
2019), or mixed-integer programming (Keita et al., 2020; D’Ariano and
Pranzo, 2008). We consider the decomposition of this work as a generic
decomposition.
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2.3. Benders decomposition

Benders decomposition (Benders, 1962) is a hierarchical decompo-
sition procedure for mathematical programming. The decomposition
is designed for problems of mathematical optimization for which it is
possible to identify complicating and non-complicating variables. Com-
plicating variables are the main cause of the complexity in the problem;
if complicating variables are fixed to constant value, the remaining
problem is significantly easier to solve. Variables that are not compli-
cating variables are denoted non-complicating variables. The Benders
decomposition scheme is an iterative optimization of the complicating
variables (denoted as the master problem) and an optimization of
the non-complicating variables (denoted as the subproblem). In the
subproblem, in which complicating variables are considered constant,
constraints (Benders cuts) are determined, which are then added to
the master problem. By the Benders cuts, eventually an optimal master
solution will be found, for which a feasible subproblem solution exists,
leading to a global optimal solution.

In the standard application of Benders decomposition to mixed-
integer linear programming, integer variables are complicating and
continuous variables are non-complicating. In this case, the subproblem
is a linear programming problem, and standard Benders cuts (Geoffrion,
1972) can be used.

In Codato and Fischetti (2006) the authors show that in the special
case, where integer variables only appear together with continuous
variables in constraints of big-M, and where the objective is inde-
pendent of the continuous variables, the standard Benders cut can be
strengthened to the combinatorial Benders cut. In this special case of
mixed-integer programming, the solution of the master problem is a
solution over binaries of big-M constraints and implies a set of (big-
M) constraints to the subproblem. If the subproblem, including such
implied constraints, is feasible, a global optimal solution has been
found. In case the subproblem is infeasible, there exists an infeasible
subset of constrains within all the constraints of the subproblem, that
is the reason for the infeasibility. The combinatorial Benders cut is
a constraint cutting off solutions from the solution space of the mas-
ter problem, which would lead to the particular infeasible subset of
constraints in the subproblem, which has been used to derive the cut.

2.4. Contribution

We consider in this work the railway timetabling problem through
a microscopic, non-periodic model including the routing of trains,
targeting the usage in a tactical stage. Our model of timetabling is
relatively non-standard in the timetabling literature and is based on the
model of Leutwiler and Corman (2022). The objective of the considered
timetabling problem is the minimization of the delay of events, with
regards to a latest preferred time given. We discretize this objective,
in this work, and propose a generic decomposition of the problem by
a logic Benders decomposition. Despite it is built on the same mathe-
matical model, this decomposition is fundamentally different from the
decomposition of Leutwiler and Corman (2022). In the new decompo-
sition, thanks to the discretization of the objective, we can apply the
combinatorial Benders cut of Codato and Fischetti (2006). In our de-
composition, the master problem is a set covering problem; to solve it,
we introduce various heuristic solution approaches. With the efficient
heuristics we can solve much faster and/or with a better objective, the
microscopic timetabling problem addressed, compared to a series of
heuristic and optimal benchmarks. The particular contributions of this
work are:

(1) We propose a Benders decomposition on a disjunctive formula-
tion of railway timetabling, where the master problem is a set covering
problem and the subproblem is a timetabling problem, for which only
feasibility must be evaluated. In the Benders decomposition we can
apply the combinatorial Benders cut of Codato and Fischetti (2006).
3

(2) We introduce several heuristic approaches to solve the set
covering problem in the proposed Benders decomposition. We propose
heuristic approaches exploring particularly the incremental growth in
constraints of the set covering problem, inside the scheme of Benders
decomposition.

(3) In an exhaustive series of experiments, we provide empirical
evidence to quantify the performance of our novel approach. Instances
of timetabling used for the experiments contain between 168 and 719
trains, and between ∼3000 and ∼31 000 discrete scheduling decisions.
We put our approach into perspective with an existing general approach
to timetabling (Fischetti and Monaci, 2017) using the two commercial
solvers Gurobi (Gurobi Optimization, 2021) and Z3 (de Moura and
Bjørner, 2008). For medium and small instances, the performance is
comparable to the one of commercial solvers. For larger instances, we
report a good scalability as we can solve instances of timetabling up
to ∼20 times faster with only an average gap of ∼7.5% to an optimal
solution.

3. Problem description

We address a problem of microscopic, non-periodic, railway
timetabling to design a schedule (the timetable) for all operations
performed by trains on the railway network. The problem is addressed
at a tactical stage, where it is to update an existing reference timetable
according to short-term demand changes, only few day before opera-
tion. We describe in detail the specific aspects of our problem, which
extend the description of Leutwiler and Corman (2022); to which the
reader is referred for more details. By microscopic detail, we refer
to a description of railway services by set of operations, where each
operation of a train corresponds to the train passing a single block
section, i.e., block, in the railway network. In a solution of a timetabling
problem, i.e., a timetable, each operation is scheduled by associating a
time (in general, a continuous value) for the start and end event of the
operation, i.e., the entry and exit of the train to the block.

The input of the timetabling problem specifies a set of tentative
train services. While other approaches (see Cacchiani et al. (2010))
consider the existing traffic (i.e., traffic from the reference timetable) as
fixed, or movable in terms of time, but fixed in its orders, we only care
that the traffic already existing keeps the original functions. Those are
encoded by the planners into a set of service requirements. The process
by which those service requirements are generated goes beyond what
we can share in a research paper, but includes the service contracts
with the transport authorities, constraints due to technology, resources,
infrastructures, considerations of travel chains, etc. In any case, the
starting assumption is that the update of the reference timetable needs
to be fulfilling those service requirements, and in case impossible, it
can relax them.

The input considered is thus a set of services requirements, sev-
eral for each train service, that are the results of political decisions
and expected demand on the railway network. A service requirement
manifests either as a limiting time window for a relevant event of the
train service, e.g., the arrival or departure of a train, or as a constraint
among two relevant events. In their sum, service requirements can
describe a desired frequency for each service, assure synchronization
of services for smooth passenger transfers and establish regularity
(i.e., homogeneous spreading of services over time) in the timetable.

With service requirements that are time windows we can estab-
lish frequencies and regularity in the timetable. Time windows have
usually sizes around ∼5 to ∼15 min. With service requirements that
are constraints among two relevant events we can establish a required
minimal (maximal) duration between an arrival of a feeder train and
the departure of a connected train to assure enough time for passenger
transfer; a minimum time between operations of trains on the same
block; and minimum time for each operation (e.g., to allow alighting
and boarding of passengers at stations).
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Fig. 1. Input (left) and Output (right) of the timetabling problem considered.
The solution of a timetabling problem, i.e., a timetable, is the
determination, for all trains in the network, of an entry and exit for
each block that is passed by the train; such times must satisfy all
constraints of the problem. In the specific variant of timetabling we
are dealing with in this paper (and differently from Leutwiler and
Corman (2022)), we consider planning deviations when timetabling. By
considering planning deviations, we enlarge the feasible solution space,
and consider the possibility that an arrival, passing or departure event
is scheduled actually shortly after the latest time from the time window
of the service requirements. In this case, the planning deviation for such
event is the difference in time between the latest time given for the
event (i.e. upper bound of the time window), and the actual time the
event is scheduled in the timetable. We consider planning deviation
to be limited to a maximal allowed deviation 𝛿𝑚𝑎𝑥, that is the same
for all events and given by the railway operators. An introduction of
planning deviation in a timetable might lead to a shift of services
in time, which might lead to an effective shift in service frequencies
from some moment in time, to some other moment. The amount of
transfers to be offered by a timetable is not affected by those shifts as
transfers are enforced by different constraints. Thus, even a timetable
with planning deviations provides a sufficiently high quality of service
to customers.

Safety regulations require that no concurrent occupation of any
block in the network by two or more trains, i.e., no resource conflict,
occurs in the network. We consider an ordering decision for any pair of
trains with a possible resource conflict to avoid any such conflicts in
the final timetable. The ordering decision consists of two choices, that
are the two possible orderings for a pair of trains, where the constraints
related to each choice prevent the occurrence of the conflict.

We consider the infrastructure available to a train, restricted to a
limited set of routing alternatives, where each routing alternative is a
sequence of blocks in the network. The limited infrastructure is defined
by railway operators and includes only the few most plausible routing
alternatives according to the type of service of the train. We consider a
routing decision to select a routing alternative (choice) to be used by
a train. Routing alternatives are geographically grouped into routing
areas. In each routing area, multiple routing alternatives are in parallel
between two unique points in the network, that are the entry and exit
point to the routing area. To select one routing alternative in a routing
area corresponds to a routing decision. A single train may cross multiple
routing areas on its path from the origin of the train to the destination
and thus may require multiple routing decisions. The route of a train is
a unique sequence of blocks from origin to destination, determined by
the choices on all routing decisions of the train.

In Fig. 1 (left) we depict graphically the input to our problem. Three
trains (1, 2, 3) identified by the color green, blue and yellow respec-
tively need to be scheduled, with their service requirements reported
4

in a time (vertical, increasing downwards) and space (horizontal, from
station A to B, C, and D) diagram. Train 1 goes from A to D without
any planned stop; Train 2 goes from A to D with a stop in B (described
by the two vertical boxes, the left for the arrival, the right for the
departure). Train 3 runs only between B and C, and has a connection
from train 2 at station B (reported as an arrow with color varying from
blue to yellow). The infrastructure is shown on top of the plot, with a
single track between station B and C. The time windows are reported at
the 4 stations as long vertical boxes; and the region of time and space
connecting them is shaded in the color of the train. The diagram reports
also a 𝛿𝑚𝑎𝑥, which is the maximum allowed deviation beyond the time
windows. The figure shows how time windows may have varying size
at different events of the same train, and may overlap between different
trains.

A possible solution to this problem is shown in Fig. 1 (right). For
each train a specific time is found, depicted by the colored node at
each station, connected by a thick line. For each train, also a detailed
route is found, depicted on the very top along the infrastructure. In
the solution reported, train 1 (green) is overtaken by train 2 (blue)
between station A and B; this is possible given the route of the two
trains. Train 3 (yellow) departs from station B shortly after train 2; and
train 1 runs between station B, C and D after all other trains. Many
events are scheduled outside of the specific time window. Those are
reported as long vertical boxes filled with a diamond pattern. At station
B, all three trains are scheduled outside of their time windows, and the
value for those three deviations is reported in Figure as 𝛿2,𝐵 , 𝛿3,𝐵 , 𝛿1,𝐵
respectively. At station C only train 1 and 3 have a planning deviation;
and at station D, only train 1.

The planners might accept this solution as train 1 leaves station A
very early, and leaves it available for other services; or not, because it
has a relatively long travel time. In fact, many aspects (infrastructure
capacity at tracks; at stations, availability of vehicle; inclusion of mul-
tiple travel chains of passengers) are at stake, and are modeled either
explicitly in the objective function and constraints; or are left to human
decisions and interactive solutions.

Whenever a timetable satisfies all given service requirements, we
are assured such timetable provides a minimal required quality of
service, sufficient for a practical application.

In summary, in the microscopic railway timetabling problem, we
optimize over event times, routing and ordering decisions to compute
a conflict-free timetable, which minimizes the sum of all planning
deviations over all arrival and departure events.

4. A model for railway timetabling

We use a disjunctive formulation (Balas, 1998) to model our rail-
way timetabling problem. In particular, we use the formulation of
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Leutwiler and Corman (2022) and adapt it to the minimization of
sum of total planning deviation. The following section summarizes the
disjunctive model from Leutwiler and Corman (2022).

For a train 𝑑, the operation related to block 𝑏 is indicated (𝑑, 𝑏)
and the related time for the start event of such operation (𝑑, 𝑏) by
the continuous variable 𝑡𝑑𝑏 ∈ R+. Variables for the end event of an
operation are redundant as a sequence of operations cannot be paused
in railway timetabling.

The precedence relation ((𝑑, 𝑏), (𝑞, 𝑝)) is to model a temporal depen-
dency between events. The precedence relation is a linear inequality
constraint to assure that 𝑡𝑞𝑝 is at least 𝑓𝑑𝑏,𝑞𝑝 time units scheduled after
𝑡𝑑𝑏. Precedence relations in timetabling as of Leutwiler and Corman
(2022) are either fixed or selectable. Precedence relations that are fixed
must hold in any solution of railway timetabling. Selectable precedence
relations must hold upon selection. Precedence relations are selected
by the discrete decisions of railway timetabling. Selectable precedence
relations are grouped into choice sets 𝑊𝑐 , and choices sets into decisions
ets 𝐷𝑙, to model the discrete decisions. A choice 𝑠 imposes (selects)
he precedence relations in 𝑊𝑐 jointly, to be satisfied by the events
f the timetable. A discrete decision 𝑙 is modeled as the disjunctive
onstraint
⋁

𝑐∈𝐷𝑙

⋀

((𝑑,𝑏),(𝑞,𝑝))∈𝑊𝑐

(

𝑡𝑞𝑝 − 𝑡𝑑𝑏 ⩾ 𝑓𝑑𝑏,𝑞𝑝
)

. (1)

With a set of fixed precedence relations 𝐴𝑓 , the minimal travel times
f trains over blocks outside of routing areas and further all earliest
imes as well as minimal (and maximal) transfer times are modeled.

time origin 𝑡0 = 0 is used to model earliest times as precedence
elations.

With a set of selectable precedence relations 𝐴𝑠, minimal travel
imes on blocks inside of routing areas, and constraints for either order
n a pair of trains are modeled. Selectable precedence relations of min-
mal travel times are grouped into choice sets 𝑊𝑐 as the related blocks
re in routing alternatives; all choice sets of all routing alternatives in
he same routing area build a decision set 𝐷𝑙 for the routing decision.
he constraint for one order on a pair of trains is a single precedence
elation, such that the decision set of an ordering decision contains two
hoice sets, each with a single precedence relation to impose either
rder of the pair of trains.

Auxiliary variables are used to model the dependency of ordering
ecisions and routing decision. An ordering decision is necessary if
nfrastructure is shared among a pair of trains; whether infrastructure is
hared depends on the chosen routing alternatives. Auxiliary variables
re additional (artificial) events, used in the precedence relations of or-
ering decision to model the dependency between ordering and routing
ecisions. Auxiliary variables duplicate events in routing alternatives
nd are constrained to equality with the original variables if and only
f the appropriate routing alternative is chosen.

.1. Minimizing planning deviation

We model the planning deviation in timetabling by a second set of
ixed precedence relations 𝐴𝛿 . Precedence relations in 𝐴𝛿 model latest
imes of events and identify the planning deviation 𝛿𝑑𝑏 of the arrival
r departure event (𝑑, 𝑏). The planning deviation 𝛿𝑑𝑏 is defined as the
ifference in time between the actual time of the event 𝑡𝑑𝑏 and the
atest time 𝑓𝑑𝑏, . of the event, given as an input to the problem. We do
ot consider negative planning deviations, such that 𝛿𝑑𝑏 ⩾ 0. We can
dentify the planning deviation 𝛿𝑑𝑏 of an event (𝑑, 𝑏) by the following
recedence relation

𝑑𝑏 − 𝑡𝑑𝑏 ⩾ −𝑓𝑑𝑏, . . (2)

ifferent from 𝐴𝑓 , precedence relations in 𝐴𝛿 are defined on only one
5

vent, e.g., event (𝑑, 𝑏).
If we denote by 𝐿 the set of all discrete decisions of timetabling and
urther reduce the notion of an operation (𝑑, 𝑏) to 𝑖, we can write the
ailway timetabling problem as the disjunctive program,

in
∑

(𝑖) ∈𝐴𝛿

𝛿𝑖

s.t. 𝛿𝑖 − 𝑡𝑖 ⩾ −𝑓𝑖, . (𝑖) ∈ 𝐴𝛿

𝑡𝑗 − 𝑡𝑖 ⩾ 𝑓𝑖,𝑗 (𝑖, 𝑗) ∈ 𝐴𝑓
⋁

𝑊𝑐∈𝐷𝑙

⋀

(𝑖,𝑗) ∈𝑊𝑐

(

𝑡𝑗 − 𝑡𝑖 ⩾ 𝑓𝑖,𝑗
)

𝑙 ∈ 𝐿

𝛿𝑖 ∈ R+, 𝛿𝑖 ⩽ 𝛿𝑚𝑎𝑥 ∀ 𝛿𝑖, 𝑡𝑖 ∈ R+ ∀ 𝑡𝑖.

(3)

The constant 𝛿𝑚𝑎𝑥 is the maximal allowed deviation, that is the same for
all events and given by the railway operators. The objective of Problem
(3) is to minimize the sum of all planning deviations over all events
given a latest time 𝑓𝑖, ..

4.2. A discretization of planning deviation

In Problem (3) planning deviations are represented by the contin-
uous variables 𝛿𝑖. To apply our approach and decompose Problem (3)
into a set covering problem and a problem of feasibility, we need to
discretize the planning deviation of arrival and departure events to a
finite set of possible values; such values are later the selectable elements
(sets) in the set covering problem. We discretize the planning deviation
of an arrival or departure event 𝛿𝑖, originally in the interval [0, 𝛿𝑚𝑎𝑥],
to 𝐾 + 1 discrete values, i.e.,

{

𝛿𝑖,0,… , 𝛿𝑖,𝐾
}

, where 𝛿𝑖,𝑘 = 𝑘 𝛿𝑚𝑎𝑥
𝐾 .

We then replace each precedence relation in 𝐴𝛿 of Problem (3) by
a series of 𝐾 + 1 big-M constraints for all possible discrete values of 𝛿𝑖,
i.e.,

𝛿𝑖,𝑘 − 𝑡𝑖 ⩾ −𝑓𝑖, . −𝑀𝑥𝑖,𝑘, 𝑘 ∈ {0,… , 𝐾} , (4)

where 𝑥𝑖,𝑘 ∈ {0, 1}. In the series of constraints (4), it must hold that
𝑥𝑖,𝐾 = 0, to always enforce the constraint of maximal allowed deviation.
We keep the constraint 𝑘 = 𝐾 in the series (4) for the simplicity of
notation; in later experiments we will omit the big-M term of such
constraint.

In the series of constraints (4), in case a binary 𝑥𝑖,𝑘 = 1, the related
constraint of 𝑘 is relaxed, i.e., trivially satisfied. Naturally, for the series
of constraints (4), it holds that if there exists any assignment on the
binaries 𝑥𝑖,𝑘 satisfying the series of constraints (4) for a given set of
values 𝑡𝑖, there exists a possibly different assignment on the binaries 𝑥𝑖,𝑘
satisfying the series of constraints (4) for the same values of 𝑡𝑖, where
it holds 𝑥𝑖,𝑘+1 ⩽ 𝑥𝑖,𝑘 ∀𝑘 ∈ {0,… , 𝐾 − 1}. In other words if constraint (4)
for 𝑘 is satisfied by 𝑡𝑖 (i.e., 𝑥𝑖,𝑘 = 0) any constraint (4) for 𝑝, where
𝑝 > 𝑘 is trivially also satisfied, as the constraint of 𝑝 relates to more
deviation than the constraint of 𝑘. We can interpret this assignment on
the binaries, where it holds 0 = 𝑥𝑖,𝐾 = 𝑥𝑖,𝑝+1 < 𝑥𝑖,𝑝 = 𝑥𝑖,0 = 1, as an
llowed deviation for the event 𝑖 of at most 𝛿𝑖,𝑝+1; all constraints up
o (and including) 𝑝 in the series (4) are relaxed as the corresponding
𝑖,𝑘 = 1. In case the constraints in the series (4) are relaxed up to
onstraint 𝑝, exactly 𝑝 + 1 constraints, i.e., 𝑘 ∈ {0,… , 𝑝}, are relaxed
nd the planning deviation 𝛿𝑖 of event 𝑖 is limited to,
𝛿𝑚𝑎𝑥
𝐾

∑

𝑘∈{0,…,𝑝}
𝑥𝑖,𝑘 ⩾ 𝛿𝑖. (5)

In Eq. (5) we can extend the sum to all binaries, i.e., {0,… , 𝐾}, as
binaries 𝑥𝑖,𝑘 = 0 for 𝑘 > 𝑝.

In the above, we chose big-M constraints in (4) with binary variables
𝑥𝑘,𝑖 instead of integer (discrete) variables for the discretization of plan-
ning deviation 𝛿𝑖. In this manner, we achieve an optimization problem
identical in constraints to the problem of Codato and Fischetti (2006)
and can use their combinatorial Benders cuts in our decomposition of

the timetabling problem.
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With the discretization of constraints in 𝐴𝛿 by the series of con-
traints (5), we can translate Problem (3) into a microscopic
imetabling problem with discrete planning deviation,

in
𝛿𝑚𝑎𝑥
𝐾

∑

(𝑖) ∈𝐴𝛿

(

∑

𝑘∈{0,…,𝐾}
𝑥𝑖,𝑘

)

s.t. 𝛿𝑖,𝑘 − 𝑡𝑖 ⩾ −𝑓𝑖, . −𝑀𝑥𝑖,𝑘 𝑘 ∈ {0,… , 𝐾} , (𝑖) ∈ 𝐴𝛿

𝑡𝑗 − 𝑡𝑖 ⩾ 𝑓𝑖,𝑗 (𝑖, 𝑗) ∈ 𝐴𝑓
⋁

𝑊𝑐∈𝐷𝑙

⋀

(𝑖,𝑗) ∈𝑊𝑐

(

𝑡𝑗 − 𝑡𝑖 ⩾ 𝑓𝑖,𝑗
)

𝑙 ∈ 𝐿

𝑡𝑖 ∈ R+ ∀ 𝑡𝑖, 𝑥𝑖,𝑘 ∈ {0, 1} ∀ 𝑥𝑖,𝑘, 𝑥𝑖,𝐾 = 0

(6)

where the objective is now to minimize the total sum of discretized
planning deviations. If we consider continuous planning deviations in
Problem (3), it holds for every optimal solution, that for each 𝛿𝑖 either
the related constraint in 𝐴𝛿 is tight, i.e., 𝛿𝑖 = 𝑡𝑖 − 𝑓𝑖, ., or 𝛿𝑖 = 0. That
is, either there is no planning deviation or exactly as much deviation
considered in the objective of Problem (3) as the event is actually
scheduled after its latest time.

For Problem (6), instead, planning deviations are discrete. In this
case, it is possible that 𝛿𝑖,𝑘 > 𝑡𝑖−𝑓𝑖, . > 𝛿𝑖,𝑘−1 and there is more planning
deviation considered in the objective of Problem (6) than the event
is actually scheduled after its latest time. This is simply due to the
discretization of planning deviation.

5. Set covering in railway timetabling

We propose in this work a novel approach for railway timetabling
where we decompose Problem (6) by a Benders decomposition into
a set covering problem as the master problem, and a timetabling
problem, where only feasibility is to be verified, as the subproblem.
By the discretization of planning deviations in Section 4.2 we are able
to apply the combinatorial Benders cut of Codato and Fischetti (2006)
to our decomposition.

5.1. A combinatorial benders decomposition

We decompose our centralized problem  (Problem (6)) into a master
problem  and a single subproblem  according to standard Benders
decomposition (Geoffrion, 1972). We define the master problem to be
the optimization over all binary variables 𝑥𝑖,𝑘 of the Problem (6). We
optimize all remaining variables in the subproblem. All constraints of
Problem (6) in such decomposition are constraints in . The master
problem  at the iteration 𝛼, i.e., 𝛼 in decomposition scheme of
Benders can be written as

min
∑

(𝑖)∈𝐴𝛿

(

∑

𝑘∈{0,…,𝐾}
𝑥𝑖,𝑘

)

s.t. 𝛽 𝛽 ∈ 𝛼

𝑥𝑖,𝑘 ∈ {0, 1} ∀𝑥𝑖,𝑘

(7)

where 𝛽 is a Benders cut and 𝛼 the set of all cuts aggregated till
iteration 𝛼 in the Benders scheme. In Section 5.2 we will show that 𝛽
has the shape of the combinatorial Benders cut (Codato and Fischetti,
2006). We further omit the factor 𝛿𝑚𝑎𝑥

𝐾 from the objective of Problem
6) in 𝛼 as it does not change the optimality of a solution.

The subproblem  in our decomposition is the optimization over all
ariables of the centralized problem  except variables 𝑥𝑖,𝑘, together

with all constraints of . In our decomposition  is only a problem
of feasibility; no variables of  appear in the objective of . The
6

ubproblem 𝛼 of our decomposition at iteration 𝛼 can be written as,

min 0

s.t. 𝛿𝑖,𝑘 − 𝑡𝑖 ⩾ −𝑓𝑖, . (𝑖, 𝑘) ∈ 𝐴̄𝛼
𝛿

𝑡𝑗 − 𝑡𝑖 ⩾ 𝑓𝑖,𝑗 (𝑖, 𝑗) ∈ 𝐴𝑓
⋁

𝑊𝑐∈𝐷𝑙

⋀

(𝑖,𝑗) ∈𝑊𝑐

(

𝑡𝑗 − 𝑡𝑖 ⩾ 𝑓𝑖,𝑗
)

𝑙 ∈ 𝐿

𝑡𝑖 ∈ R+ ∀𝑡𝑖

(8)

where 𝐴̄𝛼
𝛿 ∶=

{

(𝑖, 𝑘) ∈ 𝐴𝛿 × {0,… , 𝐾} ∣ 𝑥̄𝛼𝑖,𝑘 = 0
}

is the set of all con-
traints in the series (4) that must hold in the subproblem, due to the
ncumbent master solution 𝛼 at iteration 𝛼 in case 𝑥̄𝛼𝑖,𝑘 = 0 in 𝛼 .

We can interpret Subproblem (8) as a problem to determine whether
here exists a feasible timetable for a particular amount of discrete
lanning deviation; the particular planning deviation is defined by the
olution of 𝛼 .

.2. A combinatorial benders cut for railway scheduling

In Codato and Fischetti (2006) the authors introduce the combi-
atorial Benders cuts for a Benders decomposition that is structurally
dentical to our decomposition in Section 5.1. That is, the solution of
he master problem 𝛼

 is a solution over binaries, which imply (in our
ase by 𝐴̄𝛼

𝛿 ) a set of constraints onto the subproblem. We thus make use
f the combinatorial Benders cut as introduced in Codato and Fischetti
2006) for our Benders decomposition of Section 5.1.

The combinatorial Benders cut is generated from a set of constraints
hat together determines the infeasibility of the subproblem (we call it
or simplicity an infeasible subset of constraints). We denote such subset
urther by 𝛼 . Different from Codato and Fischetti (2006) our subprob-
em, i.e., Problem (8), is a mixed-integer linear programming problem.

e therefore cannot use the techniques of Codato and Fischetti (2006)
o determine 𝛼 as they rely on strong duality in linear programming.
nstead, we propose in Section 6.1 to use an existing algorithm, that
e designed in a previous work for a geographic logic-based Benders
ecomposition (Leutwiler and Corman, 2022).

Given an infeasible subset of constraints 𝛼 , in such subset only
hose constraints are of importance to the combinatorial Benders cut,
hich are imposed by the incumbent master solution; in our case the

onstraints in 𝐴̄𝛼
𝛿 . We denote these constrains by 𝛼

𝛿 ∶= 𝛼 ∩ 𝐴̄𝛼
𝛿 . For

ach constraint (𝑖, 𝑘) ∈ 𝛼
𝛿 , there exists an associated binary variable

𝑖,𝑘 and we can write the combinatorial Benders cut 𝛽 of Codato and
ischetti (2006) for our decomposition of Section 5.1 as
𝛼 ∶=

∑

(𝑖,𝑘) ∈𝛼𝛿

𝑥𝑖,𝑘 ⩾ 1. (9)

The Benders cut (9) is clearly a constraint of set covering and thus
𝛼 a set covering problem.

. Implementation

Algorithm 1 shows the iterative scheme of Benders decomposition.
n every iteration of the scheme, the master problem is solved (Line
) and if necessary extended by an additional Benders cut (Line 5),
hich is generated from the analysis of the subproblem (Line 3),

ee Section 6.1. With the decomposition of our timetabling problem
nd the combinatorial Benders cut from Section 5, we discuss in this
ection first an algorithm from one of our previous works (Leutwiler
nd Corman, 2022), that can be used to analyze the subproblem; and
ater propose several approaches in Sections 6.2 and 6.3 to address the
aster problem in our decomposition.

.1. An infeasible subset of constraints in the subproblem

In this paper, we identify an infeasible subset of constraints 𝛼 in
he subproblem 𝛼 of our decomposition, using the algorithm SMT
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Algorithm 1: Benders Decomposition Scheme
input : , 
output: 
init : 𝛼 = 0,  = ∅, 𝛼 = (𝛼 = ∅)

1 while  = ∅ do
2 𝛼

 ← Solve(𝛼);
3 𝛼

 , 𝛼 ← Analyze(𝛼);
4 if 𝛼

𝑘 ≠ ∅ then
5 𝛼+1 ← 𝛼 ∪ 𝛽𝛼(𝛼);
6 else
7  ← 𝛼

 ∪ 𝛼


8 𝛼 ← 𝛼 + 1;
9 return 

Algorithm 2: SMT, A DPLL Algorithm with Precedence
Constraints.
input : 𝛼

output: 𝛼
 , 𝛼

init : 𝛷 ← 𝛼 , 𝐺𝛼 ← 𝛼 , 𝜃 = ∅

1 while true do
2 confl ← UnitPropagation(𝛷, 𝜃)
3 if !confl then
4 confl ← Evaluate(𝐺𝛼(𝜃))
5 if !confl then
6 if 𝜃 = Complete then
7 𝛼 ← 𝐺𝛼(𝜃)
8 return (𝛼 , ∅)
9 𝜃 ← 𝜃

⋃ Decide()
10 else
11 if confl = Unsatisfiable then
12 𝛼 ← AnalyzeIP(confl)
13 return (∅, 𝛼)
14 else
15 Analyze(confl)
16 Backtrack(confl)

(Algorithm 2) of Leutwiler and Corman (2022). Algorithm 2 computes
an infeasibility proof for a problem that is identical by the type of
constraints to our Subproblem (8). The infeasibility proof returned
by Algorithm 2 is a set of cycles on a graphical representation 𝐺𝛼

of 𝛼 . The set of arcs of all cycles in 𝛼 is an infeasible subset of
onstraints 𝛼 from which we can extract 𝛼

𝛿 and use this latter to build
the combinatorial Benders cut (9). In case Algorithm 2 cannot find a
proof of infeasibility, 𝛼 is feasible and a corresponding solution 𝛼


is returned. In the following we provide a brief summary of Algorithm
SMT (Algorithm 2) of Leutwiler and Corman (2022):

Algorithm 2 is a combination of Boolean Satisfiability Solving
(SAT) (Davis et al., 1962) with the logic of difference constraints
from Cotton and Maler (2006); difference constraints are mathemati-
cally identical to the precedence relations of timetabling. The algorithm
searches iteratively for a set of selectable precedence relations 𝜃 ⊆ 𝐴𝑠,

hich satisfies all disjunctions 𝑙 ∈ 𝐿 of 𝛼 , i.e., ∃𝑊𝑐 ∈ 𝐷𝑙 s.t. 𝑊𝑐 ⊆ 𝜃
𝑙 ∈ 𝐿 and for which there exists an assignment for the variables 𝑡𝑖
f 𝛼 satisfying the precedence relations 𝐴𝑓 ∪ 𝐴̄𝛼

𝛿 ∪ 𝜃. If such 𝜃 can be
ound, feasibility of 𝛼 is proven. In Leutwiler and Corman (2022), an
ssignment for 𝑡𝑖 is proven to exist for the constraints 𝐴𝑓 ∪ 𝐴̄𝛼

𝛿 ∪ 𝜃 if a
raph 𝐺𝛼(𝜃), where each of these constraints is a directed arc, is free
f any positive length cycle.

In Algorithm 2 an initially empty set 𝜃 is iteratively extended by
choice sets 𝑊𝑐 from the decisions of 𝛼 until 𝜃 satisfies all disjunctions

𝛼

7

(decisions) of  . The set of constraints 𝛷 in Algorithm 2 models the
disjunctions of 𝛼 in terms of Boolean satisfiability constraints to assure
that Algorithm 2 indeed computes a set 𝜃, which satisfies all disjunc-
tions of 𝛼 . In Line 9, Decide selects choice sets 𝑊𝑐 by heuristics
of SAT, to extend 𝜃. After every extension of 𝜃, UnitPropagation
in Line 2 propagates implications given by the constraints 𝛷 and the
newly selected choice set 𝑊𝑐 . If no Boolean satisfiability constraint
is violated by any implication (i.e., !confl), Line 4 evaluates if a
feasible assignment for variables 𝑡𝑖 exists with respect to the constraints
𝐴𝑓 ∪𝐴̄𝛼

𝛿∪𝜃; for evaluation, the graphical representation 𝐺𝛼(𝜃) is checked
for positive length cycles. If no feasible assignment exists, Line 4 returns
a new, violated Boolean satisfiability constraint computed from 𝐺𝛼(𝜃).
If Line 2 or Line 4 returns a violated constraint, either such constraint
can be satisfied by a different 𝜃 or is generally unsatisfiable (confl
= Unsatisfiable). If satisfiable by a different 𝜃, Line 15 and 16 are to
determine the necessary changes in 𝜃 by analyzing first the violated
constraint and then removing choices sets 𝑊𝑐 leading to the violation
of the constraint, from 𝜃 in a backtracking procedure. If the violated
constraint cannot be satisfied by any other 𝜃, Line 12 computes an
infeasibility proof for 𝛼 based on the violated constraint. Finally in
case neither Line 2 or 4 returns a violated constraint and 𝜃 satisfies
all disjunctions of 𝛼 , Line 7 computes a feasible assignment for the
variables 𝑡𝑖, which satisfies the constraints 𝐴𝑓 ∪ 𝐴̄𝛼

𝛿 ∪𝜃; such assignment
is a feasible solution for 𝛼 .

6.2. Classical approaches for set covering in the master problem

In standard Benders decomposition (Geoffrion, 1972), the master
problem is solved to optimality in every iteration. We propose in this
paper, among others, a decomposition approach, where the master is
solved to optimality in every iteration using the commercial solver
Gurobi (Gurobi Optimization, 2021). In this case, i.e., if the master
problem is solved to optimality, Algorithm 1 returns an optimal so-
lution for the centralized problem, once no further Benders cut is
generated (Line 7).

Different from standard Benders decomposition, in more recent
literature, the master problem in a Benders decompositions is no longer
solved to optimality. The validity of the Benders decomposition scheme,
in particular the validity of Benders cut does not depend on the op-
timality or feasibility of a master solution, such that heuristic master
solutions (Poojari and Beasley, 2009) or solutions of a relaxed master
problem (Maher, 2021) are used in decompositions of the literature.
In the same manner, we can address the master problem (Problem
(7)) in our decomposition by a heuristic approach. In the particular
case of this paper, the master problem is a set covering problem and
we propose a decomposition approach, where we use the known best
possible heuristic for problems of set covering, i.e., the heuristic of
Chvatal (Chvatal, 1979), to solve our master problem. In this approach,
only a near optimal, but feasible solution of the master is computed in
Line 2 of Algorithm 1. The usage of a heuristic is intended to reduce
the computational time of a single iteration in the Benders scheme and
reduce the total time till convergence of Algorithm 1.

In experiments of Section 7 we provide experimental results on
both, the approach where the master problem is solved to optimality
in each iteration by the commercial solver Gurobi, and the approach
where the master problem is solved by the heuristic of Chvatal.

6.3. Incremental approaches for set covering in the master problem

In alternative to classical approaches, where the master problem is
solved from scratch in every iteration of the Benders scheme, with-
out considering any information from previous master solutions, we
propose in this section incremental heuristic approaches to solve the
master problem. In this case, the incumbent solution of the master prob-
lem is based on the solution from the previous iteration. In particular,
the solution of the previous iteration in the Benders scheme is adapted

to be conform with the latest Benders cut. With such heuristics, we
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intend to minimize the computational effort inside a single iteration
of the Benders scheme and reduce significantly the total time till
convergence.

We adapt a master solution 𝛼−1 from the previous iteration 𝛼 − 1
o the latest Benders cut 𝛽𝛼 of the current iteration 𝛼 by changing at

least one binary variable 𝑥𝑖,𝑘, (𝑖, 𝑘) ∈ 𝛼
𝛿 from value 0 to 1, from the

previous solution 𝛼−1 to the incumbent solution 𝛼 . The change of
a binary variable 𝑥𝑖,𝑘 from value 0 to 1 corresponds to an increase of
planning deviation at event 𝑖, from 𝛿𝑖,𝑘 to 𝛿𝑖,𝑘+1. Variables 𝑥𝑖,𝑘, (𝑖, 𝑘) ∈ 𝛼

𝛿
ave altogether value 0 in 𝛼−1; otherwise related constraints would
ot appear in 𝛼

𝛿 as they would not be imposed to 𝛼 . We propose in
he following four different heuristics to determine which binary(ies)
𝑖,𝑘, (𝑖, 𝑘) ∈ 𝛼

𝛿 must change in values from 𝛼−1 to 𝛼 :

efinition (Min Appearance). In the heuristic of minimal appearance,
e select out of the binaries 𝑥𝑖,𝑘, (𝑖, 𝑘) ∈ 𝛼

𝛿 , the single binary variable,
hich appears the least number of times in the already computed

onstraints of set covering (Benders cuts) in 𝛼 . Such heuristic is
ntended to minimize the number of redundant relaxed set covering
onstraints in 𝛼 .

efinition (Max Appearance). In the heuristic of maximal appearance,
e select out of the binaries 𝑥𝑖,𝑘, (𝑖, 𝑘) ∈ 𝛼

𝛿 , the single binary variable,
which appears the most number of times in the already computed
constraints of set covering (Benders cuts) in 𝛼 . Opposed to Min
Appearance, such heuristic is intended to maximize the number of
constraints in 𝛼 relaxed by a single binary variable.

Definition (Complete Satisfaction). In the heuristic of complete satisfac-
tion, all binaries 𝑥𝑖,𝑘, (𝑖, 𝑘) ∈ 𝛼

𝛿 are set equal to 1. Such heuristic is
to relax (remove) the most constraints from the subproblem in a single
iteration of the Benders scheme to reduce the amount of total iterations
in the Benders scheme until a feasible subproblem solution is found and
convergence achieved.

Definition (Random). In the heuristic of random selection, a single
inary is uniformly random selected from the binaries 𝑥𝑖,𝑘, (𝑖, 𝑘) ∈ 𝛼

𝛿
nd set equal to 1. Such heuristic shall provide a benchmark for the
umerical experiments in Section 7.

In Section 7 we provide exhaustive experiment on all incremental
euristics of this section and put those in relation to classical ap-
roaches in Benders decomposition (Section 6.2) and further existing
pproaches for railway timetabling.

. Computational experiments

With a series of comprehensive experiments we analyze the perfor-
ance of heuristic and optimal approaches proposed in this paper and

ompare results with standard benchmarks. All experiments reported in
he following sections are computed on the Euler Cluster of ETH Zurich,
n a single AMD EPYC 7763 processor with 120 GB of RAM and a time
imit of 24 h per experiment.

.1. Instances

For our experiments we use 14 original scenarios of timetabling.
hese scenarios are geographic and temporal excerpts from current
imetable of the Swiss Federal Railways in Switzerland and include
ll microscopic details of the actual infrastructure. All excerpts have
time horizon of planning between 2 and 6 h. We name the scenarios
f timetabling according to the biggest cities within the corresponding
eographic excerpt; names of cities are decoded in Table 1.

We analyze the scalability of our approaches of set covering as
e scale the 14 scenarios of timetabling to different instances of
8

imetabling with a reduced number of trains. We consider the 14
Table 1
Decoding of scenario names to the cities of Switzerland.

ZUE Zurich HE Herisau CH Chur ZAS Zurich Altstetten
BN Bern YV Yverdon LZ Luzern RH Romanshorn
AA Aarau BEL Bellinzona BDF Burgdorf GD Arth-Goldau
BS Basel SO Solothurn SG St. Gallen OTH Othmarsingen

scenarios of timetabling as instances with 100% of trains and derive
from each scenario 9 further instances with a reduced percentage of
trains (i.e., 90%, 80%,. . . , of trains). We reduce the number of trains
as we randomly but continuously remove trains such that, e.g., all trains
of an 80% instance are within the 90% instance from the same original
scenario. In total we have generated 140 instances of timetabling
derived from the 14 different original scenarios of timetabling.

In Table 2 in the Appendix we provide detailed numbers on all
instances of timetabling used in this work. We report the number of
trains, stops performed by trains, transfers between trains, ordering and
routing choices, as well as the maximal allowed planning deviation.
Fig. 2 gives an overview over the most important characteristics of
the 14 original scenarios of timetabling. In the upper plot of Fig. 2,
we report the number of trains in each scenario; in the lower plot we
report the number of choices in all discrete decisions of the scenario,
broken down into routing and ordering choices. From Fig. 2 we can
see that especially the first three scenarios, which are three scenarios
of the railway traffic between Zurich (the busiest railway station in
Switzerland) and Chur, contain a large number of ordering and routing
choices for a rather low amount of trains. This high number of choices
is the result of a complex railway infrastructure around the railway
station of Zurich. A high number of choices is often a good indicator
for a high computational effort, necessary to solve the scenario. We
can also see in Fig. 2 that some scenarios contain a large amount of
trains, but at the same time a rather average number of choices. This
occurs often in cases of timetabling, for areas where the railway traffic
in opposite direction is routed over separate tracks, and only little
interactions are taking place between trains.

All results considered in this work are validated for practical appli-
cability through a tool that was provided by the Swiss Federal Railways.
All reported results (timetables) are guaranteed to satisfy all service
requirements and be of value for a practical application.

7.2. Benchmark approaches for timetabling

We put the approaches of this work in comparison with a standard
(centralized) approach of railway timetabling to show the benefits and
drawbacks of our heuristic approaches. Our benchmark is based on the
methodologies of Fischetti and Monaci (2017). In Fischetti and Monaci
(2017), the authors propose several improvements in the formulation
of railway scheduling to increase the computational performance of
a commercial solver applied to a railway rescheduling problem. We
adopt from this work particularly the tightening of temporal bounds for
events of the scheduling problem, based on the maximal allowed plan-
ning deviation. Based on these tightened bounds, according to Fischetti
and Monaci (2017), we can fix entire decisions or exclude particular
choices from decisions in the timetabling problem. We omit for this
work the heuristic fixation of a maximal planning deviation as done
in Fischetti and Monaci (2017). In our case we are given a fixed
maximal allowed planning deviation by the operators of the railway.

We apply our benchmark approach to the railway timetabling prob-
lem with a continuous objective (Problem (3)) as well as with a
discrete objective (Problem (6)). We use for the benchmarks the com-
mercial mixed-integer solver Gurobi (Gurobi Optimization, 2021) and
the Boolean satisfiability solver Z3 (de Moura and Bjørner, 2008). Z3,
likewise to our Algorithm 2, is a SAT solver extended to various types

of constraints (including precedence relations).
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Fig. 2. Trains and choices in scenarios of timetabling.
Fig. 3. Instances solved by set covering approaches.
7.3. Set covering heuristics

In a first series of experiments we study the performance of our
classical (Section 6.2) and incremental (Section 6.3) set covering ap-
proaches. We apply all approaches to all 140 instances of timetabling.
All numbers reported on experiments in this section are an average over
five computationally identical runs.

As stated in the beginning of this section, all experiments are given
a time limit of 24 h for computations. In consequence, the classical
set covering approaches, i.e., the Chvatal heuristic and the Optimal
approach of set covering did not provide solutions within the time
limit for all instances. We report in Fig. 3 the percentage of trains up
to which the individual approaches were able to provide a solutions
within the limit of 24 h. In Fig. 3 we see that the Chvatal heuristic
and the Optimal approach fail to provide solutions mainly on the
same instances, indicating the computational complexity of solving
these instances to (near) optimality by classical Benders decomposi-
tion approaches. In comparison, the Chvatal heuristic mostly provides
fewer solutions than the Optimal approach, reaching a lower level of
percentage of trains, to which a solution could be found. This lower
performance might be caused due to higher fluctuations in heuristics
(non optimal) incumbent master solutions, which themselves lead to
more iterations in the Benders scheme till convergence. We can see
the higher number of iterations for Chvatal in Fig. 6 as we report the
total number of constraints (equal to number of iterations) for different
approaches. The incremental set covering heuristics provide solutions
for all 140 instances within 24 h. We provide a plausible comparison
between all (classical and incremental) approaches of set covering as
we further report results only on those instances, which were solved
by all approaches based on set covering.

In Fig. 4 we report the computational time of different set cov-
ering approaches. In the top plot of Fig. 4 we report the absolute
computational time, on average over all 14 scenarios of timetabling for
different instances with different percentages of trains; the bottom plot
reports the average computational time scaled by the computational
time of the Random heuristic of set covering. We use the Random
9

heuristic as a benchmark in set covering approaches. We report the
computational time in both plots on a logarithmic axis. In Fig. 4 the
Min Appearance and the Chvatal heuristic show significantly higher
computational times than the remaining set covering approaches. We
will see later, when looking at the statistics of set covering constraints
in the Benders decomposition scheme (see Fig. 6), that in particular
these two approaches show the largest amount of constraints generated,
and thus the most iterations performed till convergence. Regarding
scalability, we see a similar increase of computational time over an
increasing percentage of trains for almost all set covering approaches.
The exception is the Chvatal heuristic, which shows a linear increase on
the logarithmic scale of Fig. 4 and thus a strong exponential increase
of computational time for higher percentages of trains. In Fig. 4, the
Optimal set covering approach scales similar to the other set covering
heuristics, which is to some extent a falsified image of the reality. Fig. 4
reports only instances that are solved by all set covering heuristics;
as shown in Fig. 3 this excludes in total 15 of the 140 generated
instances of timetabling. For 11 of those 15 instances, also the Optimal
set covering approach reached the time limit. Accounting for these
would clearly reveal a worse scalability of the Optimal approach than
actually reported in Fig. 4 and worse than the incremental set covering
approaches.

In set covering approaches we would expect the best performance
from the Complete Satisfaction heuristic. Such heuristic relaxes the
highest number of constraints in the subproblem in every iteration,
such that we expect a quick convergence to a feasible solution. Different
from our expectations, Fig. 4 does not report a particular superior
performance of the Complete Satisfaction heuristic in comparison to
other heuristics; only in Fig. 6 we can see a minor decrease in iterations
(constraints) for the Complete Satisfaction heuristic. We can conclude
from such result that the majority of the infeasible subsets of constraints
detected by Algorithm 2 must be non-overlapping or only marginally
overlapping, in terms of containing the same constraints. Only if in-
feasible subsets of constraints would overlap significantly, removing
all such constraints from the subproblem in a single iteration, as done

by the Complete Satisfaction heuristic, would bring a computational
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Fig. 4. Average computation time of set covering over 14 scenarios.
enefit; in this case the Complete Satisfaction heuristic would avoid all
verlapping infeasible subsets in the subproblem in a single iteration.
lse the removal of a single constraint from the subproblem for each
nfeasible subset is sufficient to avoid the infeasible subset in the
ubproblem and is thus as effective as removing all of them.

In Fig. 5 we report the objectives of timetables computed by differ-
nt approaches of set covering. The objectives reported in the figure are
he (continuous) planning deviation of a timetable, as in Problem (3);
e thus report the (continuous) planning deviation also for timetables

omputed based on a discrete objective, to provide a plausible compari-
on. In the style of Fig. 4, we report in Fig. 5 in the top plot the absolute
bjective values (total minutes of planning deviation as reals); in the
ottom plot we report the gap of the objective (planning deviation) of
pproaches with respect to (and normalized by) the objective of our
enchmark heuristic, the Random heuristic. The gap of the objective is
eported on average over all 14 scenarios of timetabling for different
ercentages of trains (instances) to see the scaling behavior.

Most striking in Fig. 5 is the performance of the Min Appearance
euristic. The objective of such heuristic is a factor higher (worse)
han for all other approaches. The other approaches perform all rather
imilar to each other, with the Chvatal heuristic and the Optimal
pproach performing slightly better for high percentages of trains.
ig. 5 indicates that avoiding redundant relaxations as done by the Min
ppearance heuristic is likely to result in timetables of poor quality.
he opposite thinking, i.e., if we exploit the overlap of infeasible sets
f constraints and focus on removing constraints from the subproblem,
hich appear in multiple such sets, seems to have rather little effect on

he quality of timetables. The Max Appearance heuristic, which exploits
xactly such overlap shows a rather similar quality of timetables as the
andom and also the Complete heuristic. These results match with the
arlier conclusion, that infeasible subsets of constraints overlap only
inor; in such case, the Max Appearance heuristic performs algorith-
ically almost identical as the Random heuristic. In summary, apart

rom the Min Appearance, the performance of incremental set covering
pproaches shows rather independent from the particular heuristic
sed. This indicates that the performance of incremental set covering
pproaches is more dominated by the infeasible subsets of constraints
iscovered, than by the particular incremental heuristic, used to adapt
he master solution.

We further see in Fig. 5 a rather expected increase of planning
eviation for an increasing amount of trains. The decrease of total
lanning deviation after 80% of trains for most of the approaches
s caused by neglecting more and more unsolved instances for 90%
10

nd 100% in the figure; neglected instances show on average a high
planning deviation. The bottom plot of Fig. 5 shows that the Chvatal
heuristic performs very similar to the Optimal approach with respect
to planning deviation, providing thus timetables of almost optimal
quality. The incremental heuristics all perform rater similar to each
other, with the Complete heuristic showing some more fluctuations in
quality. With respect to classical approaches, the incremental heuristics
perform with a gap of around ∼7%, minimum ∼5%. Overall Fig. 5
empirically underlines, that we are able to provide solutions of good
quality, i.e., gaps to an optimal solution of ∼7%, in short time, with
heuristic approaches of set covering.

Finally, we report in Fig. 6 statistics on the set covering problem in
solves of set covering approaches. In the top plot of Fig. 6, we report
the number of Benders cuts, i.e., set covering constraints, generated
in the Benders scheme till convergence; in the bottom plot we report
the average size of set covering constraints, i.e., number of binary
variables in the sum of constraint (9). The number of constraints
generated is equal to the number of iterations done by the Benders
scheme as a single constraint is generated in each iteration. Fig. 6
provides an empirical explanation to the computational performance
of the set covering approaches as reported in Figs. 3–5. In the top plot
of Fig. 6, we see a tendency of the Chvatal heuristic to generate an
over-proportional amount of constraints (iterations), which explains the
failure of such heuristic to solve all 140 instances of timetabling within
24 h. For the Optimal approach, we see an average performance in
terms of constraints and constraint size. We thus argue the reason for
unsolved instances in Fig. 3 to be the computational burden of solving
the master to optimality in every iteration of the Benders scheme. We
saw in Fig. 3 that incremental heuristics, different than the Chvatal
heuristic, where able to solve all 140 instances. We explain such result
by Fig. 6, as we see a less drastic increase of constraints (iterations)
on higher percentages of trains for incremental heuristics than for the
Chvatal heuristic.

Regarding the constraint size, the Min Appearance produces for low
percentages slightly bigger constraints, but then for high percentages
of trains (above 80%) significantly smaller constraints, in comparison
to all other approaches of set covering. In combination with the total
number of constraints generated, the Min Appearance heuristic seems
to produce a large number of constraints with small size, in terms of
binaries in the sum. In theory, as discussed by Codato and Fischetti
(2006), a combinatorial Benders cut of small size is mathematically
stronger and thus likely to be more useful for the computation of a
solution. In the application of our heuristics, such effect seems to be
rather negligible. We can see in Fig. 6 that for heuristic approaches,

not the strength of constraints seems to be the dominant factor for
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Fig. 5. Average objective of set covering over 14 scenarios.
performance, but rather the number of constraints (and iterations)
necessary to convergence; iterations seem to be less for constraints of
bigger size. Furthermore, we also conclude from Figs. 5 and 6 that
a larger number of constraints leads to more planning deviation in a
timetable (see Min Appearance). We explain such behavior, as in the
case where more iterations are necessary to converge, more constraints
are removed from the subproblem and thus more planning deviation is
possible in a solution of the subproblem.

In Fig. 6 we see approaches generating constraints of size 1. Such
constraints can occur in case a train cannot be scheduled without a
planning deviation exclusively due to constraints, which must hold in
any case (fixed precedence relations), i.e., minimal travel time and
transfer constraints. In this case, the infeasible subset of constraints
is a set of only one constraint (the constraint that must be relaxed
to allow for a planning deviation of the train) and consequentially set
covering constraint has size 1. In case a discrete decision (in particular
n ordering decision) with its selectable precedence relations, is part of
n infeasible subset of constraints, the related set covering constraints
as size 2 or bigger. In this case the infeasible subset will contain

constraints of planning deviation (4) related to more than one train,
in particular all trains involved in the decision.

7.4. Comparison of benchmarks and set covering

In a second series of experiments we compare the results of our set
overing approaches with the benchmark approaches of Section 7.2.

Likewise to approaches in set covering, due to the limitation of
omputational time to 24 h, benchmark approaches could not provide
esults for all instances within the given time. In the style of Fig. 3 for
et covering, we report in Fig. 7 the highest percentages of trains up
o which individual benchmark approaches provide solutions within
he time limit. For benchmarks computed by Gurobi, we report the
umber of optimal solutions as in all cases at least a feasible solution
as provided. We report the number of optimal solutions by a dashed

ine. The Z3 solver was in general unable to provide any solution
or the timetabling problem with a continuous objective; we do not
eport such benchmark in Fig. 7. Also for the timetabling with discrete
bjective Z3 provides only few solutions, disclosing the struggle of Z3
11
with the timetabling problem of this work. The low performance of Z3
can be explained by the design and tuning of Z3 mainly for problems
of feasibility and not optimality as it is the case for our timetabling
problem.

We can see in Fig. 7 that the commercial solver Gurobi, which is
designed for optimization over continuous variables, is able to solve
more instances to optimality with the continuous objective than with
the discrete objective. Problem (6) with a discrete objective contains
a higher number of big-M constraints. These often decrease the per-
formance of mixed-integer solvers such as Gurobi, as big-M constraints
have a poor linear relaxation and such relaxations are heavily used in
mixed-integer optimization.

In the style of Fig. 4, we report in Fig. 8 the computational time of
benchmark approaches together with the Random heuristic (as the set
covering benchmark) and the Optimal approach of set covering (as the
only optimal approach based on set covering). The top plot in Fig. 8
reports the absolute computation time; the bottom plot reports the
normalized computational time with respect to the Random heuristic
of set covering. With dashed lines in Fig. 8 we report numbers that are
computed as averages over less than the 14 scenarios of timetabling:
some instances could not be solved by the respective approach for the
percentage of trains reported on the 𝑥-axis. Solid lines report an average
over all 14 scenarios of timetabling. We can see in Fig. 8 that Gurobi
shows a better performance for the continuous objective than for the
discrete objective, as discussed earlier, due to a higher numbers of
big-M constraints in the discrete case. Z3 shows a significant slower
performance than Gurobi for the discrete approach, as discussed, likely
due to the design of Z3 for problems of feasibility, and thus showing
difficulties in optimization.

Comparing benchmarks to set covering approaches, we see a ma-
jor advantage of incremental set covering heuristics regarding com-
putational speed. At 100% of trains the Random heuristic shows a
computational speedup of roughly a factor ∼390 compared to the
fastest benchmark, i.e., Gurobi (Continuous). Such high computational
speedup is mainly due to the three instances ZUE-CH 1, ZUE-CH 2 and
ZUE-CH 3, especially ZUE-CH 3, at 100% of trains, where no optimal
solution could be provided by Gurobi. These three instances propose a

significant challenge for Gurobi due to their high amount of routing
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Fig. 6. Average problem size in set covering over 14 scenarios.
Fig. 7. Instances solved to optimality (Gurobi) or feasibility (Z3) by benchmark approaches.
Fig. 8. Average computation time of benchmarks over 14 scenarios.
alternatives, while the instances are solved rather efficiently by the
set covering heuristics. Ignoring completely these three instances, the
average computational speedup for the 100% instances is still well
above 50.

We can further see in Fig. 8 that the Optimal set covering ap-
proach, while initially performing as good as the Random heuristic,
approaches for percentages of trains above 80%, a performance similar
12
to Gurobi, such that we can empirically see no major advantage in
solving a timetabling problem to optimality by our decomposition
(set covering) approach, instead of directly applying a commercial
solver. The bottom plot of Fig. 8 indicates a benefit of incremental
heuristics over benchmarks regarding scalability. The normalized time
of benchmarks (normalized by the Random heuristic) notably increases
for high percentages of trains (above 70%), empirically underlining
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Fig. 9. Average objective of benchmarks over 14 scenarios.
Fig. 10. Objective gaps for different time limitations on instances with 100% of trains.
the advantage of incremental set covering heuristics regarding the
computational scalability.

While in speed, incremental set covering heuristics proved superior,
it remains to analyze the quality (planning deviation) of timetables
provided by benchmarks, to empirically estimate the sacrifice in quality
made by set covering heuristics in favor of computational speed. With
Fig. 9 we report in the style of Fig. 5 the performance of benchmarks
in terms of planning deviation in the computed timetables. We provide
a comparison to set covering approaches as we report the Random
heuristic and the Optimal set covering approach in the same plots.
In the top plot of Fig. 9, we report the absolute planning deviation
of the timetable solutions of different approaches. In the bottom plot,
we report the gap in the objective (planning deviation) of benchmarks
with respect to (and normalized by) the Random set covering heuristic.
The gap is reported on average over all 14 scenarios of timetabling
for different percentages of trains. As for Fig. 8, dashed lines indicate
a reporting over an average over less than 14 scenarios. A negative
objective gap in the bottom plot of Fig. 9 indicates a performance better
than the Random heuristic in terms of objective value.

In Fig. 9, we see that on average, in case of a discrete objec-
tive, the benchmark approaches Gurobi (blue) and Z3 (cyan) perform
significantly worse in terms of total planning deviation than set cover-
ing approaches. We explain the superior performance of set covering
heuristics by Algorithm 2. In Algorithm 2, in case the master solution
allows for a feasible solution in the subproblem, such solution is defined
13

by a choice for each discrete decision and a time for each event. Given
the choices, the times for the events are computed through a longest
path propagation over a directed graph, whose arcs represent fixed and
selected (chosen) precedence relations in the subproblem. Event times
found in this manner minimize the total sum of all event times. This
is the key difference between approaches of set covering and bench-
mark approaches with a discrete objective. In case of benchmarks,
event times are arbitrarily chosen within their feasible range (accord-
ing to the choices of timetabling) and not minimized in their total
sum; only discrete planning deviation is minimized. Therefore, bench-
marks show more (continuous) planning deviation than set covering
approaches.

In general, we see in Fig. 9 that Gurobi with a continuous objective
in timetabling performing best; this approach provides an optimal
solution to the continuous formulation of railway timetabling given in
this paper. In the bottom plot of Fig. 9, we see that Gurobi (Continuous)
computes on average timetable with ∼7.5% less planning deviation
than the Random heuristic of set covering. Also, we can see that due
to the discretization, the Optimal set covering approach is unable to
achieve a performance as good as Gurobi with a continuous objective.
Finally, we see that for 100% of trains Gurobi (Continuous) computes
timetables with an average of ∼4% more planning deviation than
the Random heuristic. The on average higher planning deviation is
caused by one instance where Gurobi was unable to provide an optimal
solution within the time limit (see Fig. 7). If such instance is ignored,
Gurobi (Continuous) shows an average better performance of ∼10% less

planning deviation than the Random set covering heuristic. In terms of
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Table 2
Instance characteristics.

Scenario Max deviation Instance: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

ZUE-CH 1 30 min Trains 22 45 67 90 113 135 158 180 203 226
Stops 155 309 449 606 781 923 1074 1213 1349 1507
Transfers 2 10 22 30 40 57 82 116 140 170
Ordering 98 846 1927 3515 5389 7774 10 395 13 439 17 142 21 261
Routing 433 1183 1893 2539 3107 3739 4297 4925 5420 5962

ZUE-CH 2 30 min Trains 28 56 84 112 141 169 197 225 253 282
Stops 205 365 549 718 894 1093 1287 1469 1609 1777
Transfers 2 8 18 30 44 62 102 133 164 196
Ordering 267 947 2297 4012 5983 9036 12 006 15 161 18 974 24 447
Routing 965 1978 2987 3832 4622 5410 6499 7062 7909 8739

ZUE-CH 3 30 min Trains 26 52 79 105 132 158 184 211 237 264
Stops 146 308 524 693 907 1062 1238 1399 1562 1746
Transfers 0 2 11 21 32 58 78 109 140 188
Ordering 262 953 2296 4172 6132 8455 11 592 14 812 18 962 23 294
Routing 783 1510 2227 3187 4154 4733 5518 6400 7296 8085

BN 30 min Trains 33 67 100 134 168 201 235 268 302 336
Stops 329 668 980 1265 1598 1920 2283 2597 2875 3143
Transfers 2 7 12 27 45 70 97 133 173 212
Ordering 36 198 348 578 929 1267 2143 2703 3358 4258
Routing 49 97 137 189 241 286 430 482 526 580

LZ-AA 30 min Trains 21 42 64 85 107 128 149 171 192 214
Stops 232 431 610 780 951 1150 1319 1503 1606 1789
Transfers 0 10 19 22 32 46 68 84 113 134
Ordering 22 61 176 295 487 780 1101 1526 1977 2396
Routing 50 97 185 233 311 433 513 599 650 732

HE-LZ 30 min Trains 36 73 109 146 183 219 256 292 329 366
Stops 399 767 1091 1490 1885 2292 2770 3048 3406 3751
Transfers 3 17 33 53 75 101 135 179 223 278
Ordering 56 175 359 675 1124 1852 2381 2949 3729 4384
Routing 110 170 258 371 483 696 777 853 947 1006

ZAS-YV 30 min Trains 47 95 143 191 239 287 335 383 431 479
Stops 402 899 1426 1863 2376 2781 3240 3660 4159 4639
Transfers 2 10 18 26 50 79 110 142 184 225
Ordering 69 266 584 966 1493 2183 2779 3646 4843 6025
Routing 70 164 254 312 418 514 579 667 842 956

RH-ZAS 30 min Trains 28 56 84 112 140 168 196 224 252 280
Stops 338 628 926 1343 1689 1931 2324 2662 2935 3260
Transfers 2 2 12 26 41 51 69 81 116 143
Ordering 20 90 234 456 718 1079 1647 2111 2869 3533
Routing 21 52 84 120 143 199 223 260 348 380

ZAS-BEL 1 h Trains 27 54 82 109 137 164 191 219 246 274
Stops 244 552 815 1085 1387 1612 1865 2207 2467 2787
Transfers 1 6 7 15 19 29 44 61 70 85
Ordering 32 181 507 966 1512 1911 2517 3403 4612 5767
Routing 32 78 132 180 230 256 298 354 568 611

ZUE-SG 30 min Trains 70 140 210 280 350 420 489 560 630 700
Stops 776 1651 2314 3001 3724 4433 5183 6067 6868 7752
Transfers 3 19 43 71 123 180 245 327 413 503
Ordering 112 354 977 1941 3068 4182 5480 7147 8718 10 709
Routing 86 113 314 395 486 531 580 674 715 782

BN-ZAS 30 min Trains 23 47 71 95 119 143 167 191 215 239
Stops 247 496 741 1016 1294 1539 1845 2101 2325 2640
Transfers 1 1 3 8 14 21 30 39 51 64
Ordering 0 0 0 0 0 406 442 514 557 632
Routing 62 102 162 200 245 1033 1061 1101 1145 1209

ZUE-OTH 30 min Trains 16 33 50 67 84 100 117 134 151 168
Stops 220 393 596 745 880 1052 1170 1328 1496 1640
Transfers 0 2 4 5 11 14 19 26 37 44
Ordering 29 62 90 106 146 156 199 212 269 331
Routing 271 279 289 295 307 307 323 327 337 357

BDF-SO 1 h Trains 71 143 215 287 359 431 503 575 647 719
Stops 858 1709 2542 3418 4201 4950 5856 6674 7516 8273
Transfers 6 11 35 81 138 203 260 329 426 514
Ordering 0 0 0 0 236 653 907 1176 1993 2566
Routing 18 42 74 90 168 272 376 462 564 668

GD-BS 30 min Trains 36 73 109 146 183 219 256 292 329 366
Stops 317 700 936 1282 1542 1859 2129 2392 2718 3150
Transfers 0 5 16 28 43 64 86 107 141 180
Ordering 0 0 0 443 533 659 728 800 924 994
Routing 46 94 128 741 859 927 971 993 1064 1092
14
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absolute planning deviation, 10% correspond to 310 additional minutes
of planning deviation, which, considering an average of 350 train per
instance, results in 0.9 min of additional planning deviation per train.

Finally, we study the performance of Gurobi in a setting where com-
putational time is strictly limited; this would for example correspond to
a human-interactive usage of Gurobi. We report in Fig. 10 the objective
gap of Gurobi under different computational time limits, i.e., 5, 10 and
15 min, with respect to Gurobi at 24 h of computational time. We
report further the same objective gap also for the Random set covering
heuristic in Fig. 10. Experiments in Fig. 10 report only on instances
with 100% of trains. In the earlier Fig. 9, we saw that given enough
computational time, Gurobi was outperforming our heuristic in terms
of objective value.

Fig. 10 clearly shows the opposite case, that the heuristics finds
better solution than Gurobi, when this latter is subject to the strict time
limitations matching the speed of the heuristic. Fig. 10 shows that for
the first three instances, Gurobi was unable to provide any solution,
within 15 min. For the remaining instances, the Random heuristic
mostly provides better solutions, except for: instance RH-ZAS, where
all approaches result in the same result; and instance GD-BS where all
Gurobi approaches lead to the same result, that is ∼8% better than
the results of the Random heuristic. Overall Fig. 10 underlines that
our heuristics is able to find quickly good solutions, for the instances
and time limit considered in the considered variant of the timetabling
problem. The solutions found are much closer to the optimal solutions
(computed without time limitations) than a time limited standard
approach like Gurobi. The heuristic solutions are good enough and
fast enough to allow implementation, and support a human-interactive
application for timetabling.

8. Conclusion

In this paper, we introduce multiple approaches for solving a variant
of the microscopic railway timetabling problem, which is solved to
determine detailed solutions, starting from a given reference timetable,
in a tactical scope. Based on a novel reformulation of the problem, the
solution process becomes a set covering problem. With a discretization
of the objective in timetabling we can decompose the timetabling
problem using a Benders decomposition, into a set covering problem as
the master problem and a timetabling problem, where only feasibility
must be evaluated, as the subproblem. In the set covering problem,
the sets to be selected correspond to planning deviations of trains,
such that the selection of a set corresponds to an additional amount of
planning deviation for a train. The Benders decompositions separates
the question of optimality (i.e., deviation) in the master from the
question of feasibility in the subproblem (i.e., routing, ordering and
timing). The Benders decomposition we propose is designed to exploit
the combinatorial Benders cuts introduced in Codato and Fischetti
(2006). In this paper, we propose multiple approaches to address
the set covering problem that is the master problem in the proposed
decomposition. Along with standard approaches of solving the master
problem to optimality in every iteration of the Benders scheme, we
propose 4 different incremental heuristics to address the master prob-
lem. We propose incremental heuristics, which exploit the incremental
growth of the master problem in the Benders scheme and maintain a
master solution throughout the iterations of the scheme by incremental
adaptations of an existing solution.

In two exhaustive series of experiments we analyze the perfor-
mance of all of our set covering approaches and compare such results
with multiple benchmarks. In benchmarks, we address the timetabling
problem by commercial solvers, in particular Gurobi and Z3. Both
solvers are applied to the microscopic timetabling problem with both
continuous and the discrete objective. Experiments show that with
set covering heuristics we can solve instances of timetabling up to a
factor of ∼20 faster, while maintaining a quality of timetables with on
15

average 7.5% more planning deviation compared to an optimal solution
computed by Gurobi; heuristics never exceeding more than 10% of
additional planning deviation compared to an optimal solution.

Further research in the approach of set covering for railway
timetabling should clearly include the design and analysis of further
incremental heuristics. Apart from the Min Appearance heuristic, all
other heuristics show a very similar performance, including the Ran-
dom heuristics. This indicates that heuristics proposed in this paper
do not yet fully exploit the potential of our set covering approach, as
no heuristic shows a clear superiority over the Random heuristic and
further research is advisable. Also a mix of heuristics and an optimal
approach in set covering should be investigated. In the current setup,
incremental heuristics stop as soon as a feasible solution is found. A
different branch of research should investigate possible improvements
in quality (planning deviation) of timetables, when given additional
time for further computations beyond a first feasible solution.
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