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A B S T R A C T   

Recent global events emphasize the importance of a reliable energy supply. One way to increase energy supply 
security is through decentralized off-grid renewable energy systems, for which a growing number of case studies are 
researched. This review gives a global overview of the levelized cost of electricity (LCOE) for these autonomous 
energy systems, which range from 0.03 $2021/kWh to over 1.00 $2021/kWh worldwide. The average LCOEs for 
100% renewable energy systems have decreased by 9% annually between 2016 and 2021 from 0.54 $2021/kWh to 
0.29 $2021/kWh, most likely due to cost reductions in renewable energy and storage technologies. This review 
identifies and discusses seven key reasons why LCOEs are frequently overestimated or underestimated in research, 
and how this can be prevented in the future. This overview can be employed to verify findings on off-grid systems, to 
assess where these systems might be deployed and how costs evolve.   

1. Introduction 

Recent events have reduced the otherwise steadily increasing annual 
percentage of the global population with access to electricity for the first 
time in years [1]. Due to long distances to grid infrastructure, off-grid 
renewable energy systems are economically viable options to provide 
larger electricity access in developing regions like sub-Saharan Africa 
[2–4]. Even in industrialized countries with nationwide electrification, 
many local communities are striving for autonomous energy systems 
with 100% renewable energies [5–7], often motivated by economic, 
environmental and/or social reasons [8]. Decreasing costs for renewable 
energy technologies [9,10] as well as current cost uncertainties relating 
to supply from centralized infrastructures [11] will probably further 
increase the economic incentives for energy autonomy. 

For several years the feasibility of 100% renewable energy systems 
has been controversially discussed [12–14] and there have been some 
insights into how these systems could be implemented [15–17]. Existing 
reviews also highlight regulatory issues, such as greater utilization of 
centralized infrastructure by energy autonomous communities [18,19]. 

Other relevant studies include recent bibliometric analyses of 100% 
renewable energy systems [20], comprehensive reviews of the history 
and future of 100% renewable energy systems [21], reviews of 100% 
renewable energy scenarios on islands [22], and reviews of best prac-
tices and potential improvements for modeling such energy systems [2]. 
While the majority of these studies focusses on national energy systems, 
the latter two studies partly address the levelized cost of electricity 
(LCOEs) for decentralized energy systems. In Meschede et al. [22] this is 
only dealt with sporadically, whereas Weinand et al. [2] analyze the 
LCOEs for decentralized autonomous energy systems in a more detailed 
way. However, since the publication of the latter study, the number of 
studies on decentralized energy autonomy has increased considerably 
(see Section 2) and the costs are not discussed in detail because the study 
focuses more on modeling aspects. Therefore, this systematic review 
intends to answer the following research questions:  

• How have the costs for decentralized energy autonomous systems 
developed in recent years?  

• Have previous studies overestimated or underestimated the LCOEs?  
• What are the reasons for overestimation and underestimation of 

LCOEs? 
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2. Methods 

Definition of off-grid renewable energy systems. In this study, 
off-grid renewable energy systems are defined as systems in which both 
electricity as well as heating and cooling demands are met by renewable 
energy. As shown in the subsequent results section, the review focuses 
on systems with 100% renewable energy but also discusses off-grid 
systems that import fossil fuels and use them in diesel generators. 
While most of the case studies in this review are disconnected from the 
grid, we also include a few outliers that rely on backup capacity from the 
overlaying grid. In the latter cases, however, more than 100% of annual 
energy demand is provided by renewable sources in all of the regions 
considered. 

Literature search. With a specific search query in the literature 
database Scopus1 [23], 730 studies between 1990 and 2021 have been 
found. For energy autonomy, many different terms are used in research 
studies, which are supposed to be covered as completely as possible by 
the search query. Nevertheless, some uncertainty remains, that not all 
relevant studies are included by the search query. Through a manual 
check of titles, abstracts and full texts of the 730 studies, 228 articles 
were identified that address decentralized energy autonomy in small 
regions such as villages, municipalities, islands, or cities. This number of 
articles nearly doubled between 2020 and 2021 with 105 new studies in 
this period. 161 of the 228 articles [24–184] specify LCOEs for auton-
omous energy systems (see Fig. 1), of which 83 studies were published 
until 2019 and were previously identified by Weinand et al. [2]. Energy 
system analyses for individual residential, commercial, or industrial 
buildings/applications as well as analyses of large regions such as fed-
eral states, entire countries, or continents were excluded here. All eco-
nomic cost values stated in this review are inflation adjusted and refer to 
the year 2021. Furthermore, studies with LCOEs above 1 $2021/kWh are 
excluded in the following analysis (see explanations in Section 3.1). 

3. Results 

The inflation-adjusted LCOEs in Fig. 1 calculated by the 161 case 
studies range from 0.03 $2021/kWh in Alotaibi & Eltarnaly [38] (Sau-
di-Arabia) to 0.99 $2021/kWh in Rehman et al. [163] (Pakistan), with a 
total mean value of about 0.35 $2021/kWh (median is 0.29 $2021/kWh 
and mode is 0.24 $2021/kWh). Since 2016, the mean LCOEs for auton-
omous energy systems have decreased from 0.33 $2021/kWh (<100% 
renewable, i.e., including fossil fuels) and 0.54 $2021/kWh (100% 
renewable) on average by 4% and 9% per year to 0.23 $2021/kWh and 
0.29 $2021/kWh in 2021, respectively. In all articles that consider both 
hybrid renewable-fossil-fuel systems and 100% renewable systems, the 
latter are on average 24% more costly. However, all hybrid systems 
include large shares of renewables and due to the stronger cost degres-
sion for 100% renewable systems, the cost deviation could progressively 
diminish. 

Most studies in the research field of energy system analysis originate 
from the United States of America, China, United Kingdom, Germany 
and Italy [189], however, most of these countries are underrepresented 
in the 161 case studies on off-grid systems. Among the case studies that 
explicitly mention LCOEs, most were conducted for India (22%), Iran 
(7%), China (7%), Nigeria (5%) and Canada (4%). While 3% of the 
studies were conducted for German and 1% for Italian regions, no case 
studies were published for the United States of America or the United 
Kingdom. In some countries such as Spain [91], Germany [136] and 
New Zealand [139] with comparatively high electricity prices (cf. 
Fig. 1), the calculated LCOEs for off-grid systems are partly below the 
household electricity prices (which also contain taxes and levies) in 
December 2021 of 0.32 $2021/kWh, 0.34 $2021/kWh and 0.19 
$2021/kWh, respectively [188]. 

Of the 161 case studies, 100 consider 100% renewable energy sys-
tems without fossil fuels. The majority of these studies (63%) applied the 
HOMER (Hybrid Optimization of Multiple Energy Resources) or HOMER 
Pro simulation models. The HOMER model is a widely used open-source 
software tool for designing microgrid systems. Developed by the Na-
tional Renewable Energy Laboratory (NREL), it is used to evaluate the 
technical and economic feasibility of integrating different energy sour-
ces, such as solar, wind, and energy storage, into a microgrid. The model 
considers inputs such as weather, load profiles, and equipment perfor-
mance to determine the optimal configuration of a microgrid system. 
Other studies used the optimization models RE3ASON [179,180], Off-
gridders [60], LINGO [103], ISLA [145] and IREOM [104], the simu-
lation models H2RES [114], and EnergyPLAN [74] or metaheuristics like 
particle swarm optimization [97,117,153,161], genetic algorithms [98, 
117,142,156] or discrete harmony search [64]. Furthermore, Kumar & 
Saini [117] compare nine different metaheuristics for the energy system 
optimization of five un-electrified villages in India and demonstrate that 
the Salp Swarm Algorithm converges most efficiently. 

While most studies consider off-grid systems and thus complete en-
ergy autonomy, this study also includes five case studies with balanced 
autonomy. The latter means that although significantly more energy is 
provided annually by local renewable energy sources than is required in 
the region, backup capacity is also available through the overlying grid. 
These studies only involve analyses in industrialized countries, namely 
Canada (Bagheri et al. [51,52]), Croatia (Krajačić et al. [114] and 
Dorotić et al. [74]) and Germany (Kötter et al. [113]). In addition, most 
case studies focus on meeting electricity demand, while the minority 
also consider heating and cooling requirements (e.g., Akthari & Baneshi 
[32] or Weinand et al. [179,180]). 

The following sections analyze why some studies overestimate 
(Section 3.1) or underestimate (Section 3.2) the costs of 100% renew-
able off-grid energy systems and how this could be improved in the 
future. Thereby, the focus lies on the 100 case studies with 100% 
renewable energy systems. 

Abbreviation 

Description 
CO2 Carbon dioxide 
CuCoPy Currency Conversion for Python 
HOMER Hybrid Optimization of Multiple Energy Resources 
IRENA International Renewable Energy Agency 
IREOM Integrated Renewable Energy Optimization Model 
ISLA Island System LCOEmin Algorithm 
LCOE Levelized cost of electricity 
LINGO Optimization Modeling Software for Linear, Nonlinear, 

and Integer Programming 
NREL National Renewable Energy Laboratory 
PV Photovoltaics 
RE Renewable Energy 
RE3ASON Renewable Energies and Energy Efficiency Analysis 

and System Optimization  

1 Search query taken from Weinand et al. [2]: TITLE-ABS-KEY (“energy sys-
tem” AND (“simulation” OR “modeling” OR “optimization” OR “analysis”) AND 
(“region” OR “municipalities” OR “municipality” OR “communities” OR 
“community” OR (“district” AND NOT “district heating”) OR “city” OR “cities” 
OR “town” OR “remote”) AND (“off-grid” OR “off grid” OR (“100%" AND “RE”) 
OR (“100%" AND “renewable”) OR ″100%-renewable” OR (“energy” AND 
“autonomy”) OR (“energy” AND “autarky”) OR (“energy” AND “self--
sufficiency”) OR (“energy” AND “self-sufficient”) OR “energy independent” OR 
“stand-alone” OR “energy autonomous” OR “island system")) AND (LIMIT-TO 
(DOCTYPE,"ar")) AND (LIMIT-TO (LANGUAGE, “English")). 
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Fig. 1. Inflation-adjusted levelized cost of electricity (LCOE) for case studies on off-grid energy systems. The studies are sorted by mean LCOEs of all considered 
systems. Some hybrid systems consider fossil fuels and renewables (<100% RE) and some case studies incorporate only 100% renewable based systems (100% RE). 
The open-source Currency Conversion for Python (CuCoPy) [185] package was developed for this research and provides methods for exchanging currencies and 
adjusting monetary values for inflation. Its scope of application ranges from 1960 to 2021. Exchanging a value between currencies is done by dividing the target 
currency’s exchange rate by the initial currency’s exchange rate and multiplying the resulting quotient by the initial value. Likewise, adjusting for inflation is done by 
dividing the country’s consumer price index at the starting date by its consumer price index from the target date. Most exchange rates and consumer price indices 
were provided by the World Bank Group and used under the CC BY 4.0 license [186]. The exchange rate used for converting Indian Rupees to U.S. Dollars in 2021 
was not included in the data provided by the World Bank Group and was instead calculated by averaging the monthly exchange rate of Indian Rupee against U.S. 
Dollar provided on pages 104 and 105 in the “Economic Survey 2021–2022 Statistical Appendix” conducted by the Reserve Bank of India and published by Union 
Budget (India) [187]. In a few studies [42,100,149], LCOEs were given, but it was not clear for which country the case studies were conducted. Since it is not possible 
to adjust for inflation and no household electricity price can be stated for comparison, these studies are not included in the figure. The household electricity prices 
include all electricity bill items, such as the distribution and procurement costs, a variety of environmental and fuel costs, and taxes [188]. The right diagram is a 
continuation of the left diagram. 
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3.1. Reasons for overestimating LCOEs 

While off-grid systems are generally associated with higher costs to 
meet load at all times of the year, a few studies show very high LCOEs, 
some above 1 $2021/kWh. Some LCOEs are particularly high due to high 
inflation in the countries studied, e.g., in the study from Askari & Ameri 
[46] for Iran from 2009. The following is an overview of some of the key 
drivers of why LCOEs have been overestimated in some studies. 

Investment decisions as model input. Some studies using the en-
ergy system model HOMER present sub-optimal dimensioning of the 
autonomous energy system components. Chauhan et al. [65], for 
example, install an over-sized hydro power plant in each of their sce-
narios and the 100% renewable energy system results in 98% excess 
electricity per year and LCOEs of 2.99 $2021/kWh. Similarly, in Bashir & 
Modu [57], Rahman et al. [155] and Chang et al. [62], the energy sys-
tems also show 65%–92% excess electricity due to large oversizing of 
system components. The problem with these studies is that, due to the 
high combinatorial complexity of combined investment and dispatch 
optimization models [190], simulation models like HOMER are applied 
instead. This means that the dimensioning of the system components has 
to be done in advance and is not optimized within the model, which 
requires in-depth knowledge of the analyzed systems. Thereby, also 
backup and peak load capacities have to be considered, which are 
especially needed in case of extreme (weather) events. This makes it 
very complex to design an energy autonomous system with high supply 
security and cost efficiency. While it is possible to achieve comparable 
results with simulation approaches [191], an application of advanced 
models for investment and dispatch optimization should be carefully 
considered in the future to avoid overestimation of costs. 

Ignoring technology cost degressions. Many articles did not adjust 

their cost assumptions to real developments. Especially in the last years, 
the mean of the assumed costs for photovoltaics (PV), onshore wind and 
battery storage in the studies is significantly above global cost trends, as 
shown in Fig. 2. Some notable examples include high PV costs of 2500 
$2021/kW in the article by Malanda et al. [131] from 2021, 4200 
$2021/kW in You & Kim [184] from 2020 or 5800 $2021/kW in Baseer 
et al. [56] from 2019. Particularly high wind or battery costs are found 
in Malanda et al. [131] from 2021 with 6000 $2021/kW for onshore wind 
or in Chang et al. [62] from 2021 with 1700 $2021/kWh for battery 
storage. The peaks in 2017 for wind turbine and battery costs are related 
to the fact that only two studies report costs and these are relatively 
high: the high maximum costs for batteries and wind turbines based on 
Hosseini et al. [90] are related to the strong inflation in Iran, and the 
high minimum cost for onshore wind are related to the cost assumption 
of about 5100 $2021/kW in Das et al. [71]. Since inflation-adjusted 
technology costs are compared with global cost developments in 
Fig. 2, these do not necessarily coincide. Still, this reveals that cost es-
timates tend to be pessimistic. Cost developments and influences could, 
for example, be covered by sensitivity analyses, but generally only few 
to no studies conduct these analyses with regard to techno-economic 
parameters. An exception is Nadal et al. [142], who comprehensively 
investigate ranges of capital and operational expenditures, replacement 
times etc. for PV, electrolyzers and batteries. They show for a microgrid 
in Nigeria that capital costs of PV and capacity loss of batteries are 
among the most influential parameters on LCOEs, which again illus-
trates the importance of sound cost choices. 

Neglecting technology options. Not all articles consider compre-
hensive technology options. While solar PV is considered in all 100 
studies and batteries in almost all articles (92%), this is not the case for 
other technologies (see Table 1). The importance of considering 

Fig. 2. Inflation-adjusted LCOEs (a) in 100 of the 161 studies, which consider 100% renewable energy systems without fossil fuels. PV capital cost (b), onshore wind 
capital cost (c) and battery capital cost (d) are only indicated in 89 of the 100 studies, i.e., 11 studies do not give information on costs. Due to their large impact on the 
cost curves, some very large outliers have been removed from a, b and c, see main text. The curves indicate the mean values among all studies and the area around 
them show the range between upper and lower extreme values. If no area surrounds the curve of mean values in a specific year, this means that either only one study 
was published in this year, or all used the same cost value. In panels a, b and c, the inflation-adjusted costs from the studies are also compared to real costs based on 
global averages. The global costs for PV are based on Refs. [192,193], for wind on Ref. [193] and for batteries on Ref. [194]. 
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technologies comprehensively is shown by the fact that including 
onshore wind, hydro power, batteries or hydrogen storage, and fuel cells 
plus electrolyzers could reduce LCOEs on average between 15 and 36% 
(Table 1). This finding is in line with other research: a recent article has 
shown that neglecting onshore wind in municipal renewable energy 
systems leads up to about 0.08 $2021/kWh higher LCOEs for energy 
systems by 2050 [195]. Other studies show that incorporating base load 
capable technologies such as deep geothermal energy could also 
significantly reduce the cost of decentralized energy systems [179,180, 
196]. Particularly in off-grid energy systems, unconventional but 
potentially beneficial technologies and measures should also be incor-
porated in the future, e.g., higher shares of district heating [197,198] or 
the integration of large-scale hydrogen production [199]. In addition, 
sector-coupling options such as through electric vehicles (e.g., in Akthari 
& Baneshi [32] or Oldenbroek et al. [149]) or fuel cell vehicles (e.g., in 
Dorotić et al. [74] or Weinand et al. [179]) should be considered and 
have the potential to reduce LCOEs for off-grid systems. 

3.2. Reasons for underestimating LCOEs 

There are also some key drivers, which could have led to an under-
estimation of LCOEs and will be discussed in the following. 

Neglecting grid integration. Costs for integrating variable renew-
ables into energy systems are small at low penetration of renewables, but 
can rise sharply at high penetrations [200,201]. Parts of the system 
LCOEs for integrating renewables are profiling costs for dispatchable 
generation to meet the residual demand, balancing costs to balance 
forecast and actual non-dispatchable generation, and grid costs for grid 
reinforcements and extensions to integrate the renewable generators in 
the network [202,203]. While in the case studies on 100% renewable 
energy systems the balancing costs are included and the profiling costs 
are at least partially included, the grid costs are neglected with very few 
exceptions (see Moeller et al. [136] or Weinand et al. [179,180]). Many 
recent articles show that LCOEs are underestimated if not all system 
LCOE aspects are considered: for example, Chen et al. [204] show for 
China that the traditional LCOE approach underestimates wind gener-
ation costs by about 15% compared to a system cost approach. 
Furthermore, McKenna et al. [205] demonstrate in an onshore wind 
potential analysis for Great Britain that taking grid connection costs into 
account doubles the cost of a wind farm on average. Veronese et al. 
[206] derive similar conclusions for solar PV in the future Italian energy 
system revealing that the system LCOEs are on average 50% higher than 
in usual LCOE analyses. Thus, future studies on 100% renewable energy 
systems should attempt to incorporate all components of system LCOEs. 

Applying hourly resolution. Das et al. [69] use the HOMER model 
to demonstrate for a PV/Wind energy system with lithium-ion batteries 
in a remote community in Australia, that the temporal resolution of the 
model has a negligible effect on the LCOEs. Their results show that the 
LCOEs decrease with lower temporal resolution from about 
0.33 $2021/kWh at a minute resolution to 0.32 $2021/kWh at an hourly 
resolution. For that reason, Das et al. decide for an hourly resolution 
given a smaller computational load. To the best of the authors’ knowl-
edge, the remaining works subject to this review focus on hourly reso-
lution exclusively. Potential reasons are the generally better availability 

of hourly resolved data bases and the moderate required model run-
times, but also software-related restrictions as more than 50% of the 
reviewed publications rely on the software HOMER or HOMER Pro. 
These models use a hybrid approach of optimization and simulation to 
design near-optimal, but reliable systems, which may distort the impact 
of different temporal resolutions. 

Purely optimization-based capacity expansion models are well- 
known to underestimate real system costs at coarser temporal resolu-
tions [207] due to unintentional peak-shaving of the duration curves 
resulting from averaging [208] and to thereby undersize system ca-
pacities, which leads to operationally infeasible system designs [209]. 
This effect is particularly strong for small and isolated renewable energy 
systems. These systems cannot use grid connections or the superposition 
of multiple demand profiles to level out demand peaks or supply 
troughs, leading to significantly higher overcapacities if the temporal 
resolution is increased [210]. Furthermore, the cost increase is degres-
sive with higher temporal resolutions and therefore it is highly 
model-dependent whether the impact of an increased temporal resolu-
tion can be neglected or not. For that reason, different 
optimization-based publications focusing on different model scopes 
have arrived at different conclusions with respect to the impact of 
sub-hourly model resolutions: for the cost-optimal design of a hybrid 
municipal energy system with 250 households comprising PV and 
combined heat and power, Kools et al. [211] conclude that higher 
temporal resolutions lead to slightly higher load losses (3% for minutely 
resolution, 2% for hourly resolution) and smaller PV capacities. How-
ever, the authors demonstrate that the impact is small and should 
therefore be omitted for the sake of computational tractability. Harb 
et al. [212] arrive at a similar finding that the overall cost underesti-
mation of less than 1% in hourly energy system optimizations of a small 
neighborhood compared to quarter hourly resolution is negligible. 
However, the general trend that higher resolutions lead to higher costs 
and smaller cost-optimal shares of non-dispatchable renewables (if dis-
patchable fossil sources are available) holds true as well. 

Overall, the impact of sub-hourly resolved time steps on overall 
system costs likely remain small or moderate, but the systematic 
assessment of this aspect is too widely neglected to derive general 
conclusions. Especially with respect to the relative frequency of outage 
or lost load with usually very small percentage values, the impact may 
be considerable for 100% renewable off-grid systems. 

Risk of social opposition. The vast majority of articles contain pure 
techno-economic analyses. Only a few studies combine this with multi- 
attribute [111] or multi-criteria [77,116] decision making to include 
preferences of stakeholders in the evaluation of energy systems. The 
disregard of social acceptance could lead to technically and economi-
cally optimal energy systems from a theoretical perspective, which 
cannot be implemented in reality, as decision-makers might reject 
certain technologies. Especially for onshore wind, the opposition of local 
inhabitants towards turbines due to landscape impacts [205,213,214] or 
disamenities [215,216] may be particularly strong and lead to higher 
system costs. Since many aspects regarding the techno-economic feasi-
bility of off-grid renewable energy systems have already been exten-
sively studied in the past, future studies should increase their efforts to 
incorporate more non-technical aspects in energy system analyses [217, 
218]. 

Transformation versus overnight expansion. Nearly all studies 
(96%) consider so-called overnight pathways, i.e., only the cost-optimal 
final state is planned for the energy system, but not the path leading there. 
Only four exceptions consider off-grid energy systems in a multi-year 
transformation [74,114,179,180]. Especially expansion rates of renew-
able energies as well as retrofit rates of buildings can have a major impact 
on costs and CO2 emissions in decentralized energy systems [196] and 
could be limited by available material and craftsmen. Using a multi-year 
transformation planning together with model-endogenous technology 
learning could also avoid stranded investments due to installing tech-
nologies that are not needed in the future energy system [219]. 

Table 1 
Impact of neglecting specific technologies on LCOEs for 100% renewable off- 
grid energy systems in 25 case studies published in 2021.   

Wind 
power 

Hydro 
power 

Batteries Electrolyzers, fuel 
cells and hydrogen 
storage 

Share of studies not 
including this 
technology [%] 

20 88 4 80 

Mean LCOE increase 
if not included [%] 

36 24 30 15  

J.M. Weinand et al.                                                                                                                                                                                                                            
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3.3. Considerable impact of discount rate on LCOE 

Another significant influence on the LCOE in energy system analyses 
can arise from the choice of the discount rate, which is country specific 
[220] and ranges from 0.3% for a case study in Japan to 18% for a case 
study in Iran, as illustrated in Fig. 3. Some studies also examine the effect 
of discount rate on LCOE for regional energy system case studies in 
Bangladesh [132], Canada [52], Cameroon [141], India [157], and 
China [125]. Thereby, the studies show that a 10% increase in the dis-
count rate increases the LCOE by about 3–6%. Due to the higher specific 
investment and lower operating costs of renewables, the discount rate 
has a particularly high impact in renewable energy systems. For a hybrid 
off-grid energy system with a renewable penetration of only about 20%, 
Rahman et al. [155] demonstrate that an increase in the discount rate of 
20% has a negligible impact on costs (+0.1%). In future studies on 100% 
renewable energy systems, the choice of the discount rate should be 
made very carefully to avoid underestimation or overestimation of 
system costs. 

4. Discussion 

This review reveals the decrease in costs for decentralized off-grid 
renewable energy systems due to technological progress and cost 
degression. Recent global energy, health and geopolitical crises and the 
associated rise in retail energy prices could make off-grid energy systems 
worthwhile even in certain regions of industrialized countries. As has 
been shown for a few countries, the household electricity price is already 
higher than the LCOEs calculated in some case studies for off-grid energy 
systems. 

Additionally, seven key reasons that lead to a systematic over-
estimation or underestimation of costs in the model calculations have 
been identified. To avoid an overestimation of LCOEs, future studies 
should carefully size energy technologies in simulation models (1), 
integrate all recent cost developments (2) and include all potentially 
beneficial technology options (3). To prevent underestimation of costs, 
integration costs should be accounted for (4), higher temporal resolu-
tions should be applied in combination with time series aggregation 
approaches (5), social opposition to certain technologies in the regions 
studied should be addressed (6), and pathways for the transformation of 
energy systems should be planned instead of only planning the final state 
of systems (7). 

Further suggestions have recently been developed by a group of 
experts. As an energy system reaches 100% renewable energy, the 

necessary balance between supply and demand usually leads to a highly 
nonlinear increase in costs, mainly due to seasonal mismatches [17]. 
Since reaching the last 10% to achieve a completely renewable energy 
supply is especially challenging, the group of experts introduced six 
strategies for this [16]: building more variable renewable energy 
together with transmission and diurnal storages (1), installing other 
base-load capable renewable energy technologies like geothermal en-
ergy, hydropower or biopower (2), deploying nuclear plants as well as 
fossil-based ones with carbon capture (3), using seasonal storage by 
hydrogen, storage and re-electrification (4), employing carbon dioxide 
removal like bioenergy with carbon capture and storage (BECCS) or 
direct air carbon capture and storage (DACCS) (5) or intensifying 
demand-side measures like demand response or demand flexibility (6). 
While some of these strategies are more suited for large centralized 
energy systems (e.g., installing conventional nuclear power plants) or 
fully decarbonized energy systems (BECCS and DACCS), they are 
consistent with the recommendation in Section 3 to exploit all available 
technological options to achieve 100% renewable energy systems in the 
future in a cost-effective way. 

While this review attempts to present the LCOEs of off-grid regions in 
various countries as comparable as possible by adjusting for inflation, 
the heterogeneity of regions in, for example, size, energy demands, 
renewable potentials, and cost structures [221] means that the LCOEs 
between studies can never be completely comparable. In addition, the 
discussion on system LCOEs in Section 3 indicated that LCOEs may not 
be the best and most comprehensive metric to compare energy systems. 
Recently, a new metric called the Cost of Valued Energy has been 
introduced to better evaluate energy systems with high shares of 
renewable energy. The Cost of Valued Energy relies on system costs in 
relation to spot market revenue on an annual basis and thus takes into 
account not only the economic impact of supply vs. demand but also of 
cost vs. revenue [222]. Although spot markets could be irrelevant in 
decentralized off-grid energy systems, this highlights once again the 
need for novel metrics to compare energy systems. While the COVE 
places a higher value on energy supply during high wholesale energy 
prices, in off-grid systems the supply could be weighted stronger, for 
example, during periods of dark doldrums or demand peaks. 

Besides cost considerations, off-grid energy systems should be 
assessed by means of environmental metrics and social aspects to ach-
ieve a more thorough energy systems analysis. Life cycle assessment can 
be used to quantify the environmental impacts of a product, service, or 
energy system over the entire life cycle (including the manufacturing, 
operation, and end-of-life phase), considering environmental impacts 
beyond greenhouse gas emissions [223]. Thus, life cycle assessments can 
identify potential trade-offs between costs, greenhouse gas emissions, 
and other environmental burdens [199,223]. Off-grid energy systems 
can be decarbonized by abandoning the import and use of fossil fuels, 
integrating low-carbon energy sources – such as solar PV and wind – and 
using energy storage [199]. However, the manufacturing of off-grid 
energy systems can result in environmental burden shifting, for 
example with regard to material utilization and/or land occupation 
[199,224]. In line with Section 3.1, these additional environmental 
burdens mainly arise due to the oversizing of off-grid systems, which 
might be reduced with optimization and/or appropriate disposal of 
system components. Thus, there can be substantial environmental con-
sequences when costs are the only metric considered within the analysis 
of off-grid energy systems. Therefore, additional metrics beyond costs 
and (operational) greenhouse gas emissions during the design phase of 
off-grid energy systems must be considered. 

However, LCOEs are the only suitable metric to compare the eco-
nomics of decentralized off-grid renewable energy systems at the 
moment, due to their coverage in most studies. The comparison with the 
LCOE overview in this review can, for example, prevent design errors in 
future studies, if authors find that their calculated LCOEs are too high or 
low. Therefore, this overview can be used to verify findings on off-grid 
systems, to assess where these systems might be deployed and how 

Fig. 3. Box plots of discount rates in 59 articles on 100% renewable off-grid 
energy systems, classified by country in which the case study was investi-
gated. 41 articles on 100% renewable off-grid energy systems do not state the 
value of the discount rate. 
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costs evolve. 
This review provides concrete implications for policy makers, in-

vestors and researchers in most if not all of the analyzed countries (as 
well as learnings in those not included). As many of these countries 
attempt to transition towards a mainly or fully renewable energy system, 
they all face the same challenge of integrating variable renewable en-
ergy technologies. The cost of the required measures, including network 
expansion/densification, storage, backup capacity, and flexibility of 
existing plants, can be reduced in some cases with off-grid energy sys-
tems. Especially in countries where grid parity has made the self- 
consumption of self-generated energy (power) more economical than 
imported energy (power) from the grid, but also as recent geopolitical 
events have motivated some pro/consumers to pay a premium for a 
more secure, local energy supply, such renewable-based micro- or 
minigrids can increasingly represent an economically and environ-
mentally attractive opportunity compared to conventional centralized 
energy supply structures. Furthermore, as approaches to energy com-
munities become more established, such local networks of self-supply 
can start to emerge at scales from individual buildings up to whole cit-
ies, whereby the precise size and configuration, and therefore the eco-
nomic business case, depends on local supply and demand 
characteristics. The challenge for policymakers and regulators is to 
create the right incentives and signals that encourage these off-grid 
initiatives in locations and at scales that are Pareto optimal, in other 
words where the local consumers benefit but at no detriment to the 
overarching energy system. 
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trade-offs between landscape impact, land use and resource quality for onshore 
variable renewable energy: an application to Great Britain. Energy 2022;250: 
123754. https://doi.org/10.1016/j.energy.2022.123754. 

[215] Weinand JM, Naber E, McKenna R, Lehmann P, Kotzur L, Stolten D. Historic 
drivers of onshore wind power siting and inevitable future trade-offs. Environ Res 
Lett 2022;17(7):74018. https://doi.org/10.1088/1748-9326/ac7603. 
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