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Abstract

In January 2009, Satoshi Nakamoto created Bitcoin [1]. As a new form of
money not issued or controlled by nation states, Bitcoin makes trade-offs
along many axes: survival, decentralization, censorship-resistance,
scalability, privacy, and more. Along each of these axes, over the years,
researchers have asked many questions of Bitcoin and it seems that Bitcoin
should not work in theory. Against all odds though, it seems to be working
in practice - generating a block every 10 minutes.

We believe that answering a small fraction of these research questions
will give some relief to Bitcoin-ers, who believe that Bitcoin will change the
world for the better. We might even nudge honest skeptics towards asking
deeper questions.

Bitcoin claims to offer a censorship-resistant monetary system. In this
thesis, we show that a certain class of transactions are vulnerable to
censorship, but are not actually getting censored. Our work answers why,
and points to an intrinsic relationship between weak miners and Alice’s
(in)ability to incentivize the censorship of Bob’s transaction.

Users can increase their privacy in Bitcoin by swapping their coins with
each other. Coin swapping protocols tend to lock up coins, leading to
opportunity cost. In this thesis, we propose grief-free atomic swaps, which
minimizes this opportunity cost.

The Lightning Network scales Bitcoin as a payment system by having a
network of channels. In this thesis, we propose a new channel structure that
makes the network more robust. Payment channels depend on users being
online to enforce the channel contract on the blockchain in case someone
cheats. Offline users employ a third party, called a watchtower, to monitor
their channels and prevent cheating. Our new lightning channel structure
enables efficient watchtowers by dramatically reducing their storage costs.
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Bitcoin is a closed self-governing system where extrinsic data input is
minimized. Stateful blockchains like Ethereum have smart contracts that
rely on extrinsic data like market price of assets. These are trivially
subjected to attacks by oracles who control the data-source. These can be
mitigated by using an intrinsic source of external data, like an automated
market maker’s price of an asset. In this thesis, we show that such
intrinsic data-sources can be manipulated cheaply leading to bad outcomes
for their users. These kind of attacks highlight Bitcoin’s conservative
culture of minimal, but safer smart contracts - as opposed to rich, but
vulnerable smart contracts in other platforms. Bitcoin, by keeping its
smart contracts free of global state and external data sources, optimizes
for long term survival.



Zusammenfassung

Im Januar 2009 schuf Satoshi Nakamoto den Bitcoin [1]. Als neue Form
von Geld, das nicht von Nationalstaaten ausgegeben oder kontrolliert wird,
muss Bitcoin in vielerlei Hinsicht Kompromisse eingehen: Überleben,
Dezentralisierung, Zensurresistenz, Skalierbarkeit, Datenschutz und mehr.
Auf jeder dieser Ebenen haben Forscher im Laufe der Jahre viele Fragen
zu Bitcoin gestellt, und es scheint, dass Bitcoin in der Theorie nicht
funktionieren sollte. Entgegen aller Erwartungen scheint es jedoch in der
Praxis zu funktionieren - alle 10 Minuten wird ein Block erzeugt.

Wir glauben, dass die Beantwortung eines kleinen Teils dieser
Forschungsfragen den Bitcoin-Anhängern, die glauben, dass Bitcoin die
Welt zum Besseren verändern wird, etwas Erleichterung verschaffen wird.
Vielleicht stoßen wir sogar ehrliche Skeptiker dazu an, tiefergehende
Fragen zu stellen.

Bitcoin behauptet, ein zensurresistentes Geldsystem zu bieten. In dieser
Arbeit zeigen wir, dass eine bestimmte Klasse von Transaktionen anfällig
für Zensur ist, aber nicht tatsächlich zensiert wird. Unsere Arbeit gibt eine
Antwort auf die Frage, warum das so ist, und weist auf eine intrinsische
Beziehung zwischen schwachen Minern und der (Un-)Fähigkeit von Alice
hin, Anreize für die Zensur von Bobs Transaktion zu schaffen.

Nutzer können ihre Privatsphäre in Bitcoin erhöhen, indem sie ihre
Münzen untereinander tauschen. Coin-Swapping-Protokolle neigen dazu,
Coins zu sperren, was zu Opportunitätskosten führt. In dieser Arbeit
schlagen wir einen kummerfreien atomaren Tausch vor, der diese
Opportunitätskosten minimiert.

Das Lightning Network skaliert Bitcoin als Zahlungssystem, indem es
ein Netzwerk von Kanälen hat. In dieser Arbeit schlagen wir eine neue
Kanalstruktur vor, die das Netzwerk robuster macht. Zahlungskanäle
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hängen davon ab, dass die Nutzer online sind, um den Kanalvertrag auf
der Blockchain durchzusetzen, falls jemand betrügt. Offline-Nutzer setzen
eine dritte Partei, einen sogenannten Wachturm, ein, um ihre Kanäle zu
überwachen und Betrug zu verhindern. Unsere neue
Lightning-Channel-Struktur ermöglicht effiziente Wachtürme, indem sie
deren Speicherkosten drastisch reduziert.

Bitcoin ist ein geschlossenes, selbstverwaltendes System, bei dem der
externe Dateninput minimiert ist. Zustandsabhängige Blockchains wie
Ethereum haben intelligente Verträge, die sich auf externe Daten wie
Marktpreise von Vermögenswerten stützen. Diese sind auf triviale Weise
Angriffen durch Orakel ausgesetzt, die die Datenquelle kontrollieren. Diese
Angriffe können durch die Verwendung einer intrinsischen Quelle externer
Daten, wie z. B. dem Preis eines automatisierten Marktmachers für einen
Vermögenswert, entschärft werden. In dieser Arbeit zeigen wir, dass solche
intrinsischen Datenquellen billig manipuliert werden können, was zu
schlechten Ergebnissen für ihre Nutzer führt. Diese Art von Angriffen
unterstreicht die konservative Kultur von Bitcoin mit minimalen, aber
sicheren intelligenten Verträgen - im Gegensatz zu reichhaltigen, aber
angreifbaren intelligenten Verträgen auf anderen Plattformen. Indem
Bitcoin seine Smart Contracts frei von globalen Zuständen und externen
Datenquellen hält, optimiert es sein langfristiges Überleben.
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1
Introduction

“We can’t take it [money] violently out of the hands of government.
All we can do is by some sly, roundabout way introduce something
they can’t stop.”

— Friedrich Hayek

You will not find a solution to political problems in
cryptography.

— Anonymous

[Repling to the above] Yes, but we can win a major battle in the
arms race and gain a new territory of freedom for several years.

— Satoshi Nakamoto

1.1 Bitcoin is Money

Settling value between diverse parties is an age old problem that has seen
many solutions over the years. Over time, settling value also subsumed the
related problem of storing value across time. It also subsumed the other
related problem of broadcasting the perceived value of something to others.
These three can be concisely written as:

1



1.2. CENSORSHIP RESISTANCE 2

• Medium of exchange.

• Store of value.

• Unit of account.

The solution to these problems is often called “Money”. For money to
work, one instance of money cannot be used to pay twice. This is the
famous double spending problem. Money cannot work if it can be created
out of nothing. We will call this the monetary policy problem. Money
cannot work if someone can prevent the settling of value of between others.
This is the censorship resistance problem. Historically, governments have
created their own monies and as such, have complete control over how
money works in their jurisdiction. They use the threat of punishment to
solve the double spending problem. They assure their citizens that their
monetary policy is backed by the full faith and credit of their government.
Government monetary policy also exclude other monies from working
inside their jurisdiction. They also assure their citizens that they will not
censor transactions. These are political promises, and are often broken.

Bitcoin is money that is not issued or controlled by any government. It
solves the problems of double spending, monetary policy, and
censorship-resistance using a combination of cryptography, distributed
systems engineering, and the somewhat complicated notion that people
want such a system and are willing to run software that enforces the rules
of Bitcoin. Users loosely agree on the following social contract: we will run
compatible software to enforce the universal rules of Bitcoin. This is a
bootstrapped social contract from January 2009, and in our research into
Bitcoin, we assume that this social contract works. We also assume the
axiom of resistance[6], which states that it is possible for a system to resist
state control. These assumptions are crucial in understanding why Bitcoin
could work as a money, and in our opinion, these assumptions cannot
really be proven – only time will tell.

This dissertation will instead focus on other problems in the Bitcoin
ecosystem like censorship resistance, privacy, scalability, and the advantages
of Bitcoin’s conservative design from a technical perspective.

1.2 Censorship Resistance

In the world of traditional money, cash transactions are hard to censor.
Governments censor cash transactions by placing barriers to cash
transactions irrespective of their legality. Such barriers commonly include
limits on value of cash transactions, demonetization of entire sets of cash
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bills, limits on how much cash any individual can hold, etc. These large
nets are not precise and tend to catch innocent transactions as well.

Digital transactions, on the other hand, can be censored precisely.
Governments send censorship “orders” to regulated financial intermediaries
like banks, clearing houses, and payment gateways. These intermediaries
reconfigure their software to implement the censorship. Censorship orders
are either specific to certain users or certain types of transactions. Users
are tied to their financial intermediary and the cost of switching
intermediaries is prohibitively expensive, if not impossible. For example, a
user can switch their bank account to a more favorable bank. But if the
user is censored at the government controlled payments gateway, switching
gateways is not an option – as there is typically only one such gateway.
With their legal control over intermediaries, governments can censor
transactions done with traditional money.

Bitcoin transactions are broadcast into the peer to peer network by users,
and are eventually confirmed by being included in a block by some miner.
The peer to peer network of users and miners are spread across the world
in many jurisdictions. A transaction can offer a specific fee denominated in
bitcoin, the currency. This fee (or lack thereof) is the main incentive that
miners have to include a transaction in the next block they are mining. If
the fee is low, the transaction gets ignored by miners. If the fee is high,
the transaction is included in their next block by some miner. Governments
have no easy way to affect this peer to peer network from broadcasting and
confirming transactions.

Even if some miner decides to censor some transactions, the transaction
itself is globally censored only if 50% of all the mining hashpower decides
to censor it. Bitcoin’s double-spending protection also works only if 50% of
the all the mining hashpower decide to not go along with a double-spending
attack. The requirement that more than 50% of the mining hashpower
is not colluding together to accomplish a specific objective is essential to
Bitcoin’s functioning. Crucially, unlike in traditional finance, the user is
not tied to their intermediary – in this case, any single miner. Any miner
willing to pick up a transaction is enough for it to get confirmed eventually
- given that more than 50% of the mining hashpower is ambivalent about
this transaction.

In Chapter 3, we ask whether miners can be financially motivated to
censor transactions. There is a type of Bitcoin smart contract called Hashed
Timelock Contract (HTLC) which binds two parties into spending some
bitcoin in a specific way. A HTLC is justly enforced when only one of the
parties is able to get a followup transaction confirmed. If both parties try
to get their own followup transactions confirmed, we have a race condition
where one party is incentivized to censor the other by outbidding them
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on fees. The HTLC smart contract1 solves this by timelocking one of the
spending arms of the contract and hashlocking the other arm. If the hashlock
arm opens up, it is valid immediately as per Bitcoin’s consensus rules. The
timelocked arm becomes valid when the timelock expires.

We ask if the timelocked arm can bribe miners to censor a valid
hashlocked arm till the timelock runs out. Our result indicates that the
hashlocked arm can offer slightly more fees (as a percentage of the bribe)
than the percentage of hashpower controlled by the weakest known miner,
and can avoid censorship. We also derive the length of the timelock T that
goes along with the ratio of the hashlock arm fees f and the bribe value b.

1.3 Privacy

Bitcoin’s entire set of transactions from genesis to now is publicly available
in the form of its blockchain database. In fact, this set of all transactions is
used to build the current state of the world that is used to verify whether
a new transaction is valid or not. Storing the entire blockchain in public
makes it easy for anyone to analyze transactions to glean information on
who is doing what. With effort, some Bitcoin identities can be mapped to
real world identities. Combined with additional heuristics, entire series of
transactions can be mapped to real world interactions. One popular such
heuristic is called the “common input ownership" heuristic, which assumes
that if a transaction has two inputs A and B, creates two outputs X and Y
such that X > Y , then A, B, and Y are owned by the paying party and X
is sent to the receiving party. This heuristic can be thwarted by payment
constructions like CoinSwap [7], Payjoin [8], and Payswap [9]. A building
block of constructions like Payswap is the Atomic Swap, which allows two
parties to trustlessly swap their UTXO’s with each other.

Classic Atomic Swap protocols lock both users coins for a time period
during the swap execution. This allows one of the parties to possibly “grief”
the other party. Griefing in this context is to make the other party lose
the time value of their money. The guilty party accomplishes griefing by
not going through with the swap to completion, but by bailing out during
some intermediate step. The existence of such griefing attacks reduces the
adoption of atomic swaps and thereby hurts the ecosystem’s privacy. In
fact, the author of the Payswap proposal lists griefing as one of the main
drawbacks of the Payswap proposal.

In Chapter 4, we propose a modification to the classic Atomic Swap
protocol to eliminate griefing. Our Grief-free Atomic Swap protocol
compensates the griefing victim with a premium taken from the offending

1HTLCs are more formally defined in the background section of Chapter 2.
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party. Previous research into this problem had relied on more powerful
smart contract primitives to construct grief-free atomic swaps. Our
construction is simpler, and relies only on Bitcoin’s existing primitives -
without needing additional operators to be added to Bitcoin’s limited
language. This is an important distinction because adding new primitives
to Bitcoin is getting increasingly harder as Bitcoin moves towards
ossification.

1.4 Scalability

With a cap of 1MB on the size of each block, Bitcoin inherently limits
the number of transactions that can fit into a block. The average size
of a transaction is 300 bytes; with a block about every 10 minutes, the
throughput is bounded to about 6 transactions per second. If we are to
imagine a world where Bitcoin is used to pay for coffee, Bitcoin has to settle
far more transactions than it does now. For context, Visa processes 7000
transactions per second.

The Lightning Network is a second layer network on top of Bitcoin
where orders of magnitude more transactions can happen. It is a network
of channels where a channel connects two nodes which run an instance of
the Lightning software. These two nodes share a Bitcoin transaction whose
value they alternate back and forth (like the beads on an abacus rod) using
cryptographic signatures, among other things. This value-reallocation
between two nodes at the ends of a channel can be used to implement
payments between nodes that are connected in a graph of channels. As
every payment is not settled on the Bitcoin blockchain, we get scale.

There is a catch though. In Bitcoin, the recipient of value can be offline
and still be assured that the value settlement will happen. In Lightning, an
offline node can be cheated by its channel counterparty. Channel operators
could employ a paid service, called a watchtower, to be online on their
behalf and monitor against cheating counterparties. The current design
of Lightning channels makes these watchtowers store orders of magnitude
more data than what is ideally required. In Chapter 5, we propose a new
channel design that considerably reduces the storage requirements of these
watchtowers.

1.5 Conservative Design

Unlike other blockchain platforms like Ethereum, Bitcoin does not support
stateful smart contracts. In a stateful smart contract, anyone can interact
with the state of the smart contract to perform allowed operations. An
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example would be a lending smart contract, where anyone can contribute to
a pool of capital that others can borrow from. To ensure that the borrower
repays the loan, the contract forces the borrower to put up another asset as a
collateral whose value is more than the borrowed asset. The smart contract’s
immutable code controls the mechanism of deposits, borrowing, repayment,
and collateralization. Bitcoin does not support such smart contracts as it
has no mechanism to implement stateful systems where anyone can interact
with the state of a contract on a continuous basis. Bitcoin’s existing state
system creates and destroys local state on a per-transaction basis. There
is no automatic way to carry over previous state to the next transaction.
It can be argued that the lack of such powerful state transitions makes
Bitcoin smart contracts rather weak, and not powerful enough to build true
decentralized financial applications like lending, market-making, synthetic
asset creation, and so forth - collectively called DeFi.

On the other hand, such DeFi contracts on platforms like Ethereum are
only useful if they deal with real world assets like traditional currencies,
stocks, bonds, and so forth. To integrate the world of DeFi with
traditional assets, we need oracles who can feed data about these assets
into the smart contracts that make up DeFi. We argue that these Oracles
can be manipulated so that DeFi smart contracts get the wrong impression
about the real world. This manipulation leads to DeFi users suffering
“unfair” losses.

Traditionally, centralized third parties were used to ingest real world
data into smart contracts. To mitigate against the obvious corruptibility of
such centralized oracles, some DeFi contracts use the state data of on-chain
automated market-makers to derive the real world price of assets. This
opens up the attack vector of manipulating the market-maker’s price of an
asset to profit from the dependent smart contract. In Chapter 6, we show
that such market-maker based price feeds can be manipulated at a cheaper
cost than originally thought.

Bitcoin’s design can be modified to carry over state from one
transaction to another through “covenants”. Covenant proposals have not
been adopted in Bitcoin so far in part because of risks that covenant
enabled smart contracts pose to Bitcoin users. Our analysis of such
attacks on DeFi contracts on Ethereum hints that Bitcoin’s prudent
approach to avoiding the entire space of such designs might be better its
for users in the long run.
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1.6 Why improve Bitcoin?

Traditionally, money based payments have involved trusted third parties
like banks and governments. These intermediaries sometimes do not allow
certain kinds of payments, or charge an inordinate amount of fees to process
them. If there are many intermediaries involved in a single payment, as it
often happens in cross-border payments, there is often a delay in payment
settlement. Bitcoin has been settling peer to peer payments since 2009
without such intermediaries. It helps people earn, save, and pay in a form
of money that is not controlled by banks or governments.

We believe that such a system of non-state money ought to exist to
keep banks and governments in check. To that end, this thesis tries to
address certain problems of censorship-resistance, privacy, and scalability in
the Bitcoin ecosystem.



2
Background

The nature of Bitcoin is such that once version 0.1 was released,
the core design was set in stone for the rest of its lifetime.

— Satoshi Nakamoto

2.1 What is Bitcoin?

The word “Bitcoin” is used to represent all of the following:

• A specific computer program.

• A peer to peer network of nodes that run the program.

• The protocol that governs how these nodes operate with each other.

• The numerical value that is transferred through the network based on
the rules of the program. We will use bitcoin with a lower case “b” to
refer to this numeric unit.

Satoshi Nakamoto released the first version [10] of the software in
January 2009, and also ran the software on a computer that he controlled.
He was soon joined by Hal Finney, who ran the same software and

8



2.2. WHAT DOES A BITCOIN NODE DO? 9

connected the software instance running on his computer (his node) to
Nakamoto’s node using a classic TCP/IP network connection. Later, other
users started running the same software and connected to this growing
peer to peer network. Crucially, anyone who has access to a computer and
the internet can run the software and connect to the Bitcoin network.

2.2 What does a Bitcoin node do?

Note that this section will feature definitions where some of the terms used in
the definition are themselves defined later on. Such terms will be italicized.

Like any complex piece of software, a Bitcoin node does a variety of
things. When it starts fresh, it connects to other nodes over the standard
networking stack to download the blockchain to synchronize itself to the
current global state of Bitcoin. The blockchain is the database of every
historical transaction that has happened in Bitcoin since Nakamoto’s famous
first transaction, which contains the headline: “The Times 03/Jan/2009
Chancellor on brink of second bailout for banks”.

A transaction refers to one or more previous transactions, which are
called its inputs. It also has one or more outputs, which are a combination
of some bitcoin value and a spending condition that locks this output. A
transaction is valid if it has special data that shows that the spending
conditions of each input is met and the total sum of output values do not
exceed the total sum of the input values. The base case of such a recursive
definition of transactions is the so called coinbase transaction, which has
no inputs. Its value comes from the protocol, where fresh bitcoins are
minted every block and given to the miner who mines that block. This
amount is called the “block subsidy”. Additionally, the difference in bitcoin
value between the inputs and outputs are also added to the block subsidy
to make up the total block reward that goes to the miner.

The spending condition that locks the output of a transaction is
sometimes called the the scriptPubKey and the special data that satisfies
this spending condition is called the scriptSig/witness. These are both
typically cryptographic in nature. For example, a standard scriptPubKey
is of the type Pay-2-Public-Key (P2PK) and is just a public key. A
transaction that spends a P2PK output has to provide (as witness) a
signature from the corresponding private key. Every transaction has to
provide scriptSigs/witnesses to the corresponding scriptPubKeys of the
inputs. Every transaction can to lock its own outputs with new
scriptPubKeys. scriptPubKeys and scriptSigs are are written in a concise
language called Bitcoin Script that provides basic operations like checking
digital signatures, comparing whether two strings are equal, calculating
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the hash of a string, etc. Outputs can also be locked using timelocks. A
transaction that spends a timelocked output can only be confirmed at
certain times whose rules are defined in the timelock.

A block is a set of transactions that is accepted by every node running
Bitcoin as probabilistically confirmed. To be accepted, a block needs to
have a valid block header and a set of valid transactions that do not conflict
with transactions from previously confirmed blocks. A valid block header
is a tuple whose hash demonstrates valid proof of work. The block header’s
tuple contains a valid timestamp, reference to a previous valid block, the
current difficulty of the proof of work system, and the Merkle root of all
transactions that are included in the block. The blockchain is called as
such because it forms a chain of blocks with the current block referring to
a previous block and so on, all the way to the genesis block. The genesis
block’s data is hardcoded in the Bitcoin software.

A miner is a special node which listens to various unconfirmed
transactions propagating in the network, makes a set of such transactions
that are valid and consistent with a previously confirmed block that they
know about. Together, these give the miner an incomplete block header.
After this, the miner tries to find a nonce (number used only once)
through trial and error which when appended to the incomplete block
header makes the block header’s hash lower than the difficulty parameter.
This trial and error process is typically done on specialized hardware, and
consumes a lot of electricity - and is called mining. The entire process of
mining is just about trying to hash an 80 byte block header such that the
output of the hash function, when treated as an integer, is lower than the
difficulty parameter. This is sometimes called “Proof of Work”.

The difficulty parameter is a number that all nodes can independently
derive based on the previous difficulty parameter and the timestamps of
the previous 2016 blocks. If these previous blocks have been mined faster
(or slower) than the targetted average of 10 minutes per block, the
difficulty parameter in the next block has to go up (or down). This
difficulty parameter is stored in the block header, and if that number
doesn’t follow the rules outlined above, that specific block is rejected by all
nodes in the network. Given two blockchains with conflicting transactions
somewhere along the chain from genesis to the present moment, the chain
with the most accumulated work is considered valid by every node.

The rules that govern whether a block that is newly seen by a node is
valid or not are called the consensus rules of Bitcoin. These rules govern
the timestamp, the difficulty parameter, the size of the block, the validity
of all transactions that are included in the block, and so forth. If a miner
creates an invalid block, all the electricity that they have expended to find
the right nonce is wasted. If other nodes running the Bitcoin software do
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not recognize their block as valid, that block’s coinbase reward bitcoins will
not be respected by those nodes. It is understood that everyone in the
ecosystem, including merchants, users, intermediaries, and whoever cares
about receiving Bitcoin runs a node so that they can verify for themselves
that a transaction paying them was included in a valid block.

Every node processes the blockchain from the genesis block to the current
moment, validating block headers, blocks, and transactions - while building
an internal data structure of the current set of outputs that are not yet
spent. This is Bitcoin’s current state of the world, and is called the Unspent
Transaction Output set, or the UTXO set. Bitcoin is also said to follow
the UTXO model of transactions, where every transactions consumes some
UTXO’s as inputs, and creates new UTXO’s as outputs. The scriptPubKeys
of the spent input UTXO’s do not influence the new scriptPubKeys of the
newly created output UTXO’s. As said in the introduction in Chapter 1,
this lack of “condition continuation” across transactions prevent Bitcoin
from supporting rich stateful smart contracts.

In the UTXO model, every transaction consumes unspent outputs of
previous transactions and creates the next set of unspent outputs for other
transactions to spend.1 An unspent transaction output (UTXO) contains
the coin value in question and a set of locking conditions. Unlocking
conditions will come from the transaction that spends this UTXO. A
UTXO can be locked with various primitives like digital signatures,
timelocks, knowledge of preimages of hashes, basic arithmetic, and such.
The locking conditions and their corresponding unlocking conditions are
evaluated together on the stack, and there is no other external input
available during this evaluation. Not having access to external state data
makes the Bitcoin model stateless. Being stateless in this specific way
makes designing smart contracts harder.

2.3 Bitcoin’s Transaction Notation

In this thesis, we use the transaction/predicate notation for Bitcoin’s UTXO
based transactions from the Cerberus Channels paper [11]. We let o =
(x |P ) to represent a UTXO that holds value x and lists a predicate P
that locks or unlocks this UTXO. Predicate P can be a base predicate (see
list below) or a combination of base predicates with ∨ (OR) or ∧ (AND)
operators. The entire condition that locks a UTXO is called scriptPubKey
in Bitcoin’s transaction format.

1Coinbase transactions are unique transactions that do not have inputs and hence
create new coins.
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• σa: Signature that matches2 the public key A.

• s ∋ h(s) = Hs: The spending transaction needs to provide a preimage
s whose hashed value is Hs.

• ∆k: A timelock of k blocks needs to elapse to unlock the spending
transaction.

A transaction is a mapping from a set of past UTXO’s to a set of future
UTXO’s, and can be represented as:

Ti = [oj , ok, . . .] 7→ [o1
i , o2

i , . . .]

where Ti consumes past UTXO’s oj , ok, . . .. to produce future UTXO’s {o1
i ,

o2
i , . . .}. Predicates that appear on the left side of a transaction unlock the

UTXOs in question, and those that appear on the right side lock the newly
created UTXO’s. An example transaction would look like:

Ti = [(2 |σa), (1 |∆10), (3 |sx)︸ ︷︷ ︸
Tj

] 7→ [(6 |( σb ∧Hsy ))]

Ti is spending 3 UTXO’s by providing a signature σa for A (Alice), waiting
for time ∆10 (10 blocks), and a preimage sx such that the hash h(sx) was
used to lock the 3rd UTXO that Ti is spending. Ti itself creates a new UTXO
that has the coin value of 6, and can be spent by providing a signature for B
(Bob) and a preimage sy such that the hash h(sy) = Hsy . Additionally, the
two spent UTXO’s (1 |∆10), (3 |sx) were created in a previous transaction
Tj . The UTXO creating transaction (in the underbrace) is shown only if
it is relevant to the context. In the above case, the UTXO (2|σa) doesn’t
show a source UTXO under it, and can be assumed that the transaction
from where Alice got her 2 bitcoins doesn’t matter in this setting.

2.4 HTLC

Hashed Timelock Contracts are a simple type of smart contract that use
preimage resistance of cryptographic hash functions, along with timelocks,
to enable an escrow service. Say we have a buyer who has some bitcoin P
and wants to buy some goods/services from a seller. The buyer commits
their bitcoin into a contract which is locked by an OR condition of:

2Bitcoin uses SIGHASH flags to control which part of a transaction is signed by
whom. For simplicity, we assume what is being signed is clear from the context.
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• Preimage to a cryptographic hash. This is the payment path. The
buyer creates a random secret preimage and cryptographically hashes
it to get a digest. This digest is used to lock the payment path. The
buyer will reveal the preimage to the seller once the buyer has
possession of the goods/services. The seller can use this preimage
and their own signature to send the funds to an public key they
control. The exchange of the preimage for the goods/services can be
implemented in a variety of ways, leading to different applications.

• A timelock. This is the refund path. The buyer sets a timelock after
which the funds are refunded back. This path is to ensure that the
funds do not get locked in the contract if the seller aborts.

This transaction (HTLC_TXN) is broadcast and is confirmed on the Bitcoin
blockchain to a sufficient depth to be considered finalized. The seller then
exchanges their goods and services for the preimage of the hash from the
buyer. This exchange process is independent of the transaction itself. Each
application that uses HTLCs has its own way of doing this exchange. For
example, Atomic Swaps rely on a public blockchain to reveal the secret
preimage. After the exchange is done, the seller will attempt to move the
UTXO created in HTLC_TXN’s payment path to a public key that the seller
controls with a simpler unencumbered transaction (SELLER_TXN) that uses
the seller’s signature and the preimage received from the buyer. If the
exchange is not done, the buyer waits for the timelock to expire, and uses
the REFUND_TXN to send the funds back to themselves. These transactions
are shown in Figure 2.1 in the notation described earlier. On the blockchain,
HTLC_TXN can appear by itself, or with one of SELLER_TXN or REFUND_TXN,
but not both.

HTLC_TXN = [(P |σb)] 7→ [(P |(σb ∧∆) ∨ (σs ∧Hs))]
SELLER_TXN = [(P |(σs ∧ s))︸ ︷︷ ︸

HTLC_TXN

] 7→ [(P |σs)]

REFUND_TXN = [(P |(σb ∧∆))︸ ︷︷ ︸
HTLC_TXN

] 7→ [(P |σb)]

Algorithm 2.1: Hashed Timelock Contract
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2.5 Atomic Swaps

Before Bitcoin, there was considerable research on the Fair Exchange
Problem, with its associated impossibility results [12], [13], [14], [15]. Many
of these results came about in the quest to remove the trusted third party
when two parties want to exchange different assets of equal value. Bitcoin
created a different kind of trusted third party. Here, both parties trust the
Bitcoin blockchain as an arbiter for dispute resolution and as a
tamper-proof public bulletin board. Fair Exchange, in the Bitcoin setting,
is known as the Atomic Swap. It were perhaps the first non-trivial smart
contract designed to work on blockchains. Tier Nolan’s classic swap
(TN-swap, from here on) was discussed on the BitcoinTalk forum in 2013
[16]. The TN-swap is not atomic from a transaction perspective. The swap
requires 4 transactions: {2 HTLCs + 2 redeems} or {2 HTLCs + 2
refunds}. The atomicity is from a higher abstraction of the swap of assets
– either the swap goes through, and both parties end up with the assets
they desire, or it does not, and both parties retain their original assets.
These assets could even be on different blockchains, e.g., Bitcoin and
Litecoin. If it were a cross-chain atomic swap, both blockchains must be
compatible with the primitives used in the swap protocol. There are
advanced atomic swap constructions [17] which do not expect both
blockchains to be compatible as long as they both rely on cryptographic
signatures.

In Tier Nolan’s classic swap (TN-swap), Alice locks amount Pa with
a HTLC such that the timelock refunds Pa back to her and the hashlock
sends Pa to Bob. Bob locks amount Pb symmetrically but with a lower
value for the timelock. If one of the parties aborts, the other party can wait
for their timelock to expire and refund their principals back to themselves.
If neither party aborts, the swap completes with both parties redeeming
the principals due to them. The blockchain acts as a public bulletin board
that communicates the secret preimage of the hashlock from Alice to Bob.
Alice’s timelock is always longer than Bob’s to account for Alice’s head start
in the protocol and knowing the preimage of the hashlock, which enables
her to finish her side of the swap first. We use the word refund when a
party’s principal comes back to them after a swap is abandoned, and the
word redeem when a party can complete a swap and get the counterparty’s
principal. The entire set of transactions that make up the TN-swap can be
defined succinctly in our notation as shown in Figure 2.2. Transactions are
referred to as Ti. The set of transactions that make up the successful swap,
and the two failure scenarios are also shown in the same figure.
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T0 = [(Pa|σa)] 7→ [(Pa|(σa ∧∆2) ∨ (σb ∧Hs))]
T1 = [(Pb|σb)] 7→ [(Pb|(σa ∧Hs) ∨ (σb ∧∆1))]
T2 = [(Pb|(σa ∧ s))︸ ︷︷ ︸

T1

] 7→ [(Pb|σa)]

T3 = [(Pa|(σb ∧ s))︸ ︷︷ ︸
T0

] 7→ [(Pa|σb)]

T4 = [(Pb|(σb ∧∆1))︸ ︷︷ ︸
T1

] 7→ [(Pb|σb)]

T5 = [(Pa|(σa ∧∆2))︸ ︷︷ ︸
T1

] 7→ [(Pa|σa)]

Success = {T0, T1, T2, T3}
F ailure1 = {T0, T5}
[Bob aborts before committing Pb. Alice has to wait for
∆2, and gets no compensation]
F ailure2 = {T0, T1, T4}
[Alice aborts before redeeming Pb. Bob has to wait for
∆1, and gets no compensation]

Algorithm 2.2: Tier Nolan Atomic Swap

2.6 Payment Channels and the Lightning Network

To be able to process more Bitcoin transactions, one may increase the
block size and/or decrease the time between two blocks to achieve a higher
throughput. However, these are consensus rule changes, and as such not
easy to implement. Changing these parameters also adversely affect other
security aspects of the Bitcoin network [18].

Another approach is to somehow having most transactions skip the
Bitcoin blockchain itself, but still be confirmed with the same settlement
guarantees as that given by the base blockchain with its proof of work.
Duplex Micropayment Channels [19] and the Lightning Channels [20] are
two such constructions that allow for higher throughput without changing
Bitcoin’s consensus rules. The idea of both these protocols is to handle
most transactions outside the blockchain, in so-called channels. Bitcoin
users would build a network of channels between them, and most
transactions are handled in these channels. The Bitcoin blockchain would
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only be needed to setup and close these channels, and in this meta role, it
handles far less transactions.

The Lightning Network is a peer to peer network of nodes running a
version of the Lightning node software. There are implementations of the
Lightning software from multiple teams of developers and researchers (LND
[21], Eclair [22], Core-Lightning [23], LIT [24]), all implementing the same
specifications [25]. Each peer is connected to other peers through a specific
construct called a payment channel.

A payment channel is opened with a Bitcoin transaction that commits
UTXOs (Unspent Transaction Outputs) controlled by two parties into a
single output that is now controlled by a “multisig” that both parties have
to sign to be able to spend in a future transaction. This is called the opening
transaction (TOPEN). Once the payment channel is opened, the two parties
exchange signed Bitcoin transactions between each other. In these signed
transactions, the total value of TOPEN is allotted to each party depending
on how the parties want value to flow between them. For example, if the
payment channel was opened with 5 BTC from Alice and 10 BTC from Bob,
a subsequent state might split the total 15 BTC of the channel so that Alice
gets 7 BTC and Bob gets 8 BTC. This new split indicates a 2 BTC value
flow from Bob to Alice, possibly for some goods or service that Bob received
from Alice. This new division of TOPEN’s balance is established by Alice and
Bob by exchanging partially signed commitment transactions (CTX’s) with
each other that they can sign themselves and broadcast later. At this point,
the payment channel can also be closed with a closing transaction if both
Alice and Bob agree to it. This is done by signing the multisig UTXO
created by TOPEN and sending 7 BTC to Alice and 8 BTC to Bob. Peer to
peer communication between Alice and Bob are handled by a vanilla TCP
connection.

Typically, a channel is kept open by exchanging further CTX’s that change
the division of the balance between Alice and Bob as more goods and services
go from Alice to Bob or vice versa. Note that at any time, if either party goes
permanently offline, the counterparty can sign and broadcast their latest
CTX to “commit” the latest state of the channel to the blockchain. The
ability to unilaterally close the channel in case the other party goes offline
makes this construction trustless. As a penalty for unilaterally closing the
channel, the broadcasting party is made to wait for a timelock, whereas the
counterparty (the one who might have gone offline) gets to spend their share
of the channel instantly. This setup can be argued to be fair, because if a
party broadcasts their CTX even if the counterparty is online, they get their
share of the balance, but have to wait to spend it. The counterparty does
not have to wait in this case.
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Importantly, a party can try to unilaterally close a channel with a CTX
(say, PREVIOUS_CTX) that is not the latest agreed upon CTX (say,
LATEST_CTX). Every party potentially has many such PREVIOUS_CTX’s in
their storage going back all the way to the channel opening. This allows
the dishonest party to cheat the honest counterparty by picking an old,
more favorable PREVIOUS_CTX from the past and broadcasting it. Lightning
channels handle this cheating possibility by allowing LATEST_CTX to be
exchanged only if they are also accompanied by ways of revoking the
immediate PREVIOUS_CTX. This revocation is handled through a revocation
key that can allot the entire channel balance to the victim’s control. This
gives both parties a strong incentive to be honest. In case Alice tries to
cheat by publishing a PREVIOUS_CTX, Alice does not get her share of the
channel balance immediately because it is timelocked, thereby giving Bob
a time window to penalize this cheating PREVIOUS_CTX. Bob looks up its
corresponding revocation key that he got from Alice earlier, and uses it to
construct the so-called justice transaction (JTX) to penalize this
PREVIOUS_CTX. To be able to detect cheating, Bob has to monitor the
blockchain for all PREVIOUS_CTX so that he can then construct the
corresponding JTX and broadcast it. This is possible only if Bob is online
whenever a new Bitcoin block is mined. If Bob is offline, Alice can cheat
Bob by broadcasting a PREVIOUS_CTX that is more favorable to her than
the current channel balance reflected in the LATEST_CTX.



3
Timelocked Bribing

3.1 Introduction

In traditional finance, transactions are finalized by institutions who give
authoritative statements that certain transactions are final, and users can
take these institutional guarantees as evidence in a court of law if there
are disputes. Similarly, if someone is not allowed to transact on platforms,
that is, they are censored, they can ask redressal from a court of law. If
the censorship is enacted by the government in question, the user has little
recourse.

As an alternative medium of exchange, Bitcoin removes trusted
financial intermediaries and replaces them with a dynamic set of miners.
These miners validate transactions and are paid by the system in the form
of block rewards and also by transaction participants in the form of fees.
The entire set of miners, collectively, have no incentive to censor any
particular transaction. Even if governments wanted to censor some
transactions, there is no easy way to get this message across to all miners.
Any miner including such a transaction in their block is enough to thwart
the censorship. More than 50% of miners have to abandon that block to
effectively censor the transaction. In other words, Bitcoin achieves
censorship resistance if more than 50% miners act rationally.

18
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In this chapter, we look at whether there are some Bitcoin transactions
that rational miners might be incentivized to censor. Rational miners will
always choose higher-fee transactions than lower-fee ones, and this behavior
will get reinforced over time as block rewards decrease to zero [26]. This
setup has often raised ([27] [28] [29]) the possibility of miners being bribed
by transaction participants to favor one participant over the other. Typical
bribing attacks envision the paying party (Alice) cheating the paid party
(Bob) by Alice double-spending the same value in a separate transaction
paying back to Alice. Miners are bribed by Alice to include the double-
spending transaction in the blockchain by forking it and orphaning the block
with the first transaction, thereby cheating Bob of the payment from the
first transaction. These bribery attacks, however, operate at a block level
because, to be cheated, Bob needs to be convinced that the first transaction
is buried in the blockchain by k blocks (in Bitcoin, k = 6). Before this
happens, Bob should ideally not honor the first transaction, but monitor
the public Bitcoin blockchain. If a transaction where Alice double-spends
the same bitcoins back to herself is seen, and Bob’s transaction is abandoned
in an orphaned block, Bob should not honor Alice’s first transaction by not
giving Alice the goods and services that were promised.

As we saw in the background section in Chapter 2, HTLCs are a more
sophisticated type of transaction where Bob does want Alice to pay the
transaction value back to herself, but only after some time has elapsed.
During this time, Bob reserves the option of getting paid himself from the
same payment source. HTLCs are the building blocks for financial
contracts like escrows, payment channels, atomic swaps, etc. The required
time delay is implemented using a blockchain artefact called timelocks. A
rudimentary version of timelocks (nLocktime) was in the first Bitcoin
implementation by Satoshi Nakamoto in 2009 [10]. More sophisticated
timelocks that lock transactions, specific bitcoins, or specific script
execution paths were added later [30] [31] [32]. Bitcoin script allows for
timelocks to be combined with hashlocks in an OR condition to create
Hash Timelocked Transactions (HTLC). As we will see later, HTLCs open
the possibility of transaction level bribing of miners where miners do not
have to orphan mined blocks, but just have to ignore a currently valid
transaction and wait for the timelocked bribe to become valid.
Additionally, in this attack, the bribe is endogenous to the transactions
and does not have to be implemented externally through public bulletin
boards or other third party smart contracts. Bribery attacks that operate
at a transaction level are far more insidious compared to block orphaning
bribery attacks. Block orphaning attacks undermine the native
cryptocurrency’s trust with the larger community and could be
detrimental to the briber’s financial position in general. Transaction level
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bribery, on the other hand, targets specific contracts on the blockchain and
could go unnoticed as the larger cryptocurrency system hums along. This
sort of an attack, where a miner has visibility into the pool of transactions
that are waiting for confirmation (mempool) and can include or not
include a transaction in their mined block is discussed in a more general
setting in [33] under the umbrella term “Miner Extractable Value”.

3.1.1 Bribing Attack
The attack can begin after the HTLC_TXN is confirmed and the buyer
already has the goods/services for which the buyer committed the funds
for. If the buyer acts in good faith and does nothing, there is no attack. If
the buyer acts in bad faith, the buyer will try to censor SELLER_TXN from
being included in any future block. The buyer broadcasts the REFUND_TXN
(which sends the funds back to the buyer) and chains it with a BRIBE_TXN,
which sends the funds from the buyer to any miner who mines it by
leaving the output field empty. Note that in the BRIBE_TXN, the buyer can
send an ϵ amount to themselves. This makes the bribe not just a griefing
attack (where the attacker does not profit), but marginally profitable. Also
note that SELLER_TXN and the pair [REFUND_TXN, BRIBE_TXN] spend the
same UTXO and are inherently incompatible. If one of them is confirmed
on the blockchain, the other becomes invalid. In the rest of this paper, we
will use BRIBE_TXN and the pair [REFUND_TXN, BRIBE_TXN] interchangeably.
Pseudo-code for these transactions are in Figure 3.1.

HTLC_TXN = [(P |σb)] 7→ [(P |(σb ∧∆) ∨ (σs ∧Hs))]
SELLER_TXN = [(P |(σs ∧ s))] 7→ [(P |σs)]
REFUND_TXN = [(P |(σb ∧∆))] 7→ [(P |σb)]
BRIBE_TXN = [(P |σb)] 7→ [(ϵ|σb)]

Algorithm 3.1: HTLC followed by Bribe

Bitcoin’s consensus rules govern what transactions can be included in a
block by miners, but does not say anything about what transactions
miners can or cannot ignore. It gives the benefit of the doubt to miners,
allowing the possibility that miners have not seen a specific transaction
because of network delays/failures. Miners could be (or not be) interested
in a transaction because its fees are high (or low). In our attack scenario,
miners see SELLER_TXN and BRIBE_TXN at the same time. But as per the
consensus rules, miners cannot include BRIBE_TXN immediately because it
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is timelocked. But crucially, there is no obligation to include the
SELLER_TXN immediately either. As blocks go by, BRIBE_TXN becomes valid
and can be included in the blockchain and SELLER_TXN is censored, with
the sale proceeds going to the miners and the buyer, but not to the seller.
The seller could increase their fees to compete with the timelocked bribe,
but that would come out of their own pocket, as they have already handed
out the goods and services to the buyer.

In the following sections, we show how the two main applications of
HTLCs: Lightning Payment Channels and Atomic Swaps, are both
vulnerable to this bribing attack.

3.1.2 Payment Channels
As we saw in the background section in Chapter 2, payment channels [19],
[20] are a promising solution to the scalability problem in Bitcoin. Lightning
Network’s [20] payment channels rely on HTLCs to enforce the revocation
of older commitment transactions (CTX’s). In our attack scenario, Alice and
Bob have a payment channel that they have updated over time using many
(CTX’s). Both Alice and Bob keep their own copy of their CTX’s, where
their copy can be broadcast by them, and will lock their side of the channel
balance with an HTLC and the counterparty’s side with a regular payment.
This means that in the case of a channel closure, the broadcaster has to
wait for his payment, but the counterparty can withdraw funds immediately.
Without loss of generality, we can assume that in one such update (u1), the
entire channel balance was in Bob’s favor, and Alice has zero balance in her
favor. In a subsequent update (u2), Alice delivers some goods/services to
Bob, and after u2, the entire channel balance is in Alice’s favor and Bob has
zero balance on his side of the channel. As a part of the Lightning Protocol,
during u2’s negotiation, Bob gives Alice the preimage (p1) of a hash that
lets her punish him if u1 ever makes it to the blockchain.

The briber (in our case, Bob) broadcasts an outdated CTX u1 (called
Revoked Commitment Transaction in Lightning). This has one output
which is an HTLC. He then follows it up by broadcasting the bribing
transaction: BRIBE_TXN. Note that the BRIBE_TXN is timelocked and should
be invalid till the timelock expires. The victim (Alice in our case), sees u1
on the blockchain, and using her knowledge of the revocation preimage,
sends the corresponding SELLER_TXN (called Breach Remedy Transaction
in Lightning) to the pool of transactions to be included in the blockchain.
At this time, SELLER_TXN should be valid as it has no timelock on it. But
if all miners wait for the BRIBE_TXN’s timelock to expire, and during that
time ignore the SELLER_TXN, the bribing attack is successful. The amount
that goes from the BRIBE_TXN to the miner does not matter to Bob
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because he already has the equivalent goods/services from Alice for that
value. Therefore, he is bribing with what he has already spent.

Lightning Network uses HTLCs to also implement payment hops from,
say, Alice to Bob through Carol - where Alice and Bob do not have a direct
payment channel between each other, but both have a channel to Carol.
HTLCs are used here to ensure that Carol can use her channels to send
funds from Alice to Bob without Carol’s own funds being put at risk. Either
the entire payment goes through from Alice to Bob through Carol (who gets
the routing fees), or the entire payment is aborted, and all parties retain
their own pre-payment balances. Using a series of messages [34], Alice,
Bob, and Carol communicate using an off-chain protocol and negotiate a
series of commitment transactions that each have an additional HTLC that
sends the new payment from Alice to Bob through Carol. These HTLCs
have a different payment specific secret preimage and its associated hash
that locks the hashlock arm of the HTLC. They also have a lower timeout
value (compared to the channel’s timeout value) that refunds this particular
payment back to the source in case any other node along the payment route
aborts the payment. These hops do not affect the bribing attack model:
an outdated CTX can still be broadcast by the briber and the victim has to
respond.

3.1.3 Atomic Swaps
As we saw in the background section in Chapter 2, Atomic Swaps are a
way to exchange cryptocurrencies between two public blockchain systems
(say, between Bitcoin and Litecoin, or between Bitcoin and Bitcoin)
without involving a trusted third party [35], [36]. Here, we describe
TierNolan’s classic Atomic Swap construction [16] based on the HTLCs
used in it. Alice and Bob have their own HTLC_TXN’s in the blockchains
whose assets they have. These HTLC_TXN’s will enable corresponding
SELLER_TXN’s to the other party and REFUND_TXN’s to themselves. Alice
initiates her side of the swap by publishing an HTLC on her blockchain
which has a timelock of 2 · t and hash of a secret preimage that only she
knows. Bob accepts the swap by publishing his own HTLC on his
blockchain with a timelock of 1 · t and the same hash whose preimage he
does not know. Alice then redeems Bob’s HTLC by revealing her secret
through a SELLER_TXN on Bob’s blockchain. Bob’s knowledge of this secret
(by monitoring Bob’s public blockchain) enables Bob to publish his own
SELLER_TXN on Alice’s blockchain, thereby completing the swap.

In the atomic swap described above, Alice can try to censor Bob’s
SELLER_TXN with her own BRIBE_TXN on her blockchain that lets her keep
assets on Bob’s blockchain, and leave most of her bribing profits on her
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own blockchain to miners. This way, Alice only profits if her attack
succeeds, and has no possibility of a loss. Ideally, this should not be
possible because Bob’s SELLER_TXN is valid from the moment he gets to
know of Alice’s secret preimage, and Alice’s BRIBE_TXN is invalid at that
time. But if all miners are made aware of Alice’s BRIBE_TXN, the bribing
attack might succeed.

3.2 Analysis

In this section, we analyze the parameters under which this bribing attack
is successful. As Alice and Bob both have to agree on the HTLC for it to
be valid, they can control these parameters to avoid the attack. The HTLC
parameters are:

• T : denotes the number of blocks needed until the BRIBE_TXN becomes
valid. This is the HTLCs timelock expressed in terms of number of
blocks.

• f : fee offered by Alice to miners to confirm her SELLER_TXN.

• b: bribe offered by Bob to miners to confirm his BRIBE_TXN. Note that
b is not explicitly called out in the transaction because all unclaimed
outputs of a transaction go to the miner who confirms it. Typically,
b > f .

There are parameters of the network that Alice and Bob do not control.
These are the percentages of the total hashpower that identifiable miners
control. Unidentifiable miners are grouped in a catch-all group. Miners are
identified based on their coinbase transaction indicators (see section 3.3.1
for more details). Let there be n miners Mj , 1 ≤ j ≤ n, each with a fraction
pj of the total hashpower.

3.2.1 Assumptions
• Miners are rational and choose the most profitable strategy on what

transactions to include in their blocks while conforming to the
consensus rules of Bitcoin. Their goal is to maximize expected
payoff, and not mine altruistically.

• Miners are also rational in the sense that they will not choose a
dominated strategy when they can choose one that is not. A strategy
s is dominated by strategy s′ if the payoff for playing strategy s is
strictly greater than the payoff for playing s′, independent of other
players’ strategies.
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• Miners do not create forks. If a transaction is included in a valid block,
miners build the blockchain on top of that block.

• Relative hashpowers of miners is common knowledge. Currently,
almost all Bitcoin blocks are mined by mining pools, and almost all
of these blocks have an identifiable signature in the coinbase
transaction that allows them to identify this relative share of
hashpowers.

• Relative hashpowers of miners stay constant over the duration of the
bribing attack.

• The attacker and the victim of the bribery attack have no hashpower
of their own.

• Timelocks are expressed in number of blocks, and we are thus
operating in a setting where block generation is equivalent to clock
ticks.

• Block rewards and fees generated by transactions external to our
setting are constant and have no bearing on the attack itself.

• All miners can see timelocked transactions that are valid in the
future. Currently, the most popular Bitcoin implementation, Bitcoin
Core, does not allow timelocked transactions that are “valid in the
future” to enter its pool. Consequently, it does not forward such
transactions through the peer to peer network. This is not a
consensus rule, but rather an efficiency gain whereby allowing only
valid transactions to enter the pool and propagate across the peer to
peer network reduces network and memory load. We assume that
SELLER_TXN and BRIBE_TXN are visible to all miners immediately
after they are broadcast by their respective parties. Also, some
mining pools run “transaction accelerator” services where they
cooperate with other mining pools to get visibility to transactions
that pay an extra fee (on top of the blockchain fee). We assume that
malicious buyers have access to such services.

3.2.2 Setting
We analyze this attack by modeling the sequence of blocks being mined as
a (Markov) game, called the bribing game. A bribing game has n miners,
and runs in T + 1 sequential stages. Stages represent periods between two
mined blocks. In each stage, every miner has two possible actions: follow or
refuse (corresponding to a miner excluding the SELLER_TXN from the miner’s
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block template or not). After all miners play their action, a single miner is
randomly selected as the leader of the stage. In other words, after all the
miners have decided on their block template, a single miner wins the proof
of work lottery and this miner’s block extends the blockchain.

Let B1, B2, . . . , BT be all the blocks that can include SELLER_TXN. Let
BT +1 be the block that includes BRIBE_TXN. Note that BRIBE_TXN cannot
be included in B1, B2, . . . , BT as its timelock makes it invalid during those
times. Let Ei,j denote the event that miner j is selected as the leader of
stage i. The events Ei,j are independent of each other and the actions taken
by miners. Ei,j represents block Bi being mined by miner Mj . In addition,
the selection probability of miner j for block i is given by:

∀i, j P r(Ei,j) = pj ,

which corresponds to the hashpower of miner Mj . Each stage is in either of
two states: active or inactive. The game starts in an active stage (i.e., the
first stage is active). Stage i (i > 1) becomes inactive if the leader of stage
i − 1 plays the action refuse (corresponds to including SELLER_TXN), or if
stage i− 1 is already inactive. Therefore, if one stage becomes inactive, all
the following stages become inactive. This intuitively makes sense because
once SELLER_TXN is confirmed, it stays confirmed in subsequent blocks and
more importantly, BRIBE_TXN is invalid after that. The payoffs for each
stage i are determined by whether 1 ≤ i ≤ T or if i = T + 1.

• 1 ≤ i ≤ T : If the leader plays refuse, the payoff is f > 0. If the leader
plays follow, the payoff is 0. Non-leaders’ payoff is always 0.

• i = T + 1: Leader’s payoff is b > 0. Non-Leaders’ payoff is 0.
Let us call a miner Mj strong if pj ≥ f

b
; otherwise we call Mj weak. Note

that the bribing attack is successful if all miners follow the bribe (i.e., they
always ignore SELLER_TXN). This corresponds to the strategy profile in which
all miners play the action follow in all stages. Without loss of generality,
there are two possible distributions of hashpowers among miners:

• All miners are strong; i.e., pj ≥ f
b

for 1 ≤ j ≤ n.

• At least one miner is weak; i.e, ∃pj s.t. pj < f
b

for 1 ≤ j ≤ n.

In the next sections, we analyze both of these distributions.

3.2.3 All miners are strong
Lemma 3.2. If all miners are strong (i.e., pj ≥ f

b
for 1 ≤ j ≤ n), then

the strategy profile in which every miner plays follow in all stages is an
equilibrium.
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Proof. Consider Miner j (Mj), and assume that all other miners follow the
bribe in all stages. We show that following the bribe in all stages is the
best response for Mj as well. If Mj follows the bribe in all stages, they
will earn pj · b in expectation. This is because, when all miners play follow
in all stages, stage T + 1 will be active, and its leader, which is Mj with
probability pj , earns b.

If Mj plays refuse with non-zero probability in at least one stage. Let
x > 0 be the probability that stage T + 1 becomes inactive as the result of
Mj ’s actions. In other words, x is the probability that Mj plays refuse in a
Stage 1 ≤ i ≤ T in which they are selected as the leader. Note that other
miners cannot make stage T +1 inactive as they always play follow and only
Mj is including SELLER_TXN in their block template. The expected payoff of
Mj is, therefore, x · f + (1− x) · pj · b, which is not more than pj · b, because
pj ≥ f

b
and x > 0.

Note that when all miners are strong, the equilibrium shown in
Lemma 3.2 (which favours bribery) exists no matter how large T is. As of
this writing, the average fees for Bitcoin transactions since the beginning
of 2019 is around 0.00003 BTC (author’s own analysis of the Bitcoin
blockchain). The average balance held by a lightning channel is 0.026 BTC
[37]. If we use these values, we get the equilibrium stated in Lemma 3.2
exists if each miner has over 0.115% of the total hash power of the entire
Bitcoin network. Due to the permissionless and anonymous nature of
Bitcoin, however, we can never be sure that the weakest miner has a hash
power above 0.115% of the total hash power. However, we can inspect the
Bitcoin blockchain to guesstimate the distribution of hashpowers among
known mining pools, and recommend channel parameters based on that.
We treat this in more detail in section 3.3. Next, we consider the case
where at least one miner is weak. We show that, in this case, the value of
T matters.

3.2.4 One miner is weak
Recall that when a stage becomes inactive, all its followup stages become
inactive as well. Moreover, all miners receive zero payoff in an inactive
stage, irrespective of what they play. Note that, for every miner (weak or
strong), playing follow at state T + 1 is the strictly dominant strategy if
stage T + 1 is active. This is because the expected payoff of a miner in an
active stage T + 1 is pjb if they play follow, and pjf (which is smaller than
pjb) if they play refuse. In the next lemma, we show that in active stages
other than stage T + 1, playing refuse is the strictly dominant strategy for
weak miners.
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Lemma 3.3. In any active stage i, 1 ≤ i ≤ T , playing refuse is the strictly
dominant strategy for any weak miner.

Proof. A miner earns b if stage T + 1 is active and this miner is selected as
the leader of stage T + 1. Therefore, the probability that a Miner j (Mj)
earns b is at most pj . From the definition of weakness, for Mj , we have
pj · b < f . So, if stage T + 1 is active, the weak miner gets an expected
payoff less than f . Additionally, in stages < T , the probability that a miner
earns f is strictly less than one, because, no matter how large T is, there
is always a non-zero chance that the miner never gets selected as a leader.
Therefore, across all stages up to and including stage T + 1, the expected
payoff of a weak miner is always strictly less than f .

Assume Mj is weak (i.e., pj < f
b
), and plays follow in an active stage i,

1 ≤ i ≤ T . We now show that playing refuse in stage i will improve her
payoff. Suppose Mj plays refuse instead of follow in the active stage i. If
Mj is not selected as the leader of stage i, then the game remains the same
as the case where Mj played follow. If Mj is selected as the leader, however,
they will earn f . This is an improvement over the expected payoff of Mj

from the previous paragraph, which is strictly less than f .

3.2.5 The elimination of dominated strategies
By Lemma 3.3, playing refuse is the strictly dominant strategy for every
weak miner; any other strategy is strictly dominated. Hence, we can
simplify the analysis of the bribing game by eliminating strictly dominated
strategies. Let us call a bribing game safe if after eliminating strictly
dominated strategies, the only action left for each miner (strong or weak)
in stage one is to play refuse. If every miner plays refuse in stage one, the
game is effectively over as other stages become inactive immediately after,
with SELLER_TXN confirmed and BRIBE_TXN becoming invalid.

Recollect that, if all the miners are strong, the bribing game is not safe
no matter how large T is (Lemma 3.2). By the next theorem, however, the
game is safe if there is at least one weak miner, and T is large enough.

Theorem 3.4. Suppose there is at least one weak miner, and

T >
log f

b

log(1− pw) (3.1)

where pw is the sum of the selection probabilities of weak miners. Then, the
bribing game is safe.
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Proof. By Lemma 3.3, playing refuse is the strictly dominant strategy for
every weak miner in each stage i, 1 ≤ i ≤ T . By eliminating the dominated
strategies of weak miners, we get a smaller game in which weak miners play
refuse in every stage i, 1 ≤ i ≤ T .

Consider a strong miner M , who plays follow in stage 1. Their reward
for playing follow is only possible at stage T + 1. Let α be the probability
that stage T + 1 will be active. Since weak miners only play refuse in the
first T stages, we get

α ≤ (1− pw)T

≤ (1− pw)
log f

b
log(1−pw)

≤ f

b(1− pw)

where (1−pw)T is the probability that no weak miner is selected as a leader
in the first T stages. Thus, the expected payoff of M at stage T + 1 is less
than

f

b(1− pw) · (1− pw).b = f

where f
b(1−pw) is an upper bound on the probability that stage T + 1 is

active, and (1−pw) is an upper bound on the probability that M is selected
as the leader of stage T + 1. Note that the probability that M earns f
prior to stage T + 1 is strictly less than one. Therefore, at the beginning of
stage 1, the expected payoff of M is strictly less than f . Now, if M plays
refuse (instead of follow) in the first stage, we will have two possibilities.
First possibility is that M is selected as the leader of stage 1, in which case
M earns f , which is strictly more than its expected payoff. In the second
possibility where M is not selected as the leader of stage 1, the game remains
identical to the original case where M plays follow. This implies that M is
better off playing refuse in the first stage, which concludes the proof. We
remark that this result does not imply that M is better off playing refuse
in every stage. In fact, as the game proceeds to new stages, the expected
payoff of M can change, and M may choose to play follow.

3.2.6 The elimination of dominated strategies of strong
miners

A bribing game with parameters f and b may be safe for a significantly
smaller T than what is given in Theorem 3.1. In its proof, we eliminated
only strictly dominated strategies of weak miners. In principle, we can
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continue the process by eliminating strictly dominated strategies of strong
miners as well. To do so, we can first sort the strong miners according
to their selection probabilities. Starting with the strong miner with the
smallest selection probability, and an upper bound of T from Theorem 3.1,
we can calculate the minimum number of initial stages in which the miner is
strictly better off playing refuse. We then eliminate the strictly dominated
strategies of that miner, and move to the next strong miner. At the end of
this iterated elimination process, if all miners play refuse in the first stage,
then the game is proven to be safe. As we iterate from time period 0 to time
period T , the value of t where all miners play refuse for the last time shows
us that if we had begun the game at this point, the game would have been
safe in the first stage itself. This new starting point of the game results in
the new ending point being at Tnew = Told − t. In this new setting, the
game is safe in the first stage.

The FIND_T procedure receives as input a list of mining hashpowers
(leader selection probabilities), and the values of parameters f and b. As
output, it returns the lowest value of T such that all miners refuse the
bribe in the first stage of the game. It uses the inner procedure
CALCULATE_BRIBERY_MATRIX to determine the behavior of more strong
miners at each block when less strong miners’ strategies get dominated.
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1: procedure CALCULATE_BRIBERY_MATRIX(P, f, b, T )
2: B← [][] ▷ Bribery Matrix where B[j][i] represents whether minerj

follows the bribe at blocki

3: for j ← 0 to length(P) do
4: if P[j] < f/b then
5: B[j]← [1, 1, ...1]︸ ︷︷ ︸

T

6: else
7: B[j]← [0, 0, ...0]︸ ︷︷ ︸

T

8: for tx ← 1 to T do
9: Ph ← 1

10: for ty ← 1 to tx do
11: sum← 0
12: for k ← 0 to j do
13: sum← sum + B[k][ty] · P[k]
14: end for
15: Ph ← Ph ∗ (1− sum)
16: end for
17: expected_bribe = Ph ∗ P[j] ∗ b
18: if f > expected_bribe then
19: B[j][tx] = 1
20: end if
21: end for
22: end if
23: end for
24: return B
25: end procedure

26: procedure FIND_T(P, f, b) ▷ P is the array of miners’ hashpowers
27: assert(at least 1 value in P > f/b)
28: P = sorted(P) ▷ Ascending
29: T = ⌈ log f

b
log(1−pw)⌉ ▷ From Theorem 3.4

30: B = CALCULATE_BRIBERY_MATRIX(P, f, b, T )
31: for i← 1 to T do
32: for j ← 0 to length(P) do
33: if B[j][i] == 0 then
34: return T − (i− 1)
35: end if
36: end for
37: end for
38: return T
39: end procedure

Algorithm 3.5: Iterated Removal of Dominated Strategies
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Example (Table 3.6): Let’s take the case of 4 miners with
hashpower shares P = [0.1, 0.2, 0.3, 0.4], f = 11, b = 100. Applying
Theorem 3.4, we get an upper bound of T to be 21. Running the
procedure CALCULATE_BRIBERY_MATRIX returns the matrix shown in Table
3.6, with “1” standing for refuse and “0” standing for follow. Note that
this matrix shows the conservative scenario of T=21 blocks (as given by
Theorem 3.4. The aim of this algorithm is to find a more aggressive
(lower) value of T which we get if we eliminate dominated strategies of
strong miners. We now go through the actions of each miner.

Table 3.6: Bribery Matrix, Worked Example

Blocks 0.1 0.2 0.3 0.4
Block #1 1 1 1 1
Block #2 1 1 1 1
Block #3 1 1 1 1
Block #4 1 1 1 1
Block #5 1 1 1 1
Block #6 1 1 1 1
Block #7 1 1 1 1
Block #8 1 1 1 1
Block #9 1 1 1 1
Block #10 1 1 1 1
Block #11 1 1 1 1
Block #12 1 1 1 1
Block #13 1 1 1 1
Block #14 1 1 1 1
Block #15 1 1 1 1
Block #16 1 1 0 0
Block #17 1 0 0 0
Block #18 1 0 0 0
Block #19 1 0 0 0
Block #20 1 0 0 0
Block #21 1 0 0 0

The miner with hashpower 0.1 (p0) will play refuse at every block because
we have T >

log f
b

log(1−pw) . The miner with hashpower 0.2 (p1) will play refuse
as long as the expected bribe (payable at T + 1) calculated at a particular
block is lower than the fees that they would earn if they mine that block. In
this case, (1−pw)t ·p1 ·b < f till t = 6 for values of f = 11, b = 100, pw = 0.1.
This means that p1 will start playing follow as we get closer to t = T
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(specifically when we are 5 blocks away from T ). The miner with hashpower
0.3 (p3) will play refuse along similar lines, by looking at the actions of
miners p0 and p1 over the different blocks. One thing to notice is that
at block #16, p2 will act assuming that p0 and p1 will both play refuse.
At block #17, p2 will act assuming that p0 will play refuse and p1 will
play follow. This is implemented in the algorithm by using the 0’s and
1’s in the bribery matrix and using them as factors in line #13 of the
CALCULATE_BRIBERY_MATRIX procedure. This way, on line #13, we only use
miners who play refuse at each block to calculate the expected bribe.

Tnew is lower than T , and now, with just one weak miner, and elimination
of dominated strategies of all miners, the game is safe for lower values of
T . This lower value of T makes the usage of HTLCs more practical and
convenient. In the real world, we can give a 5-6 block cushion on top of this,
and it will still be significantly lower than the upper bound of T .

3.3 Solutions

In the introduction, we pointed out that the two main applications of
HTLCs: Lightning Channels and Atomic Swaps, are both vulnerable to
this bribing attack. In this section, we first analyze the Bitcoin blockchain
to get an estimate of the hashpower share of known mining pools. This
lets us find parameters that can harden the HTLC constructions in each of
these applications such that they are not vulnerable to the bribing attack.
In the case of Atomic Swaps, to use these parameters, we propose a
modification to the classic atomic swap protocol.

3.3.1 Mining Pools and their Hashpower Shares
We try to find the weakest known miners in the Bitcoin ecosystem by
analyzing the miners of the 16000 blocks from Block #625000. We know
the coinbase transaction indicators of larger mining pools. Using these, we
can attribute mined blocks to known mining pools. Looking at these
blocks, we can estimate each of these mining pools’ share of the total
hashpower based on how many blocks they have mined. Mining pools and
their hashpower shares are shown in Table 3.7. We see that the weakest
known pools are under 1% of the total hashpower, and this leads to our
proposed fixes for both Lightning Channels and Atomic Swaps.

3.3.2 Lightning
In the Lightning Network specifications (specifically, from Bolt 2 [38]), we
have the following parameters:
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Table 3.7: Hashpower of 16000 blocks from block #625000

Mining Pool Hashpower Mining Pool Hashpower
F2Pool 15.7937% BTCTOP 2.6313%
PoolIn 15.5563% NovaBlock 0.9500%
BTC.com 12.2688% SpiderPool 0.6125%
AntPool 12.1625% Bitcoin.com 0.1938%
Huobi 6.5875% UkrPool 0.0938%
58COIN 6.3000% SigmaPool 0.0750%
ViaBTC 5.7875% OkKong 0.0688%
OKEX 5.6437% NCKPool 0.0625%
Unknown 4.0687% MiningCity 0.0500%
SlushPool 3.8188% KanoPool 0.0250%
Lubian.com 3.6938% MiningDutch 0.0187%
Binance 3.5375%

• channel_reserve_satoshis: Each side of a channel maintains this
reserve so it always has something to lose if it were to try to
broadcast an old, revoked commitment transaction. Currently, this is
recommended to be 1% of the total value of the channel. This is the
amount that the cheated party can utilize as extra fees without
dipping into their own side of the channel.

• to_self_delay: This is the number of blocks that the counterparty’s
self outputs must be delayed in case a channel closes unilaterally from
the counterparty’s side. In one popular Lightning client: c-lightning
[23], this is set by default to 144 blocks (approximately 1 day). In
another popular Lightning client: LND [21], it is scaled in a range
from 1 day to 14 days based on the channel value.

We do not find any documented reasons on why these important parameters
are set the way they are. Based on the analysis from Sections 3.2.4 and 3.2.5,
and the distribution of hashpowers, we can formulate what these values
ought to be. First, we note that channel_reserve_satoshis on the victim’s
side of this bribing attack can be used by the victim to increase their fees
to thwart the attack. We posit that channel_reserve_satoshis being at 1%
is reasonable, given that there are many known miners whose hashpower is
less than 1% of the total hashpower of all miners. If it were lower than, say,
0.03%, as per Section 3.2.3, the channel would be always vulnerable to this
bribing attack.

We then set f
b

to be 0.01, and calculate the total weak hashpower to be
0.0215 (from Table 3.7). Based on Theorem 3.4, we get T > 212 blocks.
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This is larger than the suggested default of to_self_delay at 144 blocks.
So, if the channel operator is paranoid, they can set to_self_delay to this
higher value of 212. We can plug in the hashpowers from Table 3.7 into
Algorithm 3.5, with f = 1 and b = 100 and we get a value of T = 54
blocks. If the channel operator is #reckless and believes that miners
eliminate strictly dominated strategies of other miners (a stronger
assumption than just assuming that weak miners exist), they can open
channels with this much lower timelock value. Note that these values do
not actually impact the usage of the Lightning Network, but are merely
security parameters that ensure that both parties are adequately protected
in case the other party decides to bribe miners.

3.3.3 Atomic Swaps
Atomic Swaps (as described in 2) that have Bitcoin on one side need to
take Bitcoin’s block time of 10 minutes into account. Even if the other
blockchain in question (say Litecoin) has faster block generation, till
Bitcoin’s transactions are not confirmed, the atomic swap in question
cannot be considered executed. Commercial platforms like Komodo [39]
use 15,600 seconds (26 blocks) as the HTLCs timelock value when they
setup swaps between Bitcoin-like currencies or ERC-20 style tokens. Other
works [36], [40], [41] have suggested that a timelock period of 1 day (144
blocks) is a good default.

Based on Theorem 3.4, we get f
b

= 0.68 at T = 26 blocks and f
b

= 0.122
at T = 144 blocks. A fee to bribe ratio of 0.68 (for T = 26 blocks) is quite
high. This suggests that T = 26 blocks does not provide enough security for
reasonable values of fee to bribe ratios. At 144 blocks, we have a reasonable
fee to bribe ratio of 0.122.

Unlike Lightning channel’s channel_reserve_satoshis, due to its
inherently asymmetric nature, there is no simple way to encode this extra
fee in the atomic swap itself. Alice has to convince Bob upfront that she
will not attempt the bribing attack when it is Bob’s turn to redeem his
side of the swap. One way of achieving this is for Bob to offer a lower
value than what Alice wants. This way, if Alice attempts the bribery
attack, Bob can increase his SELLER_TXN fees to the amount dictated by
Theorem 3.4 or Algorithm 3.5. But if Alice does not attempt to bribe, this
atomic swap setup is unfair to her as she is getting a lower value from Bob
than what she is offering to Bob.

To solve this, we present an extension to the classic Tier Nolan Atomic
Swap protocol that allows a way for Alice to include extra fees in the swap
for Bob to use to “counter-bribe” only if Alice attempts to bribe.
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3.3.4 Risk Free Atomic Swaps
Here, as with the classic Tier Nolan swap, Alice creates a (random) secret
preimage and hashes it to get her “locking string”. Alice creates a
transaction (ALICE_TX1) that commits her swap amount such that Bob can
claim this amount only if he knows the preimage. The “refund” part of
this transaction, instead of sending the amount back to Alice after a
timelock, sends it to a multisig controlled by both Alice and Bob. Alice
also creates a second transaction (ALICE_TX2) that uses this multisig
controlled output as its first input, and another unrelated input from Alice
which adds the extra fees required to make the swap risk-free. The total
output of this second transaction is sent to Bob only if he has the secret
preimage, or to Alice after a timelock. This pair of transactions is created
by Alice; the second transaction is pre-signed by Bob and needs to be held
by Alice before she broadcasts the first transaction.

ALICE_TX1 = [(P |σa)] 7→ [(P |(σa ∧ σb) ∨ (σb ∧Hs))]
ALICE_TX2 = [(f |σa), (P |(σa ∧ σb))︸ ︷︷ ︸

ALICE_TX1

] 7→

[((f + P )|((σb ∧Hs) ∨ (σa ∧∆))]
ALICE_BRIBE_TX = [(f + P )|(σa ∧∆)︸ ︷︷ ︸

ALICE_TX2

)] 7→ [(f + P )|∅]

ALICE_REFUND_TX = [(f + P )|(σa ∧∆)︸ ︷︷ ︸
ALICE_TX2

)] 7→ [(f + P )|σa]

BOB_SWAP_TX = [P |(σb ∧ s)︸ ︷︷ ︸
ALICE_TX1

)] 7→ [P |σb]

BOB_COUNTER_BRIBE_TX = [(f + P )|(σb ∧ s)︸ ︷︷ ︸
ALICE_TX2

)] 7→ [P |σb]

Algorithm 3.8: Risk Free Atomic Swaps

Based on whether Alice or Bob abort the swap, or Alice bribes miners, or
Alice and Bob complete a normal swap, a combination of these transactions
will be broadcast on the both blockchains by Alice and/or Bob as depicted
by the flow chart.

Note that the second blockchain transactions are unchanged from the
classic Atomic Swap protocol. This is because, unlike Lightning channels,
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in an Atomic Swap, only the swap initiator (in this case, Alice) can attempt
to cheat by bribing the first blockchain’s miners after she claims her side of
the swap on the second blockchain. So, the modification to the classic swap
that brings in the “counter bribe fees” is done only on Alice’s side of the
swap as shown above with the intermediate multisig.
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Alice prepares ALICE_TX1 and ALICE_TX2;
Alice gets ALICE_TX2 presigned by Bob

Alice broadcasts
ALICE_TX1

Bob
aborts?

Alice broadcasts ALICE_TX2
and ALICE_REFUND_TX

Bob
broadcasts

“init”

Alice
aborts?

Bob
broadcasts
“refund”

Alice
broadcasts

“reveal”

Alice
bribes?

Alice broadcasts ALICE_TX2
and ALICE_BRIBE_TX

Bob broadcasts
BOB_COUNTER_BRIBE_TX

Bob broadcasts
BOB_SWAP_TX

Yes

No

Yes

No

Yes

No

Algorithm 3.9: Risk Free Atomic Swap; red = first blockchain; blue =
second blockchain;
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3.4 Related Work

There are two major strands of censorship attacks in blockchains. Ignore
attacks (that incentivize miners to ignore certain transactions) and fork
attacks (that incentivize miners to orphan blocks with certain transactions
by forking the blockchain).

3.4.1 Ignore Attacks
Ignore Attacks are presented in [42], [43], and [44]. In [42], smart contracts
in a “funding blockchain” are used to censor transactions in a “target
blockchain”. Funding blockchains need to support powerful smart contract
primitives to be able to program these attacks – typically Ethereum is
used. Two such attack smart contracts presented in [42] are Pay-per-Miner
and Pay-per-Block. In Pay-per-Miner, every miner gets a bribe at the end
of the bribing period if the bribing attack succeeds, even if the miner
followed the bribe or not. A weak miner could refuse the bribe, and
attempt to mine with the SELLER_TXN, but not succeed in mining a block.
This miner would still be eligible for the bribe at the end. This contract
does not consider a weak miner’s lower probability of mining the final
block with the bribe and hence, overpays. In Pay-Per-Block, every miner is
paid incrementally per block during the bribing period. This attack also
bribes weak miners who go against the bribe, and thus have a higher
expected reward at the end of the bribing period. Both these attacks
would get better if miners could cryptographically prove to the smart
contract that they are following the bribe.

Concurrent to our work, a similar timelocked bribing attack is
presented in [44]. They consider the situation where all miners are strong
(i.e., pj ≥ f

b
for all miners 1 ≤ j ≤ n), and like us, they conclude that the

bribing attack will be successful and is independent of the bribing period
T . To alleviate this situation where all miners are strong and bribing
attacks could happen, they propose a modified construction of the HTLC
called MAD-HTLC (Mutually Assured Destruction HTLC). MAD-HTLC
adds a second transaction chained to the HTLC with a collateral from the
bribing counterparty to ensure that they have something to lose if they
attempt to bribe. However, [44] does not consider weak miners, or
elimination of dominated strategies - which we show lead to HTLC
parameters that can be adjusted to safeguard against this bribing attack
with any distribution of miner hashpowers and values of f and b. Our
approach also doesn’t need a modification to the HTLC construction and
the associated collateral and extra transaction costs.
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Transaction Pinning [45] tries to make a transaction inherently
unprofitable to mine, independent of any future bribe. The attacker, who
can validly spend one of the target transaction’s outputs broadcasts
multiple low fee-rate transactions that spends their path of the target
transaction. This makes the entire transaction package unprofitable to
mine, thereby censoring the first transaction, which the victim can spend
through another path. To remedy this, the victim can use CPFP
carve-outs [46] to bump up the fee-rate of the censored transaction and
still get it confirmed by a miner. To enable this, Lightning Channels will
allow “anchor outputs” [47] to let either party bump up their fees without
being blocked by the counterparty.

These types of Ignore Attacks rely on being able to setup and
communicate incentives (in the present, or in the future) to miners such
that the most profitable strategy for each miner is to wait for the
incentive. Whether these incentives succeed or not, depends on the current
value available to miners, the future value promised to miners, and the
ability of miners to be able to extract these values. Unlike previous
research, our work takes into account all these parameters.

3.4.2 Fork Attacks
Fork Attacks go back a long way, with the earliest one discussed on
bitcointalk.org being feather forking [27]. In this attack, a miner wants to
censor a specific transaction and announces on some public bulletin board
that they will not add blocks on top of any block that contains this specific
transaction. If this miner has a reasonable chance of getting a block, other
rational miners will follow them instead of mining “normally” and hence
forgo the fees of the censored transaction. In the original feather forking
post, if a miner with hashpower α commits to feather forking, and average
block rewards are R (including both block subsidy and other transaction
fees), the censored transaction has to pay the fees of α2 · R to make itself
attractive to other miners. In our model, we have assumed that targeted
forking, where miners do not mine on top of “tainted blocks”, does not
happen. If we relax this assumption, stronger miners can now fork the
blockchain to abandon any block containing SELLER_TXN, and is
presumably mined by a weak miner. This way, the blockchain can fork all
the way up to T blocks, with the weak miner mining a block Bi with
SELLER_TXN and the strong miner orphaning that block and forking from
Bi−1. By the time T is reached, T (1 + pw) blocks would have been
generated, T blocks added to the blockchain and pw · T blocks being
orphaned. This decrease in block production rate causes the Bitcoin
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network to lower its mining difficulty, which does not hurt strong miners
[48].

In the proof of Lemma 3.3, we had argued that a weak miner refusing
the bribe leads to a higher payoff of than following the bribe. This rests
on the assumption that the successful weak miner gets to keep the block
reward R and the fees f . This is not true with feather forking. Even if
the weak miner successfully mines a block after refusing the bribe, they risk
being forked out, thereby losing f ; but more importantly, also the block
reward R (typically, R >> f). If weak miners become rational and do not
mine a block with SELLER_TXN, feather forking will result in censorship, as
concluded in the feather forking post on Bitcointalk. If b >> R, the block
at T + 1 will be contested by strong miners, leading to more forks and
orphans. The feather forking post suggests a reward distribution strategy
between miners to avoid this contention. Feather forking still remains an
open research question about censorship resistance.

Miners can be also incentivized to fork the Bitcoin blockchain with
“Whale Transactions” [28]. Here, the attacker waits for a target
transaction to be confirmed to a sufficient depth to get the corresponding
goods and services from their victim. After that, the attacker tries to fork
the blockchain by successively broadcasting transactions that have high
fees (whale transactions) and also reverse the target transaction. These
whale transactions are then included in blocks of the blockchain fork that
rational miners might follow. The authors evaluate the relationship
between confirmation depth, the attacker’s secret mining lead, the
attacker’s hashpower, the whale transaction fees and whether these attacks
are profitable. External smart contracts on platforms like Ethereum can
be used ([29], [43]) to incentivize Bitcoin miners to abandon the honest
blockchain suffix and mine on top of a briber’s fork. In [43], the attacker
chooses the set of transactions to be mined for each block, and hands it
out to miners through the smart contract. This is similar to how mining
pools operate. Miners get rewarded in the “funding cryptocurrency”
(Ether, in this case). Incentivizing every Bitcoin miner with Ether given
the relative size of the two systems seems far fetched to us.

Fork Attacks rely on attackers being able to incentivize rational miners
to orphan a reasonable length suffix of the blockchain. In case of feather
forking, the attacking miner has to make the attack common knowledge
among all miners using external means. With whale transactions, the
transaction itself makes the attack common knowledge. Despite their
theoretical possibility, these attacks have not been seen in reality as
evidenced by Bitcoin having fewer and fewer orphan blocks over time [49].
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3.5 Conclusion

In this chapter, we observe that HTLCs are vulnerable to an “in-band”
bribing attack where the HTLC initiator (buyer, in our case) can receive
goods and services offline and then prevent the seller from getting their due
share by bribing miners. This bribe can only work if the “time value” of
waiting for the bribe is worthwhile for all miners. A rather self-evident
observation is that when the timelock on the bribe expires and the bribe
transaction is still valid, it will be claimed in the immediate next block as the
fee on it is considerably higher than normal transaction fees. Additionally,
stronger miners are likely to mine any specific block - and therefore more
likely to mine the block in which the bribe is valid and available. Therefore,
we posit that weaker miners will ignore the bribe altogether and will attempt
to mine the seller’s transaction while the timelock holds and the fee on the
seller’s transaction is good enough. This leads us to the relationship between
the fee to bribe ratio and the distribution of miners’ hashpowers. Based on
this analysis, we propose Lightning Channel parameters that make them
resistant to this kind of bribing attack. In Atomic Swaps, our analysis also
proposes a fee for the victim to safeguard themselves. To enable that, we
propose a modification to the classic Tier Nolan Atomic Swap protocol that
can bring in this fee into the swap and still keep it fair for both parties.



4
Grief-free Atomic Swaps

4.1 Introduction

Atomic swaps, which were introduced in Section 2.5, are an important tool
in Bitcoin’s privacy arsenal. If two users swap their coins for no commercial
reason, the swap obfuscates the trail that follows the flow of money through
the blockchain - as proposed in CoinSwap [50]. Such privacy practices, if
used by enough people, gives privacy to all people.

Atomic swaps can involve various assets: say, someone wants to buy a
Sudoku solution for some price. However, these generally involve more
complex protocols that convert assets into information that can be
transferred on a public blockchain. In the case of a Sudoku, a symmetric
key is used to encrypt the solution, and this key is atomically swapped for
monetary value, while the encrypted blob is sent off-chain, as seen in
ZKCP [51]. This kind of swap has one of the assets not being scrutinizable
on the blockchain and hence has to rely on more complex Zero-Knowledge
proofs to convince the buyer that the key encrypts a correct solution. We
want to look at a more straightforward class of atomic swaps where one
can scrutinize the actual asset being swapped on the blockchain, and the
buyer or the swap initiator doesn’t need any other data beyond the
blockchain. In the base case, these swaps involve the native cryptocurrency

42
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of the blockchain(s). In the single blockchain setting, swapping coins of
equal value between Alice and Bob can improve both their privacy.

Tier Nolan’s Classic Atomic Swap, which is formally defined in Section
4.3.1, is atomic but not fair. There are steps in the swap where either Alice
or Bob can abort the protocol and put their counterparty at a disadvantage.
The counterparty does not lose monetary value (it is an atomic swap, after
all) but is either made to wait before they get their asset back or might
lose blockchain fees by making extra transactions and such. We refer to the
waiting part of this problem as griefing. Protocols like Arwen [52] rely on
one of the counterparties of the atomic swap caring about protecting their
reputation. A few proposals have been made to reduce griefing, but they all
involve smart contracts that have access to global state storage. These smart
contracts look up the swap state and proceed according to how the swap has
gone so far. Some of these proposals are: Fairswap [53], Optiswap [54], Han-
Lin-Yu swap (HLY-swap) [36], and Xue-Herlihy swap (XH-swap) [55]. All
these rely on smart contracts and are not compatible with Bitcoin natively.
The former two optimize for the optimistic case, where the swap is efficient
to execute if it goes as expected. In the pessimistic case, when the swap
does not go through, a more complex dispute resolution protocol is invoked.
The latter two are more focused on avoiding our griefing problem and solve
it by getting the advantaged party paying a premium1 to the disadvantaged
party. The HLY-swap paper draws parallels between the atomic swap and an
American Call Option from traditional finance. In traditional finance, these
options are made fair by getting the disadvantaged party to sell the option
itself to the advantaged party. The price at which this option is sold is called
the option premium. As the advantaged party pays this premium upfront to
the disadvantaged party, their privilege to abort the swap is compensated
for. Unfortunately, Bitcoin’s stack-based execution environment does not
allow access to external state storage, and these swaps cannot be directly
implemented in Bitcoin natively. Both these swaps can be implemented in
Bitcoin if a new opcode is added to it. Done that way, HLY-Swap uses
the premium on one side of the swap but allows griefing on the other side.
XH-swap avoids griefing on both sides of the swap but allows the premiums
themselves to be griefed. Contrary to the claim in the XH-swap paper
that griefing cannot be avoided, we present an atomic swap construction
without griefing, which can also be implemented in Bitcoin with no changes
to Bitcoin itself. Our protocol is also more efficient regarding the number
of transactions and the worst-case timelock for which funds are locked.

1
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4.2 System Model

Our system model is based on Bitcoin, with its UTXO (Unspent
Transaction Outputs) model. We require primitives like hashes, timelocks,
and signatures. Furthermore, we make the following assumptions about
the system.

• Time proceeds as blocks, and each block is separated by a constant
and known unit of real-world time.

• All users are online and know if specific transactions are confirmed
through the public blockchain.

• Transactions have constant fees, which are independent of the amounts
involved in the transactions.

4.2.1 Atomic Swap Specification
The Atomic Swap specification consists of the following:

• Two users: Alice and Bob, who want to swap their coins Pa and Pb

with each other. These could be on different blockchains or the same
blockchain. We call this the principal amount.

• A sequence of n transactions Sall, made up of individual transactions
T0, T1, T2, . . . , Tn−1, out of which a subset Sconf get confirmed on
the blockchain.

• At the end of Sconf , only one of the following is true:

– Successful swap: Alice has value equivalent to Pb and Bob has
value equivalent to Pa. We call this set S ⊂ Sall. Note that there
is typically a single subset of Sall that makes a successful swap.

– Unsuccessful swap: Alice has value equivalent to Pa and Bob has
value equivalent to Pb. We call this set F ⊂ Sall. Note that there
could be many subsets F1, F2, . . . that make up different failure
scenarios of the swap.

4.3 Atomic Swaps: Prior Work

In this section, we delve deeper into the griefing problem in Tier Nolan’s
classic atomic swap [16]. We also cover two other sophisticated swap designs
that avoid griefing to some extent but do not eliminate it. This formal
treatment of these swaps reveals the scenarios where griefing happens, how
premiums prevent griefing, and how premiums themselves can be griefed.
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4.3.1 Tier Nolan Atomic Swap
In Tier Nolan’s Classic Atomic Swap, Alice and Bob both have the right
to abort out of the swap before it happens. If either party aborts, their
counterparty is left waiting for their timelock to expire before getting their
refund. If Bob aborts, Alice has to wait for ∆2 to expire before refunding
her principal Pa back to her. If Alice aborts, Bob has to wait for ∆1 to
refund his principal Pb back to him. This leads to the notion of the locked
value of funds or griefing. To account for this, we add a griefing cost to each
subset Fi in the atomic swap specification from Section 4.2.1. If the griefing
cost is zero for all failure subsets in the specification, we consider a protocol
to be grief-free. Formally, let

cost =
∑

f(Pi ·∆j) ∀i ∈ {a, b}, j ∈ {1, 2, 3, . . .} (4.1)

where f(Pi · ∆j) is the value of locking Pi for duration ∆j . In the
summation, a party’s term f(Pi ·∆j) is introduced only if a counterparty has
aborted. The timelocked value of the aborting party’s principal or premium
is not included in the griefing cost. TN-swap’s costs for its two failure
scenarios can be quantified as:

costF1 = f(Pa ·∆2) > 0
costF2 = f(Pb ·∆1) > 0

(4.2)

The idea of locking up the principal amount to enable swaps seems
inherent to atomic swap protocols that use sequential transactions. To
lower the griefing cost of locking up the principal, atomic swaps have been
proposed that offer a premium as compensation to the locking party if
their counterparty aborts from the swap. This premium’s value is
estimated using the Cox-Ross-Rubinstein model in [36] using options
pricing theory and the price volatility of the crypto-assets in question. We
ignore the price volatility of the crypto assets and use a simple interest
rate model to price the time value of the locked-up principal. This could
be as simple as a simple interest rate, calculated by taking the product of
the principal, length of the timelock, and an arbitrary interest rate r that
the parties agree upon.

f(Pi ·∆j) = ρi = Pi ·∆j · r ∀i ∈ {a, b}, j ∈ {1, 2, 3, . . .} (4.3)

The total griefing cost of the protocol has to account for both the locked
value of the principals and the equivalent premiums that are returned to
the parties based on how the parties act during the protocol execution.
Equation 4.1 for cost can be modified as:
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cost =
∑

f(Pi ·∆j)−
∑

ρi ∀i ∈ {a, b}, j ∈ {1, 2, 3, . . .} (4.4)

If all the locked-up principals are compensated by corresponding
premiums, cost goes to zero. TN-swap’s cost is strictly positive as it does
not have compensatory premiums. Interestingly, in subsequent protocols
we discuss, the premium ρi could also be locked up for some timelock ∆j .
In this case, this timelocked value of the premiums is recognized in the
first term of the right-hand side of Equation 4.4.

4.3.2 Atomic Swaps with Premiums
We now consider two constructions that offer a premium as compensation
to the party that locks up capital during the swap. The Han-Lin-Yu atomic
swap (HLY-swap), introduced in [36] and the Xue-Herlihy Atomic Swap
(XH-swap), introduced in [55]. Regarding the premium value itself, there
are many approaches from the world of traditional finance to calculate the
premium [36]. This premium has to be baked into the swap protocol - so
that it can be transferred from one party to another based on how the swap
proceeds. If the blockchain in question supports stateful smart contracts,
like Ethereum, this coupling between the premium and the swap can be
implemented as shown in [36]. If the blockchain does not support stateful
smart contracts (Bitcoin does not), both [36] and [55] suggest upgrading the
scripting language of the blockchain to support it. This upgrade comes in
the form of a new opcode that can scan the blockchain to see where the
swapped assets ended up and then redirect the premium to that address. In
other words, an opcode that can use information not available at the time
of writing the contract. In Bitcoin, this opcode (called OP_LOOKUP_OUTPUT
in [36]) requires a separate index to be maintained by the nodes. Given how
Bitcoin optimizes for a smaller footprint, such a new index is unlikely to be
added in the future. To analyze these swaps that need OP_LOOKUP_OUTPUT,
we introduce two new predicate types in our notation to represent what
OP_LOOKUP_OUTPUT does.

• Ti.∆j : A future transaction Ti happens before ∆j .

• ¬Ti.∆j : A future transaction Ti does not happen before ∆j .

HLY-swap: If we assume the OP_LOOKUP_OUTPUT opcode implemented by
a combination of the above two predicates, HLY-swap can be implemented
as shown in Figure 4.1. This swap handles the second half of the griefing
problem from TN-swap, but not the first. In TN-swap, Alice can grief Bob
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by not redeeming his principal by broadcasting TN-T3 (transaction T3 from
the Tier Nolan swap in Figure 2.2). In HLY Swap, Alice puts up a premium
ρa in HLY-T0, which will go back to Alice only if Alice goes along with her
side of the swap in HLY-T3. If she aborts here, Bob doesn’t have the secret
preimage to redeem his side of the swap and has to wait for his timelock ∆2
to expire to get his principal back. To compensate for this grief, Bob gets
to keep Alice’s premium ρa by broadcasting HLY-T7. This is covered in the
scenario HLY-F2.

Note that HLY-swap does not compensate Alice in case Bob aborts
before committing his principal. Alice has to wait for ∆3 before getting Pa

back in HLY-T6 and ∆4 before getting back ρa in HLY-T8 (scenario HLY-F1).
The griefing costs of HLY-swap are:

costF1 = f(ρa ·∆4) + f(Pa ·∆3)− ρa > 0 (4.5)
costF2 = f(Pb ·∆2)− ρa = 0 (4.6)

As Alice aborts in failure scenario HLY-F2, only Bob’s principal Pb is
included in Equation 4.6. Bob’s timelocked value f(Pb.∆2) is compensated
by Alice’s premium ρa, and hence cost of failure scenario HLY-F2 costF2 = 0.

As Bob aborts in failure scenario HLY-F1, only Alice’s principal Pa is
included in Equation 4.5, and costF1 > 0. In fact, Alice gets extra grief here
because her premium ρa is also locked up for ∆4. The problem of Alice not
being compensated for locking up her principal is solved in XH-swap.

XH-swap: XH-Swap, as shown in Figure 4.2, requires both Alice and Bob
to deposit premiums upfront: ρa, ρb, with ρa > ρb. This inequality ensures
that in certain failure scenarios, if the smaller ρb goes to Alice and the
larger ρa goes to Bob, Bob is effectively getting the premium ρa − ρb. If
the principal amounts are equal (Pa = Pb), then Alice’s premium is double
that of Bob so that ρa − ρb = ρb. These premiums are committed to the
blockchain upfront, with future-looking conditions (using the opcode
OP_LOOKUP_OUTPUT) that govern whether these premiums go to Alice or
Bob, depending on whether they take part in the swap, or abort the swap.
The next set of transactions are equivalent to the TN-swap, but with
additional conditions on where the premiums go. Due to the premiums
being timelocked, two additional failure scenarios (on top of the two
original failure scenarios of the TN-swap) have to be handled by XH-swap:
parties aborting after their premiums are committed but before their
principals are committed. Together, these four failure scenarios are shown
in Figure 4.2, where in each scenario, either Alice or Bob aborts, either
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Sall = {T0, T1, T2, T3, T4, T5, T6, T7, T8}
T0 = [(ρa|σa)] 7→ [(ρa|((σa ∧ σb ∧∆4)∧

(T3.∆2 ∨ T5.∆4 ∨ T6.∆4 ∨ ¬T2.∆1))]
T1 = [(Pa|σa)] 7→ [(Pa|(σa ∧∆3) ∨ (σb ∧Hs))]
T2 = [(Pb|σb)] 7→ [(Pb|(σa ∧Hs) ∨ (σb ∧∆2))]
T3 = [(Pb|(σa ∧ s))︸ ︷︷ ︸

T1

] 7→ [(Pb|σa)]

T4 = [(Pa|(σb ∧ s))︸ ︷︷ ︸
T0

] 7→ [(Pa|σb)]

T5 = [(Pb|(σb ∧∆2))︸ ︷︷ ︸
T2

] 7→ [(Pb|(σb)]

T6 = [(Pa|(σa ∧∆3))︸ ︷︷ ︸
T1

] 7→ [(Pa|(σa)]

T7 = [(ρa|(σa ∧ σb ∧∆4))︸ ︷︷ ︸
T0

] 7→ [(ρa|σb)]

T8 = [(ρa|(σa ∧ σb ∧∆4))︸ ︷︷ ︸
T0

] 7→ [(ρa|σa)]

S = {T0, T1, T2, T3, T4, T8}
[Everything goes as per plan and Alice gets back her
premium]
F1 = {T0, T1, T6, T8}
[Bob aborts before committing Pb. Alice gets no
compensation]
F2 = {T0, T1, T2, T5, T6, T7}
[Alice aborts before redeeming Pb. Bob gets ρa as
compensation]

Algorithm 4.1: Han-Lin-Yu Atomic Swap with 1 Premium

after committing their premiums or principals. The griefing costs of
XH-swap are:
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costF1 = f(ρa ·∆5) > 0 (4.7)
costF2 = f(ρb ·∆6) > 0 (4.8)
costF3 = f(ρa ·∆5) + f(Pa ·∆4)− ρb = 0 (4.9)
costF4 = f(ρb ·∆6) + f(Pb ·∆3)− (ρa − ρb) = 0 (4.10)

As XH-swap is explicitly designed to handle failure scenarios XH-F3 and
XH-F4, the griefing costs CF3 and CF4 are 0 in Equations 4.9 and 4.10.
However, XH-swap does not compensate Alice and Bob for their premiums.
In case their counterparty aborts during the premium setup phase (XH-F1

for Alice, or XH-F2 for Bob) Alice and Bob receive no compensation. These
are shown in Equations 4.7 and 4.8. To get these griefing costs close to zero,
the authors of XH-swap propose using smaller premiums to bootstrap larger
premiums, till the premiums are sufficient enough to swap the principals.
The first set of premiums in such a premium-chain can be griefed, as it’s
backed by nothing. It is assumed that these premiums are small enough for
Alice and Bob to ignore the griefing cost.

4.3.3 Shortcomings of Atomic Swaps with Premiums
There are four shortcomings in these protocols with premiums:

1. They do not compensate for locked-up premiums.

2. They are not compatible with Bitcoin.

3. Their final timelock is much longer than the classic TN-swap.

4. The number of transactions under all scenarios (sizes of Sall, S, and
Fi) are higher than the classic TN-swap.

These four shortcomings can all be attributed to a more fundamental idea
that is embedded in these protocols – which is that of separating the
premium protocol from the principal protocol. The latter is the classic
TN-swap, and the former is bolted on the TN-swap to make it partially
grief-free. As we see next, if we couple the two protocols together, we can
overcome all four shortcomings.
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Sall = {T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11}
T0 = [(ρa|σa)] 7→ [(ρa|((σa ∧ σb ∧∆5)∧

((T3.∆2 ∧ (T4.∆2 ∨ T6.∆5)) ∨ ¬T3.∆2))]
T1 = [(ρb|σb)] 7→ [(ρb|((σa ∧ σb ∧∆6)∧

((T2.∆1 ∧ (T5.∆3 ∨ T7.∆6)) ∨ ¬T2.∆1))]
T2 = [(Pa|σa)] 7→ [(Pa|(σa ∧∆4) ∨ (σb ∧Hs))]
T3 = [(Pb|σb)] 7→ [(Pb|(σa ∧Hs) ∨ (σb ∧∆3))]
T4 = [(Pb|(σa ∧ s))︸ ︷︷ ︸

T3

] 7→ [(Pb|σa)]

T5 = [(Pa|(σb ∧ s))︸ ︷︷ ︸
T2

] 7→ [(Pa|σb)]

T6 = [(Pb|(σb ∧∆3))︸ ︷︷ ︸
T3

] 7→ [(Pb|(σb)]

T7 = [(Pa|(σa ∧∆4))︸ ︷︷ ︸
T2

] 7→ [(Pa|(σa)]

T8 = [(ρa|(σa ∧ σb ∧∆5))︸ ︷︷ ︸
T0

] 7→ [(ρa|σa)]

T9 = [(ρa|(σa ∧ σb ∧∆5))︸ ︷︷ ︸
T0

] 7→ [(ρa|σb)]

T10 = [(ρb|(σa ∧ σb ∧∆6))︸ ︷︷ ︸
T1

] 7→ [(ρb|σa)]

T11 = [(ρb|(σa ∧ σb ∧∆6))︸ ︷︷ ︸
T1

] 7→ [(ρb|σb)]

S = {T0, T1, T2, T3, T4, T5, T8, T11}
[Everything goes as per plan and Alice gets back her
premium]
F1 = {T0, T8}
[Bob aborts before committing ρb. Alice gets no
compensation]
F2 = {T0, T1, T8, T11}
[Alice aborts before committing Pa. Bob gets no
compensation]
F3 = {T0, T1, T2, T7, T8, T10}
[Bob aborts before committing Pb. Alice gets ρb

compensation]
F4 = {T0, T1, T2, T3, T6, T7, T9, T10}
[Alice aborts before redeeming Pb. Bob gets (ρa − ρb) as
compensation]

Algorithm 4.2: Xue-Herlihy Atomic Swap with 2 Premiums
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4.4 Grief-free Atomic Swap

Sall = {T0, T1, T2, T3, T4, T5, T6, T7}
T0 = [(ρa|σa)] 7→ [(ρa|(σa ∧ σb) ∨ (σa ∧Hs))]
T1 = [(Pa|σa), (ρb|σb)] 7→ [((Pa + ρb)|

(σb ∧Hs) ∨ (σa ∧∆2))]
T2 = [(Pb|σb), (ρa|(σa ∧ σb))︸ ︷︷ ︸

T0

] 7→ [((Pb + ρa)|

((σa ∧Hs) ∨ (σb ∧∆1))]
T3 = [((Pb + ρa)|(σa ∧ s))︸ ︷︷ ︸

T2

] 7→ [((Pb + ρa)|σa)]

T4 = [((Pa + ρb)|(σb ∧ s))︸ ︷︷ ︸
T1

] 7→ [((Pa + ρb)|σb)]

T5 = [(ρa|(σa ∧ s))︸ ︷︷ ︸
T0

] 7→ [(ρa|(σa)]

T6 = [((Pa + ρb)|(σa ∧∆2))︸ ︷︷ ︸
T1

] 7→ [((Pa + ρb)|(σa)]

T7 = [((Pb + ρa)|(σb ∧∆1))︸ ︷︷ ︸
T2

] 7→ [((Pb + ρa)|(σb)]

S = {T0, T1, T2, T3, T4}
F1 = {T0, T5}
[Bob aborts before committing ρb. Alice loses nothing.]
F2 = {T0, T5}
[Alice aborts before committing Pa. Bob loses nothing.]
F3 = {T0, T1, T6, T5}
[Bob aborts before committing Pb. Alice gets ρb as
compensation]
F4 = {T0, T1, T2, T6, T7}
[Alice aborts before redeeming Pb. Bob gets (ρa − ρb) as
compensation]

Algorithm 4.3: Grief-Free Atomic Swap with 2 Premiums
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Alice prepares GF-T0
and sends it to Bob1

Bob aborts Bob broadcasts GF-T0

Alice broadcasts
GF-T5 (revealing
s) to get back ρa

Alice keeps ρa
Bob sends unsigned

ρb to Alice2

Alice aborts Bob keeps ρb

Alice prepares GF-T1
and sends it to Bob3

Bob aborts Bob signs and
broadcasts GF-T1

Alice has to wait
for ∆2 to get back

Pa, but gets ρb

as compensation

Alice keeps Pa
Bob prepares GF-T2
and sends it to Alice4

Alice aborts
Bob keeps Pb and

ρb as GF-T2 is
not broadcast yet

Bob signs and
broadcasts GF-T1;

Alice signs and
broadcasts GF-T2;

either Alice or Bob
broadcast GF-T0

5

Alice aborts

Bob broadcasts GF-T7;
Alice broadcasts

GF-T6; Bob gets ρa−ρb

as compensation

Bob broadcasts GF-T3;
Bob broadcasts GF-T4;

Swap completes
6

Yes
Yes

NoNo

Yes

No

Yes
Yes

NoNo

Yes

No

Yes

No

On-chain
Off-chain

Algorithm 4.4: Grief-free Atomic Swap - Transaction Flow
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Our Grief-free Atomic Swap (GF-swap) protocol’s transactions are
shown in Figure 4.3 and the actual flow of transactions between Alice and
Bob are shown in the flowchart in Figure 4.4. As said before, the key
insight that makes the protocol grief-free is the coupling between the
premium and the principal protocols. The coupling is accomplished in two
separate points.

1. A party’s principal-committing transaction also commits to the
counterparty’s premium.

2. The same secret preimage is used to lock principals and the premiums
in their hashlock arms.

Before we look at the swap in greater detail, a word about the
premiums. As with the XH-swap, the GF-swap relies on the inequality
ρa > ρb, given Alice and Bob’s premiums ρa, ρb. The compensations that
Alice and Bob get, in case they incur grief, are ρb and ρa − ρb respectively.
If the atomic swap is happening across different blockchains, say Bitcoin
and Litecoin, Alice’s principal Pa and Bob’s premium ρb are on Bitcoin
while Bob’s principal Pb and Alice’s premium ρa are on Litecoin. If the
swap is happening on the same blockchain, both principals and both
premiums are on that blockchain.

4.4.1 Setup
Refer to Figure 4.4 for the following numbered steps.

1. Alice creates GF-T0, which locks her premium ρa such that it can be
unlocked either by a multisig signed by both Alice and Bob, or just
by Alice if she also reveals the secret preimage s of hash Hs. Note
that GF-T0 has no timelock. Alice sends GF-T0 to Bob so that he can
inspect it. GF-T0 is not broadcast to the blockchain yet.

2. Bob hands over his premium ρb to Alice off-chain. This premium is a
UTXO that Bob controls. Bob can also prove that he can spend this
UTXO by signing a standard “Hello World” message with the public
key that locks ρb. Note that such a signature just confirms to Alice
that Bob controls ρb, and she cannot do anything else with such a
signature.

3. Alice constructs GF-T1 which commits Alice’s principal Pa. This
transaction will also include include a reference to ρb. Alice sends
GF-T1 to Bob. Before signing GF-T1, Bob ensures that it pays Alice’s
premium to him if he reveals the secret preimage of the already
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known hash from GF-T0. Note that Bob has already seen GF-T0 and
can match the Hs from GF-T0 and GF-T1. GF-T1 also has a refund
arm going back to Alice, which has a timelock.

4. Bob then constructs his principal committing transaction GF-T2

which also uses Alice’s premium ρa. To do this, Alice has to give her
signature to Bob so that the multisig that locks ρa can be unlocked
in GF-T2. Alice does this only if GF-T2 sends both Bob’s principal
and Alice’s premium (Pb + ρa) to Alice, if she reveals the preimage of
the same hash Hs. GF-T2 also has a refund arm going back to Bob,
which has a timelock.

The series of transactions GF-T0, GF-T1, and GF-T2 can be constructed
and signed off-chain in the specific order mentioned above, and broadcasted
by either party in Step 5. Both GF-T1 and GF-T2 take two inputs each, a
party’s principal and the counterparty’s premium, and send their sum to
the redeeming party if they reveal the secret preimage, or refund it back to
the party if they wait for timelocks to expire - just like in TN-swap. The
principals and the premiums are coupled now. After the setup stage, we
look at how the rest of the swap can play out, including success and failure
scenarios.

4.4.2 Success
If the swap goes as per plan and we reach Step 6, Alice broadcasts GF-T3 to
redeem Pb + ρa and Bob broadcasts GF-T4 to redeem Pa + ρb. Both parties
get their counterparty’s principal and their own premiums back.

4.4.3 Failures
The protocol handles the four failure scenarios gracefully and grief-free. In
the following failure scenarios, we look at only those cases where a party is
being griefed due to their counterparty aborting. If a party aborts on their
own volition and has to refund their principal amount back to themselves
after a timelock, we do not consider it a failure scenario.

Bob aborts before committing ρbρbρb(GF-F1): During the off-chain
interaction where GF-T0, GF-T1, and GF-T2 are being constructed, Bob
could abort and not give his signature to GF-T1 even if Alice has
constructed it properly. There are three possibilities here:

1. If nothing has been broadcast on the blockchain, there is no grief.
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2. If GF-T0, GF-T1, and GF-T2 are signed and broadcast, but not
confirmed, Bob could double-spend ρb in a parallel transaction. In
this case, Alice gets back her premium without delay using GF-T5 by
revealing the preimage. Revealing this preimage is harmless to Alice
as her principal (which can be withdrawn by Bob if he knows this
preimage) cannot be confirmed on the blockchain as Bob made GF-T1

invalid by spending ρb elsewhere. If Bob is careless and makes only
GF-T1 invalid by spending ρb, and leaves GF-T2 to confirm on the
blockchain - he risks losing his principal Pb as well, as Alice can
broadcast GF-T3 and claim both the principals and her own
premium. If Bob wants to abort at this stage in good faith, he has to
not give his signatures to Alice for GF-T1 and GF-T2. Nothing hits the
blockchain, and both parties lose nothing.

3. Bob could abort without giving his signature to GF-T1, but also
broadcast GF-T0 to lock up Alice’s premium. In this case, Alice
cannot immediately broadcast GF-T5 to get premium back as her own
principal is at risk if she reveals the secret preimage s. She first has
to make GF-T1 invalid by spending her principal Pa back to herself
before broadcasting GF-T5. This does not count as grief because she
is only waiting for blockchain confirmation time, and not her
timelock time of ∆2.

Alice aborts before committing PaPaPa (GF-F2): Alice’s principal Pa and
Bob’s premium ρb are committed to the blockchain in a single transaction
GF-T1, and hence this scenario cannot occur. As in, Alice cannot abort and
still grief Bob because if Alice aborts here, Bob’s premium never hits the
blockchain and there is no question of griefing Bob.

Bob aborts before committing PbPbPb(GF-F3): After constructing, signing,
and broadcasting GF-T0, GF-T1, and GF-T2, Bob could double spend Pb in
a parallel transaction, thereby making GF-T2 invalid. Alice can then get
Bob’s premium by confirming GF-T6, and also get her own premium back
with GF-T5. Note that GF-T5 is valid because Bob made the other transaction
spending ρa (GF-T2) invalid by double spending Pb elsewhere. Alice has to
wait for the timelock of ∆2, and for that, she is compensated with Bob’s
premium ρb.

Alice aborts before redeeming PbPbPb(GF-F4): After constructing, signing,
and broadcasting GF-T0, GF-T1, and GF-T2, it is Alice’s turn to redeem Pb by
broadcasting GF-T3. If she doesn’t do it while time ∆ elapses, Bob claims his
refund back with GF-T7. Alice could claim her own refund back with GF-T6.
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In this case, Bob gets Alice’s premium ρa and Alice gets Bob’s premium ρb.
As ρa > ρb, it is Bob who is compensated here with the premium ρa − ρb

because Alice aborted the swap.

Setup Signatures: During the construction and signing of GF-T0, GF-T1,
and GF-T2, we have Bob signing for his premium in GF-T1 and Alice signing
her premium in GF-T2 (created by GF-T0’s multisig output arm). Bob has
to make sure that Alice has signed GF-T2 and given him a copy before he
signs GF-T1. This ordering solves two separate failure scenarios.

1. Bob waits for Alice to sign GF-T2 and give him a copy before signing
GF-T1 himself and giving her a copy. So, we are now either in the
scenarios GF-F1, GF-F2, or GF-S. Bob loses nothing in all of these.

2. Alice signs GF-T2, but does not get Bob’s signature on GF-T1. Bob has
two choices now.

(a) Bob can either keep GF-T2 without broadcasting it, and we are
in GF-F1 where Alice doesn’t lose anything.

(b) Bob can broadcast GF-T2, and risk losing his principal Pb to Alice
as well. To avoid that, he has to sign and broadcast GF-T1 and
we are in GF-F4, or GF-S. Alice loses nothing in these.

Cost: The griefing costs (in terms of timelocked value of funds) of GF-swap
are:

costF1 = 0 = 0 (4.11)
costF2 = 0 = 0 (4.12)
costF3 = f(Pa ·∆2)− ρb = 0 (4.13)
costF4 = f(Pb ·∆1) + f(ρb ·∆2)− (ρa − ρb) = 0 (4.14)

As seen in failure scenarios GF-F1 and GF-F2, if parties abort before
committing their principals, no timelocks are engaged, and we get costF1 = 0
and costF2 = 0 in Equations 4.11 and 4.12. Additionally, in failure scenario
GF-F3, f(Pa · ∆2) is compensated by ρb, and therefore costF3 = 0. Here,
Alice’s premium ρa is never committed, and ρb does not have to compensate
for it. In failure scenario GF-F4, both f(ρb ·∆1) and f(Pb ·∆1) together have
to be compensated by ρa − ρb to get costF4 = 0.
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4.4.4 Coupling Principal and Premium
Section 4.3.3 listed the four shortcomings of previous premium-based
designs. By coupling the premium protocol and the principal protocol,
GF-swap manages to avoid these shortcomings.

Premium Lockup Compensation: Coupling the principal and the
premium protocols lets us use the same values of the timelock for both.
This ensures that wherever the principal goes, with whatever delay, the
premium also follows. The only catch here is Alice’s premium, which is
locked in GF-T0. But this specifically avoids a timelock and is hence
grief-free.

Bitcoin Compatibility: Decoupling the two protocols forces the
premium protocol to lookup where the principal was sent, which needs a
new Bitcoin opcode OP_LOOKUP_OUTPUT. Coupling them sends the two:
premium and principal, together to their destination, and we do not need
OP_LOOKUP_OUTPUT. It can otherwise be argued that, from a software
engineering perspective, decoupling the protocols is better than coupling
them. But the moment we decouple the two protocols, there is no way to
construct the premium protocol without knowing how the principal
protocol will play out in the future. In our opinion, Bitcoin compatibility
is as important as the software engineering decoupling.

Timelock Length: Coupling the protocols lets GF-swap keeps the
timelock values of TN-swap, as the premiums themselves do not need
separate timelocks of larger values. This reduces the time it takes to make
a full swap, when compared to related work presented earlier.

Number of Transactions: Coupling let’s us go just 1 transaction over
TN-swap (GF-T0, which sets up Alice’s premium ρa). It’s an open question
whether we can incorporate premiums into a grief-free protocol while keeping
the total number of transactions the same as TN-swap.

4.4.5 Disadvantages of Coupling:
As discussed before, we choose to couple the premium and principal
protocols to achieve Bitcoin compatibility. As expected, this design
“anti-pattern” makes it harder to extend GF-swap to handle other use
cases. Examples: Risk-free atomic swaps from Section 3.3.4, MAD-HTLC
[44], Multi-party swaps across more than 2 blockchains [35], and atomic
swap enabled automated market makers. Out of these, the risk-free atomic
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swap from Section 3.3.4 can be also made grief-free with minor tweaking of
the transactions involved. Alice’s timelocked refund arm from GF-T1 has to
be made to go through another layer to bring in the extra fees that Alice
needs to commit to make the combined protocol bribe-free as well.

Payment channels and atomic swaps both use HTLCs as a building block.
The GF-swap has a modified version of the HTLC. It is an open question
whether this modified HTLC can be used to construct payment channels.

4.5 Conclusion

In this chapter, we have proposed an atomic swap protocol that makes the
classic Tier Nolan swap resilient to griefing while adding just one extra
on-chain transaction. We compensate griefing by offering a premium to
the party that gets griefed. Most of the heavy-lifting in our swap is done
off-chain, where the two parties communicate to establish the swap in the
first place. Unlike other protocols, in our swap, both parties can abort the
premium protocol off-chain and not on-chain. We also show that coupling
the premium and the principal protocol makes the swap implementable in
Bitcoin, where transaction execution does not have access to an external
global state. The coupling also reduces transaction costs and the worst-case
timelock. Unfortunately, this coupling makes the GF-swap non-trivial to
extend to other applications without careful tweaking of transactions.

The grief-free atomic swap protocol is an important tool to add to
Bitcoin’s privacy arsenal. With the swap being grief-free, more
participants will engage in such swaps, thereby improving everyone’s
privacy.



5
Outpost: A Lightweight Watchtower

5.1 Introduction

As discussed in Chapter 1, Bitcoin limits the number of transactions that
can fit into a block. The average size of a transaction is 300 bytes; with
a block about every 10 minutes, the throughput is bounded to about 6
transactions per second. One may increase the block size and/or decrease
the time between two blocks to achieve a higher throughput. However, these
are consensus rule changes, and as such not easy to implement. Changing
these parameters also adversely affect other security aspects of the Bitcoin
network [18].

Duplex Micropayment Channels [19] and the Lightning Network [20]
propose one type of solution to the scaling problem, allowing for higher
throughput without changing Bitcoin’s consensus rules. The idea of both
these protocols is to handle most transactions outside the blockchain, in
so-called channels. Bitcoin users would build a network of channels between
them, and most transactions are handled in these channels. The Bitcoin
blockchain would only be needed to setup and close these channels, and in
this meta role, it handles far less transactions.

The Lightning Network in particular has seen implementations from
multiple teams of developers and researchers (LND [21], Eclair [22],

59
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Core-Lightning [23], LIT [24]), all implementing the same specifications
[25]. All of these implementations build node software that helps form a
peer to peer network of payment channels where value denominated in
Bitcoin can flow from node to node.

However, there is still a major problem: Lightning channel payments can
be received safely only if the receiving node stays online. Payment receivers
risk losing payments if they go offline without closing channels that sent
these payments, since a payment issuer can try to close a channel using
an outdated earlier channel state. However, opening and closing channels
are expensive blockchain transactions, which nodes want to avoid. To keep
channels open and be able to go offline, nodes need the services of so-called
watchtowers [56] to watch the Bitcoin blockchain and prevent fraudulent
channel closures.

Watchtowers are always-online services run by impartial parties, either
for an altruistic motive (to see the Lightning Network succeed), or for a
business motive (to get paid by the participant(s) of a channel). If we
consider the business motive, watchtower services can be paid either per
fraud detected, or simply for watching. Given that the Lightning protocol
punishes frauds, we posit that it is better to pay watchtowers based on
their actual cost of watching, which is directly proportional to the amount
of data they have to store. This, in turn, depends on the number of
channels they watch and the number of transactions that each of these
channels have. On the other side, given that frauds are rare, we also need
a mechanism which allows a watchtower to prove to channels that it is
indeed doing its job. In our construction, after each transaction, the
channel (one or both of its parties) sends the watchtower some data and
fees. The watchtower, at any point in the future, can be asked for a proof
by the channel that the watchtower was online as new Bitcoin blocks were
mined and had access to this channel transaction data. This proof-scheme
makes a pay-per-transaction scheme palatable to channel operators.

The watchtower’s ability to perform its service depends on being able to
watch the Bitcoin blockchain for a large number of transactions, with specific
transaction IDs (or prefixes of IDs). Watchtower implementations need to
have access to (and possibly store) this vast set of transaction IDs (txid’s)
and accompanying data per txid that contain information on what to do
when a specific txid shows up on the blockchain. LND’s proof of concept
implementation of watchtowers [57] requires around 300-350 additional bytes
of storage per txid. A single watchtower could watch millions of channels
and each channel could have billions of these micro-transactions. This places
a large storage cost on the watchtower, as it has to store this 350 byte blob
per transaction, for every transaction it knows about.



5.2. BACKGROUND 61

We propose Outpost, a construction that reduces this overhead to 16
bytes of additional storage. We do this using a novel lightning channel
structure that changes the commitment transactions. In particular, we
encode the information of a possible future transaction Tf in a present
transaction Tp, so that Tf spends the output of Tp itself. This is
non-trivial given how Bitcoin constructs and uses its txid’s. Outpost’s
reduction in storage costs will directly translate to the reduction in the
operational cost of maintaining watchtowers. We believe that this will
prompt more developers to run watchtowers, and thereby help the
Lightning Network succeed.

5.2 Background

5.2.1 Lightning Network
The Lightning Network is a peer to peer network of nodes running the
Lightning node software. Each peer is connected to other peers through a
specific construct called a payment channel. A payment channel is opened
with a Bitcoin transaction that commits UTXOs controlled by two parties
into a single output that is now controlled by a multisig that both parties
have to sign to be able to spend in a future transaction. This is called the
opening transaction (topen). Once the payment channel is opened, the two
parties exchange signed Bitcoin transactions between each other. In these
signed transactions, the total value of topen is allotted to each party
depending on how the parties want value to flow between them. For
example, if the payment channel was opened with 5 BTC from Alice and
10 BTC from Bob, a subsequent state might split the total 15 BTC of the
channel so that Alice gets 7 BTC and Bob gets 8 BTC. This new split
indicates a 2 BTC value flow from Bob to Alice, possibly for some goods
or service that Bob received from Alice. This new division of topen’s
balance is established by Alice and Bob by exchanging partially signed
commitment transactions (ctx) with each other that they can sign
themselves and broadcast later. At this point, the payment channel can
also be closed with a closing transaction if both Alice and Bob agree to it.
This is done by signing the multisig UTXO created by topen and sending
7 BTC to Alice and 8 BTC to Bob.

Typically, a channel is kept open by exchanging further ctx’s that change
the division of the balance between Alice and Bob as more goods and services
go from Alice to Bob or vice versa. Note that at any time, if either party goes
permanently offline, the counterparty can sign and broadcast their latest
ctx to “commit” the latest state of the channel to the blockchain. The
ability to unilaterally close the channel in case the other party goes offline
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makes this construction trustless. As a penalty for unilaterally closing the
channel, the broadcasting party is made to wait for a timelock, whereas the
counterparty (the one who might have gone offline) gets to spend their share
of the channel instantly. This setup can be argued to be fair, because if a
party broadcasts their ctx even if the counterparty is online, they get their
share of the balance, but have to wait to spend it. The counterparty does
not have to wait in this case.

Importantly, a party can try to unilaterally close a channel with a ctx
(say, previous_ctx) that is not the latest agreed upon ctx (say,
latest_ctx). Every party potentially has many such previous_ctxs in
their storage going back all the way to the channel opening. This allows
the dishonest party to cheat the honest counterparty by picking an old,
more favorable previous_ctx from the past and broadcasting it. Lightning
channels handle this cheating possibility by allowing latest_ctx to be
exchanged only if they are also accompanied by ways of revoking the
immediate previous_ctx. This revocation is handled through a revocation
key that can allot the entire channel balance to the victim’s control. This
gives both parties a strong incentive to be honest. In case Alice tries to
cheat by publishing a previous_ctx, Alice does not get her share of the
channel balance immediately because it is timelocked, thereby giving Bob
a time window to penalize this cheating previous_ctx. Bob looks up its
corresponding revocation key that he got from Alice earlier, and uses it to
construct the so-called justice transaction (jtx) to penalize this
previous_ctx. To be able to detect cheating, Bob has to monitor the
blockchain for all previous_ctxs so that he can then construct the
corresponding jtx and broadcast it. This is possible only if Bob is online
whenever a new Bitcoin block is mined. If Bob is offline, Alice can cheat
Bob by broadcasting a previous_ctx that is more favorable to her than
the current channel balance reflected in the latest_ctx.

5.2.2 Watchtowers
To be able to go offline, Bob enlists the help of a watchtower that is always
online, and can monitor the blockchain for cheating ctx’s. Bob gives the
watchtower the first 16 bytes of every ctx’s transaction ID (ctx_txid),
and encrypts the signed jtx to get an encrypted blob (ejtx) using the
other 16 bytes of ctx_txid as the encryption key. Bob gives the pair
[ctx_txid_prefix, ejtx] to the watchtower every time a new channel
update is agreed upon.

The watchtower stores a map, where keys are ctx_txid_prefixs and
values are ejtxs. It then watches the Bitcoin blockchain for any
transaction whose txid_prefix matches any of the keys in its own map. If
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the watchtower finds a match, it extracts the txid_suffix from the
blockchain txid, and uses this txid_suffix to decrypt the corresponding
ejtx from its map to get the raw jtx, which is already signed by the
corresponding Bob of that channel. The watchtower then broadcasts this
jtx on the network to penalize the corresponding Alice of that channel. In
implementations such as Lightning Network’s LND [21], the watchtower is
not made to store the entire signed jtx, but an encoded struct that has
addresses, signatures, and other metadata to be able to construct the jtx.
This encoded struct is smaller than the corresponding raw bitcoin
transaction, but is still around 300-350 bytes. The ctx_txid_prefix is
constant at 16 bytes.

A single watchtower could be watching multiple channels and yet be
oblivious to it. The watchtower just sees a stream of [txid_prefix, ejtx]
pairs that it has to store, possibly forever. Such a watchtower cannot
identify channels from such a stream as there is no channel identifier
in each pair. This design preserves channel privacy in the sense that
a watchtower cannot identify how many channel updates any particular
channel has had. As a side note, if a channel has been closed, channel
participants have no standardized way of informing the watchtower that
a set of [txid_prefix, ejtx] pairs can be deleted from the watchtower’s
global map. One possible way is for the watchtower to allocate a limit on
storage per user, and use a FIFO order to delete older items from its storage.

5.3 Outpost

In this chapter, we propose Outpost, a watchtower construction where it is
possible to store the ejtx inside the ctx that is exchanged between Alice
and Bob as a part of the channel update. In other words, we can store
the “future” justice transaction in the “present” commitment transaction.
If this is possible, the watchtower just has to store a map where keys are
prefixes of ctx_txids and values are decryption keys for the corresponding
ejtx. The ejtx itself does not need to be stored by the watchtower as it
is now available in the cheating ctx that appears on the blockchain. With
the Outpost construction, when a watchtower sees a cheating ctx on the
blockchain, the following happens:

1. The watchtower looks up the transaction in its global map, and finds
the corresponding decryption key.

2. The watchtower extracts the ejtx from the ctx which was seen on the
blockchain.
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3. The watchtower uses the decryption key found in its map and decrypts
ejtx to get the pre-signed jtx.

4. The watchtower broadcasts this pre-signed jtx.

5.3.1 Why is this not possible in classic Lightning?
For Alice and Bob to have a signed jtx for a corresponding ctx, they
need to first build the jtx with its inputs and outputs. The outputs are
straightforward. For the ctx broadcast-able by Alice, the corresponding jtx
will send all of Alice’s timelocked balance to Bob without any timelocks. The
inputs are not so straightforward. To refer to ctx’s outputs as the inputs
for jtx, we need to have ctx_txid. Let us say we have ctx_txid, and use
it construct a jtx, and get Alice and Bob to sign it. Alice then uses some
encryption key and encrypts jtx to get ejtx. We “encode” ejtx in ctx by
using the OP_RETURN technique and make it the 3rd output of ctx. Now, we
have a self-loop problem, given that the ctx_txid is constructed by double
SHA256 hashing the entire transaction, with its inputs and outputs. The
moment we add a 3rd output, the ctx_txid present in ejtx is not the real
ctx_txid. Given the way Bitcoin txid’s are constructed, there is no obvious
way to encode a jtx that spends ctx, and still encode this jtx in the same
ctx.

5.3.2 Two other constructions that do not work
Data Drop Method

One well known way of encoding arbitrary data in a Bitcoin transaction is to
use the so-called Data-Drop method using P2SH transactions as elaborated
in Sward et al [58]. To encode jtx inside ctx, we split ctx into two: ctx1

and ctx2. ctx1’s output can be locked with scriptPubKey:

OP_HASH160 <hash(redeem_script)> OP_EQUAL

This will allow us to have a followup ctx2 whose scriptSig has a redeem
script of the type:

OP_DROP 2 <alice_pubkey> <bob_pubkey>
2 OP_CHECKMULTSIG

And scriptSig of the type:

0 <alice_sig> <bob_sig> <ejtx> <redeem_script>
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With this setup, we can include arbitrary data in the scriptSig between
the signatures and the actual redeem script, and encode jtx in this data
(shown as ejtx above). The problem with this approach is that anyone
can tamper with the scriptSig in such a way that this arbitrary data is
changed, and the redeem script is still valid (scriptSig malleability). There
is no guarantee that ctx2 will make it to the blockchain in such a way that
ejtx can be read off of it. Any intercepting forwarding full node, or even
the miner who mines the relevant block can change the transaction to drop
this extra data.

Data Hash Method

Another way of encoding arbitrary data in a Bitcoin transaction that is
immune to scriptSig malleability is using the so-called Data-Hash method
using P2SH transactions; also elaborated in Sward et al. [58]. Here, like
with the data-drop method, ctx is split into ctx1 and ctx2, and have ctx1’s
output locked in the same way as before. We prevent the subsequent ctx2’s
scriptSig from being tampered with, by encoding ejtx in the redeem script,
and then using this redeem script’s hash in ctx1. Say, ctx2’s redeem script
looks like this:
OP_HASH160 <hash(ejtx)> OP_EQUALVERIFY
2 <alice_pubkey> <bob_pubkey> 2 OP_CHECKMULTSIG

ctx2’s scriptSig will encode ejtx in the same way as before. This will
enforce that the scriptSig cannot be tampered with while still keeping ctx2

valid. If any tampering of ctx2’s scriptSig (which contains ejtx) happens en
route to a mined block, ctx2 is not valid anymore as it cannot spend what
ctx1 locks. The data hash method solves the scriptSig malleability issue.

There is a subtler self-loop problem though: we include ejtx in the
redeem script of ctx2, and the redeem script’s hash in ctx1. This changes
the txid of ctx1 and we have to spend ctx1 (through ctx2) in ejtx. We
are back to the self-loop problem again, where we have to spend a UTXO
in the future, but also encode the spending transaction in the present. The
moment we do the encoding, the future UTXO’s input txid changes, thereby
invalidating the encoding. With a linear chain of transactions with the child
spending the parents’ output, we run into this self-loop problem. In the
following section, we show how to encode the future in the present by doing
it in a separate transaction path, and then merging these paths later.

5.3.3 Split Commitment Transaction Construction
In Outpost, we have 3 commitment transactions that represent a single
channel state, as opposed to just 1 commitment transaction in classic
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Lightning. This is in addition to the opening transaction and the justice
transaction. In this section, topen is common to both parties, Alice and
Bob. Without loss of generality, the other 3 commitment transactions
and 1 justice transaction are assumed to be Alice’s to broadcast. Bob has
symmetrically opposite transactions that he holds. Another convention in
the following listings is that pubkeyi can be signed by sigi. In Section 5.4,
we define these transactions more precisely with respect to signing, holding
(not hodling), and broadcasting.

Opening Transaction

topen is exactly the same as in classic Lightning, in the sense that it has to
spend two UTXOs, one of which is owned by Alice and one by Bob.

Transaction 5.1: Opening Transaction in Bitcoin Script-like pseudocode
TOPEN : {

txid: TOPEN_TXID
vin: [{

txid: source TXN that pays Alice
scriptSig : <Alice sig0 >

},{
txid: source TXN that pays Bob
scriptSig : <Bob sig0 >

}]
vout: [{

value : <value of the channel >
scriptPubKey :

2
<Alice pubkey1 >
<Bob pubkey1 >
2 OP_CHECKMULTISIG

}]}

Commitment Transaction 1

The output of topen is spendable by ctx1 (see Listing 5.2), which is similar
to classic Lightning’s commitment transaction, but differs in a few important
ways.

1. Output at index 0: Alice’s balance is not spendable by just Alice after
a timelock (as in classic Lightning). It is spendable with a multisig
that both Alice and Bob need to sign. This allows us to “fork” this
output into either the justice transaction or a followup commitment
transaction (ctx2). This ctx2 gives Alice’s share to Alice, but guards
it with a timelock. This way, we realize classic Lightning’s key idea
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that the broadcaster’s balance needs to be timelocked to allow the
counterparty to react in time.

2. Output at index 1: As in classic Lightning, Bob’s part is immediately
spendable (no timelock) by Bob with just his signature.

3. Output at index 2: The auxiliary output, which can be spent with a
signature by both Alice and Bob, but has a value that is insignificant -
say, just enough to be spendable with minimal fees. The sole purpose
of the auxiliary output is to be a part of a subsequent auxiliary
transaction (aux_ctx) which encodes ejtx. Its need will become more
clear in the subsequent paragraphs.

Transaction 5.2: Commitment Transaction 1 in Bitcoin Script-like
pseudocode
CTX1: {

txid: CTX1 _TXID
vin: [{

txid: TOPEN_TXID
index : 0
scriptSig :

0 <Alice sig1 > <Bob sig1 >
}]

vout: [{
value : <Alice balance >
scriptPubKey :

2
<Alice pubkey2 >
<Bob pubkey2 >
2 OP_CHECKMULTISIG

}, {
value : <Bob balance >
scriptPubKey :

<Bob pubkey3 > OP_CHECKSIG
}, {

value : INSIGNIFICANT_VALUE (ϵ)
scriptPubKey :

2
<Alice pubkey4 >
<Bob pubkey4 >
2 OP_CHECKMULTISIG

}]}

Justice Transaction

The jtx (see Listing 5.3) spends the multisig output of ctx1 and gives all
of Alice’s share to Bob. Note that Alice will sign this transaction only after
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Bob signs it, and will not hand it over to Bob in raw format. Alice encrypts
this jtx with a key of her choice to derive ejtx and hands over ejtx to Bob
by encoding it in aux_ctx.

Transaction 5.3: Justice Transaction in Bitcoin Script-like pseudocode
JTX: {

txid: JTX_TXID
vin: [{

txid: CTX1 _TXID
index : 0
scriptSig :

0 <Alice sig2 > <Bob sig2 >
}],

vout: [{
value : <Alice balance >
scriptPubKey :

<Bob pubkey5 > OP_CHECKSIG
}]}

Auxiliary Commitment Transaction

The purpose of aux_ctx (see Listing 5.4) is to be a vehicle to encode
the encrypted justice transaction (ejtx) as its “non-monetary” OP_RETURN
output. We inject aux_ctx in the channel by making it spend the small
insignificant value from ctx1, and make the final transaction ctx2 spend
from aux_ctx’s “monetary” output. This way, the channel cannot be closed
unilaterally without broadcasting aux_ctx. Once it is broadcast, ejtx is
visible on the blockchain and anyone with a key to decrypt it can get the
signed raw jtx and can broadcast it.

Transaction 5.4: Auxiliary CTX in Bitcoin Script-like pseudocode
AUX_CTX : {

txid: AUX_CTX_TXID
vin: [{

txid: CTX1 _TXID
index : 2
scriptSig :

0 <Alice sig4 > <Bob sig4 >
}]

vout: [{
value : INSIGNIFICANT_VALUE (ϵ)
scriptPubKey :

2
<Alice pubkey6 > <Bob pubkey6 >
2
OP_CHECKMULTISIG
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}, {
value : 0
scriptPubKey : OP_RETURN EJTX

}]}

Commitment Transaction 2

The final piece of the puzzle is ctx2 (see Listing 5.5). It spends outputs of
both ctx1 (the actual channel balance carrying commitment) and aux_ctx
(the ejtx carrying commitment). These outputs make up the inputs of ctx2,
and are timelocked using BIP68 [30] sequence numbers. In Listing 5.5, we
use a delay of 144 blocks (1 day), which is represented as 0x00000090. The
consensus rules of Bitcoin do not let this transaction through till 144 blocks
have passed since both ctx1 and aux_ctx are confirmed. This gives the
watchtower enough time to look for a cheating aux_ctx on the blockchain,
and decrypt ejtx which is visible in aux_ctx. As a part of the protocol
(refer 5.4), Alice would have shared with Bob the decryption key for ejtx
in a followup state. Subsequently, Bob would have given this key, along
with ctx1_txid to the watchtower. This ensures that the watchtower has
everything it needs to construct jtx and broadcast it without Bob ever
having to be online.

Note that if jtx is confirmed on the Bitcoin blockchain, ctx2 becomes
invalid as one of its inputs (ctx2’s output number #0) has now been
consumed.

Transaction 5.5: Commitment Transaction 2 in Bitcoin Script-like
pseudocode
CTX2: {

txid: CTX2 _TXID
vin: [{

txid: CTX1 _TXID
index : 0
scriptSig :

0 <Alice sig2 > <Bob sig2 >
OP_TRUE

sequence : 0 x00000090
},{

txid: AUX_CTX_TXID
index : 0
scriptSig :

0 <Alice sig6 > <Bob sig6 >
sequence : 0 x00000090

}]
vout: [{

value : <Alice balance >
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scriptPubKey :
<Alice pubkey7 > OP_CHECKSIG

}]}

Cooperative Closure

If Alice and Bob are done using their channel, and want to get their current
balances out, they create a classic Lightning like closure transaction that
spends topen and allocates balances to Alice and Bob based on the latest
state of the channel. With respect to opening and closing a channel,
Outpost’s transactions on the blockchain will look exactly the same as in
classic Lightning. Listing 5.6 shows a cooperative closure.

Transaction 5.6: Cooperative closure in Bitcoin Script-like pseudocode
CLOSURE : {

txid: CLOSURE_TXID
vin: [{

txid: TOPEN_TXID
index : 0
scriptSig :

0 <Alice sig1 > <Bob sig1 >
}]

vout: [{
value : <Alice balance >
scriptPubKey :

<Alice pubkey_8 > OP_CHECKSIG
}, {

value : <Bob balance >
scriptPubKey :

<Bob pubkey_8 > OP_CHECKSIG
}]}

Cheating

If Alice cheats by broadcasting an earlier state in the form of ctx1, aux_ctx,
and ctx2 to the network, ctx1 and aux_ctx can be mined and confirmed
immediately, but ctx2 is timelocked. In the timelocked time, the watchtower
can watch for aux_ctx on the Bitcoin blockchain, extract and decrypt ejtx
from it to get jtx and broadcast jtx, thereby invalidating ctx2, and also
giving Bob the entire channel balance.

Unilateral Closure

If Bob goes offline, and Alice wants to unilaterally close the channel (not
cheating), she broadcasts the current state in the form of ctx1, aux_ctx, and
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ctx2. She knows that the decryption key for ejtx from the current state
has not been shared with Bob, and hence, not with any watchtower either.
This makes Alice get back her side of the balance, but after a timelock.
This tradeoff of the unilateral channel closure having to wait for timelocks
to expire is the key design insight of classic Lightning, and we preserve the
same principle, but through BIP68 input locks in ctx2.

Griefing

Griefing refers to a class of attacks where the attacker does not want to make
a profit, but puts the counterparty at a disadvantage by deviating from the
protocol. In our protocol, the watchtower can only help if both ctx1 and
aux_ctx are on the blockchain. Alice can initiate a griefing attack when Bob
is offline by broadcasting a ctx1 from an older state and not broadcasting
the corresponding aux_ctx and ctx2. Note that Alice is not cashing out
here, but the watchtower cannot help Bob either - because aux_ctx is not
published on the blockchain.

This attack is possible because topen has been spent by ctx1, and has
created a UTXO that cannot be spent by Bob alone. We can mitigate this
by adding a flow to ctx1 such that the UTXO it creates can be spent by Bob
after a timelock unless it is spent by aux_ctx. This incentivizes Alice to not
publish just ctx1. If she does that, and does not publish the corresponding
aux_ctx and ctx2, the entire channel balance can be swept by Bob after this
timelock expires. Note that this timelock has to be larger than the timelock
in ctx2.
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topen

ctx1 aux_ctx

ctx2jtx

ϵ + ejtx as data

timelocked
timelockedif fraud

Algorithm 5.1: Transaction Flow

5.4 Protocol

In this section, we elaborate on how, at each stage of the protocol,
transactions are signed and exchanged by Alice and Bob. Decryption keys
of encrypted blobs are also exchanged as a part of the protocol.

During channel opening, as with classic Lightning, Alice and Bob
construct a single topen using their own inputs, and make it spendable
by a multisig that they both need to sign. Note that between both Alice
and Bob, there is only one topen. Alice and Bob do not sign this topen
before the follow-up transactions of the next step (ctx1, aux_ctx, and ctx2)
have been exchanged. This ensures that if either party disappears after the
signed topen has been broadcast, the other party is not held in limbo and
can close the channel unilaterally. In the following protocol description,
we use “alice” and “bob” superscripts to denote the transactions that are
held by Alice and Bob. In Lightning channels, both parties keep symmetric
transactions to represent the collective state.

5.4.1 Opening Transaction
Bob → Alice

• A UTXO that Bob controls.
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• Pubkeys that are required for followup transactions.

Alice → Bob

• topen with Alice’s own UTXO filled in. This topen has its
multisig output filled in with one of Bob’s pubkeys and one of
Alice’s own pubkeys. This topen is not signed by either Alice
or Bob yet.

• Two versions of ctx1 (ctx1
alice, ctx1

bob) which share the same
input transaction topen. These two ctx1s have three outputs
each. In ctx1

alice, the 2nd singlesig output is sent to Bob’s
pubkey. In ctx1

bob, the 2nd singlesig output is sent to Alice’s
pubkey. Note that Alice can construct both ctx1s at this
stage, and can even sign for her part of the input (topen) of
each ctx1.

Bob → Alice

• ctx1
alice signed by Bob. Bob signs ctx1

bob and keeps it for
himself.

• jtxbob with Alice’s balance sent to Bob’s pubkey. Bob signs
jtxbob without worry because its output is being sent to him.

Alice → Bob

• jtxalice with Bob’s balance sent to Alice’s pubkey. Alice signs
jtxalice without worry because its output is being sent to her.

• aux_ctxbob: Alice constructs the full signed jtxbob with her
own signature, and encrypts it with a random key to derive
ejtxbob. She then constructs aux_ctxbob with two outputs,
one of which is the OP_RETURN prefixed ejtxbob. Alice signs
aux_ctxbob and sends it to Bob. After getting aux_ctxbob

signed by Alice, Bob signs it as well, but keeps it for himself.

• ctx2
bob: Alice also constructs the signed ctx2

bob, which needs
her signatures for both its inputs: ctx1

bob and aux_ctxbob.
When Bob gets ctx2

bob signed by Alice, he signs it and keeps
it for himself.
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Bob → Alice

• aux_ctxalice: Bob constructs the fully signed jtxalice with his
own signature, and encrypts it with a random key to derive
ejtxalice. He then constructs aux_ctxalice with two outputs,
one of which is the OP_RETURN prefixed ejtxalice. Bob signs
aux_ctxalice and sends it to Alice. After getting aux_ctxalice

signed by Bob, Alice signs it as well, but keeps it for herself.

• ctx2
alice: Bob also constructs the signed ctx2

alice, which
needs his signatures for both its inputs: ctx1

alice and
aux_ctxalice. When Alice gets ctx2

alice, she signs it and keeps
it for herself.

• topen: At this point, Bob has all the followup transactions
signed by Alice with him, and can safely sign topen.

Alice → Blockchain

• topen: At this point, Alice has all the followup transactions
signed by Bob with her, and can safely sign topen and
broadcast it on the Bitcoin network.

5.4.2 State Update
Bob → Alice

• Same as from the Opening Transaction, except for the UTXO
part.

Alice → Bob

• Same as from Opening Transaction, except for the topen part.

Bob → Alice

• Same as from Opening Transaction.

Alice → Bob

• Same as from Opening Transaction.
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Bob → Alice

• Same as from Opening Transaction.

• Decryption Key: At this point, Bob has all the followup
transactions signed by Alice with him and has effectively
moved to the next state. He can now let Alice decrypt the
previous state’s ejtxbob if it is ever seen on the blockchain
(through the confirmation of aux_ctxbob). To do that, Bob
sends Alice the key that can decrypt ejtxbob from the previous
state. Now, Alice can send aux_ctxalice’s txid and this
decryption key to the watchtower.

Alice → Bob

• Decryption Key: At this point, Alice has all the followup
transactions signed by Bob with her and has effectively moved
to the next state. She can now let Bob decrypt the previous
state’s ejtxalice if it is ever seen on the blockchain (through
the confirmation of aux_ctxalice). To do that, Alice sends Bob
the key that can decrypt ejtxalice from the previous state.
Now, Bob can send aux_ctxbob’s txid and this decryption key
to a possibly different watchtower.

5.5 Limitations

5.5.1 OP_RETURN size limit
One key limitation of the Outpost construction is the size constraint on
the OP_RETURN output in aux_ctx. This size limitation is enforced by
the IsStandard function of Bitcoin Core’s reference implementation, which
drops any transaction that has an OP_RETURN output of more than 80 bytes.
This rule is not enforced by the Bitcoin consensus mechanism, in the sense
that transactions with such outputs are considered valid, but not standard.
Miners who see these transactions can still add them to their block template
and generate valid blocks with them. So, aux_ctx can have the OP_RETURN
output we want and can be handed to the miners directly to be included in
their block template without violating Bitcoin’s consensus rules.

Another way to circumvent this size limit is to use the data-hash method
from [58] to encode arbitrary data in a standard Bitcoin transaction. In our
case, we have to split aux_ctx into two transactions, say aux_ctx1 and
aux_ctx2. In aux_ctx1, there will be a hash of a specific redeem script
(thereby making aux_ctx1 a P2SH transaction). The actual redeem script
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will be in aux_ctx2 and will enable the scriptSig of aux_ctx2 to have the
encrypted payload. The payload in our case is a typical jtx that spends
using a multisig and pays to a P2PKH address. With signatures, these
transactions are typically ∼350 bytes long. They can be encrypted with
AES-128 and we get an ejtx of size ∼360 bytes. This can be encoded in
the scriptSig of aux_ctx2 quite easily as the maximum script element size
in Bitcoin is 520 bytes.

5.5.2 Transaction Bloat and Complexity
In the Outpost construction, instead of one ctx per party to handle the
channel update, like in classic Lightning, we have 3 transactions per party
per state. This is not a true limitation, in that we are not increasing storage
cumulatively. Each party needs to just keep their latest state in storage,
and can discard all previous states. So, storing one transaction in classic
Lightning vs three transactions with Outpost should not matter a lot. In
classic Lightning, each party has to store the ctx_txid of each ctx that
its counter-party can broadcast, to watch for cheating transactions. Along
side the ctx_txid, the party has to also store the revocation key needed
to construct the jtx for a cheating ctx. In Outpost, each party has to
store the ctx1_txid of each ctx1 that its counter-party has to broadcast to
cheat. Along side the ctx1_txid, the party has to also store the decryption
key for the encoded ejtx inside the aux_ctx. At the node level, this extra
storage requirement is the same in Outpost as in classic Lightning. But at
the watchtower level, it leads to considerable savings, which we will explore
in the Analysis section.

5.6 Optimization

Each party can derive their jtx encryption keys independently of each other,
forcing the counter-party to store these decryption keys independently. We
can optimize some of this storage away by deriving encryption keys using
a hash-chain or an encrypted-key-chain. Say, Alice wants to generate 1000
encryption keys such that they can be used in a payment channel with Bob
- with one key being used for each state update. As state updates happen,
Alice will give Bob these keys one by one, and Bob has to store all of them,
along with the ctx1_txid for each key. This can be made more efficient
if Bob can just store the most recent key he received from Alice, but can
compute the other keys based on this latest key.

There are multiple schemes that Alice could use to generate encryption
keys such that if Ki and Ki+1 are two keys with timestamps i and i + 1,
then:
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• It is easy for Alice to generate either key from the other.

• It is hard for Bob to generate Ki+1 from Ki, but easy to generate Ki

from Ki+1.

We briefly outline 2 such schemes:

• Alice pre-generates these keys by starting with one random key, and
generating subsequent keys by hashing the previous key, say using
SHA256 - thereby forming a hash-chain. She starts her channel with
Bob by using the last such generated key, and at each followup state,
uses the hash preimage (which is also a hash of its own preimage) as the
next key. Bob can now discard old keys as new keys come along, as he
can always reconstruct them using the commonly known one-way hash
function if he knows the current key and the index number of what
key he wants to reconstruct. This scheme needs Alice to pre-compute
hashes and store them on the “forward chain”, thereby incurring both
computation and storage costs. Going on the “backwards chain” is a
matter of trivial lookup. A more advanced version of this scheme is
found in [59].

• Alice creates an RSA key pair of sufficient length (say, modulus of size
2048 bits), keeps the private key to herself, and shares the public key
with Bob. Say, e and n are the exponent and the modulus components
of the public key. Alice can start the key chain with a large random
number in the range [2 , n − 1 ) and decrypt it using the private key
to generate the next key in the sequence. Note that every number in
the range [2 , n − 1 ) has a valid RSA decryption. A secure one-way
hash function can be used as a key derivation function on this large
number to generate the (smaller) symmetric key required to encrypt
jtx to get ejtx. Bob can always go back the chain and find older keys
by encrypting the latest key using the public key that he knows, but
cannot create newer keys, as it requires decrypting the latest key.

We can even optimize away the need to store ctx1_txid for each state
update. We can embed a channel ID in either ctx1 or aux_ctx which we can
then watch for on the blockchain. We also need to track the index of the
state to be able to derive the right decryption key to construct the necessary
jtx. The channel ID and the index together can be stored as the 4th output
of ctx1 in an OP_RETURN instruction. This gives us constant storage per
channel with respect to what we have to watch for on the blockhain. All we
need to store per channel is the channel ID and seed of the hash-chain.

Using either of the schemes above, Bob’s storage savings can also be
realized at the watchtower level, if Bob is willing to let the watchtower
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know that all of his state updates are from the same channel by providing
a channel ID in each of his watchtower requests. The watchtower then
watches the blockchain for this ID, and can reconstruct all it needs from the
transactions that appear on the blockchain that contain this ID. In case of
a cooperative closure of a channel, Bob can get the watchtower to free up
storage allocated to this channel ID.

5.7 Storage Cost Analysis

We study watchtower storage costs for Outpost vs. Classic Lightning under
two modes of operation.

• Known channel: Watchtower has access to a channel ID (cid)in its
state update stream which allows the watchtower to associate every
update with a specific channel. This mode lets the watchtower know
the number of updates any specific channel has.

• Unknown channel: Watchtower is oblivious to channel identities and
every update is independent of each other. The watchtower does not
know about the number of updates any specific channel has. This
mode marginally improves privacy for the user.

Classic
Known Channel N · (size(txid) + size(ejtx)) + 1 · size(cid)

Unknown Channel N · (size(txid) + size(ejtx))
Outpost

Known Channel 1 · (size(cid) + size(key))
Unknown Channel N · (size(txid) + size(key))

In Classic Lightning, under the “known channel” mode, the watchtower still
has to store the encrypted blobs corresponding to justice transactions, as
these blobs have the victim’s signature which cannot be repurposed for other
transactions. A constant size channel identifier needs to be stored as well,
which ties all the justice transactions together. Storage is proportional to
how many updates the channel has seen (denoted by N) times the size of
ejtx + txid. As per LND’s implementation of watchtowers [57], ejtx need
not contain the full transaction, but just the relevant addresses, signatures,
and other metadata. Our estimate is that ejtx will be around 300-350 bytes.
Classic Lightning’s storage costs do not change in the “unknown channel”
mode.

In Outpost, under the “known channel” mode, we can use the hash chain
trick to just store one key per channel ID. The channel ID’s themselves are
stored in an OP_RETURN output of the corresponding ctx1 and hence add
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no extra txid storage costs to the watchtower. In this optimized state, the
watchtower has to store just a constant sized channel ID and the first key
of the key-chain. In the “unknown channel” mode, the watchtower has to
store the full decryption key per ctx1_txid. This puts the storage cost at
N times the size of the decryption key, which can be as low as 16 bytes for a
symmetric encryption scheme like AES-128. The N additional txid’s have
to be stored as well, to be able to scan the blockchain to know when to act,
as there are no channel ID’s available in this mode.

In the optimized “known channel” mode, we achieve constant storage
by offloading all the storage to the blockchain itself. Note that we are not
bloating the blockchain here. These transactions appear in the blockchain
only when one of the parties attempts to cheat or grief their counterparty.
We believe that given the incentives of Lightning (and thus, Outpost), this is
not common. In the preferred case, the commitment, auxiliary commitment,
or justice transactions do not appear on the blockchain, and we only see the
cooperative closure transaction.

With Outpost, across billions of state updates per channel, we have the
option of constant storage per channel. Or if we want stricter privacy with
respect to the watchtower, we get storage savings of using just 16 bytes vs
350 bytes per state update.

5.8 Alternate Payment Channel Designs

There are alternate payment channel designs that allow for more efficient
watchtower designs. By efficient, we mean the watchtower having constant
storage costs per channel. PISA [60] is a general purpose state channel
system for blockchain systems that support more complex smart contracts
than Bitcoin. In PISA, channel parties can safely go offline if they have
a watchtower (called “custodian” in PISA) watching the blockchain for
fraudulent channel updates. PISA state updates have a monotonically
increasing index, with the custodian always having the ability to broadcast
the latest channel update (with the highest index) in case a channel update
with a lower index appears on the blockchain. The storage costs of the
custodian are proportional to the latest state update, and hence quite space
efficient. PISA enabled state channels are not compatible with Bitcoin.

Eltoo [61] is an alternate payment channel design that is only possible
with a change to Bitcoin’s consensus rules [62]. Eltoo channel updates,
similar to state channels in PISA, have a monotonically increasing index,
with the latest update being able to override any previous update (with a
lower index). This allows the corresponding watchtower to store just the
latest update per channel, and be able to handle any fraudulent update.
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Both PISA and Eltoo watchtowers operate only in the “known channel”
mode.

5.9 Conclusion

Watchtowers typically monitor tens of thousands of channels, and can
potentially handle billions of updates per channel. Getting an order of
magnitude storage savings will go a long way in making it attractive for
developers to implement and host watchtower services for channels to use.
We believe that the additional option of having constant storage per channel
makes Outpost even more appealing. Outpost’s design requires a change to
the way Lightning channels are implemented, but requires no change to
Bitcoin’s rules, and this makes it more likley to materialize in the future.



6
TWAP Oracle Attacks

6.1 Introduction

Bitcoin restricts its smart contracts’ functionality in two fundamental ways:

• No accessible global state.

• Bitcoin’s scripting language not being Turing Complete.

These restrictions (especially the first one) curtail the power of Bitcoin
smart contracts. Hence, decentralized finance (DeFi) building blocks like
exchanges, market makers, lending, borrowing, and stablecoins cannot be
built on Bitcoin without involving trusted intermediaries. Smart contract
platforms such as Ethereum [63] remove both these restrictions, and thereby
have a thriving ecosystem of DeFi smart contracts that recreate financial
services such as lending [64, 65], exchanges [66, 67], asset management [68,
69], and insurance [70] in a fully transparent, trustless, and censorship-
resistant way. Lending and (decentralized) exchange protocols lead the DeFi
ecosystem with lending protocols locking many billions of dollars worth of
assets. Lending protocols and exchanges enable each other in a bi-directional
relationship, with exchanges informing lending protocols about exchange
rates and lending protocols providing liquidity to exchanges. The former
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relationship is often called an oracle, where the exchange acts as an oracle
and provides market data to the lending protocol.

Lending protocols could use off-chain centralized exchanges for their
price feeds. The centralized exchange then controls the lending protocol
through these feeds, and can manipulate the data in these feeds for its own
profit. In the spirit of decentralization and removal of power from trusted
third parties, lending protocols can use on-chain exchanges as oracles for
their price feeds. These off-chain exchanges are free from manipulation by
any trusted third party. On the other hand, they can be manipulated in
other ways by motivated bad actors. In the rest of this chapter, we see
how on-chain oracles can be manipulated to carry out attacks on lending
protocols. These attacks tend to drain lending protocols of their capital by
allowing the attacker to borrow at artificially low collateral ratios and later
default on these loans to earn a sizeable profit. Bitcoin’s conservative design
has eschewed the primitives needed to build such systems, and as such, by
construction, such attacks are not possible in Bitcoin.

6.1.1 Global State
As introduced in Chapter 2, every Bitcoin transaction consumes its source
UTXO’s and creates new UTXO’s. These new UTXO’s are encumbered with
spending conditions that typically involve signatures, preimages of hashes,
or timelocks. Other than these spending conditions, there are no other
limits on how a UTXO is spent in the future. As long as the spending
conditions are satisfied, the owner of a UTXO can spend it any which way
they see fit. In other words, Bitcoin UTXO’s cannot be encumbered by
general purpose covenants that decide how UTXO’s can be spent in the
future. This prevents any state created in a UTXO from being carried
over to the next UTXO, as such preventing the existance of an accessible
global state. There have been proposals ([71], [72], [62]) to enable Bitcoin
UTXO’s to be encumbered with a restricted form of covenants, where the
current transaction can perpetually restrict how the UTXO’s it creates can
be spent in the future (beyond standard spending conditions like digital
signatures, preimages of hashes, or timelocks).

In smart contract platforms like Ethereum, a smart contract has a
canonical on-chain address, and associated globally available state that can
be accessed through the methods of the smart contract. This enables richer
smart contracts which allow all users access to such global state, thereby
enabling DeFi building blocks like market makers, lending protocols, and
the like. Such a global state allows multiple users to access the same smart
contract address, deposit funds to the address, withdraw funds from the
address - as allowed by the smart contract’s code. In other words, state
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created by one user on a smart contract can be accessed by another user
of the same smart contract in the next transaction. If the current state
of a smart contract seems profitable to one user, it can be simultaneously
profitable to many other users. A user can manipulate the state of a smart
contract A such that if other contracts that rely on A can be exploited.
Such interactions are not possible on Bitcoin, as every UTXO (all of which
together makes up the state Bitcoin) is controlled by a spending condition
that is controlled by a limited number of parties and hence cannot be
manipulated by every user of the system.

6.1.2 Lending
Lending protocols are smart contracts that allow borrowers to borrow funds
at an interest rate. The borrowed assets come from a pool of assets that
creditors have deposited as their investments. If this pool suffers a loss due
to a bad debt, the loss is distributed among these creditors. If the borrower
pays back the debt on time, the interest is divided among the creditors who
contributed to the pool from which the loan was made from. Due to the
inability of these protocols to take action against loan defaulters (borrowers
are just public keys on a blockchain), they use over-collateralization to keep
the protocols liquid. The borrower first deposits a units of collateral of asset
A (with dollar value VA per unit) and then borrows b units of some other
asset B (with dollar value VB per unit), with a·VA > b·VB . Collateralization
ratio (C) is defined as C = a·VA

b·VB
. If the borrower does not repay the loan,

the protocol allows any liquidator (a disinterested third party observing the
blockchain) to pay back the borrowed asset and redeem the collateral at a
discounted price. For this to be effective, during the period of the loan, C
should not fall below 1. If it does, the loan becomes undercollateralized.
This can happen if the collateral loses value relative to the borrowed asset
or the borrowed asset appreciates against the collateral asset. As C tends
closer to 1, the lending protocol tries to use the remaining collateral value
to make itself whole again with respect to the borrowed asset. Before a loan
gets fully undercollateralized (C < 1) it can go through a period of “bad
health”, where its C has fallen from the time when the loan was made and
is now close to 1 (with some tolerance). To avoid the risk of going fully
undercollateralized, the protocol offers liquidators a chance to pay back
the loan at a discount, and redeem the remaining collateral for themselves.
This makes the protocol whole again, the liquidator gets collateral for a
slightly cheaper price, and the borrower is liquidated. The borrower is
thus motivated to “top-up” the collateral to make sure that the loan never
becomes unhealthy.



6.1. INTRODUCTION 84

Over-collateralization can work only if the lending protocol knows the
dollar values Va, Vb of assets A, B. These assets are traded on many
centralized exchanges which operate in the real world, outside of the
blockchain in question. Through trusted third parties, it is possible to
get these exchange rates into the lending protocol. These trusted third
parties are also called off-chain oracles. They are not on-chain because
they are dependent on a trusted third party. Their operation is not fully
governed by a smart contract that can be audited by users and about which
users can have assurances of immutability. Lending protocols, which are
themselves deployed as auditable smart contracts on-chain, could prefer on-
chain oracles, which are deployed as smart contracts, but can still report
market-based exchange rates of assets. Automated market makers (AMMs),
a type of exchange, serve as a natural on-chain price oracle. They support
trades between many pairs of assets and can report the relative exchange
rates between asset pairs through state variables available on-chain.

6.1.3 Constant Function Automated Market Makers
Constant Function AMMs [66] are a type of decentralized exchange that
uses a well-known, simple formula to trade one asset for another. An AMM
trading pair is a liquidity pool containing reserves RA, RB of two different
assets A and B. If the AMM is using the constant product model, the
reserves have a constant product RA · RB = K. There is a percentage fee
(1−γ) that is collected for every trade. When a user sells b units of B, they
get a units of A such that the constant-product function (RB + γ · b)(RA −
a) = K is preserved. The spot price of asset A is given by RA

RB
, the spot

price of asset B is RB
RA

. To see how an entirely on-chain artifact like the ratio
of the size of two pools can reflect the true market price (mp) of an asset,
we have to look at arbitrageurs who constantly watch AMM liquidity pools
and other exchanges. Whenever the AMM price deviates from mp, there is
an arbitrage opportunity. An arbitrageur could buy assets on the cheaper
market, then sell them immediately on the more expensive market for a risk-
free profit. In an efficient market, no such arbitrage opportunities should
exist, and price imbalances are quickly resolved. The no-arbitrage condition
describes a market in which no arbitrage opportunities exist. Assuming the
no-arbitrage condition holds, Angeris et al. [73] show that the Uniswap V2
market price deviates from mp by at most (1−γ)mp. Thus, lending protocols
can use Constant Function AMM’s like Uniswap V2 as their oracles to build
over-collateralization mechanisms using artifacts that are entirely on-chain.
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6.2 Attacks on Lending Protocols

First, we describe two well known attacks on lending protocols that can
happen when their price oracles are manipulated to report the wrong price
of the collateral asset vis-à-vis the borrowed asset. Later, we describe how
these oracle manipulations can occur.

During the lifetime of a loan, there is complex interplay between
creditors, the borrower, the liquidator, the lending protocol, and the AMM
oracle. If the on-chain price of the collateral can be manipulated by a bad
actor, the bad actor can also act as a borrower or liquidator to exploit the
lending smart contract to make excess profits at the expense of the creditors.
In the next sections, we describe two such attacks.

6.2.1 Undercollateralized loan attack
A bad actor assumes the role of a borrower to execute this attack. The
attacker allots some capital upfront to the attack, which they divide into
two pools: attack capital and manipulation capital. They first use their
manipulation capital to buy an asset A from the AMM to move the price
of the asset higher. The lending protocol under attack uses this artificially
inflated price of A from the AMM to inform its own collateralization ratio.
Now, the attacker can use their attack capital as collateral on the lending
protocol and borrow the loan asset B. If the price of A had not been
manipulated, the attacker would have been allowed to borrow less of B.
The manipulation of the price of A allows the attacker to borrow more of
B. The attacker then does not repay the loan, and instead sells B in the
open market. If the attacker can also sell A that they had bought earlier
(which they did to manipulate A’s price) at market price, they make a net
profit with the attack.

Let’s consider an example lending protocol that accepts ETH as
collateral and lets anyone borrow USDC. Let the collateralization ratio
of this protocol be fixed to 0.8. Let the market price of ETH/USDC be
$3000. If this correct price is used by the lending protocol, the attacker can
only borrow up to $2400 worth of USDC for every 1 ETH they deposit as
collateral. The attacker manipulates the price to $4000, deposits the same
1 ETH, but is now able to borrow $3200 worth of USDC from the lending
protocol. They can now sell this USDC in the open market and pocket a
profit of $200.

The attack’s profitability also rests on whether the attacker can “de-
manipulate” the price of A back to market price without other users front-
running the attacker. The profit gained by selling B at a higher value
should not be offset by the manipulation capital lost moving the price of



6.2. ATTACKS ON LENDING PROTOCOLS 86

A. Further in the paper, we will see how the attacker manages to execute
the de-manipulation transaction. Such an attack was performed on Inverse
Finance DAO’s Anchor lending protocol, resulting in a loss of USD 15.6
million to the protocol [74].

6.2.2 Liquidation Attack
A bad actor assumes the role of a liquidator to execute this attack. In a
typical loan, collateral asset A is backing the loan asset B. The loan can be
made to appear to be in “bad health” by manipulating the price of A lower
or the price of B higher. The oracle, which feeds the price ratio of A vs.
B to the lending protocol, has to be manipulated to give the impression to
the lending protocol that the price of A has gone lower with respect to the
price of B. The smart contract will then allow liquidators to settle the loan
back in asset B and take asset A out of the protocol, and the liquidator who
manages to get this transaction confirmed will successfully make a profit.
Unlike the undercollateralized loan attack, in this case, the attacker has to
buy asset B from an external exchange to pay back the loan and claim the
collateral asset A with profit.

There is one aspect of the open nature of blockchains that attackers need
to grapple with. As soon as the new price is effective on the on-chain oracle,
other actors also see this and are incentivized to profit from it. The oracle
manipulator now competes with other rational actors to execute either the
undercollateralized loan attack or the liquidation attack, and has to bid up
their transactions to get included in the next block. As we see in later
sections, if the attacker uses our multi-block MEV attack, both attacks
become executable without getting into a race with other actors.

6.2.3 Spot Price Manipulation
In the attacks described in Sections 6.2.1 and 6.2.2, the attacker manipulates
the price of an asset on the lending protocol’s reference AMM. If the
lending protocol uses the naïve spot price of an asset as per its AMM, it
is straightforward to manipulate this spot price. In this case, the steps
of in Sections 6.2.1 and 6.2.2: manipulation, borrow/liquidate, and de-
manipulation can be done atomically in a single blockchain transaction.
Atomicity ensures that arbitrageurs cannot front-run the attacker’s de-
manipulate transaction. This makes the manipulation cheap. To make
matters even worse, the manipulate and de-manipulate steps can be funded
by a so-called “flash-loan” [75]. Flash loans are when a lending protocol lets
users borrow large amounts of assets without collateral if they are returned
back in the same transaction with a small fee. These flash loans remove
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the attack capital requirements. This type of naïve attack is thwarted by
well-known AMMs like Uniswap V2 [76] by not allowing spot prices of assets
to be recorded in the middle of a block and only recording the price value
at the end of a block 1. This forces the manipulate and de-manipulate steps
into different blocks, and flash-loans are no longer an option. Additionally,
the de-manipulate step can be front-run by arbitrageurs who notice the
manipulate step and want to make a profit by bringing back the manipulated
price to the true market price mp. This effect can be made even stronger
by not only relying on the price recorded in one block but as the arithmetic
mean of the price recorded in many blocks in sequence, leading to the Time-
Weighted Average Price (TWAP) oracle.

6.3 TWAP oracles

TWAP oracles double down on the effect mentioned in the previous section,
allowing arbitrageurs to front-run de-manipulating transactions so as to keep
the manipulation expensive for the attacker. If the classic AMM price is read
by the lending protocol in its arithmetic mean setting, we get the advantage
of having the two-block defense against attackers, where the attacker has to
manipulate the price in a block and wait for the next block to de-manipulate
the price. If we extend this to multiple blocks, where the lending protocol
reads the price of an asset averaged over many blocks, the attacker has to
keep the manipulation going for that entire duration and pay the price for
it.

One example of an on-chain price oracle is the Uniswap V2 oracle [76].
It records the price of a particular Uniswap V2 trading pair’s smart contract
before the first trade of each block. This price, multiplied by the number
of seconds that have passed since the last update, is observation pi. All
observations get stored in an accumulator at with at =

∑t

i=1 pi. The
accumulator should always reflect the sum of the spot price at each second
in the history of the contract. An external caller (the lending protocol, for
example) can checkpoint the accumulator’s value at time t1, then again at t2.
Using these values, it calculates a time-weighted average price (specifically,

1Uniswap swap pairs are independent smart contracts that have internal
state variables. To enable this “end of a block” trick, Uniswap stores
the timestamp (overwriting the previous one) of each Uniswap smart contract
call. This variable, called, blockTimestampLast, always has the last smart
contract call timestamp. It is used in conjunction with the most recently
mined block’s timestamp to record the oracle prices in state variables. For
reference, the actual function code is at https://github.com/Uniswap/v2-core/blob/
4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Pair.sol#L73

https://github.com/Uniswap/v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Pair.sol#L73
https://github.com/Uniswap/v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Pair.sol#L73
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arithmetic mean), or TWAP, from t1 to t2 (with LT = t2 − t1) as:

TWAPt1,t2 = at2 − at1

LT

Taking an average over many blocks allows arbitrageurs more time to
successfully front-run an attacker’s de-manipulation transaction. In the
worst case for the attacker, arbitrageurs will front-run the de-manipulation
transaction in every block. TWAP oracles have a clear tradeoff between
manipulation resistance and freshness. Using a larger LT in the TWAP
increases the cost of manipulation, while a shorter TWAP follows the spot
price more closely. Using a longer duration TWAP comes with the risk of
the TWAP not reflecting the true spot price of an asset, and the lending
protocol not responding to real market conditions that cause loans to get
under-collateralized. In the rest of this paper, we assume that the TWAP
uses the arithmetic mean over its range.

6.3.1 TWAP manipulation cost
Let mp be the true market price of an asset A. Let ϵ > 0 be some desired
constant on which we want to parameterize the cost of manipulation C1 of
A for just one block to the new price (1 + ϵ) ·mp. Angeris et al. [73] have
shown this one-block manipulation cost to be:

C1(ϵ) = RB(
√

1 + ϵ + (
√

1 + ϵ)−1 − 2) (6.1)

where RB is the Uniswap V2 trading pair’s liquidity reserve of asset B. This
cost is the amount of tokens of the asset B that the attacker has to deposit
in the AMM contract to move the price of asset A to (1 + ϵ) ·mp. This cost
takes into account the value of asset A tokens that the attacker received
for that specific manipulating trade. This equation assumes no fees, an
infinitely liquid reference market, and the no-arbitrage condition, meaning
that arbitrageurs are assumed to de-manipulate the price every block. As
seen, independently of ϵ, this cost also scales linearly with the size of the
pool (reflected in the parameter RB).

C1(ϵ) is the cost for the attacker to manipulate the oracle for a single
block to report the price of asset A as (1 + ϵ) ·mp. If the lending protocol
uses a TWAP, the attacker (who wants to use attacks from Sections 6.2.1
and 6.2.2) must keep this manipulation ongoing for multiple blocks LT ,
where LT is the length of the TWAP. The total cost of the multi-block
attack is Cm = LT · C1(ϵ). The cost C1(ϵ) is incurred as arbitrage loss
every time an arbitrageur de-manipulates the price instead of the attacker.
This result (6.1) has led to the generally accepted conclusion that “the
cost of manipulating the Uniswap V2 price [oracle] to any fixed amount
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scales linearly with the reserves and the number of blocks” [77]. Next, we
show with our first novel result that an AMM-based price oracle can be
manipulated for higher profits with lower costs.

6.3.2 Single-block attack
The multi-block attack model is assumed to be manipulation-resistant if
the AMM pools have large liquidity reserves. Optimistic users assume that
the attacker needs to pay a huge price of Cm = LT · C1(ϵ) to manipulate
mp to (1 + ϵ)mp over LT successive blocks. Our insight is that the same
effect can be seen if the attacker can manipulate mp for just one block to
(1 + LT · ϵ)mp. We call this the single-block attack. We now show that this
attack is cheaper than the multi-block attack under some circumstances.

The attacker chooses just one block over the range LT and in that one
block makes a trade in the AMM to manipulate the price of the asset from
mp to (1 + LT · ϵ) ·mp. The attacker “de-manipulates” the price back to mp

in the next block. Assuming the price is mp in all other blocks, the oracle
will report a TWAP price of

LT + LT · ϵ
LT

mp = (1 + ϵ)mp

just like the multi-block attack. The cost of manipulation for the single-
block attack is given by C1(LT · ϵ), where the cost is now parameterized by
LT · ϵ instead of just ϵ in the multi-block attack. The single-block attack is
cheaper when LT and ϵ are such that:

LT · C1(ϵ)
C1(LT · ϵ)

> 1 (6.2)

In Equation 6.1, we saw that the cost of single block manipulation scales
with the square root of the parameter ϵ. For the multi-block attack to
succeed, LT number of single block manipulations have to be done over the
time range LT . If we change the single block manipulation parameter from
ϵ to LT · ϵ, the cost of single block manipulation goes up. But as it has to
be done only once, the total cost over the range of LT is now much smaller,
as we don’t have to repeat the manipulation LT number of times. We say
that the single block attack’s cost scales with the square root of the range
LT whereas the multi-block attack’s cost scales linearly with LT .

To find the actual value of ϵ over standard values of LT , we plot the
ratio of multi-block to single-block attacks for LT ranging from 1 to 300
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Algorithm 6.1: Cost comparison between the multi-block and single-
block attack. The y-axis shows how much cheaper the single-block
attack is. The single-block attack is more expensive when the cost
reduction is less than 1. The x-axis is LT .

and multiple values of ϵ to get the graph in Figure 6.12. The break-even
point, where both attacks have an equal cost for a 135 block TWAP oracle
(which is a commonly used value in practice), is at ϵ = 0.574. For higher ϵ,
the single-block attack is cheaper than the multi-block attack. For lower ϵ,
the single-block attack is more expensive. Ironically, an attacker that wants
to manipulate an asset’s price higher to achieve a larger profit can do so in
a proportionately cheaper way.

6.3.3 Failed Assumptions
The idea that the only way to manipulate a TWAP oracle is through the
expensive multi-block attack already makes a few assumptions, like the no-
arbitrage condition, an infinitely liquid external market for asset A which
arbitrageurs can tap into, and that arbitrageurs can always front-run the
attacker’s de-manipulation transaction. These assumptions have to be true
to make the multi-block attack expensive for an attacker, thereby making

2In the undercollateralization loan attack, ϵ is typically in the range 0.2 to 1. In
the liquidation attack, even small values of ϵ, such as 0.01 to 0.1 could be effective in
practice, given that there is a large amount of collateral that is within this range of its
liquidation threshold.
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the TWAP oracle safe to use. If the assumptions do not hold, the multi-
block attack might already not be as expensive as previously thought. The
single block attack, which is cheaper for larger manipulations, also makes
the same assumptions. In this case, the assumptions are even less likely to
hold – thereby making the single block attack even cheaper to execute. In
the following paragraphs, we give reasons why we believe these assumptions
are less likely to hold:

No-arbitrage condition: In the single block attack, arbitrageurs only
have a single block to act, ruling out manual arbitrage, and forcing bot-
based arbitrage. This general-purpose arbitrage bot needs instant access
to a large amount of asset A. This eliminates all off-chain exchanges as
reference markets since it would take at least one block to transfer funds
out of the exchange.

Infinitely liquid external market: Eliminating off-chain exchanges
also makes the assumption that arbitrageurs have access to an infinitely
liquid external market less likely to hold. If arbitrageurs are unable to react
within a single block, the manipulation is free.

Transaction Ordering: Transaction ordering within the block is even
more important in the single block attack than in the multi-block attack. If
the attacker can get a de-manipulation transaction included in the second
block before the arbitrageur can, the attack is also free.

Additionally, against a multi-block attack, a DeFi protocol admin has an
entire TWAP length to notice that a price is being manipulated and trigger
emergency shutdown procedures if they exist. In a single-block attack, the
oracle already reports the manipulated price in the very next block, and
an exploit can take place immediately with no prior warning. Even if all
assumptions hold, the novel result we arrive at is that for large enough ϵ
and LT , the cost of manipulation of a TWAP oracle only scales with the
square root, not linearly with the TWAP length. If some of the assumptions
do not hold, an attack may be dramatically cheaper than expected.

In the next section, we look at a scenario where all these safety
assumptions fail completely. The attacker controls a miner/proposer and
can propose two blocks in a row: one with the manipulating transaction
and one with the de-manipulating transaction.

6.4 Multi-Block MEV

Miner Extractable Value (MEV) is the value that can be extracted by
miners/proposers who decide which transactions go into a block and in
what order. This ordering gives them the power to include their own
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transactions ahead of other users’ transactions and thereby extract value
out of the ordering process, which goes beyond their usual rewards of fees
and block subsidies. Daian et al. [78] first explored the many ways in which
transaction ordering can be used to extract more value. If an attacker could
specify a transaction ordering over not just one but multiple blocks in a
row, they would no longer need to compete with arbitrageurs. We call this
Multi-block MEV, or MMEV.

In the proof-of-work setting, the identity of the next successful miner is
not known ahead of time. However, if a miner does selfish mining [79, 80,
81] and maintains a private chain, they can publish the private chain at an
opportune moment to extract more value than their share of hash power
would warrant. In our case, the selfish miner has an even simpler goal – to
include their own transactions in two blocks in a row and make these two
blocks get into the main blockchain. The MMEV, in this case, is the ability
to cheaply manipulate a TWAP oracle, and additionally, also execute an
under-collateralized loan attack or liquidation attack on a lending protocol
that uses this oracle. We show that selfish mining can enable such MMEV
with much lower shares of total hash power than what is traditionally
expected for profitable selfish mining. Selfish mining attacks on the Uniswap
V2 TWAP oracle are acknowledged in the Uniswap V2 whitepaper [76] and
its security audit [82], but has not been studied formally before.

6.4.1 Manipulation Capital
As before, the total cost of the attack consists of the manipulation capital
and the attack capital. First, we assume that the attacker controls the
contents of two blocks in a row and is able to execute the single block
attack described earlier. This makes the manipulation capital reduce to the
fees of the AMM, as there are no arbitrageurs to fight off because of selfish
mining. Selfish mining itself has a cost that is independent of the attack,
and we will look at that in subsequent sections.

The attacker controls two blocks. In the first block, the attacker buys
am of asset A, increasing the market price to (1 + LT · ϵ) ·mp, as required
by the single block attack. This costs b of asset B. In the first transaction
in the second block, the attacker sells am units of asset A, returning the
market price to mp, receiving b units of B. Under normal circumstances, the
transaction in the first block would be vulnerable to arbitrage. Controlling
two consecutive blocks allows an attacker to be immune to arbitrage and
makes the manipulation cost reduce to just the AMM fee. Note that
the attacks on the lending protocol require separate attack capital that is
independent of the manipulation capital we are discussing here. An MMEV
attack is cheaper than a single-block attack if it is cheaper to create two
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blocks in a row than being vulnerable to an arbitrage that nullifies the
attacker’s de-manipulation transaction. The cost of selfishly mining two
blocks in a row is fixed. It does not depend on LT or ϵ. Assuming a constant
product AMM like Uniswap V2 with RA · RB = K, we can calculate the
required number of tokens of asset B to achieve a price for A of (1+LT ·ϵ)·mp

from Equation 6.1.
Ignoring the AMM fee and assuming a TWAP length of 135 blocks

(30 minutes, if we assume Ethereum as the smart contract platform), we
calculate values of b required for different values of ϵ. Table 6.2 shows
that doubling the TWAP price of A for a 30-minute TWAP (by setting
ϵ = 1) on a pair with $2,000,000 of total liquidity, $1,000,000 worth of A and
B respectively, would require temporary capital of $9,750,000. Increasing
TWAP to 100 ·mp (setting ϵ = 99) would require temporary manipulation
capital of $113,000,000. The amount of manipulation capital required is
likely a bigger limiting factor for an attacker than the cost in fees. This
is an illustrative example using values for liquidity and TWAP length that
could be used in practice. The manipulation capital required scales linearly
with total liquidity and scales with the square root of TWAP length and ϵ.
Note that using a flash loan to acquire the needed funds is not an option,
as this attack spans two blocks.

ϵ b

0.5 6,400,000
1 9,750,000
9 33,000,000
99 113,000,000

Table 6.2: Amounts and trading fee costs for different ϵ

6.4.2 Selfish Mining Cost
Selfish mining cost is given by the opportunity cost of not mining blocks
on the main chain. We model the following miner strategy S: The selfish
miner M mines on the main chain until he successfully mines a block B1.
M does not publish B1 and continues mining on top of B1. If M finds a
second block B2, M immediately publishes both B1 and B2. M ’s chain is
now longer than the main chain, and all honest miners will continue mining
on M ’s chain. We call this a success. If two blocks are added to the main
chain without M finding a block B2, M publishes B1. This will turn B1
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into an uncle block. Then M starts over and returns to mining the main
chain.

0, 0 1, 0

1, 1

2, x1 − p

p

1 − p

p

p1 − p

1

Algorithm 6.3: Markov chain model of strategy S

Let p be the share of the total hash rate that M controls. The probability
of M mining any block is p, and the probability of all other miners mining
that block is 1 − p. We assume that the propagation of newly published
blocks to the network is instantaneous. Let E[S] be the expected number
of blocks it takes to have success when following strategy S. We use the
Markov chain given in Figure 6.3 to model strategy S. The states of the
Markov chain contain pairs of (n1, n2) with n1 = number of blocks on the
private chain and n2 = number of blocks on the main chain. The absorbing
state (2, x) is the state where the selfish miner is leading with the required
length 2 and will release both blocks to the main chain. As this is a finite
discrete absorbing Markov chain, we can calculate the expected hitting time
E[S] of state (2, x) given the initial state is (0, 0) as:

E[S] = 1 + 2p− p2

2p2 − p3

Opportunity Cost: In the original selfish mining research on Bitcoin [79],
the selfish miner forgoes mining rewards if the miner’s private blocks do not
make it to the main blockchain. In Ethereum, there is a way to reduce this
opportunity cost by making these private blocks into public uncle blocks and
collect uncle block rewards. It takes E[S] blocks for MMEV success. During
this time, the miner has a p chance of mining a block. This makes their uncle
block opportunity E[S] · p − 2. The last two blocks cannot count as uncle
blocks as the selfish miner releases them as part of the main blockchain.
Uncle blocks mitigate the attack cost even more, but at the risk of exposing
the fact that the attack is happening to the world at large.
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Total Cost: In Ethereum, blocks are generated every 15 seconds,
leading to 240 blocks per hour.3 The dollar cost of selfish mining is
calculated based on Ethereum’s total hash rate of 715 terahashes/s [83],
and the cost of renting hash power at $60,000 for one terahash/s for 24 hours
[84]. As we see, an attacker can rent 1.5% hash rate for 9 hours by paying
$258,000 and expect to selfishly mine two blocks in a row. As the MMEV
selfish miner has different goals than the traditional selfish miner, a much
lower share of the total hash rate is enough for success. This is important
because renting a higher hash rate can distort the inelastic hash rate market,
and the price per hash will go up. Uncle rewards are reduced by 0.25 ETH
for each generation that they are late. We remove 0.25 ETH from the
average uncle block reward, putting the uncle block reward at 1.46 ETH. If
we look at low values for p, the expected time to success (in hours) and the
approximate total cost in dollars for the attack are shown in Table 6.4.

p E[S] in hours Cost in dollars Uncle Rewards Total Cost
0.25% 335 $1,499,000 $598,000 $901,000
0.50% 84 $754,000 $298,000 $456,000
0.75% 37 $506,000 $198,000 $308,000
1.00% 21 $382,000 $148,000 $234,000
1.25% 13 $307,000 $118,000 $189,000
1.50% 9 $258,000 $98,000 $160,000

Table 6.4: Selfish Mining MMEV hash rates, costs, and rewards

6.4.3 MMEV in Proof of Stake
In the proof-of-stake algorithm currently proposed for Ethereum [85], block
proposers per epoch are known in advance. Two block proposers could
collude and perform MMEV style oracle manipulation. These attacks do
not go against standard consensus rules of blockchains, and hence, colluding
proposers will escape slashing, or even detection.

In proof-of-stake systems that use verifiable randomness functions
(Algorand, Ouroboros family), block proposers cannot be predicted in
advance and MMEV attacks are not possible in the algorithms’ ideal
settings. However if the previous block is used to generate the seed used
in the verifiable randomness function, block proposers could try a “grinding

3In practice, Ethereum has a slightly faster block generation time of 260 blocks per
hour.
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attack”, where they try to improve their odds of proposing two blocks in a
row to enable the MMEV style attack. The incentives for traditional selfish
mining and “stake grinding” attacks are specified in terms of block rewards.
However, an MMEV style attack is entirely independent of block rewards
and can be orders of magnitude more profitable due to DeFi rewards.
These out-sized rewards might make it worthwhile to game the verifiable
randomness functions. This is an area of future research.

6.5 Results

We compare the three different TWAP manipulation attacks we have seen
so far. We again use the example where we want to double the price of
an asset which uses a 30-minute TWAP that uses a pair with $2,000,000
of total liquidity reserves. The cost of the MMEV single-block attack with
1.5% hash rate is $160,000. Based on equation 6.1, the cost of the single-
block attack is C1(135 · 1) = $9,750,000 and the cost of the multi-block
attack is 135 · C1(1) = $16,200,000.

All attacks ignore the rather small AMM trading fee of around $35,000.
The multi-block attack (previous best known attack) cost scales linearly
with the TWAP length LT , whereas the single-block attack costs only scale
with the square root of LT . The MMEV single-block attack avoids this cost
entirely as it has no arbitrageurs to worry about. The cost of selfish mining-
based MMEV single block attacks only depends on the share of hash power
required to pull off the attack in a reasonable time. Even with a conservative
estimate of 1.5%, it is almost two orders of magnitude cheaper than the other
attacks.

6.5.1 Solution 1: Median
First, as seen in the commentary on Equation (6.1), an asset pair having
high liquidity RA, RB makes the costs of the non-MMEV attacks scale
linearly with it, which mitigates the attack to some extent. In the MMEV
attack, only the cost of trading fees scales with liquidity. For both the non-
MMEV and MMEV variants, the amount of temporary capital required
scales linearly with liquidity. Hence, illiquid assets are more likely to get
attacked in the ways discussed above.

Using a longer length for the TWAP is not ideal mitigation against
the non-MMEV and MMEV attacks, as the cost and capital requirements
only scale with the square root of the TWAP length in the best case. The
fundamental issue that these attacks exploit is that a TWAP can be affected
significantly by manipulating a single block’s price. This could be solved by
using a median price instead of an average. A median is largely unaffected
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by outlier prices in single blocks. This eliminates the single-block attack
and requires the MMEV attack to take place over many blocks and not
just two. Though the median makes our single block attacks harder to
execute, it makes the traditional multi-block attacks easier. To manipulate
a median, it is sufficient to manipulate only half the blocks it encompasses.
Consequently, the multi-block attack becomes cheaper by 50% if the median
is used instead of the average.

Additionally, there are engineering issues like the calling contract having
to store checkpoints to calculate the median. Storing and loading these
checkpoints every time the calling contract needs an asset price can become
very expensive in terms of gas costs. Optimizing these is an area of future
research.

A more economic solution could be to use a median of averages with a
small number of averages. One would split the block range into n smaller
ranges using n + 1 checkpoints and calculate the average of each range.
This would mean the majority of ranges would need to contain at least one
block that is manipulated to manipulate the median. Further work would be
needed to analyze the properties of such a median of averages in worst-case
conditions compared to a standard median or average.

6.5.2 Solution 2: Geometric Mean
Uniswap V3 stores the cumulative logarithm (to some base b) of the price
of every pool’s assets instead of the sum as in Uniswap V2. As before, we
denote the length of the TWAP to be LT . Say, the accumulated value of
the logarithm of an asset at time ti as

At =
j=ti∑
i=0

logbPi

This allows a consumer protocol (like a lending protocol) to use the
geometric mean of the pool as

Pt1,t2 = B
At2 −At1

LT

In effect, the geometric mean of the individual prices can also be written as

Pt1,t2 = LT

√√√√ t2∏
i=t1

Pi

To compare TWAPs with arithmetic mean and geometric mean, we assume
the price of an asset to be constant (say mp) over the TWAP period (LT )



6.6. CONCLUSION 98

and hence TWAPs with both arithmetic and geometric means return the
same price. We now try to manipulate the TWAPs in both cases using
the single block attack to reflect a price of (1 + ϵ) · mp. In the case of
the arithmetic mean TWAP, the price of the asset in one block has to be
manipulated to (1 + LT · ϵ) ·mp. In the case of geometric mean TWAP, the
price of the asset in one block has to be manipulated to (1 + ϵ)LT ·mp.

Algorithm 6.5: Cost comparison between the multi-block and single-
block attack with geometric mean. The y-axis shows how much cheaper
the single-block attack is. The single-block attack is more expensive
when the cost reduction is less than 1. The x-axis is LT .

As can be seen in Figure 6.5, manipulating the geometric mean by
manipulating the price of an asset in a single block is more expensive than
multi-block manipulation. This means that Uniswap V3 oracles are not
affected by the single-block attack described in this paper, while Uniswap
V2 oracles are. However, using MMEV to avoid arbitrageurs while executing
the multi-block attack could reduce its costs significantly. This would likely
require controlling many blocks within the TWAP period, not just two.
This makes the attack more difficult and thus more expensive. Analysing
this use-case of MMEV is a topic for future research.

6.6 Conclusion

Under-collaterlaized loan attacks on the lending protocols show the need
for manipulation-resistant oracles. Any protocol that relies in the same
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way on a TWAP oracle is vulnerable. It also turns out that the cost of
manipulation for TWAP oracles is lower than expected as evidenced by the
single-block attack. This attack is cheaper to execute than the previously
known multi-block attack on TWAP oracles. Previously, it was assumed
that TWAP oracles are safe because the multi-block attack is expensive
to execute because the safeguards against the attack are assumed to work.
Now we know that the single block attack is not only cheaper to execute, but
the assumed safeguards do not work. One of the safeguards assumed in the
multi-block attack’s “infeasibility bubble” is that arbitrageurs can get assets
from external off-chain exchanges to revert the manipulated price back to
the market price. The single block attack leaves no time for arbitrageurs to
do this, thereby restricting this assumption to just on-chain exchanges.

Another safeguard that is assumed in the multi-block attack’s
“infeasibility bubble” is that arbitrageurs will always arbitrage the
manipulated price back to the market price. Under the MMEV setting, if an
attacker can mine two blocks in a row, this no-arbitrage condition fails, and
the attack gets dramatically cheaper. The area of MMEV is under-explored
and should be analyzed for other exploits that are only possible when an
attacker controls multiple blocks in a row.

These attacks do not target a specific victim transaction. The goal is
to manipulate an oracle that a DeFi protocol relies upon and exploit the
protocol. A protocol’s structural reliance on an oracle does not change much
with time, and this attack is always available for the taking, based on the
attacker’s ability to acquire capital to pull off the attack. One solution
is that TWAP oracles should use the median or the geometric mean as
a manipulation-resistant statistic instead of a mean. An interesting open
research question is to analyze the effect of MMEV attacks on geometric
mean TWAPs or other types of metrics that also reflect an asset’s true
market price.

Bitcoin, with its conservative design, eschews stateful interoperable
smart contracts that allow such attacks. If general purpose covenants on
UTXO’s are enabled, we could have smart contracts on Bitcoin where such
Oracle manipulation attacks are possible. It can be argued that such smart
contract functionality on Bitcoin is desirable, as it enables decentralized
financial applications on the oldest blockchain in existence. As the results
in this chapter show, such smart contracts can be attacked by unscrupulous
actors. Therefore, Bitcoin primitives that enable such smart contracts, and
the smart contracts themselves, need to be carefully designed to avoid such
attacks.
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Conclusion

“I think the internet is going to be one of the major forces for
reducing the role of government. The one thing that’s missing, but
that will soon be developed, is a reliable e-cash, a method whereby
on the Internet you can transfer funds from A to B without A
knowing B or B knowing A.”

— Milton Friedman, in 1999

Bitcoin is a few years into its mission of separating money and state.
Skeptics have asked questions around its properties of censorship resistance,
privacy, scalability, and survival - all of which are required from any new
form of money. In this thesis, we have tried to answer a few questions related
to these properties.

7.1 Summary

Censorship Resistance: Bitcoin miners do not need anyone’s permission
to start mining on the network, and there is no standard way for miners
to coordinate censorship of transactions. In Chapter 3, we asked whether
a certain type of timelocked transaction, only valid in the future, could

100
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motivate miners to loosely coordinate and censor a transaction valid at
present. We argued that the existence of “weak” miners increases the
chance of these valid transactions of being confirmed on the blockchain.
The common knowledge of the existence of weak miners also incentivizes
stronger miners to include these transactions. We also derive the necessary
ratio of the fees to be paid by the victim transaction to the bribe being paid
by the censoring transaction.

Privacy: We have argued that doing coin-swaps increases the privacy of
everyone in the Bitcoin ecosystem. In Chapter 4, we looked at a new way of
doing Atomic Swaps that removes “griefing” from the naïve standard swap
construction. This new construction should incentivize more people to do
swaps as a part of their standard privacy protocol.

Scalability: Payment channel networks like the Lightning Network
enable orders of magnitude more number of Bitcoin transactions than are
possible on the main blockchain. This scale comes at the cost of having
an always online party who monitors the blockchain for cheating attempts
by malicious parties. In Chapter 5, we came up with a new architecture
for these always online parties (watchtowers) which reduces their running
cost. Our hope is that with this version of the watchtower being easy
to implement, more service providers will implement them, leading to the
increased adoption of the Lightning Network.

Survival: Bitcoin’s smart contracts are severely restricted compared to
other smart contract platforms like Ethereum. In Chapter 6, we argue
that such a conservative smart contract paradigm makes implementing
building blocks of decentralized finance (DeFi) protocols harder, and that
is a good thing. We show that DeFi protocols that rely on on-chain
oracles are easy to attack by manipulating the oracle. Most DeFi protocols
eventually supplement their on-chain oracles with off-chain oracles, and
thereby increase risk by placing trust in a trusted third party. Bitcoin
eschews this entire paradigm by not allowing global state, and thereby
preventing such smart contracts. In the long run, Bitcoin’s mission on
being money outweighs the ostensible benefits of running DeFi protocols
that are somewhat orthogonal to the main mission. With its conservative
design around smart contracting abilities, Bitcoin maximizes survival at the
expense of smart contract market share.

7.2 Future Research

Multi-Block Miner Extractable Value: In Chapter 6, we saw that
using the median or the geometric mean of prices can increase the costs of
single/multi block attacks on oracle based DeFi contracts. The interplay
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between such statistics and the ability of bad actors to control multiple
blocks in a row needs to be studied further.

Bitcoin Transaction Structures: In the sections on Risk Free Atomic
Swaps from Chapter 3, Grief Free Atomic Swaps from Chapter 4, and the
Commitment Transaction construction from Chapter 5, we can see that
adding a layer of transaction indirection solves seemingly unrelated problems
of introducing fees, enabling grief-freeness, and encoding future transaction
data in current transactions. We believe that there might be a unifying
abstraction about how to structure Bitcoin transactions to solve specific
protocol level problems.

Global State in Bitcoin: Proposals like BIP 118/119 add a hint of
global state to Bitcoin. We believe that there is a tradeoff between adding
global state to Bitcoin and how it enables protocol level attacks that threaten
Bitcoin’s survival in the long run. Formal analysis of this trade-off would
likely lead to a positive outcome one way or another: Bitcoin adopts those
changes and gets the promised features, or Bitcoin eschews those changes
and optimizes for long term survival.



Bibliography

[1] Satoshi Nakamoto. Bitcoin: A Peer-To-Peer Electronic Cash System.
https://bitcoin.org/bitcoin.pdf. 2008.

[2] Tejaswi Nadahalli, Majid Khabbazian, and Roger Wattenhofer.
“Timelocked Bribing”. In: Financial Cryptography and Data Security.
2021.

[3] Tejaswi Nadahalli, Majid Khabbazian, and Roger Wattenhofer.
“Grief-free Atomic Swaps”. In: 2022 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC). 2022.

[4] Majid Khabbazian, Tejaswi Nadahalli, and Roger Wattenhofer.
“Outpost: A Responsive Lightweight Watchtower”. In: Proceedings of
the 1st ACM Conference on Advances in Financial Technologies. AFT
’19. 2019.

[5] Torgin Mackinga, Tejaswi Nadahalli, and Roger Wattenhofer. “TWAP
Oracle Attacks: Easier Done than Said?” In: 2022 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC). 2022.

[6] Eric Voskuil. Axiom of Resistance. url: https : / / github . com /
libbitcoin/libbitcoin-system/wiki/Axiom-of-Resistance.

[7] CoinSwap: Transaction graph disjoint trustless trading. https : / /
bitcointalk.org/index.php?topic=321228.0. 2018.

[8] A Simple Payjoin Proposal. https://github.com/bitcoin/bips/
blob/master/bip-0078.mediawiki. 2019.

[9] ZmnSCPxj. Payswap. https : / / lists . linuxfoundation . org /
pipermail/bitcoin-dev/2020-January/017596.html. 2020.

103

https://bitcoin.org/bitcoin.pdf
https://github.com/libbitcoin/libbitcoin-system/wiki/Axiom-of-Resistance
https://github.com/libbitcoin/libbitcoin-system/wiki/Axiom-of-Resistance
https://bitcointalk.org/index.php?topic=321228.0
https://bitcointalk.org/index.php?topic=321228.0
https://github.com/bitcoin/bips/blob/master/bip-0078.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0078.mediawiki
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2020-January/017596.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2020-January/017596.html


BIBLIOGRAPHY 104

[10] Satoshi Nakamoto. Bitcoin Core Source Code, Version 0.1.0. https:
//bitcointalk.org/index.php?topic=68121.0. 2009.

[11] Georgia Avarikioti, Orfeas Stefanos Thyfronitis Litos, and Roger
Wattenhofer. Cerberus Channels: Incentivizing Watchtowers for
Bitcoin. Cryptology ePrint Archive, Report 2019/1092. https://ia.
cr/2019/1092. 2019.

[12] Richard Cleve. “Limits on the security of coin flips when half the
processors are faulty”. In: Proceedings of the eighteenth annual ACM
symposium on Theory of computing. 1986, pp. 364–369.

[13] Henning Pagnia and Felix C Gärtner. On the impossibility of fair
exchange without a trusted third party. Tech. rep. Citeseer, 1999.

[14] Matthew K Franklin and Michael K Reiter. “Fair exchange with a
semi-trusted third party”. In: Proceedings of the 4th ACM Conference
on Computer and Communications Security. 1997, pp. 1–5.

[15] Nadarajah Asokan, Victor Shoup, and Michael Waidner. “Optimistic
fair exchange of digital signatures”. In: International Conference on
the Theory and Applications of Cryptographic Techniques. Springer.
1998, pp. 591–606.

[16] Tier Nolan. Atomic Swaps. https://bitcointalk.org/index.php?
topic=193281.msg2224949. 2013.

[17] Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, and Pedro
Moreno-Sánchez. Universal Atomic Swaps: Secure Exchange of Coins
Across All Blockchains. Cryptology ePrint Archive, Paper 2021/1612.
2021. url: https://eprint.iacr.org/2021/1612.

[18] Arthur Gervais et al. “On the Security and Performance of Proof
of Work blockchains”. In: Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security. ACM. 2016.

[19] Christian Decker and Roger Wattenhofer. “A Fast and Scalable
Payment Network with Bitcoin Duplex Micropayment Channels”. In:
Symposium on Self-Stabilizing Systems. 2015.

[20] Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning Network:
Scalable Off-Chain Instant Payments. 2016.

[21] LND Authors. LND: The Lightning Network Daemon. https : / /
github.com/lightningnetwork/lnd.

[22] Eclair Authors. A Scala Implementation of the Lightning Network.
https://github.com/ACINQ/eclair.

https://bitcointalk.org/index.php?topic=68121.0
https://bitcointalk.org/index.php?topic=68121.0
https://ia.cr/2019/1092
https://ia.cr/2019/1092
https://bitcointalk.org/index.php?topic=193281.msg2224949
https://bitcointalk.org/index.php?topic=193281.msg2224949
https://eprint.iacr.org/2021/1612
https://github.com/lightningnetwork/lnd
https://github.com/lightningnetwork/lnd
https://github.com/ACINQ/eclair


BIBLIOGRAPHY 105

[23] C-Lightning Authors. c-lightning - a Lightning Network
implementation in C. https : / / github . com / ElementsProject /
lightning.

[24] LIT Authors, MIT Digital Currency Initiative. Lightning Network
node software. https://github.com/mit-dci/lit.

[25] BOLT Authors. Lightning Network Specifications. https://github.
com/lightningnetwork/lightning-rfc.

[26] Joseph Bonneau et al. “SOK: Research Perspectives and Challenges
for Bitcoin and Cryptocurrencies”. In: 2015 IEEE Symposium on
Security and Privacy. 2015.

[27] Andrew Miller. Feather-forks: enforcing a blacklist with sub-50% hash
power. https : / / bitcointalk . org / index . php ? topic = 312668 . 0.
2013.

[28] Kevin Liao and Jonathan Katz. “Incentivizing Blockchain Forks
via Whale Transactions”. In: International Conference on Financial
Cryptography and Data Security. 2017.

[29] Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn. Smart
Contracts for Bribing Miners. Cryptology ePrint Archive, Report
2018/581. https://eprint.iacr.org/2018/581. 2018.

[30] Mark Friedenbach et al. BIP68: Relative lock-time using consensus-
enforced sequence numbers. https://github.com/bitcoin/bips/
blob/master/bip-0068.mediawiki. 2015.

[31] Peter Todd. BIP68: CHECKLOCKTIMEVERIFY. url: https : / /
github . com / bitcoin / bips / blob / master / bip - 0065 . mediawiki.
2014.

[32] BtcDrak, Mark Friedenbach, and Eric Lombrozo. BIP112:
CHECKSEQUENCEVERIFY. url: https://github.com/bitcoin/
bips/blob/master/bip-0112.mediawiki. 2015.

[33] Philip Daian et al. “Flash boys 2.0: Frontrunning in decentralized
exchanges, miner extractable value, and consensus instability”. In:
2020 IEEE Symposium on Security and Privacy (SP). 2020.

[34] BOLT Authors. Lightning Network Specifications, Bolt 3. https://
github.com/lightningnetwork/lightning-rfc/blob/master/03-
transactions.md.

[35] Maurice Herlihy. “Atomic Cross-Chain Swaps”. In: Proceedings of the
2018 ACM Symposium on Principles of Distributed Computing. 2018.

https://github.com/ElementsProject/lightning
https://github.com/ElementsProject/lightning
https://github.com/mit-dci/lit
https://github.com/lightningnetwork/lightning-rfc
https://github.com/lightningnetwork/lightning-rfc
https://bitcointalk.org/index.php?topic=312668.0
https://eprint.iacr.org/2018/581
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md


BIBLIOGRAPHY 106

[36] Runchao Han, Haoyu Lin, and Jiangshan Yu. “On the Optionality and
Fairness of Atomic Swaps”. In: Proceedings of the 1st ACM Conference
on Advances in Financial Technologies. 2019.

[37] 1ML. https://1ml.com/.
[38] BOLT Authors. Lightning Network Specifications, Bolt 2. https://

github.com/lightningnetwork/lightning-rfc/blob/master/02-
peer-protocol.md.

[39] Atomic Swaps Explained: The Ultimate Beginner’s Guide. https://
komodoplatform.com/atomic-swaps/. 2018.

[40] BitMEX Research. Atomic Swaps and Distributed Exchanges: The
Inadvertent Call Option. https://blog.bitmex.com/atomic-swaps-
and-distributed-exchanges-the-inadvertent-call-option/.

[41] Dan Robinson. HTLCs Considered Harmful. https : / / cyber .
stanford.edu/sites/g/files/sbiybj9936/f/htlcs_considered_
harmful.pdf. 2019.

[42] Fredrik Winzer, Benjamin Herd, and Sebastian Faust. “Temporary
Censorship Attacks in the Presence of Rational Miners”. In: IEEE
Security & Privacy on the Blockchain (IEEE S & B). https : / /
eprint.iacr.org/2019/748. 2019.

[43] Aljosha Judmayer et al. Pay-To-Win: Incentive Attacks on Proof-of-
Work Cryptocurrencies. Cryptology ePrint Archive, Report 2019/775.
https://eprint.iacr.org/2019/775. 2019.

[44] Itay Tsabary, Matan Yechieli, and Ittay Eyal. MAD-HTLC: Because
HTLC is Crazy-Cheap to Attack. 2020. arXiv: 2006.12031 [cs.CR].

[45] Transaction Pinning. https : / / bitcoinops . org / en / topics /
transaction-pinning/.

[46] CPFP Carve-out. https : / / bitcoinops . org / en / topics / cpfp -
carve-out/.

[47] Anchor Outputs. https : / / github . com / lightningnetwork /
lightning-rfc/pull/688. 2019.

[48] “"Selfish Mining Re-Examined"”. In: 2020.
[49] An orphan block on the bitcoin (BTC) blockchain. https : / / en .

cryptonomist . ch / 2019 / 05 / 28 / orphan - block - bitcoin - btc -
blockchain/. 2019.

[50] Felix Konstantin Maurer. “A survey on approaches to anonymity in
Bitcoin and other cryptocurrencies”. In: Informatik 2016 (2016).

https://1ml.com/
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md
https://komodoplatform.com/atomic-swaps/
https://komodoplatform.com/atomic-swaps/
https://blog.bitmex.com/atomic-swaps-and-distributed-exchanges-the-inadvertent-call-option/
https://blog.bitmex.com/atomic-swaps-and-distributed-exchanges-the-inadvertent-call-option/
https://cyber.stanford.edu/sites/g/files/sbiybj9936/f/htlcs_considered_harmful.pdf
https://cyber.stanford.edu/sites/g/files/sbiybj9936/f/htlcs_considered_harmful.pdf
https://cyber.stanford.edu/sites/g/files/sbiybj9936/f/htlcs_considered_harmful.pdf
https://eprint.iacr.org/2019/748
https://eprint.iacr.org/2019/748
https://eprint.iacr.org/2019/775
https://arxiv.org/abs/2006.12031
https://bitcoinops.org/en/topics/transaction-pinning/
https://bitcoinops.org/en/topics/transaction-pinning/
https://bitcoinops.org/en/topics/cpfp-carve-out/
https://bitcoinops.org/en/topics/cpfp-carve-out/
https://github.com/lightningnetwork/lightning-rfc/pull/688
https://github.com/lightningnetwork/lightning-rfc/pull/688
https://en.cryptonomist.ch/2019/05/28/orphan-block-bitcoin-btc-blockchain/
https://en.cryptonomist.ch/2019/05/28/orphan-block-bitcoin-btc-blockchain/
https://en.cryptonomist.ch/2019/05/28/orphan-block-bitcoin-btc-blockchain/


BIBLIOGRAPHY 107

[51] Gregory Maxwell. “Zero knowledge contingent payment. 2011”. In:
URl: https://en. bitcoin. it/wiki/Zero Knowledge Contingent Payment
(visited on 05/01/2016) (2016).

[52] Ethan Heilman, Sebastien Lipmann, and Sharon Goldberg. “The
Arwen Trading Protocols”. In: Financial Cryptography and Data
Security - 24th International Conference, FC 2020, Kota Kinabalu,
Malaysia, February 10-14, 2020 Revised Selected Papers. 2020.

[53] Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. “Fairswap: How
to fairly exchange digital goods”. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security.
2018, pp. 967–984.

[54] Lisa Eckey, Sebastian Faust, and Benjamin Schlosser. “Optiswap:
Fast optimistic fair exchange”. In: Proceedings of the 15th ACM
Asia Conference on Computer and Communications Security. 2020,
pp. 543–557.

[55] Yingjie Xue and Maurice Herlihy. “Hedging Against Sore Loser
Attacks in Cross-Chain Transactions”. In: PODC’21. 2021.

[56] Olaoluwa Osuntokun. Hardening Lightning, Stanford Cyber Initiative.
2018.

[57] LND Authors. LND: The Lightning Network Daemon, Watchtowers.
https : / / github . com / lightningnetwork / lnd / blob / master /
watchtower/blob/justice_kit.go.

[58] Andrew Sward, Ivy Vecna, and Forrest Stonedahl. “Data Insertion in
Bitcoin’s Blockchain”. In: 3 (2018).

[59] Rusty Russel. Efficient Chains Of Unpredictable Numbers. https :
//github.com/rustyrussell/ccan/blob/master/ccan/crypto/
shachain/design.txt. 2016.

[60] Patrick McCorry et al. Pisa: Arbitration Outsourcing for State
Channels. Cryptology ePrint Archive, Paper 2018/582. https : / /
eprint.iacr.org/2018/582. 2018. url: https://eprint.iacr.
org/2018/582.

[61] Christian Decker and R. Russell. eltoo : A Simple Layer 2 Protocol for
Bitcoin. 2018.

[62] Christian Decker and Anthony Towns. BIP 119:
SIGHASHANY P REV OUT forT aprootScripts. 2020. url: https :
//github.com/bitcoin/bips/blob/master/bip-0118.mediawiki.

https://github.com/lightningnetwork/lnd/blob/master/watchtower/blob/justice_kit.go
https://github.com/lightningnetwork/lnd/blob/master/watchtower/blob/justice_kit.go
https://github.com/rustyrussell/ccan/blob/master/ccan/crypto/shachain/design.txt
https://github.com/rustyrussell/ccan/blob/master/ccan/crypto/shachain/design.txt
https://github.com/rustyrussell/ccan/blob/master/ccan/crypto/shachain/design.txt
https://eprint.iacr.org/2018/582
https://eprint.iacr.org/2018/582
https://eprint.iacr.org/2018/582
https://eprint.iacr.org/2018/582
https://github.com/bitcoin/bips/blob/master/bip-0118.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0118.mediawiki


BIBLIOGRAPHY 108

[63] Gavin Wood et al. “Ethereum: A secure decentralised generalised
transaction ledger”. In: Ethereum project yellow paper 151.2014
(2014), pp. 1–32.

[64] Robert Leshner and Geoffrey Hayes. “Compound: The money market
protocol”. In: (Feb. 2019). url: https : / / compound . finance /
documents/Compound.Whitepaper.pdf (visited on 07/05/2021).

[65] Aave Protocol Whitepaper V1.0. url: https://github.com/aave/
aave-protocol/blob/master/docs/Aave_Protocol_Whitepaper_v1_
0.pdf (visited on 06/07/2021).

[66] Yi Zhang, Xiaohong Chen, and Park Daejun. “Formal specification of
constant product (xy=k) market maker model and implementation”.
In: (Oct. 2018). url: https://github.com/runtimeverification/
verified- smart- contracts/blob/uniswap/uniswap/x- y- k.pdf
(visited on 07/09/2021).

[67] Will Warren and Amir Bandeali. “0x: An open protocol for
decentralized exchange on the Ethereum blockchain”. In: (Feb. 2017),
pp. 04–18. url: https://github.com/0xProject/whitepaper (visited
on 07/05/2021).

[68] Yearn Finance. url: https : / / docs . yearn . finance/ (visited on
07/07/2021).

[69] Convex Finance. url: https://www.convexfinance.com/ (visited on
07/07/2021).

[70] Hugh Karp and Reinis Melbardis. Nexus Mutual. url: https : / /
nexusmutual.io/assets/docs/nmx_white_paperv2_3.pdf (visited
on 05/05/2021).

[71] Malte Möser, Ittay Eyal, and Emin Gün Sirer. “Bitcoin Covenants”.
In: Financial Cryptography and Data Security. 2016.

[72] Jeremy Rubin. BIP 119: CHECKTEMPLATEVERIFY. 2020. url:
https : / / github . com / bitcoin / bips / blob / master / bip - 0119 .
mediawiki.

[73] Guillermo Angeris et al. “An analysis of Uniswap markets”. In: arXiv
e-prints, arXiv:1911.03380 (Nov. 2019), arXiv:1911.03380. arXiv:
1911.03380 [q-fin.TR].

[74] Inverse Finance got flipped for $15M. https://rekt.news/inverse-
finance-rekt/.

[75] Kaihua Qin et al. Attacking the DeFi Ecosystem with Flash Loans for
Fun and Profit. 2021. arXiv: 2003.03810 [cs.CR].

https://compound.finance/documents/Compound.Whitepaper.pdf
https://compound.finance/documents/Compound.Whitepaper.pdf
https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_Whitepaper_v1_0.pdf
https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_Whitepaper_v1_0.pdf
https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_Whitepaper_v1_0.pdf
https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf
https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf
https://github.com/0xProject/whitepaper
https://docs.yearn.finance/
https://www.convexfinance.com/
https://nexusmutual.io/assets/docs/nmx_white_paperv2_3.pdf
https://nexusmutual.io/assets/docs/nmx_white_paperv2_3.pdf
https://github.com/bitcoin/bips/blob/master/bip-0119.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0119.mediawiki
https://arxiv.org/abs/1911.03380
https://rekt.news/inverse-finance-rekt/
https://rekt.news/inverse-finance-rekt/
https://arxiv.org/abs/2003.03810


BIBLIOGRAPHY 109

[76] Hayden Adams, Noah Zinsmeister, and Robinson Dan. Uniswap V2
Core. Mar. 2020. url: https : / / uniswap . org / whitepaper . pdf
(visited on 07/02/2021).

[77] Guillermo Angeris. When is Uniswap a good oracle? Feb. 2020. url:
https://medium.com/gauntlet- networks/why- is- uniswap- a-
good-oracle-22d84e5b0b6c (visited on 07/23/2021).

[78] Philip Daian et al. Flash Boys 2.0: Frontrunning, Transaction
Reordering, and Consensus Instability in Decentralized Exchanges.
2019. arXiv: 1904.05234 [cs.CR].

[79] Ittay Eyal and Emin Gün Sirer. “Majority is not enough: Bitcoin
mining is vulnerable”. In: International conference on financial
cryptography and data security. Springer. 2014, pp. 436–454.

[80] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. “Optimal
selfish mining strategies in bitcoin”. In: International Conference
on Financial Cryptography and Data Security. Springer. 2016,
pp. 515–532.

[81] Fabian Ritz and Alf Zugenmaier. “The Impact of Uncle Rewards on
Selfish Mining in Ethereum”. In: 2018 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW) (2018).

[82] Dapp.org. Uniswap V2 Audit Report. 2020. url: https://uniswap.
org/audit.html (visited on 05/05/2021).

[83] Ethereum Network Hash Rate. url: https : / / ycharts . com /
indicators/ethereum_network_hash_rate (visited on 05/24/2021).

[84] Nicehash Hash power Marketplace. url: https://www.nicehash.com/
marketplace (visited on 05/24/2021).

[85] Vitalik Buterin et al. “Combining GHOST and Casper”. In: CoRR
abs/2003.03052 (2020). arXiv: 2003.03052. url: https://arxiv.
org/abs/2003.03052.

https://uniswap.org/whitepaper.pdf
https://medium.com/gauntlet-networks/why-is-uniswap-a-good-oracle-22d84e5b0b6c
https://medium.com/gauntlet-networks/why-is-uniswap-a-good-oracle-22d84e5b0b6c
https://arxiv.org/abs/1904.05234
https://uniswap.org/audit.html
https://uniswap.org/audit.html
https://ycharts.com/indicators/ethereum_network_hash_rate
https://ycharts.com/indicators/ethereum_network_hash_rate
https://www.nicehash.com/marketplace
https://www.nicehash.com/marketplace
https://arxiv.org/abs/2003.03052
https://arxiv.org/abs/2003.03052
https://arxiv.org/abs/2003.03052


Curriculum Vitae

1979 Born in Bangalore, India

1997 – 2001 B.E in Computer Science
PESIT, Bangalore University, India

2001 – 2002 Software Engineer, ThoughtWorks, Bangalore

2002 – 2004 Software Engineer, Yahoo!, Bangalore

2004 – 2006 M.Tech. in Information Technologies
IIT-Bombay, India

2006 – 2009 Software Engineer, Guruji, Bangalore

2009 – 2010 Software Engineer, Conductor, New York City

2010 – 2012 Co-Founder, Visual Revenue, New York City

2012 – 2014 Director of Engineering, Impermium, Palo Alto

2014 – 2018 Software Engineer, Google Zürich

2018 – 2023 Ph.D. Student (Doctor of Sciences)
Distributed Computing Group, ETH Zürich


	Introduction
	Bitcoin is Money
	Censorship Resistance
	Privacy
	Scalability
	Conservative Design
	Why improve Bitcoin?

	Background
	What is Bitcoin?
	What does a Bitcoin node do?
	Bitcoin's Transaction Notation
	HTLC
	Atomic Swaps
	Payment Channels and the Lightning Network

	Timelocked Bribing
	Introduction
	Analysis
	Solutions
	Related Work
	Conclusion

	Grief-free Atomic Swaps
	Introduction
	System Model
	Atomic Swaps: Prior Work
	Grief-free Atomic Swap
	Conclusion

	Outpost: A Lightweight Watchtower
	Introduction
	Background
	Outpost
	Protocol
	Limitations
	Optimization
	Storage Cost Analysis
	Alternate Payment Channel Designs
	Conclusion

	TWAP Oracle Attacks
	Introduction
	Attacks on Lending Protocols
	TWAP oracles
	Multi-Block MEV
	Results
	Conclusion

	Conclusion
	Summary
	Future Research


