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We prove a general criterion for the vanishing of second 
bounded cohomology (with trivial real coefficients) for groups 
that admit an action satisfying certain mild hypotheses. 
This leads to new computations of the second bounded 
cohomology for a large class of groups of homeomorphisms 
of 1-manifolds, and a plethora of applications. First, we 
demonstrate that the finitely presented and nonamenable 
group G0 constructed by the second author with Justin Moore 
satisfies that every subgroup has vanishing second bounded 
cohomology. This provides the first solution to a homological 
version of the von Neumann–Day Problem, posed by Calegari. 
Next, we develop a technical refinement of our criterion to 
demonstrate the existence of finitely generated non-indicable 
(even simple) left orderable groups with vanishing second 
bounded cohomology. This answers Question 8 from the 
2018 ICM proceedings article of Navas. Then we provide the 
first examples of finitely presented groups whose spectrum 
of stable commutator length contains algebraic irrationals, 
answering a question of Calegari. Finally, we provide the first 
examples of manifolds whose simplicial volumes are algebraic 
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and irrational, as further evidence towards a conjecture of 
Heuer and Löh.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Two intricately related invariants that appear in modern group theory are stable 
commutator length and bounded cohomology.

Stable commutator length (usually referred to as scl) is a real-valued invariant of 
groups that allows for algebraic, topological, and analytic descriptions, and has several 
applications in topology and geometry [18]. Consider a group G. The commutator length
of an element g in the commutator subgroup G′, denoted as cl(g), is the smallest n ∈ N
such that g can be expressed as a product of at most n commutators of elements in 
G. Then we define the stable commutator length of g as scl(g) := limn→∞

cl(gn)
n . If 

there exists k ≥ 1 such that gk ∈ G′, then we set scl(g) := scl(gk)
k . Otherwise, we set 

scl(g) := ∞. Since the function given by n → cl(gn) is subadditive, this limit always 
exists. However, in general, it is hard to compute. Given a group G, we denote scl(G) :=
{scl(g) | g ∈ G}.

Bounded cohomology of groups is defined analogously to standard group cohomology, 
but taking the topological dual of the simplicial resolution instead of the algebraic dual. 
This invariant was introduced by Johnson and Trauber in the context of Banach algebras 
[45], who proved that it vanishes in all positive degrees for amenable groups. Since then, 
it has become a fundamental tool in several fields [30,58], most notably the geometry of 
manifolds [36] and rigidity theory [14]. Given a group G, its second bounded cohomology 
with trivial real coefficients H2

b(G; R) is of particular interest in the context of rigidity 
results. For instance, it is related in a strong way to actions on the circle [33], and a 
vanishing result for high-rank lattices [13,14] leads to a proof of superrigidity for mapping 
class groups [4]. The vanishing of the second bounded cohomology is often viewed as a 
weaker form of amenability.

The two invariants are intimately related. The connection is given by a fundamental 
result called Bavard Duality [2]. This allows one to compute stable commutator length 
by means of quasimorphisms, which represent certain classes in H2

b(G; R). A special case 
of this states that the stable commutator length of G vanishes identically on G′ if and 
only if a natural map H2

b(G; R) → H2(G; R) is injective.
In this paper we address a family of closely interconnected questions concerning sta-

ble commutator length and bounded cohomology. Our first result establishes a rather 
general criterion that allows one to compute the second bounded cohomology of several 
transformation groups. To state our criterion, we need the following definition.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Definition 1.1. Let G be a group. We say that G has commuting conjugates if for every 
finitely generated subgroup H ≤ G, there exists an element f ∈ G such that [H, Hf ] = id.

Theorem 1.2. Let G be a group with commuting conjugates. Then H2
b(G; R) = 0.

Theorem 1.2 has several nice consequences for the group G. It implies that the stable 
commutator length vanishes on all of G′,1 that every minimal action on the circle is 
conjugate to an action by rotations [55] (see also [30, Corollary 10.28]), as well as further 
rigidity results that we will soon mention.

This criterion applies to large families of boundedly supported transformation groups. 
Together with known combination results, we obtain the following theorem, which is the 
starting point of our main applications:

Theorem 1.3. We have H2
b(G; R) = 0, when G is one of the following:

1. A group of orientation-preserving piecewise linear homeomorphisms of the interval, 
or piecewise projective homeomorphisms of the real line;

2. A chain group of homeomorphisms (as defined in [47]), or a group that admits a 
coherent action on the real line (as defined in [51]).

As a first application, we settle a homological von Neumann–Day problem: Do there 
exist nonamenable groups, all of whose subgroups have vanishing second bounded co-
homology (with trivial real coefficients)? In [17], Calegari states a related conjecture 
which asserts: If G is a finitely presented, torsion free group with the property that ev-
ery subgroup has vanishing stable commutator length, then G is amenable. Applying 
Theorem 1.3 to the nonamenable group of piecewise projective homeomorphisms G0

constructed by the second author with Moore [53] disproves the conjecture as well as 
settles the problem.

We wish to emphasize that Theorem 1.3 is a new result even for the special case 
of subgroups of Thompson’s group F . As a consequence, it provides a new obstruction 
towards the embeddability of a given group in Thompson’s group F , and more generally 
in the group of piecewise linear (or piecewise projective) homeomorphisms of the interval 
(real line). The subgroup structure of these groups is very mysterious (see e.g. [37,35,5]), 
and our theorem provides new insight in this direction. We also remark that as corollaries 
of Theorem 1.3, we recover the theorem of Calegari which asserts that scl vanishes for 
any group of piecewise linear homeomorphisms of the unit interval [17], as well as the 
Brin–Squier Theorem which asserts that such groups do not contain nonabelian free 
subgroups [7]. To our knowledge, these were the only meaningful structural results that 

1 After a talk about this work, Jonathan Bowden pointed out to us that the result establishing the 
vanishing of scl was already known [48, Proposition 2.2].
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were previously known to hold for all piecewise linear groups of homeomorphisms of the 
interval.

Our next application is in the theory of left orderable groups [24]. A group G is said 
to be left orderable if it admits a total order which is invariant under left multiplication. 
This notion has a beautiful connection with dynamics of group actions on the line: a 
countable group G is left orderable if and only if it admits a faithful action by orientation-
preserving homeomorphisms on the real line. Two closely related algebraic notions are 
the following. A group is indicable if it admits a surjection onto Z, and locally indicable
if every finitely generated subgroup is indicable. Note that for a finitely generated group, 
local indicability implies indicability.

It is well known that locally indicable groups are left orderable, yet the converse 
fails. However, the converse holds in certain situations. A fundamental theorem in this 
direction is Witte-Morris’s Theorem [64]: amenable left orderable groups are locally 
indicable. Equivalently, finitely generated amenable left orderable groups are indicable. 
In his 2018 ICM proceedings article [63], Andrés Navas uses this theorem as a starting 
point for a research program consisting of a list of questions about left orderable groups 
which are reminiscent of the Tits alternative. The general theme is: Are some of the 
properties weaker than amenability enough to imply indicability of a finitely generated 
left orderable group?

Question 1.4 ([63, Question 8]). Does there exist a finitely generated, non-indicable, left 
orderable group G such that H2

b(G; R) = 0?

There are two key difficulties in attempting to resolve Question 1.4. The first is the 
hypothesis of finite generation. Indeed, using the construction of Mather [54] it is easy 
to show that every countable left orderable group embeds in a countable left orderable 
perfect group which has vanishing bounded cohomology in every positive degree [29]. But 
such groups are not finitely generatable. When restricting to finitely generated groups, 
a further difficulty in Question 1.4 lies in the requirement that the finitely generated 
group must be non-indicable, which for finitely generated groups is stronger that non-
locally indicable. In other words, the witness to the failure of local indicability is required 
to be G itself, and not some finitely generated subgroup thereof. Indeed, non-locally 
indicable groups with vanishing second bounded cohomology are easily constructed using 
Theorem 1.3, and the fact that every finitely generated left orderable group embeds into 
a chain group [47, Theorem 1.4]. Yet, they do not answer Question 1.4.

In [43] the second author and Hyde constructed the first family of finitely generated 
simple left orderable groups. The construction takes as input a so-called quasi-periodic 
labeling ρ and outputs a finitely generated simple left orderable group Gρ (see Section 4
for more detail). Note that the finitely generated groups Gρ are non-indicable, being 
simple. Thus our theorem below shows that the groups Gρ provide a positive answer to 
Question 1.4:
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Theorem 1.5. Let ρ be a quasi-periodic labeling. Then H2
b(Gρ; R) = 0.

We wish to emphasize here that our solution to Navas’s question is even more striking 
owing to the fact that the groups Gρ are simple, which is much stronger than being non-
indicable. The proof of Theorem 1.5 relies on a technical refinement of the ingredients of 
Theorem 1.2, since as such it is far from being directly applicable to Gρ. We also recover 
the fact that the groups Gρ are left orderable monsters, meaning that every faithful action 
on the real line is globally contracting [44, Corollary 0.3]. We are also able to deduce the 
stronger fact that second bounded cohomology vanishes with integral coefficients, which 
in turn implies that every action on the circle has a global fixpoint, strengthening [44, 
Corollary 0.2] (Corollary 4.20).

To prove Theorem 1.5, we will start by applying Theorem 1.2 in order to show that 
subgroups Γ ≤ Gρ with a global fixpoint satisfy H2

b(Γ; R) = 0. The promotion of these 
computations to Gρ is non-trivial, thus showing how Theorem 1.2 can be useful also 
as a technical ingredient to provide more complicated computations of second bounded 
cohomology. As a further illustration of this, we will sketch how our arguments may be 
adapted to prove vanishing of second bounded cohomology of the groups T (ϕ, σ) from 
[49], which are also examples of finitely generated simple left orderable groups, and thus 
also answer Question 1.4.

The focus of this paper is on groups acting on 1-manifolds. However, the criterion of 
Theorem 1.2 applies in much greater generality. For instance, the authors and Matthew 
C.B. Zaremsky used Theorem 1.2 to establish the vanishing of second bounded cohomol-
ogy of certain braided Thompson groups, via their actions on Cantor set complements in 
the plane [28]. As another example, Theorem 1.2 has been used by the first author, Löh 
and Moraschini to show that the direct limit general linear group of the suspension over 
a ring, a group which is central to algebraic K-theory, has vanishing second and third 
bounded cohomology [29, Proposition 4.9]. The latter result showcases how our criterion 
may be combined with cohomological techniques to prove vanishing results in degree 3
as well. The method of proof of Theorem 1.5 also applies beyond actions on 1-manifolds: 
in Subsection 4.5 we will see an example of application to actions on solenoids.

Moving to actions on the circle, applying recent work on boundedly acyclic resolutions 
[29] we are able to deduce the following result from Theorem 1.3:

Theorem 1.6. Let G be a group of orientation-preserving piecewise linear or piecewise 
projective homeomorphisms of the circle. Suppose that G has an orbit Y such that the 
action on circularly ordered pairs and triples in Y is transitive. Then H2

b(G; R) is one-
dimensional, spanned by the real Euler class.

Our result is a strong generalization of the corresponding statement for the special 
case of Thompson’s group T [41]. In particular, it shows that many Stein–Thompson 
groups have second bounded cohomology generated by the real Euler class, which was 
conjectured by Heuer and Löh [40, Conjecture A.5]. This also applies to a multitude of 
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other examples, including the finitely presented infinite simple group S constructed by 
the second author in [50]. See [27] for a detailed discussion.

This result has interesting consequences for rigidity of group actions. Using the in-
terpretation of actions on the circle via bounded cohomology, we deduce that if G is as 
above and the given action is proximal (see Subsection 2.1 for the definition), then G
admits a unique such action on the circle up to conjugacy (Corollary 5.2). This fact was 
known for Thompson’s group T and certain related groups, but our result provides a 
considerable generalization to a much larger family.

More generally, the finite-dimensionality of the second bounded cohomology of the 
groups from Theorems 1.2, 1.3 and 1.6 implies further rigidity results. For instance, 
every homomorphism from G to the mapping class group of a hyperbolic surface has 
virtually abelian image [4], and if G is moreover finitely generated, then it admits only 
finitely many conjugacy classes of isometric actions on an irreducible symmetric space 
which is Hermitian and not of tube type [11,12].

The next application concerns the spectrum of scl on finitely presented groups which 
is defined as {r ∈ R≥0 | ∃ a finitely presented group G such that r ∈ scl(G)}. For the 
classes of finitely generated and recursively presented groups, the spectrum has been 
completely described by Heuer in [39]. However the full picture for finitely presented 
groups remains mysterious [18, Question 5.48]. It has been shown for several classes of 
finitely presented groups that the spectrum of scl consists entirely of rationals. This 
holds for instance for the lift of Thompson’s group T [34,65], free groups [19] and certain 
graphs of groups [21].

In [36, 6 C], Gromov asked whether irrational values can occur in the scl of finitely 
presented groups. The first examples were found by Zhuang [65], who showed that lifts 
of certain Stein–Thompson’s groups have elements with transcendental scl. Since then 
other examples have emerged [18, Chapter 5], but the scl always appeared to be either 
rational or transcendental. This led to the following natural question:

Question 1.7 (Calegari [18, Question 5.47]). Is there a finitely presented group in which 
scl takes on an irrational value that is algebraic?

This question was also asked in [38] and mentioned in [39]. Here we answer it in the 
positive:

Theorem 1.8. There exists a finitely presented (and type F∞) group G such that scl(G)
contains all of 1

2Z[τ ], where τ =
√

5−1
2 is the small golden ratio.

The group G is the lift to the real line of the golden ratio Thompson’s group Tτ , 
which is the natural “circle version” of the group Fτ defined by Cleary in [23]. (Just 
like Thompson’s group T is the “circle version” of Thompson’s group F .) The group Tτ

differs from T for two main reasons: it contains irrational rotations (while every element 
in T has a periodic point) and its commutator subgroup has index two and is simple 
(while T itself is simple).
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The proof of Theorem 1.8 consists in analyzing the structure of Tτ to show that 
it satisfies the hypotheses of Theorem 1.6, after which the computation of the stable 
commutator length of certain elements in the lift will follow from our results on groups 
acting on the circle.

The final application concerns the spectrum of simplicial volume. The notion of sim-
plicial volume ‖M‖ of an (oriented, closed, connected) manifold M was introduced by 
Gromov in [36], and it was the main motivation to extend the definition of bounded 
cohomology to topological spaces. It is defined as the simplicial norm of the fundamental 
class of the manifold, and provides a homotopy invariant that captures the topologi-
cal complexity of the manifold and admits a plethora of applications in geometry [30, 
Chapter 7].

A question that has received recent attention is to understand the spectrum SV(d)
of the simplicial volume for oriented, closed, connected manifolds in dimension d > 3. A 
recent breakthrough result of Heuer and Löh proves that SV(d) is dense in R≥0 for each 
d > 3 and that Q≥0 ⊂ SV(4) [41]. Moreover, SV(4) also contains transcendental values 
[42]. In this paper, we are able to obtain the first irrational algebraic values:

Theorem 1.9. There exists a manifold M such that the simplicial volume ‖M‖ is algebraic 
and irrational.

More concretely, we demonstrate that for every real x ∈ 48 ·Z[τ ] (where τ =
√

5−1
2 is 

the small golden ratio), there is an oriented, closed, connected 4-manifold M such that 
‖M‖ = x. We stress that the general results from [41] and [42] only allow to promote 
values of stable commutator length to values of simplicial volume under a full under-
standing of the second bounded cohomology. In particular, Theorem 1.9 is not a direct 
consequence of Theorem 1.8, and it relies on the full power of Theorem 1.6. In fact, the 
same method shows that several known trascendental values of stable commutator length 
can be promoted to simplicial volumes, providing new evidence toward the conjecture 
that the two spectra coincide [42, Question 1.1].

Remark 1.10. A few months after the first version of this paper, Monod proved that 
the bounded cohomology of Thompson’s group F vanishes in all positive degrees, and 
including some non-trivial coefficients [59]. The proof in [59] makes crucial use of self-
similarity and coamenability, in a way that requires stronger assumptions than those 
we use here to prove vanishing of second bounded cohomology (see [59, Theorem 4, 
Corollary 5]). In particular, the results from [59] are not enough to establish the vanishing 
of bounded cohomology for arbitrary groups of piecewise linear or piecewise projective 
homeomorphisms, among whom the self similar groups are a very sparse subclass. Thus, 
to reach the degree of generality that we present in this paper, our Theorem 1.2 is 
still the best approach. Moreover, Monod’s method do not appear to have relevance to 
our solution of Question 1.4, or to the solution of the homological von Neumann–Day 
problems, since the groups Gρ are far from being self similar, and in both of the other 
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situations Theorem 1.2 is applied to arbitrary groups of piecewise linear, respectively 
piecewise projective, homeomorphisms.

Organization: We start by laying out the necessary background on groups acting on 
1-manifolds and bounded cohomology in Section 2. In Section 3 we prove Theorem 1.2
and its first applications, including Theorem 1.3. In Section 4 we introduce the groups 
Gρ and analyze their structure, with the aim to prove Theorem 1.5. We move to circle 
actions in Section 5, proving Theorem 1.6. Section 6 is dedicated to the golden ratio 
Thompson group, and Theorem 1.8. Finally, in Section 7 we review some background on 
simplicial volume and prove Theorem 1.9.

Acknowledgments: The first author was supported by an ETH Zürich Doc. Mobility 
Fellowship 21-1 DM-04. The second author was supported by a FWF START grant 
project number Y-1411-N of the Austrian Science Fund. The authors would like to 
thank Elena Bogliolo, Jonathan Bowden, Matt Brin, Danny Calegari, Roberto Frige-
rio, Nicolaus Heuer, Alessandra Iozzi, Clara Löh, Nicolas Monod, Justin Moore, Marco 
Moraschini, Andrés Navas and Matt Zaremsky for several useful discussion and com-
ments. They are also indebted to anonymous referees for useful comments on earlier 
versions of this paper (and on the paper [26], which was later merged to the present 
paper), in particular for the arguments in Subsection 4.5.

2. Preliminaries

Group actions will always be on the right. Accordingly, we will use the conventions 
[g, h] = g−1h−1gh for commutators, and gh := h−1gh for conjugacy. All groups consid-
ered in this paper will be discrete. Since the applications to simplicial volume are of a 
different, more geometric-topological flavor, we delay the relevant preliminaries to the 
corresponding section.

2.1. Dynamics of group actions on 1-manifolds

Given g ∈ Homeo+(M) for a given 1-manifold M , we define the support of g as:

Supp(g) := {x ∈ M | x · g 
= x}.

More generally, given a subgroup G ≤ Homeo+(M), we define

Supp(G) := {x ∈ M | ∃g ∈ G such that x · g 
= x}.

We identify S1 with R/Z. Recall that Homeo+(R) and Homeo+(R/Z) are the groups 
of orientation-preserving homeomorphisms of the real line and the circle. The latter 
group action admits a so-called lift to the real line, which is the group Homeo+(R/Z) ≤
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Homeo+(R) which equals the full centralizer of the group of integer translations Z =
{x �→ x + n | n ∈ Z} inside Homeo+(R). There is a short exact sequence

1 → Z → Homeo+(R/Z) → Homeo+(R/Z) → 1.

In this paper, we fix the notation for the map

η : Homeo+(R/Z) → Homeo+(R/Z).

Given a group G ≤ Homeo+(R/Z), we define the total lift of G to be the group 
η−1(G), which is a central extension of G by Z. Throughout this paper, we will denote 
the total lift of G by G. More generally, we may define a lift of G as a group action 
H ≤ Homeo+(R/Z) satisfying that η(H) = G. Such a lift may not be unique. On the 
other hand, the total lift of G is the group generated by all possible such lifts.

A group action G ≤ Homeo+(R) is said to be boundedly supported if for each f ∈
G there is a bounded interval I ⊂ R such that Supp(f) ⊂ I. A group action G ≤
Homeo+(M) for a connected 1-manifold M is said to be proximal, if for each pair of 
nonempty open sets I, J ⊂ M, J 
= M satisfying that the closure of J is compact, 
there is an element f ∈ G such that J · f ⊂ I. In the case of minimal actions on the 
circle, it is equivalent to the contracting property: for every arc I there exists a sequence 
(fn)n≥1 ⊂ G such that the diameter of I · fn tends to 0 as n → ∞ [10, p. 12].

2.2. Stable commutator length

For a comprehensive survey on the topic, we refer the reader to [18, Chapter 2]. The 
way we will compute scl is via quasimorphisms.

Definition 2.1. Let φ : G → R. Its defect is

D(φ) := sup
g,h∈G

|φ(g) + φ(h) − φ(gh)| .

If the defect is finite, we say that φ is a quasimorphism. If moreover φ(gk) = kφ(g) for 
every g ∈ G and every k ∈ Z, we say that φ is homogeneous.

The following elementary property of homogeneous quasimorphisms will be useful:

Lemma 2.2 ([18, 2.2.3]). Homogeneous quasimorphisms are conjugacy-invariant.

Every quasimorphism is at a bounded distance from a unique homogeneous quasimor-
phism [18, Lemma 2.21]. The following example is the fundamental one for our purposes:

Example 2.3 (Poincaré, see [46, 11.1]). Let g ∈ Homeo+(R/Z) be an orientation-
preserving homeomorphism of the line that commutes with integer translations. Define 
the rotation number of g to be
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rot(g) := lim
n→∞

0 · gn
n

.

Then rot : Homeo+(R/Z) → R is a homogeneous quasimorphism of defect 1 [18, Propo-
sition 2.92]. It follows that for every subgroup G ≤ Homeo+(R/Z), the restriction of rot
to G is a homogeneous quasimorphism of defect at most 1. Note however that the defect 
of rot |G need not be equal to 1: for example rot |Z is a homomorphism, so its defect is 0.

The connection between scl and quasimorphisms is provided by the following funda-
mental result (see [18, Theorem 2.70]):

Theorem 2.4 (Bavard duality [2]). Let G be a group and let g ∈ G′. Then:

scl(g) = 1
2 sup |φ(g)|

D(φ) ;

where the supremum runs over all homogeneous quasimorphisms of positive defect.

Corollary 2.5 (Bavard [2]). Let G be a group. Then scl vanishes everywhere on G′ if and 
only if every homogeneous quasimorphism on G is a homomorphism.

In particular, if G is such that the space of homogeneous quasimorphisms is one-
dimensional and spanned by φ, then the computation of scl reduces to the evaluation of 
φ and its defect. This is the approach taken in [65] to produce examples of groups with 
transcendental scl, where the φ in question is the rotation quasimorphism.

2.3. (Bounded) cohomology and central extensions

We will work with cohomology and bounded cohomology with trivial real coefficients, 
and use the definition in terms of the bar resolution. We refer the reader to [8] and [30]
for a general and complete treatment of ordinary and bounded cohomology (of discrete 
groups), respectively.

For every n ≥ 0, denote by Cn(G) the set of real-valued functions on Gn. By conven-
tion, G0 is a single point, so C0(G) ∼= R consists only of constant functions. We define 
differential operators δ• : C•(G) → C•+1(G) as follows: δ0 = 0 and for n ≥ 1:

δn(f)(g1, . . . , gn+1) = f(g2, . . . , gn+1)

+
n∑

i=1
(−1)if(g1, . . . , gigi+1, . . . , gn+1)

+ (−1)n+1f(g1, . . . , gn).

One can check that δ•+1δ• = 0, so (C•(G), δ•) is a cochain complex. We denote by 
Z•(G) := ker(δ•) the cocycles, and by B•(G) := im(δ•−1) the coboundaries. The quotient 
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H•(G) := Z•(G)/ B•(G) is the cohomology of G with trivial real coefficients. We will also 
call this ordinary cohomology to make a clear distinction from the bounded one, which 
we proceed to define.

Restricting to functions f : G• → R which are bounded, meaning that their supremum 
‖f‖∞ is finite, leads to a subcomplex (C•

b(G), δ•). We denote by Z•
b(G) the bounded cocy-

cles, and by B•
b(G) the bounded coboundaries. The vector space H•

b(G) := Z•
b(G)/ B•

b(G)
is the bounded cohomology of G with trivial real coefficients.

The inclusion of the bounded cochain complex into the ordinary one induces a linear 
map at the level of cohomology, called the comparison map:

c• : H•
b(G) → H•(G).

This map is in general neither injective nor surjective. The kernel defines a sequence of 
subspaces EH•

b(G) ⊂ H•
b(G), called exact bounded cohomology.

Cohomology is a contravariant functor: given a cocycle z ∈ Zn(H) and a group ho-
momorphism ϕ : G → H, the pullback ϕ∗z := z ◦ ϕ is a cocycle in Zn(G). This also 
induces a pullback map in cohomology ϕ∗ : Hn(H) → Hn(G), which is of course linear. 
The same holds for bounded cohomology.

A peculiarity of bounded cohomology classes is that they admit a further invariant, 
which is their Gromov seminorm ‖ · ‖. This is simply the quotient seminorm induced by 
the supremum norm on the quotient H•

b(G) := Z•
b(G)/ B•

b(G). In general it need not be 
a norm, i.e. there could be non-zero classes with zero norm. However this is not the case 
in degree 2 [56]: here for every group the Gromov seminorm is always a norm.

One can similarly define cohomology and bounded cohomology with trivial integral 
coefficients Hn

b (G; Z): here R is replaced by Z with its Euclidean norm, equipped with 
the trivial G-action. This will only make a brief appearance in Subsection 2.4 and in 
Corollary 4.20.

For trivial real coefficients, the kernel of the second comparison map admits a descrip-
tion in terms of quasimorphisms:

Theorem 2.6. Let Q(G) denote the space of homogeneous quasimorphisms on G, and 
Z1(G) the subspace of homomorphisms. Then the sequence

0 → Z1(G) ↪→ Q(G) [δ1·]−−→ H2
b(G) c2−→ H2(G)

is exact. In particular, c2 is injective if and only if every homogeneous quasimorphism 
on G is a homomorphism.

Combining this with Corollary 2.5, we deduce:

Corollary 2.7. Let G be a group such that H2
b(G) = 0. Then scl vanishes everywhere on 

G′.
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The main example of groups with vanishing bounded cohomology is the following:

Theorem 2.8 (Johnson, see [30, Chapter 3]). Let G be an amenable group. Then Hn
b (G) =

0 for all n ≥ 1.

The converse does not hold: there exist groups whose bounded cohomology vanishes 
in all positive degrees, but contain free subgroups. The first such example is due to 
Matsumoto and Morita [56]: the group of compactly supported homeomorphisms of Rn.

Bounded cohomology also behaves well with respect to amenable extensions:

Theorem 2.9 (Gromov, see [30, Chapter 4]). Let n ≥ 0, and let

1 → H → G → K → 1

be a group extension such that H is amenable. Then the quotient G → K induces an 
isomorphism in bounded cohomology Hn

b (K) → Hn
b (G).

Theorem 2.10 (Monod [58, 8.6], see also [61]). Let n ≥ 0, and let

1 → H → G → K → 1

be a group extension such that K is amenable. Then the inclusion H → G induces an 
injection in bounded cohomology Hn

b (G) → Hn
b (H).

In degree 2, cohomology is strongly related to central extensions, and this relation can 
be exploited to study bounded cohomology as well. We refer the reader to [8, Chapter 
4, Section 3] and [30, Chapter 2] for detailed accounts and proofs.

Since we will mostly be working with trivial real coefficients, throughout this para-
graph all central extensions will be of the form:

1 → R → E → G → 1;

where R := im(R → E) is contained in the center of E (central extensions with integral 
kernel will appear only briefly to define the Euler class in the next subsection). We will 
refer to both the short exact sequence above and the group E as a central extension. Such 
an extension splits if there exists a homomorphic section σ : G → E, i.e. if it is a direct 
product. Two central extensions E, E′ are equivalent if there exists a homomorphism 
f : E → E′ such that the following diagram commutes:

E

1 R G 1

E′

f
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Note that by the 5-lemma f is automatically an isomorphism. A central extension is 
split if and only if it is equivalent to the external direct product R ×G.

We consider pairs of the form (E, σ) where E is a central extension and σ : G → E is 
a set-theoretic section, which is moreover normalized, i.e. it satisfies that σ(idG) = idE . 
To every such pair one can associate a 2-cocycle as follows. Observe that the map

G2 → E : (f, g) �→ σ(f)σ(g)σ(fg)−1

takes values in R. Therefore this can be viewed as a map ω : G2 → R which can be 
verified to be a cocycle. This is moreover normalized, that is it satisfies ω(f, idG) =
ω(idG, f) = 0 for all f ∈ G.

Conversely, let ω be a normalized cocycle. Define a group E as follows: as a set, 
E = R ×G. The group law is defined by the following formula:

(λ, f) · (μ, g) := (λ + μ + ω(f, g), fg).

Then E is a group, and the set-theoretic inclusions R → E and projection E → G

make E into a central extension. Moreover, the set-theoretic inclusion σ : G → E is a 
normalized section satisfying ω(f, g) = σ(f)σ(g)σ(fg)−1.

This correspondence between normalized cocycles and central extensions with pre-
ferred normalized sections, descends to the level of cohomology:

Theorem 2.11 ([8, Section 4, Chapter 3]). There is a bijective correspondence between 
normalized 2-cocycles ω ∈ Z2(G) and central extensions E with a normalized section σ :
G → E. This induces a bijective correspondence between cohomology classes α ∈ H2(G)
and equivalence classes [E] of central extensions.

Recall that if E is a central extension and p : E → G is the quotient map, then there 
is an induced map in cohomology p∗ : H2(G) → H2(E). The effect of this map is to 
annihilate the class represented by E:

Lemma 2.12 ([30, Lemma 2.3]). Let E be a central extension of G by R and let α ∈ H2(G)
be the corresponding cohomology class. Then p∗α = 0 ∈ H2(E).

The relation of second cohomology with central extensions makes second bounded 
cohomology more well-behaved than other degrees. As an instance of this principle, we 
have the following fact, which is not known to hold in higher degrees:

Proposition 2.13 ([29, Corollary 4.16]). Let G be a directed union of a family of subgroups 
(Gi)i∈I such that H2

b(Gi) = 0 for all i ∈ I. Then H2
b(G) = 0.
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2.4. The Euler class of a circle action

Bounded cohomology can be used to study actions on the circle: we refer the reader to 
[33] and [30, Chapter 10] for a detailed exposition. In this section we will treat bounded 
cohomology with both trivial real and trivial integral coefficients. To avoid confusion, 
we will specify all coefficients in the notation, but will get back to the convention that 
H2

b(G) = H2
b(G; R) in the next section.

The central extension

1 → Z → Homeo+(R/Z) → Homeo+(R/Z) → 1

defines a cohomology class e ∈ H2(Homeo+(R/Z); Z). This class admits a bounded 
representative, which defines a bounded cohomology class eb ∈ H2

b(Homeo+(R/Z); Z). 
Given a group G and an action ρ : G → Homeo+(R/Z), the pullback of eb defines 
a cohomology class eb(ρ) ∈ H2

b(G; Z) called the (bounded) Euler class of ρ. This class 
provides a generalization of rotation number theory, and it classifies actions on the circle 
up to a suitable notion of semiconjugacy.

Since our results concern real bounded cohomology, we will be working instead with 
the real Euler class. This is denoted by eRb (ρ) and is defined as the image of eb(ρ)
under the change of coefficients map H2

b(G; Z) → H2
b(G; R), which is the map at 

the level of cohomology induced by the inclusion at the level of cochain complexes 
C2

b(G; Z) → C2
b(G; R). One loses some information when passing to real coefficients, 

however something can still be said in general:

Theorem 2.14 (Burger [10]). Let ρ be a proximal action of G on the circle. Then 
‖eRb (ρ)‖ = 1/2. If ρ′ is another such action, and the two are not conjugate inside 
Homeo+(R/Z), then ‖eRb (ρ) − eRb (ρ′)‖ = 1.

In the statement ‖ · ‖ denotes the Gromov seminorm on bounded cohomology (see 
Subsection 2.3). Note that in [10] the statement is given for minimal strongly proximal 
actions; the definition is however equivalent to our definition of proximal action [10, p. 
12].

Corollary 2.15. Let G be such that H2
b(G; R) is one-dimensional. Then G admits at most 

one conjugacy class of proximal actions on the circle.

Proof. There are only two classes in H2
b(G; R) which have norm 1/2: call them e and 

−e. Suppose that e is the Euler class of a circle action. Then −e is the Euler class of 
the same action conjugated by an orientation-reversing homeomorphism of the circle [33, 
Fin de la démonstration du Théorème B]. �
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3. The criterion

A special feature of second bounded cohomology is that every class admits a unique 
canonical representative. This was proven by Bouarich in [6], as a tool to show that an 
epimorphism induces an embedding in second bounded cohomology, and will be funda-
mental for our proof of Theorem 1.2.

Definition 3.1. Let G be a group. A bounded 2-cocycle ω ∈ Z2
b(G) is homogeneous if 

ω(gi, gj) = 0 for every g ∈ G and every i, j ∈ Z.

Clearly every homogeneous cocycle is normalized.

Theorem 3.2 (Bouarich [6]). Every second bounded cohomology class admits a unique 
homogeneous representative.

See [30, Proposition 2.16] for a detailed proof. This theorem is especially useful in the 
case in which the class is trivial, since the 0 cocycle is also homogeneous:

Corollary 3.3. Let ω ∈ Z2
b(G) be a bounded homogeneous 2-cocycle. Let E be the corre-

sponding central extension, and σ : G → E the normalized section.
Let H ≤ G be a group such that H2

b(H) = 0. Then σ|H : H → E is a homomorphism. 
This holds in particular if H is abelian.

Proof. By Theorem 3.2 the only bounded homogeneous 2-cocycle on H is the 0-cocycle. 
In particular ω|H ≡ 0. In other words, σ|H : H → E is a homomorphism. �

We now demonstrate that for homogeneous 2-cocycles, the corresponding sections 
behave well with respect to conjugacy.

Lemma 3.4. Let ω ∈ Z2
b(G) be a bounded homogeneous 2-cocycle. Let E be the corre-

sponding central extension, and σ : G → E the normalized section. Then for each pair 
h, k ∈ G, it holds that σ(hk) = σ(h)σ(k).

Proof. Let p : E → G denote the quotient map. Then p∗ω is a bounded homoge-
neous 2-cocycle on E. Moreover, p∗ω represents the trivial second cohomology class, by 
Lemma 2.12. Therefore there exists a map φ : E → R such that δ1φ = p∗ω. Since p∗ω
is bounded, φ is a quasimorphism; and since p∗ω is homogeneous, φ is a homogeneous 
quasimorphism. In particular φ is conjugacy-invariant, by Lemma 2.2.

It follows from Corollary 3.3 that σ is a homomorphism when restricted to a cyclic 
subgroup. Let g = σ(h), f = σ(k) ∈ E. We compute

σ(h)σ(k)σ(hk)−1

= σ(k)−1σ(h)σ(k)σ(k−1hk)−1
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= σ(p(f)−1)σ(p(g))σ(p(f))σ(p(f)−1p(g)p(f))−1

= σ(p(f)−1)σ(p(g))
(
σ(p(f)−1p(g))−1 · σ(p(f)−1p(g))

)
σ(p(f))σ(p(f)−1p(g)p(f))−1

= p∗ω(f−1, g) · p∗ω(f−1g, f)

= (φ(f−1) + φ(g) − φ(f−1g)) + (φ(f−1g) + φ(f) − φ(f−1gf)).

Now using that φ is homogeneous, and thus conjugacy-invariant, the last expression 
vanishes. �

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Suppose by contradiction that there exists a class α ∈ H2
b(G)

which is non-trivial. Let ω : G2 → R be the unique homogeneous representative given 
by Theorem 3.2. By Theorem 2.11, this corresponds to a central extension

1 → R → E → G → 1,

endowed with a section σ : G → E such that ω(f, g) = σ(f)σ(g)σ(fg)−1 for every f, g ∈
G, and σ(idG) = idE . Moreover, since ω is non-trivial, σ cannot be a homomorphism. 
Thus there must be a relation f1f2f3 = idG in G, for which

σ(f1)σ(f2)σ(f3) = λ ∈ R ≤ E, λ 
= 0.

Note that f3 = (f1f2)−1, so σ(f3) = σ(f1f2)−1. Therefore |λ| ≤ ‖ω‖∞ (recall that ω is 
a bounded cocycle), and we choose f1, f2, f3 so that |λ| > ‖ω‖∞/2.

Let H ≤ G be the group generated by f1, f2, f3. The commuting conjugates condition 
ensures the existence of an element c ∈ G such that H and Hc commute. By Corollary 3.3, 
this has the following consequences:

σ(fi1f c
i2) = σ(fi1)σ(f c

i2); [σ(fi1), σ(f c
i2)] = idE ; for all ij ∈ {1, 2, 3}.

Now let Fi := fif
c
i . Using the commuting relation, we have:

F1F2F3 = (f1f
c
1) · (f2f

c
2) · (f3f

c
3) = (f1f2f3) · (f1f2f3)c = idG .

Therefore σ(F1)σ(F2)σ(F3) ∈ R. The following claim computes its value exactly:

Claim 3.5. It holds: σ(F1)σ(F2)σ(F3) = 2λ ∈ R.

But this implies that ‖ω‖∞ ≥ |2λ|, which contradicts our assumption that |λ| >
‖ω‖∞/2, and concludes the proof.

Therefore we are left to prove the claim. Using the commuting relations on the 
σ(fi), σ(f c

i ), we obtain:
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σ(F1)σ(F2)σ(F3) = (σ(f1)σ(f c
1 )) · (σ(f2)σ(f c

2)) · (σ(f3)σ(f c
3 ))

= (σ(f1)σ(f2)σ(f3)) · (σ(f c
1)σ(f c

2 )σ(f c
3)).

Using Lemma 3.4, and the fact that R is central, we obtain

σ(f c
1)σ(f c

2 )σ(f c
3) = σ(f1)σ(c)σ(f2)σ(c)σ(f3)σ(c) = (σ(f1)σ(f2)σ(f3))σ(c) = λ.

Thus the previous expression equals 2λ, which is what we wanted to prove. �
Combining this with Theorem 2.11, we obtain:

Corollary 3.6. Let G be a group extension of the form

1 → H → G → K → 1

where H has commuting conjugates and K is amenable. Then H2
b(G) = 0.

Remark 3.7. An extension of two groups with vanishing second bounded cohomology has 
the same property [62, Corollary 4.2.2]. So Corollary 3.6 can be phrased for more general 
extensions as well.

3.1. First applications

We start with a very general example of groups with commuting conjugates. This will 
serve as a base case for the proof of Theorem 1.3.

Proposition 3.8. Let G be a group of boundedly supported homeomorphisms of the real 
line with no global fixpoint. Then G has commuting conjugates. In particular H2

b(G) = 0.

Proof. Let H ≤ G be a finitely generated subgroup. There is a bounded, open interval 
(a, b) in R on which H is supported. If the orbit a · G had a supremum in R, then 
this would be a global fixpoint. Therefore, there exists f ∈ G such that a · f > b and 
so (a, b) ∩ (a, b) · f = ∅. It follows that H and Hf commute, since they have disjoint 
support. �

We now show that groups of piecewise linear and projective homomorphisms satisfy 
the hypotheses of Corollary 3.6.

Proof of Theorem 1.3 part 1. We will prove this for an arbitrary group G of piecewise 
projective homeomorphisms of the real line. The proof for the case of groups of piecewise 
linear homeomorphisms of the unit interval is similar. We define the sets

Fix(G) = R \ Supp(G) Tr(G) = Supp(G) \ Supp(G).
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Recall that in the projective action of PSL2(R) on S1 = R∪{∞}, the stabilizer of ∞
is the affine group. And since the action of PSL2(R) on S1 = R ∪ {∞} is transitive, the 
stabilizer of any point x ∈ S1 is conjugate to the affine group. Therefore, for x ∈ Tr(G), 
the group of right (or left) germs of G at x is conjugate to a subgroup of the affine group 
and hence amenable (in fact metabelian). For the piecewise linear case, one similarly 
argues that the groups of germs are abelian. It follows that there is a short exact sequence

1 → H → G → K → 1

where K is the group of germs at Tr(G) in G and H is the group consisting of elements

H = {f ∈ G | ∀x ∈ Tr(G), x /∈ Supp(f)}

By Corollary 3.6, to establish that H2
b(G) = 0, it suffices to show that H has com-

muting conjugates. Let Γ be a finitely generated subgroup of H. By the description of 
elements of H as above, and since each piecewise projective homeomorphism of the real 
line has finitely many components of support, there are finitely many open intervals 
I1, . . . , Ik in (−∞, ∞) \ Fix(G) such that:

1. The intervals I1, . . . , Ik are connected components of Supp(G).
2. Supp(Γ) ⊂

⋃
1≤i≤k Ii and Supp(Γ) ∩ Ii 
= ∅ for each 1 ≤ i ≤ k.

For each 1 ≤ i ≤ k, we let

Ji = Supp(Γ) ∩ Ii J =
⋃

1≤i≤k

Ji = Supp(Γ).

Our goal is to find an element γ ∈ H such that J · γ ∩ J = ∅. We proceed by induction 
on k, the case k = 1 being contained in Proposition 3.8. Let x be the right endpoint of 
the interval Jk. Since the action of H on Ik does not admit a global fixed point, there is 
an element g ∈ H such that x < inf(Jk · g). We apply the inductive hypothesis to the 
intervals

L1 = J1 ∪ J1 · g . . . Lk−1 = Jk−1 ∪ Jk−1 · g L = (
⋃

1≤i≤k−1

Li)

to obtain an element f ∈ H such that (L ·f) ∩L = ∅. This also implies that (L ·f−1) ∩L =
∅. Let f1 ∈ {f, f−1} be the element such that x · f1 ≥ x. Then the element γ = gf1
satisfies that J · γ ∩ J = ∅. We conclude that [Γ, Γγ ] = id. �

In [53], the second author and Justin Moore constructed a finitely presented nona-
menable group of piecewise projective homeomorphisms of the real line, denoted by G0. 
In [52], it was demonstrated that the group G0 is of type F∞. It follows from a direct 
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application of Theorem 1.3 that H2
b(H) = 0 for every subgroup H ≤ G0. This gives a 

negative answer to the homological von Neumann–Day problem posed by Calegari in 
[17], and mentioned in the introduction.

Proof of Theorem 1.3 part 2. It follows immediately from the definitions that a group 
G that is either a chain group, or a group that admits a coherent action on the real line, 
is an extension 1 → H → G → K → 1, where:

1. H is conjugate to a group of boundedly supported homeomorphisms of the real line 
with no global fixpoint.

2. K is amenable. (In the case of chain groups, K = Z2, and in the case of coherent 
actions it is solvable.)

It follows from an application of Proposition 3.8 and Corollary 3.6 that H2
b(G) = 0. �

4. The groups Gρ

In this section we introduce the groups Gρ, and prove that they have vanishing second 
bounded cohomology (Theorem 1.5), answering Navas’s Question 1.4.

4.1. Definitions

We start by recalling some features of Thompson’s group F and a subgroup H that 
is relevant for the definition of Gρ. We refer the reader to [20,3] for comprehensive 
surveys. We denote by PL+([0, 1]) the group of orientation-preserving piecewise linear 
homeomorphisms of [0, 1].

Definition 4.1. The group F ≤ PL+([0, 1]) consists of homeomorphisms that satisfy the 
following:

1. The breakpoints lie in Z[ 12 ];
2. The derivatives, whenever they exist, are integer powers of 2.

Here breakpoints (or singularity points) are points where the derivative does not exist. 
It is well known that F is finitely presented and that F ′ is simple and consists of precisely 
the set of elements g ∈ F such that Supp(g) ⊂ (0, 1). The following subgroup of F will 
play a key role in the definition of Gρ.

Definition 4.2. H is the subgroup of elements of F whose slopes at 0, 1 coincide.

Lemma 4.3 ([43, Lemma 2.4]). H is 3-generated. H ′ is simple and consists of precisely 
the set of elements of H (or F ) that are compactly supported in (0, 1). In particular, 
H ′ = F ′.
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Definition 4.4. We fix a 3-element generating set {ν1, ν2, ν3} for H. (The choice of this 
set is arbitrary.)

The next is the key notion in the definition of Gρ.

Definition 4.5. Consider the set 1
2Z = {1

2k | k ∈ Z}. A labeling is a map

ρ : 1
2Z → {a, b, a−1, b−1}

which satisfies:

1. ρ(k) ∈ {a, a−1} for each k ∈ Z.
2. ρ(k) ∈ {b, b−1} for each k ∈ 1

2Z \ Z.

It is convenient to view ρ(1
2Z) as a bi-infinite word with respect to the usual ordering 

of the half integers. A subset X ⊆ 1
2Z is said to be a block if it is of the form

{
k, k + 1

2 , . . . , k + 1
2n

}

for some k ∈ 1
2Z, n ∈ N. Each block is endowed with the ordering inherited from 1

2Z. 
The set of blocks of 1

2Z is denoted as B. To each labeling ρ and each block X =
{k, k + 1

2 , . . . , k + 1
2n}, we assign a formal word

Wρ(X) = ρ
(
k
)
ρ
(
k + 1

2
)
. . . ρ

(
k + 1

2n
)

which is a word in the letters {a, b, a−1, b−1}. Such a formal word is called a subword of 
the labeling. Given a word w1 . . . wn in the letters {a, b, a−1, b−1}, the formal inverse of 
the word is w−1

n . . . w−1
1 . The formal inverse of Wρ(X) is denoted by W−1

ρ (X).

Definition 4.6. A labeling ρ is said to be quasi-periodic if the following holds:

1. For each block X ∈ B, there is an n ∈ N such that whenever Y ∈ B is a block of size 
at least n, then Wρ(X) is a subword of Wρ(Y ).

2. For each block X ∈ B, there is a block Y ∈ B such that Wρ(Y ) = W−1
ρ (X).

Note that by subword in the above we mean a string of consecutive letters in the 
word. An explicit construction of quasi-periodic labellings was provided in [43, Lemma 
3.1]. The following is a direct consequence of Item 2 in Definition 4.6:

Lemma 4.7. A quasi-periodic labeling is not periodic.
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We shall need the following notation. Let I, J be nonempty compact intervals of 
equal length. We denote by TJ,I : J → I the unique orientation-preserving isometry, and 
by T or

J,I : J → I the unique orientation-reversing isometry. Given two isometric closed 
intervals I, J ⊂ R, and homeomorphisms f ∈ Homeo+(I), g ∈ Homeo+(J), we say that:

1. f ∼=T g if f = TI,J ◦ f ◦ TJ,I .
2. f ∼=T or g if f = T or

I,J ◦ f ◦ T or
J,I .

Let H = 〈ν1, ν2, ν3〉 < Homeo+([0, 1]) be the group from Definition 4.2. We define the 
homeomorphisms

ζ1, ζ2, ζ3, χ1, χ2, χ3 : R → R

as follows: for each i ∈ {1, 2, 3} and n ∈ Z,

ζi � [n, n + 1] ∼=T νi if ρ
(
n + 1

2
)

= b,

ζi � [n, n + 1] ∼=T or νi if ρ
(
n + 1

2
)

= b−1,

χi �
[
n− 1

2 , n + 1
2
] ∼=T νi if ρ(n) = a,

χi �
[
n− 1

2 , n + 1
2
] ∼=T or νi if ρ(n) = a−1.

Definition 4.8. To each labeling ρ, we associate the group

Gρ := 〈ζ±1
1 , ζ±1

2 , ζ±1
3 , χ±1

1 , χ±1
2 , χ±1

3 〉 < Homeo+(R).

We also define subgroup

K := 〈ζ±1
1 , ζ±1

2 , ζ±1
3 〉

of Gρ which is naturally isomorphic to H, via the isomorphism

λ : H → K : νi �→ ζi, i = 1, 2, 3.

Note that the definition of K requires us to fix a labeling ρ but we denote them as such 
for simplicity of notation.

4.2. Structure of Gρ

The group Gρ is defined for every labeling ρ. In the special case in which ρ is quasi-
periodic, it is moreover simple, and has useful additional properties (see Subsection 2.1
for the definitions):
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Theorem 4.9 ([43, Theorem 1.3], [43, Lemmas 5.1, 5.3], [44, Corollary 0.3]). Let ρ be a 
quasi-periodic labeling. Then the group Gρ is simple. Moreover:

1. Every element in Gρ fixes a point in R.
2. The action of Gρ on R is minimal.
3. The action of Gρ on R is proximal.

We fix a quasi-periodic labeling for the rest of this section. Our next goal is to recall 
the notion of special elements and the global characterization of Gρ from [44].

For each n ∈ Z, we denote by ιn the unique orientation-reversing isometry ιn : [n, n +
1) → (n, n + 1]. We extend this to a map ι : R → R as x · ι = x · ιn where n ∈ Z is so 
that x ∈ [n, n + 1). (Note that ιn = T or

[n,n+1),(n,n+1] as defined before, however this more 
specialized notation simplifies what appears below.)

Given an x ∈ R and k ∈ N, we define a word W(x, k) as follows. Let y ∈ 1
2Z \Z such 

that x ∈ [y − 1
2 , y + 1

2 ). Then we define

W(x, k) = ρ(y − 1
2k)ρ

(
y − 1

2(k − 1)
)
. . . ρ

(
y
)
. . . ρ

(
y + 1

2(k − 1)
)
ρ
(
y + 1

2k
)
.

We denote by W−1(x, k) the formal inverse of the word W(x, k). Given a compact interval 
J ⊂ R with endpoints in 1

2Z and n ∈ N, we define a word W(J, k) as follows. Let

y1 = inf(J) + 1
2 , y2 = sup(J) − 1

2 .

Then we define

W(J, k) = ρ
(
y1 − 1

2
k
)
ρ(y1 − 1

2
(k − 1)) . . . ρ(y1) . . . ρ(y2) . . . ρ(y2 +

1
2
(k2 − 1))ρ(y2 +

1
2
k2).

We consider the set of pairs

Ω = {(W,k) | W ∈ {a, b, a−1, b−1}<N, k ∈ N such that |W | = 2k + 1}.

Definition 4.10. Recall the map λ from Definition 4.8. Given an element f ∈ F ′ and 
ω = (W, k) ∈ Ω, we define the special element λω(f) ∈ Homeo+(R) as follows: For each 
n ∈ Z, we let

λω(f) � [n, n + 1] =
{
λ(f) � [n, n + 1] if W([n, n + 1], k) = W±1;
id � [n, n + 1] otherwise.

More general special elements were defined in [44], but this subclass is the only one 
we will need for our purposes.

Proposition 4.11 ([44, Proposition 3.5]). Let ρ : 1
2Z → {a, a−1, b, b−1} be a quasi-periodic 

labeling. Let ω ∈ Ω and f ∈ F ′. Then λω(f) ∈ Gρ.
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We recall the following characterization of elements of Gρ. This provides an alterna-
tive, “global” description of the groups as comprising of elements satisfying dynamical 
and combinatorial hypotheses, and is reminiscent of similar descriptions for various gen-
eralizations of Thompson’s groups.

Definition 4.12. Let Kρ be the set of homeomorphisms f ∈ Homeo+(R) satisfying the 
following:

1. f is a countably singular piecewise linear homeomorphism of R with a discrete set of 
singularities, all of which lie in Z[ 12 ];

2. The derivatives, whenever they exist, are integer powers of 2;
3. There is a kf ∈ N such that the following holds:

3.a Whenever x, y ∈ R satisfy that

x− y ∈ Z and W(x, kf ) = W(y, kf ),

it holds that

x− x · f = y − y · f ;

3.b Whenever x, y ∈ R satisfy that

x− y ∈ Z and W(x, kf ) = W−1(y, kf ),

it holds that

x− x · f = y′ · f − y′ where y′ = y · ι.

Theorem 4.13 ([44, Theorem 1.8]). Let ρ be a quasi-periodic labeling. The groups Kρ and 
Gρ coincide.

4.3. Point stabilizers

Our next goal is to prove a structural result on Gρ (Proposition 4.16), which strength-
ens a key result from [44], and use it together with Theorem 1.2 to identify subgroups 
of Gρ with vanishing second bounded cohomology.

Definition 4.14. A homeomorphism f ∈ Homeo+(R) is said to be stable if there exists 
an n ∈ N such that the following holds: For any compact interval I of length at least n, 
there is an integer m ∈ I such that f fixes a neighborhood of m pointwise. Given a stable 
homeomorphism f ∈ Homeo+(R) and an interval [m1, m2], the restriction f � [m1, m2]
is said to be an atom of f , if m1, m2 ∈ Z and f fixes an open neighborhood of {m1, m2}
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pointwise. We will also refer to [m1, m2] as the atom: the use of the word will be clear 
from the context.

Given a stable homeomorphism f , we may express R as a union of intervals with 
integer endpoints {Iα}α∈P such that f � Iα is an atom for each α ∈ P and different 
intervals intersect in at most one endpoint. We call this a cellular decomposition of R
suitable for f .

In [43] and [44] the term atom refers to atoms in the sense of Definition 4.14, which 
are moreover minimal with respect to inclusion. This definition has the advantage that a 
cellular decomposition of the real line suitable for a stable homeomorphism f is unique. 
However, in the proof of Proposition 4.16 we will need to consider cellular decompositions 
which are suitable for tuples of elements, so this more relaxed notion will be more 
convenient.

Definition 4.15. Two atoms f � [m1, m2] and f � [m3, m4] are said to be conjugate if 
m2 −m1 = m4 −m3 and the following holds.

f � [m1,m2] = h−1 ◦ f ◦ h � [m3,m4] h = T[m1,m2],[m3,m4];

and they are flip-conjugate if:

f � [m1,m2] = h−1 ◦ f ◦ h � [m3,m4] h = T or
[m1,m2],[m3,m4].

Let f be a stable homeomorphism and fix a cellular decomposition {Iα}α∈P of R
suitable for f , and n ∈ N. We refine the collection of atoms {Iα}α∈P into a collection of 
decorated atoms:

Tn(f, P ) = {(Iα, n) | α ∈ P}.

We say that two decorated atoms (Iα, n) and (Iβ , n) are equivalent if either of the fol-
lowing holds:

1. Iα, Iβ are conjugate and W(Iα, n) = W(Iβ , n);
2. Iα, Iβ are flip-conjugate and W(Iα, n) = W−1(Iβ , n).

The cellular decomposition {Iα}α∈P of f is said to be uniform if there are finitely 
many equivalence classes of decorated atoms in Tn(f, P ). Note that this definition does 
not depend on n: if there are finitely many equivalence classes in Tn(f, P ), then this is 
true for any n ∈ N, since there are finitely many words in {a, b, a−1, b−1}n.

Let ζ be an equivalence class of elements in Tn(f, P ). We define the homeomorphism 
fζ as

fζ � Iα =
{
f � Iα if (Iα, n) ∈ ζ;
f � I = id � I if (I , n) /∈ ζ.
ζ α α α
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If ζ1, . . . , ζm are the equivalence classes of elements in Tn(f, P ), then the list of home-
omorphisms fζ1 , . . . , fζm is called the cellular decomposition of f determined by the 
cellular decomposition {Iα}α∈P of R and the integer n ∈ N. Note that f = fζ1 · · · fζm .

The main structural result is the following:

Proposition 4.16. Let ρ be a quasi-periodic labeling. Let f1, . . . , fn ∈ Gρ be elements such 
that there exists an open interval I which is pointwise fixed by the element fi for each 
1 ≤ i ≤ n. Then there is a subgroup A < Gρ isomorphic to a finite direct sum of copies 
of F ′, which contains f1, . . . , fn.

The statement for n = 1 is contained in the proof of [44, Proposition 1.9]. We will 
prove Proposition 4.16 without appealing to this.

Proof. By Theorem 4.9.2, the action of Gρ is minimal. Therefore there exists an element 
h ∈ Gρ such that 0 ∈ I · h, and hence fh

i pointwise fixes a neighborhood of 0 for each 
1 ≤ i ≤ n. It suffices to show the statement for fh

1 , . . . , f
h
n , so we may assume without 

loss of generality that I is a neighborhood of 0.
Let k := max{kf1 , . . . , kfn} + 1 as in Definition 4.13. Then for every x, y ∈ R such 

that x − y ∈ Z and W(x, k − 1) = W(y, k − 1) it holds that

x− x · fi = y − y · fi, ∀1 ≤ i ≤ n.

If instead W(x, k − 1) = W−1(y, k − 1), then

x− x · fi = y′ · fi − y′, where 1 ≤ i ≤ n and y′ = y · ι.

In particular, if m ∈ Z satisfies W(m, k) = W(0, k), then each element f1, . . . , fn point-
wise fixes a neighborhood of m (we took k instead of k − 1 in order to ensure that this 
holds also for a left neighborhood of m). We set N to be the set of such m ∈ Z, and note 
that by the definition of quasi-periodic labeling, N is infinite and the set of distances 
between two consecutive elements of N is bounded.

This determines a decomposition of R into intervals {Iα}α∈P with endpoints in N , 
and also satisfying that no interval Iα contains a point in N . Each element in the list 
f1, . . . , fn pointwise fixes a neighborhood of each element of N , and each Iα is an atom 
for f1, . . . , fn. So {Iα}α∈P is a cellular decomposition of R which is suitable for all the 
elements f1, . . . , fn. Moreover, since two consecutive elements of N are at a bounded 
distance from each other, it follows that {|Iα|}α∈P is bounded. In particular the integer 
l := k + max{|Iα| : α ∈ P} is bounded, and the cellular decomposition {Iα}α∈P is 
uniform: there are finitely many equivalence classes of decorated atoms in

Tl(f1, P ) = Tl(f2, P ) = · · · = Tl(fn, P ).
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We denote by ζ1, . . . , ζm these equivalence classes, and let {fi,ζj | 1 ≤ j ≤ m} be the 
corresponding cellular decompositions of f1, . . . , fn.

For each 1 ≤ j ≤ m, set Lj := |Iα| where (Iα, l) ∈ ζj : this is well-defined since 
|Iα| = |Iβ | whenever (Iα, l) and (Iβ, l) are in the same equivalence class. Also for each 
1 ≤ j ≤ m, define the canonical isomorphism

φj : F ′ → F ′
[0,Lj ]

where F[0,Lj ] is the standard copy of F supported on the interval [0, Lj ].
For each 1 ≤ j ≤ m, we have

{W(Iα, l) | (Iα, l) ∈ ζj} = {Wj ,W
−1
j }

for some words W1, . . . , Wm. Define a map

φ :
⊕

1≤j≤m

F ′ → Homeo+(R)

as follows. For α ∈ P and 1 ≤ j ≤ m:

φ(g1, . . . , gm) � Iα ∼=T φj(gj) if (Iα, l) ∈ ζj and W(Iα, l) = Wj ;
φ(g1, . . . , gm) � Iα ∼=T or φj(gj) if (Iα, l) ∈ ζj and W(Iα, l) = W−1

j .

This is an injective group homomorphism, and moreover the image of each element 
satisfies Definition 4.12 with the uniform constant l. This implies that the image of φ is 
a subgroup A < Gρ, which is isomorphic to a direct sum of m copies of F ′. Moreover, 
for every 1 ≤ j ≤ m, 1 ≤ i ≤ n, there is an element gi,j ∈ F ′ such that

φ(id, . . . , gi,j , . . . , id) = fi,ζj .

Therefore fi,ζj ∈ A for each 1 ≤ i ≤ n, 1 ≤ j ≤ m, and thus fi = fi,ζ1 · · · fi,ζm ∈ A for 
each 1 ≤ i ≤ n. This concludes the proof. �

We are ready to identify subgroups of Gρ with vanishing second bounded cohomology.

Proposition 4.17. If Γ ≤ Gρ admits a global fixpoint x ∈ R, then H2
b(Γ) = 0.

Proof. Since x is a global fixpoint of Γ, and the left and right slope at x are powers of 
2, we obtain a germ homomorphism Γ → Z2, whose kernel is the subgroup Γ1 consisting 
of elements f ∈ Γ that pointwise fix some open neighborhood If of x. By Theorems 2.8
and 2.10, it suffices to show that H2

b(Γ1) = 0.
Every finitely generated subgroup Δ ≤ Γ1 pointwise fixes a nonempty open interval 

which contains x. Therefore by Proposition 4.16, Δ is isomorphic to a subgroup of a finite 
direct sum of copies of F ′. In particular, Δ is isomorphic to a subgroup of PL+([0, 1])
and so H2

b(Δ) = 0 by Theorem 1.3. Thus H2
b(Γ1) = 0 by Proposition 2.13. �
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4.4. Proof of Theorem 1.5

The following proposition is the key idea behind the proof of the Theorem 1.5.

Proposition 4.18. Let ρ be a quasi-periodic labeling. Let a1, a2, a3 ∈ Gρ. Then there exist 
h, g1, g2, g3 ∈ Gρ and non-empty sets I1 ⊂ I2 ⊂ I3 ⊂ R with the following properties. 
Let fi := ahi for i = 1, 2, 3.

1. Each of the groups 〈g1, g2, g3〉 and 〈fi, gi〉 : i = 1, 2, 3 has a global fixpoint in R.
2. The element figi fixes Ii pointwise, for i = 1, 2, 3.
3. Supp(gi) ⊂ Ii+1 for i = 1, 2.

Let us see how this proposition implies Theorem 1.5:

Proof of Theorem 1.5. Let α ∈ H2
b(Gρ), and let ω be the unique homogeneous represen-

tative given by Theorem 3.2. This is associated to a central extension E and a section 
σ : Gρ → E such that ω(f, g) = σ(f)σ(g)σ(fg)−1. By Corollary 3.3, if Γ ≤ Gρ satisfies 
H2

b(Γ) = 0, then the restriction σ|Γ is a homomorphism. In particular, this holds when 
Γ is abelian, by Theorem 2.8, or has a global fixpoint, by Proposition 4.17.

We need to show that ω ≡ 0, equivalently that σ is a homomorphism. As in the 
proof of Theorem 1.2, this amounts to showing that whenever a1, a2, a3 ∈ Gρ satisfy 
a1a2a3 = id, we also have σ(a1)σ(a2)σ(a3) = id.

So let a1, a2, a3 be as above, and let h, g1, g2, g3 and I1, I2, I3 be given by Proposi-
tion 4.18. We similarly set fi = ahi for i = 1, 2, 3, and notice that f1f2f3 = id, and that 
by Lemma 3.4 it suffices to show that σ(f1)σ(f2)σ(f3) = id.

Claim 4.19. It holds

σ(f1)σ(f2)σ(f3) · σ(g3)σ(g2)σ(g1) = σ(f1g1)σ(f2g2)σ(f3g3).

Proof of Claim. By Proposition 4.17 we have H2
b(〈fi, gi〉) = 0. Therefore:

σ(f1)σ(f2) · σ(f3)σ(g3) · σ(g2)σ(g1) = σ(f1)σ(f2) · σ(f3g3) · σ(g2)σ(g1).

Now f3g3 fixes I3 pointwise, and Supp(g2) ⊂ I3, therefore 〈f3g3, g2〉 is abelian and:

σ(f1)σ(f2) · σ(f3g3)σ(g2) · σ(g1) = σ(f1)σ(f2) · σ(g2)σ(f3g3) · σ(g1).

Similarly, Supp(g1) ⊂ I2 ⊂ I3, therefore 〈f3g3, g1〉 and 〈f2g2, g1〉 are abelian. Thus:

σ(f1)σ(f2)σ(g2) · σ(f3g3)σ(g1) = σ(f1)σ(f2)σ(g2) · σ(g1)σ(f3g3)

= σ(f1) · σ(f2g2)σ(g1) · σ(f3g3)

= σ(f1) · σ(g1)σ(f2g2) · σ(f3g3) = σ(f1g1)σ(f2g2)σ(f3g3),
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which concludes the proof of the claim. �
Now the group 〈f1g1, f2g2, f3g3〉 fixes I1 pointwise, which is a non-empty set. By 

Proposition 4.17, its second bounded cohomology vanishes. Therefore

σ(f1g1)σ(f2g2)σ(f3g3) = σ(f1g1 · f2g2 · f3g3).

Using the same argument as in the proof of the claim in reverse, we obtain

f1g1 · f2g2 · f3g3 = f1f2f3 · g3g2g1 = g3g2g1.

Therefore

σ(f1g1 · f2g2 · f3g3) = σ(g3g2g1) = σ(g3) · σ(g2) · σ(g1),

where we used that H2
b(〈g1, g2, g3〉) = 0, by Proposition 4.17.

We have thus shown that

σ(f1)σ(f2)σ(f3) · σ(g3)σ(g2)σ(g1) = σ(g3)σ(g2)σ(g1).

This implies that σ(f1)σ(f2)σ(f3) = id, which is what we wanted to show. �
We deduce:

Corollary 4.20. H2
b(Gρ; Z) = 0. In particular, every action of Gρ on the circle has a global 

fixpoint.

Proof. The inclusion Z ⊂ R induces a long exact sequence [32, Proposition 1.1] (see also 
[58, Proposition 8.2.12]) that begins as follows:

0 → H1(Gρ;R/Z) → H2
b(Gρ;Z) → H2

b(Gρ;R) → · · ·

Since Gρ is perfect, we have H1(Gρ; R/Z) ∼= Hom(Gρ; R/Z) = 0. Therefore Theorem 1.5
implies that H2

b(Gρ; Z) = 0. The statement about circle actions is a direct consequence 
of Ghys’s Theorem [33] (see also [30, Proposition 10.20]). �

The rest of this section will be devoted to the proof of Proposition 4.18.
Let a1, a2, a3 ∈ Gρ. By Theorem 4.9.1, each ai fixes a point in R. Therefore there 

exists a compact interval J1 ⊂ R with endpoints in Z[ 12 ] such that each ai fixes a point 
inside J1. Next, choose compact intervals J2, J3, J4 with endpoints in Z[ 12 ] such that

Ji ∪ Ji · ai ⊂ Ji+1 : 1 ≤ i ≤ 3.
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By Theorem 4.9.3 and the definition of a proximal action, there exists an element 
h ∈ Gρ such that J4 · h ⊂ (0, 1). We set Ti := Ji · h, and note that Ti ⊂ (0, 1) has 
endpoints in Z[ 12 ], for i = 1, . . . , 4, since Gρ preserves Z[ 12 ].

As in the statement of Proposition 4.18, we set fi := ahi . By Definition 4.12 and 
Theorem 4.13, there exists k ∈ N such that whenever x ∈ [0, 1], y ∈ [n, n + 1] satisfy 
x − y ∈ Z and W([0, 1], k) = W([n, n + 1], k), it holds that:

x− x · fi = y − y · fi : i = 1, 2, 3.

Fix m 
= 0 such that W([0, 1], k) = W([m, m + 1], k): such an m must exist because ρ
is quasi-periodic. However ρ is not periodic by Lemma 4.7, therefore there exists l > k

such that W([0, 1], l) 
= W([m, m +1], l). Moreover, since W([0, 1], k) = W([m, m +1], k), 
we also have W([0, 1], l) 
= W−1([m, m + 1], l).

We set W := W([0, 1], l), ω := (W, l) ∈ Ω and

N1 := {n ∈ Z : W([n, n + 1], l) = W} N2 := {n ∈ Z : W([n, n + 1], l) = W−1}.

Note that by construction m /∈ N1 ∪N2. Finally, we set

Ii := (Ti + N1)
⋃

(Ti · ι + N2)

for i = 1, . . . , 4. Then these sets satisfy ∅ ⊂ I1 ⊂ I2 ⊂ I3 ⊂ I4 ⊂ R, and all of these 
inclusions are strict.

We will now use ω to define the elements gi: these will be special elements as in 
Definition 4.11. For i = 1, 2, 3, let αi be an element of F supported on Ti+1 ⊂ (0, 1)
such that αi � Ti · fi = f−1

i � Ti · fi. This is possible since Ti · fi ⊂ Ti+1 ⊂ (0, 1) for all 
i = 1, 2, 3, and the restriction f−1

i � Ti · fi is piecewise linear with breakpoints in Z[ 12 ]
and slopes (when they exist) equal to powers of 2. Note that αi ∈ F ′, and so we can 
define gi := λω(αi).

Now that we have defined all objects involved, we will prove that each item of Propo-
sition 4.18 holds.

Claim 4.21. For i = 1, 2, 3, we have Supp(gi) ⊂ Ii+1. In particular, 〈g1, g2, g3〉 has a 
global fixpoint.

Proof. By construction, αi ∈ F is supported on Ti+1 ⊂ (0, 1). Let x ∈ R be such that 
x · gi 
= x, and let n ∈ Z be such that x ∈ [n, n + 1]. Since gi = λω(αi), it holds that 
either: W([n, n + 1], l) = W or W([n, n + 1], l) = W−1. Then by definition, the following 
holds. In the former case, n ∈ N1 and x ∈ Ti+1 + n ⊂ Ii+1. In the latter case, n ∈ N2
and x ∈ Ti+1 · ι + n ⊂ Ii+1. This shows that Supp(gi) ⊂ Ii+1.

Now 〈g1, g2, g3〉 is supported on I4, and so every point in R\I4 
= ∅ is a global fixpoint. 
(Note that Z will, in particular, be fixed pointwise.) �
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Claim 4.22. For i = 1, 2, 3, the group 〈fi, gi〉 has a global fixpoint, and figi fixes Ii
pointwise.

Proof. Fix i ∈ {1, 2, 3}. Recall that we fixed an element m ∈ Z such that m /∈ N1 ∪ N2
(that is W([m, m + 1], l) 
= W±1), but W([m, m + 1], k) = W([0, 1], k). Moreover, recall 
that fi has a fixpoint xi inside T1, because ai has a fixpoint inside J1. It follows from the 
definition of k that m + xi ∈ [m, m + 1] is a fixpoint of f . Moreover, from Claim 4.21, it 
follows that gi fixes [m, m +1] pointwise. Therefore m +xi is a global fixpoint of 〈fi, gi〉.

By construction,

f−1
i � Ti · fi = αi � Ti · fi = gi � Ti · fi

Therefore, figi fixes Ti pointwise.
Now let x ∈ Ii. We wish to show that x ·figi = x. Let n ∈ Z be such that x ∈ [n, n +1). 

Then either n ∈ N1 and x ∈ Ti + n, or n ∈ N2 and x ∈ Ti · ι + n.
By definition of l, the fact that l > k, and construction of the gi, we have the following. 

If x is a fixpoint of figi and y ∈ R satisfies x − y = n ∈ N1, then y is also a fixpoint of 
figi. Similarly, if x is a fixpoint of figi and y ∈ R satisfies x − y · ι = n ∈ N2, then y is 
also a fixpoint of figi. Our claim follows. �
Proof of Proposition 4.18. Item 1 follows from Claims 4.21 and 4.22, Item 2 from 
Claim 4.22 and Item 3 from Claim 4.21. �
4.5. Piecewise linear homeomorphisms of flows

We end by explaining an alternative approach to our results, which is more conceptual 
and applies to the groups T (ϕ, σ) from [49]. We will only sketch the definitions and outline 
the argument, and refer the reader to [57,49] throughout for further details.

Let X be a nonempty Stone space (that is, a totally disconnected compact Hausdorff 
space), and let ϕ be a homeomorphism of X, such that the induced action of Z on X is 
free. Let Y ϕ := (X×R)/Z, where Z acts on X×R diagonally via ϕ ×(x �→ x +1). Given a 
clopen set C ⊂ X, and an open dyadic interval J ⊂ R small enough so that the inclusion 
C × J ⊂ X ×R stays injective after taking the quotient, we call the induced embedding 
πC×J : C × J → Y ϕ a dyadic chart. The group T (ϕ) is defined as the group of all those 
homeomorphisms g of Y ϕ that are isotopic to the identity, and that are piecewise given 
by orientation-preserving dyadic homeomorphisms on dyadic charts. More precisely for 
every y ∈ Y ϕ there exists a dyadic chart C × J and an orientation-preserving dyadic 
homeomorphism f : J → I such that g(πC×J(C × J)) = πC×I(C × I), and g takes the 
form (x, t) �→ (x, f(t)) on those charts.

Now let σ be a homeomorphism of X such that σ2 = id and σϕσ = ϕ−1. This 
defines an action of D∞ on X, which we assume to be free, and similarly defines a space 
Y ϕ,σ := (X × R)/D∞. We analogously define dyadic charts πC,J : C × J → Y ϕ,σ for 



F. Fournier-Facio, Y. Lodha / Advances in Mathematics 428 (2023) 109162 31
pairs C, J such that this map is an embedding, and denote by T (ϕ, σ) the group of 
homeomorphisms of Y ϕ,σ that are isotopic to the identity, and that are piecewise given 
by dyadic homeomorphisms on dyadic charts.

The groups T (ϕ) are left orderable [57, Proposition 3.3], and T (ϕ, σ) embeds into T (ϕ)
[49, Proposition 4.12], so T (ϕ, σ) is also left orderable. Moreover, if ϕ is conjugate to a 
subshift, then T (ϕ) is finitely generated [57, Theorem A]; and if ϕ is minimal, then T (ϕ)
is simple [57, Theorem B]. In [49, Remark 4.18], the authors point out that these results 
can be generalized to the groups T (ϕ, σ) without much effort. Moreover, in [49, Remark 
4.19], they explain that, if ρ is a quasi-periodic labeling, then one can define a subshift 
ϕ in terms of ρ, and σ to be a sort of formal inversion on ρ, to obtain Gρ

∼= T (ϕ, σ).
Let us now explain how to prove that H2

b(T (ϕ, σ)) = 0 by using the action on Y ϕ,σ (in 
place of the action of Gρ on the line). For every y ∈ Y ϕ,σ, as is remarked in the proof of 
[49, Theorem 4.13], every finitely generated group that fixes pointwise a neighborhood of 
y is isomorphic to a subgroup of a finite direct sum of copies of F ′: this is the analogue of 
our Proposition 4.16. By using that the germs at y are amenable (which follows from the 
piecewise linear nature of these groups), this implies as in Proposition 4.17 that every 
subgroup of T (ϕ, σ) that admits a global fixpoint in Y ϕ,σ has vanishing second bounded 
cohomology.

To conclude, we need to prove an analogue of Proposition 4.18: the rest of the proof 
goes through analogously. The natural way to adapt the statement is by replacing R with 
Y ϕ,σ and intervals with dyadic charts. This can be achieved similarly to our construction. 
The two main properties of T (ϕ, σ), we use are the following. First, every element in 
T (ϕ, σ) fixes a point in Y ϕ,σ: this follows from [49, Lemma 4.16(ii)]. Secondly, the action 
of T (ϕ, σ) on Y ϕ,σ is extremely proximal: this is contained in [49, Proposition 4.17]).

Therefore we may proceed as in our proof of Proposition 4.18. Let a1, a2, a3 ∈ T (ϕ, σ). 
Each fixes a point in Y ϕ,σ, therefore by proximality there exists a dyadic chart J1 ⊂ Y ϕ

such that each ai fixes a point in J1. Then we can choose the sets J2, J3, J4 analogously, 
namely such that Ji ∪ Ji · ai ⊂ Ji+1. Using proximality again, we may replace the ai by 
conjugates fi := ahi and assume that each Ji is a small dyadic chart. This allows to define 
piecewise elements g1, g2, g3 so that gi is supported on Ji+1 and coincides with f−1

i on 
Ji. Then our same proof shows that the gi satisfy the conclusions of Proposition 4.18.

This argument then also encompasses the case of the groups Gρ by [49, Remark 4.19].
As for the groups T (ϕ), the argument does not carry over, since it is not true that 

every element in T (ϕ) fixes a point in Y ϕ (although the other properties that we used 
about T (ϕ, σ) do hold for T (ϕ)). Thus, we do not know whether H2

b(T (ϕ)) = 0 or not.

5. Groups acting on the circle

Having gathered a good understanding of the second bounded cohomology of groups 
acting on the interval and on the line, we move to the study of groups acting on the 
circle. Most interesting actions lead to non-trivial real Euler classes (Theorem 2.14), so 
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one cannot expect a general vanishing result, but Theorem 1.6 is the next-best thing. In 
order to prove it we use the following general result (see also [60]):

Proposition 5.1 ([29, Proposition 6.9]). Let G be a group of orientation-preserving home-
omorphisms of the circle. Suppose that G has an orbit Y such that:

1. For k = 2, 3 the action of G on circularly ordered k-tuples in Y is transitive;
2. For k = 1, 2 the stabilizer Hk of a k-tuple in Y satisfies H2

b(Hk) = 0.

Then H2
b(G) is one-dimensional, spanned by the Euler class.

Using the results from the previous section, Theorem 1.6 is then an immediate con-
sequence:

Proof of Theorem 1.6. Let G be a group of piecewise linear (or piecewise projective) 
homeomorphisms of the circle. Then the stabilizer of a k-tuple, for all k ≥ 1, can be 
realized as a group of piecewise linear (or piecewise projective) homeomorphisms of the 
interval (or the real line). Now suppose that G satisfies the hypotheses of Theorem 1.6, 
that is, G has an orbit Y such that the action on circularly ordered pairs and triples in Y
is transitive. Then the result follows by combining Theorem 1.3 with Proposition 5.1. �

Theorem 1.6 was already known for Thompson’s group T [41], but the only available 
proofs made use of the computation of its cohomology [34]. The general statement of 
Theorem 1.6 makes it applicable to several other groups, most notably to certain Stein–
Thompson groups, to the finitely presented infinite simple group S constructed by the 
second author in [50] and to certain irrational-slope analogues of Thompson’s group, 
which will be the subject of the next section. The special case of Stein–Thompson groups 
had been conjectured by Heuer and Löh [40, Conjecture A.5]. See [27] for a detailed 
discussion of these examples.

Recall the notion of proximal action from Subsection 2.1. Combining Theorem 1.6
with Corollary 2.15, we obtain:

Corollary 5.2. Let G be a group satisfying the hypotheses of Theorem 1.6. Suppose that 
the orbit Y is moreover dense. Then G admits a unique proximal action on the circle, 
up to conjugacy.

Proof. This is a combination of the aforementioned results: an action which is transitive 
on circularly ordered pairs of a dense subset Y of the circle is easily seen to be proximal. 
Indeed, let I, J be open subset of the circle such that the closure of J is proper and 
compact. Let K a closed arc with endpoints in Y that contains J , and let L be a 
closed arc with endpoints in Y that is contained in I. Using the hypothesis on double 
transitivity, we obtain an element f ∈ G such that J · f ⊂ K · f = L ⊂ I. �



F. Fournier-Facio, Y. Lodha / Advances in Mathematics 428 (2023) 109162 33
With an application of Gromov’s Mapping Theorem (Theorem 2.9), the computation 
of the second bounded cohomology of lifts of groups acting on the circle is immediate:

Corollary 5.3. Let G be as in Proposition 5.1, and let G be a lift of G to the real line. 
Then H2

b(G) is one-dimensional, spanned by the rotation quasimorphism.

Proof. The group G is a central extension of G, so by Theorem 2.9 the quotient G → G

induces an isomorphism in bounded cohomology. By [30, Proposition 10.26], the real 
Euler class is sent to the image of the rotation quasimorphism in second bounded coho-
mology. �

In particular, we are able to reduce the computation of the stable commutator length 
in such groups to an evaluation of the rotation quasimorphism:

Corollary 5.4. Let G be a group satisfying the hypotheses of Theorem 1.6. Suppose that 
the orbit Y is moreover dense. Then scl(g) = rot(g)

2 for all g ∈ G
′.

Proof. By Corollary 5.3 and Bavard duality, if D ≥ 0 is the defect of the rotation 
quasimorphism of G, we have scl(g) = rot(g)/2D, for all g ∈ G

′. Therefore it suffices to 
show that D = 1. Recall from Example 2.3 that rot has defect 1 on Homeo+(R/Z) [18, 
Proposition 2.92]. Therefore D ≤ 1, and it remains to prove that D ≥ 1.

Let (a, b, c, d) be a circularly ordered 4-tuple in Y . By double transitivity there exist 
elements g, h ∈ G such that (b, c) · g = (a, d) and (c, d) · h = (b, a). It follows that

a · [g, h] = a · g−1h−1gh = b · h−1gh = c · gh = d · h = a.

Choosing lifts g, h ∈ G with 0 ≤ rot(g), rot(h) ≤ 1, we obtain an element a ∈ R such 
that a · [g, h] = a+1. It follows that rot([g, h]) = 1. Since a homogeneous quasimorphism 
evaluates to at most the defect on a commutator [18, 2.2.3], we conclude. �
6. The group Tτ and algebraic irrational stable commutator length

Let τ :=
√

5−1
2 be the small golden ratio. In [23], the author defines the golden ratio 

Thompson group Fτ as the group of orientation-preserving piecewise linear homeomor-
phisms g of [0, 1] such that the following two properties are satisfied:

1. g has finitely many breakpoints, all of which lie in Z[τ ];
2. The derivatives, whenever they exist, are integer powers of τ .

Note that it automatically follows that Fτ preserves Z[τ ] ∩ [0, 1]. This is the analogous 
definition as Thompson’s group F , where τ plays the role of 1

2 . This group was studied 
combinatorially via tree diagrams in [15]. The group action on the interval corresponding 
to the tree diagrams defined in [15] coincides with the above action.
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We consider the following “circle” analogue of the group Fτ .

Definition 6.1. Define the golden ratio Thompson group Tτ as the group of orientation-
preserving piecewise linear homeomorphisms g of S1 = R/Z such that the following 
three properties are satisfied:

1. g has finitely many breakpoints, all of which lie in Z[τ ]/Z;
2. The derivatives, whenever they exist, are integer powers of τ ;
3. g preserves Z[τ ]/Z.

Note that, unlike with Fτ , it is necessary here to impose the third condition, since 
every rotation satisfies the first two. Again, this is the analogous definition as Thompson’s 
group T , where τ plays the role of 1

2 . Crucially, Tτ contains all rotations with angles in 
Z[τ ], and the stabilizer of a point x ∈ Z[τ ]/Z is naturally isomorphic to Fτ .

The group Tτ has been studied in [16] by combinatorial means. We now clarify that 
the definition of Tτ provided in [16], by means of combinatorial tree diagrams, defines the 
same group as Definition 6.1. Note that the group action on R/Z defined as Tτ in page 
2 of [16] is incorrect, since the third condition of our Definition 6.1 is omitted. However, 
the combinatorial model described by tree diagrams in [16] is correct and it corresponds 
to our definition above.

Lemma 6.2. The group action of Tτ on R/Z in Definition 6.1 and the group action on 
R/Z corresponding to the group Tτ defined by combinatorial tree diagrams in [16, Section 
2] represent the same group action.

Proof. For the sake of this proof, we denote the group action defined in [16, Section 2]
by means of combinatorial tree diagrams as G, and we will show that it is the same as Tτ

above. Note that the combinatorial tree diagrams defined in [16] readily translate into 
concrete piecewise linear homeomorphisms of R/Z and we will use the latter without 
giving all details.

The elements of the generating set {xn, yn, cn} of G (as provided in [16, Section 2]) 
are easily seen to satisfy Definition 6.1, so it follows that G ≤ Tτ . Now note that the 
orbit of 0 in both group actions G and Tτ is the same since it equals Z[τ ]/Z. So given 
an element f ∈ Tτ , there is an element g ∈ G such that 0 · fg−1 = 0. In particular, 
fg−1 ∈ Fτ .

The group action on R/Z corresponding to the tree diagrams defined in [15] repre-
senting elements of Fτ coincides with our definition of Fτ , which is also the stabilizer of 
0 in G. It follows that Fτ ≤ G and thus f ∈ G. Therefore, Tτ ≤ G and G = Tτ . �

Our result will make use of the following structural results from [15,16]. Let F c
τ ≤ Fτ

be the subgroup of elements g for which Supp(g) ⊂ (0, 1).
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Proposition 6.3 (Burillo–Nucinkis–Reeves [15, Proposition 5.2]). F ′
τ = (F c

τ )′ is an index-
two subgroup of F c

τ .

Proposition 6.4 (Burillo–Nucinkis–Reeves [16, Theorem 3.2]). T ′
τ is an index-two sub-

group of Tτ .

The main result of this section is that the full lift Tτ of Tτ to the real line has elements 
with stable commutator length equal to any x ∈ 1

2Z[τ ], proving Theorem 1.8.

6.1. Transitivity properties

In this subsection we collect some useful facts about the dynamics of the action of Tτ

on R/Z. We start by recording a few simple facts about the transitivity properties of Fτ . 
For every a, b ∈ Z[τ ] ∩ [0, 1], let Fτ [a, b] be the set of elements whose support is contained 
in [a, b]. It is shown in [15, Proposition 6.2] that Fτ [a, b] is naturally isomorphic to Fτ . 
(In fact, the two actions are topologically conjugate: the conjugating map is a carefully 
chosen piecewise linear map [a, b] → [0, 1]).

Lemma 6.5. The action of Fτ on the set of ordered n-tuples 0 < x1 < · · · < xn < 1 in 
Z[τ ] ∩ [0, 1] is transitive, and the stabilizer of each such n-tuple is isomorphic to Fn+1

τ .

Proof. Since for each a, b ∈ Z[τ ] ∩[0, 1], Fτ [a, b] is naturally isomorphic to Fτ , this implies 
the statement about the stabilizers. Indeed, by the self similarity feature of the definition, 
the stabilizer of {x1, . . . , xn} splits as a direct product Fτ [0, x1] × · · · × Fτ [xn, 1].

Double transitivity is proven in [23, Corollary 1]. Finally, high transitivity follows 
from an elementary inductive argument using transitivity and the previous description 
of the stabilizers. �
Lemma 6.6. For each n ∈ N, the action of F ′

τ on ordered n-tuples in Z[τ ] ∩ (0, 1) is 
transitive.

Proof. Let 0 < x1 < · · · < xn < 1 and 0 < y1 < · · · < yn < 1. We choose a ∈
(0, min{x1, y1}) ∩ Z[τ ] and b ∈ (max{xn, yn}, 1) ∩ Z[τ ].

By Lemma 6.5, there exists an element g ∈ Fτ fixing a and b and sending xi to yi for 
i = 1, . . . , n. Let h ∈ Fτ be supported on [0, a] ∪ [b, 1] so that

g | [0, a] ∪ [b, 1] = h | [0, a] ∪ [b, 1].

Then f := gh−1 ∈ F c
τ fixes [0, a] ∪ [b, 1] pointwise and sends xi to yi, for i = 1, . . . , n.

Using proximality, we find an element l ∈ Fτ such that [a, b] · l ⊂ (b, 1). Then l−1f−1l

is supported on [b, 1], and in particular it fixes every xi. Therefore [l, f ] ∈ F ′
τ is the 

desired element sending xi to yi for all i = 1, . . . , n. �
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Let us move to Tτ and prove the analogous properties.

Lemma 6.7. The action of Tτ on the set of circularly ordered n-tuples in Z[τ ]/Z is tran-
sitive, and the stabilizer is isomorphic to Fn

τ .

Proof. Since Tτ contains all rotations by an angle in Z[τ ]/Z, the action on Z[τ ]/Z is 
transitive. Moreover, the stabilizer of each point x ∈ Z[τ ]/Z is naturally isomorphic 
to Fτ , so high transitivity now follows from Lemma 6.5, as does the statement on the 
stabilizers. �

These transitivity results are enough to prove that Tτ is of type F∞. Recall that a 
group G is said to be of type Fn for an integer n ≥ 1 if it admits a classifying space 
with compact n-skeleton, and of type F∞ if it is of type Fn for all n ≥ 1. Being of type 
F1 is equivalent to being finitely generated, and being of type F2 is equivalent to being 
finitely presented. We refer the reader to [8,9] and [1] for more details. Now we show the 
following:

Proposition 6.8. The group Tτ is of type F∞.

Proof. In [23], Cleary showed that Fτ is of type F∞. We will use this as a base case to 
deduce the result.

We construct a simplicial complex X, endowed with an action of Tτ , as follows: the 
n-simplices are given by (n + 1)-tuples (x0, . . . , xn) of elements in Z[τ ]/Z, and the face 
relation is given by inclusion. This is clearly contractible, and endowed with a natural 
action of Tτ . We claim that the action is cocompact on simplices of every given dimension, 
and that the stabilizer of a simplex is of type F∞.

Recall from Lemma 6.7 that Tτ acts transitively on the set of circularly ordered n-
tuples in Z[τ ]/Z. It follows that the action on the n-simplices of X has finitely many 
orbits, and thus it is cocompact in each dimension. By Lemma 6.7 again, the stabilizer of 
an n-simplex is isomorphic to Fn+1

τ . In particular it is of type F∞ since this is a property 
closed under finite direct sums.

It follows from a special case of Brown’s finiteness criterion [9, Proposition 1.1] that 
the group Tτ is of type F∞. �
6.2. The lift of Tτ

We will now use the previous results to study the total lift G = Tτ of Tτ , and prove 
Theorem 1.8. We start by showing that it also has an abelianization of order 2.

Lemma 6.9. Let G be the total lift of Tτ . Then G is the unique lift of Tτ to the real 
line. The same holds for the total lift H of T ′

τ . Moreover, it holds that G′ = H and 
[G : G′] = 2.
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Proof. We will show the first statement for H, a similar argument applies to G. Consider 
an arbitrary lift K ≤ Homeo+(R/Z) of T ′

τ . To show that it is equal to H, it suffices to 
show that K must contain all integer translations.

Recall the map η : Homeo+(R/Z) → Homeo+(R/Z). Let x ∈ Z[τ ]/Z, and let Tτ (x)
denote the subgroup of elements of Tτ that fix pointwise a neighborhood of x, so Tτ (x) ∼=
F c
τ and Tτ (x)′ ∼= F ′

τ (see Proposition 6.3). Let f1, f2 ∈ Tτ (x)′ and let λ1, λ2 ∈ K be 
elements such that η(λi) = fi. Since each fi fixes x, each λi preserves x + Z in R. It 
follows that the element λ = [λ1, λ2] fixes x + Z pointwise, and η(λ) = [f1, f2]. Since 
Tτ (x)′ is perfect (see e.g. [31]), so generated by commutators of elements in Tτ (x)′, we 
conclude that the group K contains the lift Kx of Tτ (x)′ that fixes x +Z pointwise. This 
holds for each x ∈ Z[τ ]/Z. It is an elementary exercise to show that the group generated 
by the groups {Kx | x ∈ Z[τ ]/Z} contains all integer translations.

Since G′ and H are both lifts of T ′
τ , by the previous paragraph they coincide. Now 

H is the preimage under η of an index-two subgroup of Tτ , so it has index 2 in G =
η−1(Tτ ). �

We are finally ready to prove Theorem 1.8. More precisely:

Theorem 6.10. For every x ∈ 1
2Z[τ ], there exists g ∈ G such that scl(g) = x. Moreover, 

if x ∈ Z[τ ], we may choose g ∈ G′.

Proof. The group Tτ is of type F∞ by Proposition 6.8. Being a central extension of Tτ

by Z, also G is of type F∞. Moreover, by Lemma 6.7 and Corollary 5.4, for every g ∈ G′

it holds scl(g) = rot(g)/2.
Now let 0 < α ∈ Z[τ ]. The translation f : t �→ t + α on R descends to a rotation by 

α mod Z, which belongs to Tτ . Moreover, by Lemma 6.9 it holds f2 ∈ G′. Then

scl(f) = scl(f2)
2 = rot(f2)

4 = α

2 . �
Our proof relied on Corollary 5.4, thus on Proposition 5.1. However, the full knowl-

edge of the second bounded cohomology of Tτ was not necessary to carry over the proof. 
Indeed, it is possible to deduce the same result by only knowing that scl vanishes iden-
tically on Tτ , which can be proven using the structural results about Tτ we presented 
here. More details on this argument can be found in the preprint [25].

We have given a concrete answer to Question 1.7, which gives new insight into the 
spectrum of scl on finitely presented groups. It is possible that our proof can be gener-
alized to reach other metallic ratios, i.e. quadratic irrationals of the form

λ := −n±
√
n2 + 4

2 .

Indeed, as noted by Cleary at the end of [22], most of the arguments establishing finite 
presentability appear to carry over to that setting. On the other hand, it is not clear how 
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to generalize the arguments to other algebraic integers. In [23], Cleary cites unpublished 
work generalizing the theory of regular subdivisions (carried over therein for the golden 
ratio) to algebraic rings. However, this work remains unpublished. Therefore we end by 
asking the following more specialized version of Question 1.7:

Question 6.11. Does every algebraic integer occur as the scl of a finitely presented group?

7. Algebraic irrational simplicial volume

Our final application concerns the spectrum of simplicial volume, the main result being 
Theorem 1.9. We start with the definition. For the rest of this section, all manifolds will 
be assumed to be oriented, closed and connected.

Definition 7.1. Let M be an n-manifold, and let [M ] ∈ Hn(M ; R) be its real fundamental 
class. The simplicial volume of M is defined as:

‖M‖ := inf
{∑

|ai| :
∑

aiσi is a cycle representing [M ]
}
.

This invariant was introduced by Gromov in the seminal paper [36], and despite 
being a homotopical invariant, it carries a surprising amount of geometric information 
[30, Chapter 7]. However, there are very few cases in which the precise value of M is 
known. The largest class of explicit examples is provided by the following theorem:

Theorem 7.2 (Heuer–Löh [41]). Let G be a finitely presented group such that H2(G; R) =
0, and let g ∈ G′. Then there exists a 4-manifold M such that ‖M‖ = 48 · scl(g).

This allows to prove that all rationals [41], as well as certain trascendental numbers 
[42], occur as the simplicial volume of a 4-manifold.

The spectrum of scl for finitely presented groups is better understood than the spec-
trum of simplicial volume. It was already known that all rationals [34] and certain 
trascendental numbers [65] are possible values in the former. However realizing these 
values in groups to which Theorem 7.2 applies is harder: one needs to perform a univer-
sal (or almost universal) central extension to annihilate second homology, while ensuring 
that the value of scl is preserved along the way.

The following is a general setup in which this construction goes through:

Proposition 7.3 (Heuer–Löh [42, Section 3.3]). Let G be a group of orientation-preserving 
homeomorphisms of the circle, and let G be its total lift to the real line. Suppose that 
G is finitely presented, it admits no unbounded quasimorphisms, and H2

b(G) is one-
dimensional, spanned by the Euler class. Then there exists a central extension E of G
with the following properties:

1. E is finitely presented;
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2. H2(E; R) = 0;
3. scl(E′) = scl(G′) as subset of R.

Remark 7.4. Since G is finitely presented, the hypothesis that it has no unbounded 
quasimorphisms can be replaced by: G has finite abelianization, and the Euler class is 
not exact, i.e. its image in H2(G) is non-trivial. Using again finite presentability and 
the universal coefficient theorem, the latter condition is equivalent to the fact that the 
central extension 1 → Z → G → G → 1 does not virtually split.

In particular this theorem applies to the groups we considered in Theorem 1.6. We 
immediately obtain:

Corollary 7.5. Let G be as in Theorem 1.6. Suppose that G is finitely presented and has 
finite abelianization, and the Euler class is not exact. Then for every g ∈ G

′ there exists 
a 4-manifold M such that ‖M‖ = 48 · scl(g).

Theorem 1.9 is a special case of this corollary:

Proof of Theorem 1.9. Let G = Tτ be the golden ratio Thompson group. We know that 
G is finitely presented (indeed type F∞, by Proposition 6.8) and has finite abelianization 
(from Proposition 6.4). By Lemma 6.7 and Theorem 1.6, we know that H2

b(G) is one-
dimensional and is spanned by the Euler class. Finally, the Euler class is not exact, since 
the central extension 1 → Z → G → G → 1 does not virtually split, by Lemma 6.9; 
thus the conditions of Proposition 7.3 are satisfied (alternatively, one can show that G′

is uniformly perfect, and thus G has no unbounded quasimorphisms [25]).
Moreover, scl(G′) contains all of Z[τ ], where τ =

√
5−1
2 is the small golden ratio 

(Theorem 6.10). Therefore by Proposition 7.3, there exists a 4-manifold M such that 
‖M‖ = 48 · τ , which is algebraic and irrational. Indeed, for each λ ∈ Z[τ ], we obtain a 
4-manifold M such that ‖M‖ = 48 · λ. �

In the same way, we obtain new transcendental values in the spectrum of simplicial 
volume:

Example 7.6. Stein–Thompson groups to which Theorem 1.6 applies (see [27]) produce 
irrational values of stable commutator length in the same way [65]. For example, if 
G = T2,3, then G is finitely presented, has no unbounded quasimorphisms, and there 
exist elements in its lift whose scl equals log(3)log(2) . Then Corollary 7.5 produces a 4-manifold 

such that ‖M‖ = 48 · log(3)
log(2) . This confirms a conditional result of Heuer and Löh [40, 

Corollary A.12].

More generally, Corollary 7.5 provides a way to translate many concrete examples of 
values of scl to values of simplicial volume. We hope that this approach will be useful 
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for showing that the full spectra of scl of finitely presented groups and simplicial volume 
of 4-manifolds coincide. It is conjectured [42, Question 1.1] that both spectra coincide 
with the set of right-computable numbers: this is known to be the full spectrum of scl of 
recursively presented groups [39].
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