
ETH Library

Faster Deterministic Distributed
MIS and Approximate Matching

Conference Paper

Author(s):
Ghaffari, Mohsen; Grunau, Christoph 

Publication date:
2023-06-02

Permanent link:
https://doi.org/10.3929/ethz-b-000620429

Rights / license:
Creative Commons Attribution-NoDerivatives 4.0 International

Originally published in:
https://doi.org/10.1145/3564246.3585243

Funding acknowledgement:
853109 - Distributed and Massively Parallel Graph Algorithms (EC)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-1057-9429
https://doi.org/10.3929/ethz-b-000620429
http://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3564246.3585243
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Faster Deterministic Distributed MIS and Approximate Matching

Mohsen Gha�ari
MIT

Cambridge, MA, USA
gha�ari@mit.edu

Christoph Grunau
ETH Zurich

Zurich, Switzerland
cgrunau@inf.ethz.ch

ABSTRACT

We present an $̃ (log2 =) round deterministic distributed algorithm

for the maximal independent set problem. By known reductions,

this round complexity extends also to maximal matching, Δ + 1
vertex coloring, and 2Δ − 1 edge coloring. These four problems are

among the most central problems in distributed graph algorithms

and have been studied extensively for the past four decades. This

improved round complexity comes closer to the Ω̃(log=) lower
bound of maximal independent set and maximal matching [Balliu

et al. FOCS ’19]. The previous best known deterministic complexity

for all of these problemswasΘ(log3 =). Via the shattering technique,
the improvement permeates also to the corresponding randomized

complexities, e.g., the new randomized complexity of Δ + 1 vertex
coloring is now $̃ (log2 log=) rounds.

Our approach is a novel combination of the previously known

(and seemingly orthogonal) two methods for developing fast deter-

ministic algorithms for these problems, namely global derandomiza-

tion via network decomposition (see e.g., [Rozhon, Gha�ari STOC’20;

Gha�ari, Grunau, Rozhon SODA’21; Gha�ari et al. SODA’23]) and

local rounding of fractional solutions (see e.g., [Fischer DISC’17;

Harris FOCS’19; Fischer, Gha�ari, Kuhn FOCS’17; Gha�ari, Kuhn

FOCS’21; Faour et al. SODA’23]). We consider a relaxation of the

classic network decomposition concept, where instead of requiring

the clusters in the same block to be non-adjacent, we allow each

node to have a small number of neighboring clusters. We also show

a deterministic algorithm that computes this relaxed decomposi-

tion faster than standard decompositions. We then use this relaxed

decomposition to signi�cantly improve the integrality of certain

fractional solutions, before handing them to the local rounding

procedure that now has to do fewer rounding steps.
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1 INTRODUCTION

In this paper, we present a faster deterministic distributed algorithm

for the Maximal Independent Set (MIS) problem, which is one of the

most central problems in distributed graph algorithms and has been

studied extensively for the past four decades. This improvement

has implications for several other problems. Our main novelty

is a technique that combines the two previously known general

approaches, which seemed unrelated and incompatible hitherto. We

are hopeful that this new technique �nds applications in a wider

range of problems. We next set up the context, and then discuss

our results and approach.

Distributed Model: We work with the standard synchronous

message-passing model of distributed computing, often referred to

as the LOCAL model, due to Linial [24]. The network is abstracted

as an =-node undirected graph � = (+ , �), where each node repre-

sents one processor and a link between two nodes indicates that

those two processors can communicate directly. Each processor has

a unique 1-bit identi�er, where we typically assume 1 = $ (log=).
Initially, nodes do not know the topology of the network � , except

for potentially knowing some global parameters such as a polyno-

mial upper bound on =. Computations and communications take

place in synchronous rounds. Per round, after doing arbitrary com-

putations on the data that it holds, each process/node can send one

message to each of its neighbors. In the LOCALmodel, the message

sizes are not bounded. The model variant where message sizes are

limited to$ (log=)-bits is known as the CONGEST model[31]. The

messages sent in a round are delivered before the end of that round.

At the end of the computation, each node should know its own

output, e.g., in the MIS problem, each node should know whether

it is in the computed maximal independent set or not.

1.1 State of the Art

Randomized algorithms, and the pursuit of deterministic algo-

rithms. In the 1980s, Luby[27] and Alon, Babai, and Itai[1] pre-

sented a simple and elegant randomized distributed algorithm that

computes an MIS in $ (log=) rounds, with high probability1. Due

to known reductions, this MIS algorithm led to $ (log=) round
randomized algorithms for many other key graph problems, includ-

ing maximal matching, Δ + 1 vertex coloring, and (2Δ − 1) edge
coloring. These problems are often listed as the four fundamental

1As standard, the phrase with high probability indicates that an event happens with
probability at least 1 − 1/=.
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symmetry-breaking problems in distributed graph algorithms and

have a wide range of applications. The $ (log=)-round random-

ized algorithm naturally led the researchers to seek a deterministic

distributed algorithm with the same round complexity. In his cel-

ebrated work [24, 25], Linial asked “can it [MIS] always be found

in polylogarithmic time [deterministically]?” He even added that

“getting a deterministic polylog-time algorithm for MIS seems hard.”

Since then, this became known as Linial’s MIS question and turned

into one of the research foci in distributed graph algorithms.

The two approaches of deterministic algorithms. Linial’s MIS prob-

lem remained open for nearly three decades. During this time, two

di�erent general approaches were developed and pursued. The �rst

approach relies on global computations/derandomization via network

decompositions. The second approach is based on local rounding

of certain fractional solutions. Over the past couple of years, both

approaches came to fruition and led to two completely indepen-

dent polylogarithmic time deterministic distributed algorithms for

MIS [13, 32]. The round complexities are still Ω̃(log3 =), which is

somewhat far from the randomized$ (log=) complexity [1, 27]. We

next discuss each approach separately.

(I) Global computation/derandomization via network decomposi-

tion. The �rst approach is based on the concept of network decom-

position, which was introduced by Awerbuch, Goldberg, Luby, and

Plotkin [4] as the key tool in developing deterministic distributed

algorithms for MIS and other symmetry-breaking problems. A (2, 3)
network decomposition is a partition of the vertex set into 2 disjoint

parts, each known as a block, such that in the subgraph induced by

the nodes in each block, each connected component has a diameter

of at most 3 . Said di�erently, each block consists of non-adjacent

clusters, each of diameter2 at most 3 . Given a (2, 3) network decom-

position, it is easy to compute an MIS in$ (23) rounds: The rounds
are organized in 2 iterations, each consisting of$ (3) rounds. In iter-

ation 8 , we add to the output independent set an MIS of the nodes of

block 8 , which can be computed easily in$ (3) rounds as each cluster
in the block has a diameter of at most3 . We then remove any node in

any other block that has a neighbor in this independent set and then

move to the next iteration. Any =-node graph has a (2, 3) network
decomposition for 2 = 3 = $ (log=) [2]. Awerbuch et al.[4] gave a

deterministic distributed algorithm that computed a (2, 3) decompo-

sition in C rounds for 2 = 3 = C = 2$ (
√
log= log log=) . These bounds

were improved to 2$ (
√
log=) by Panconesi and Srinivasan [30].

By a technique of Awerbuch, Berger, Cowen, and Peleg [3], one

can transform any C-round (2, 3) decomposition algorithm to a

(C + 23) · poly(log=)-round (log=, log=) network decomposition

algorithm in the LOCAL model.

The 2$ (
√
log=) bounds of Panconesi and Srinivasan remained

the state of the art for over 25 years, until getting improved dramat-

ically to poly(log=) by a new decomposition algorithm of Rozhon

and Gha�ari [32]. That gave the �rst polylogarithmic-time deter-

ministic distributed algorithm for MIS, and thus the �rst positive

resolution to Linial’s MIS question. The algorithm was optimized

in a follow-up work of Gha�ari, Grunau, and Rozhon [18], which

2If the diameter is measured in the induced subgraph, this is known as a strong-
diameter network decomposition. If the distance is measured in the original graph,
this is known as a weak-diameter network decomposition.

brought down MIS’s deterministic round complexity to $ (log5 =).
See also [9, 11] which obtain strong-diameter guarantees with small

messages. In a very recent work, Gha�ari, Grunau, Haeupler, Ilchi,

and Rozhon [17] presented a completely di�erent and faster method

for computing network decompositions. Their algorithm computes

a (2, 3) strong-diameter network decomposition for 2 = $ (log=)
and 3 = $ (log= · log log log=) in $̃ (log3 =) rounds, using$ (log=)-
bit messages. This is the state of art decomposition in essentially all

regards, and it provides an $̃ (log3 =) round deterministic algorithm

for MIS.

(II) Local rounding of fractional solutions. The second approach

is based on obtaining fractional solutions to certain relaxations

of the problem and then, locally and gradually rounding these

solutions into integral solutions. Unlike the network decomposition

approach, which was obviously applicable to all the symmetry-

breaking problems from the start, the applicability of the rounding

approach appeared limited at �rst and gradually increased. It started

�rst with only the maximal matching problem, then extended to

2Δ − 1 edge coloring, then to Δ + 1 vertex coloring, and �nally to

the hardest of all, the MIS problem.

The starting point is the work of Hanckowiak, Karonski, and

Panconesi [22] who gave the �rst poly log=-time deterministic dis-

tributed algorithm for the maximal matching problem. Fischer[14]

rephrased their approach in a rounding language and used this to

improve the maximal matching complexity to $ (log2 Δ · log=).
Fischer’s rounding was very speci�c to matching in graphs. Fis-

cher, Gha�ari, and Kuhn[15] developed a di�erent roundingmethod

for matchings that extended to low-rank hypergraphs. By a reduc-

tion that they provided from (2Δ − 1)-edge coloring in graphs to

maximal matching in hypergraphs of rank 3, this led to a poly log=-

time deterministic algorithm for (2Δ − 1)-edge coloring, hence

putting the second problem in the poly(log=) regime. Harris[23]

improved the complexity to $̃ (log2 Δ · log=).
The above local rounding approaches appeared limited to match-

ing in graphs or hypergraphs, until a work of Gha�ari and Kuhn [20].

They developed an e�cient rounding method for Δ + 1 coloring
(this was shortly after the �rst polylogarithmic-time network de-

composition result [32]). This was by reexamining the analysis

of the natural randomized coloring algorithm, seeing it as a frac-

tional/probabilistic assignment of colors to the nodes which has a

small bound on the expected number of monochromatic edges, and

then gradually rounding the fractional assignments while approxi-

mately maintaining the upper bound on the expected number of

monochromatic edges.

Finally, in a very recent work, Faour, Gha�ari, Grunau, Kuhn,

and Rozhon [13] found a signi�cant generalization of the above

local roundings. They presented a uni�ed method that can provide

local rounding for any problemwhose randomized solution analysis

relies on only pairwise independence. This led to algorithms with

round complexity $ (log2 Δ log=) for MIS and thus also for the

other three problems mentioned above, and in a uni�ed way.

1.2 Our Results

Unifying the two approaches and faster deterministic MIS.. As

discussed above, prior to the present paper, the best known deter-

ministic complexity of MIS (and indeed any of the other three key
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symmetry breaking problems) remained Ω(log3 =)[13, 17]. This
is somewhat far from the randomized $ (log=) round complex-

ity [1, 27]. Furthermore, the two approaches seemed unrelated and

incompatible. In this paper, we present a method to combine the

two general approaches, which allows us to achieve a deterministic

round complexity of $̃ (log2 =) for MIS.

Theorem 1.1. There is a deterministic distributed algorithm, in

the LOCAL model, that computes a maximal independent set (MIS)

in $̃ (log2 =) rounds. This also implies that there are LOCAL-model

deterministic distributed algorithms with $̃ (log2 =) rounds complex-

ity also for maximal matching, (346 + 1)-list vertex coloring, and

(2346 − 1)-list edge coloring3.

This comes closer to the Ω̃(log=) lower bound, due to Balliu

et al.[5], which holds for deterministic distributed algorithms that

compute maximal independent set or maximal matching.

Faster approximate maximum matching. Our method also leads

to a faster deterministic algorithm for computing a constant ap-

proximation of the maximum matching, in $̃ (log4/3 =) rounds. By
adding to this the approximation booster of Fischer, Mitrovic, and

Uitto [16], we can improve the approximation to (1+n) for any desir-
ably small constant n > 0with no asymptotic round complexity loss.

The previous best round complexity for constant approximation of

the maximum matching was $ (log2 Δ) [13, 14].
Theorem 1.2. There is a deterministic distributed algorithm, in

the LOCAL model, that computes a Θ(1)-approximate maximum

matching in $̃ (log4/3 =) rounds. This can be boosted to an algorithm

that computes a (1 + n) approximation of maximum matching in

$̃ (log4/3 =) · poly(1/n) rounds.
Due to space limitations, the proof of Theorem 1.2 is deferred to

the full version of this paper.

Corollaries for randomized coloring. Our faster deterministic algo-

rithm can be plugged in into the shattering framework of random-

ized algorithms[7, 10] and improves the randomized complexity for

Δ + 1 vertex coloring and 2Δ − 1 edge coloring.
Corollary 1.3 (Theorem 1.1+[10]). There is a randomized dis-

tributed algorithm, in the LOCAL model, that computes a Δ + 1
vertex coloring in $̃ ((log log=)2) rounds. The same holds also for the

2Δ − 1 edge coloring problem.

1.3 Other Related Work

We discussed in Section 1.1 deterministic constructions for network

decomposition and the generic method of using network decompo-

sition for symmetry-breaking problems, e.g., MIS. Let us add here

three side comments and mention the related work.

(1) Better randomized constructions for network decomposition

have been known. In particular, the work of Linial and Saks [26]

presented an$ (log2 =) round randomized algorithm for computing

decompositions with $ (log=) colors and $ (log=) weak diameter.

3In the (346 + 1)-list vertex coloring, each node E having a prescribed list !E of colors,
of size |!E | ≥ 346 (E) + 1 from which it should choose its color. In the (2346 − 1)-
list edge coloring, each edge 4 = {E,D} has a prescribed list !4 of colors, of size
|!4 | ≥ 346 (E) + 346 (D ) − 1 from which it should choose its color. Both problems
reduce to MIS by a reduction of Luby [25, 27].

Elkin and Neiman [12] imported a parallel algorithm of Miller, Peng

and Xu [29] into the distributed setting and obtained an $ (log2 =)
round randomized algorithm for computing decompositions with

$ (log=) colors and $ (log=) strong diameter.

(2) The deterministic MIS method described in Section 1.1 for

using network decompositions in computing symmetry-breaking

problems such as MIS would require large messages, as it gathers

the topology of each cluster in a center. For MIS, one can work

with $ (log=)-bit messages, by using a derandomization method

of Censor-Hillel, Parter, and Schwartzman [8], and that gives a

deterministic algorithm with$ (log=)-bit messages and round com-

plexity$ (23) ·poly(log=). Similar approaches have been presented

for other problems, see e.g., Bamberger et al. [6] for results on Δ + 1
coloring.

(3) Gha�ari, Harris, and Kuhn [19] and Gha�ari, Kuhn and

Maus [21] showed that one can get a general derandomization

method for the LOCAL model using network decompositions. This

method transforms any poly(log=)-round randomized algorithm

for any problem whose solution can be checked in poly(log=)
rounds into a deterministic algorithmwith round complexity$ (23+
C) · poly(log=), assuming we have a deterministic (2, 3) network
decomposition algorithm with round complexity C .

2 OUR APPROACH

To discuss our approach and put it in the context of prior work, let

us use the problem of maximal matching. This is a special case of

the maximal independent set problem (on line graphs), but it will

su�ce for explaining most of the key ideas in our overall approach.

2.1 The Previous Methods and Their Barriers

Asmentioned before, the previous two approaches for deterministic

algorithms both get stuck at a round complexity of $̃ (log3 =). Let
us brie�y overview the approaches and their barriers here. This

discussion will help us explain how we obtain a faster algorithm.

Local rounding of fractional solutions. For maximal matching,

Fischer [14] and Faour et al. [13] provide two di�erent local round-

ing algorithms, both achieving an$ (log2 Δ log=) complexity. Both

round complexities are stuck at essentially the same barrier, so

we discuss only Fischer’s approach. It is easy to deterministically

obtain a constant-approximate fractional matching in $ (logΔ)
rounds4 [14]. The real challenge for deterministic algorithms is

in rounding this fractional matching into an integral matching.

Fischer [14] gradually improves the integrality of the fractional

solution from 1/Δ to 1, in logΔ gradual rounding steps, each time

doubling the minimum edge value. Each doubling step in the algo-

rithm takes Θ(1/Y) = Θ(logΔ) rounds, as we need to ensure that

there is a loss of at most n = 1/(2 logΔ) fraction in the matching

size, so that the total loss over all the logΔ iterations is at most a

constant. One can see that, for an arbitrary fractional matching,

this Θ(1/Y) complexity is the best possible. Considering the logΔ

gradual rounding steps, this yields a constant-approximate integral

matching in $ (log2 Δ) rounds. We emphasize that this runtime

4Start with a fractional assignment of G4 = 1/Δ to all edges. Then, we have logΔ
iterations. Per iteration, for each edge 4 such that each endpoint E of it has

∑
4′ ∋E G4′ ≤

1/2, set G4 ← 2G4 .
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is quadratic in the number of rounding steps, as we need to en-

sure that the relative loss per step is less than the inverse of the

number of steps. Via $ (log=) repetitions of constant-approximate

maximum matching, each time on the subgraph induced by ver-

tices that remained unmatched, one gets a maximal matching with

complexity $ (log2 Δ · log=).

Global computation via network decomposition. The state-of-the-

art network decomposition algorithm [17] computes a decompo-

sition with $ (log=) vertex-disjoint blocks, where the subgraph

induced by each block consists of connected components of diame-

ter $̃ (log=), in $̃ (log3 =) rounds. Given this, it is easy to compute

maximal matching or MIS in $̃ (log2 =) rounds. But the construction
time is the bottleneck in these applications.

Let us revisit this decomposition-based approach for the constant-

approximate maximummatching problem. This discussion will help

us later to explain our approach. As discussed above,$ (log=) repe-
titions of constant-approximate maximummatching give a maximal

matching. Consider a constant-approximate fractional maximum

matching. As mentioned above, we know how to compute this

easily in $ (logΔ) rounds. The task is to turn this into an integral

matching of the same size, up to a constant factor. The network

decomposition algorithm [17] computes the blocks one by one,

each in $̃ (log2 =) rounds, such that each block clusters a constant

fraction of the remaining nodes into non-adjacent clusters, each of

diameter $̃ (log=). We can adjust the block construction in such a

way that, instead of a constant fraction of nodes getting clustered,

we ensure that at least a constant fraction of the weight of the

fractional matching is on the edges inside the clusters. It is easy to

see that randomized rounding can turn (each cluster’s) fractional

matching into an integral matching of the same size up to a con-

stant factor. So, to deterministically do the rounding, we can simply

gather each cluster’s information (and constraints) into the clus-

ter center and compute the integral matching. This takes $̃ (log=)
rounds, as the cluster diameter is $̃ (log=). It is worth noting that

the current method for building each block of the decomposition

requires $̃ (log2 =) rounds, as it has $̃ (log=) steps of randomness

�xing, each involving coordination along $̃ (log=)-hop distances.

2.2 Low-diameter Low-degree Clusterings

In our approach, we work with a relaxed variant of the standard

network decompositions. In particular, we work with clusterings

that have a lower diameter than the standard Θ(log=) bound. This
opens the road for faster deterministic constructions. However, it

comes at the disadvantage that we do not have only log= blocks,

each consisting of non-adjacent clusters. We instead maintain a

small bound on the maximum number of clusters that are adjacent

to each particular node. To state the formal decomposition, let us

�rst present the formal de�nitions.

De�nition 2.1. [Cluster, Clustering, Partition, Cluster Degree of

a Vertex, Diameter of a Cluster] A subset � ⊆ + is called a cluster.

The (strong)-diameter of a cluster is de�ned asmaxD,E∈� 3� [� ] (D, E).
A clustering C is a set of disjoint clusters. We refer to C as a par-

tition if
⋃
�∈C � = + . The diameter of a clustering C is de�ned

as the maximum diameter of all its clusters. For a node D ∈ +

and a clustering C, we de�ne the degree of D with respect to C

as 346C (D) = |{� ∈ C : 3 (�,D) ≤ 1}|. We sometimes refer to

maxD∈+ degC (D) as the degree of this clustering.

We show an algorithm that computes$ (U)-diameter (2$̃ (log=)/U )-
degree clusterings in $̃ (U2 log=) rounds of the LOCAL model.

Theorem 2.1. Let U ≤ log= be an arbitrary value. There exists a

deterministic distributed algorithm that in $̃ (U2 log=) rounds of the
LOCAL model computes a partition C with

(1) diameter $ (U) and
(2) maxD∈+ degC (D) = 2$̃ (log=)/U , i.e., each node has neighbors

in at most 2$̃ (log=)/U clusters.

We note that the existence of such a clustering/partition, and

even e�cient randomized constructions for it, follow from known

randomized methods [29]. We provide an e�cient deterministic

distributed construction here, as we outline in Section 2.4. Further-

more, we show that this relaxed notion is still useful for applications

in the maximal independent set and maximal matching problems,

as we next outline in Section 2.3.

As a side comment, we note that for some applications (e.g.,

approximate-matching), it su�ces to have a weaker version of

Theorem 2.1 where only a constant fraction of nodes (or a con-

stant fraction of the weight of the nodes, according to some given

weights) is clustered. For that version, we have a faster algorithm

that runs in $̃ (U log=) rounds of the LOCAL model. The precise

statement is as follows.

Theorem 2.2. Let U ≤ log= be an arbitrary value and assume

that each node D ∈ + is equipped with a value GD ∈
[
1
= , 1

]
. There

exists a deterministic distributed algorithm that in $̃ (U log=) rounds
of the LOCAL model computes a partition C with

(1) diameter $ (U) and
(2) let +6>>3

= {D ∈ + : 346C (D) = 2$̃ (log=)/U }, then we have∑
D∈+6>>3 GD ≥ 0.9

∑
D∈+ GD .

2.3 Interplay Between Global Computations via

Clustering and Local Rounding

Let us now revisit the maximal matching problem. Here, we provide

an intuition of how we solve this problem in $̃ (log2 =) rounds, by
combining the two approaches. First, we invoke Theorem 2.1 for

U =

√
log= and compute a partition C into clusters of diameter

$ (
√
log=) such that each node has 3 = 2$̃ (

√
log=) neighboring

clusters, in $ (log2 =) rounds. This vertex partition also induces an

edge partition � = ⊔�∈C�� where �� contains all edges whose end-

point with the larger identi�er is in � . Now, we use this clustering

to gradually compute the maximal matching in $ (log=) iterations.
In each iteration, we �rst compute a constant-approximate frac-

tional matching in the graph induced by the unmatched vertices

in $ (logΔ) = $ (log=) rounds [14]. Then, the key part of the itera-

tion is to turn this into a constant-approximate integral matching

in $̃ (log=) additional rounds. For that, we use the clustering to

quickly perform a signi�cant rounding of the fractional matching.

In particular, the value assigned to a given edge 4 ∈ �� after the

rounding is fully determined by the fractional values assigned to

the edges in �� before the rounding. Thus, this initial rounding can
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be computed in just $ (
√
log=) rounds. Afterward, we will resort

to local rounding which now needs only $̃ (
√
log=) doubling steps

and thus can be performed in $̃ (log=) rounds. Let us elaborate.
First, we divide all the fractional matching values by a 4 factor, so

that now each node E has
∑
4′∋E G4′ ≤ 1/4. Then, for the rounding,

for each node E and cluster � , we allow the summation of the

edges in �� incident to E to increase from the original value by a

multiplicative factor of 2 and, on top of that, an additive increase of

1/(23) = 1/2Θ̃(
√
log=) . Hence, the multiplicative deviations bring

the summation to at most 1/2 and the additive deviations, over all

the 3 neighboring clusters, raise the total sum to at most 1. Thus,

this would still ensure that we have a valid fractional matching.

How does each cluster compute such a rounded fractional solution

that satis�es this constraint for all possible neighboring nodes E?

For each cluster C, such a solution exists by a simple probabilistic

rounding argument. Let us provide an informal explanation. Sup-

pose we keep the fractional values that exceed 1/Θ(3 log=) intact.
For any edge that has G4 ≤ 1/Θ(3 log=), let us round it probabilisti-
cally: with probability ? = G4 · Θ(3 log=), we set it to 1/Θ(3 log=),
and with the rest of the probability, we set it to zero. One can see by

a standard Cherno� bound that, w.h.p., for the edges in �� incident

on node E , the new summation of fractional values is within a 2

factor of the old summation, modulo an additive error of at most

1/(23). With this rounding, now the smallest fractional value is at

least 1/Θ(3 log=) = 1/2Θ̃(
√
log=) . Furthermore, with a reasonably

high probability, the size of the fractional matching is preserved up

to a constant factor inside the cluster5. To deterministically �nd the

solution proven to exist by this probabilistic argument, it su�ces

for the cluster C to gather the current fractional values of the edges

in �� . Then, it can �nd such a fractional solution in a centralized

fashion. Since the diameter of the cluster is $ (
√
log=), this can be

done easily in $ (log=) rounds of the LOCAL model.

Once each cluster does this rounding (and note that all can be

done in parallel), we have computed a fractional matching with

integrality 1/2Θ̃(
√
log=) whose size is at least a constant fraction

of the fractional matching with which we started. Hence, it suf-

�ces to apply only $̃ (
√
log=) steps of local rounding of [14] on

this fractional matching, and that takes $̃ (
√
log=)2 = $̃ (log=)

rounds. Therefore, we now have a method to compute a constant-

approximate integral matching in $̃ (log=) rounds. This is after
the initial $̃ (log2 =) time spent for computing the clustering, but

that clustering is computed only once. With $ (log=) repetitions
of this constant-approximate integral matching in $̃ (log=) rounds,
each time removing the matched nodes from the future matching

computations, we get a maximal matching in $̃ (log2 =) rounds.

2.4 Construction of the Clustering, and Hitting

Set with Pipelining

Our low-diameter clustering algorithms are similar in spirit to

Gha�ari et al. [17]. We start by brie�y overviewing their approach.

Review of the clustering algorithm of [17]. Recently, Gha�ari et al.

[17] obtained a network decomposition with $ (log=) colors and
diameter $ (log= log log log=). One key step towards that result

5We defer the precise discussions of the details to Section 5.

is an algorithm that, in $̃ (log2 =) rounds, computes a partition of

diameter$ (log=) such that a large constant fraction of the vertices

have a clustering degree of$ (log log=). Their algorithm to compute

such a partition can be seen as a derandomization of the randomized

algorithm of Miller, Peng and Xu [29]. The randomized algorithm

of Miller, Peng and Xu computes a partition of diameter$ (log=) by
�rst assigning each vertex a (random) delay between 0 and$ (log=).
Then, each node D gets clustered to the node E minimizing 34; (E) +
3 (E,D) where 34; (E) is the delay assigned to node E . The delays

assigned to all of the vertices can be computed by repeatedly, for

log= repetitions, subsampling all the remaining active nodes with

probability 1/2. Here, all the nodes would be active at the beginning,
and in each repetition we keep each previously active node with

probability 1/2. With high probability, no active node remains after

$ (log=) subsampling steps. The deterministic algorithm of Gha�ari

et al. derandomizes each of the$ (log=) subsampling steps. To do so,

they phrase each subsampling step as an instance of a certain hitting

set variant. They show that the randomized algorithm produces

a partition such that the expected cluster degree of each node is

$ (log log=). The hitting set viewpoint in each subsampling step

lends itself to pairwise analyses and opens the road for e�cient

derandomization, allowing one to “sample" the vertices of each step

in $̃ (log=) rounds in a deterministic manner.

Our Clustering Algorithms. For our weaker clustering result,

namely Theorem 2.2 which clusters only a constant fraction of

the vertices (or their weights), we follow a similar general ap-

proach. One can see that, for any U ≤ log=, by a simple parame-

ter adjustment in [29], their randomized construction produces

a partition with diameter $ (U) and cluster degree 2$ (log=/U )–
essentially, it su�ces to have U subsampling steps, each with prob-

ability 2−$ (log=/U ) . We can then follow a similar derandomization

approach as [17] to turn this into a deterministic algorithm. Indeed,

because of the parameter regime, we can work here with a even

slightly simpler hitting set analyses, as we describe in Section 4.1.

This leads to clustering a constant fraction of the nodes (or a con-

stant fraction of their weights) in $̃ (U log=) rounds. Intuitively, in
contrast to the $̃ (log2 =) complexity of the clustering of [17], the

complexity here is $̃ (U log=) because the distance in the hitting set

problem (to coordinate between the nodes to be hit and the active

nodes) is reduced from $ (log=) to $ (U).
For the stronger clustering algorithm that we have, namely The-

orem 2.1, we want to cluster all vertices. Doing this by repeti-

tions of Theorem 2.2, which clusters only a constant fraction of

nodes (or their weights), would incur a factor of $ (log=) loss in
the round complexity. That would bring the complexity of our clus-

tering to $̃ (U log2 =). Theorem 2.1 however achieves a complexity

of $̃ (U2 log=). For that, we present a novel pipelining idea in the

hitting set framework, as we outline next.

E�cient Hitting Set Derandomization with Pipelining. Recently,

Faour et al. [13] gave a local rounding method that essentially can

derandomize pairwise analyses. Consider some random process

where each node gets sampled with probability ? , pairwise indepen-

dently. Then, assuming the pairwise analyses looks at only pairs of

nodes that are nearby, their method allows one to derandomize the

sampling in roughly $ (log2 (1/?)) rounds of the LOCAL model.
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Let us provide a brief intuition: their algorithm views the proba-

bilistic solutions as a ?-integral fractional assignment, and gradually

rounds it to an integral solution in B = $ (log(1/?)) doubling steps.

The approach views the objectives analyzed via pairwise analyses

as its target function, which should be approximately preserved.

Each step uses a certain defective coloring and then decides the

rounding of the nodes of each color simultaneously. This ensures

that, with the exception of the small loss in the target function over

edges that are colored monochromatically, the rest of the target

function is preserved. The coloring is chosen such that the loss in

each step is roughly a 1/(2B) fraction of the overall target function,

so that the total loss over all B = $ (log(1/?)) steps is still below
a constant fraction. This aspect of the parameterization is similar

to the basic rounding of Fischer [14] for matchings, as discussed

before.

Now, let us illustrate our pipelining idea by considering a sim-

pli�ed setup. Let � = (* ⊔+ , �) be a bipartite graph. We assume

that each node D ∈ * has degree Δ and we de�ne = = |* |. The goal
is to compute a small subset + ′ ⊆ + such that each node in * is

neighboring with at least one node in + ′. Such a set + ′ is referred
to as a hitting set.

Consider the probabilistic approach where each node in + joins

+ ′ independently with probability ? = $ (log(=)/Δ). The expected
size of + ′ is $

(
log(=) |+ |

Δ

)
. Moreover, each node D ∈ * is hit with

probability 1 − (1 − ?)Δ ≥ 1 − 1
=10 . Unfortunately, this analysis

completely breaks down if we only assume pairwise independence.

A hitting set with the same guarantees can be computed using

only pairwise independence as follows: First, let each node in +

join + ′ with probability 1
10Δ , pairwise independently. A simple

pairwise analysis shows that each node has one neighbor in + ′

with probability at least 1
100 . Therefore, repeating this subsampling

step$ (log=) times, and adding every node to+ ′ that was sampled

at least once, results in each node being hit with high probability.

Moreover, the expected size of + ′ is $ ( log(=) |+ |
Δ

).
The method of Faour et al. [13] allows to directly derandom-

ize the pairwise analysis. In particular, it allows to compute in

$ (log2 Δ) rounds a subset+ ′ ⊆ + of size$ ( |+ |/Δ) such that at least
=
100 vertices of * have a neighbor in + . Hence, in $ (log= log2 Δ)
rounds, one can deterministically compute a hitting set of size

$ (log(=) |+ |/Δ). This is not e�cient enough for us to achieve The-

orem 2.2, especially for large Δ ≫ log=.

We give a method that, in just $̃ (log=) rounds, deterministically

computes a slightly larger hitting set of size$ ( |+ |/Δ1/log log=). Let
: = $ (logΔ/log log=) be the largest integer such that (100 log=): ≤
Δ. For 9 ∈ [0, :], let deg9 = (100 log=):− 9 . The algorithm computes

a sequence of sets + := +0 ⊇ +1 ⊇ . . . ⊇ +: such that each node in

* has at least deg9 neighbors in +9 . In particular, each node in *

has at least deg: ≥ 1 neighbors in +: and therefore +: is a hitting

set. The algorithm also ensures that |+9 | ≤ |+ |/29 and therefore

|+: | = $ ( |+ |/Δ1/log log=), as promised. In the randomized world,

one could obtain +9+1 from +9 by subsampling each vertex with

probability 1/2. Then, given that each node in * neighbors at least

346 9 nodes in +9 , one can show that with high probability each

node in* neighbors at least 346 9+1 nodes in +9+1. One can also de-

randomize this with round complexity $̃ (log=), which then would

result in a round complexity of $̃ (log= logΔ). We give a method

that pipelines the computation of the sets, in the sense that it starts

the computation of+9+1 before we have �nished computing+9 . The

actual ingredients of this pipelining are more involved and are thus

deferred to the technical section. We hope that similar pipelining

ideas might �nd applications in other similar contexts.

3 PRELIMINARIES

3.1 De�nitions and Basic Inequalities

Notation and Basic De�nitions. We use = to denote the number

of nodes and # to denote a polynomial upper bound on the number

of nodes. For two integers 0, 1 where 0 ≤ 1, we de�ne [0, 1] =
{0, 0 + 1, . . . , 1}. For an event E, we de�ne the indicator variable
� (E) to be equal to 1 if E happens and 0 otherwise.

Given a graph� = (+ , �), a fractional matching is an assignment

of a value G4 ∈ [0, 1] to each 4 ∈ � such that for every vertex E ∈ + ,

we have
∑
4∋E G4 ≤ 1. The size of this fractional matching is

∑
4 G4 .

We call the fractional matching 1/&-integral if each edge 4 satis�es

either G4 = 0 or G4 ≥ 1/& . We use this 1/&-integrality term more

generally also for other fractional assignments.

We next state some concentration inequalities that we will use

throughout the paper.

Theorem 3.1 (Chernoff Bound). Let - :=
∑
8∈[1,=] -8 , where

-8 , 8 ∈ [1, =] are independently distributed and 0 ≤ -8 ≤ 1. Then, for

a given X > 0, we have

%A [|- − E[- ] | ≥ X E[- ]] ≤ 24−
min(X,X2 ) E[- ]

3 .

Corollary 3.2 (Cherno� Bound variant). Let . :=
∑
8∈[1,=] .8 ,

where .8 , 8 ∈ [1, =] are independently distributed and 0 ≤ .8 ≤ 1 for

some 1 > 0. Then, for a given C ≥ 0.5� [. ], it holds that

%A [|. − E[. ] | ≥ C] ≤ 24−
C
61 .

3.2 The Local Rounding Framework

We use the local rounding framework of Faour et al. [13]. Their

rounding framework works via computing a particular weighted

defective coloring of the vertices, which allows the vertices of the

same color to round their values simultaneously, with a limited loss

in some objective functions that can be written as a summation of

functions, each of which depends on only two nearby nodes. Next,

we provide a related de�nition and then state their black-box local

rounding lemma.

De�nition 3.1. [Pairwise Utility and Cost Functions] Let � =

(+� , �� ) be a graph. For any label assignment ®G : +� → Σ, a pair-

wise utility function is de�ned as
∑
D∈+� u(D, ®G) + ∑4∈�� u(4, ®G),

where for a vertex D, the function u(D, ®G) is an arbitrary function

that depends only on the label of D, and for each edge 4 = {D, E}, the
function u(4, ®G) is an arbitrary function that depends only on the

labels of E and D. These functions can be di�erent for di�erent vertices

D and also for di�erent edges 4 . A pairwise cost function is de�ned

similarly.

For a probabilistic/fractional assignment of labels to vertices +� ,

where vertex E assumes each label in Σ with a given probability, the

utility and costs are de�ned as the expected values of the utility and

cost functions, if we randomly draw integral labels for the vertices
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from their corresponding distributions (and independently, though of

course each term in the summation depends only on the labels of two

vertices and thus pairwise independence su�ces).

Lemma 3.3. [cf. Lemma 2.5 of [13]] Let � = (+� , �� ) be a multi-

graph, which is equipped with utility and cost functions u and c

and with a fractional label assignment _ such that for every la-

bel U ∈ Σ and every E ∈ +� , _U (E) ≥ _min for some given value

_min ∈ (0, 1]. Further assume that � is equipped with a proper Z -

vertex coloring. If u(_) − c(_) ≥ 0.1u(_) and if each node knows the

utility and cost functions of its incident edges, there is a deterministic

$
(
log2

( 1
_min

)
+ log

( 1
_min

)
· log∗ Z

)
-round distributed message pass-

ing algorithm on � , in the LOCAL model, that computes an integral

label assignment ℓ for which

u(ℓ) − c(ℓ) ≥ 0.9
(
u(_) − c(_)

)
.

3.3 The Hitting Set Subroutines

We also make use of a deterministic distributed algorithm for com-

puting a certain hitting set. The formal statement is provided below.

Lemma 3.4. There exists a deterministic distributed algorithm in

the LOCAL model such that, for every Δ ∈ N, 1 ∈ N, : ∈ [1,Δ],
? = Ω(1/:) and #>A< ≥ 0, it provides the following guarantees: The

input is a bipartite graph � = (*� ⊔+� , �� ) with 346� (D) = Δ for

every D ∈ *� . Initially, each node is equipped with a unique 1-bit

identi�er and each node D is assigned a weight FD ≥ 0. Each node

also knows at the beginning to which side of the bipartition it belongs.

The algorithm computes a subset + BD1 ⊆ +� satisfying

∑
D∈*� : |#� (D )∩+ BD1 | ≤0.5⌊Δ/: ⌋

FD + #>A< · |+ BD1 |

≤ 4
©­«
4−?:

∑
D∈*�

FD + #>A< · ? · |+� |ª®¬
The algorithm runs in $ (:? (log2 (:) + log(:) log∗ 1)) rounds.

Notice that a simple probabilistic scheme where we include each

node of +� in + BD1 independently with probability ? achieves the

desired properties in expectation (and indeed with even stronger

guarantees). In particular, let us even group the neighbors of each

D ∈ *� into ⌊Δ/:⌋ groups each of size :—we will rely on inde-

pendence only within each group and this simpli�es the task for

derandomization. The probability that a group does not have a

node in + BD1 is at most (1 − ?): ≤ 4−?: . If D ∈ *� : |#� (D) ∩
+ BD1 | ≤ 0.5⌊Δ/:⌋, then half of its groups are not hit. However,

we expect only 4−?: fraction of groups not to be hit (and the

fraction can be weighted, by taking theFD weights into account).

So, roughly speaking, the weighted fraction of nodes D such that

D ∈ *� : |#� (D) ∩+ BD1 | ≤ 0.5⌊Δ/:⌋ is at most 24−?: . The lemma

statement has another 2 factor of slack beyond this bound, which

simpli�es the argument and su�ces for the applications.We present

a method to deterministically compute such a set + BD1 . This is by

an adaptation of the method of Faour et al. [13], and statements

somewhat similar to this lemma were implicit in [13, 17]. The proof

of Lemma 3.4 appears in the full version of this paper.

4 CLUSTERING

This section is devoted to proving our two clustering results, as

restated below. Please see De�nition 2.1 for the related de�nitions.

Theorem 2.1. Let U ≤ log= be an arbitrary value. There exists a

deterministic distributed algorithm that in $̃ (U2 log=) rounds of the
LOCAL model computes a partition C with

(1) diameter $ (U) and
(2) maxD∈+ degC (D) = 2$̃ (log=)/U , i.e., each node has neighbors

in at most 2$̃ (log=)/U clusters.

Theorem 2.2. Let U ≤ log= be an arbitrary value and assume

that each node D ∈ + is equipped with a value GD ∈
[
1
= , 1

]
. There

exists a deterministic distributed algorithm that in $̃ (U log=) rounds
of the LOCAL model computes a partition C with

(1) diameter $ (U) and
(2) let +6>>3

= {D ∈ + : 346C (D) = 2$̃ (log=)/U }, then we have∑
D∈+6>>3 GD ≥ 0.9

∑
D∈+ GD .

Notice the �rst statement clusters all nodes and takes $̃ (U2 log=)
rounds, while the second statement clusters only a 0.9 fraction

of the vertices, in a weighted sense, but runs faster in $̃ (U log=)
rounds. Both algorithms can be seen as a derandomization of the

randomized clustering algorithm of Miller, Peng and Xu [29]. The

high-level approach in all of the three algorithms is the same and can

be found inAlgorithm 1. The idea is to �rst compute a delay34; (E) ∈
{0, 1, . . . , 50U} for every E ∈ + . Then, these delays de�ne a partition

as follows: First, each node starts to broadcast a token at time34; (E).
Then, in the following $ (U) rounds, a node forwards all the token
it has received in the previous rounds to its neighbors. For a given

node D, let 2D be the node whose token reaches D �rst, breaking ties

by choosing the node with the smallest identi�er. Then, D joins the

cluster corresponding to the node 2D . Formally speaking, we de�ne

2D := argminE∈+ (34; (E)+3 (E,D), �� (E)) where pairs are compared

according to the lexicographic order and for a node E we de�ne

the cluster associated with E as �E := {D ∈ + : 2D = E}. Finally,
the output clustering consists of all non-empty clusters �E for E ∈
+ . To compute the delay 34; (E) for every node E ∈ + , all three

algorithms compute a sequence of sets +02C8E4
0 := + ⊇ +02C8E4

1 ⊇
. . . ⊇ +02C8E4

10U = ∅. Then, 8E is de�ned as the largest index 8 with

E ∈ +02C8E4
8 and the delay of E is de�ned as 34; (E) := 50U − 58E . Our

two clustering algorithms and the randomized clustering of Miller,

Peng, and Xu only di�er in the way +02C8E4
8+1 is computed given the

set +02C8E4
8 ; the randomized clustering algorithm simply obtains

+02C8E4
8+1 by including each vertex in +02C8E4

8 independently with

probability ?A0=3 = 2− log(=)/U . Note that this implies +02C8E4
10U = ∅

with high probability. Furthermore, since 34; (E) ∈ [0, 50U], the
diameter of the output partition is $ (U).
Claim 4.1. Algorithm 1 produces a partition with diameter $ (U).

The next lemma will be used later on to upper bound the clus-

ter degree of a vertex. Before stating it, we introduce one more

de�nition.

De�nition 4.1 ((8 (D)). For every D ∈ + and 8 ∈ [0, 10U − 1], we
de�ne

(8 (D) = +02C8E4
8 ∩ �� (D,3 (D,min(+02C8E4

8 ) + 2, 100U)).
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Algorithm 1 Generic Partitioning Algorithm

Input: Parameter U ∈ N, Algorithm A
Output: A partition C of the vertex set

1: procedure Partitioning

2: ⊲ Delay Computation

3: +02C8E4
0 ← +

4: for 8 ← 0, 1, . . . , 10U − 1 do
5: +02C8E4

8+1 ← A(+02C8E4
8 , 8, U) ⊲ +02C8E4

8+1 ⊆ +02C8E4
8

6: �BB4AC : +02C8E4
10U = ∅

7: For every E ∈ + , let 8E be the largest index 8 with E ∈ +02C8E4
8

8: For every E ∈ + , de�ne 34; (E) ← 50U − 58E
9: ⊲ Partitioning given the delays

10: ∀D ∈ + : 2D ← argminE∈+ (34; (E) + 3 (E,D), �� (E))
11: ∀E ∈ + : �E ← {D ∈ + : 2D = E}
12: return C = {�E : E ∈ + ,�E ≠ ∅}

Informally speaking, the set (8 (D) contains those active nodes
in +02C8E4

8 which are almost as close to D as the closest active node

in +02C8E4
8 , unless the closest node in +02C8E4

8 is far away. The last

part ensures that each node D can compute the set (8 (D) in $ (U)
rounds, which will be important later on.

Lemma 4.2. Let D ∈ + be arbitrary, C the partition returned by

Algorithm 1 and

'D := max
8∈{0,1,...,10U−1} : (8 (D )∩+ 02C8E4

8+1 =∅
|(8 (D) |.

Then, it holds that 346C (D) = $ (U'D ).

Randomized Intuition. The proof of Lemma 4.2 is deferred to

the full version. Here, we discuss some intuition by applying the

lemma to the randomized clustering algorithm. In particular, a sim-

ple hitting set argument on top of Lemma 4.2 gives that 346C (D) =
$ (log=/?A0=3 ), w.h.p. Recall that the randomized algorithm ob-

tains +02C8E4
8+1 by including each vertex in +02C8E4

8 with probability

?A0=3 = 2− log(=)/U . Consider an arbitrary 8 ∈ {0, 1, . . . , 10U −
1} and assume that |(8 (D) | ≥ 10 log(=)/?A0=3 . With high prob-

ability, at least one node in (8 (D) will be sampled and added to

+02C8E4
8+1 . Hence, with high probability 'D ≤ 10 log(=)/?A0=3 , in

which case Lemma 4.2 gives degC (D) = $ (U · log(=)2;>6 (=)/U ). We

note that this analysis is not tight. Using the memoryless prop-

erty of the exponential distribution, one can show that degC (D) =
$ (2log(=)/U ) with positive constant probability and degC (D) =

$ (log(=)2log(=)/U ) with high probability. The latter bound im-

proves our bound by a factor of U , i.e., for U = $ (log=) our proof
gives that with high probability degC (D) = $ (log2 =) while a

tighter analysis shows that degC (D) = $ (log=). However, this
simple hitting set analysis is su�cient to obtain our desired result.

4.1 Clustering with Constant Fraction Good

This section is dedicated to proving Theorem 2.2. As a reminder,

the goal is to compute a partition with diameter $ (U) such that at

least 90 percent of the vertices (in a weighted sense) have a cluster

degree of 2$̃ (log=)/U .

The algorithm follows the outline of Algorithm 1. The only

missing part is to specify how to compute+02C8E4
8+1 given+02C8E4

8 for

every 8 ∈ [0, 10U − 1].
In phase 8 , the goal is to compute +02C8E4

8+1 in such a way that

almost all nodesD with |(8 (D)∩+02C8E4
8 | = 2Ω̃ (log=)/U satisfy (8 (D)∩

+02C8E4
8+1 ≠ ∅. We refer to a nodeD that does not satisfy this condition

as being bad in phase 8 . For a node D, if there does not exist a phase

8 in which D is bad, Lemma 4.2 implies that the clustering degree of

D is 2$̃ (log=)/U . Below, we give the formal de�nition of being bad

in phase 8 .

De�nition 4.2 (Bad in phase 8 ,*103
8 ). For every 8 ∈ [0, 10U −1], we

refer to a node as bad in phase 8 if |(8 (D) | ≥ ⌈1000 log log(# )⌉log(# )/U
and (8 (D) ∩+02C8E4

8+1 = ∅. We denote by *103
8 the set consisting of all

bad nodes in phase 8 .

Recall, in the LOCAL model nodes don’t have access to the

precise number of vertices in the graph, but are only given a

polynomial upper bound, which we denote by # . Also note that

⌈1000 log log(# )⌉log(# )/U = 2$̃ (log=)/U .
Starting with+02C8E4

8 , we compute+02C8E4
8+1 in log(# )/U steps. In

step 9 , we start with a set +02C8E4
8, 9 and compute a subset +02C8E4

8, 9+1 ⊆
+02C8E4
8, 9 . Initially, we de�ne+02C8E4

8,0 = +02C8E4
8 and after the last step,

we set +02C8E4
8+1 = +02C8E4

8,log(# )/U . Note that we can assume without

loss of generality that # is a su�ciently large constant and that U

divides log(# ).
Before we explain in more detail what happens in each step,

we �rst give two more de�nitions. The �rst de�nition associates a

degree threshold for each step.

De�nition 4.3 (deg9 ). For every 9 ∈ [0, log(# )/U], we de�ne

deg9 = ⌈1000 log log(# )⌉log(# )/U− 9 .

If a node D is bad in phase 8 , then |(8 (D) ∩+02C8E4
8 | ≥ deg0 and

|(8 (D) ∩+02C8E4
8+1 | < deglog(# )/U .

Next, we de�ne what it means for a node to be bad during a step.

De�nition 4.4 (Bad in step 9 of phase 8 , *103
8,9 ). For every 8 ∈

[0, 10U−1] and 9 ∈ [0, ;>6(# )/U−1]We say that a node is bad in step

9 of phase 8 if |(8 (D)∩+02C8E4
8, 9 | ≥ deg9 and |(8 (D)∩+02C8E4

8, 9+1 | < deg9+1.

We denote by +103
8,9 the set of bad nodes during step 9 of phase 8 .

If a node D is bad in phase 8 , then |(8 (D) ∩ +02C8E4
8,0 | ≥ deg0

and |(8 (D) ∩+02C8E4
8,log(# )/U | < deglog(# )/U . Hence, there exists some

9 ∈ [0, log(# )/U−1] such that |(8 (D)∩+02C8E4
8, 9 | ≥ deg9 and |(8 (D)∩

+02C8E4
8, 9+1 | < deg9+1 and thereforeD is bad in at least one step of phase

8 .

Fix some 8 ∈ [0, 10U − 1] and 9 ∈ [0, log(# )/U − 1]. We compute

+02C8E4
8, 9+1 given +02C8E4

8, 9 by �rst de�ning a bipartite graph � , then

invoking the hitting set subroutine of Lemma 3.4 to deduce that

there exists an e�cient LOCAL algorithm on the bipartite graph

which computes a subset of +02C8E4
8, 9 with the desired properties,

and �nally use the fact that we can simulate the algorithm on the

bipartite graph on the original graph with an $ (U)-multiplicative

overhead.
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Consider the bipartite graph� = (*� ⊔+� , �� ) with*� = {D ∈
+ : |(8 (D) ∩+02C8E4

8, 9 | ≥ deg9 },+� = +02C8E4
8, 9 and where we connect

each node D ∈ *� to deg9 nodes in (8 (D) ∩+02C8E4
8, 9 .

Using the fact that (8 (D) ⊆ �� (D, 1000U) for every D ∈ + , it

follows that each round in � can be simulated in $ (U) rounds in
the original graph. Moreover, as � contains at most two copies of

each node in � , we can assign each node a unique 1-bit identi�er

with 1 = $ (log# ).
One of the parameters of Lemma 3.4 is a normalization constant,

which we de�ne below.

De�nition 4.5 (Normalization Constant). For every 8 ∈ [0, 10U −1]
and 9 ∈ [0, log(# )/U], we de�ne #>A<8, 9 =

28 ·log(# )/U+9
# 2 .

We now invoke Lemma 3.4 with parameters Δ = deg9 , : =

⌈100 log log(# )⌉ and ? =
1
16 to conclude that there exists a LOCAL

algorithm running in$ (:? (log2 (:)+log(:) log∗ 1)) = $̃ (log log=)
rounds on � , and hence can be simulated in $̃ (log log=)U rounds

in � , which computes a set + BD1 ⊆ +� satisfying

∑
D∈*� : |#� (D )∩+ BD1 | ≤0.5⌊Δ/: ⌋

GD + #>A<8, 9 · |+ BD1 |

≤ 4
©­
«
4−?:

∑
D∈*�

GD + #>A<8, 9 · ? · |+� |ª®¬
.

We then de�ne +02C8E4
8, 9 = + BD1 . Consider some node D that is bad

in step 9 of phase 8 . By de�nition, |(8 (D) ∩ +02C8E4
8, 9 | ≥ deg9 and

|(8 (D) ∩+02C8E4
8, 9+1 | < deg9+1. Therefore, D ∈ *� and

|#� (D) ∩+ BD1 | ≤ |(8 (D) ∩+02C8E4
8, 9+1 | < deg9+1

=

deg9

⌈1000 log log(# )⌉ ≤ 0.5⌊Δ/:⌋

Since 4−?: = 4−(100/16) log log# ≤ 1
800 log(# ) , we can conclude

that

∑
D∈*103

8,9

GD + #>A<8, 9 · |+02C8E4
8, 9+1 |

≤ 1

200 log(# )
∑
D∈+

GD +
#>A<8, 9

4
|+02C8E4
8, 9 |.

From this, we can deduce the following two claims:

Claim 4.3 (No active nodes in the end). For every 8 ∈ [0, 10U − 1]
and 9 ∈ [0, log(# )/U], we have

|+02C8E4
8, 9 | ≤

∑
D∈+ GD

50 log(# )#>A<8, 9
,

which in particular also implies that +02C8E4
10U = ∅.

Proof. First, note that

|+02C8E4
0,0 | ≤ = ≤ 1

50 log(# ) (1/# 2) ≤
∑
D∈+ GD

50 log(# )#>A<0,0
.

Also, recall that for every 8 ∈ [1, 10U − 1], +02C8E4
8+1,0 := +02C8E4

8+1 :=

+02C8E4
8,log(# )/U . Together with #>A<8+1,0 = #>A<8,log(# )/U , we get

that |+02C8E4
8,log(# )/U | ≤

∑
D∈+ GD

50 log(# )#>A<8,log(# )/U
trivially implies that

|+02C8E4
8+1,0 | ≤

∑
D∈+ GD

50 log(# )#>A<8+1,0
.

Now, assume that |+02C8E4
8, 9 | ≤

∑
D∈+ GD

50 log(# )#>A<8,9
for a given 8 ∈

[0, 10U − 1] and 9 ∈ [0, log(# )/U − 1]. This implies that

|+02C8E4
8, 9+1 | ≤

∑
D∈+ GD

200 log(# )#>A<8, 9
+ 1

4
|+02C8E4
8, 9 |

≤
∑
D∈+ GD

100 log(# )#>A<8, 9
=

∑
D∈+ GD

50 log(# )#>A<8, 9+1

∑
D∈+

GD .

Thus, |+02C8E4
8, 9 | ≤

∑
D∈+ GD

50 log(# )#>A<8,9
, as one can formalize by an

induction. In particular,

|+02C8E4
10U−1,log(# )/U | ≤

∑
D∈+ GD

50 log(# )#>A<10U−1,log(# )/U
< 1

□

and as +02C8E4
10U := +02C8E4

10U−1,log(# )/U , we get that +
02C8E4
10U = ∅.

Claim 4.4 (Total number of bad nodes in step 9 of phase 8). For

every 8 ∈ [0, 10U − 1] and 9 ∈ [0, log(# )/U − 1], we have
∑

D∈*103
8,9

GD ≤
1

100 log(# )
∑
D∈+

GD .

Proof. We have

∑
D∈*103

8,9

GD ≤
1

200 log(# )
∑
D∈+

GD+
#>A<8, 9

4
|+02C8E4
8, 9 | ≤

∑
D∈+ GD

100 log(# ) .

□

Proof of Theorem 2.2. According to Claim 4.1, the diameter of

the output partition is $ (U).
Lemma 4.2 implies that+ \(∪10U−18=0 *103

8 ) ⊆ {D ∈ + : degC (D) =
2$̃ (log=)/U } and Claim 4.4 implies that

∑
D∈∪10U−18=0 ∪log(# )/U9=0 *103

8,9

GD ≤

10U · (log(# )/U)
∑

D∈+ GD
100 log(# ) =

∑
D∈+ GD
10 . Together with *103

8 ⊆
∪log(# )/U9=0 *103

8,9 for every 9 ∈ [0, log(# )/U − 1], we therefore get∑
D∈+ : degC (D )=2$̃ (log=)/U

GD ≥ 0.9
∑
D∈+ GD , as needed.

We have argued that each step takes $̃ (log log= · U) rounds.
There are$ (U) ·$ (log=/U) steps in total, and thus the total runtime

to compute the delays is $̃ (U log=). Given the delays, the output

partition can be computed in $ (U) additional rounds. Hence, the
algorithm runs in $̃ (U log=) rounds.

□

4.2 Clustering with All Nodes Good

This section is dedicated to proving Theorem 2.1. As a reminder,

the goal is to compute a partition with diameter $ (U) such that all

vertices have a cluster degree of 2$̃ (log=)/U .
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As in the previous section, the algorithm follows the outline of

Algorithm 1. The only missing part is to specify how to compute

+02C8E4
8+1 given +02C8E4

8 for every 8 ∈ [0, 10U − 1].
In phase 8 , the goal is to compute +02C8E4

8+1 in such a way that all

nodes D with |(8 (D) ∩+02C8E4
8 | = 2Ω̃ (log=)/U , which we refer to as

being important in phase 8 , satisfy (8 (D) ∩+02C8E4
8+1 ≠ ∅. By using

Lemma 4.2, this is su�cient to ensure that all vertices have a cluster

degree of 2$̃ (log=)/U . We start with the formal de�nition of being

important in phase 8 . Recall that we use # to denote a polynomial

upper bound on the number of nodes, which is known to all the

nodes.

De�nition 4.6 (Important in phase 8 , *
8<?>AC0=C
8 ). For every 8 ∈

[0, 10U − 1], we refer to a node as being important in phase 8 if

|(8 (D) | ≥ (2000 log# )log(# )/U .
As before, phase 8 consists of log(# )/U steps and we compute

a sequence of sets +02C8E4
8,0 := +02C8E4

8 ⊇ +02C8E4
8,1 ⊇ +02C8E4

8,2 ⊇ . . . ⊇
+02C8E4
8,log(# )/U =: +02C8E4

8+1 .

Compared to Section 4.1, one crucial di�erence is that the algo-

rithm starts computing +02C8E4
8, 9+1 before it has �nished computing

+02C8E4
8, 9 .

As before, we associate a degree threshold with each step. We

remark that the degree threshold is slightly larger compared to the

one in Section 4.1.

De�nition 4.7 (deg9 ). For every 9 ∈ [0, log(# )/U], we de�ne

deg9 = (2000 log# )log(# )/U− 9 .
Note that D is important in phase 8 if |(8 (D) | ≥ deg0 and that

(8 (D) ∩ +02C8E4
8+1 ≠ ∅ is equivalent to |(8 (D) ∩ +02C8E4

8+1 | = |(8 (D) ∩
+02C8E4
8,log(# )/U | ≥ deglog(# )/U . In general, each node D which is im-

portant in phase 8 will satisfy |(8 (D) ∩ +02C8E4
8, 9 | ≥ deg9 for every

9 ∈ [0, log(# )/U].
For each 8 ∈ [0, 10U − 1] and 9 ∈ [1, log(# )/U], we compute

+02C8E4
8, 9 by computing a sequence of sets +02C8E4

8, 9,0 := ∅ ⊆ +02C8E4
8, 9,1 ⊆

. . . ⊆ +02C8E4
8, 9,4 log(# ) =: +

02C8E4
8, 9 . To simplify notation, we also de�ne

+02C8E4
8,0,0 = +02C8E4

8,0,1 = . . . = +02C8E4
8,0,4 log(# ) = +02C8E4

8,0 := +02C8E4
8 for

every 8 ∈ [0, 10U − 1].
For every 9 ∈ [0, log(# )/U] and ℓ ∈ [0, 4 log(# )], we de�ne a

partition*
8<?>AC0=C
8 = *

6>>3
8,9,ℓ ⊔*103

8,9,ℓ .

De�nition 4.8 (*
6>>3
8,9,ℓ , *103

8,9,ℓ ). For every 8 ∈ [0, 10U − 1], 9 ∈
[0, log(# )/U], ℓ ∈ [0, 4 log(# )], we de�ne

*
6>>3
8,9,ℓ = {D ∈ * 8<?>AC0=C

8 : |(8 (D) ∩+02C8E4
8, 9,ℓ | ≥ deg9 }

and

*103
8,9,ℓ = *

8<?>AC0=C
8 \*6>>3

8,9,ℓ .

Computing +02C8E4
8, 9,ℓ given +02C8E4

8, 9−1,ℓ and +02C8E4
8, 9,ℓ−1 . Now, �x some

8 ∈ [0, 10U − 1], 9 ∈ [1, log(# )/U] and ℓ ∈ [1, 4 log(# )]. We com-

pute +02C8E4
8, 9,ℓ given +02C8E4

8, 9−1,ℓ and +02C8E4
8, 9,ℓ−1 by �rst de�ning a bipartite

graph � , then invoking the hitting set subroutine of Lemma 3.4

to deduce that there exists an e�cient LOCAL algorithm on the

bipartite graph which computes a subset of +02C8E4
8, 9−1,ℓ with the de-

sired properties, and �nally use the fact that we can simulate the

algorithm on the bipartite graph on the original graphwith an$ (U)-
multiplicative overhead. Consider the bipartite graph � = (*� ⊔
+� , �� ) with *� = *

6>>3
8,9−1,ℓ ∩ *103

8,9,ℓ−1, +� = +02C8E4
8, 9−1,ℓ and where

we connect each node D ∈ *� to deg9−1 nodes in (8 (D) ∩+02C8E4
8, 9−1,ℓ .

Similar as in Section 4.1, each round in � can be simulated in

$ (U) rounds in the original graph and we can assume that each

node is assigned a unique 1-bit identi�er with 1 = $ (log# ). We

also de�ne #>A<8, 9 = 28 ·log(# )/U+9 for every 8 ∈ [0, 10U − 1] and
9 ∈ [0, log(# )/U].

We now invoke Lemma 3.4 with parameters Δ = deg9−1, : =

500 log(# ), ? =
1

64 log#
and #>A< = #>A<8, 92

9−ℓ to conclude that

there exists a LOCAL algorithm running in $ (log2 log=) rounds
on � , and hence can be simulated in $ (U log2 log=) rounds in � ,

which computes a set + BD1
8,9,ℓ ⊆ +� satisfying

|{D ∈ *� : |#� (D) ∩+ BD1
8,9,ℓ | ≤ 0.5⌊Δ/:⌋}| + 29−ℓ#>A<8, 9 · |+ BD1

8,9,ℓ |

≤ 4
(
4−?: |*� | + 29−ℓ#>A<8, 9 · ? · |+� |

)
.

We then de�ne +02C8E4
8, 9,ℓ = +02C8E4

8, 9,ℓ−1 ∪+ BD1
8,9,ℓ .

Consider some D ∈ *
6>>3
8,9−1,ℓ ∩ *103

8,9,ℓ . As D ∈ *103
8,9,ℓ implies D ∈

*103
8,9,ℓ−1, we have D ∈ *

6>>3
8,9−1,ℓ ∩*103

8,9,ℓ−1 =: *� . Moreover,

|#� (D) ∩+ BD1
8,9,ℓ | ≤ |(8 (D) ∩+02C8E4

8, 9,ℓ | < deg9

=

deg9−1
2000 log(# ) ≤ 0.5⌊Δ

:
⌋ .

Hence, using that 4−?: ≤ 1
32 , we get

2ℓ− 9 |*6>>3
8,9−1,ℓ ∩*

103
8,9,ℓ | + #>A<8, 9 · |+ BD1

8,9,ℓ |

≤ 2ℓ− 9

8
|*103

8,9,ℓ−1 | +
#>A<8, 9

16 log(# ) |+
02C8E4
8, 9−1,ℓ |.

The claim below is the key claim in the analysis.

Claim 4.5. For every 8 ∈ [0, 10U − 1], 9 ∈ [0, log(# )/U] and ℓ ∈
[0, 4 log(# )], it holds that

(1) |+02C8E4
8, 9 | ≤ 2 log(# ) ·=

#>A<8,9
and

(2) |*103
8,9,ℓ | ≤ = · 29−ℓ .

In particular, +02C8E4
10U = ∅ and {D ∈ * 8<?>AC0=C

8 : (8 (D) ∩+02C8E4
8+1 =

∅} = ∅ for every 8 ∈ [0, 10U − 1].
Proof. First, consider some �xed 8 ∈ [0, 10U − 1] and 9 ∈

[1, log(# )/U] and assume |+02C8E4
8, 9−1 | ≤

2 log(# ) ·=
#>A<8,9−1

and |*103
8,9−1,ℓ | ≤

= · 2( 9−1)−ℓ for every ℓ ∈ [0, 4 log(# )]. In particular, for every

ℓ ∈ [0, 4 log(# ) − 1], +02C8E4
8, 9−1,ℓ ⊆ +02C8E4

8, 9−1 directly gives

#>A<8, 9

16 log(# ) |+
02C8E4
8, 9−1,ℓ | ≤

#>A<8, 9

16 log(# )
2 log(# ) · =
#>A<8, 9−1

=
=

4
.

We �rst show by induction on ℓ that this implies |*103
8,9,ℓ | ≤ = ·29−ℓ

for every ℓ ∈ [0, 4 log(# )] and afterwards we show that |+02C8E4
8, 9 | ≤

2 log(# ) ·=
#>A<8,9

.

The base case ℓ = 0 trivially holds as |*103
8,9,0 | ≤ = ≤ = · 29−0. Now,

�x some ℓ ∈ [1, 4 log(# )] and assume that |*103
8,9,ℓ−1 | ≤ 29−(ℓ−1) .
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First, note that *103
8,9,ℓ ⊆ +

8<?>AC0=C
8 = *

6>>3
8,9−1,ℓ ⊔ *103

8,9−1,ℓ together

with the initial assumption |*103
8,9−1,ℓ | ≤ 2( 9−1)−ℓ implies

|*103
8,9,ℓ | ≤ |*103

8,9−1,ℓ | + |*
6>>3
8,9−1,ℓ ∩*

103
8,9,ℓ | ≤

= · 29−ℓ
2
+ |*6>>3

8,9−1,ℓ ∩*
103
8,9,ℓ |.

Moreover, using induction, we get

|*6>>3
8,9−1,ℓ ∩*

103
8,9,ℓ | ≤

1

8
|*103

8,9,ℓ−1 | + 29−ℓ
#>A<8, 9

16 log(# ) |+
02C8E4
8, 9−1,ℓ |

≤ =29−(ℓ−1)

8
+ = · 2

9−ℓ

4
≤ = · 29−ℓ

2

and therefore |*103
8,9,ℓ | ≤ = · 29−ℓ , �nishing the induction. Now,

consider some ℓ ∈ [1, 4 log(# )]. Using |*103
8,9,ℓ−1 | ≤ = · 29−(ℓ−1) , we

get

|+ BD1
8,9,ℓ | ≤

1

#>A<8, 9

(
2ℓ− 9

8
|*103

8,9,ℓ−1 | +
#>A<8, 9

16 log(# ) |+
02C8E4
8, 9−1,ℓ |

)

≤ (=/4) + (=/4)
#>A<8, 9

=
=

2#>A<8, 9
.

As +02C8E4
8, 9 =

⋃4 log(# )
ℓ=1 + BD1

8,9,ℓ , we conclude |+02C8E4
8, 9 | ≤ 2 log(# ) ·=

#>A<8,9
.

Consider some �xed 8 ∈ [0, 10U − 1] and assume that |+02C8E4
8,0 | ≤

2 log(# ) ·=
#>A<8,0

. We use induction on 9 to conclude that |+02C8E4
8, 9 | ≤

2 log(# ) ·=
#>A<8,9

and |*103
8,9,ℓ | ≤ = · 29−ℓ for every 9 ∈ [0, log(# )/U] and

ℓ ∈ [0, 4 log(# )]. For the base case 9 = 0, note that |+02C8E4
8,0 | ≤

2 log(# ) ·=
#>A<8,0

is just what we assumed and as +02C8E4
8,0,ℓ := +02C8E4

8 for

every ℓ ∈ [0, 4 log(# )], we have |*103
8,0,ℓ | = 0 ≤ = · 20−ℓ . We already

did the induction step going from 9 − 1 to 9 above and therefore we

are done.

Finally, we prove Claim 4.5 by induction on 8 . For the base case

8 = 0, note that |+02C8E4
0,0 | ≤ = ≤ 2 log(# ) ·=

#>A<0,0
. By using the previous

induction on 9 , this is enough to show that the bounds of Claim 4.5

hold for 8 = 0. Now, consider some 8 ∈ [1, 10U − 1] and assume that

the bounds hold for 8 − 1. In particular,

|+02C8E4
8,0 | = |+02C8E4

8−1,log(# )/U | ≤
2 log(# ) · =

#>A<8−1,log(# )/U
=

2 log(# ) · =
#>A<8,0

.

Now, we can again use the previous induction on 9 to �nish the

induction step.

To conclude Claim 4.5, note that |+02C8E4
10U−1,log(# )/U | ≤

2 log(# ) ·=
#>A<0,0

<

1 and as +02C8E4
10U := +02C8E4

10U−1,log(# )/U , we get that +
02C8E4
10U = ∅. Con-

sider some 8 ∈ [0, 10U − 1]. Note that |*103
8,log(# )/U,4 log(# ) | ≤

= · 2log(# )/U−4 log(# ) < 1 and therefore *103
8,log(# )/U,4 log(# ) = ∅.

In particular, there does not exist a node D ∈ *
8<?>AC0=C
8 with

|(8 (D) ∩ +02C8E4
8,log(# )/U,4 log(# ) | < deglog(# )/U = 1. As +02C8E4

8+1 :=

+02C8E4
8,log(# )/U := +02C8E4

8,log(# )/U,4 log(# ) , we therefore get that there exists

no node D ∈ * 8<?>AC0=C
8 with |(8 (D) ∩+02C8E4

8+1 = ∅, as desired. □

Proof of Theorem 2.1. According to Claim 4.1, the diameter of

the output partition is $ (U). Moreover, combining Claim 4.5 with

Lemma 4.2 shows that the clustering of each node is 2$̃ (log=)/U .
It remains to argue about the round complexity of the algorithm.

Fix some 8 ∈ [0, 10U − 1]. Note that given +02C8E4
8 , we can com-

pute +02C8E4
8, 9,0 for every 9 ∈ [0, log(# )/U] and +02C8E4

8,0,ℓ for every

ℓ ∈ [1, 4 log(# )] without further communication. Moreover, we

have seen above that given +02C8E4
8, 9−1,ℓ and +02C8E4

8, 9,ℓ−1 , we can compute

+02C8E4
8, 9,ℓ in $ (U log2 log=) rounds, for every 9 ∈ [1, log(# )/U] and
ℓ ∈ [1, 4 log(# )]. Hence, a simple induction shows that given

+02C8E4
8 , we can compute +02C8E4

8, 9,ℓ in ( 9 + ℓ)$ (U log2 log=) rounds
for every 9 ∈ [0, log(# )/U] and ℓ ∈ [0, 4 log(# )] and therefore we

can compute+02C8E48+1 in (log(# )/U +4 log(# )) ·$ (U log2 log=) =
$̃ (U log=) rounds. Hence, the overall algorithm runs in $̃ (U2 log=)
rounds, as desired. □

5 MIS

In this section, we use the low-diameter clustering results obtained

in the previous section to obtain a deterministic distributed algo-

rithm that computes an MIS in $̃ (log2 =) rounds of the LOCAL

model.

Theorem 1.1. There is a deterministic distributed algorithm, in

the LOCAL model, that computes a maximal independent set (MIS)

in $̃ (log2 =) rounds. This also implies that there are LOCAL-model

deterministic distributed algorithms with $̃ (log2 =) rounds complex-

ity also for maximal matching, (346 + 1)-list vertex coloring, and

(2346 − 1)-list edge coloring6.

The rest of the section is devoted to the proof of Theorem 1.1.

The missing proofs are deferred to the full version. We �rst recall

Luby’s classic algorithm[27], which in each iteration chooses an

independent set of nodes such that, when we add them to the

output and remove them from the graph along with their neighbors,

in expectation a constant fraction of the edges of the graph are

removed.

Luby’s Randomized MIS Algorithm. The starting point is to re-

call Luby’s classic randomized algorithm from [28]. Each itera-

tion of it works as follows. We mark each node D with probability

1/(10 deg(D)). Then, for each edge {D, E}, let us orient the edge

as D → E if and only if deg(D) < deg(E) or deg(D) = deg(E) and
�� (D) < �� (E). For each marked node D, we add D to the inde-

pendent set if and only if E does not have a marked out-neighbor.

Finally, as a clean-up step at the end of this iteration, we remove

all nodes that have been added to the independent set along with

their neighbors. We then proceed to the next iteration.

Derandomizing Luby via Rounding. It is well-known that in each

iteration of Luby’s algorithm a constant fraction of the edges of the

remaining graph gets removed, in expectation. Hence, the process

terminates in $ (log=) iterations with probability 1 − 1/poly(=).
We explain how to derandomize each iteration of the algorithm in

$̃ (log=) rounds, such that we still remove a constant fraction of

the edges per iteration. For the rest of this proof, we focus on an

arbitrary iteration, and we assume that � = (+� , �� ) is the graph
induced by the remaining vertices at the beginning of this iteration.

6In the (346 + 1)-list vertex coloring, each node E having a prescribed list !E of colors,
of size |!E | ≥ 346 (E) + 1 from which it should choose its color. In the (2346 − 1)-
list edge coloring, each edge 4 = {E,D} has a prescribed list !4 of colors, of size
|!4 | ≥ 346 (E) + 346 (D ) − 1 from which it should choose its color. Both problems
reduce to MIS by a reduction of Luby [25, 27].
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Let ®G ∈ {0, 1}+� be the indicator vector of whether di�erent nodes

are marked, that is, we have GE = 1 if E is marked and GE = 0 oth-

erwise. Let 'E ( ®G) be the indicator variable of the event that E gets
removed, for the marking vector ®G . Let / ( ®G) be the corresponding
number of removed edges. Luby’s algorithm determines the mark-

ings ®G randomly. Our task is to derandomize this and select the

marked nodes in a deterministic way such that when we remove

nodes added to the independent set (those marked nodes that do

not have a marked out-neighbor) and their neighbors, along with

all the edges incident on these nodes, at least a constant fraction of

edges � get removed.

Below, we give a pairwise analysis which shows that the expected

number of removed edges is Ω( |�� |). The rounding framework of

Faour et al. [13] would then allow us to select the marked nodes in a

deterministic way while retaining the guarantee that Ω( |�� |) edges
are removed. The rounding procedure runs in $ (log2 (1/?<8=)) =
$ (log2 Δ) rounds where ?<8= is the smallest marking probability. In

fact, this is how Faour et al. [13] obtained an MIS algorithm running

in $ (log= log2 Δ) rounds. We derandomize the marking process in

$̃ (log=) rounds. To do so, we �rst perform an intra-cluster round-

ing step and only then apply the rounding framework of Faour et al.

[13]. In the intra-cluster rounding step, we compute for each node a

marking probability which is either 0 or 1/2$̃ (
√
log=) and such that

the expected number of removed edges is still Ω( |�� |). Then, we
apply the rounding framework of Faour et al. to the same pairwise

analysis as before, but this time with the new marking probabilities.

As all non-zero marking probabilities are 1/2$̃ (
√
log=) , the round-

ing procedure runs in just
(
log(2$̃ (

√
log=) )

)2
= $̃ (log=) rounds,

as desired.

Good and bad nodes and prevalence of edges incident on good nodes.

We call any node E ∈ +� good if and only if it has at least deg(E)/3
incoming edges. A node E that is not good is called bad. It can be

proven [28] that ∑
good vertex E

deg(E) ≥ |�� |/2. (1)

Lower bounding removed edges. We can lower bound the number

of removed edges as

/ ( ®G) ≥
∑

good vertex E

deg(E) · 'E ( ®G)/2.

The 2 factor in the denominator is because for an edge, both end-

points might be good nodes. Since
∑
good vertex E deg(E) ≥ |�� |/2,

to prove that E[/ ( ®G)] = Ω( |�� |), it su�ces to show that each

good vertex E has %A ['E ( ®G)] = Ω(1). This fact can be proven via

elementary probability calculations. Next, we discuss how to prove

it using only pairwise independence in the analysis.

Pessimistic estimator of removed edges via pairwise-independent

analysis. Let us use �# (D) and $*) (D) to denote in-neighbors

and out-neighbors of a vertex D. Consider a good node E and

consider all its incoming neighbors D, i.e., neighbors D such that

(deg(D), �� (D)) < (deg(E), �� (E)). Since E is good, it has at least
deg(E)/3 such neighbors. Hence, we have

∑
incoming neighbor D

1

deg(D) ≥ 1/3.

Choose a subset �# ∗ (E) ⊆ �# (E) of incoming neighbors such that∑
D∈�# ∗ (E)

1

deg(D) ∈ [1/3, 4/3] . (2)

Notice that such a subset �# ∗ (E) exists since the summation over

all incoming neighbors is at least 1/3 and each neighbor contributes
at most 1 to the summation. On the other hand, notice that for any

node D, we have ∑
F∈$*) (D )

1

deg(F) ≤ 1. (3)

This is because |$*) (D) | ≤ deg(D) and for eachF ∈ $*) (D), we
have (deg(F), �� (F)) > (deg(D), �� (D)).

A su�cient event E(E,D) that causes E to be removed is if some

D ∈ �# ∗ (E) is marked and no other node in �# ∗ (E) ∪ $*) (D) is
marked. By union bound, this event’s indicator is lower bounded

by

GD −
∑

D′∈�# ∗ (E),D≠D′
GD · GD′ −

∑
F∈$*) (D )

GD · GF .

Furthermore, the events E(E,D1), E(E,D2), . . . , E(E,D |�# ∗ (E) | ) are
mutually disjoint for di�erentD1, D2, . . . , D |�# ∗ (E) | ∈ �# ∗ (E). Hence,
we can sum over these events for di�erentD ∈ �# ∗ (E) and conclude
that

'E ( ®G)

≥
∑

D∈�# ∗ (E)

(
GD −

∑
D′∈�# ∗ (E),D≠D′

GD · GD′ −
∑

F∈$*) (D )
GD · GF

)

=

∑
D∈�# ∗ (E)

GD −
∑

D,D′∈�# ∗ (E)
GD · GD′

−
∑

D∈�# ∗ (E)

∑
F∈$*) (D )

GD · GF

Therefore, our overall pessimistic estimator for the number of re-

moved edges gives that

/ ( ®G) ≥
∑

good vertex E

(deg(E)/2) · 'E ( ®G)

≥
∑

good vertex E

(deg(E)/2) ·
( ∑
D∈�# ∗ (E)

GD −
∑

D,D′∈�# ∗ (E)
GD · GD′

−
∑

D∈�# ∗ (E)

∑
F∈$*) (D )

GD · GF
)
.

Intra-Cluster Rounding. For the intra-cluster rounding step, we

assume that we are given a partition C� of the input graph �

with diameter$ (
√
log=) and such that degC� (D) ≤ 5 (=) for every

D ∈ + and for some function 5 (=) = 2$̃ (
√
log=) .

Indeed, invoking Theorem 2.1 with U =

√
log(# ), we can com-

pute such a partition C� at the very beginning in $̃ (log2 =) rounds.
Also, we denote by C� = {� ∩+� : � ∈ C� } the partition of � that
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we obtain from the partition C� by removing from each cluster the

vertices not contained in +� .

Now, consider that we relax the label assignment such that it

also allows for a fractional assignment ®G ∈ [0, 1]+� . Then, / ( ®G)
is a pessimistic estimator on the expected number of edges re-

moved if we mark each vertex D fully independently (or pairwise

independent) with probability GD . In Luby’s algorithm, one marks

each node D ∈ +� with probability GD := 1
20 deg(D ) , and a sim-

ple calculation shows that for this marking probability we get

/ ( ®G) = Ω( |�� |). In the intra-cluster rounding step, the goal is to

compute a 1
100005 (=) log(=) -integral assignment ®G8=CA0 ∈ [0, 1]+�

such that we have / ( ®G8=CA0) = Ω( |�� |).
Consider some �xed cluster � ∈ C� . For any D ∈ � , we de�ne

®G8=CA0 in such a way that we can compute G8=CA0D by only knowing

the cluster � (together with the :-hop neighborhood around �

for some : = $ (1)). As the weak-diameter of � in the original

input graph is $ (
√
log=), we can compute G8=CA0D in $ (

√
log=)

rounds. Similar as in the intra-cluster rounding step for constant

approximate matching, we will use the probabilistic method to

show that a fractional assignment with certain desirable properties

exist.

To that end, we introduce one random variable - 8=CA0
D for ev-

ery vertex D ∈ � . If deg(D) ≤ 10005 (=) log(=), we simply set

- 8=CA0
D =

1
10 deg(D ) . Otherwise, if deg(D) > 10005 (=) log(=), we set

- 8=CA0
D =

1
100005 (=) log(=) with probability

10005 (=) log(=)
deg(D ) and with

the remaining probability we set - 8=CA0
D = 0, fully independently.

Note that for every D ∈ � , E[-D ] = 1
10 deg(D ) .

The following claim follows by a simple Cherno� bound.

Claim 5.1. For any subset ( ⊆ � , we have

%A

[∑
D∈(

- 8=CA0
D ≤ 1

5

∑
D∈(

1

deg(D) +
1

1005 (=)

]
≥ 1 − 1

=10
and

%A

[∑
D∈(

- 8=CA0
D ≥ 1

20

∑
D∈(

1

deg(D) −
1

1005 (=)

]
≥ 1 − 1

=10
.

Claim 5.1 together with a simple union bound implies that the

following holds with strictly positive probability: for every good

vertex E ,

1

20

∑
D∈�# ∗ (E)∩�

1

deg(D) −
1

1005 (=) ≤
∑

D∈�# ∗ (E)∩�
- 8=CA0
D

≤ 1

5

∑
D∈�# ∗ (E)∩�

1

deg(D) +
1

1005 (=)

and for every vertex D ∈ +� ,

∑
F∈$*) (D )∩�

- 8=CA0
F ≤ 1

5

∑
F∈$*) (D )∩�

1

deg(F) +
1

1005 (=) .

Therefore, each cluster � can compute in $ (
√
log=) rounds a

value G8=CA0D ∈ {0}∪
[

1
100005 (=) log(=) , 1

]
for every nodeD ∈ � such

that for every good vertex E ,

1

20

∑
D∈�# ∗ (E)∩�

1

deg(D) −
1

1005 (=) ≤
∑

D∈�# ∗ (E)∩�
G8=CA0D

≤ 1

5

∑
D∈�# ∗ (E)∩�

1

deg(D) +
1

1005 (=)

and for every vertex D ∈ +� ,

∑
F∈$*) (D )∩�

G8=CA0F ≤ 1

5

∑
F∈$*) (D )∩�

1

deg(F) +
1

1005 (=) .

We use these properties together with the fact that the degree

of the clustering C� is at most 5 (=) to prove the claim below.

Claim 5.2. For every good vertex E , we have

1/1000 ≤
∑

D∈�# ∗ (E)
G8=CA0D ≤ 1/3.

For every D ∈ +� , we have
∑

F∈$*) (D ) G8=CA0F ≤ 1/4.

Local Rounding. We next round the fractional solution ®G8=CA0 to

an integral solution ®~ using the rounding framework of Faour et al.

[13], as discussed in Section 3.2.

For a given label assignment ®G ∈ {0, 1}+� , we de�ne the utility
function as

u( ®G) =
∑

good vertex E

(deg(E)/2) ·
( ∑
D∈�# ∗ (E)

GD
)
,

and the cost function as

c( ®G) =
∑

good vertex E

(deg(E)/2) ·
( ∑
D,D′∈�# ∗ (E)

GD · GD′

+
∑

D∈�# ∗ (E)

∑
F∈$*) (D )

GD · GF
)
.

If the label assignment is relaxed to be a fractional assignment

®G ∈ [0, 1]+� , where intuitively now GD is the probability of D being

marked, the same de�nitions apply for the utility and cost of this

fractional assignment.

Let �2 denote the graph where any two nodes of distance at

most 2 in � are connected by an edge. Note that u( ®G) is a utility
function in the graph �2 and similarly c( ®G) is a cost function in

the graph �2. We next argue that the utility and cost function also

satisfy the key requirement of Lemma 3.3:

Claim 5.3. For the fractional label assignment ®G8=CA0 ∈ [0, 1]+�
computed during the intra-cluster rounding step we have u( ®G8=CA0) −
c( ®G8=CA0) ≥ u( ®G8=CA0)/3.

Hence, we can apply Lemma 3.3 on these fractional assignments

with _<8= =
1

1005 (=) log(=) = 1/2$̃ (
√
log=) . The algorithm runs

in $ (log2 (1/_<8=) + log(1/_<8=) log∗ =) = $̃ (log=) rounds in �2,

and hence can be simulated with no asymptotic overhead in � , and

as a result we get an integral label assignment ®~ ∈ {0, 1}+� which

satis�es u( ®~) − c( ®~) ≥ 0.5(u( ®G8=CA0) − c( ®G8=CA0)). We know that

/ ( ®~) = u( ®~) − c( ®~) ≥ (1/2) · (u( ®G8=CA0) − c( ®G8=CA0)) . Next, we
argue that this implies / ( ®~) ≥ |�� |/24000.
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Claim 5.4. For the fractional label assignment ®G8=CA0 ∈ [0, 1]+�
computed during the intra-cluster rounding step we have / ( ®G8=CA0) =
u( ®G8=CA0) − c( ®G8=CA0) ≥ |�� |/12000. Hence, for the integral marking

assignment ®~ we obtain from rounding ®G by invoking Lemma 3.3, we

have / ( ®~) = u( ®~) − c( ®~) ≥ (1/2) · (u( ®G) − c( ®G)) ≥ |�� |/24000.
Putting Everything Together. From the rounding procedure de-

scribed above, which runs in $̃ (log=) rounds of the LOCAL model,

we get an integral marking assignment ®~ with the following guar-

antee: if we add marked nodes D that have no marked out-neighbor

to the independent set and remove them along with their neigh-

bors, we remove at least a 1/24000 fraction of the remaining edges.

Hence,$ (log=) such iterations su�ce to complete the computation

and have a maximal independent set, for a total round complexity

of $̃ (log2 =). Note that the low-diameter partition only has to be

computed once in the beginning, which takes $̃ (log2 =) rounds.
Thus, we can indeed compute an MIS in $̃ (log2 =) rounds of the
LOCAL model.
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