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Ferroelectric materials exhibit an atomic-level electric dipole moment, known as 

spontaneous polarization, which can be reoriented by an applied electric field. 

Furthermore, ferroelectrics tend to form a microstructure consisting of regions of identical 

polarization orientation, called domains, separated by domain walls. This thesis aims to 

enhance the predictability of ferroelectric material response at the macroscale by gradually 

refining our understanding of the kinetics of polarization switching at lower length scales. 

This is achieved by examining the intricate interaction between ferroelectric microstructure 

evolution, which occurs through the nucleation and growth of domains, and structural 

defects, such as pores and grain boundaries. In addition, finite-temperature effects play a 

crucial role in the formation and evolution of ferroelectric domain patterns. To accurately 

predict the effective material behavior at the device-level, it is essential to consider all of 

these factors in our models.

The first part of this thesis details a novel finite-temperature constitutive model for 

ferroelectric lead zirconate titanate (PZT) ceramics that accounts for the temperature 

dependence of the first-principles-informed polarization potential and the effect of thermal 

lattice vibrations. Based on statistical mechanics, a temperature-dependent Gaussian noise 

is introduced to the evolution equation for the polarization, which mimics atomic-level 

lattice vibrations at the continuum scale. The theoretical derivation and Fourier-based 

implementation are discussed, along with numerical examples and experimental 

observations. Results show that thermal fluctuations can induce branching of existing 

domains and nucleation of new domains. These finite-temperature effects stimulate the 

effective switching kinetics and promote the formation of realistic domain patterns, 

reminiscent of ferroelectric microstructure observed in experiments.

The second part of the thesis investigates the combined effect of porosity and temperature 

on porous, single-crystalline PZT by utilizing the developed finite-temperature model. 

Circular pores are modeled, and their impact on an approaching ferroelectric domain wall 

is investigated. The results show that larger pore sizes and higher densities impede the 

kinetics of domain walls, while an increase in temperature mitigates the pinning effect of 

pores, enhancing the mobility of domain walls. These findings are generally consistent with 

experimental reports and emphasize the importance of considering finite-temperature 

effects on effective switching kinetics.

The third part of this thesis presents a high-resolution phase-field analysis of complex 

domain pattern formation in tetragonal PZT ceramics, showing well-known lamellar bands 

within grains and wedged-shaped domains near grain boundaries. The simulations of 

polycrystalline PZT, which combined more than 12,000 grain samples, revealed distinct 

correlations between grain orientation and the grain-averaged polarization, strain, and 

domain density that are consistent with experimental reports and theoretical models. In 

addition, we discuss novel computational techniques for domain wall identification and 

tracking, and demonstrate their ability to assess the domain wall density and effective 

switching mechanism of an evolving ferroelectric microstructure.

In summary, the newly introduced models and findings help predict and understand 

domain switching mechanisms in ferroelectric materials by considering crucial effects of 

structural defects and temperature. The finite-temperature phase-field framework presents 

a powerful tool to efficiently studying the lower-scale mechanics of domain evolution, 

which play a key role in the macroscopic switching kinetics and are challenging to capture 

with experimental techniques in this detail.
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strain energy (lower third). 
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A B S T R A C T

Ferroelectric materials exhibit an atomic-level electric dipole moment,
known as spontaneous polarization, which can be reoriented by an ap-
plied electric field. Furthermore, ferroelectrics tend to form a microstructure
consisting of regions of identical polarization orientation, called domains,
separated by domain walls. This thesis aims to enhance the predictability
of ferroelectric material response at the macroscale by gradually refining
our understanding of the kinetics of polarization switching at lower length
scales. This is achieved by examining the intricate interaction between
ferroelectric microstructure evolution, which occurs through the nucleation
and growth of domains, and structural defects, such as pores and grain
boundaries. In addition, finite-temperature effects play a crucial role in
the formation and evolution of ferroelectric domain patterns. To accurately
predict the effective material behavior at the device-level, it is essential to
consider all of these factors in our models.

The first part of this thesis details a novel finite-temperature constitutive
model for ferroelectric lead zirconate titanate (PZT) ceramics that accounts
for the temperature dependence of the first-principles-informed polarization
potential and the effect of thermal lattice vibrations. Based on statistical
mechanics, a temperature-dependent Gaussian noise is introduced to the
evolution equation for the polarization, which mimics atomic-level lattice
vibrations at the continuum scale. The theoretical derivation and Fourier-
based implementation are discussed, along with numerical examples and
experimental observations. Results show that thermal fluctuations can
induce branching of existing domains and nucleation of new domains.
These finite-temperature effects stimulate the effective switching kinetics
and promote the formation of realistic domain patterns, reminiscent of
ferroelectric microstructure observed in experiments.

The second part of the thesis investigates the combined effect of porosity
and temperature on porous, single-crystalline PZT by utilizing the de-
veloped finite-temperature model. Circular pores are modeled, and their
impact on an approaching ferroelectric domain wall is investigated. The
results show that larger pore sizes and higher densities impede the kinetics
of domain walls, while an increase in temperature mitigates the pinning
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effect of pores, enhancing the mobility of domain walls. These findings
are generally consistent with experimental reports and emphasize the im-
portance of considering finite-temperature effects on effective switching
kinetics.

The third part of this thesis presents a high-resolution phase-field analysis
of complex domain pattern formation in tetragonal PZT ceramics, showing
well-known lamellar bands within grains and wedged-shaped domains near
grain boundaries. The simulations of polycrystalline PZT, which combined
more than 12,000 grain samples, revealed distinct correlations between
grain orientation and the grain-averaged polarization, strain, and domain
density that are consistent with experimental reports and theoretical models.
In addition, we discuss novel computational techniques for domain wall
identification and tracking, and demonstrate their ability to assess the
domain wall density and effective switching mechanism of an evolving
ferroelectric microstructure.

In summary, the newly introduced models and findings help predict
and understand domain switching mechanisms in ferroelectric materials by
considering crucial effects of structural defects and temperature. The finite-
temperature phase-field framework presents a powerful tool to efficiently
studying the lower-scale mechanics of domain evolution, which play a key
role in the macroscopic switching kinetics and are challenging to capture
with experimental techniques in this detail.
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Z U S A M M E N FA S S U N G

Ferroelektrische Materialien besitzen ein elektrisches Dipolmoment auf
atomarer Ebene, das als spontane Polarisation bezeichnet wird. Die Po-
larisation kann durch ein angelegtes elektrisches Feld beliebig zwischen
den polaren Achsen des ferroelektrischen Kristalles umgepolt werden. Des
Weiteren bildet sich in Ferroelektrika eine Mikrostruktur, bestehend aus
Regionen mit identischer Orientierung der Polarisation, welche als Do-
mäne bezeichnet werden und durch Domänenwände getrennt sind. Das
Ziel der vorliegenden Dissertation ist es, die Vorhersagbarkeit der ferro-
elektrischen Materialantwort auf der Makroebene zu verbessern, indem
die Kinetik der Polarisationsumschaltung auf niedrigeren Längenskalen
untersucht wird, um den derzeitigen Wissensstand dazu zu erweitern. Dies
wird durch die Erforschung der komplexen Wechselwirkung zwischen der
Evolution der ferroelektrischen Mikrostruktur, die durch die Keimbildung
und das Wachstum von ferroelektrischen Domänen entsteht, und struk-
turellen Defekten, wie Poren und Korngrenzen, erreicht. Darüber hinaus
spielen Temperatureffekte eine entscheidende Rolle bei der Bildung und
Evolution ferroelektrischer Domänstrukturen. Um das effektive Material-
verhalten in ferroelektrischen Anwendungen möglichst präzise vorhersagen
zu können, ist es unerlässlich, all diese Faktoren in unseren Modellen zu
berücksichtigen.

Der erste Teil dieser Dissertation beschreibt ein innovatives Konstitutiv-
modell für ferroelektrische Blei-Zirkonat-Titanat (PZT) Keramiken, das die
Temperaturabhängigkeit des Polarisationspotenzials und die Auswirkun-
gen thermischer Gitterschwingungen berücksichtigt. Auf der Grundlage
der Statistischen Mechanik wird ein temperaturabhängiges Gauß’sches
Rauschen in die Evolutionsgleichung für die Polarisation eingeführt, wel-
ches auf der Kontinuumsebene Gitterschwingungen nachahmt, die auf der
atomarer Ebene auftreten. Die theoretische Herleitung und die Fourier-
basierte Implementierung werden zusammen mit numerischen Beispielen
und experimentellen Beobachtungen diskutiert. Die Ergebnisse zeigen, dass
thermische Schwingungen zur Verzweigung bestehender Domänen und
zur Keimbildung neuer Domänen führen können. Diese Temperaturef-
fekte stimulieren die effektive Umschaltkinetik und fördern die Bildung
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realistischer Domänstrukturen, die mit den beobachteten ferroelektrische
Mikrostrukturen aus Experimenten vergleichbar sind.

Der zweite Teil der Dissertation untersucht die kombinierte Wirkung
von Porosität und Temperatur auf poröses, einkristallines PZT unter Ver-
wendung des entwickelten temperaturabhängigen Konstitutivmodells. Es
werden kreisförmige Poren modelliert und ihr Einfluss auf eine sich nähern-
de ferroelektrische Domänenwand untersucht. Die Ergebnisse zeigen, dass
größere Porendurchmesser und höhere Porendichten die Kinetik der Do-
mänenwände behindern, während andererseits ein Temperaturanstieg den
Pinning-Effekt der Poren abschwächt und die Mobilität der Domänenwän-
de erhöht. Diese Ergebnisse stimmen im Allgemeinen mit experimentellen
Berichten überein und unterstreichen die Bedeutung der Berücksichtigung
von Temperatureffekten auf die effektive Umschaltkinetik der Polarisation.

Im dritten Teil dieser Dissertation wird eine umfangreiche und hoch-
auflösende Phasenfeldanalyse zur Bildung komplexer Domänenstrukturen
in tetragonalen PZT-Keramiken vorgestellt, welche die typischen lamel-
lenförmigen Strukturen innerhalb der Körner und keilförmige Strukturen
nahe der Korngrenzen aufweist. Die Simulationsergebnisse zu polykristalli-
nem PZT, die insgesamt mehr als 12’000 Körner umfassen, zeigen deutliche
Korrelationen zwischen der Kornorientierung und der über das Korn gemit-
telten Polarisation, Dehnung und Domänendichte, die mit experimentellen
Berichten und theoretischen Modellen gut übereinstimmen. Des Weiteren
werden neue computergestützte Verfahren zur automatischen Identifizie-
rung von Domänenwänden vorgestellt und deren Fähigkeit demonstriert,
die Dichte von Domänenwänden und den effektiven Umschaltmechanismus
einer sich ändernden ferroelektrischen Mikrostruktur zu bestimmen.

Insgesamt tragen die neu eingeführten Modelle und Erkenntnisse da-
zu bei, die Mechanismen der Domänenumschaltung in ferroelektrischen
Materialien vorherzusagen und zu verstehen, indem die wichtigen Auswir-
kungen von Strukturdefekten und Temperatur berücksichtigt werden. Das
temperaturabhängige Phasenfeldmodell stellt ein leistungsfähiges Werk-
zeug zur effizienten Untersuchung der Mechanik der Domänenentwicklung
auf niedrigerer Längenskalen dar, die eine Schlüsselrolle in der makrosko-
pischen Umschaltkinetik spielt und mit experimentellen Methoden nur
schwer in diesem Detail zu erfassen ist.
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1
I N T R O D U C T I O N

In this thesis, we investigate the material behaviour of a special type of active
materials called ferroelectrics. Ferroelectric materials are among the most
promising active, multifunctional materials. They demonstrate a variety of
physical effects such as piezoelectricity (Curie & Curie, 1880), pyroelectricity
(Brewster, 1824), electrocaloric (Olsen et al., 1985), electrooptic, and catalytic
effects (Parravano, 1952), which have been studied and utilized in sensors,
actuators, or micro- and nano-electromechanical systems. Their applications
extend across aerospace, medicine, communication, automotive and military
industries (Park et al., 2016; Uchino, 2009).

Since the discovery of ferroelectricity in 1921 (Valasek, 1921), numerous
ferroelectric materials have been found, among which the family of per-
ovskite oxides is the technically most relevant. At the Curie temperature,
the crystallographic structure of perovskites exhibits a phase transition
from a high-symmetry, cubic lattice to a lower-symmetry, e.g., tetrahedral,
orthorhombic, and rhombohedral phase (Bernhard Jaffe, 1971; Jona et al.,
1957; Shirane & Hoshino, 1954). As a result, individual ions shift from their
centrosymmetric positions, which leads to spontaneous polarization and
spontaneous strains below the Curie temperature (Lines & Glass, 2001).
Above the Curie temperature, crystals are centrosymmetric; hence, the elec-
tric dipole vanishes in the absence of an applied electric field – a quality
of the material referred to as paraelectricity. Below the Curie point, the
atomic-level polarization of perovskite oxides is electrically alterable, and
many are also mechanically alterable (Chaplya & Carman, 2001) – these
properties are referred to as ferroelectricity and ferroelasticity, respectively.

At the mesoscale, long-range ordering of spontaneous polarization in
adjacent unit cells leads to the formation of regions with homogeneous po-
larization orientation, which are called ferroelectric domains. In this regime,
any microstructural rearrangement is accommodated by the nucleation and
growth of an intricate network of ferroelectric domains, where Fig. 1.1 gives
an illustrative overview of different ferroelectric microstructures. Although
the observed microstructures show very different patterns, they all arise as
a result of an energy relaxation of their respective systems, whose crystallo-
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2 introduction

(a) (b) (c)

Figure 1.1: Examples of ferroelectric microstructures: (a) lamellar domain pat-
terns in tetragonal BaTiO3, (b) trimerization domain patterns in hexagonal
YMnO3 (Jungk et al., 2010), and (c) rectangular domain patterns in orthorhombic
TbMnO3 (Daumont et al., 2009). All images reprinted with permission. (a) Cour-
tesy of V. Kannan, ETH Zürich, (b) reprinted from Jungk et al. (2010), with the
permission of AIP Publishing, and (c) used with permission of IOP Publishing,
Ltd from Daumont et al. (2009); permission conveyed through Copyright Clear-
ance Center, Inc.

graphic structures are (a) tetragonal, (b) hexagonal, and (c) orthorhombic.
The symmetry of the underlying crystal lattice apparently affects the way
individual domains arrange themselves within ferroelectrics (for reasons of
compatibility) (Fousek & Janovec, 1969; Janovec & Privratska, 2013).

Similar domain pattern formations can be observed in the microstructures
of other members of the family of ferroic materials, to which ferroelectrics
belong to. For instance, Fig. 1.2(a) shows striped patterns of ferroelastic do-
mains in Cu-Ni martensite, reminiscent of ferroelectric laminates, depicted
in Fig. 1.1(a). Other examples of ferromagnetic microstructures illustrate the
link between domain pattern formation and macroscopic material behavior.
On the one hand, domain structures in soft magnets, such as multiaxial SiFe
electric steel, are driven by the principle of flux closure due to their weak
magnetic anisotropy (Hubert & Schäfer, 2008), which becomes apparent by
the typical vortex-like arrangements visible in Fig. 1.2(b). On the other hand,
domain patterns in permanent magnets, such as uniaxial Nd2Fe14B, which
exhibit high magnetic anisotropy, form intricate fine surface patterns due
to gradual branching of domains in the interior and refinement towards the
surface (Hubert & Schäfer, 2008), shown in Fig. 1.2(c).
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(a) (b) (c)

Figure 1.2: Micrographs of various natural patterns emerging in ferroic materials:
(a) twin patterns of ferroelastic domains in Cu-Ni martensite (Abeyaratne &
Knowles, 1991), (b) vortex patterns of ferromagnetic domains in cubic SiFe (Hu-
bert & Schäfer, 2008), and (c) branching patterns of ferromagnetic domains in
tetragonal NdFeB (Hubert & Schäfer, 2008), where the upper and lower half
of the depicted pattern show the top and side view of the microstructure, re-
spectively. All images reprinted with permission. (a) reprinted from Abeyaratne
and Knowles (1991) © 1991 by permission of Informa UK Limited, trading as
Taylor & Taylor & Francis Group, http://www.tandfonline.com, (b) reproduced
from Hubert and Schäfer (2008) with permission from Springer Nature, and
(c) reproduced from Hubert and Schäfer (2008) with permission from Springer
Nature.

Besides its effect on the appearance of microstructures, the crystallo-
graphic lattice structure at the lower scales and the complex formation of
ferroelastic and ferroelectric domain patterns have a great impact on the
effective properties at the macroscale, such as the piezoelectric and dielectric
constants in ferroelectric oxides (Cao & Randall, 1996; Janovec & Privratska,
2013; Lines & Glass, 2001; Pramanick et al., 2011). Therefore, a profound
understanding of the origin and subsequent evolution of domain pattern
formation is key to predicting realistic ferroelectric microstructures in order
to improve the properties of existing and future ferroelectric materials.

The intricate coupling mechanisms between the lower-scales spontaneous
polarization and the effective properties in ferroelectric devices require us to
account for multiple length scales ranging from the atomic level across the
polycrystalline mesoscale to the macroscopic device level, which makes it
challenging to model the electromechanical behavior of ferroelectric oxides
properly. Therefore, a broad range of models suitable for specific length
scales exists, starting with ab initio atomistic calculations (subject to the



4 introduction

fundamental laws of quantum mechanics) at the lowest scales and pro-
gressing from continuum models (based on thermodynamic potentials) to
phenomenological macroscale approaches (built on empirical observations).
Here, we pursue multiscale modeling by utilizing inputs from atomistics to
model the ferroelectric microstructure at the continuum scale in order to
bridge the gap between zero-temperature energetics at the lower scales and
the effective hysteresis of ferroelectric ceramics at the macroscopic device
level.

1.1 introduction to ferroelectric materials

1.1.1 Material symmetry

Various physical properties of crystalline materials, such as the material’s
anisotropy or its electromechanical and electrooptical coupling, are reflected
in the symmetry of their underlying crystal structure, known as crystallo-
graphic point group. A point group is a set of symmetry operations (rotations,
mirror planes, and inversions) that leaves the overall structure of the crystal
unchanged, i.e., each atom maps to a position occupied by an atom of the
same type prior to the transformation. Fig. 1.3 provides an overview of
the 32 possible point groups of crystalline materials in three dimensions,
which can be categorized into seven lattice systems: triclinic, monoclinic,
orthorhombic, tetragonal, rhombohedral, hexagonal, and cubic, depicted in
Fig. 1.4.

An important subgroup of the 32 point groups are the 21 non-centro-
symmetric crystals, which possess no inversion point. Among those, 20

crystal classes can be polarized upon application of mechanical stress,
known as piezoelectric point group (Lines & Glass, 2001). Crystals of the
piezoelectric point group exhibit an electric dipole moment, called polariza-
tion when normalized by the volume, due to a non-centrosymmetric shift
of the positive and negative centers of charge during the deformation of
the unit cell, which is called piezoelectric effect. Both the piezoelectric effect
and the inverse piezoelectric effect, i.e, the induction of mechanical strains
under an applied electric field, are linear and reversible, i.e., the induced
polarization and strains disappear upon removal of the applied mechanical
and electric field, respectively.
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1 non-piezoelectric

ferroelectric non-ferroelectric

10 non-pyroelectric

11 centrosymmetric

32 Crystalline Classes
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Figure 1.3: Crystalline classes showing the ferroelectric class (green) as a special
subgroup of the 21 non-centrosymmetric crystal classes (orange), the 20 piezo-
electric crystal classes (blue), and the 10 pyroelectric crystal classes (red).
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Figure 1.4: Lattice systems: (a) triclinic, (b) monoclinic, (c) orthorhombic, (d) tetra-
gonal, (e) rhombohedral, (f) hexagonal, and (g) cubic. The independent lat-
tice lengths and angles are denoted by {a, b, c} and {α, β, γ}, respectively. This
overview shows only the primitive (Bravais) lattice, other types of centerings are
omitted for simplicity.

Moreover, the subgroup of the 10 pyroelectric crystal classes, also known
as polar point group, have a permanent polarization referred to as spontaneous
polarization. Crystals of this group have a polar axis, which is an axis of
rotational symmetry with no existing mirror plane perpendicular to this
axis. Out of the seven lattice systems, all except the cubic lattice satisfy this
requirement. The pyroelectric effect is defined as the change of spontaneous
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polarization vector p0 with temperature θ at zero electric field (Damjanovic,
1998), viz.

π =

(︃
∂p0
∂θ

)︃
, (1.1.1)

where π denotes the pyroelectric coefficient vector.

Ferroelectric crystals are also polar, like pyroelectric crystals, but with the
additional feature that the spontaneous polarization can be reoriented by an
applied electric field. Since ferroelectrics are derivatives of the parenting
point groups, they own the same physical properties, i.e., ferroelectrics have
no inversion center (non-centrosymmetric) and exhibit electromechanical cou-
pling (piezoelectric) and a temperature-dependent, spontaneous polarization
(pyroelectric), which is stable in multiple orientations and can be reoriented
by an imposed electric field (ferroelectric).

1.1.2 Ferroelectric phase transformation

In our previous definition of ferroelectrics, we required the material to have
more than one stable state (orientation), between which the polarization
can be switched (reoriented). In this section, we introduce the fundamental
concepts of a phase transformation and its connection to the different
ferroelectric states based on a symmetry approach by following (Janovec &
Privratska, 2013; L. Landau, 1937; Tagantsev et al., 2010).

Many crystalline materials undergo a structural phase transformation,
which is a transformation between different point groups (Tomaszewski,
1992a, 1992b; Tonkov & Tonkov, 1992), and are categorized based on the
following properties:

We differentiate between two types of phase transformations: distortive
and reconstructive transitions (Gränicher & Müller, 1971). While in a recon-
structive transition, the existing interatomic bonds can break apart and
individual atoms rearrange themselves to form a new atomic structure, in
a distortive transition, the chemical bonds remain intact, because atoms
shift only slightly and in a coordinated fashion, such that the overall crystal
structure exhibits a minor shape change. Examples of a reconstructive tran-
sition can be found in titanium (Ti) between the (body-centered) cubic phase
and hexagonal/rhombohedral phases and in zinc sulfide (ZnS) between
sphalerite- and wurtzite-type structures.
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Most technically relevant ferroelectrics exhibit a distortive transition,
which can be induced by the change in temperature and pressure to which
the material is exposed . In contrast to the reconstructive transition, where
no general relation between the two structures involved in the transition
exists (except for the chemical composition), the distortive transition can be
described as a change in the symmetry of the crystal structures. Consider
two crystal structures SG and SF where the subscripts G and F indicate a
crystal class of the 32 point groups (see Fig. 1.3), and the crystal class F has
lower symmetry than G. Based on symmetry arguments, we can define a
distortive transition as

F ⊂ G, (1.1.2)

where the low-symmetry phase F is a subset of the high-symmetry phase G,
such that the structure SF arises from distortion of the structure SG. Any
phase transformation that complies with (1.1.2) and results in a change of
its point group (F ̸= G) is referred to as ferroic transition, where F denotes
the point group of the ferroic phase.

For the sake of completeness, we dive one step deeper into distortive
transitions by distinguishing between displacive and order–disorder transi-
tions. In the former transition, thermal fluctuations cause atoms to oscillate
harmonically around their equilibrium positions at the transition, while in
the latter transition, thermal motion enables atoms to switch between two
or more equilibrium positions. Classical examples for a displacive transi-
tion and a order-disorder transition are the cubic-tetragonal transition (with
F = 4mm and G = m3̄m) of barium titanate (BaTiO3) and the orthorhombic-
orthorhombic transition (with F = mm2 and G = mmm) of sodium nitrite
(NaNO2), respectively. Of course, these are not the only mechanisms that
can give rise to ferroelectricity. Recent advances in multiferroics research to
design materials that combine ferromagnetic and ferroelectric properties,
which are mutually exclusive, stimulated the search for alternative ferroelec-
tric mechanisms (Spaldin & Fiebig, 2005), e.g., based on stereochemically
active electron lone pairs (Seshadri & Hill, 2001) or geometrically driven
distortions (Van Aken et al., 2004). Materials which own multiple ferroic
properties, such as ferromagnetic, ferroelectric, and ferroelastic, are called
multiferroics.

A ferroelectric phase transition is commonly defined as a transition from
a high-symmetry, non-polar phase G to a low-symmetry polar phase F
at the Curie temperature θC. This polar transition gives rise to a sponta-
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neous polarization (vector) whose components can be defined through the
temperature-dependent piezoelectric coefficient π (1.1.1), viz.

p0(θ) =
∫︂ θC

θ
π(θ)dθ, (1.1.3)

where θ denotes any temperature below the Curie temperature θC. Further-
more, the spontaneous polarization needs to be switchable by an applied
electric field. While this holds for the majority of cases, it excludes ferro-
electrics, whose polarization cannot be reoriented, due to practical reasons
(mechanical integrity, electric field limitations, etc.) and transitions between
polar phases. To circumvent this issue, we point to an alternative definition
based on the pyroelectric coefficient (Tagantsev et al., 2010), which is: "A
phase transition is called ferroelectric if it results in a lower symmetry phase, in
which the vector of pyroelectric coefficients acquires new components which were
zero, by symmetry, in the high-symmetry phase."

1.1.3 Ferroelastic phase transformation

Analogous to the definition of a ferroelectric phase transition based on new
non-zero components in the pyroelectric coefficient vector π, one may
use symmetry arguments on the symmetric, second-order thermal dila-
tion tensor αij (with i, j = 1, 2, 3) to define a ferroelastic phase transition.
For example, in the high-symmetry cubic phase, the thermal dilation ten-
sor αij = diag (ac, ac, ac) can be described by only one independent compo-
nent ac, whereas in the low-symmetry tetragonal phase, two independent
components a and c are required to describe the three possible deforma-
tion states: α1

ij = diag (a, a, c), α2
ij = diag (a, c, a), and α3

ij = diag (c, a, a),
which are illustrated in Fig. 1.5(c). Any transition between a high-symmetry
phase G and a low-symmetry phase F in which the number of independent
components in the thermal dilation tensor αij change, is called ferroelastic
phase transition and F, a ferroelastic phase (Aizu, 1969). In contrast to ferro-
electric phase transitions, transitions among point groups of the same crystal
class are not ferroelastic, since they share the same number of indepen-
dent components in the thermal dilation tensor. Only transitions between
different crystal families are ferroelastic (Nye et al., 1985).

Similar to the ferroelectric phase transition, we use the concept of sponta-
neous strains which describe the deformation of the unit cell associated with
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Figure 1.5: (a) Perovskite structure of BaTiO3, showing the unit cell of the non-
polar, centrosymmetric cubic phase (left) and the polar, low-symmetry tetragonal
phase (right). (b) Ferroelectric states indicated by the six possible directions
in which the spontaneous polarization vector p (red arrow) can align, and (c)
ferroelastic states visualized by the three deformations of the tetragonal unit cell.

a ferroelastic phase transitions as the difference of thermal strains between the
low-symmetry phase F and high-symmetry phase G as

ε0
ij(θ) =

∫︂ θC

θ

(︂
αF

ij(θ)− αG
ij (θ)

)︂
dθ, (1.1.4)

where θ ≤ θC denotes the temperature of the ferroelastic phase F and θC
the Curie temperature.

1.1.4 Domains, domain walls, and compatibility

As discussed in the previous sections, the number of ferroelectric and fer-
roelastic states differs depending on the symmetry of the crystal lattice
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associated with the high- and low-symmetry phases. In general, regions
of homogeneous spontaneous polarization and spontaneous strain are
called ferroelectric domains and ferroelastic domains, respectively. Analogously,
adjacent domains with different spontaneous polarization or strain are
separated by typically nanometer-thin interfaces, referred to as ferroelectric
domain walls and ferroelastic domain walls, respectively.

This section provides a brief overview of possible combinations of do-
mains that form compatible domain pairs, with a focus on the tetragonal
crystal symmetry. According to Tagantsev et al. (2010), four elements are
particularly crucial in determining the orientation of a domain wall. First,
each domain should be in a spontaneous state to minimize the total energy
of the material. Second, the electrostatic energy associated with differences
in polarization orientation at the wall, also known as electrical compatibility,
should be minimized. Third, reducing the strain mismatch at the interface
minimizes the elastic strain energy, known as mechanical compatibility. Fi-
nally, the energy contained in the domain wall is referred to as interface
energy.

The electrical compatibility condition demands electrical neutrality at the
interface. Uncompensated bound charges at interface (whose density is
ρb = −∇ · p) increase the electric energy and are therefore unfavorable.
To comply with electrical neutrality at the interface (ρb = 0), the normal
component of the jump in polarization across the interface has to vanish,
such that the electrical compatibility condition reads (Davi & Rizzoni, 2004;
Shu & Bhattacharya, 2001) (︂

pI − pI I
)︂
· n = 0, (1.1.5)

where n denotes the interface normal vector and pI and pI I the polarization
vectors inside domain I and I I, respectively. In the absence of free charge
carriers, which could neutralize any uncompensated bound charges, the
electrical compatibility plays a dominant role in the formation of domain
patterns. Domain walls, domain pairs, and domain patterns are usually
denoted based on the difference of their respective polarization orientations.
Classic examples of electrically compatible domain pairs are 180◦-domain
walls and 90◦-domain walls of tetragonally oriented BaTiO3, shown in
Fig. 1.6(a) and (b), respectively. Of course, the exact number of admissible
domain walls depends on the underlying crystallographic structure. A
complete overview of possible compatible domain pairs for different crystal
symmetries that satisfy average compatibility and exact compatibility (i.e.,
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Figure 1.6: Two types of domain walls in a tetragonal crystal: (a) the ferroelectric
180◦-domain wall, where the polarization vectors in adjacent domains are antipar-
allel aligned, and (b) the ferroelectric/ferroelastic 90◦-domain wall, where the
polarization vectors of neighboring domains are approximately perpendicular.
Different domains (colors) are indicated by the orientation of the spontaneous
polarization p (white arrow) and are separated through a domain wall (red line),
whose normal vector is denoted as n (small white arrow). At the top, a magnified
schematic of the lattice structure in the proximity of a domain wall is depicted,
showing the domain wall (thick black line), polarization vectors (red arrows), and
the A-site cations (blue circles) of the tetragonal unit cell.

local compatibility) can be found in Shu and Bhattacharya (2001) and Tsou
et al. (2011), respectively.

Analogously for ferroelastic domain pairs, the mechanical compatibility must
be fulfilled in order to minimize the elastic strain energy of the material.
Following Ball and James, 1987; DeSimone and James, 2002; Shu and Bhat-
tacharya, 2001, we assume homogeneous strain states εI and εI I in the
neighboring domains I and I I, respectively, which are separated by a pla-
nar domain wall with interface normal vector n. Furthermore, we require
a continuous deformation across the wall, such that the strains of the two
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(a) (b) (c) (d)

Figure 1.7: Exactly compatible rank-2 laminate domain patterns of a tetragonal
crystal (Tsou et al., 2011), illustrated by the four unit cells (a) through (d) showing
differently oriented domains (colors) and the corresponding polarization vectors
(white arrows).

adjacent domains are subject to the Hadamard jump condition (Gurtin, 1982),
which reads, for small-strain kinematics,

εI − εI I =
1
2
(a ⊗ n + n ⊗ a) , (1.1.6)

where a is an arbitrary vector. For given pairs of
(︁
εI , pI)︁ and

(︁
εI I , pI I)︁, com-

patible domain pairs can be found, e.g., by solving the corresponding eigen-
value problem of (1.1.6) (Ball & James, 1987) and subsequently checking for
electrical compatibility (1.1.5). Domain patterns that satisfy mechanical and
electrical compatibility can be considered as energy-minimizing patterns,
although additional contributions from strain-mismatch at domain walls
and disarrangement of lattices in adjacent domains will further increase the
interface and elastic strain energy, respectively (Jona & Shirane, 1962; Salje,
1990; Surowiak et al., 1993). Most prominent examples are lamellar domain
structures, which are frequently observed in experiments and depicted in
Fig. 1.1(a). By combining multiple compatible domain pairs, one can con-
struct more complex domain structures, such as rank-2 laminate structures,
which are well-known from experiments (Arlt, 1990; Merz, 1954). Fig. 1.7
shows four rank-2 laminate structures of a tetragonal crystal that satisfy
(exact) compatibility, e.g., the well-established (a) herringbone pattern and
(b) vortex pattern; see Tsou et al. (2011) for a recent overview of compatible
laminate patterns.
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1.2 experimental techniques

Several experimental techniques have been established to study ferroelec-
tric materials ranging from the crystalline structure at the lowest scales to
simple laminate patterns at the mesoscale. Here, we provide a brief (and by
no means exhaustive) overview of the most common methods for the char-
acterization of ferroelectric microstructures, based on the book of Tagantsev
et al. (2010).

In polarized light microscopy (PLM), the interference of polarized light with
ferroelectric domains and differences in the optical properties of domains
are used to reveal the ferroelectric microstructure, by contrasting domains
differently depending on their polarization orientation. By analyzing the
changes in polarization of light passing through the ferroelectric material,
known as birefringence, it is possible to capture the domains’ pattern and
measure their size and shape. PLM is a nondestructive method that enables
in-situ observation of the domain evolution (Merz, 1954; Mulvmill et al.,
1996; Tu et al., 2001) with tens-of-micrometers precision.

More advanced techniques utilize the nonlinear optical properties of
non-centrosymmetric materials (such as ferroelectrics) to measure the polar-
ization vector of the domain pattern formation. Second-harmonic generation
(SHG) is a physical mechanism in nonlinear optical media where two pho-
tons with the same frequency combine to produce a photon with double
the frequency (Franken et al., 1961). This effect is used in SHG microscopy
to probe the components of the electric susceptibility tensor, which is a mea-
sure of the underlying polarization state, through the incident and detected
light waves (Fiebig et al., 2005). SHG microscopy is a promising, noninva-
sive method that has been used to study various ferroic materials such as
ferroelectrics (Lummen et al., 2014), ferromagnetics (Regensburger et al.,
2000), antiferromagnetics (Schoenherr et al., 2017), and multiferroics (Manz
et al., 2016).

Scanning force microscopy-based techniques allow for a nondestructive
mapping of the sample’s surface with nanometer precision by using a
probing tip mounted on a cantilever beam to measure interaction forces
between the tip and the specimen (Bonnell, 2000). Depending on the type
of interaction force that is measured, different methods are available. In the
non-contact mode of the scanning tip, spontaneous polarization can be mea-
sured through the electrostatic field induced by the bound charges, which
is called electrostatic force microscopy (EFM) (Saurenbach & Terris, 1990).
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Alternatively, if the probing tip is in mechanical contact with the surface,
ferroelastic domain walls can be detected by scanning the topology of the
sample via the deflection of the cantilever beam, known as atomic force mi-
croscopy (AFM) (Binnig et al., 1986; Nakatani, 1979). A powerful extension of
AFM is built on applying an additional alternating electric current through
the tip to induce a mechanical deformation by the inverse piezoelectric
effect, which provides valuable information on the polarization orienta-
tion and is a well-established method called piezoresponse force microscopy
(PFM) (Güthner & Dransfeld, 1992). Finally, by conducting angular-resolved
PFM measurements, i.e., through subsequent measurements under different
angles of the cantilever beam, not only the 2D landscape of the domain pat-
tern formation can be revealed, but also the corresponding 3D polarization
vector is obtained.

At lower scales, electron microscopy-based techniques make use of the
interaction of electron beams with ferroic domains and can be divided
into two methods, based on which type of electrons are being detected.
First, scanning electron microscopy (SEM) enables direct observation of do-
mains (Robinson & White, 1967) at different temperatures and during
slowly evolving switching processes, with a major downside of accumu-
lating charges from the electron beam, which can alter the ferroelectric
microstructure (Nakatani, 1973). SEM can be operated in two modes: (i)
detection of secondary electrons emitted by atoms that have been excited
by the electron beam and (ii) backscattered electrons originating from elastic
scattering interactions of the electron beam with specimen atoms. While
the former mode is generally used to create high-resolution images of the
domain pattern formation on the surface, the latter mode provides valu-
able information about microstructural properties such as the composition
and crystalline structure, which is of particular interest in ferroelectric
ceramics (Tagantsev et al., 2010). SEM is a common method to capture
the ferroelectric microstructure with tens-of-nanometers precision, but it
does not provide further details on the domain orientation and requires an
appropriate treatment of the surface (etching and polishing), which may
affect the domain pattern formation.

Second, transmission electron microscopy (TEM) works similarly to SEM by
utilizing an electron beam but with a smaller wave length and, instead of
using electrons backscattered from the surface, information on the crystal
structure is obtained by electrons that are passing through the specimen.
Furthermore, electrons are scattered by various elastic and inelastic scat-
tering processes and their diffraction pattern is measured on a detector on
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the opposite side of the sample. Depending whether only the transmitted
beam or the diffracted beam is used, the bright field or dark field image
is acquired, respectively. Moreover, in high-resolution transmission electron
microscopy (HRTEM), a combination of many diffracted beams and the
transmitted beam is utilized. HRTEM is a potent tool to study domain
pattern formation with the atomic-level resolution that allows characteriza-
tion domain walls in terms of structure, thickness, and roughness, e.g., in
BaTiO3 (Floquet et al., 1997; Shiojiri et al., 1992) and PbTiO3 (Foeth et al.,
1999; Stemmer et al., 1995). However, TEM is limited to thin samples with
thicknesses of less than 5 − 20 nm for HRTEM and 100 nm for classical
TEM (Tagantsev et al., 2010).

1.3 modelling techniques

A wide variety of theoretical and numerical models have been used to
describe ferroelectric material behavior. Because of the broad range of length
scales involved in a ferroelectric material, different models focus primarily
on a specific range of time and length scales, considering only interactions
relevant within those particular scales, while less dominant physical effects
are often neglected or modeled appropriately only when necessary. The
majority of theoretical approaches to characterize ferroelectrics can be
divided into three main groups depending on the length scale of interest.

1.3.1 Atomic-level approaches

At the lower scales, various atomistic modelling techniques have been
established to study ferroelectrics, based on the fundamental laws of quan-
tum mechanics and electrostatics. Among the first-principle (ab-initio) ap-
proaches, density functional theory (DFT) (Hohenberg & Kohn, 1964; W. Kohn
& Sham, 1965) is perhaps one of the most widely used methods, which
has been successfully applied to various ferroelectric oxides to improve
our understanding of the behavior of bulk crystals (Resta, 2003; Vanderbilt,
1997) and thin films (Ghosez & Rabe, 2000; Junquera & Ghosez, 2003; Meyer
& Vanderbilt, 2002; Rondinelli & Spaldin, 2011). Although DFT methods
provide valuable insights into quantum mechanical interactions of ferro-
electrics, they come with certain limitations. First, only a few hundred atoms
can be considered in a first-principle DFT calculation due to computational
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limitations, which makes it challenging to assess solid solutions, such as
PbZr1−xTixO3 (PZT), Ba1−xSrxTiO3 (BST), and relaxor ferroelectrics. Second,
first-principle DFT calculations are restricted to conditions at the athermal
limit (at 0 K), since thermal vibrations are not feasible, which prevents a
direct comparison with experiments conducted at finite temperatures.

Interpolative methods, by contrast, do consider finite-temperature effects.
These include the effective Hamiltonian approach (Rabe & Joannopoulos, 1987;
Zhong et al., 1994, 1995), where the Hamiltonian is obtained from a Tay-
lor expansion around the (non-polar) paraelectric phase in terms of the
soft-mode degrees of freedom and the homogeneous strain, and the ex-
pansion coefficients are fitted based on inputs from DFT calculations. Such
models have been used to study the temperature dependence of the dielec-
tric (Waghmare & Rabe, 2005), piezoelectric (Garcia & Vanderbilt, 1998), and
optical (Veithen et al., 2005) properties and phase transitions (Iniguez et al.,
2001; Marton et al., 2017; Zhong et al., 1995). Similarly, shell models (Bilz
et al., 1987; Sepliarsky et al., 2001) use interatomic potentials that are ad-
justed based on first-principle calculations to provide a more complete
atomistic description, including all phonon branches (not just soft modes).
These models have been applied successfully to study various ferroelectric
oxides (Sepliarsky et al., 2004; Tinte et al., 1999; Völker et al., 2011).

A major advantage of first-principle calculations is that they do not
require any empirical inputs, which makes them a useful tool in the search
for new materials with interesting properties, e.g., Pb2TiO4 (Fennie & Rabe,
2005), BaTi2O5 (Waghmare et al., 2004), BiFeO3 (J. Wang et al., 2003), BiAlO3,
and BiGaO3 (Baettig et al., 2005) or in the investigation of new structures
of established ferroelectric oxides, e.g., PbZrO3 (Johannes & Singh, 2005).
These benefits come at the cost of severe limitations in the number of atoms
that can be included in atomistic calculations, due to extensive computations
required in these methods.

1.3.2 Mesoscale approaches

At the continuum level, ferroelectric microstructures can be described as
solutions of a non-convex variational problem (Su & Landis, 2007; W. Zhang
& Bhattacharya, 2005) based on Landau-Devonshire theory (Devonshire,
1949; L. Landau, 1937) where the low-symmetry crystal structure is modeled
phenomenologically by using thermodynamic potentials. The nonexistence
of homogeneous minimizers results in the formation of energy-minimizing
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sequences upon relaxation of the energy, such as intricate laminate pat-
terns (Ball & James, 1987; Bhattacharya, 1991). Such a description of ferro-
electricity is used in diffuse-interface and sharp-interface models, which
are discussed below.

The introduction of an interface energy term regularizes gradients (in the
polarization field) by smearing out sharp contrasts, which gives rise to a
finite thickness and energy cost associated with an interface (Gurtin, 1987).
This diffuse-interface approach is utilized in phase-field models where the
polarization vector generally acts as the order parameter in the expansion of
the (Landau) energy, which holds crucial material properties, such as spon-
taneous polarization, permittivity, energy levels and barriers (Devonshire,
1949, 1951; L. Landau, 1937). Phase-field models simulate the evolution of
the ferroelectric microstructure by resolving the diffuse interface with a
typical thickness in the order of nanometers. While diffuse-interface models
enable us to compute intricate networks of domain patterns in ceramics
with no prior assumption of the domain structure, they requires suffi-
cient spatial resolution to track individual domain walls. This constraint
renders phase-field models computationally expensive, and they are typi-
cally used at the (intermediate) mesoscale, ranging from (sub)nanometers
to a few micrometers. In the seminal work of Su and Landis (2007) and
W. Zhang and Bhattacharya (2005), the phase-field approach was estab-
lished to model ferroelectric domain pattern formations at the mesoscale
within a finite-element (FE) framework. Later, researchers suggested solv-
ing the electromechanically coupled boundary value problem (BVP) more
efficiently in Fourier space by utilizing a spectral solution scheme (Chen,
2008; Vidyasagar et al., 2017) or others focused on the effect of depolar-
ization fields in thin films by using boundary element methods (Dayal &
Bhattacharya, 2007). Alternative phase-field models used the spontaneous
polarization as an order parameter to enhance the physical interpretation of
material parameters (Schrade et al., 2013) and to derive a general kinetics
model (Guin & Kochmann, 2022). Independent of the particular formulation,
phase-field models have been used extensively to study various applications
of ferroelectric materials such as switching in polycrystals (Choudhury et al.,
2005; Vidyasagar et al., 2017), thin films (Dayal & Bhattacharya, 2007; Gao et
al., 2014), temperature-induced phase-transformations in BaTiO3 (Franzbach
et al., 2012; J. Wang et al., 2010), coexisting crystal phases in lead-based
ferroelectrics (Franzbach et al., 2014; Seo et al., 2013), space charges (Xiao
et al., 2005), oxygen vacancy migration (Suryanarayana & Bhattacharya,
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2012; Xiao & Bhattacharya, 2008), and charged domain walls (Shenoy et al.,
2012; Sluka et al., 2012; Zuo et al., 2014).

By contrast, sharp-interface models treat domain walls in a more efficient
fashion. Here, domain walls are represented as sharp interfaces, across
which polarization, strain, and electric fields may jump. Within this frame-
work, the motion of domain walls is described by a kinetic relation (Abe-
yaratne & Knowles, 1991; Logé & Suo, 1996) that links the velocity of
interfaces with the driving traction, commonly obtained by the jump in the
Eshelby energy momentum tensor (Eshelby, 1975) and any additional con-
tributions, e.g., due to the curvature of the domain wall (Salje & Ishibashi,
1996). While sharp-interface models offer mathematical advantages, they
require an additional model to account for the nucleation of new domains
and intensive computations for large numbers of interfaces, which makes
them in practice unsuitable for predicting the complex domain patterns in
polycrystalline materials. Nevertheless, sharp interface models have been
used extensively to improve our understanding of, e.g., energy-minimizing
domain pairs (Shu & Bhattacharya, 2001), laminates (Tsou et al., 2011; Tsou
& Huber, 2010; Weng & Wong, 2009), herringbone structures (Shilo et al.,
2007) and vortices (Weng & Wong, 2009), the transition between different
laminate structures (Tsou et al., 2013), hysteresis response using variational
principles (J. E. Huber & Cocks, 2008; Yen et al., 2008), and rate-dependent
effects based on general kinetics models (Guin & Kochmann, 2022).

1.3.3 Macroscale approaches

Finally, phenomenological macroscale models focus on the macroscale material
response of bulk polycrystalline ferroelectric ceramics, without resolving the
ferroelectric microstructure at lower scales, by utilizing an efficient material
description, suitable for numerical implementation in finite element codes
applicable at the ferroelectric device level (Miehe & Rosato, 2011).

A popular approach (Landis, 2002; McMeeking & Landis, 2002; Miehe
& Rosato, 2011) is built on a decomposition of polarization and strain
into reversible and irreversible parts, where the irreversible contribution
is treated as internal variables. Micro-electromechanical models provide a
description of the kinematics and evolution of these internal variables,
i.e., remnant polarization and remnant strains (Landis, 2004). While early
studies (Hwang et al., 1995; Lu et al., 1999) assumed a single domain
within a grain, whose state is governed by a switching criterion, more
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recent models account for grains comprised of multiple domains by using
domain volume fractions (J. Huber et al., 1999; Stark et al., 2016; W. L. Tan
& Kochmann, 2017) and orientation distribution functions (Idiart & Bottero,
2020) as internal variables.

Alternatively, stochastic models, such as the well-established Kolmogorov-
Avrami-Ishibashi (KAI) model (Avrami, 1940; Ishibashi & Takagi, 1971),
are based on the assumption of a random and statistically independent
nucleation of domains within a homogeneous medium and constant nucle-
ation rate, such that switching kinetics are limited by the motion of domain
walls, which is described by a characteristic switching time. Later, strong
qualitative disagreement of the predictions in bulk polycrystals (Zhukov
et al., 2010) and PZT thin films (Gruverman et al., 2005; Tagantsev et al.,
2002) led to an extension to a statistical distribution of switching times to
characterize different regions in heterogeneous materials, such as grains
in a polycrystal, which improved the accuracy of predictions (Genenko
et al., 2012; Jo et al., 2007). Analogously, nucleation limited switching (NLS)
models assume that switching kinetics in a certain region is limited by
the nucleation of new domains instead by domain wall motion, which is
characterized by an exponential distribution of nucleation waiting times.
Experimentally measured polarization switching curves fitted well with
the NLS model in polycrystalline thin films (Dabra et al., 2010; Duiker
& Beale, 1990). While stochastic models generally capture the kinetics of
polarization switching reasonably well, their connection to the underlying
microstructure is mainly phenomenological, based on the fundamental
assumption that switching occurs in a uncorrelated fashion, which is not in
agreement with experimental observations (Schultheiß et al., 2018).

1.4 motivation

A key property of ferroelectric ceramics is the coupling of electric and
mechanical fields. While primarily used in the linear regime (Taylor, 1985;
J. Yang, 2006), ferroelectric ceramics under sufficiently large electric or
mechanical loading enter a nonlinear regime, where a remnant polarization
remains after the load is removed (Bhattacharya & Ravichandran, 2003;
Chaplya & Carman, 2001). Such permanent changes in the atomic-level
dipole structure offer avenues to adjust material properties (le Graverend
et al., 2015), induce significant shape changes (Burcsu et al., 2004), or store
information (Buck, 1952).
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Early studies (Abe, 1959; Drougard, 1960; Miller & Weinreich, 1960) sug-
gested that the motion of a 180

◦-domain wall in a defect-free single crystal
is driven by the nucleation and growth of triangular shaped domains in a
staggered manner. Although such nucleation-driven domain wall motion
explains certain experimental observations, it unfortunately fails to predict
the required activation fields for nucleation (Paruch et al., 2006; Tybell et al.,
2002) and the absolute wall velocity. To fill this gap, Hayashi, 1972 proposed
an analytical model to account for the kinetics of domain wall motion
based on the theory of absolute reaction rates, whereas Logé and Suo, 1996

described ferroelectric domain wall motion as a non-equilibrium thermo-
dynamic process, deriving a kinetic model based on variational principles.
While the quasistatic material response of idealized ferroelectric ceramics
is generally well understood and captured by such models, the complex
microstructural mechanisms in real materials – from oxygen vacancies on
the atomic level to grain boundary (GB) mechanisms on the polycrystalline
mesoscale to boundary conditions on the macroscopic device level – and
their influence on the switching kinetics is far less established. As an exam-
ple, consider the intricate effect of stress concentrations near defects, cracks,
and GBs, which promote switching and interfere with domain wall motion
(Lambeck & Jonker, 1986; Marincel, Zhang, et al., 2015; Rodriguez et al.,
2008).

Moreover, recent studies revealed that the homogenized polarization
switching kinetics at the macroscale can be traced back to the collective mo-
tion (Bintachitt et al., 2010; Gorfman et al., 2018) of domain walls at smaller
scales (Bassiri-Gharb et al., 2007; Pramanick et al., 2011). Hence, a profound
understanding of the mechanism of nucleation and growth of domains and
their interaction with microstructural defects in realistic materials (which
typically posses an abundance of GBs, cracks, and pores (Mercadelli et al.,
2010) is crucial to make reliable predictions of polycrystalline and porous
materials. Structural defects, such as pores, can induce considerable me-
chanical and electric fields (Johnson-Wilke et al., 2015; Xu & Wang, 2015) in
their proximity, which can cause domain wall pinning and therefore have an
impact on the effective properties in bulk materials (Schultheiß et al., 2019a;
Skinner et al., 1978) and thin films (Johnson-Wilke et al., 2015). Although
several studies investigated the effect of space charges and oxygen vacancy
migration (Xiao & Bhattacharya, 2008), dislocations (Kontsos & Landis,
2009), GBs (N. Liu & Su, 2014), and voids (J. Wang & Kamlah, 2009), the
domain wall kinetics associated with domain wall pinning and depinning
due to finite-temperature effects is largely unknown, despite experimental
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reports underlining its importance (Savage & Miller, 1960; Stadler & Zach-
manidis, 1964). For better accessibility using TEM imaging, experimental
research has focused on ferroelectric switching in thin films (Chen, 2008;
Lohse et al., 2001; Tagantsev et al., 2002). The thus observed response,
however, does not necessarily capture the behavior of bulk ferroelectrics,
since it involves both material and structural effects. Recent experiments by
Schultheiß et al. (2018) studied bulk PZT using a fast high-voltage switch
setup; the step response of polarization and strain was measured, providing
insight into fast-switching kinetics and demonstrating not only clear rate
dependence but also a dependence on grain size and texture.

Another open challenge is the rate- and temperature-dependent kinetics
of ferroelectric switching (Arlt & Dederichs, 1980; Merz, 1956; Schultheiß
et al., 2018; Wojnar et al., 2014; Zhou et al., 2001), which emerges on the
atomic level but is strongly influenced by the mesoscale defect network
through its impact on domain wall motion and nucleation. The broad
range of length and time scales involved presents a challenge for both
experimental observation and computational modeling. Although recent
attempts (Vidyasagar et al., 2017) demonstrated the bridging of the gap
between numerical results based on first-principle inputs (Völker et al.,
2011) and macroscale experiments (W. L. Tan & Kochmann, 2017), these
attempts failed to account for the crucial effect of finite-temperature kinetics,
resulting in inaccurate predictions.

Furthermore, rising interest in the unique properties of domain walls, e.g.,
domain-wall conductivity (Guyonnet et al., 2011; Meier et al., 2012; Rojac
et al., 2017) and domain-wall polarity in non-polar materials (Goncalves-
Ferreira et al., 2008; Nataf et al., 2017; Salje et al., 2013; Yokota et al.,
2019) gave rise to a new research branch with exciting applications, known
as domain wall engineering. Therefore, an in-depth understanding of the
underlying physics of the domain pattern formation is essential for future
applications of ferroelectrics in domain-wall nanoelectronics (Catalan et al.,
2012), e.g., as non-volatile memory devices, whose data storage capacity
correlates with the domain wall density (Nataf et al., 2020).

Many exciting new domain structures, such as polarization flux-closure
vorticies (Yadav et al., 2016), polar-skyrmion bubble domains (Das et al.,
2019), and polarization flux-closure domains (Jia et al., 2011), have been
reported, the latter being a well-examined structure in ferromagnetic ma-
terials (Kittel, 1946; L. Landau & Lifshitz, 1935). Despite some existing
knowledge and analogies of common patterns in other ferroic materials, the
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underlying cause and physical mechanism that give rise to these structures
can vary, which necessitates a specific review within the context of ferro-
electric materials. So far, different theoretical models have been utilized to
study ferroelectric microstructures, e.g., sharp-interface models to investi-
gate energy-minimizing domain patterns in equilibrium conditions (Davi
& Rizzoni, 2004; J. Li & Liu, 2004; Shu & Bhattacharya, 2001; Tsou et al.,
2011) and diffuse-interface models to simulate domain pattern evolution (Su
& Landis, 2007; Vidyasagar et al., 2017; W. Zhang & Bhattacharya, 2005),
but those are limited either to predefined domain structures or to simple
domain patterns in nanometer-sized polycrystals; hence, previous attempts
have been largely unable to simulate realistic domain pattern formations
occurring in ferroelectric ceramics with no prior assumption of the domain
configuration.

1.5 outline

The ultimate goal of this thesis is to improve the predictability of ferro-
electric material behavior at the macroscale by continually improving our
current understanding of the kinetics of polarization switching. This is ac-
complished by resolving the intricate interplay between ferroelectric domain
evolution, which is facilitated by the nucleation and growth of domains
at the mesoscale, and the surrounding polycrystalline microstructure. Fur-
thermore, structural defects, such as pores and grain boundaries, along
with finite-temperature effects, determine the domain pattern formation.
All these factors need to be taken into account for an accurate prediction of
the effective material response.

Chapter 2 details the continuum-level diffuse-interface approach used
to simulate the ferroelectric microstructure. Here, a novel ferroelectric
constitutive model is proposed by using statistical mechanics to account
for atomic-level thermal fluctuations and by modifying the underlying
Devonshire-Landau potential to depend on temperature. We discuss the an-
alytical derivation, numerical implementation, and experimental validation
of the finite-temperature phase-field framework for ferroelectric ceramics.

Chapter 3 discusses the influence of pores on ferroelectric domain wall
motion at finite temperatures by leveraging our established finite-temperature
phase-field framework. Manufacturing-induced porosity introduces local
stress and electric fields that interfere with domain wall motion, which af-
fects the ferroelectric material properties. Therefore, we study the mesoscale
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motion of 180◦-domain walls in porous PZT as a function of pore size and
concentration at various temperatures, which is in reasonable agreement
between simulated results and experimental reports.

Chapter 4 investigates the intricate domain pattern formation in ferroelec-
tric ceramics where the size and orientation distribution of the crystallites
are decisive factors in determining the effective properties of polycrystals.
We discuss a novel method to identify and track domain walls in phase-
field models, reveal distinct correlations between the grain orientation and
polarization, strain, and domain density within a grain, and qualitatively
assess the influence of grain boundaries on the domain pattern formation
in comparison with experiments.

Chapter 5 summarizes the presented work and draws conclusions from
the most important results. Additionally, recommendations for enhancing
the simulation model and potential future research directions are discussed.





2
F I N I T E - T E M P E R AT U R E F E R R O E L E C T R I C
C O N S T I T U T I V E M O D E L

This Chapter has been adapted from:

Indergand, R., Vidyasagar, A., Nadkarni, N., and Kochmann,
D.M. (2020). "A phase-field approach to studying the temperature-
dependent ferroelectric response of bulk polycrystalline PZT."
Journal of the Mechanics and Physics of Solids, Vol. 144, 104098,
URL: https://doi.org/10.1016/j.jmps.2020.104098

Indergand, R. and Kochmann, D.M. (2021). "Effect of tempera-
ture on domain wall–pore interactions in lead zirconate titanate:
A phase-field study." Applied Physics Letters, Vol. 119, 222901,
URL: https://doi.org/10.1063/5.0066612

2.1 introduction

Temperature plays a crucial role in the behavior of ferroelectric oxides since
it affects various important material properties such as the spontaneous
polarization (Samara, 1971), thermal and electric conductivity (Bhide et al.,
1962; Mante & Volger, 1967), elasticity (Z. Li et al., 1996), domain wall pin-
ning (depinning field) (Jo et al., 2009), and hysteresis properties (coercive
field, remnant polarization, dielectric and piezoelectric constants) (Hooker,
1998). Therefore, a profound understanding of the underlying mechanisms
driving the temperature dependence of the material response is a require-
ment for predicting and optimizing the ferroelectric properties of these
materials.

The influence of temperature on the ferroelastic and ferroelectric material
response has been assessed experimentally. For the ferroelectric case, the
temperature dependence of the piezoelectric and dielectric coefficients of
PZT has been measured by electric cycling from room temperature to (or
close to) the athermal limit (Q. Zhang et al., 1994). Hooker (1998) performed
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high-temperature experiments reaching up to 500 K. More recent mea-
surements with co-doped soft PZT covered an even broader temperature
range that approached the Curie temperature (Kaeswurm et al., 2018). The
influence of temperature on the ferroelastic material properties has been
measured in uniaxial compression experiments, e.g., by Ji and Kim (2013),
Kaeswurm et al. (2018), Marsilius et al. (2010), and Webber et al. (2009).

When modeling ferroelectric ceramics, three approaches are popular:
phenomenological macroscale models, sharp-interface models, and diffuse-
interface phase-field models; see, e.g., Vidyasagar et al., 2017 for a discussion
and examples. Since we are interested in domain evolution at the mesoscale,
we here follow the phase-field approach of W. Zhang and Bhattacharya
(2005) and Su and Landis (2007), who first modeled ferroelectric domain
structures at the mesoscale by solving the electro-mechanically coupled
boundary value problem (BVP) based on a finite-element (FE) discretization.
By contrast, we adopt Chen’s (2008) spectral strategy to solve the BVP effi-
ciently in Fourier space and specifically adopt the formulation of Vidyasagar
et al. (2017). Our ferroelectric constitutive model is derived from the ther-
modynamic potentials of Völker et al. (2011), who used first-principles data
based on density functional theory (DFT) and atomistic simulations to cali-
brate the (zero-temperature) electric enthalpy density. While those studies
all neglected thermal effects, Woldman and Landis (2016, 2019) used phase-
field methods to characterize the structure of ferroelectric-to-paraelectric
phase boundaries near the Curie temperature and derived a thermodynamic
framework that accounts for spatially heterogeneous temperature fields.
Vopsaroiu et al. (2010) investigated thermally activated switching kinetics
by using a non-equilibrium statistical model that describes the polarization
switching of a nucleus. S. Liu et al. (2016) performed molecular dynamics
simulations to investigate ferroelectric domain wall motion at finite tem-
perature beyond Merz’s law (Merz, 1956). Finite-temperature effects in the
continuum phase-field framework, however, have remained a rare find.

In our approach presented here, temperature enters the phase-field de-
scription of ferroelectric ceramics in two ways. First, the underlying po-
larization potential is adjusted to depend on temperature by interpolating
between the first-principles-informed energy landscape at zero temperature
(Völker et al., 2011) and the convex energy potential at the Curie temper-
ature – taking inspiration from the temperature dependence of the order
parameter in continuous phase transitions close to the transition point being
characterized by a power law and an associated critical exponent (Toda et al.,
1983). Such interpolation models, have previously been proposed in the con-
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text of, e.g., lambda phase transitions of liquid helium (Ferrell et al., 1968),
liquid-gas phase transitions in nuclear reactors (Panagiotou et al., 1984),
glass transitions of amorphous oxides (Ojovan & Lee, 2006), paramagnetic-
ferromagnetic phase transitions (Mohan et al., 1998), and ferroelectric phase
transitions in single-crystalline barium titanate (Y. Li et al., 2005; J. Wang et
al., 2010; Woldman & Landis, 2016). Second, we account for thermal lattice
vibrations by a statistical mechanics-based thermalization of the Allen-Cahn
evolution equation through temperature-dependent random noise (Funaki,
1995; Rolland et al., 2016; Shardlow, 2000). Related stochastic phase-field
models haven been employed to model, e.g., the microstructure evolution
in magnetic materials (Koyama, 2008), dendritic crystal growth (Karma &
Rappel, 1999; Shang et al., 2016), confined nanoferroelectrics (Slutsker et al.,
2008), solidification of austenitic nickel-chromium-based superalloys (Rad-
hakrishnan et al., 2019), plasticity in Ti-alloys (Zhu et al., 2017), and GB
motion (Baruffi et al., 2019). Here, we introduce thermal fluctuations to af-
fect the polarization evolution. The resulting finite-temperature phase-field
model is validated against experimental measurements (in terms of the
ferro- and piezoelectric properties), and we discuss the predicted influence
of temperature on ferroelectric microstructures and the associated switching
kinetics.

2.2 ferroelectric constitutive model and rve-problem at

zero temperature

We adopt and extend the constitutive model of Vidyasagar et al. (2017),
which was introduced for zero-temperature simulations and which we here
summarize briefly to present our modifications and extensions in the proper
context. We consider tetragonal perovskite ceramics below their Curie
temperature and use continuum mechanics to describe a body Ω ⊂ Rn

in n-dimensional space. The small strains in brittle ceramics allow the use
of linearized kinematics with an infinitesimal strain tensor ε = sym(∇u)
derived from a (mechanical) displacement field u(x, t) : Ω × R → Rn,
depending on position x ∈ Ω and time t > 0. If inertial and body forces
are neglected (as in our applications), the mechanical problem is governed by
the balance of linear momentum, which requires

∇ · σ = 0, (2.2.1)

with the infinitesimal Cauchy stress tensor σ (and appropriate Dirichlet
and Neumann boundary conditions in terms of prescribed displacements
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and tractions, respectively). The governing equations for the electric problem
are derived from Maxwell’s equations. Gradients in the voltage potential
ϕ : Rn × R → R produce an electric field e = −∇ϕ, which is connected
to the electrical displacement field d : Ω × R → Rn and the polarization
field p : Ω × R → Rn through d = κ0e + p, where κ0 is the permittivity in
vacuum. By assuming that no free charges are present within the body Ω,
Gauss’ law reduces to

∇ · d = 0, (2.2.2)

again assuming appropriate Dirichlet and Neumann boundary conditions
(in terms of prescribed voltages and surface charges, respectively).

In order to close the above system of equations, we require constitutive
relations as well as a dissipative evolution equation for the polarization field.
We derive all constitutive relations from the electric enthalpy density W,
which for a ferroelectric perovskite decomposes as (Su & Landis, 2007; W.
Zhang & Bhattacharya, 2005)

W(ε, e, p,∇p) = Ψmech(ε) + Ψcoupl(ε, p) + Ψpol(p) + Ψinter(∇p)

+ Ψel(e)− e · p,
(2.2.3)

such that
σ =

∂W
∂ε

and d = −∂W
∂e

. (2.2.4)

The first two terms in (2.2.3) arise from decomposing the linear elastic
strain energy density into a purely mechanical strain energy Ψmech and an
electrostrictive coupling contribution Ψcoupl. The electrostriction is modeled
by a quadratic approach (Mason, 1948; Völker et al., 2011)

εr
ij = Qijkl pk pl with Q =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q11, i = j = k = l

Q12, i = j ̸= k = l

Q44, i = k ̸= j = l

0, otherwise.

(2.2.5)

Writing εij = εe
ij + εr

ij, where εe
ij denotes elastic strains and εr

ij remnant

strains, we have Ψelastic(ε) = 1
2
(︁
εij − εr

ij
)︁
Cijkl

(︁
εkl − εr

kl
)︁

with fourth-order
elasticity tensor Cijkl , such that the resulting mechanical energy density
Ψmech reads

Ψmech(ε) =
1
2

εijCijklεkl , (2.2.6)
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whereas the anisotropic electro-mechanical coupling energy, according to
Völker et al. (2011), is expressed as

Ψcoupl(ε, p) = q11

(︂
ε11 p2

1 + ε22 p2
2 + ε33 p2

3

)︂
+ q12

[︂
ε11

(︂
p2

2 + p2
3

)︂
+ ε22

(︂
p2

1 + p2
3

)︂
+ ε33

(︂
p2

1 + p2
2

)︂]︂
+ q44 (p1 p2ε12 + p1 p3ε13 + p2 p3ε23)

+ β1

(︂
p4

1 + p4
2 + p4

3

)︂
+ β2

(︂
p2

1 p2
2 + p2

1 p2
3 + p2

2 p2
3

)︂
,

(2.2.7)

with coefficients

q11 = −C11Q11 − 2C12Q12,

q12 = −C12(Q11 + Q12)− C11Q12,

q44 = −4C44Q44,

β1 =
C11Q2

11
2

+ 2C12Q11Q12 + C11Q2
12 + C12Q2

12,

β2 = C11Q12(2Q11 + Q12) + C12(Q2
11 + Q11Q12 + 3Q2

12) + 2C44Q2
44.

For convenience, we make use of a more compact notation

Ψcoupl(ε, p) = εijBijkl pk pl + pi pjAijkl pk pl , (2.2.9)

which concentrates the electro-mechanical coupling coefficients q11, q12, q44,
and β1, β2 in fourth-order coupling tensors B and A with components

Bijkl =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

q11 if i = j = k = l,

q12 if i = j ̸= k = l,

q44 if i = k ̸= j = l,

0 else

and Aijkl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 if i = j = k = l,

β2/6 if i = j ̸= k = l,

or i = k ̸= j = l,

or i = l ̸= j = k,

0 else.
(2.2.10)

Higher-order coupling tensors Fijklmn and Gijklmn, introduced by Su and
Landis (2007), are not here considered to enforce stress-free conditions on
average (as described below). Here and in the following, we use classical
index notation with Einstein’s summation convention.
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The non-convex polarization energy for tetragonal PZT is described by
a Landau-Devonshire polarization potential Ψpol, which is assumed as a
sixth-order polynomial

Ψpol.(p) = piA
1
ij pj + pi pjA

2
ijkl pk pl + pi pj pkA3

ijklmn pl pm pn. (2.2.11)

We here adopt the potential proposed by Völker et al. (2011), who calibrated
the polynomial coefficients using first-principles DFT data at the athermal
limit and exploiting the known crystal symmetries; see Vidyasagar et al.
(2017) for a discussion and Fig. 2.1 for a 2D visualization of the polarization
potential Ψpol..

p1

p2

p

p

�pol.(p)

p

p

Figure 2.1: Visualization of the polarization potential Ψpol.(p) as a function of the
polarization vector p = (p1, p2)

T, where each minima in the energy landscape
corresponds to one of the four (spontaneous) polarization states (in 2D). Each
state is visualized by a tetragonally distorted unit cell, which are, e.g., in case
of lead titanate oxide PbTiO3, composed of four lead cations Pb2+ (blue) at the
corners, one off-centered titanium cation Ti 4+ (gray) at the center, which is
octahedrally coordinated by six oxygen anions O2− (yellow). The electric dipole
is indicated by a red arrow.
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The energy contained in domain walls is considered by the regularizing
interface energy (Völker et al., 2011)

Ψinter(∇p) =
1
2

pi,jGijkl pk,l with Gijkl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G11 if i = j = k = l,

G12 if i = j and k = l,

G44 if i = k and j = l,

or i = l and j = k,

0 else,
(2.2.12)

which is generally anisotropic, described by the 4th-order tensor G. Finally,
the electric energy density writes

Ψel(e) = −κ0

2
e · e, (2.2.13)

where κ0 denotes the permittivity of free space. In polycrystals the energy
density Ψ is rotated into the local coordinate system of each grain, trans-
forming all vector- and tensor-valued fields according to the local rotation
R ∈ SO(n).

For a fixed polarization p, (2.2.1) and (2.2.2) – along with constitutive
relations (2.2.4) – provide an equilibrium solution of the unknown fields
u(x, t) → ueq(x) and ϕ(x, t) → ϕeq(x) as t → ∞. In reality, the polarization
p(x, t) evolves over time in a dissipative manner and requires a kinetic
evolution law. The latter is usually modeled by the Allen-Cahn equation of
a linear gradient flow (Su & Landis, 2007; W. Zhang & Bhattacharya, 2005):

µṗ = − δW
δp

= −∂W
∂p

+∇ · ∂W
∂∇p

(2.2.14)

with an inverse mobility (or drag coefficient) µ > 0. The unknown fields
u(x, t), ϕ(x, t), and p(x, t) are now obtained from simultaneously solving
linear momentum balance (2.2.1), Gauss’ law (2.2.2), and the kinetic evo-
lution law (2.2.14), based on the enthalpy (2.2.3) and constitutive relations
(2.2.4). All material parameters used are listed in Tab. 2.1.



32 finite-temperature ferroelectric constitutive model

Table 2.1: Material constants for tetragonal PZT 50/50 at 0 K from Völker et al.
(2011) and simulation parameters used in numerical examples.

material constants used for PZT

parameter value units source

G0 7.0 · 10−11 Vm3/C this work

α1 -8.499 · 10
8 Vm/C Völker et al., 2011

α11 1.950 · 10
8 Vm5/C3 Völker et al., 2011

α12 -9.750 · 10
8 Vm5/C3 Völker et al., 2011

α111 2.117 · 10
9 Vm9/C5 Völker et al., 2011

α112 1.687 · 10
10 Vm13/C7 Völker et al., 2011

α123 4.823 · 10
9 Vm9/C5 Völker et al., 2011

Q11 -2.3386 · 10
10 Vm/C Völker et al., 2011

Q12 -3.1528 · 10
9 Vm/C Völker et al., 2011

Q44 -1.892 · 10
10 Vm/C Völker et al., 2011

µe 123 GPa Völker et al., 2011

λe 115 GPa Völker et al., 2011

acub. 4.0119 · 10
−10 m Völker et al., 2011

atetr. 4.0047 · 10
−10 m Völker et al., 2011

ctetr. 4.0602 · 10
−10 m Völker et al., 2011

κ0 8.854 · 10
−12 F/m Haynes, 2014

kB 1.380 · 10
−23 J/K Haynes, 2014

θC 650 K Bernhard Jaffe, 1971

µ 1.0 · 10
9 kg m3/C2 s this work

∆x 4.0047 · 10
−10 m this work

∆y 4.0047· 10
−10 m this work

2.3 extension to and effects of finite temperature

To account for temperature dependent material behavior, we modify the
above constitutive model as follows: first, we render the polarization potential
Ψpol temperature-dependent; second, we append the Allen-Cahn evolution
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law (2.2.14) by a stochastic noise term to mimic the effects of thermally
induced lattice vibrations. We acknowledge that this is a first-order approx-
imation; i.e., we modify those terms which, in our view, show the strongest
influence on the resulting predicted material response. In principle, we
could also account for temperature-dependent elastic and coupling coef-
ficients as well as mobility. Further, one could consider heat conduction,
thermal expansion, and thermal heating due to the dissipative evolution
kinetics. Here, we assume that all these contributions have a marginal
impact on the ferroelectric hysteresis and the microstructural domain evo-
lution compared to the two former aspects taken into account. We therefore
assume a uniform known temperature across the RVE and simulate the
material response at different temperatures. We note that, for more accurate
predictions, the effects of thermal expansion should be included in the
model in order to account for secondary pyroelectricity and for thermally
induced stresses at GBs in the polycrystalline case. As we simulate un-
constrained, elastically isotropic samples under isothermal conditions, we
neglect thermal expansion.

2.3.1 Temperature-dependent polarization potential

We exploit our knowledge of the zero-temperature polarization potential
of tetragonal PZT from Völker et al. (2011) as well as of the paraelectric
phase implying a convex potential landscape at the Curie temperature θC.
In general, the polarization potential at a finite temperature θ is unknown
and must be modeled properly between θ = 0K and θ = θC. Following L. D.
Landau (1908) and Devonshire (1949), we introduce a linear interpolation
of the polarization potential with respect to temperature θ, such that the
polarization enthalpy density in 3D becomes

Wpol(p, e, θ) = Ψpol(p, θ)− e · p

= α1
θC − θ

θC
(p2

1 + p2
2 + p2

3) + α11(p4
1 + p4

2 + p4
3)

+ α12
θC − θ

θC
(p2

1 p2
2 + p2

2 p2
3 + p2

1 p2
3) + α111(p6

1 + p6
2 + p6

3)

+ α112

[︂
p4

1(p2
2 + p2

3) + p4
2(p2

1 + p2
3) + p4

3(p2
1 + p2

2)
]︂

+ α123 p2
1 p2

2 p2
3 − e · p,

(2.3.1)
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where pi = p · êi denotes the polarization component in the xi-direction,
and the Cartesian unit vectors êi (i = 1, 2, 3 in three dimensions) are chosen
to align with the tetragonal crystal axes ⟨100⟩, ⟨010⟩, and ⟨001⟩. α1 through
α123 are material constants adopted from the DFT-based 0K potential of
Völker et al. (2011), see Tab. 2.1.

Due to symmetry of the tetragonal unit cell, the polarization potential
Ψpol(p, θ) has six minima (and 2n minima in n dimensions in general).
In those polarization states, the polarization is aligned with one of the
tetragonal crystal axes and p(θ) = ±p0(θ) êi, where p0(θ) > 0 denotes the
(now temperature-dependent) spontaneous polarization. Consider now a
ferroelectric single-crystal forming a single, homogeneous domain, whose
polarization is aligned with one of the tetragonal crystal axes. In the absence
of any external mechanical or electrical loading (e = 0), minimizing the
electric enthalpy (which is equivalent to minimizing (2.3.1)) with respect to
the polarization and considering only positive and real solutions p0 ∈ R+

identifies the temperature-dependent spontaneous polarization as

p0(θ) =

⌜⃓⃓⎷√︂
α2

11 − 3α1α111
θC−θ

θC
− α11

3α111
for θ ≤ θC. (2.3.2)

We note that (2.3.2) is identical to the theory of Devonshire (1949) only
in the limit |(θC − θ)/θC| ≪ 1, in which case a Taylor expansion of (2.3.2)
results in the classical relation p2

0
= β(θC − θ)/α11 with a constant β > 0.

By contrast, we here do not make this simplifying assumption since we aim
to cover the full temperature range from 0K to the Curie point (and we will
demonstrate that retaining the exact form (2.3.2) is important to arrive at
accurate predictions).

A further intrinsic ferroelectric property, which is predicted by Landau-
Devonshire theory, is the coercive field ec, which refers to the electric field
required in a single-crystal for complete 180◦ polarization reversal. Consid-
ering a stress-free single-domain single-crystal with an applied electric field
(aligned with a tetragonal crystal axis), we solve ∂Wpol(p, e, θ)/∂pi = 0
using (2.3.1) with p = pêi, e = eêi, to find a relation between the electric
field e and the equilibrium polarization p (at a given temperature θ), viz.

e(p, θ) = 2α1
θC − θ

θC
p + 4α11 p3 + 6α111 p5. (2.3.3)

This relation is visualized in Fig. 2.2 for various temperatures. The coercive
field corresponds to the local maximum in the electric field (illustrated as



2.3 extension to and effects of finite temperature 35

dashed lines in Fig. 2.2) and hence follows from solving ∂2Wpol/∂p2
i = 0

for p∗ = p∗(θ) and inserting the solution into (2.3.3) so ec(θ) = |e(p∗(θ), θ)|.
We omit the lengthy analytical solution here. For this 1D scenario, the
temperature-dependent polarization potential and its corresponding electric
field are plotted as functions of the polarization for various temperatures
in Fig. 2.2. The minima in the polarization potential are located at ± p0(θ),
whereas the coercive field is identified as the points of bifurcation in the
electric hysteresis.

2.3.2 Thermal fluctuations via stochastic noise

While the above temperature-dependent potential reflects variations in
the spontaneous polarization and coercive field, it affects the kinetics of
ferroelectric switching only through changes in the driving force (due
to changes in the energy landscape). This, however, neglects another im-
portant effect of temperature. In any ferroelectric sample, the abundant
network of defects (including point defects such as oxygen vacancies as
well as higher-dimensional defects such as GBs and existing domain walls)

p�(�)

Figure 2.2: Influence of temperature on the polarization potential Ψpol(p, θ) (left)
and the corresponding electric field e(p, θ) (right) for a single-domain single-
crystal and an electric field parallel to the polarization. The minima of Ψpol(p, θ)
are at ±p0(θ), whereas the local maxima/minima of the electric field represent
the coercive field ±ec(θ) (indicated as dashed lines).
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serves as nucleation sites for the heterogeneous nucleation of new domains,
while also impeding domain wall motion through pinning and drag effects
(Jo et al., 2009; Puchberger et al., 2017). Such mechanisms are generally
temperature-dependent, and one underlying causal mechanism are atomic
lattice vibrations whose amplitude grows with temperature. Although
generally being of small amplitude compared to the atomic unit cell rear-
rangements during ferroelectric switching, these small perturbations can
be sufficient for promoting nucleation and growth of domains by helping
the material locally overcome the respective energy barriers. Simply put,
not only do energy wells in the potential of Fig. 2.2 become shallower with
increasing temperature, but also do atoms fluctuate at higher amplitude
within those wells, which promotes switching to the respective other well
and hence increases the escape rate, especially near lattice defects.

Because it is neither possible nor desirable to compute the motion of
individual atoms inside the RVE, we here use a statistical mechanics-based
approach to capture the influence of atomic vibrations by amending the
polarization kinetics to include a term of Brownian motion at the RVE-
/mesoscale. Specifically, we turn the Allen-Cahn equation (2.2.14) into the
stochastic form in the following Section.

2.3.2.1 Derivation of the stochastic noise term

To account for the effect of thermal fluctuations in the ferroelectric consti-
tutive model, we briefly revisit the random walk concept and Brownian
motion, starting in 1D for simplicity. We begin with the Langevin equation
(Langevin, 1908), considering only the overdamped solution (inertial terms
are neglected) with a polarization p that is attached to its equilibrium posi-
tion p0 through a potential W(p) and has an inverse mobility µ. With the
added random-walk term η(t), the equation of motion becomes

0 = −∂W
∂p

− µ ṗ + µη ⇔ ṗ = − 1
µ

∂W
∂p

+ η. (2.3.4)

The double-well potential W(p) keeps the polarization close to the spon-
taneous polarization p0 and prevents it from drifting over time. Therefore,
we expect that the variance of the polarization does not diffuse to zero over
time but that the distance from the equilibrium position remains bounded,
so that states far from p0 (of high energy) become unlikely (even more so
than before). The viscous damping slows down the polarization motion
and we expect that over long times the polarization may not assume an
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equilibrium position (the random noise prevents this) but will attain an
equilibrium distribution with constant mean and variance.

One may expect that over long times (t → ∞) this process attains a
thermal equilibrium, for which the probability of finding a polarization p is
given by a Boltzmann distribution (Boltzmann, 1868; Gibbs, 1902)

ρ(p) =
1
Z

exp
(︃
−V(p)

kBθ

)︃
with Z =

∫︂ ∞

−∞
exp

(︃
−V(p)

kBθ

)︃
dp (2.3.5)

with temperature θ, Boltzmann’s constant kB and the energy V(p) =
VcharW(p), where Vchar denotes a characteristic volume used for normaliza-
tion (since W is an energy density, Vchar is required to arrive at an energy
and may be interpreted as the volume of the material or grid point of
interest). The question now is how to choose η(t) such that we indeed
attain thermal equilibrium in the long-term limit as t → ∞.

Let us discretize the governing equation (2.3.4) in time with a con-
stant step size ∆t > 0, so that applying a first-order forward-Euler finite-
difference stencil leads to

p(t + ∆t)− p(t)
∆t

= − 1
µ

∂W
∂p
(︁

p(t)
)︁
+ η(t)

⇒ p(t + ∆t) = p(t) + v
(︁

p(t)
)︁
∆t + η∆t(t),

(2.3.6)

where we defined
v(p) = − 1

µ

∂W
∂p

(p) (2.3.7)

and η∆t(t) = ∆t η(t) is a short notation for the random fluctuation (whose
amplitude needs to be found, so multiplication by the time step does not
affect the final result).

If we look only at the stochastic contribution to the polarization change,
then

p(t + ∆t) = p(t) + η∆t(t). (2.3.8)

As for a random walk, we require the random noise term to have zero mean
and to be uncorrelated, i.e., respectively,

⟨η∆t(t)⟩ =
∫︂ ∞

0
η∆t(t)dt = 0 and

⟨η∆t(t)η∆t(t′)⟩ =
∫︂ ∞

0
η∆t(τ)η∆t(τ + t − t′)dτ = 2D∗δ(t − t′)

(2.3.9)
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with some constant diffusion coefficient D∗ ≥ 0 that captures the (yet to
be determined) noise amplitude. After n time steps, the random noise has
altered the solution by

p(t + n∆t) = p(t) + η∆t(t) + η∆t(t + ∆t) + . . . + η∆t
(︁
t + (n − 1)∆t

)︁
= p(t) +

n−1

∑
i=0

η∆t(t + i∆t).

(2.3.10)

By exploiting the uncorrelated nature of noise from distinct time steps, we
conclude that the mean squared difference between the initial and final
position over the above n steps is

⟨︂
[p(t + n∆t)− p(t)]2

⟩︂
=

⟨︄[︄
n−1

∑
i=0

η∆t(t + i∆t)]

]︄2⟩︄

=
n−1

∑
i=0

⟨η2
∆t(t + i∆t)⟩ = n ⟨η2

∆t(t)⟩.

(2.3.11)

Assuming an unbiased random walk, this implies that, with the total
elapsed time n ∆t, ⟨︂

[p(t + n∆t)− p(t)]2
⟩︂
= 2D n ∆t, (2.3.12)

so that a comparison of (2.3.11) and (2.3.12) yields

⟨η2
∆t(t)⟩ = 2D∆t. (2.3.13)

Such a scenario is achieved by choosing a Gaussian noise of average 0 and
amplitude 2D∆t, whose probability distribution is (Gauss, 1809; Laplace,
1774)

ρ(η∆t) =
1√

4πD∆t
exp

(︄
−

η2
∆t

4D∆t

)︄
. (2.3.14)

Next, we consider the full governing equation (2.3.6), including the non-
convex potential, to identify the unknown constant D. We start with

p(t + ∆t) = p(t) + v(p)∆t + η∆t(t). (2.3.15)

Using a generalized version of the time evolution of the probability distri-
bution, we may write

ρ(p, t + ∆t) =
∫︂ ∞

−∞
P∆t(p, q)ρ(q, t)dq, (2.3.16)
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where P∆t(p, q) is the probability that the particle moves from q at time t to
the position p at time t + ∆t, and we integrate over all possible positions
q. (2.3.16) is known as the Chapman-Kolmogorov equation (Kampen, 2007).
Moving from q to p in our scenario implies that p = q + v(q)∆t + η∆t(t),
cf. (2.3.15). Simply speaking, the random noise term has the right magnitude
to help move the particle from q to p (while the potential is also acting). The
probability that the noise has exactly a magnitude of η∆t = p − q − v(q)∆t
is defined by the Gaussian distribution (2.3.14):

P∆t(p, q) =
1√

4πD∆t
exp

(︃
− [p − q − v(q)∆t]2

4D∆t

)︃
. (2.3.17)

A Kramers-Moyal expansion (Kramers, 1940; Moyal, 1949) of the master equa-
tion (Kampen, 2007) is used to finally derive the well-known Fokker-Planck
equation (Fokker, 1914; Kolmogoroff, 1931; Planck, 1917)

dρ

dt
(p, t) = −∂ v(p)ρ(p, t)

∂p
+ D

∂2ρ(p, t)
∂p2

=
1
µ

∂

∂p

[︃
∂W (p(t))

∂p
ρ(p, t)

]︃
+ D

∂2ρ(p, t)
∂p2 ,

(2.3.18)

where we inserted the definition of ν from (2.3.7).

If we assume that this probability distribution will – over long time –
evolve into a steady state

ρeq(p) = lim
t→∞

ρ(p, t), (2.3.19)

then we may find that equilibrium distribution by solving

0 =
1
µ

∂

∂p

[︃
∂W
∂p

(p) ρeq(p)
]︃
+ D

∂2ρeq(p)
∂p2 . (2.3.20)

It is straightforward to verify by substitution that the following presents a
solution:

ρeq(p) =
1
Z

exp
(︃
−W(p)

µD

)︃
with Z =

∫︂ ∞

−∞
exp

(︃
−W(p)

µD

)︃
dp.

(2.3.21)

Notice that solution (2.3.21) has exactly the form of the Boltzmann distri-
bution (2.3.5) if we choose

D =
kBθ

µVchar
. (2.3.22)
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Therefore, in the limit of long times, the probability distribution approaches
the steady-state Boltzmann distribution

ρeq(p) =
1
Z

exp
(︃
−V(p)

kBθ

)︃
with Z =

∫︂ ∞

−∞
exp

(︃
−V(p)

kBθ

)︃
dp,

(2.3.23)
if we choose the random noise (using (2.3.13)) according to

⟨η∆t(t)⟩ = 0 and ⟨η∆t(t)η∆t(t′)⟩ =
2kBθ

µVchar
∆t δ(t − t′). (2.3.24)

This defines the temperature-dependent random noise term in 1D. Since
the random noise term must satisfy these relations in each direction (and at
every point inside the RVE), the generalization to 3D leads directly to the
following relation

µṗ = − δW
δp

+ µη = −∂W
∂p

+∇ · ∂W
∂∇p

+ µη, (2.3.25)

in which η(x, θ) represents a random noise term that mimics the effect
of lattice vibrations. To comply with the second law of thermodynamics,
we consider only conditions of constant uniform temperature θ within the
RVE. Furthermore, we require that the noise term satisfies the following
constraints:

1. For a truly stochastic noise that does not bias the evolution of the
polarization field p in any direction, the random noise must average
to zero over time at any point within the simulated RVE:

⟨η(x, t)⟩t =
∫︂ τ

0
η(x, t) dt = 0 for all x ∈ Ω, (2.3.26)

with any sufficiently large time window τ > 0.

2. The random noise must average to zero over the RVE at any given
time:

⟨η(x, t)⟩Ω =
∫︂

Ω
η(x, t) dV = 0 for all t ≥ 0. (2.3.27)

3. The random noise is uncorrelated in space and time, and its variance
σ2 depends on temperature θ and time increment ∆t according to

⟨︁
η(x, t), η(x′, t′)

⟩︁
t,Ω =

2kBθ

µVchar∆t
δ(t − t′) δ(x − x′), (2.3.28)
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where Vchar = a2
tetrctetr is the volume of the perovskite’s atomic unit

cell, which is used for normalization of the thermodynamic potential.
We do not account for local variations in the lattice volume Vchar,
which could be important for a more accurate representation of GBs
and multiple, low-symmetry phases. As detailed in the above deriva-
tion of the random noise term, the correlation constraint (2.3.28) stems
from a statistical mechanics consideration, interpreting the random
noise term analogous to a random walk whose overall effect, over suf-
ficiently long times, obeys a Boltzmann-type equilibrium probability
distribution. By solving the associated Fokker-Planck equation in the
equilibrium limit, the above condition (2.3.28) emerges.

The modified Allen-Cahn equation (2.3.25) for the polarization field,
along with the conditions (2.3.26)-(2.3.28), effects a kinetic evolution of the
polarization that depends on temperature in a stochastic sense – and the
thermal fluctuations grow with increasing temperature according to (2.3.28).
To enforce the above conditions in practice, we pick real, uncorrelated
random numbers out of a standard normal distribution N (µ, σ2) with
mean µ = 0 and variance σ2 = 1. This is achieved, e.g., by the Muller-
Box sampling (Muller, 1958) or the polar method of Marsaglia and Bray
(1964). For 3D simulations, noise is generated by picking random numbers
{x1, x2, x3} at each time step and for each point inside the RVE, so that
rescaling gives the sought random noise (at each discrete time step and at
each point) as

η∆t =

√︄
2kBθ ∆t
µVchar

3

∑
i=1

xi êi with {x1, x2, x3} ∼ N (0, 1). (2.3.29)

We point out that the stochastic Allen-Cahn equation is assumed ill-posed
for dimensions n ≥ 2 (i.e., its continuum limit does not have a reasonable
meaning), which may introduce mesh dependence (Ryser et al., 2012). In
our scenario, however, there exists a natural, finite length scale, since the
electric dipole within the atomic unit cell is the smallest unit exposed to
lattice vibrations acting on the surrounding ions. Hence, the size of the
atomic-level unit cell (of volume Vchar) provides a physical length scale
that relates the random noise to the numerical discretization ∆x used in
simulations. Choosing ∆x at the level of the atomic unit cell hence provides
a reasonable solution. (While shrinking the mesh size below the atomic unit
cell is physically questionable, coarser grids generally underestimate the
number of possible nucleation sites and therefore slow down the switching
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kinetics.) An alternative would be to regularize the noise with a correlation
length that depends on the length scale of the dipole-dipole interactions
(see, e.g., R. V. Kohn et al. (2007) for an investigation of the stochastic
Allen-Cahn equation at the sharp-interface limit by using large-deviation
theory). Here, the interface energy introduces a characteristic length scale
for dipole-dipole interactions, which acts as a natural regularization by
limiting the impact of a unit cell’s noise on its neighbors.

2.4 homogenization problem

The constitutive material law introduced in Sections 2.2 to 2.3 describes the
behavior of a ferroelectric perovskite at the single-crystal, single-domain
level. The transition from that scale to the macroscale is accomplished by
computing the effective response of a Representative Volume Element (RVE),
as is customary in classical first-order homogenization (see e.g. Miehe et al.
(2002) and Schröder (2009)). For a sample with an approximately statistically
homogeneous microstructure, we hence define an effective property as the
volume average over the RVE, writing

⟨·⟩ = 1
|Ω|

∫︂
Ω
(·) dV, (2.4.1)

where |Ω| denotes the volume of the RVE. We solve the balance of lin-
ear momentum (2.2.1) and Gauss’ law (2.2.2), while imposing periodic
boundary conditions over the surface (or boundary in 2D) of the RVE.
Technically, we decompose the RVE boundary into opposite parts such that
∂Ω = ∂Ω+ ∪ ∂Ω−, and we enforce

u(x+, t)− u(x−, t) = ε0 (︁x+ − x−
)︁

and t(x+, t) = −t(x−, t) on ∂Ω,

ϕ(x+, t)− ϕ(x−, t) = e0 ·
(︁

x+ − x−
)︁

and d(x+, t) = −d(x−, t) on ∂Ω,
(2.4.2)

where x+ and x− are pairs of opposing points on ∂Ω+ and ∂Ω−, respec-
tively. The volume-averaged strain is denoted by ε0 = ⟨ε⟩ and volume-
averaged electric field is e0 = ⟨e⟩. For homogenization to work, we assume
a separation of scales and we postulate that body and inertial forces are
negligible since we are interested in the quasistatic material behavior; hence
the mechanical and electrical RVE problems are solved quasi-statically.
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Figure 2.3: Schematic of (b) the experimental setup showing a ferroelectric spec-
imen (white) coated with two metallic electrodes on opposite sides (gray) and
clamped on the bottom end (black) and (a) the numerical setup visualized by the
polycrystalline RVE, which corresponds to the cubic-shaped volume V = L3 of
the bulk material indicated in (b). In the Sawyer-Tower circuit, the accumulated
charges Q at a reference capacitor with capacitance Cref are measured over time
along with the applied voltage U(t) across the sample thickness h.

The only time-dependent governing equation, the modified Allen-Cahn
equation (2.3.25), is solved by assuming the periodic boundary conditions

p(x+, t) = p(x−, t), (2.4.3)

which does not impose an average but instead allows the polarization field
to evolve freely (aside from periodicity on the RVE surfaces).

In our experiments (Kannan & Kochmann, 2022; Kannan et al., 2022; le
Graverend et al., 2015; W. L. Tan et al., 2019; Wojnar et al., 2014), a uniform
electric field ē = ∆ϕ/h is applied over the specimen thickness h, with ∆ϕ
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denoting the corresponding voltage differential. In this setup, the electric
field is applied at the macroscale, thus we assume a separation of scales.
The measured electric charge Q can be directly linked to the average electric
displacement d̄ = Q/A, viz. (Vidyasagar et al., 2017)

Q
A

z =
Q
V

hz =
1
V

∫︂
∂Ω

qsx ds =
1
V

∫︂
Ω
∇ · (x ⊗ d) dv

=
1
V

∫︂
Ω
(x∇ · d + d) dv =

1
V

∫︂
Ω

d dv = ⟨d⟩,
(2.4.4)

where A is the area of the electrodes, z the unit vector pointing through the
sample thickness and qs the charge density, see Fig. 2.3. We emphasize that
our study is dedicated to the bulk response of ferroelectric ceramics and not
to thin films exhibiting considerable free-surface effects. As a consequence,
the depolarization field plays only a marginal role, such that the above
relations hold and we may assume that the applied voltage differential can
be directly interpreted as the average applied electric field at the RVE-level.

Finally, since both the electric field ē = ⟨e⟩ = e0 and the electric dis-
placement d̄ = ⟨d⟩ are related to their measured counterparts, the average
polarization p̄ (based on an isotropic permittivity) is obtained as

⟨p⟩ = ⟨d⟩ − κ0⟨e⟩. (2.4.5)

This allows a for direct comparison of the measured polarization obtained
in experiments at the macroscale and the homogenized polarization over a
RVE based on numerical simulations at the mesoscale.

2.5 spectral solution scheme

We follow the approach of Vidyasagar et al. (2017) and solve all governing
equations in Fourier space, encouraged by the periodic homogenization
scheme. To this end, we discretize the cubic-shaped RVE of side length L
into N grid points in each dimension, such that the position vector over all
grid points becomes x = {x1, . . . , x3N}. For any function f (x), we define its
inverse discrete Fourier transform as

f (x) = F−1
(︂

f̂
)︂
= ∑

k∈T
f̂ (k) exp (ik · x) and i =

√
−1, (2.5.1)

where k = {k1, . . . , k3N} denotes the wave vector in the reciprocal lattice
(the complete set being T ), and f̂ (k) are the Fourier coefficients.
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2.5.1 Electrical and mechanical problem

In the absence of free charges, negligible body, and acceleration forces, the
electrical and mechanical problems simplify both to equilibrium equations,
which can be solved independently from one another for a given polariza-
tion p(x, t) at a certain time t. To this end, we solve Gauss’ law (2.2.2) in
Fourier space to obtain the complex electric field as, respectively,

ϕ̂p(k) = −i
k · p̂(k)
κ0|k|2

⇒ ê(k) = −ikϕ̂p(k) =

⎧⎪⎨⎪⎩−
k · p̂(k)
κ0|k|2

k, if k ̸= 0,

e0, if k = 0,
(2.5.2)

where we impose the average electric field e0 through the case k = 0.
The voltage potential ϕ is not an independent variable in our ferroelectric
constitutive model. For completeness, nevertheless, it can be computed by
adding the non-periodic contribution to the symmetric potential field ϕp(x)
through the imposed average electric e0 as follows:

ϕ(x) = ϕp(x)− 1
κ0

e0 ·
(︃

x − L
2

)︃
+ ϕ0. (2.5.3)

Note that the second term is an odd function, i.e., it does not contribute to
the average electric potential ⟨ϕ⟩, which is imposed by ϕ0.

The mechanical problem governed by the balance of linear momen-
tum (2.2.1) requires an iterative solution strategy with a perturbation stress
τ(x) and a reference stiffness tensor C0 = ⟨C(x)⟩ to account for the hetero-
geneity of the elastic stiffness tensor C(x) (see references Lebensohn et al.
(2012) and Moulinec and Suquet (1998, 2003)), such that the stress tensor
takes the form

σij(x) = C0
ijklεkl(x)− τij(x). (2.5.4)

Applying the divergence operator to the equation above and solving for the
complex strains in Fourier space results in

ε̂ij(k) =

⎧⎪⎨⎪⎩
1
2

[︂
A−1

ni (k)kmk j + A−1
nj (k)kmki

]︂ [︂
τ̂nm(k) + C̃

0
nmkl ε̂

r
kl(k)

]︂
, k ̸= 0,

ε0
ij, k = 0,

(2.5.5)
where εr

kl denotes the electrostrictive strain, ε0
ij the imposed average strain

tensor, and Aik(k) = C0
ijklk jkl is the acoustic tensor. The strain dependence
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of the perturbation stress τ demands an iterative solution scheme, which
makes this solution strategy computationally expensive.

2.5.2 Ferroelectric problem

We discretize the modified Allen-Cahn equation by an implicit backward-
Euler finite-difference scheme, based on time increments ∆t > 0 such that
tn = n ∆t. Thus, (2.3.25) is turned into

µ
pn+1

i − pn
i

∆t
=

⎡⎣−∂W
∂pi

(pn+1) +

(︄
∂W
∂pi,j

(pn+1)

)︄
,j

⎤⎦+ µ ηn
i (2.5.6)

for every grid point inside the RVE, where pn+1 = p(x, tn + ∆t) and
pn = p(x, tn) denote the polarization at the current and previous time
increment, respectively, and ηn = η(x, tn) the thermal fluctuations intro-
duced in Section 2.3.2. Note that the first and second term represent the
deterministic contribution to the polarization evolution, whereas the last
term is purely stochastic, due to the constraints (2.3.26)-(2.3.28). For conve-
nience, we define a thermodynamic driving force with components

fi(ε, e, p) = −∂W
∂pi

=

[︃
ei −

∂Ψcoupl

∂pi
−

∂Ψpol

∂pi

]︃
, (2.5.7)

and the nonlocal gradient term, which is computed in Fourier space, is
evaluated as

gi(p) =

(︄
∂W
∂pi,j

)︄
,j

=

(︄
∂Ψinter

∂pi,j

)︄
,j

= G0 pi,jj = F−1
{︂

G0 |k|2 p̂i

}︂
. (2.5.8)

The overall ferroelectric problem is solved in a time-incremental, staggered
manner. We first solve for the electric field ên+1 and the strains ε̂n+1 in
Fourier space, using Eqns. (2.5.5) and (2.5.2) based on the polarization pn

from the previous time step. Applying the inverse Fourier transform yields
the real-space quantities en+1 and the strains εn+1 at all RVE grid points.
Next, using implicit Euler time integration to solve

pn+1
i = pn

i +
∆t
µ

[︂
fi(ε

n+1, en+1, pn+1) + gi(pn+1)
]︂
+ (η∆t)

n
i , (2.5.9)

leads to the sought new polarization pn+1, where last term stems from
Eqn. (2.3.29). The time step size ∆t was verified by numerical experiments
to be sufficiently small to achieve convergence of this staggered scheme.
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2.6 simplifying assumptions

In this section, we discuss the simplifying assumptions to the general solu-
tion strategy, described in the previous Section 2.5. As a first assumption,
we assume an isotropic interface energy with Gijkl = G0δijδkl (using the
Kronecker delta δ) in (2.2.12), such that the interface energy simplifies to

Ψint. (∇p) =
G0

2
|∇p|2 , (2.6.1)

where G0 denotes the interface energy constant. An anisotropic formulation
of the interface energy, as suggested by Völker et al. (2011), is generally not
possible due to practical reasons, e.g., experimental validation is challenging
and the anisotropy in combination with an FFT-based approach involves
severe computational costs requiring an iterative solution scheme when
studying heterogeneous materials. Therefore, an isotropic interface energy
is assumed, which is a common assumption in the research field (Shu &
Bhattacharya, 2001; Su & Landis, 2007; Woldman & Landis, 2016, 2019;
W. Zhang & Bhattacharya, 2005). As previously described, the effective
material response is generally computed by solving the governing equa-
tions (2.2.1),(2.2.2), and (2.3.25) within a RVE, using spectral homogeniza-
tion to impose volume-average strains ⟨ε⟩ and average electric fields ⟨e⟩,
see Section 2.5 for details.

Second, by assuming elastic homogeneity (which is the case in (an)isotropic
single-crystals as well as in polycrystals when assuming elastic isotropy),
we avoid an iterative FFT-based solution scheme (Lebensohn et al., 2012;
Moulinec & Suquet, 1998, 2003) and can impose average stresses directly,
which is elaborated. Therefore, we assume a homogeneous material and ap-
proximate an isotropic elastic material behavior with Voigt stiffness moduli
C11, C12 (as obtained from first principles by Völker et al. (2011)) and define
C44 = (C11 − C12)/2, so that the components of the fourth-order elasticity
tensor can be written as

Cijkl = λeδijδkl + µe(δikδjl + δilδjk) (2.6.2)

with Lamé moduli λe and µe, listed in Tab. 2.1 for PZT. Of course, this is a
simplifying assumption and we admit that the elastic anisotropy may have
an impact on the ferroelectric response (especially when considering, e.g.,
the elastic mismatch near GBs). However, given the variations of reported
(experimental and computed) elastic moduli, especially for PZT near the
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morphotropic phase boundary, we are not in a position to quantify the exact
influence of elastic anisotropy and therefore limit our study to isotropy.

Consequently, defining the associated coupling stress tensor as

σr
ij = ∂Ψcoupl/∂εij = Bijmn pm pn (2.6.3)

and applying the Fourier transform to the balance of linear momentum
leads to

ε̂ij(k) =

⎧⎪⎨⎪⎩− 1
2

[︂
A−1

ni (k)kmk j + A−1
nj (k)kmki

]︂
σ̂r

nm(k), if k ̸= 0,

ε0
ij, if k = 0,

(2.6.4a)

ûk(k) =
i
h

A−1
ik (k)σ̂r

ij(k)k j, (2.6.4b)

where Aik(k) = Cijklk jkl is the acoustic tensor, and σ̂r
nm(k) represents the

Fourier-transformed coupling stresses (which are computed in real space
from the constitutive law (2.6.3)). Equations (2.6.4a)-(2.6.4b) can be solved
directly in Fourier space without iterations, which enables fast and efficient
simulations without the need for computing or storing a consistent tangent
(hence enabling the presented high-resolution simulations).

Furthermore, since samples in experiments were unconstrained (Kannan
& Kochmann, 2022; Kannan et al., 2022; W. L. Tan et al., 2019; Vidyasagar
et al., 2017), we assume a negligible average stress in the sample and hence
inside the RVE:

⟨σij⟩ = ⟨Cijklεkl⟩+ ⟨Bijmn pm pn⟩ = 0. (2.6.5)

When exploiting the assumption of elastic isotropy, (2.6.5) allows us to
compute the average strain in the RVE as

ε0
kl = ⟨εkl⟩ = C−1

ijkl
(︁⟨︁

σij
⟩︁
−
⟨︁
Bijmn pm pn

⟩︁)︁
= −C−1

ijkl
⟨︁
Bijmn pm pn

⟩︁
= ⟨εr

kl⟩ ,
(2.6.6)

where ⟨εr⟩ on the right-hand side is computed by homogenization of (2.2.5).

Third, to optimize the computational efficiency and for practical rea-
sons, e.g., ease of visualization and comparability, we perform primarily
two-dimensional (2D) simulations but consider out-of-plane strains. The
description of the plane-stress model in the following is briefly adapted
from Indergand (2019) for the sake of completeness. We assume vanishing
out-of-plane components e3 = 0, p3 = 0, d3 = 0, and σi3 = 0 (i = 1, 2, 3),
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whereas ε33 ̸= 0 in general. By applying these assumptions to (2.2.4), the
out-of-plane strain writes

ε33 = −
[︃

C12

C11
(ε11 + ε22) +

q12

C11
(p2

1 + p2
2)

]︃
. (2.6.7)

Unfortunately, the in-plane strains depend on the normal stresses, e.g.
ε11 = ε11(σ11, σ22, σ33), such that a system of equations must be solved.
From (2.6.5) we know that the average strain follows from (2.6.6), viz.

εij = ⟨εij⟩ = C−1
ijkl
(︁
⟨σij⟩ − ⟨Bijkl pk pl⟩

)︁
= C−1

ijkl
(︁
⟨σij⟩ − ⟨σr

ij⟩
)︁
, (2.6.8)

or, written component by component where use is made of the compliance
tensor S = C−1 for convenience,

⟨ε11⟩ = S11
(︁
⟨σ11⟩ − ⟨σr

11⟩
)︁
+ S12

(︁
⟨σ22⟩ − ⟨σr

22⟩+���⌃
0

⟨σ33⟩ − ⟨σr
33⟩
)︁
, (2.6.9a)

⟨ε22⟩ = S11
(︁
⟨σ22⟩ − ⟨σr

22⟩
)︁
+ S12

(︁
⟨σ11⟩ − ⟨σr

11⟩+���⌃
0

⟨σ33⟩ − ⟨σr
33⟩
)︁
, (2.6.9b)

⟨ε33⟩ = S11
(︁
���⌃

0
⟨σ33⟩ − ⟨σr

33⟩
)︁
+ S12

(︁
⟨σ11⟩ − ⟨σr

11⟩+ ⟨σ22⟩ − ⟨σr
22⟩
)︁
. (2.6.9c)

It is important to note that the plane-stress assumption imposes the total
stress σ33 = 0, but not necessarily the elastic and coupling stresses, ex-
pressed as σe

33 ̸= 0 and σr
33 ̸= 0. Since we enforce the average stress ⟨σ⟩ in

the RVE as a boundary condition, the only unknown in the above system
of equations is the coupling stress σr = ∂Ψcoupl/∂ε, which results from
applying the plane-stress assumption to (2.6.3), viz.

σr
11 = q11 p2

1 + q12 p2
2, (2.6.10a)

σr
22 = q11 p2

2 + q12 p2
1, (2.6.10b)

σr
33 = q12(p2

1 + p2
2), (2.6.10c)

σr
12 = q44 p1 p2. (2.6.10d)

Using the spectral solution scheme introduced in Section 2.5, the in-plane
strains ε11(x), ε22(x), and ε12(x) at each position x are calculated in Fourier
space via (2.6.4a). Finally, with (2.6.7), the out-of-plane strain ε33(x) can
be computed. This model distinguishes itself from other approaches (e.g.
W. Zhang and Bhattacharya (2005), who used a 2D model, or Su and Landis
(2007) with a generalized plane-strain model (uniform out-of-plane strain
ε33)) by considering a spatial dependence of the out-of-plane strain ε33 to
ensure better energy relaxation, closer to a 3D model.
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Numerical case studies on the bipolar electric cycling hysteresis showed
that results of the plane-stress model for a single-crystal setup are consis-
tent with the corresponding results from the 3D model in the case of a 2D
loading scenario (Indergand, 2019). It is important to note that polycrys-
tals are, strictly speaking, always 3D, since they are composed of multiple
grains with different crystallographic orientations in all three directions.
Nevertheless, the 2D plane-stress model can closely approximate the mate-
rial response of tetragonal ceramics, e.g., a uniaxial polycrystal (all grains
having a common ⟨100⟩-axis.)

This allows us to use 3D material constants (as obtained from first prin-
ciples) while simulating a planar RVE (thus allowing the out-of-plane
strains to accommodate the remnant strains as in a bulk ferroelectric that
is stress-free on average). The planar assumption allows for an inexpen-
sive computation of the bulk material response, in which the mechanical
and electric fields are restricted to the plane without thin-film effects (e.g.,
thickness-dependent material response, and depolarization fields).

A pseudo-code of the described plane-stress algorithm is shown in Alg. 1.
By utilizing the simplifying assumptions discussed in this section, the
electrical as well as the mechanical problem are solved without iterations in
Fourier space. Furthermore, the temporal update of the coupled mechanical,
electrical, and ferroelectric problem is performed in a fully implicit manner,
improving the stability of the numerical scheme and allowing larger time
steps ∆t (Gottlieb & Orszag, 1977).



2.6 simplifying assumptions 51

Algorithm 1: Implementation of the Plane-Stress Model
Data: Simulation time tend, time step size ∆t, initial

polarization p(x, t = 0), tangent stiffness C.
Declaration and initialization of variables, assignment of the initial

guess for pn;
while tn ≤ tend do

ηn
∆t =

√︂
2kBθ ∆t
µVchar

X with {X1, X2, X3} ∼ N (0, 1);

Reset of the m count and assign initial guess of pn+1
m ;

while
⃦⃦⃦

pn+1
m+1(x)− pn+1

m (x)
⃦⃦⃦
≥ tol do

σr(x) = B(pn+1
m ⊗ pn+1

m );
for loop over k-space do

σ̂r(k) = FFT (σr(x));
p̂(k) = FFT

(︁
pn+1

m (x)
)︁
;

if k == 0 then
e(k) = e0;
ε(k) =

⟨︁
εr(pn+1

m )
⟩︁

; /* stress-free BC */

else

e(k) = −
k · p̂(k)
κ0|k|2

k;

ε(k) = − 1
2
[︁
σ̂r(k)kA−1 ⊗ k + A−Tσ̂r(k)k ⊗ k

]︁
end
ĝ(k) = G0 |k|2 p̂(k)

end
iFFT to obtain en+1(x), εn+1(x), and gn+1(x)
εn+1

33 (x) = −
[︂

C12
C11

tr
(︁
εn+1)︁+ q12

C11
tr
(︁

pn+1
m ⊗ pn+1

m
)︁]︂

;

f n+1(x) = en+1 − ∂Ψcoupl
∂p (εn+1, pn+1

m , εn+1
33 )− ∂Ψpol

∂p (pn+1
m );

pn+1
m+1 = pn + ∆t

µ

[︂
f n+1 + gn+1

]︂
+ ηn

∆t , reassign to pn+1
m , and

increment m;
end
pn = pn+1

m+1 and increment n;
end
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Figure 2.4: The computed spontaneous polarization p0(θ) from (2.3.2) (solid blue
line) in comparison with Devonshire’s theory (solid orange line) and measure-
ments of PZT-5A (yellow asterisk), PZT-500 (violet open circle), PZT 52/48 (green
open diamond) and PIC151 (blue open star). The spontaneous polarization p0(θ)
is normalized by its value at 0 K (reference values are listed in Tab. 2.2). The
predicted normalized (single-crystal, single-domain) coercive field ec(θ) is also
included (dashed blue line).

2.7 results : ferroelectric switching

2.7.1 Influence of the temperature-dependent polarization potential

To assess the accuracy of the chosen linear interpolation of the polarization
potential with temperature, Fig. 2.4 illustrates the spontaneous polarization
p0 vs. temperature – comparing computed results obtained from the linearly
interpolated polarization potential (2.3.1) as well as from the approximation
by Devonshire (1954) to experimental data for different types of PZT. Un-
fortunately no complete set of data for a single type of PZT across the full
temperature range is available to our knowledge. Hence, for an accurate
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comparison the temperature and spontaneous polarization are normalized
by, respectively, the Curie temperature θC and the extrapolated polarization
at 0K, p0(0), for each material (see Tab. 2.2 for the exact reference values
used for normalization).

Table 2.2: Material properties of PZT ceramics used for normalization. The
spontaneous polarization at 0K, p0(0K), is obtained by extrapolation from the
following experiments: [1] Hooker (1998), [2] CeramTec (2020), [3] Q. Zhang et al.
(1994), [4] Bernhard Jaffe (1971), [5] Kaeswurm et al. (2018), and [6] PICeramic
(2020).

material constants used for normalization

composite spontaneous Curie

polarization p0(0K) temperature θC

[−] [C/m2] [K]

PZT-5A 0.32 [1] 643 [2]

PZT-500 0.43 [3] 650 [2]

PZT-52/48 0.34 [3] 640 [4]

PIC 151 0.35 [5] 523 [6]

We note that the drop in the experimental data of Hooker (1998) at low
temperatures is questionable in our view (one may question whether com-
plete polarization reversal was achieved at those low temperatures, since all
other data clearly report a different trend). If we ignore the low-temperature
data of Hooker (1998), the normalized spontaneous polarization measure-
ments in Fig. 2.4 coincide reasonably well with the prediction by our finite-
temperature model for all shown PZT compositions (also demonstrating
the continuous, second-order phase transition expected for PZT).

In comparison to measured data, the spontaneous polarization from
first-principle DFT calculations at zero temperature is noticeably higher,
viz. pDFT

0
(0) = 0.58 C/m2 for Pb(Zr0.5Ti0.5)O3. This can be expected since

simulations are based on an ideal, defect-free, single-crystal, whereas ex-
periments deal with a polycrystalline sample with imperfections.

Important characteristics of ferroelectrics are their electric hysteresis and
butterfly curve, which we extract from single-crystal RVE simulations at
different temperature levels, using bipolar electric field cycling. To this
end, a triangular-shaped average electric field in the x3-direction with



54 finite-temperature ferroelectric constitutive model

(a)

(b)

(c)

(d)

Figure 2.5: Influence of the temperature-dependent polarization potential
Ψpol(p, θ) on the bipolar cycling hysteresis (a,c) and on the (negative) lateral
strain ε11 (b,d) computed with a 2D model at 0 K, 150 K, 300 K, 450 K, and 600 K.
A triangular wave with cycling period T = 21µ/|α1| and amplitude e3 = 109 V/m
is applied. Experimental measurements on polycrystalline PZT-5A by W. L. Tan
et al. (2019) are added for comparison.
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amplitude e3 and cycling period T is applied; simultaneously, the aver-
age electric displacement parallel and the average strain perpendicular to
the electric field, d3 and ε11, respectively, are recorded. Numerical results
of the bipolar switching hysteresis at different temperatures, computed
with a single-crystal 2D RVE of grid resolution 256 × 256, are plotted in
Fig. 2.5(a). Similar to the predicted temperature dependence of the coer-
cive field in Fig. 2.4, we notice an approximately linear decrease of the
coercive field ec = e|p=0 with increasing temperature. In Fig. 2.5(c) we plot
the normalized polarization (i.e., the polarization normalized by its value
p0 = p|e=0 for each temperature) vs. the normalized electric field (i.e., the
applied electric fields normalized by the coercive field at each tempera-
ture). The normalized polarization at zero electric field is approximately
1 across the full temperature range tested, so the polarization converges
to its equilibrium state, which implies that the simulation indeed captures
the quasistatic material response at the chosen cycling rate. As the only
exception, results for 600K reveal a polarization at zero electric field that is
considerably higher than the spontaneous polarization at that temperature,
so we observe a strong effect of temperature on the hysteresis. Also in-
cluded in Fig. 2.5(c) are experimentally measured data for (polycrystalline)
PZT-5A at room temperature (W. L. Tan et al., 2019), whose normalized
curve agrees well with the simulated hystereses.

As a further characteristic of ferroelectric ceramics we compute the evolu-
tion of strain with electric field. Fig. 2.5(b) plots the negative lateral strain ε11
vs. the applied electric field as the classical butterfly curve. Analogous to
the polarization hysteresis, an increase in temperature leads to a decrease
of the electric field at maximum strain (eε

c), which is slightly higher than the
corresponding field from the polarization hysteresis curve (ec). Furthermore,
we observe a decrease of the strain magnitude from polarization reversal
with increasing temperature. The corresponding normalized curves are
shown in Fig. 2.5(d), again indicating good qualitative agreement with
experimental data.

From the bipolar switching hysteresis and the butterfly curves, small-
signal properties such as the piezoelectric coefficients d31, d33 and dielectric
constants κ11, κ33 can be determined as (no summation implied)

dij =
∂ε(jj)

∂ei

⃓⃓⃓⃓
σ=0

and κij =
∂dj

∂ei

⃓⃓⃓⃓
e=0

for i, j = 1, 2, 3. (2.7.1)

The dielectric constant or relative permittivity κ33 (the slope of the polar-
ization hysteresis at zero electric field) is a measure of the capacitance of a
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Figure 2.6: Influence of the temperature-dependent polarization potential
Ψpol(p, θ) on small-signal properties such as the piezoelectric constants d31,
d33 (left) and the dielectric constant κ33 (right) computed with a 2D model (line)
in comparison with measurements of PZT-5A (open circles), PZT-500 (open dia-
monds) and PZT 52/48 (asterisks). The piezo-/dielectric constants are normalized
with respect to their corresponding value at 300K

medium. The piezoelectric coefficients d31 and d33 (the slopes of the strain
perpendicular and parallel to the switching direction, ε11 and ε33, respec-
tively, at zero electric field) provide a relation between the induced strain
and the applied electric field and can be interpreted as a force sensitivity
(i.e. charge released per Newton force). The temperature dependence of the
piezoelectric coefficient and of the dielectric constant as obtained from our
phase-field model is shown in Fig. 2.6 in comparison with experimental
data. Since the bipolar switching hysteresis and the butterfly curve depend
strongly on a particular material’s microstructure and composition (i.e., its
grain size and texture, defect distribution, titanium concentration, dopants,
etc.) which are not considered in our model, all reported small-signal prop-
erties are normalized with respect to their value at 300 K, see Tab. 2.3. The
overall trends of the temperature-dependent piezoelectric coefficients d31
and d33 are captured reasonably well, independent of the specific ferro-
electric ceramic (and unbiased by microstructural variations). We note that
the dielectric constant κ33 shows a stronger dependence on the particular
material. Our model (based on the first-principles-informed 0K potential of
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Völker et al. (2011)) comes closest to Hooker’s (1998) measurements of PZT-
5A. However, effects at the polycrystalline mesoscale, such as domain wall
motion and defect pinning, are known to have an impact on the large-signal
and small-signal properties. Considering that we used a single-crystal in
our simulations, the agreement with measurements is reasonably good.

Table 2.3: Small signal properties of PZT ceramics at 300 K (used for normaliza-
tion) stem from the following experiments: [1] Hooker (1998) and [2] Q. Zhang
et al. (1994).

Piezoelectric and dielectric constants at 300K

composite piezoelectric const. piezoelectric const. dielectric const.

d31 [pC/N] d33 [pC/N] κ33 [-]

PZT-5A [1] -195 354 1320

PZT-500 [2] -170 361 1861

PZT-52/48 [2] -114 248 1230

2.7.2 Influence of thermal fluctuations

To assess the impact of the thermalized random noise on the ferroelectric
switching kinetics, we deliberately deactivate the temperature dependence
of the polarization potential (discussed in the previous section) in order to
isolate the effect of the stochastic noise (this ensures that varying the tem-
perature does not alter the coercive field, so that a constant applied electric
field is a legitimate test case for evaluating the influence of the introduced
random noise for varying temperature levels). The combined effects of
temperature-dependent potential and thermal noise will be investigated in
the following Section 2.7.3. Subsequent numerical examples use a 2D RVE
with 1024 × 1024 grid points and resolve the ferroelectric microstructure
down to the atomic level; i.e., as discussed before, every pixel mimics exactly
one tetragonal atomic-level unit cell and exhibits temperature-dependent
Brownian motion through the space-time random process.

As an instructive scenario, we use the well-defined environment of a
single-crystal to study the kinetics of domain nucleation and growth under
the influence of thermal noise. To initialize the nucleus, we seed an elliptic-
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Figure 2.7: Simulation results for a single-crystalline RVE with periodic boundary
conditions and an isolated nucleus at its center, kept at a constant electric field of
e3 = 108 V/m (considering only thermal fluctuations). (a) The initial polarization
distribution p(x, 0)/p0 is indicated by small white arrows, starting from which
the nucleus grows in two directions at speeds vtip and vwall of the nucleus, as
indicated in red. (b) Needle-tip velocity vtip(e, θ) and (c) domain wall velocity
vwall(e, θ) were computed for various temperatures θ, and the corresponding
estimate based on a linear regression, is indicated as a red line (speeds are
normalized by v0 = 2.93|α1|acub/µ). Snapshots of the computed growth of
the ferroelectric nucleus at t = 170µ/|α1| illustrate (d) polarization component
p3(x, t)/p0, (e) polarization potential Ψpol(p, θ), and (f) elastic energy density
Ψmech(ε) at room temperature θ = 300 K.

shaped a+-domain at the center of the RVE, as depicted in Fig. 2.7(a),
and – for its stabilization – apply a constant electric field e3 = 108 V/m
significantly below the coercive field (which in this case is ec = 5 · 108 V/m).
At varying noise levels, we observe the isolated nucleus grow in two
directions: in the longitudinal direction (spreading with the needle-tip speed
vtip) and in the transverse direction (accommodated by classical domain
wall motion at a speed vwall), see Fig. 2.7(a). As shown in Fig. 2.7(b) and
(c), both velocities are strongly influenced by the thermal fluctuations, with
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the propagation speeds increasing approximately linearly with temperature
and consistent with 0K results obtained at the athermal limit without
thermal fluctuations. Independent of temperature, the needle-tip velocity
vtip is considerably higher (about a factor of 33) than the domain wall
velocity vwall, which consequently results in a slender, needle-like shape
of the growing a+-domain. This predominant growth in the longitudinal
direction is illustrated in Fig 2.7(d), showing the computed polarization
in the vertical direction p3(x, t)/p0 after an elapsed time of t = 170µ/|α1|.
Fig 2.7(f) reveals that the bulk of the nucleus occupies an equilibrium
polarization state (a+-domain) with a low polarization energy, whereas the
domain walls and the needle-tip are in a non-equilibrium polarization state
with a locally high polarization energy. This high-energy polarization state
makes the needle tip and walls prone to thermally-driven switching due
to the lower energy barrier ∆E90 in the polarization energy Ψpol(p, θ) that
stands in competition with the thermal energy kBθ.

2.7.3 Combined effects of thermal fluctuations and temperature-dependent ener-
getics

To understand the behavior observed when including both the temperature-
dependent polarization potential (affecting the energetic switching barriers)
and the thermal noise (causing fluctuations that help overcome those barri-
ers), we illustrate in Fig. 2.8(a) a typical landscape of the polarization en-
thalpy density Wpol(p, e, θ) vs. the (normalized) polarization p = (p1, p3)

T

in 2D, at a fixed applied electric field e3 = 8 · 107 V/m and temperature
θ = 300 K. Consider as the initial state p = (0,−p0)

T. Under the applied
field, switching from p = (0,−p0)

T to p = (0, p0)
T is most easily accom-

modated by two subsequent 90◦-switching events. The minimum energy
pathway (MEP) connecting those two polarization states is obtained by
using the simplified string method (Sheppard et al., 2008) and is indicated
as a magenta curve in Fig. 2.8(a). Plotting the polarization enthalpy den-
sity along this MEP reveals the energy barrier ∆E90 of a 90

◦-domain wall,
see Fig. 2.8(b). (The barrier for 180◦-switching is significantly higher.) As
summarized in Fig. 2.8(c), the energy threshold ∆E90, which separates two
90

◦-adjacent polarization states, depends on the applied electric field e3 as
well as on temperature θ, the latter dependence enters through the polar-
ization potential Ψpol(p, θ) introduced in Section 2.3.1. Data in Fig. 2.8(c)
indicates that increasing the temperature reduces the energy barrier for
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Figure 2.9: Snapshots of a simulated evolving ferroelectric domain microstructure
in a single-crystal at t = 51µ/|α1|, showing polarization component p3(x, t)/p0
for an applied electric field e3 = 8 · 107 V/m at temperatures (a) θ = 275 K, (b)
325 K, and (c) 375 K. The corresponding energy threshold of the 90

◦-domain walls
for the three depicted ferroelectric microstructures is indicated in Fig. 2.8(c) as A,
B, C.

90
◦-switching, so that maintaining a constant applied electric field induces

domain switching more readily with increasing temperature.

This effect becomes apparent in Fig. 2.9, which shows the same single-
crystal example from Fig. 2.7 but this time at the three temperatures θ =
275 K, 325 K, and 375 K, while applying the same electric field e3 = 8 ·
107 V/m. We observe three distinct switching mechanisms: (a) growth of
the nucleus predominantly as a needle in the longitudinal direction at 275 K,
(b) branching of the existing a+-domain into multiple a−-domains at 325 K,
and (c) nucleation of mainly a+-domains at randomly distributed locations
inside the c−-domain at 375 K. For the given choice of temperature and
electric field, classical domain wall motion perpendicular to the wall plays
only a minor role1, which is in agreement with experimental observations
and analytical considerations (Ayoub et al., 2017; Hayashi, 1972; Meng et al.,
2015; Merz, 1956). The temperature dependence of the polarization potential
hence globally reduces the energy barrier at elevated temperatures and
stimulates thermally-driven polarization reversal by branching of existing
domains and nucleation of new ones.

1 We acknowledge that classical domain wall motion, i.e., the growing of a domain through
wall motion perpendicular to the wall, is of course an important mechanism. However, the
longitudinal growth requires only ions at the needle tip to be displaced, on the contrary to
lateral growth, and is therefore energetically preferred (Snoeck et al., 1994).
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The conditions of the three snapshots in Fig. 2.9 correspond to points A,
B, C highlighted in Fig. 2.8(c). By more broadly covering the space of elec-
tric fields and temperatures, numerical simulations were used to identify
regions in Fig. 2.8(c) in which polarization switching occurs primarily by
growth only as in Fig. 2.9(a) (blue shaded area), growth, branching, and
nucleation as in Fig. 2.9(c) (red area), or shrinkage and extinction of the
nucleus (white area). This illustrates the competing microstructural mecha-
nisms and the influence of temperature and electric field. Other fluctuation
fields (not considered in this work, caused, e.g., by thermally-driven mi-
gration of oxygen vacancies or free charges) are expected to have a similar
effect as lattice vibrations. On the other hand, microstructural imperfections
such as GBs, lattice defects, cracks and voids result in localized high-energy
spots, leading to heterogeneous nucleation instead of at random locations
as seen in the single-crystalline RVE in Fig. 2.9(c).

To probe the impact of heterogeneity, we simulate a polycrystalline RVE of
PZT with randomly-oriented grains, whose orientations are assigned based
on a Gaussian distribution with zero mean and 22◦ standard deviation.
The sample is poled initially in the negative vertical direction, resulting in
a single c−-domain. After equilibration, the polarization adjusts slightly
according to the preferred orientation of each grain. Finally, an electric field
is applied and kept constant during the domain evolution, comparable to
the experimental step-load procedure described by Schultheiß et al., 2018

(this step-response loading shows the system kinetics in a clean fashion
without dependence on, e.g., the frequency during bipolar electric cycling).

Fig. 2.10 shows various snapshots of the same simulated ferroelectric
microstructure, showing the normalized polarization p3(x, t)/p0 in the ver-
tical direction, the polarization energy density Ψpol(p, θ), and the elastic
energy density Ψmech(ε). The grain orientations within the RVE are shown
schematically in Fig. 2.11. Analogous to the single-crystal example, we
observe that nucleation of new a-domains inside a c−-domain lowers the
polarization potential in the bulk, but the domain wall and the needle-tip of
the nucleus remain in a non-equilibrium polarization state and are therefore
energetically unfavorable. The red spots in the polarization energy map in-
dicate locations where the energy has reached the threshold of a 90

◦-domain
wall (for a grain with zero misorientation); since these are unstable states,
an immediate polarization switching can be expected. We also illustrate
the elastic energy density, which highlights locations of high stress con-
centrations, such as grain triple junctions, mismatching domain interfaces
caused by c/a-lattice distortion, and perpendicular branches growing out of
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Figure 2.10: Snapshots of a simulated ferroelectric domain microstructure, show-
ing polarization component p3(x, t)/p0 (left column), polarization energy density
Ψpol(p, θ) (central column), and elastic energy density Ψmech(ε) (right column)
(snapshots were taken at time t = 136µ/|α1| under a constant electric field of
e3 = 8 · 107 V/m at θ = 300 K). Small arrows in the left column indicate the ori-
entation of the polarization vector p(x, t)/p0. Top-row images show zoomed-in
versions of the respective highlighted boxed areas in the bottom-row images.

existing domains. The shown microstructure reveals primarily 90
◦-domain

patterns arranged in laminate structures, including more complex domain
patterns such as second-order laminates or (in the magnified view of the
polarization distribution) a wedge-like microstructure along the horizontal
GB, reminiscent of ferroelectric domain patterns observed experimentally;
see, e.g., the TEM images of Schmitt et al. (2007) and Woodward et al.
(2005).

Figs. 2.11 and 2.12 visualize the influence of temperature on the evolution
of such ferroelectric microstructures at the three temperatures θ = 275 K,
325 K, and 375 K. Under a constant electric field of e = 8 · 107 V/m, ap-
plied instantaneously at t = 0 s, the polarization evolves, whose average
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⟨p3(x, t)/p0⟩ is shown in Fig. 2.11, while the corresponding microstructures
at the strain polarization levels indicated as A through C, at three different
temperatures, are illustrated in Fig. 2.12. That is, the shown microstruc-
tures within each row of Fig. 2.12 have the exact same average polarization
⟨p3(x, t)/p0⟩ (and the same applied electric field) but the underlying mi-
crostructures differ significantly due to the three distinct temperature levels.

The domain pattern evolution, also shown in Movies S1 and S2 (see
supporting online material), shows two distinct switching mechanisms: (i)
various nucleation events of needle-like domains at GBs and triple junctions,
followed by (ii) subsequent growth – predominantly in the longitudinal
(needle-tip) direction. The ratio of the speeds of the aforementioned mecha-
nisms is an important factor that determines the appearance of ferroelectric
microstructures. Increasing the temperature generally leads to more de-
tailed and finer domain structures. This is traced back to the competition
between nucleation and growth, yet we reiterate that two competing effects
are at play here. On the one hand, with increasing temperature the polar-
ization energy landscape becomes shallower and the coercive field ec is
reduced, see Fig. 2.8; this increases the number of possible nucleation sites
at a constant electric field with increasing temperature, so it becomes easier
to overcome the energy barrier between adjacent spontaneous polarization
states. On the other hand, the noise amplitude increases with temperature

 Step response of the average polarization

e3

e1

RVE with polycrstalline PZT

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

A

B

C

Figure 2.11: Influence of temperature on the ferroelectric step response (left)
under a constant electric field e3 = 8 · 107 V/m at temperatures θ = 275 K, 325 K,
375 K along with a schematic of the the polycrystal (right). The dashed lines in the
step response are results obtained without thermal fluctuations under otherwise
same conditions. Equal average polarization levels ⟨p3(x, t)/p0⟩ = −0.5, 0 , 0.5
are indicated by capital letter A, B, C. Labels (a) through (i) indicate those states
whose microstructures are shown in Fig. 2.12.
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Figure 2.12: Influence of temperature on the ferroelectric domain pattern for-
mation, showing p3(x, t)/p0 under a constant electric field e3 = 8 · 107 V/m at
temperatures θ = 275 K, 325 K, 375 K (columns) and switching states: A, B, C
(rows), the latter corresponding to the polarization states defined in Fig. 2.11.



66 finite-temperature ferroelectric constitutive model

(|η| ∝
√

θ), so the larger step size of the random walk enables statistically
more locations to escape from local energy minima to energetically lower
polarization states. These two effects explain the temperature dependence
of the domain nucleation sites, which becomes apparent in Fig. 2.12: nucle-
ation at low temperature occurs primarily at GBs, while at high temperature
the formation of new domains is not restricted to locations with high stress
concentrations. Instead, the shallow energy landscape (Fig. 2.8c) in combina-
tion with higher thermal fluctuations allows the random walk to overcome
the energy barrier of the polarization potential, resulting in nucleation at
random locations – similar to the single-crystal results in Fig. 2.9c. For
completeness, Fig. 2.11 also includes (as dashed lines) results obtained
without the stochastic noise (so the temperature dependence stems solely
from the polarization potential), which highlights the impact of the fluc-
tuations: with thermal noise, we observe a considerably faster response
time, which is explained by the increasing nucleation rate of a-domains
and, as a consequence, polarization reversal being dominated by nucleation
as opposed to domain growth.

2.8 conclusions

We have presented a finite-temperature continuum model for ferroelectric
ceramics, which is based on a temperature-dependent Landau-Devonshire
potential and on a temperature-dependent stochastic Allen-Cahn equation
for the evolution of the total polarization. The former was shown to provide
an accurate prediction of the spontaneous polarization, the coercive field,
and the piezoelectric and dielectric constants across a broad temperature
range in agreement with experimental data for PZT (after normalization
of the electric field by the coercive field, the computed butterfly curve
also showed convincing agreement with room-temperature measurements).
Because of the large spread among measured data for different PZT com-
positions and the fact that we do not account for dopants in the model,
the piezoelectric and dielectric constants required normalization for com-
parison. However, when considering that we compare measurements from
different types of polycrystalline PZT at the macroscale with numerical
results computed with a single-crystalline 2D model at the mesoscale, the
presented framework captures the salient macroscopic temperature effects
reasonably well.
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Based on statistical mechanics, we introduced a temperature-dependent
Gaussian noise into the evolution equation for the polarization, which
mimics atomic-level lattice vibrations at the continuum scale. Typical for
diffusive processes such as ferroelectric domain wall motion, the noise am-
plitude is proportional to the square root of temperature and time increment.
Simulations revealed that the thermal noise has a considerably effect on the
ferroelectric switching kinetics. First, superimposing random small pertur-
bations onto the deterministic gradient-flow kinetics breaks the symmetry
of the single-crystalline polarization energy, such that 180

◦-switching be-
comes less probable. Instead, the utilization of pathways with lower energy
barriers leads to switching predominantly by two consecutive 90

◦-rotations.
Second, thermal noise leads to significantly faster growth of a domain
nucleus at elevated temperature in both the longitudinal and transverse di-
rections – whose relation |vtip| ≫ |vwall| is responsible for the characteristic
needle-like shape of ferroelectric domains. In addition, thermal fluctuations
promote the branching of existing domains and nucleation of new do-
mains. While the nucleation spots are randomly distributed in a defect-free
single-crystal, grain boundaries in a polycrystal (like any other location
with stress or charge concentrations) act as natural sites for nucleation. The
emerging simulated microstructures during polarization switching incorpo-
rate qualitatively various characteristic features known from experimental
observation, including first- and higher-order laminates, and wedge-like
structures. A detailed comparison with experiments is unfortunately out of
reach since in-situ measurements of ferroelectric microstructures, especially
over a broad temperature range and under applied electric fields, are a rare
find. Our simulations capture general qualitative trends while a quantita-
tive comparison will require further experimental data and may require a
re-calibration of model parameters (specifically of the drag coefficient µ,
which may also be assumed temperature-dependent in general). Yet, our
model demonstrated the salient features of finite-temperature ferroelectric
switching in a promising fashion (based on energetic potentials obtained
from first principles). We have thus presented an approach to “thermal-
ize” a 0K first-principles-based model for finite-temperature phase-field
simulations.

We close by pointing out that we linked the stochastic noise in our model
to thermal lattice vibrations. By using as the normalization volume the
primitive unit cell of the crystal lattice (known from DFT calculations),
we ensure that the noise amplitude is intrinsically connected to material
properties without any fitting parameter. As a downside, this restricts
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simulations to small length scales (effectively limiting the pixel or voxel size
to that of an atomic unit cell), as demonstrated in the presented examples
with RVEs at the nanoscale. This also results in realistic domain wall
thicknesses in simulations, not achievable at considerably larger scales.
Note that one may alternatively interpret the introduced fluctuation field
at larger scales, e.g., as the joined impact of temperature and fluctuating
point defects and charges on the mesoscale, in which case larger spatial
simulation domains are feasible but at the cost of rendering the random
noise phenomenological and its amplitude a fitting parameter. Irrespectively,
we conclude that the presence of random fluctuations is key to achieving
realistic predictions of ferroelectric microstructures not predictable in a
perfect, noise-free system.



3
E F F E C T O F T E M P E R AT U R E O N D O M A I N WA L L – P O R E
I N T E R A C T I O N S I N P Z T

This Chapter has been adapted from:

Indergand, R. and Kochmann, D.M. (2021). "Effect of tempera-
ture on domain wall–pore interactions in lead zirconate titanate:
A phase-field study." Applied Physics Letters, Vol. 119, 222901,
URL: https://doi.org/10.1063/5.0066612

3.1 introduction

Ferroelectric materials have a permanent electric dipole moment (or spon-
taneous polarization), which can be altered by electric fields. This unique
property—in combination with their electro-mechanical (Curie & Curie,
1880), thermoelectric (Brewster, 1824), and electro-optical coupling (Par-
ravano, 1952)—makes ferroelectrics a versatile class of materials for, e.g.,
transducers, actuators, sensors, and memory devices. Since the effective
kinetics of polarization switching at the macroscale is strongly determined
by the collective motion (Bintachitt et al., 2010; Gorfman et al., 2018) of indi-
vidual domain walls at smaller scales (Bassiri-Gharb et al., 2007; Marincel,
Zhang, et al., 2015; Pramanick et al., 2011), understanding the underly-
ing physics of domain wall motion and its interaction with defects in
realistic materials (which typically show high sintering-induced poros-
ity with nano- to micrometer-sized pores (Mercadelli et al., 2010)) is key
for accurate predictions of microstructure-property relations. Pores can
introduce substantial local mechanical (Johnson-Wilke et al., 2015; Xu &
Wang, 2015; Zeng et al., 2007) and electric fields (Johnson-Wilke et al., 2015;
Khachaturyan et al., 2016; Zeng et al., 2007) in their vicinity, which interfere
with domain wall motion, thus influencing the ferroelectric and piezo-
electric properties (Skinner et al., 1978) in bulk (Schultheiß et al., 2019b)
and thin films (Johnson-Wilke et al., 2015). For instance, recent studies
on (an-)isometric pores investigated the effect of pore concentration, size,
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anisotropy, and orientation for tuning the piezoelectric properties of lead
zirconate titanate (PZT) (Guo et al., 2011; Schultheiß et al., 2019b; Y. Zhang
et al., 2017). Experiments have demonstrated the effects of domain wall
pinning across scales: at the macroscale, the influence of dopants, oxygen
vacancies, and crystal structures in PZT on the bipolar hysteresis behavior
was investigated (Carl & Hardtl, 1977; B. Li et al., 2005; Rojac et al., 2016),
while insight into the microscopic kinetics of polarization reversal was
gained by tracking individual domain walls via atomic force microscopy,
piezoresponse force microscopy, and polarization sensitive collection mode
near-field scanning optical microscopy (Jo et al., 2009; Kalinin et al., 2008;
Paruch et al., 2006; Tybell et al., 2002; T. Yang et al., 1999).

When modeling domain wall motion in complex geometries at realistic
scales, phase-field techniques are often the method of choice to predict
material behavior. Various types of defects have been studied by phase-field
models: from space charges and oxygen vacancy migration at the atomic
level (Xiao & Bhattacharya, 2008) over impurities, voids (J. Wang & Kamlah,
2009), dislocations (Kontsos & Landis, 2009), and grain boundaries (N. Liu
& Su, 2014) at the mesoscale to cracks (J. Wang et al., 2010), notches, and
free surfaces (Fedeli et al., 2019) at the macroscopic device-level. At larger
scales, scaling arguments and functional renormalization group techniques
have been used to study domain wall pinning in disordered elastic sys-
tems for random bond and field disorder (Nattermann, 1987; Nattermann
et al., 1990), crystal-lattice and disorder pinning (Emig & Nattermann, 1999;
Emig & Nattermann, 1997), and the dipolar interaction of incommensurate–
commensurate transitions (Natterman, 1983). Stemming from nonlinear
continuum mechanics, a theory for interface motion in homogeneous (Abe-
yaratne & Knowles, 1991; Ball et al., 1995; Bhattacharya, 1999; James, 2000)
and heterogeneous materials (Salje, 2012; L. Tan & Bhattacharya, 2016) was
established and used to study, among others, the role of the defect length
scale on the pinning of interface motion as well as the influence of grain
boundary, size, and triple junctions (Qiao & Radovitzky, 2016; Ueland &
Schuh, 2013), and its impact on the macroscopic hysteresis.

Although various models have thus been proposed to study the influ-
ence of pores, the effect of temperature on domain wall (de-)pinning is
insufficiently considered in general but plays an important role on domain
wall kinetics, as evident from experiments (Jo et al., 2009; Savage & Miller,
1960; Stadler & Zachmanidis, 1964). We therefore use a finite-temperature
phase-field framework (Indergand et al., 2020), which—calibrated by Den-
sity Functional Theory (DFT) data—captures the temperature dependence
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of the Ginzburg-Landau energy as well as thermal fluctuations. This al-
lows us to gain insight into the effect of temperature on domain wall-pore
interactions for an enhanced predictability of the kinetics of ferroelectric
materials and, more generally, it provides an efficient numerical tool to
probe the temperature-dependent influence of microstructural features.

To this end, Section 3.2 briefly summarizes the finite-temperature consti-
tutive model within the context of porous ferroelectrics, Section 3.3 provides
a comparison of the electric field in the proximity of a single pore based on
an analytical solution from electrostatics and on computational mechanics
using phase-field modelling, Section 3.4 discusses the influence of pores on
the ferroelectric domain wall motion for various pore sizes and densities at
finite temperature, and finally, Section 3.5 summarizes the key findings in
comparison with experiments and open challenges of this study.

3.2 finite-temperature phase-field model

As the length and time scales of interest lie outside the realm of first-
principles techniques, we use a phase-field description based on the well-
established Devonshire-Ginzburg-Landau theory (Devonshire, 1954; L. Lan-
dau, 1937) with the total polarization vector p as the order parameter, de-
scribing the evolution of the ferroelectric microstructure by resolving the dif-
fuse interfaces between ferroelectric domains. We simulate a Representative
Volume Element (RVE) of a ferroelectric material, whose electro-mechanical
response is described by the mechanical displacement field u(x, t) and
electric potential ϕ(x, t), both dependent on position x and time t. The
mechanical problem is governed by the balance of linear momentum (in
the absence of body forces and inertial effects),

∇ · σ = 0, (3.2.1)

where σ is the Cauchy stress tensor. The electrical problem obeys Gauss’
law (assuming no free charges),

∇ · d = 0, where d = κ0e + p (3.2.2)

is the electric displacement field linked to the electric field e = −∇ϕ
through the permittivity of free space, κ0. We assume a uniform temperature
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θ within the material, whose electric enthalpy density is of the form (Su &
Landis, 2007; W. Zhang & Bhattacharya, 2005)

W(ε, e, p,∇p, θ) = Ψmech.(ε) + Ψcoupl.(ε, p) + Ψpol.(p, θ)

+ Ψel.(e) + Ψinter.(∇p)− e · p,
(3.2.3)

comprising the mechanical energy density Ψmech. dependent on strain ten-
sor ε = 1

2 (∇u +∇u⊺), coupling energy density Ψcoupl.(ε, p), polarization
(Landau) potential Ψpol. as well as electric and interface energy densities
Ψel. and Ψinter., respectively. Material constants (which have been adapted
from DFT calculations for tetragonal PZT by Völker et al. (2011)) and the
specific form of the above energy densities are summarized in Tab. 2.1.
Constitutive relations follow as σ = ∂W/∂ε and d = −∂W/∂e. The po-
larization potential Ψpol(p, θ)—and hence its minimizer, the spontaneous
polarization p0—is temperature-dependent. Below the Curie temperature
θC (for PZT θC = 650 K) we find, from minimizing Ψpol.(p, θ),

p0(θ) =

⌜⃓⃓⎷√︂
α2

11 − 3α1α111
θC−θ

θC
− α11

3α111
. (3.2.4)

The evolution of the polarization p is generally described by gradient flow
kinetics (Chen, 2008; Su & Landis, 2007; W. Zhang & Bhattacharya, 2005).
Since the latter applies only in the athermal limit (at 0 K), we here model
finite temperature via a stochastic extension of the Allen-Cahn equation:

µṗ = −∂W
∂p

+∇ · ∂W
∂∇p

+ µη (3.2.5)

with an inverse mobility µ > 0. η represents uncorrelated random noise,
which accounts for atomic-level thermal fluctuations at the mesoscale. Un-
der the assumption of thermal equilibrium, the stochastic process η(x, t) is
identified as a centered Gaussian random variable, which is unbiased and
uncorrelated in space and time and whose variance depends on tempera-
ture (Indergand et al., 2020):

⟨︁
η(x, t), η(x′, t′)

⟩︁
=

2kBθ

µVchar∆t
δ(t − t′) δ(x − x′), (3.2.6)

where kB denotes Boltzmann’s constant, ∆t the numerical time increment,
and Vchar = a2

tetrctetr the volume of a perovskite atomic unit cell (which
is assumed to be constant). The effect of temperature hence enters the
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model through (i) the polarization potential and the resulting spontaneous
polarization in Eq. (3.2.4) and (ii) the thermalized kinetics in Eq. (3.2.5).
This phase-field model, which was validated against experimental data
and shown to produce realistic domain microstructures (Indergand et al.,
2020), is the basis for studying the influence of temperature on domain
wall pinning in porous single-crystalline PZT. Pores are modeled as non-
switchable cavities with polarization p = 0 and vacuum permittivity κ0.

We solve Eqns. (3.2.1), (3.2.2) and (3.2.5) within a cubic RVE by an FFT-
based homogenization scheme with periodic boundary conditions (Sec-
tion 2.5). Experimental conditions of free-standing, electrically loaded sam-
ples are realized by enforcing a vanishing average stress, ⟨σ⟩ = 0, along
with a prescribed average electric field ⟨e⟩, representing the applied field.
While for small pores relative to the RVE size (R/L ≪ 0.1) this setup accu-
rately approximates the analytical solution for an isolated pore in an infinite
medium (see Section 3.3, including a discussion on numerical accuracy),
larger pores (R/L > 0.1 at fixed RVE size) model periodic arrays of voids
and are viewed representative of porous samples.

3.3 single-void benchmark

To assert the accuracy of the phase-field model to predict the electric field in
the proximity of voids, we study as a benchmark an isolated cavity within
an infinite dielectric material, for which an analytical solution derived from
electrostatics can be used to validate numerical results.

3.3.1 Analytical solution from electrostatics

We solve Laplace’s equation, ∆ϕ = 0, on an infinite dielectric body Ω with
a circular cavity Ωd of radius R. We use cylindrical polar coordinates r and
φ and assume the origin at the center of the RVE, see Fig. 3.1(a). For the
electric potential we use the ansatz

ϕ(r, φ) = α0 log r + β0 +
∞

∑
m=1

(γmrm + δmr−m) sin(mφ), (3.3.1)

where m ∈ N \ {0} and α0, β0, γm, δm ∈ R are constants. At the dielectric-
cavity interface at r = R we assume a curl-free electric field (JeK · t = 0)
and open-circuit boundary conditions (JdK · n = 0), where t and n denote,
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respectively, unit vectors parallel and normal to the interface and d = κe
is the electric displacement with permittivity κ = κ0κr. Furthermore, by
imposing boundary conditions in the far-field limit, i.e., e(r → ∞) = E0e2
and ϕ(r → ∞) = −E0x2, and considering axial symmetry with respect to
the e2-direction, the electric potential is obtained as

ϕ(r, φ) =

⎧⎪⎨⎪⎩
− 2

1/κr+1 E0r sin φ in Ωd,(︂
−r + 1/κr−1

1/κr+1
R2

r2

)︂
E0 sin φ in Ω,

(3.3.2)

where κr is the relative permittivity of the dielectric. From the electrostatic
relation e = −∇ϕ we determine the electric field in Cartesian coordinates
(x1, x2) as

e(x) =

⎧⎪⎨⎪⎩
2

1/κr+1 E0e2 in Ωd,

−2E0R2 1/κr−1
1/κr+1

x1x2
|x|4

e1 + E0

[︃
R2 1/κr−1

1/κr+1

(︃
2x2

2
|x|4

− 1
|x|2

)︃
+ 1
]︃

e2 in Ω,

(3.3.3)
where |x| = √

xixi denotes the Euclidean length of the position vector x.
By rearranging the electric field (3.3.3) along the vertical direction, one can
obtain an estimate for the electric field interaction of nearest-neighbor pores
at distance vectors x = (0, L)T based on the relative electric field decay |∆e|,
defined as

|∆e| =
⃓⃓⃓⃓

e2

E0
− 1
⃓⃓⃓⃓
=

1
4

⃓⃓⃓⃓
1/κr − 1
1/κr + 1

⃓⃓⃓⃓ (︃
2R
L

)︃2
. (3.3.4)

In a 3D domain with a centered spherical cavity, we follow Jackson (1999)
to analogously derive a solution based on Legendre functions, such that the
electric potential and electric field are obtained as, respectively,

ϕ(r, φ) =

⎧⎪⎨⎪⎩
− 3

1/κr+2 E0r sin φ in Ωd,(︂
−r + 1/κr−1

1/κr+2 E0
R3

r2

)︂
E0 sin φ in Ω,

(3.3.5)

and, using Cartesian coordinates (x1, x2, x3),

e(x) =

⎧⎪⎪⎨⎪⎪⎩
3

1/κr+2 E0e2 in Ωd,

−3E0R3 1/κr−1
1/κr+2

x1x2
|x|5

e1 +

[︃
R3 1/κr−1

1/κr+2

(︃
3x2

2
|x|5

− 1
|x|3

)︃
+ 1
]︃

E0e2 in Ω.

(3.3.6)
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Figure 3.1: Comparison of the electric field component e2(x) in the vertical
direction as predicted by theory (a) and the phase-field model (b) for a circular
void inside a dielectric in 2D; shown for relative permittivity κr = 18 and an
average electric field ⟨e2⟩ = 108 V/m in the vertical direction.

Note that the third component of the electric field is identical to the first by
the symmetry of the problem. Finally, the decay of the electric field for a
spherical pore is

|∆e| =
⃓⃓⃓⃓

e2

E0
− 1
⃓⃓⃓⃓
=

1
4

⃓⃓⃓⃓
1/κr − 1
1/κr + 2

⃓⃓⃓⃓ (︃
2R
L

)︃3
. (3.3.7)

By comparing the electric field in (3.3.3) and (3.3.6), we find that its mag-
nitude within a cylindrical pore is approximately 33% higher compared
to a spherical pore, showing the difference between a 2D and a 3D pore
geometry.

3.3.2 Isolated void vs. array of voids

While the above theoretical solutions are based on solving the Laplace
equation for the electric potential on an infinite domain by imposing a
far-field e(r → ∞) and electric potential ϕ(r → ∞), the phase-field model
with its FFT-based numerical implementation is restricted to a finite and
periodic domain with averages imposed for ⟨e⟩ and ⟨ϕ⟩. Despite these
differences, the phase-field model predicts the induced electric field for
small voids reasonable well in comparison with the analytical solution, as
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(a) (b)

�v.M.��
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�v.M.��
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Figure 3.2: Influence of the artificial void stiffness Cv on the von Mises
stress σv.M./µe (normalized by the shear modulus µe) for a stiffness ratio of
Cv

ij/CFE
ij = 1 (a) and Cv

ij/CFE
ij = 0.01 (b), where CFE denotes the elastic stiffness

tensor of the ferroelectric, computed for a circular void of radius R = 8 nm in
2D under shorted and stress-free boundary conditions, ⟨e⟩ = 0 and ⟨σ⟩ = 0,
respectively, at room temperature.

shown in Fig. 3.1 (for a circular void embedded in a dielectric material
with relative permittivity κr = 18 at an imposed average electric field E0 =
⟨e2⟩ = 108 V/m). Only small discrepancies at the fringes of the cavity
are visible, which originate from the staggered discretization of curved
surfaces leaving few pixels with only one nearest-neighbor pixel within the
inclusion, which results in Gibbs oscillations caused by the discontinuity
of the permittivity κ(x) and non-uniform convergence of the truncated
Fourier Series; see, e.g., Anglin et al. (2014), Lebensohn and Rollett (2020),
and Vidyasagar et al. (2017) for a detailed discussion on the accuracy of
FFT-based methods depending on homogeneity, geometry, and resolution.
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Figure 3.3: Influence of temperature on the von Mises stress σv.M./µe (normalized
by the shear modulus µe) at 200 K (a) and 400 K (b), computed for a circular void
of radius R = 8 nm with a stiffness contrast of C

pore
ij /CFE

ij = 0.01 in 2D under
shorted and stress-free boundary conditions, ⟨e⟩ = 0 and ⟨σ⟩ = 0, respectively.

3.3.3 Heterogeneous vs. homogeneous elastic stiffness tensor

We briefly asses the impact of the heterogeneous and homogeneous elastic
stiffness model in the contrast of a circular pore in PZT by utilizing (2.5.5)
and (2.6.4a), respectively, in the FFT-based spectral solution scheme, de-
scribed in Section 2.5. The stiffness contrast between the cavity and the
dielectric material under on average stress-free conditions within the RVE
(⟨σ⟩ = 0) in combination with the small cavity size relative to the RVE
size leads to additional stress concentrations on the surface of the void,
as shown in Fig. 3.2, which shows the von Mises stress distribution for a
stiffness contrast Cv

ij/CFE
ij = 0.01. (Of course, the stiffness of the cavity is

practically 0, yet for numerical purposes we assign a finite stiffness that
is significantly smaller than that of the surrounding medium with only a
marginal impact on the numerical solution.) As seen in Fig. 3.2 and Fig. 3.3,
the heterogeneity of the elastic stiffness tensor for the given setup plays
only a minor role for the depinning field in comparison to the thermo-
electrical impact and temperature-related changes in the stress field are
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primarily concentrated within the needle domains, which is why we make
the simplifying assumption of a homogeneous isotropic material to avoid
an iterative solution scheme.

3.4 results : domain wall-pore interaction at finite temper-
ature

Pores in a ferroelectric act as hot spots for domain switching and domain
nucleation under an applied electric field, which is amplified to significantly
larger local electric fields induced near the pore. This effect becomes ap-
parent in Fig. 3.4a, which shows the evolution of the polarization around a
spherical cavity of radius R = 12 nm and, for improved visibility, 2D results
for the polarization p2/p0 and the electric field e2 at 100 K (Fig. 3.4b/c)
and at 300 K (Fig. 3.4d) for comparison. Initially poled with p = p0e2,
symmetric needle-shaped a-domains grow under 45

◦ to compensate for the
strain mismatch and the induced electric fields in the proximity of the pore.
The induced electric field above and below the pore favors b−-domains and
disfavors the existing b+-domain. The lowest-energy transition for polariza-
tion reversal to occur is by polarization rotation, which corresponds to two
subsequent 90

◦-switching steps, e.g., from a b+-domain via a±-domains
to a b−-domain. These newly formed a-domains are a consequence of the
induced electric field by the pore and the minimization of the polarization
potential Ψpol..

In the absence of free charges, the electric field e− inside the cavity is
related to the electric field e+ and polarization p outside the cavity by the
jump condition JdK · n = 0, where n is the outward-pointing surface normal.
Inserting Eq. (3.2.2) gives the electric field outside the cavity as

e+ = e− − 1
κ0

(p · n)n, (3.4.1)

i.e., as a function of the electric field e− inside the pore and the outside
polarization p (whose magnitude is the spontaneous polarization p0 in the
absence of external loads). Since the spontaneous polarization depends
on temperature, cf. Eq. (3.2.4), the induced electric field also varies with
temperature. This is observed when comparing the computed electric field
component e2(x) at the two temperatures of 100 K and 300 K in Fig. 3.4c
and Fig. 3.4d, respectively. Due to the smaller spontaneous polarization
at 300 K, the induced electric field in Fig. 3.4d is lower in amplitude and
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Figure 3.4: (a) Snapshots of the 3D polarization evolution (L = 51 nm), showing
regions with a vertical polarization component p2(x)/p0 ∈ [−0.5, 0.5] in the
vicinity of a spherical cavity with radius R = 12 nm for an imposed average
field ⟨e⟩ = 0 and average stress-free conditions (⟨σ⟩ = 0). Comparison of the
electric field in the vertical direction, e2(x), for an imposed average field ⟨e⟩ =
0 at temperatures θ = 100 K and 300 K is shown in (c) and (d), respectively.
A zoomed-in version of the region highlighted in (c) visualizes polarization
component p2(x)/p0 in (b).
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extends less into the surroundings than at 100 K (shown in Fig. 3.4c). As
a consequence, a decreasing influence of pores onto domain wall motion
with increasing temperature may be expected.

To systematically investigate the influence of pore size and pore separa-
tion distance on domain walls, we simulate domain wall-pore interactions in
the simpler 2D setting, which gains significant efficiency while not affecting
the physics at play (cf. Fig. 3.4). We consider a 180

◦-domain wall interact-
ing with a periodic array of circular pores of equal radii R (simulating a
square-shaped RVE of side length L = {102, 205, 410} nm with periodic
boundary conditions, see Fig. 3.5). Independent of parameters R and L,
the single-crystalline RVE contains initially two ferroelectric domains: the
b+-domain (red) and b−-domain (blue), whose polarizations point up and
down, respectively. When applying an average electric field e2 in the vertical
direction, the lower-energy b+-domain grows by moving the domain walls
towards the outer boundaries of the RVE. The non-switchable pores, whose
size exceeds the thickness of domain walls (l0 ≈ 0.7-2 nm (Cho et al., 2003;
Völker et al., 2011)), serve as obstacles to the moving domain walls. Their
interaction is already apparent before the domain wall reaches the pore, as
shown in Fig. 3.5b, where the growing b+-domain (red) is locally eroded
close to the pore by the induced electric field to the left of the cavity. Such
erosion of the 180

◦-domain wall near defects under an applied field was
observed in experiments (T. Yang et al., 1999) using near-field scanning op-
tical microscopy. The spreading a−- and a+-domains above and below the
pore, respectively, connect to the b+-domain by forming 90

◦-domain walls.
Local electric fields in the proximity of the cavity reduce the driving force
on the domain wall, thus slowing down the propagating interface, until it
is pinned at the pore (Fig 3.5d). Such pinning of an individual domain wall
at an isolated defect (Kalinin et al., 2008), a dislocation (Gao et al., 2011),
precipitates (Zhao et al., 2021), secondary phases (Riemer et al., 2017), a
twin (Jesse et al., 2008) and grain (Marincel, Zhang, et al., 2015; Marincel,
Zhang, et al., 2015) boundary has been confirmed experimentally. To unpin
from the obstacle, the applied electric field must be increased, which in case
of the cavity promotes the following mechanism (Fig. 3.5e): domains with
polarization parallel to the cavity’s surface grow, until the top and bottom
regions merge to grow a new b+-domain to the right of the pore. This
newly formed domain then expands by domain wall motion and eventually
merges with the initial b+-domain from the center of the RVE (Fig. 3.5e).
We define the depinning field as the minimum applied electric field required
to unpin the domain wall from the pore(s); it is obtained in simulations
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by increasing the applied electric field incrementally (with sufficient dwell
time between increments, so finite-temperature Brownian motion can show
its effect). The recurring pinning and unpinning of domain walls at pores
appears as stick-slip behavior of mesoscopic domain wall motion, or as a
pronounced hysteresis at the macroscale (L. Tan & Bhattacharya, 2016).

The impact of pore size (radius R) and pore separation (distance L) on
the depinning field is summarized in Fig. 3.6a-c for the three temperatures
of θ = 200, 300, 400 K. Overall, the depinning field increases monotonically
with pore size, and the slope of the pore-radius-vs.-electric-field curve
indicates a higher sensitivity of the depinning field to larger pore densi-
ties (assuming uniform pore radii). We hence conclude that at least two
characteristic length-scales are at play: (i) pore radius R determines the
locally induced near-field in the vicinity of the void according to Gauss’ law,
and (ii) distance L between pores accounts for the far-field interference of
overlaying electric fields from adjacent pores. To account for these distinct
length scales, we define the linear pore density vd = 2R/L as the ratio of
the pore diameter and their distance (which is the domain of influence
of a single pore within the ferroelectric). The resulting plot of depinning
field vs. vd collapses onto a single master curve e(vd) at each temperature
(Fig. 3.6d-f), each following a linear relation. Note that the phase-field model
is valid in the “large-defect” regime, i.e., for large pores with 2R > l0, below
which a more accurate (atomistic) description is required and where other
mechanisms are at play. (The largest domain wall thickness observed in
simulations is about 1 nm at 500K.)

The interplay of pore size, pore separation distance, and temperature
becomes apparent in Fig. 3.7a-c, showing the depinning field over a wide
temperature range. The effect of temperature is generally dominant over
both pore size and concentrations. The pore size gains importance with de-
creasing temperature and with decreasing pore separation distance. When
approaching the Curie temperature θC = 650 K, the homogeneous disorder-
ing of the ferroelectric polarization makes domain wall motion negligible
and significantly reduces the pinning field (seen in the slope ∂ f /∂vd vs.
temperature in Fig. 3.6g). By contrast, in the athermal limit θ → 0 K ther-
mal fluctuations are absent, so the associated Brownian motion cannot
promote barrier-crossing events in non-coercive regions (Indergand et al.,
2020) to lower the depinning field. While for the largest separation distance
(L = 410 nm) the depinning field depends noticeably on pore size only at
low temperatures below 200 K, the effect of pore size is more pronounced
at L = 102 nm.
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(a) (b)

(c) (d)

Figure 3.7: (a-c) Influence of temperature on the electric field e2 (normalized by
the temperature-dependent coercive field ec) required for a 180

◦-domain wall to
unpin and overcome an array of pores of radii R = {1.6, 3.2, 6.4, 8.0, 10.0, 12.0} nm
separated by distances L = {102, 205, 410} nm. (d) Summary of all simulated data
(each curve normalized by its athermal value e(0 K), showing the margin between
minimum and maximum field per temperature) in comparison with experimental
data (Jo et al., 2009).
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Comparing the obtained depinning field at room temperature, e/ec ≈
0.044 (averaged over all radii R at L = 205 nm), with hysteresis mea-
surements of PZT-5A (Hooker, 1998; W. L. Tan et al., 2019), reporting
e/ec = 0.006, reveals that in reality domain wall motion is active even below
the electric field values reported here; this is expected due to simplifying
assumptions and the 2D approximation of a spherical pore, overestimat-
ing the local electric field. Despite this difference in the depinning field
magnitude, our model captures several key features previously reported
from experiments. For example, the nonlinear temperature dependence
of the depinning field is in good qualitative agreement with measure-
ments of the domain wall velocity under random-field pinning in the creep
regime (Jo et al., 2009) in epitaxial PZT films at finite temperature, as shown
in Fig. 3.7d, where simulated data (normalized by the athermal limit) are
compared to experiments (Jo et al., 2009). Moreover, the observed stick-slip
behavior of domain wall motion interacting with pores is in agreement
with local piezoresponse force spectroscopy measurements that identified
the fine structure in the hysteresis loops as a fingerprint of an isolated
defect (Kalinin et al., 2008).

3.5 conclusion

In summary, using a temperature-aware phase-field model, we have in-
vestigated the pinning of domain walls at nano-sized pores in tetragonal
PZT under an applied bias field across a wide temperature range. Domain
wall pinning strongly affects ferroelectric switching through its impact on
domain wall kinetics. We have highlighted the influence of pore size, pore
concentration, and temperature.

Of course, such a model comes with limitations. First, the 2D simpli-
fication overestimates the electric field induced by the pore by 33% (Sec-
tion 3.3.1). In a 3D ferroelectric material, we expect even smaller depinning
fields due to two additional tetragonal variants, which increase the available
switching paths and hence the probability of thermally induced barrier-
crossing events. Second, we focused on 180

◦-domain walls and excluded
pinning of initially 90

◦-domain wall configurations. Due to the differences
in energy barriers, we have observed in analogous studies that depinning
fields of 90

◦-domain walls can be orders of magnitude lower that the ones
reported here. However, other physical effects, such as nucleation are domi-
nant with 90

◦-domain walls and result in a different depinning mechanism,
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such that a direct transfer of the reported depinning fields to 90
◦-domain

wall pinning is challenging. Finally, the strain mismatch near pores, which
is important for pinning, has not been investigated thoroughly in this study
(see Section 3.3.3 for a discussion).

Despite these simplifying assumptions, the reported microscale interac-
tions of nano-sized pores with 180

◦-domain walls are in general agreement
with experimental observations. For example, the induced electric field
in the proximity of the pore leads locally to polarization reversal, which
appears as bending of the domain wall around the void. This effect has
been optically captured and reported as bowing of domain walls (J. Yang,
2006). Furthermore, we observed a stick-slip behavior of domain walls at
pores, which is characteristic for the large-defect-regime kinetics (L. Tan
& Bhattacharya, 2016) and has been verified experimentally on isolated
defects (Kalinin et al., 2008), twin boundaries (Jesse et al., 2008), and dislo-
cations (Gao et al., 2011). In addition, theoretical (Khachaturyan et al., 2016)
and experimental (Y. Zhang et al., 2018) studies suggest a decrease in the
macroscale remanent polarization for higher porosity, which agrees with
our findings that more densely packed pores (at constant size) increase
microscale domain wall-pinning. Moreover, the computed temperature de-
pendence of the depinning field shows agreement with measurements of
PZT thin films (Jo et al., 2009). Our finite-temperature model hence repro-
duces salient features of domain wall pinning seen in experiments and in
agreement with theoretical considerations. It improves the predictability of
properties of realistic, porous ferroelectric materials at finite temperature,
accounting for domain wall interactions with dielectric impurities at the
microscale for wide ranges of electric field and temperature.



4
D O M A I N PAT T E R N F O R M AT I O N I N T E T R A G O N A L
F E R R O E L E C T R I C C E R A M I C S

This Chapter has been adapted from:

Indergand, R., Bruant, X., and Kochmann, D.M. (2023). "Domain
Pattern Formation in Tetragonal Ferroelectric Ceramics." Under
review.

4.1 introduction

A unique property of ferroelectric materials is their permanent (sponta-
neous) polarization, which can be reoriented by a sufficiently high applied
electric field. This feature, together with various physical coupling mecha-
nisms including the piezoelectric (Curie & Curie, 1880), pyroelectric (Brew-
ster, 1824), electrooptic (Haertling, 1987), and electrocaloric (Olsen et al.,
1985) effects, makes ferroelectrics versatile multipurpose materials for nu-
merous applications such as sensors, actuators, capacitors, random access
memory (FeRAM) (Buck, 1952), energy conversion devices (Bucsek et al.,
2020), and micro-electro-mechanical systems (MEMS) (Lines & Glass, 2001;
Uchino, 2009).

Most technically relevant ferroelectrics have a perovskite crystal structure,
which undergoes a phase transition at the Curie temperature—with decreas-
ing temperature from a high-symmetry non-polar state to a low-symmetry
polar state, e.g., from a cubic crystal to a tetragonal, orthorhombic, or rhom-
bohedral crystal (Cohen, 1992; Cohen & Krakauer, 1992). The symmetry-
lowering transformation is a polar distortion that comes with a displacement
of the atoms that breaks the centrosymmetry of the charge distribution,
such that a spontaneous polarization emerges (Lines & Glass, 2001). The
degeneracy of different low-symmetry states and long-range ordering of
individual polar unit cells leads to the formation of regions of homogeneous
polarization separated by interfaces of a few atomic layers thickness (Jia
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et al., 2011; Meyer & Vanderbilt, 2002; Nataf et al., 2020), known as ferroelec-
tric domains and ferroelectric domain walls, respectively (Lines & Glass, 2001).
Analogously, a symmetry-lowering transformation that entails a change of
shape of the crystal lattice gives rise to a spontaneous strain and ferroelastic
domains. Adjacent pairs of ferroelastic domains with different spontaneous
strains form ferroelastic domain walls at the interface, which are mobile under
applied mechanical fields (Janovec & Privratska, 2013; Tagantsev et al.,
2010).

Domain walls can be considered as two-dimensional (2D) topological
defects with distinct physical properties compared to the bulk, according
to experimental observations (Catalan et al., 2012; Meier, 2015; Seidel, 2012)
and theoretical models (Aird & Salje, 1998; Janovec et al., 1999; N. Lawless
& Fousek, 1970). Recent interest in the special attributes of domain walls,
e.g., the conductivity in domain walls (Guyonnet et al., 2011; Meier et al.,
2012; Rojac et al., 2017; Seidel et al., 2010; Seidel et al., 2009) or domain-wall
polarity in non-polar materials (Goncalves-Ferreira et al., 2008; Nataf et al.,
2017; Salje et al., 2013; Scott et al., 2012; Yokota et al., 2019) led to the
exciting new field of domain wall engineering—with promising applications
such as domain-wall nanoelectronics (Catalan et al., 2012; Nataf et al., 2020)
comprising nonvolatile memory (Jiang et al., 2018; Sharma et al., 2017),
diodes (Whyte & Gregg, 2015), and tunnel junctions (Sanchez-Santolino
et al., 2017). A profound understanding of the domain pattern formation is
key for future applications of ferroelectrics, e.g., as non-volatile memory
devices, whose information storage capacity is strongly dependent on the
density of domain walls (Nataf et al., 2020).

While the classification of compatible ferroelectric and ferroelastic domain
structures and domain walls based on the underlying crystal symmetry
is generally well understood (Janovec & Privratska, 2013; Tagantsev et al.,
2010), other areas are far less well established. For example, the polarity
of domain walls, is an active field of research, in which the symmetry of
a wall is described by a layer group, using geometrical arguments in real
space (Janovec et al., 2004; Janovec & Privratska, 2013) and in the order
parameter space of the Grinzburg-Landau theory (Schranz et al., 2019;
Tolédano et al., 2014) to derive the properties of the wall. A remarkable
theoretical finding showed that all mechanically compatible ferroelastic
domain walls are non-centrosymmetric and hence polar (Janovec et al.,
1999) (even in non-polar materials), which was confirmed experimentally by
second harmonic generation (SHG) microscopy (Yokota et al., 2019; Yokota
et al., 2014).
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Apart from the special properties of domain walls, the formation of
intricate ferroelectric structures, e.g., arrays of polarization flux-closure
vorticies (Yadav et al., 2016), polar-skyrmion bubble domains (Das et al.,
2019), and polarization flux-closure domains (Jia et al., 2011) offer exciting
features and have recently caught the interest of the ferroelectrics commu-
nity. The latter structure is well known in ferromagnetics and was examined
in early studies by theoreticians (Kittel, 1946; L. Landau & Lifshitz, 1935)
and later by experimentalists (Hubert & Schäfer, 2008; Özdemir et al., 1995).
Nevertheless, transition layers, such as closure domains1, are also relevant
in ferroelectrics (Tagantsev et al., 2010), primarily in thin films or phase
boundaries (Jia et al., 2011; McQuaid et al., 2011). Although the appearance
of closure arrangements can mostly be traced back to the effect of uncom-
pensated boundary conditions such as an electric field induced by electric
dipoles at a free surface (depolarization field) (Aguado-Puente & Junquera,
2008; Batra & Silverman, 1972; Junquera & Ghosez, 2003; Prosandeev &
Bellaiche, 2007; Spaldin, 2004) or mechanical incompatibility of ferroelastic
domains at phase boundaries (Ball & James, 1992; Z. Zhang et al., 2009), the
understanding of closure-like structures is by far not complete. While the
former boundary condition generates an electric field that can be neutral-
ized by the screening effect of mobile charge carriers provided by metallic
electrodes, the latter (mechanical) boundary condition locally induces a
strain field which cannot be compensated easily (Gruverman et al., 1996;
Kolosov et al., 1995; Simons et al., 2018). In ferroelectrics, closure domains
have been studied in theory (Arlt & Sasko, 1980), in first-principle calcu-
lations (Aguado-Puente & Junquera, 2008; Lai et al., 2007; Prosandeev &
Bellaiche, 2007), in piezoresponse force microscopy (PFM) experiments at
the meso scale (McGilly et al., 2010; McQuaid et al., 2011), and in transmis-
sion electron microscopy (TEM) measurements at the atomic scale (Jia et al.,
2011; Nelson et al., 2011).

Another important attribute of the domain pattern formation for next-
generation ferroelectric devices is the size of domains, which influences the
dielectric and piezoelectric properties and, therefore, determines the storage
capacity of high-density memories, defines the size of nanoelectronics and
the performance of ferroelectric transducers (Scott et al., 2012; Wada et
al., 2006). Based on a simple model of a 180◦-laminate of ferromagnetic
domains with an open boundary condition, a scaling law was derived
(Kittel, 1946; L. Landau & Lifshitz, 1935) by balancing the energy contained

1 For simplicity, we use this term for both vortex structures (complete flux closure) as well as
vertex structures (incomplete flux closure).
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within the domain vs. in the interface. This is better known as Kittel’s law,
which relates the domain width to the sample thickness in a square root-like
manner. This square-root scaling law was later extended for ferroelectric
films (Daraktchiev et al., 2008; Mitsui & Furuichi, 1953; Roitburd, 1976) and
is generally applicable for any periodic domain pattern (Catalan et al., 2009;
Catalan et al., 2006; Craik & Cooper, 1970; De Guerville et al., 2005; Kinase
& Takahasi, 1957; Thiele, 1970).

Furthermore, Kittel’s law is not limited to thin films but also of significance
for polycrystalline bulk materials, where the domain width scales with the
square root of the grain size, as early investigations on barium titanate
(BT) showed (Arlt, 1990). Later studies on lead zirconate titanate (PZT)
ceramics generally verified previous results and narrowed down the scope
of validity of the square-root law depending on the grain size (Cao &
Randall, 1996; Hoffmann et al., 2001; Randall et al., 1998; Webber et al.,
2009). Besides governing the width of the twin lamellae, the competition
between elastic strain energy and interface energy (Arlt, 1990; Arlt & Sasko,
1980) is responsible for a critical grain size, above which more intricate
domain patterns (e.g., rank-2 laminates or bundle domains) emerge and
act as a stress-reducing mechanism that minimize the energy. Recent PFM
and in situ synchrotron x-ray experiments on donor-doped PZT observed
such a decrease in the complexity of domain structures and an increase in
internal stress with decreasing grain size (Picht et al., 2020).

Aside from the size of the crystallite, their orientation distribution is
a decisive factor in determining the anisotropy of the effective material
properties of a ferroelectric ceramic. Various high-energy synchrotron x-ray
and neutron diffraction experiments reported a strong correlation of the
domain switching fraction within a grain during electric-field poling and
the crystallographic orientation (Hall et al., 2004; Hall et al., 2005; Jones
et al., 2006; Jones et al., 2007; Jones et al., 2005; Pramanick et al., 2011)—thus
emphasizing the role of texture and the contribution of 90◦-domain wall
motion towards the polycrystalline material response.

To study the ferroelectric microstructure, different models have been
utilized to predict the domain evolution at the mesoscale under applied
electric fields. First, sharp-interface models have been used for many years
to compute equilibrium domain structures based on energy minimiza-
tion, which seeks to satisfy the compatibility conditions not locally but
on average (Ball & James, 1987; Davi & Rizzoni, 2004; De Simone, 1993;
J. Li & Liu, 2004; Shu & Bhattacharya, 2001). More recently, the criteria
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for exact compatibility (i.e., local compatibility) were used to identify all
energy-minimizing rank-2 laminate structures in a tetragonal crystal (Tsou
et al., 2011) as well as all possible low-energy transition paths between
different types of compatible laminates (Tsou et al., 2013). While the dis-
continuous description of ferroelectric domain walls offers mathematical
advantages, it becomes computationally expensive for large numbers of
domains and requires an additional model to account for nucleation, which
makes it unsuitable to predict the complex ferroelectric microstructure
in a polycrystal. In contrast to sharp-interface models, diffuse-interface
or phase-field models represent domain walls as diffusive interfaces with
a finite thickness. This, in turn, requires sufficient spatial resolution to
track the motion of individual walls. Such models are generally based on
solving the time-dependent Ginzburg-Landau (GLD) equation within a
finite-element (FE) (Su & Landis, 2007; W. Zhang & Bhattacharya, 2005) or
spectral framework based on the fast Fourier transform (FFT) (Vidyasagar
et al., 2017). We recently introduced (Indergand et al., 2020) a statistical
mechanics-based extension of the GLD, which accounts for the effects of
finite temperature by considering both the temperature dependence of the
Ginzbug-Landau potential and thermal fluctuations. The latter promote the
nucleation of needle-like domains at locations of high heterogeneity (e.g.,
at grain boundaries) and therefore predicts a more realistic domain pattern
evolution.

Based on the aforementioned finite-temperature phase-field framework,
we here present the results of ultra-high-resolution simulations of the
ferroelectric microstructure evolution in a micron-sized polycrystal. By
leveraging the parallel efficiency of the FFT-based numerical implementa-
tion, our simulations contain hundreds of grains, admitting statistics of the
grain and domain evolution during ferroelectric switching. We demonstrate
the capability to predict realistic domain pattern formation for various
grain sizes at the mesoscale, discuss different types of emerged domain
structures (monodomains, laminates, and flux-closure domains), link them
to the underlying polycrystalline microstructure, and we highlight their
implication on the ferro- and piezoelectric properties at the macroscale in
close comparison with experiments and theoretical models. The remainder
of this contribution is structured as follows. Section 4.2 briefly summarizes
the phase field model. Section 4.3 details how we automatically detect the
different types of domain walls from simulation data, followed by simu-
lation results presented in Section 4.5. Finally, Section 4.6 concludes our
study.
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4.2 ferroelectric constitutive model

We adopt the ferroelectric constitutive model recently presented in Inder-
gand et al. (2020), which accounts for the effects of finite temperature by
including thermal fluctuations and which is summarized in the following
to the extent required for subsequent discussions. The interested reader is
referred to Chapter 2 for more details.

Based on the continuum description of ferroelectric ceramics, the electro-
mechanically coupled behaviour of a ferroelectric body Ω ⊂ Rn in a n-
dimensional space is defined by the mechanical displacement vector u(x, t),
the infinitesimal strain tensor ε(x, t) = 1

2
(︁
∇u +∇uT)︁, the electric poten-

tial ϕ(x, t), and the electric field vector e(x, t) = −∇ϕ, as functions of
position x ∈ Ω and time t ≥ 0. The evolution of the ferroelectric microstruc-
ture is described by the polarization vector p(x, t), which acts as the order
parameter in the Devonshire-Ginzburg-Landau (DGL) theory (Devonshire,
1954; L. Landau, 1937). To evolve these fields with time, we solve the
quasistatic mechanical and electrical problems (assuming sufficiently slow
loading rates) as well as a kinetic law for the polarization.

The mechanical problem is described by the balance of linear momentum
(with suitable boundary conditions), which yields under the assumption of
negligible inertial effects and volumetric forces

∇ · σ = 0, (4.2.1)

where σ(x, t) denotes the Cauchy stress tensor. The electrical problem is
governed by Gauss’ law, which in the absence of free charges reads

∇ · d = 0, with d = κ0e + p, (4.2.2)

where the electric displacement vector field d(x, t) is coupled to the electric
field e via the permittivity of vacuum, κ0, and the polarization vector field p.

Assuming thermal equilibrium with a uniform temperature θ within the
material, we follow Indergand et al. (2020), Su and Landis (2007), and W.
Zhang and Bhattacharya (2005) and use the following additive structure for
the electric enthalpy density:

W(ε, e, p,∇p, θ) = Ψelastic(ε, p) + Ψpol.(p, θ) + Ψel.(e) + Ψint.(∇p)− e · p.
(4.2.3)

Ψelastic(ε, p) = 1
2 (ε − εr) · C (ε − εr) is the elastic strain energy density,

where εr denotes the remanent strain and C is the fourth-order elasticity
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tensor. The temperature-dependent polarization potential Ψpol.(p, θ) fol-
lows from DGL theory, Ψel.(e) is the electrostatic energy density, and the
isotropic interface energy density is denoted by Ψint.(∇p). The mechanical
stress tensor and the electric displacement vector derive from the electric
enthalpy density as, respectively, σ = ∂W/∂ε and d = −∂W/∂e. The com-
plete expressions of all energy contributions along with the corresponding
material constants for tetragonal PZT (Völker et al., 2011) are listed in
Tab. 2.1.

To describe the evolution of the polarization at finite temperature, we use
a statistical mechanics-based extension of the well-established Allen-Cahn
equation, in which thermal fluctuations are added on top of the deterministic
gradient-flow kinetics (Indergand et al., 2020), viz.

µṗ = −∂W
∂p

+∇ · ∂W
∂∇p

+ µη, (4.2.4)

where µ > 0 is an inverse mobility constant, and η(x, t) is a random noise
vector field, which mimics thermal lattice vibrations and is elaborated in
the following. The assumption of thermal equilibrium allows us to use
Maxwell-Boltzmann statistics to identify η(x, t) as centered Gaussian white
noise, i.e, subject to the constraints

⟨η(x, t)⟩Ω =
∫︂

Ω
η(x, t)dx = 0 ∀t, (4.2.5a)

⟨η(x, t)⟩τ =
∫︂ t+τ

t
η(x, t)dt = 0 ∀x ∈ Ω, (4.2.5b)⟨︁

η(x, t), η(x′, t′)
⟩︁

Ω,t =
2kBθ

µVchar.∆t
δ
(︁

x − x′
)︁

δ
(︁
t − t′

)︁
, (4.2.5c)

where τ denotes a sufficiently large time window, kB Boltzmann’s constant,
Vchar. = a2

tetr.ctetr. the volume of the perovskite unit cell, and ∆t the time
increment. The constraints (4.2.5a) and (4.2.5b) require the random noise
η to be unbiased in space and time; i.e, the average of η over the body
Ω must be zero at any time t, and the average of η over a sufficiently
large time window τ at any point x ∈ Ω must tend to zero, respectively.
Finally, the noise term η must be uncorrelated in space and time with the
variance stated in (4.2.5c). The implications of thermal fluctuations onto
the ferroelectric microstructure as well as the expected accuracy of the
computed fields from the phase-field model will be discussed in Section 4.3.

We solve the boundary value problem (BVP) within a Representative
Volume Element (RVE) of the ferroelectric ceramic, using an FFT-based
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spectral method, which was described in detail in (Indergand et al., 2020;
Vidyasagar et al., 2017) and is therefore summarized here only briefly. By
assuming periodic boundary conditions, the mechanical problem (4.2.1)
and electrical problem (4.2.2) are solved efficiently in Fourier space by using
the FFTW library (Frigo & Johnson, 2005) to perform discrete fast Fourier
transforms of the polarization, strain, and electric fields. Moreover, we
use higher-order finite difference stencils to approximate gradients and to
reduce ringing artifacts associated with the Gibbs phenomenon (which arise
from discontinuous physical properties and differently orientated grains
in our polycrystal (Vidyasagar et al., 2017)) and the non-uniform conver-
gence of the truncated Fourier modes. After updating the aforementioned
equilibrium equations, the evolution of the polarization is computed via
implicit time integration of the extended Allen-Cahn equation (4.2.4), using
a backward-Euler scheme. The latter provides increased numerical stability
and admits a larger time step size ∆t in comparison to the forward-Euler
scheme. Higher-order time-integration schemes, e.g., Runge-Kutta, Adams-
Bashforth, or Crank-Nicolson, showed no significant improvement in terms
of the computational performance.

Due to improved computational efficiency and ease of visualization, we
use a 2D plane-stress model in the following numerical examples, which
spatially resolves the out-of-plane strain ε33(x) and shows realistic mi-
crostructures in comparison with experiments at various temperatures (In-
dergand et al., 2020). Of course, polycrystalline samples always represent
a 3D problem due to grain orientations about all three crystallographic
axes. Nevertheless, in case of tetragonal symmetry (as we consider in this
study), a 2D model provides a reasonable approximation of a uniaxial
polycrystal, where all grains have a common ⟨100⟩-axis. The agreement of
2D simulation results presented in Section 4.5 with several physical laws
experimentally observed on 3D polycrystals supports the validity of our
approach. To create the polycrystalline RVE, we subdivide the simulation
domain into ng grains, whose shapes are determined via Voronoi tessella-
tion, and we assign to each grain a 2D orientation angle γ, which describes
the rotation R ∈ SO(2) from the global reference frame into the local crystal
frame {ê1, ê2}. Consequently, the governing equations are transformed into
the respective coordinate system of each grain, followed by an inverse
transformation to compute the homogenized material response.
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4.3 methods : domain wall identification and analysis

The diffuse-interface setting of the phase field model makes it challeng-
ing to identify domain walls, especially in an automated fashion and in
non-equilibrium situations. Therefore, we introduce a method to identify
different types of ferroelectric domain walls and trace them not only in
equilibrium but also in non-equilibrium situations (such as during polariza-
tion reversal with a transient applied electric field). An added complication
arises from the random noise introduced to capture the effects of thermal
lattice vibrations. Our approach is based on a few characteristic features of
domain walls explained in the following. Although the following procedure
has been developed and calibrated for tetragonal crystal symmetries, it can
be adapted and generalized to other crystal symmetries.

4.3.1 Interface energy density

The most unique property to differentiate between domains and their
boundaries (i.e., between, respectively, regions of homo- and heterogeneous
polarization distribution p(x, t) at a given time t) is naturally the interface
energy density Ψint.(∇p), which writes for an isotropic case

Ψint.(∇p) =
G0

2
|∇p|2, (4.3.1)

where G0 > 0 is an interface energy constant. Within our phase-field frame-
work, domain walls are modelled as diffusive interfaces, whose thickness is
calibrated based on density functional theory (DFT) and atomistic simula-
tions at zero temperature (Völker et al., 2011). This results in differences
in the thickness and therefore in the polarization gradient ∇p within the
two types of domain walls in a tetragonal crystal. As a consequence, the
interface energy density Ψint.(∇p) exhibits different profiles when plotted
across a 90◦- vs. 180◦-type wall, as shown in Fig. 4.1(a). We utilize this
(interface) energy signature as a fingerprint of a certain type of domain wall
to uniquely identify and track its motion during polarization switching.
Therefore, we define the subset of nodes within the simulation domain
which are associated with a specific domain wall type as

Ωint.
90/180

=
{︂

x ∈ Ω : ζmin.
90/180

≤ Ψint. (∇p(x)) ≤ ζmax.
90/180

}︂
, (4.3.2)
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where ζmax.
90/180

and ζmin.
90/180

denote, respectively, upper and lower bounds
(and set of bounds for each of the two types of domain walls), which
are listed in Tab. 4.2. While the subsets in (4.3.2) are usually sufficient to
accurately capture the emergent ferroelectric microstructure at equilibrium,
it becomes imprecise in the presence of imposed external loads, which can
distort the energy landscape. To improve the accuracy and reliability of our
predictions, we include additional features, as detailed in the following.

4.3.2 Polarization energy density

Instead of specifying and utilizing the conditions at the interface as an
indicator, as we did in the previous section, we may also exploit differences
in the polarization potential Ψpol.(p, θ) across the domain wall, i.e., along
the path between the two polarization states associated with the adjacent
domains. Fig. 4.1(b) shows the polarization potential Ψpol.(p, θ) at room
temperature together with the polarization trajectories of the 90◦- and
180◦-type domain walls, denoted as s90(p) and s180(p), respectively. A
direct comparison of the polarization energy density Ψpol.(s(p), θ) along
the two trajectories, illustrated in Fig. 4.1(c), reveals significant differences
in the energy barrier associated with an interface type. This may serve
as an additional indicator to distinguish different interfaces as follows by
defining

Ωpol.
90/180

=
{︂

x ∈ Ω : ξmin.
90/180

≤ Ψpol. (p(x)) ≤ ξmax.
90/180

}︂
, (4.3.3)

with suitable upper and lower bounds for the polarization potential ξmax.
90/180

and ξmin.
90/180

, respectively, listed in Tab. 4.2.

4.3.3 Polarization magnitude

As a third metric, we use the change in the magnitude of the order pa-
rameter, |p|, as a measure to separate different types of domain walls. As
visualized in Fig. 4.1(b)-(c), the path s180 of an antiparallel 180◦ (Ising-type)
domain wall follows the shortest distance between the two polarization
states p0 = (0,±1)T, which results in a pure stretch of the polarization
vector p. By contrast, the trajectory s90 of a 90◦ (Néel-type) domain wall
follows the minimum energy path (Indergand et al., 2020), which requires
primarily a rotation of the polarization vector p. Therefore, imposing con-
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strains on the norm of the polarization vector |p| allows us to separate the
two types of domain walls with the help of

Ωmag.
90/180

=
{︂

x ∈ Ω : υmin.
90/180

≤ |p(x)| ≤ υmax.
90/180

}︂
, (4.3.4)

again with suitable upper and lower bounds υmax.
90/180

and υmin.
90/180

, respectively,
for the polarization potential; values are listed in Tab. 4.2.

4.3.4 Domain wall identification and the implications of thermal fluctuations

By combining all three of the above measures (interface energy, polarization
energy, and polarization magnitude), we define those nodes lying within
90/180-type interfaces as the intersections of all three previously defined
subsets (using Dirac measure δx(Ω)), and the set of all nodes contained in
domain walls as the union of both interface types:

Ω
90/180

= Ωint.
90/180

∩ Ωpol.
90/180

∩ Ωmag.
90/180

, (4.3.5a)

ΩDWs = Ω90 ∪ Ω180. (4.3.5b)

Of course, the choice of measures used for the identification of domain
walls is not unique, e.g., one could utilize the elastic strain energy den-
sity ΨES(ε, p) as an alternative (or additional) measure. Here, we choose
those energies showing the most pronounced contrast between the two
interface types. Furthermore, we defined in (4.3.5a) a certain domain wall
type as the intersection (and not as the union) of the aforementioned mea-
sures to narrow down our selection, thus making it more robust. Note that,
strictly speaking, the 90/180 types of domain walls are only defined for
equilibrium conditions.

As an illustrative example to benchmark our proposed method, we
consider a ferroelectric single-crystal with a well-known rank-2 laminate
structure (Hooton & Merz, 1955; Rödel, 2007), which contains both types
of domain walls of a tetragonal crystal. Fig. 4.2(a) illustrates the computed
ferroelectric domain pattern of the aforementioned laminate, showing the
polarization orientation angle (colors) as well as the polarization vector p
(white arrows) within each domain. Based on (4.3.5), we identified and
highlighted all nodes within the RVE in Fig. 4.2(a) that are associated with
a 180◦-type wall (x ∈ Ω180) and with a 90◦-type wall (x ∈ Ω90) in red and
blue, respectively. The results is shown in Fig. 4.2(b)—demonstrating that
both types of domain walls are successfully recognized by the algorithm.
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The statistics of the two domain wall types are plotted in Fig. 4.2(c),
visualizing the frequency of occurrences in Ωi as a function of the interface
energy density Ψint for a simulation with and without thermal noise. The
distribution of the interface energy in the absence of thermal noise shows
relatively well-separated distinct energy bands for each interface type, while
the energy under thermal lattice fluctuations is broadly smeared out, re-
sulting in multiple overlapping Gaussian distributions for the different
types of walls. This demonstrates the necessity for additional measures,
besides the interface energy density Ψint, to distinguish different types of
domain walls accurately, when thermal noise is present in the simulated
data. Based on the geometry of the laminate structure, the spatial discretiza-
tion ∆x of the grid of nodes, and the domain wall thicknesses λ180/90, we
can analytically estimate the average number of nodes for each type of
domain wall as ni = liai, where li denotes the number of nodes along the
length of the domain wall (l180 = 4N and l90 = 2N in this example), N
the number of nodes per RVE side, and ai = ⌊λi/∆x⌋+ 1 the number of
nodes across a domain wall. This analytical estimate serves as a reference
for the numerical detection algorithm. Tab. 4.1 lists the amount of detected
domain wall nodes, i.e., |Ωi|, relative to the aforementioned reference num-
ber of nodes ni, showing excellent agreement without thermal noise and
generally an underestimation in the presence of thermal fluctuations. The
exact numbers, of course, strongly depend on the parameters used for
calibration. Tab. 4.1 shows that, in the presence of thermal noise, 180◦-type
interfaces are detected more accurately compared to the 90◦-type (which is
more common in tetragonal PZT). One of the reasons that determines the
accuracy of our method is the contrast between the interface energy Ψint. of
a certain type of domain wall and the contribution to Ψint. stemming from
the background noise within domains due to thermal lattice vibrations.
As the Gaussian distribution of the thermal noise is centered at zero, it

Table 4.1: Number of detected nodes associated with both interface types, using
the identification method (4.3.5a).

Accuracy |Ωi|/ni

DW w/o noise with noise

90
◦

99 % 74 %

180
◦

97 % 91 %
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interferes more strongly with the 90◦-type, whose Gaussian is more closely
located (see Fig. 4.2). Simply put, in terms of the interface identifiers used
here, it is easier to confuse a noisy pixel within a homogeneous domain
with a 90◦-type wall than with a 180◦-type wall. Moreover, the reported
values in Tab. 4.1 under the influence of thermal noise should be interpreted
as an estimated accuracy (relative to an unperturbed situation), since the
exact number of nodes cannot be determined. The limits used to define the
subset of the interface energy Ωint.

90/180, the polarization potential Ωpol.
90/180,

and the polarization magnitude Ωmag.
90/180 are listed in Tab. 4.2.

Table 4.2: Upper and lower bounds used to define the subsets of the interface en-
ergy Ωint.

90/180, polarization potential Ωpol.
90/180, and polarization magnitude Ωmag.

90/180.

90
◦-DW 180

◦-DW

Type min. max. min. max.

Interface energy ζ 2.0 · 106 8.5 · 106 5.0 · 106 5.0 · 107

Polarization potential ξ −1.0 · 109 −4.3 · 107 −4.0 · 107 1.0 · 108

Polarization magnitude ν 0.45 ∞ 0 0.6

4.4 effective material properties based on minimization of

the electric enthalpy density

We here present a simple model to estimate the energetic preference of
monodomain vs. laminate domain patterns in grains whose orientation does
not generally align with the applied electric field. To this end, we neglect
the mechanical and electro-mechanical coupling effects and only consider
the Ginzburg-Landau potential and the electric energy density, based on
which we compute the energy-minimizing volume fractions of domains
in a laminate pattern and compare the latter to the energy-minimizing
configuration in a monodomain constellation. This is, of course, only a
simplified model, yet it captures some of the salient microstructural features
well, as we show.
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Figure 4.3: Schematic of two energy-minimizing domain structures considered
here: (a) the 90◦-laminate pattern, comprised of domain pairs pI and pI I , and (b)
the monodomain structure. Colors indicate the polarization orientation, blue ar-
rows represent the polarization vectors of the homogenized domain structure ⟨p⟩,
and the red arrows show the direction of the applied electric field e in each case.

4.4.1 Effective properties of a simple 90°-domain laminate

We consider a three-dimensional body Ω ∈ R3 subject to periodic boundary
conditions, which forms a periodically repeating ferroelectric laminate
structure in the x1-x2-plane over the entire body. The laminate is composed
of 90◦-domain pairs, separated by sharp interfaces. The volume fraction vi
of each domain i ∈ {1, 2}, satisfying v1 + v2 = 1, can vary depending on the
difference in the poling direction and the crystal orientation γ (denoting the
rotation about the e3-axis, measured against the vertical axis). For simplicity,
we consider only the polarization energy density Ψpol.(p) and the applied
electric field e and hence neglect all mechanical and electro-mechanical
coupling effects. For a given crystal orientation γ, we seek to find a low-
energy construction of the laminate pattern, by minimizing the total energy
of the material with respect to the polarization field:

p(x) = arg min
∫︂

Ω

[︂
Ψpol.(p)− e · p

]︂
dV. (4.4.1)

Minimization of the first term requires the polarization in each domain,
pi, to be in one of the spontaneous polarization states p0/p0 ∈ {(1, 0, 0)T,
(−1, 0, 0)T,(0, 1, 0)T,(0,−1, 0)T,(0, 0, 1)T,(0, 0,−1)T}, whereas maximization
of the second term drives the polarization p to be aligned with the applied
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electric field e on average over the laminate. Without loss of generality, we
assume an electric field in the vertical e2-direction, and the polarization
vectors p1 and p2 within the homogeneous domains 1 and 2, respectively,
are given by

p1 =

⎧⎨⎩p0ê1, if γ ≥ 0,

−p0ê1, if γ < 0,
, p2 = p0ê2, (4.4.2)

where {ê1, ê2, ê3} = {⟨100⟩ , ⟨010⟩ , ⟨001⟩} denote the crystal axis orienta-
tions. In other words, if γ = 0, we expect no laminate but a monodomain
(v1 = 0, v2 = 1) with polarization p = p0e2. If γ ̸= 0, then we expect a
laminate (v1, v2 ∈ (0, 1)) composed of 90◦-domain walls with alternating
polarizations p = p0(±ê1 + ê2). Letting the rotation matrix R = SO(3)
account for the transformation from the reference frame to the grain’s
crystal axes {ê1, ê2, ê3} = {⟨100⟩ , ⟨010⟩ , ⟨001⟩} (dependent on angle γ), the
average polarization in the laminate follows as

⟨p⟩lam. =
2

∑
i=1

viRT pi. (4.4.3)

Solving (4.4.1) under the constraints v1 + v2 = 1 and ⟨p1⟩lam. = 0 yields
the volume fractions in an energy-minimizing laminate as

v2 =
1

| tan γ|+ 1
and v1 = 1 − v2 ∀γ ∈ R. (4.4.4)

Analogously, the infinitesimal strain tensors in domain 1, domain 2, and on
average over the laminate are, respectively,

ε1 = diag
(︁
εβ, εα, εα

)︁
, ε2 = diag

(︁
εα, εβ, εα

)︁
, and ⟨ε⟩lam. =

2

∑
i=1

viRTεiR,

(4.4.5)
where εβ and εα denote the spontaneous strains parallel and perpendicular
to the spontaneous polarization direction, respectively. When utilizing the
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obtained volume fractions in (4.4.4), the average polarization and strain of
the laminate become, respectively,

⟨p⟩lam. = p0

⎛⎜⎜⎝
0
1

| cos γ|+|sin γ|

0

⎞⎟⎟⎠ and (4.4.6)

⟨ε⟩lam. =

⎛⎜⎜⎝⟨ε11⟩lam. ⟨ε12⟩lam. ⟨ε13⟩lam.

⟨ε22⟩lam. ⟨ε23⟩lam.

sym. ⟨ε33⟩lam.

⎞⎟⎟⎠ (4.4.7)

with strain components

⟨ε11⟩lam. =

(︁
εα sin2 γ + εβ cos2 γ

)︁
|sin γ|+

(︁
εα cos2 γ + εβ sin2 γ

)︁
|cos γ|

|cos γ|+ |sin γ| ,

⟨ε22⟩lam. =

(︁
εα sin2 γ + εβ cos2 γ

)︁
|cos γ|+

(︁
εα cos2 γ + εβ sin2 γ

)︁
|sin γ|

|cos γ|+ |sin γ| ,

⟨ε33⟩lam. = εα,

⟨ε12⟩lam. =

(︁
εα − εβ

)︁
(|cos γ| − |sin γ|) sin 2γ

2 (|cos γ|+ |sin γ|) ,

⟨ε23⟩lam. = 0,

⟨ε13⟩lam. = 0.

These effective quantities are plotted in Fig. 4.4 vs. the grain orientation
angle γ.

Note that the maximization of the e · p-term under the aforementioned
constraints in (4.4.1) determines effectively the volume fractions of the
domains in a 90◦ laminate. This is in contrast to a 180◦ laminate, where
there is no mechanism to align the polarization with an external field on
average, such that the domains remain locally in a spontaneous polarization
state and complying with the boundary conditions, due to the symmetry of
the antiparallel oriented domains.
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Figure 4.4: Comparison of the analytically derived effective polarization ⟨p⟩ (left)
and strain ⟨ε⟩ (right) of a monodomain (dashed line) and a rank-1 laminate
(straight line) as functions of the grain orientation γ, for the case of an applied
electric field in the vertical direction, i.e., e = (0, e, 0)T.

4.4.2 Effective properties of a monodomain

Analogous to the obtained effective properties of a 90◦-laminate structure
above, the average polarization and strain of a monodomain, respectively,
evaluate to

⟨p⟩mono. = p0

⎛⎜⎜⎝− sin γ

cos γ

0

⎞⎟⎟⎠ and (4.4.8)

⟨ε⟩mono. =

⎛⎜⎜⎝εα +
(︁
εβ − εα

)︁
sin2 γ (εα − εβ) sin(2γ)/2 0

εα +
(︁
εβ − εα

)︁
cos2 γ 0

sym. εα

⎞⎟⎟⎠ , (4.4.9)

where we considered the range γ ∈ (−45◦, 45◦). Alternatively, one can
expand ⟨p⟩mono. as a π

2 -periodic function. The calculated effective properties
of a monodomain are included in Fig. 4.4, in comparison with the analytical
solution for a 90◦-laminate structure.



106 domain pattern formation in tetragonal ferroelectric ceramics

4.5 results : ferroelectric domain pattern formation

In the following, we consider a 2D volume domain filled with a polycrystal
of ng randomly oriented grains with a spatial discretization of N × N grid
points. As elaborated in Chapter 2, we choose the spatial resolution to
match the crystallographic lattice spacing, i.e., ∆x = atetr., so that each
node in the grid represents exactly one atomic-level unit cell. The sample is
initially poled in the negative vertical direction, followed by a spontaneous
relaxation, during which the polarization adjusts based on the orientation of
each grain. The ferroelectric specimen is free to deform and hence has a zero
stress on average, i.e, ⟨σ⟩ = 0 ∀t. After pre-equilibration, an average electric
field e2(t) = ⟨e2(t)⟩ is imposed in the positive vertical direction, followed
by an equilibration phase, during which the ferroelectric microstructure is
relaxed.

4.5.1 Influence of the RVE and grain size

We first asses the influence of the different length scales at play—reaching
from the thickness l of a domain wall over the grain size g in a polycrystal
to the size L of the computational domain—on the statistics of domain
pattern formation. To this end, we successively enlarge the sample Ω(L),
while keeping all microstructural features (such as the average grain size
g) constant, until convergence is approximately achieved of the effective
material response and of the microstructural statistics. The limiting size
L∞ of the computational domain, at which the statistics converge to the
macroscale limit, is statistically representative, which is why the correspond-
ing simulation domain is referred to as Representative Volume Element
(RVE).

This effect becomes apparent in Fig 4.5, where snapshots of the ferro-
electric microstructure at equilibrium are shown the domain sizes L =
{0.10, 0.21, 0.41, 0.82, 1.64} µm at a temperature of θ = 300 K. The emerged
ferroelectric microstructures appear self-similar across the different sizes,
such that the domain pattern at a certain size can be approximated through
tessellation of the domain pattern of the next smaller size. This observation
visually indicates statistical homogeneity of ferroelectric microstructure,
which is confirmed in Fig. 4.5(b), showing the frequency of domains within
RVEs of different sizes, measured by the average interface energy den-
sity ⟨Ψint.(N)⟩ and the average number of nodes associated with domain
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walls, ⟨ΩDWs(N)⟩. Both measures are normalized by their corresponding
value at the largest size (N = 4096) and exhibit convergence of the average
to the macroscale limit at a sample size of N = 512 and 20 grains.

Having established suitable simulation domain sizes, we proceed to in-
vestigate the influence of the grain size on the ferroelectric microstructure
and the effective material response. Therefore, we study domain pattern
statistics under grain size enlargement by varying the average grain size ⟨g⟩,
while keeping the RVE size N = 4096 constant. We utilize image segmen-
tation and analysis on the emerged lamellar bands to extract the average
width ⟨w⟩ of all ferroelectric domains for a given average grain size ⟨g⟩.
Fig. 4.6(a) shows snapshots of the ferroelectric domain pattern formation vi-
sualized by the polarization orientation angle for various average grain sizes
⟨g⟩ = {23, 46, 92, 183, 367, 734} nm. These results indicate a reduction in
the total number of domains within the RVE and an increase in the average
domain width ⟨w⟩ with increasing average grain size ⟨g⟩. This observation
is more clearly visible in the average interface energy ⟨Ψint.⟩ in Fig. 4.6(b),
which is a measure of the domain density. It follows a ⟨Ψint.⟩ ∝ ⟨g⟩−1/2 scal-
ing, as the regression curve f (⟨g⟩) shows. This scaling law was previously
postulated through theoretical considerations of balancing the domain wall
energy and the elastic strain energy (Arlt, 1990; Kittel, 1946; Salje, 1990)
and seems to capture the most dominant grain size effect, as the agreement
with our significantly more intricate phase-field model reveals. Moreover,
the average width of domains is closely approximated by the parabolic
scaling ⟨w⟩ ∝ ⟨g⟩1/2. This scaling law was originally proposed by Arlt
in (Arlt, 1990) as an adaption from thin films to polycrystals, based on
minimization of the sum of elastic strain energy and domain wall energy
within a clamped, cubic-shaped grain, assuming a negligible contribution
of the electric energy at GBs due to compensation by mobile charges. The
regression curve in Fig. 4.6(c) shows that our data suggest a slightly lower
scaling exponent, which leads to a more accurate description of the domain
width especially for smaller grain sizes ⟨g⟩ < 1 µm. (To provide a meaning-
ful characterization of the average domain width ⟨w⟩ and to account for
the higher variance for larger grains, a weighted regression hw(g) is used,
whose weight is inverse proportional to the variance of the domain width.)

Another interesting effect associated with the domain density is its extrin-
sic contribution to the small-signal properties through mobile 90

◦-domain
walls (Ihlefeld et al., 2016). The observed increase in the density of domain
walls (measured via ⟨Ψint.⟩) with decreasing grain sizes ⟨g⟩ in Fig. 4.6(b)
results in an increase of the dielectric and piezoelectric constants. This effect
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is shown in Fig. 4.6(d) and in agreement with measurements on barium
titanate ceramics with grains larger than 1 µm (Arlt et al., 1985; Ihlefeld et
al., 2016). For submicrometer-sized grains in lead-based ceramics, however,
a decrease of the permittivity and piezoelectric constant with decreasing
grain size was reported (Randall et al., 1998). We assume that this change in
trends for submicrometer-sized grains is attributed to two effects, which are
not accounted for in our model. First, surface-to-volume ration increases
with decreasing grain size, which dilutes the naturally high permittivity of
PZT with the low permittivity of the grain boundary layer by the rule of
mixture (Ihlefeld et al., 2016). Second, x-ray diffraction measurements have
shown a decrease in the tetragonal unit cell distortion c/a from the bulk
value for submicrometer-sized grains (Picht et al., 2020), which leads to a
drop in the spontaneous polarization and strain; hence, a decrease of the
intrinsic contribution to the dielectric and piezoelectric constants.

4.5.2 Equilibrium grain statistics

The formation of energy-minimizing domain patterns strongly depends
on the boundary conditions and on the underlying texture (i.e., grain
orientations and grain size of the ferroelectric ceramic). We assume an
electric field e applied to the RVE in the vertical direction, while the local
orientation of the crystal axes {⟨100⟩ , ⟨010⟩} in the 2D plane is measured
by the grain orientation angle γ (see Fig. 4.7i). To probe the influence of
the grain orientation, we simulate a polycrystalline PZT sample of size
N = 4096 with ng = 1280 randomly-oriented grains, whose orientations
are assigned based on a uniform distribution with γ ∈ (−45◦, 45◦). The
same periodic boundary conditions are used as in the previous study. After
equilibration of the RVE, we compute in a post-processing step the mean
fields ⟨ . ⟩Ωg

within each grain Ωg for ten realizations of the polycrystal, each
with a randomly generated grain seed and grain orientation distribution.
This allows us to examine the influence of a grain’s orientation on the
domain pattern within the grain.

The aforementioned dependence of various fields of interest on the
grain orientation γ is depicted in Fig. 4.7, where the influence of the grain
orientation γ on the grain-averaged polarization in the horizontal and
vertical directions, ⟨p1/p0⟩Ωg

and ⟨p2/p0⟩Ωg
, respectively, the polarization

orientation ⟨ϕ⟩Ωg
, the strain in the horizontal and vertical directions, ⟨ε11⟩Ωg

and ⟨ε22⟩Ωg
, respectively, the interface energy density ⟨Ψint.⟩Ωg

, and the
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domain density ⟨ΩDW⟩Ωg
are plotted based on a data set of 12,800 random

grain samples. This data clearly demonstrates a correlation between the
grain orientation γ and almost all fields shown in Fig. 4.7(a) through (g).
Exceptions are the horizontal polarization component ⟨p1/p0⟩Ωg

(Fig. 4.7a)
and the related polarization orientation ⟨ϕ⟩Ωg

(Fig. 4.7c).

To understand the link between the grain orientation and the observed
ferroelectric domain patterns, let us discuss the correlations in Fig. 4.7(a)-(g)
and relate them to the characteristics of a monodomain vs. a laminate domain
structure, both illustrated in Fig. 4.8(a) and (d), respectively. To gain further
insight into the competition between a homogeneous domain vs. a laminate
pattern as a function of the grain orientation, we presented in Section 4.4
a simple model, which is based on minimizing the electric enthalpy and
predicts the energetically optimal average polarization of a misoriented
grain with or without the ability to form a laminate (see Eqs. (4.4.6) and
(4.4.8)). These are used for reference here.

First, the vertical polarization component ⟨p2/p0⟩Ωg
peaks around γ ≈ 0◦

and decreases for larger grain misorientations γ. This is expected, since
a homogeneous b+-domain within a grain with a small misorientation
γ minimizes the polarization potential Ψpol. and maximizes the vertical
polarization component p2/p0, whereas a large grain misorientation forces
the material to form an energy-minimizing sequence of domains, which
geometrically has a smaller grain-averaged vertical polarization component
⟨p2/p0⟩Ωg

(see Fig. 4.7b). This is in good agreement with measurements
of the domain switching fraction based on combined high-energy x-ray
and neutron diffraction experiments on PZT (Hall et al., 2004; Hall et al.,
2005; Jones et al., 2006; Jones et al., 2007; Jones et al., 2005; Pramanick
et al., 2011). When compared to the analytical model (Section 4.4), the
simulated vertical polarization agrees well with the orientation dependence
predicted by assuming a monodomain with ⟨p2/p0⟩mono. (Section 4.4.2)
for weakly misoriented grains, whereas for high grain misorientations γ

the laminate solution ⟨p2/p0⟩lam. (Section 4.4.1) describes the trend more
accurately (see the dashed and solid red lines in Fig. 4.7(h), respectively).
Note that, although the analytical model captures these important features
correctly, it is relatively simple compared to the phase-field model (cf.
the lack of mechanical and electrical compatibility at the grain boundary
and grain-to-grain interactions, which results in an overestimation of the
maximum polarization at γ ≈ 0). Nevertheless, such theoretical models
help to improve our understanding and provide simple estimates. Here,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

0 45-45

e

Figure 4.7: Equilibrium grain statistics showing the influence of the grain ori-
entation γ on (a)-(b) the grain-averaged polarization ⟨p/p0⟩Ωg

(normalized by
the spontaneous polarization p0), (c) the polarization orientation ⟨ϕ⟩Ωg

, (d)-(e)
the normal strains ⟨ϵ⟩Ωg

, (f) the interface energy density ⟨Ψint.⟩Ωg
, and (g) the

domain density ⟨ΩDW⟩Ωg
. The dataset contains 12,800 grain samples, where each

dot represents the average field of a grain. Highlighted in red is a subset of all
those grains with ⟨ΩDW⟩Ωg

< 0.01, which indicates grains with a monodomain-like
configuration illustrated in Fig 4.8(a). The regression curves f (γ) (black lines)
indicate possible correlations in plots (a)-(g). (h) Comparison of the analytically
calculated vertical polarization for a monodomain ⟨p2/p0⟩mono. (dashed red line),
a 90◦ laminate ⟨p2/p0⟩lam. (straight red line), an interpolation between mon-
odomain and laminate ⟨p2/p0⟩interp. (blue line), and a cos2(2γ) function (dashed
green line). (i) Polycrystalline RVE with 1280 grains, showing the direction of the
applied electric field (red arrow) and the grain orientations γ (colors).
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e.g., a linear interpolation between the monodomain and laminate solutions,
shown as ⟨p2/p0⟩interp. (blue line), displays overall reasonable agreement
with the phase-field results (gray dots) in Fig. 4.7(h), and it is closely
approximated by a cos2 2γ-function (dashed green line). Analogous to the
vertical polarization, the vertical strain component ⟨ε22⟩Ωg

follows the same
line of reasoning.

Second, the horizontal strain ⟨ε11⟩Ωg
is typically negative for an ideal

monodomain grain due to the lateral contraction ε11 = −0.128 % relative to
the polarization direction, and it increases for grains that form laminates
(theoretically up to ε11 = 0.365 % at γ ≈ ±45◦). Both features can be
observed here, but note that the aforementioned reference strain values are
valid only for an ideal stress-free situation, which is not the case at the local
grain level; hence, minor differences must be expected. Third, the majority
of emerged ferroelectric domains are arranged in energetically favored 90◦-
domain patterns with interfaces in the family of {110}-planes, as seen in
Figs. 4.5 and 4.6. This is in agreement with experimental observations (Keve
& Bye, 1975) and first-principle calculations (Meyer & Vanderbilt, 2002) on
lead-based ferroelectrics. The number of domain wall pixels ΩDW and the
interface energy density Ψint. are direct measures of the domain density
and both have their minimum at γ ≈ 0◦ and increase for larger grain
orientations γ with a clear dependence on the crystal orientation γ. In the
following sections, we discuss the specifics of grains with and without
lamellar domain structures in more detail.

4.5.3 Monodomain grains

The red dots in Fig. 4.7 indicate grains, which have most likely only a single
domain and have been identified by imposing an upper bound on the

domain wall density, viz. Ωmono. =
{︂

i ∈ {1, . . . , ng} : ⟨ΨDW(i)⟩Ωg
≤ 0.01

}︂
,

where ng denotes the number of grains. Analyzing this highlighted sub-
set Ωmono. reveals some interesting features. For example, the horizontal
polarization ⟨p1/p0⟩Ωg

and the polarization orientation ⟨ϕ⟩Ωg
are generally

uncorrelated (blue dots in Fig. 4.7bc). However, the subset Ωmono. clearly
exhibits a scaling p1 ∝ sin γ, while the polarization orientation ϕ shows a
linear correlation with the grain orientation (red dots in Fig. 4.7c)—the re-
gression functions are indicated in Fig. 4.7. Note that only for fully aligned
grains (γ = 0◦) the polarization vector points upward, i.e., fϕ(0) ≈ 90◦.
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This supports the above argument that Ωmono. indeed represents the subset
of monodomain grains, whose polarization orientation ϕ is directly related
to the grain orientation γ (which is not true for grains with a lamellar
domain structure). This observation is verified by the simple analytical
model of a 90◦ laminate vs. a monodomain in Section 4.4.1, where we
minimize the polarization enthalpy density in a sharp-interface setting.
From this low-energy construction we indeed find that ⟨p1/p0⟩Ωg

∝ sin γ

in a monodomain (see (4.4.8)). Across the full range of grain orientations γ,
the preferred correlations of the vertical strain ε22 and horizontal strain ε11
generally suggest a cos(2γ)2 dependence, which is in agreement with high
energy synchrotron x-ray diffraction experiments (Hall et al., 2004; Hall
et al., 2005). However, monodomain grains (highlighted in red) appear to
deviate from that trend (black line) with a disproportionately high verti-
cal polarization, suggesting that a different mechanism is at play for this
subset Ωmono..

4.5.4 Grains with lamellar domain patterns

After discussing the specific properties of monodomain grains and condi-
tions under which they emerge, we now focus on grains that form ferro-
electric microstructure or, more precisely, the most common type of simple
(rank-1) laminate or twin patterns. Through image analysis we identified
all grains with more than one type of domain and plotted their polarization
orientation ϕ as a function of the grain orientation γ in Fig. 4.8(e) and
analogously the domain volume fraction in Fig. 4.8(f), where colors indicate
the polarization orientation with respect to the crystal axis (as illustrated
in the schematics of a 90◦ laminate in Fig. 4.8(a) to (d) for four different
grain orientations). In an ideal scenario, the orientation of the domain
aligned with the ⟨010⟩-axis (red color in Fig. 4.8(e)) is continuous within
γ ∈ (−45◦, 45◦), whereas the domain aligned with the ⟨100⟩-axis (blue
color in Fig. 4.8(e)) has a discontinuity at γ = 0◦, such that polarization
jumps to the ⟨1̄00⟩-axis for γ < 0◦. Phase-field data in Fig. 4.8(e) closely
match this trend. Overall, the difference in the polarization orientation
between domains 1 and 2 is |ϕ1 − ϕ2| ≈ 90◦, suggesting primarily ferroelec-
tric/ferroelastic domain walls in equilibrium. This is indeed energetically
reasonable due to the lower energy cost per wall (Meyer & Vanderbilt, 2002;
Völker et al., 2011) and complies with the higher frequency of observations
in experiments (Ricote et al., 1999). Furthermore, the difference |ϕ1 − ϕ2| is
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generally constant and independent of the grain orientation γ, except for
weakly misoriented grains γ ≈ 0◦. This can be explained by the transition
to low-energy monodomains instead of laminate patterns, as discussed
in Section 4.5.3. Note that, although a few domain structures with 180◦-
domain walls have been found among the examined grains, their number
is negligible in comparison to the predominant 90◦-domain walls.

The comparison of the volume fraction of domain 1 obtained by the
phase-field model (colored dots) and the simple analytical model (red
curve) as a function of the grain orientation γ∗ in Fig. 4.8(f) shows that,
although the analytical prediction captures the general trend of the phase-
field model reasonably well, individual grains can deviate considerably
from the average volume fraction at a certain orientation γ. This is ex-
plained by the simplifying assumptions of the analytical model, which
neglects all other energetic contributions besides the Landau potential,
and—more importantly—the assumption of periodic boundary conditions,
which implies an infinite grain or exact compatibility at grain boundaries.
The latter is generally implausible in a ceramic with finite-size grains and
grain-to-grain misorientations and instead requires domain structures for
compatibility between grains, which is discussed in the following.

4.5.5 Domain structures at grain boundaries

In an ideal scenario, the ferroelectric microstructure within a certain grain
(laminate or monodomain) is exactly compatible with the microstructure of
all neighboring grains. This demands a difference in the crystal orientation
∆γ between each pair of grains of exactly ∆γ = nπ/2 , n ∈ N (found by
solving the mechanical and electrostatic compatibility conditions (Shu &
Bhattacharya, 2001)). Since this coincides with the crystal symmetries of
the tetragonal material, any difference in grain orientation leads to incom-
patibility at the grain boundaries and therefore to local mechanical and
electric fields. Nevertheless, various experiments on tetragonal PZT (Cao &
Randall, 1996; Ivry et al., 2011; Marincel, Zhang, et al., 2015) have reported
a collective, correlated alignment of ferroelastic domain patterns across mul-
tiple grain boundaries—providing evidence that the existence of domain
patterns across grain boundaries is rather a compromise of sustaining a
low-energy laminate pattern in exchange for localized high-energy spots at
locations of incompatibility.
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To assess the impact of grain boundaries on the ferroelectric microstruc-
ture qualitatively, we show in Fig. 4.9 representative snapshots of the equilib-
rium domain pattern formation in bicrystals, which are poled in the positive
vertical direction and have five different misorientations ∆γ. For symmet-
rically misorientated tilt grain boundaries in Fig. 4.9(a)-(e), we observe
mostly disconnected laminar domains with triangular-shaped transition
structures at low grain misorientations ∆γ (highlighted in the magnification
in Fig. 4.9(a)). By contrast, the lamellar bands at high misorientations ∆γ are
generally correlated across the grain boundary with only a few wedged-like
transition structures. Note that the depicted domain structure adjacent to
the grain boundary for ∆γ = 25◦ in Fig. 4.9(a) shows a similar pattern
as observed in bright-field cross-section TEM of 24◦-tilted bicrystalline
epitaxial PZT (Marincel, Zhang, et al., 2015), although the electric field in
the experiment was applied in the out-of-plane direction. The highlighted
triangular-shaped flux-closure domain structures in the proximity of the
GB account for uncompensated electric fields due to the incompatibility at
the boundary to reduce the total energy of the material. They have been
reported in atomic-resolution TEM (Jia et al., 2011; McGilly et al., 2010) and
in mesoscale PFM (McQuaid et al., 2011). The emergence of such closure
domains is partially a consequence of the charge-free assumption, i.e., that
no mobile charge carriers are present within the material, which could
accumulate at locations of uncompensated electric fields, such as grain
boundaries.

Fig. 4.9(f)-(j) shows the other interesting case are asymmetrically misori-
ented grains, where the left grain is rotated by γ1 = −∆γ and the coordinate
system of the right grain is aligned with the electric field direction. While
the crystal on the right generally favors a monodomain configuration, the
rotated grain on the left is forced to form an energy-minimizing microstruc-
ture, which is incompatible at the grain boundary. This arrangement is
comparable to the situation at an austinite-martensite phase boundary in
shape-memory alloys, in which the low-symmetry martensite phase forms
a ferroelastic twin pattern that gradually refines towards the interface to
reduce the elastic strain energy due to the incompatibility at the interface
(cf. Fig. 1 in (Cui et al., 2006)). The microstructures of both materials in
the vicinity of a grain boundary are similar with the main difference that
in the depicted ferroelectric microstructures no refinement of the lamellar
bands is visible. Instead, triangular-shaped flux-closure domains emerge to
establish electrostatic compatibility at the interface. The domain structure at
the boundary is also important for the switching behavior under changing
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electric fields. Based on the computed microstructures in the proximity of
an asymmetrically misoriented bicrystal, we observe that in case of a large
lattice mismatch (∆γ ≈ 45◦), the 90◦ laminate in the left grain reverts its
polarization first and initiates 180◦-domain wall motion within the grain
on the right, see Fig. 4.9(g)-(i). By contrast, in case of a small lattice mis-
match, the right grain switches first, followed by 180◦-domain wall motion
towards the left grain, see Fig. 4.9(g,i). The complete switching behavior of
polycrystalline ferroelectrics is discussed next.

4.5.6 Non-equilibrium domain patterns and switching mechanism

To understand the role of mesoscale nucleation and domain wall motion
on the macroscale material response, we study the evolution of the homog-
enized polarization and strain as well as the underlying domain pattern
formation during polarization switching, which is illustrated in Fig. 4.10.
The macroscale material response is shown by the history of the average
strain ⟨ε22⟩ parallel to the applied field direction (red, dashed line) and
the average polarization ⟨p2/p0⟩ (blue, straight line) in Fig. 4.10(a). The
underlying evolution of the ferroelectric microstructure is shown by the po-
larization orientation ϕ(x, t) within the RVE in Fig. 4.10(b). These snapshots
were taken at the discrete times indicated in Fig. 4.10(a). Fig. 4.10(c) shows
a grain-scale schematic of the zoomed-in region highlighted in Fig. 4.10(b),
representing a typical grain of the polycrystalline RVE with 20 grains. We
explain the overall mechanism by briefly discussing the different stages of
switching, using Roman numbers (I)-(VI) for the different times as shown
in Fig. 4.10(a).

(I) The RVE is initially pre-poled in the negative vertical direction and
equilibrated. In this initial state, the ferroelectric microstructure shows pri-
marily 90◦-laminate structures, which is a results of energy relaxation (Bern-
hard Jaffe, 1971; Fousek & Janovec, 1969; Lines & Glass, 2001; Sapriel, 1975)
and has been observed in numerous experiments (Asada & Koyama, 2007;
Cao & Randall, 1996; Goo et al., 1981; Randall et al., 1987; Ricote et al., 1999;
Schmitt et al., 2007; Schönau et al., 2007; Woodward et al., 2005). In our
simulation, the lamellae are composed of a+, a−, and b− variants, which
typically continue across grain boundaries or form localized transition
layers to compensate for local stress or electric fields due to incompatibil-
ity (Dayal & Bhattacharya, 2007; Hubert & Schäfer, 2008). We refer to this
initial 90◦-laminate structure as the first laminate for the sake of readability.
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(II) As the applied electric field is slowly ramping up, the inverse piezo-
electric effect leads to a linear decrease in ⟨ε22⟩, accompanied by a nonlinear
contribution from the motion of the existing 90

◦-domain walls (Hall, 2001;
Pramanick et al., 2011; Trolier-McKinstry et al., 2006), the nucleation of new
rank-2 laminates (Snoeck et al., 1994; Z. Zhang et al., 2008), and due to
intergranular stresses (Hall et al., 2004). The newly emerged 90◦ laminate
in Fig. 4.10(c) with an a−b+ domain structure nucleates primarily at GBs or
other high-energy spots and grows longitudinally in a needle-like shape
from the top and bottom into the existing a+b− laminate of the grain, as
shown in Fig. 4.10(c). The longitudinal growth is energetically favored, since
it requires only ions at the needle tip to be displaced as opposed to lateral
growth, where all ions along the domain wall must be displaced, which
makes the latter mechanism geometrically more susceptible to domain wall
pinning (Snoeck et al., 1994).

(III)-(IV) Once fully established, the needles continue their longitudi-
nal expansion, until the needle tips reach the boundaries of the grain.
TEM experiments have shown that interactions of the needle tip with de-
fects (Snoeck et al., 1994) or other domain walls (Z. Zhang et al., 2008)
also leads to pinning, but the former effect is not considered here and
the latter is less often observed. The intersection of the a−b+ and a+b−

lamellae results in a rank-2 laminate (Tsou et al., 2011), forming an array of
polarization vortices. After the longitudinal growth stops, the second-order
laminate grows primarily in the lateral direction by moving its 90◦-domain
walls sideways, which is in agreement with experimental reports (Kim et al.,
2013; Snoeck et al., 1994) and theoretical models (Arlt, 1997). Although
we still observe occasional nucleation of new domains (since the electric
field is still increasing), it appears to be outweighed by 90◦-domain wall
motion. The latter mechanism is highly mobile, since only small elastic
forces are required (Arlt, 1997). The overall switching mechanism appears
as a 180◦-switching step, which does not deform the grain but only reverts
the polarization orientation (Arlt, 1997; Schultheiß et al., 2018).

(V) Shortly after the second-order laminate has grown across the whole
grain through domain wall motion, the first laminate slowly starts to vanish
by 90◦-domain wall motion. However, depending on the applied electric
field, the initial a+b−-lamellae must not necessarily be extinguished com-
pletely. Nevertheless, as more grains switch their polarization completely
by the motion of ferroelastic domain walls (or become pinned), the rate
of change of the macroscopic polarization and strain decreases steadily,
such that ⟨p⟩ and ⟨ε22⟩ approach their saturation values at time T = 0.5
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asymptotically or in a creep-like manner (Fett & Thun, 1998; Guillon et al.,
2004; Viola et al., 2014).

(VI) During times T/t ∈ (0.5, 1.0), the electric field is linearly ramped
down, which leads to an almost linear decrease in the strain ⟨ε22⟩—governed
by the inverse piezoelectric effect. After complete removal of the applied
external field T/t ≥ 1.0, we observe equilibration of the ferroelectric mi-
crostructure through local refinement of domain walls, which straightens
the interfaces to comply with the compatibility conditions (Shu & Bhat-
tacharya, 2001). In addition, transition layers (wedge-shaped structures)
form at grain boundaries with a strong orientation mismatch to locally
compensate for incompatibility (Dayal & Bhattacharya, 2007; Hubert &
Schäfer, 2008), while we also observe the annihilation of small domains and
slight rearrangements of the domain patterns towards energy-minimizing
equilibrium configurations.

4.5.6.1 Influence of the applied electric field rate

As ferroelectric switching is a kinetic process, which depends on the rate
at which the electric field is applied (Kannan & Kochmann, 2022; Kannan
et al., 2022; Schultheiß et al., 2019a), we also simulated the influence of rate-
dependent loading on the macro- and mesoscale response of PZT ceramics.
A triangular-shaped electric field pulse with varying pulse widths T and
constant maximum field e2 = 8.0 × 107 V/m, resulting in rates ė2 = {5.0 ×
106, 5.0 × 107}V/m · s, is applied to a polycrystalline RVE, comprised of
320 grains. The homogenized polarization response is extracted along with
snapshots of the ferroelectric microstructure during switching. Fig. 4.11(a)
illustrates the impact of the electric field rates ė2 = {5× 106, 5× 107}V/m · s
on the average polarization ⟨p2/p0⟩ and the average densities of 90◦- and
180◦-domain walls (⟨Ω90⟩ and ⟨Ω180⟩, respectively), and the total amount of
domain walls (⟨ΩDWs⟩). At the lower rate, we observe a prompt polarization
response with an approximately linear increase in domain wall density. The
higher rate delays polarization switching but leads to a higher peak density
of domain walls (which rises in a nonlinear fashion close to time t/T = 0.5).
This difference in the domain wall density becomes apparent in the shown
snapshots of the ferroelectric domain microstructure in Fig. 4.11(c,d): fewer
and larger domains are visible at the slow rate (Fig. 4.11(c)), whereas denser
and finer domains are observed at the high rate (Fig. 4.11(d)). This effect
is traced back to the competition between nucleation and growth, which
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(c) (d)

(c) (d)

(a) (b)

Figure 4.11: Influence of the electric field rate ė on the triangular-pulse response,
showing (a) the average polarization ⟨p2/p0⟩ and average domain wall densities
of 90◦ walls ⟨Ω90⟩ (dashed line), 180◦ walls ⟨Ω180⟩ (dashed-doted line), and the
total amount of domain walls ⟨ΩDWs⟩ (straight line) vs. the normalized time t/T,
where T denotes the time period of the triangular pulse. Line colors indicate the
electric field rates ė = {5 × 106, 5 × 107}V/m · s for an electric field magnitude
e2 = 8.0 × 107 V/m. (b) Switching statistics showing the probability density
function vs. minimal length of the polarization vector during polarization reversal,
mint |p(t)|. Snapshots of representative ferroelectric domain microstructures,
extracted at an average polarization ⟨p2/p0⟩ = 0 for the two rates, are depicted
in (c) and (d).
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influences the appearance of the domain patterns by the following two
mechanisms.

First, because of the linear rise of the electric field in a triangular pulse,
the electric field magnitude at slow electric field rates increases slowly, such
that switching occurs primarily due to the growth of existing, incompletely
switched domains at GBs or grain triple junctions. The presence of small
driving forces results in quasi-equilibrium conditions with local equilibra-
tion, evident by the straight domain walls. Nucleation of new domains,
by thermally-activated barrier-crossing events, is less likely at low electric
fields.

Second, with increasing rates the electric field magnitude increases faster,
which lowers the energy barriers in the polarization energy landscape.
This, in turn, allows thermal fluctuations to escape their disadvantageous
polarization states to reach lower-energy polarization states more frequently.
As a result, domain wall motion becomes less dominant during polarization
switching, as it is outweighed by the increase in nucleation of new domains.
The impact of nucleation is apparent in the ferroelectric domain patterns,
showing more detailed domain structures with rough and curvy interfaces.
Higher rates favor the formation of 180◦-domain walls, which is visible in
the considerable increase in the 180◦-domain wall density at the higher rate
(Fig. 4.11(a)). 90◦-domain walls evolve in a similar fashion at both rates
(except for the surge in 90◦-domain walls during the peak switching activity
close to t/T = 0.5).

To assess the predominant switching type, i.e., rotation of the polariza-
tion vector vs. stretch of the polarization vector, known as 90◦-switching vs.
180◦-switching, we compute the change in the polarization norm |p| of each
unit cell during polarization switching. This is shown in Fig. 4.11(b), where
the probability density function of the smallest polarization length |p| is
depicted. For both rates, the polarization norm is generally centered be-
tween |p| ≈ 0.7 − 0.8 and exhibits only a minor stretch; hence, switching
occurs primarily by two consecutive 90

◦-rotations. However, statistically
more 180◦-switching is observed at the higher rate (Fig. 4.11(b)), since such
high-energy switching trajectories become more accessible with increasing
electric fields. We point out that the reported rate dependence is a transient
effect, which affects the ferroelectric microstructure mainly during polariza-
tion reversal but does not alter the equilibrium microstructure significantly
(as seen in the close to identical final polarization states and domain wall
densities).
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4.6 conclusion

We have presented a high-resolution phase-field study of the complex
domain pattern formation in tetragonal PZT ceramics, discussed compu-
tational techniques for automatic domain wall identification and tracking,
and demonstrated their usability in comparison with analytical models and
experimental reports. These are our main conclusions:

First, we demonstrated that the finite-temperature phase-field framework
predicts realistic ferroelectric microstructures comprised of the typical lamel-
lar bands (Arlt, 1990) stretching across multiple grains (Ivry et al., 2011),
while also including more intricate domain structures such as wedged-
shaped transition layers in the vicinity of grain boundaries (for reasons of
compatibility), which have been observed in ferroelectric (Jia et al., 2011;
McQuaid et al., 2011), ferromagnetic (Özdemir et al., 1995) and ferroelastic
materials (Cui et al., 2006).

Second, while the phase-field setting offers a convenient way to resolve
complex networks of domains in polycrystals, it makes it challenging to
keep track of the number and type of interfaces present in the material.
Therefore, we presented a new approach (based on the characteristics of
the respective minimum-energy states) to efficiently and reliably identify
different types of domain walls and trace them during polarization reversal
in an automatic fashion, which extends the capability of the diffuse-interface
framework.

Third, a large-scale study on the impact of domain pattern formation on
the effective material properties in lead-based ceramics revealed distinct
correlations between the grain orientation and the grain-averaged polar-
ization, strain, and domain density—which agree well with experimental
observations based on x-ray and neutron diffraction measurements (Hall
et al., 2004; Hall et al., 2005; Jones et al., 2006; Jones et al., 2007; Jones et al.,
2005; Pramanick et al., 2011).

Fourth, a simple analytical model based on minimizing the electric en-
thalpy yields good estimates for judging whether a grain will comprise a
single domain (monodomain) or a lamellar band (laminate) structure and,
for each case, predicts the average polarization and strain within the grain
as a function of the grain orientation.

Fifth, by examining the domain wall density per grain in polycrystals,
we showed that the grain-averaged lateral polarization and the polarization
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orientation are generally uncorrelated, while—in the special case of mon-
odomain grains—those admit strong correlations with the grain orientation
(in agreement with the analytical model).

Finally, polarization reversal during switching in a pre-poled polycrystal-
line RVE (with existing lamellar bands) occurs in two steps: (1) the nucle-
ation of a new 90◦ laminate, whose needle domains grow orthogonal to the
existing 90◦ laminate and jointly form a rank-2 laminate (vortex structure).
(2) Once the rank-2 laminate is fully established, polarization reversal in
the existing laminate is achieved through domain wall motion of the new
90◦ laminate, which is energetically favored by the applied electric field.



5
C O N C L U S I O N A N D O U T L O O K

All models are wrong, but some are useful.
— George E. P. Box (Box, 1979)

In this thesis, the effect of temperature on the ferroelectric domain pattern
formation and evolution in porous single-crystalline and dense polycrystal-
line lead-based ferroelectric materials has been investigated by using a
diffuse-interface approach. The developed finite-temperature phase-field
model provided insight into mesoscale interactions, accommodated by do-
main wall motion and pinning at defects and nucleation of new domains at
localized high-energy spots, to advance our current understanding of the
underlying mechanisms driving the macroscopic switching kinetics.

5.1 finite-temperature ferroelectric constitutive model

A new finite-temperature constitutive model for ferroelectric ceramics has
been presented that accounts for the temperature dependence of the DFT-
informed polarization potential as well as for the effect of atomic-level
thermal lattice vibrations at the mesoscale by a thermalized stochastic noise
term in the well-established Allen-Cahn equation. This model demonstrated
the salient features of finite-temperature ferroelectric switching in a promis-
ing fashion. Several original temperature-driven switching mechanisms
were discussed, such as thermally activated nucleation of needle-shaped
domains and branching of existing domains, which qualify to play a key
role in the kinetics of polarization reversal at subcoercive electric fields.

The newly established stochastic noise term in the evolution equation
of polarization stimulates the formation of realistic domain patterns, com-
prised of networks of slender, needle-shaped domains forming intricate
laminate patterns, such as the well-known herringbone and vortex struc-
tures. This is accomplished primarily by the following two mechanisms.
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First, thermal fluctuations randomly perturb the evolution of polarization
which breaks the symmetry of the Landau potential, such that high-energy
180◦-switching trajectories become improbable, whereas low-energy switch-
ing paths, realized by two consecutive 90◦-rotations, are favored. The com-
bination of primarily 90◦-domain patterns and the motion of highly mobile
90

◦-domain walls at the mesoscale results in an increase in the effective
switching kinetics at the macroscale.

Second, depending on the temperature, thermal noise can induce branch-
ing of existing domains and nucleation of new domains. Nucleation occurs
naturally, as a consequence of thermally activated barrier-crossing events,
without requiring an additional nucleation model and even in perfect,
defect-free single crystals. These are unique features of our model. While at
high temperatures more detailed and finer domains appear, at low temper-
atures fewer but larger domains are visible. This can be traced back to the
competition between nucleation and growth which plays a key role in the
effective switching kinetics.

The stochastic noise in this model accounts for thermal lattice vibrations.
Alternatively, one could reinterpret the noise term as fluctuations caused
by spatial disorder such as lead and oxygen vacancies, impurities, and any
combined effects, cf. (Bauer et al., 2022; Glinchuk & Farhi, 1996; Pirc & Blinc,
1999; S. Wang et al., 2016) or fluctuations in the local electric field. Further-
more, by utilizing the primitive unit cell of the crystal lattice (known from
DFT calculations) as the normalization volume of the non-convex energy,
the noise amplitude is intrinsically connected to material properties with-
out any fitting parameter. While this comes at the cost of being restricted
to a subnanometers spatial resolution in the numerical discretization, it
also ensures realistic domain wall thicknesses in simulations, which is not
possible at larger scales.

5.2 effect of temperature on domain wall–pore interac-
tions in pzt

In Chapter 3, the combined effect of porosity and temperature was investi-
gated by leveraging the established finite-temperature phase-field model
on porous ferroelectric materials. To this end, a circular pore was modeled,
and its impact on an approaching ferroelectric domain wall was studied.
The observed mechanisms of domain wall pinning and depinning on a pore
were discussed, and the effect of temperature on the (depinning) electric
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field required to unpin 180◦-domain walls from a periodic array of pores
was reported, for various pore sizes and concentrations. Results indicate
that larger pore sizes and densities reduce the domain wall kinetics, while
temperature mitigates the pinning effect of pores, leading to an increase in
the mobility of domain walls, which is generally in good agreement with
experimental reports and underlines the importance of finite-temperature
effects on the effective switching kinetics.

Numerical simulations of the interaction of a 180
◦-domain wall with

circular pores qualitatively captured several domain-wall pinning effects,
which have been reported in various experiments. One such experiment
observed bowing of a domain wall around a void caused by induced
electric fields in the vicinity of the pore. Other experiments reported a
reduction of the effective remanent polarization for increasing porosity,
which is reflected by our predicted increase of domain wall pinning for
more densely packed pores. A third experiment revealed mesoscale pinning
and subsequent depinning of domain wall motion at pores, whose kinetics
at the macroscale is reported as stick-slip behavior, which is typical for the
large-defect regime.

Although the emphasis was placed on pore sizes larger than the domain
wall thickness (large-defect regime), a recent phase-field study used our
finite-temperature constitutive model and was conducted in the small-defect
regime, showed that the creep-like domain wall motion at low electric fields
can be traced back to pinning at spatial, quenched disorder, while thermal
noise mitigates pinning on point defects (Bauer et al., 2022). This report on
depinning at the small-scale defects, in combination with our findings at
the large-defect regime, supports the conclusion that the length scale of the
heterogeneity plays a decisive role in the pinning behavior. Furthermore,
the aforementioned study confirmed that the effect of thermal noise leads
generally to an increase in the mobility of domain walls in non-defect-free
materials.

However, the study on domain wall-pore interactions, presented in Chap-
ter 3, also revealed the limitations of our model. In particular, the simplifi-
cation to 2D leads to an overestimation of the electric field induced by the
pore of 33% compared to a spherical pore in 3D. Furthermore, the focus was
placed on 180

◦-domain walls and excluded pinning of 90
◦-domain walls,

which are expected to have a lower depinning field due to the difference in
the energy barrier. Moreover, the influence of the strain mismatch between
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the pore and the surrounding ferroelectric has not been studied thoroughly,
since isotropic elasticity is assumed.

5.3 domain pattern formation in tetragonal ceramics

Major improvements in the parallel efficiency of the FFT-based numerical
implementation enabled us to study the intricate domain pattern formation
and subsequent evolution in PZT ceramics by performing high-resolution
simulations of micron-sized polycrystals. In addition, new computational
techniques to automatically identify and track different types of domain
walls while the ferroelectric microstructure is evolving were developed. As
a result, distinct corrections of the grain-averaged polarization, strain, and
density of domains as a function of the crystal orientation were obtained
by examining the equilibrium domain structures of a statistically represen-
tative number of grain samples, which agree well with x-ray and neutron
diffraction experiments. Furthermore, these correlations can be traced back
analytically to two predominant types of domain arrangements, the mon-
odomain and laminate structure, by minimizing the polarization enthalpy
density in a sharp-interface setting. Moreover, the observed switching mech-
anism of the ferroelectric microstructure in polycrystals was detailed based
on the homogenized polarization and strain responses and in close compar-
ison with experimental reports, to shine new light on the complexities of
domain pattern evolution in tetragonal PZT ceramics.

Our model predicts the typical features of ferroelectric microstructure
in polycrystalline PZT, such as the characteristic striped domain patterns
expanding across multiple grains and the more complex triangular-shaped
transition structures in the proximity of grain boundaries. Furthermore, the
average width of the emerged lamellar bands is in reasonable agreement
with the theoretically predicted Kittel-Mitsui-Furuichi-Roitburd’s square-
root law, when plotted as a function of the grain size. Moreover, the emerged
domain structures in the vicinity of grain boundaries agree qualitatively
with the wedged-shaped domains observed in micrographs, but they could
not be validated quantitatively, since high-resolution TEM measurements of
transition layers are hard to find. In conclusion, the finite-temperature phase-
field model yields a realistic prediction of the domain pattern formation in
tetragonal ceramics, for which convergence of its statistics to the macroscale
limit was demonstrated.
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Due to the influence of domain walls on the macroscale properties, a new
computational technique was discussed to efficiently identify and track
different domain wall types in phase-field simulations, which is non-trivial
in systems exhibiting random noise. While the presented procedure has
been calibrated and benchmarked for the specific domain wall properties of
tetragonal PZT, different crystal systems can also be considered by appro-
priate adjustments of the interface measures according to their respective
symmetry groups and interface properties. In general, this extends the
capability of phase-field models to provide valuable information on the
types and densities of interfaces present in the RVE to determine their role
in the effective material behavior.

Analyzing the equilibrium grain statistics of the emerged ferroelectric
domain pattern formation of more-than-12,000-grain samples disclosed
clear correlations between the grain orientation and the grain-averaged
polarization, strain, and domain density, which are in agreement with x-ray
and neutron diffraction experiments. Furthermore, depending on the local
grain orientation, two types of domain structures were identified and their
emergence was linked as a result of minimizing the electric enthalpy density
with respect to their crystal orientation, using a simple analytical model of
a 90◦ laminate and a monodomain grain.

5.4 outlook

In this thesis, several original techniques were presented to assess the
kinetics of polarization switching in porous and polycrystalline ferroelectric
at finite temperatures. Of course, a series of unanswered questions has
remained, which provide ideas for potential future work.

Regarding theoretical and numerical methods, the finite-temperature
constitutive model leaves room for improvement in several respects. First,
it allows solely for isothermal conditions within the material and considers
only the temperature dependence of the polarization energy density. An
extension to account for further temperature effects, such as temperature-
dependence of elasticity and other physical effects, e.g., thermal expansion,
could be implemented analogously into the existing framework, although
reliable temperature-dependent material inputs for lead-based ferroelectrics
are rare. Nevertheless, this would enhance the accuracy of stress predictions
significantly, especially in regions with heterogeneous material properties,
e.g., grain boundaries, voids, and impurities. In contrast, heterogeneous
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temperature fields are not admissible in the current framework and require
an extension of the governing equations to account for heat diffusion and
dissipation, subject to the second law of thermodynamics (Woldman &
Landis, 2016, 2019). This could potentially open new temperature-related
research directions, such as domain wall-induced self-heating, which has
been measured recently in nanoparticle-assisted Raman thermometry ex-
periments (Lundh et al., 2020).

Second, iterative solution schemes, such as the Richardson fixed-point
iteration (2.5.5), solve the balance of linear momentum in a heterogeneous
material in an iterative fashion and are therefore computationally expen-
sive; hence, the elastic anisotropy is often neglected. While more sophis-
ticated techniques, e.g., based on Newton-Krylov methods (Kabel et al.,
2014) and Augmented Lagrangian (AL) schemes (Michel et al., 2000), of-
fer some advantages for large deformations and high-contrast problems,
they also require fixed-point iterations to compute the unknown strain
field, which renders the Fourier-based solution strategy disproportionately
time-consuming. Alternatively, recent developments and applications of
neural network-based methods in mechanics, e.g., physics-informed neural
networks (PINNs) that solve supervised learning tasks while respecting
any given laws of physics (Raissi et al., 2019) and Fourier neural operators
that learn mappings between functional spaces (Z. Li et al., 2020), allow for
efficient learning of the stress-strain relation to replace iterative solution
schemes in the linear momentum balance. Such models present a promising
improvement as ML-based accelerators in current spectral homogenization
schemes in heterogeneous materials, in semiconducting ferroelectrics to
solve Gauss’ law with space charges, and as a potential surrogate model of
ferroelectricity.

Equally important is the experimental validation of the simulated do-
main pattern formations and detailed switching mechanisms for providing
reliable model predictions. First, to assess the kinetics of domain evolu-
tion at the mesoscale, in-situ imagining during polarization reversal can be
performed, where the domain structure is spatially resolved, e.g., in high-
speed PLM and SHG measurements. Such experiments in a temperature-
controlled environment are underway in our lab to capture the temperature-
and electric-field-rate-dependent kinetics of polarization switching and
their impact on the ferroelectric microstructure.

Second, a validation of the theoretically and numerically predicted de-
pendence of monodomain and lamellar domain structures on the grain
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orientation would further foster trust in our models. Therefore, in-house,
ex-situ SEM experiments on poled PZT ceramics obtaining the grain ori-
entation and domain structure of each grain are conducted in our lab, to
bring clarity in this regard. Furthermore, combined EBSD and PFM mea-
surements, providing grain and polarization orientation, could validate
the predicted correlation functions of the grain-averaged polarization and
domain volume fractions in the polycrystals.

The presented finite-temperature model to predict the domain evolution
has broad applications in other fields of science, but naturally implies cer-
tain adaptations. As a first example, thin films, whose material behavior
is determined by surface effects, are not realizable with the Fourier-based
spectral solution scheme and require finite element methods. Second, multi-
axial polycrystals represent a fully 3D problem imposing severe challenges
in terms of the costs of computation and data storage. Third, ferroelec-
tric semiconductors exhibit space-charge and oxygen-defect migrations
demanding additional balance and evolution laws. Finally, actuators for
micro-robotics applications are subject to large deformations and rotations
that require an extension of the constitutive model to account for finite
strain theory. Furthermore, application in related materials would also
be interesting, e.g., in shape-memory alloys to investigate the formation
of ferroelastic domains at the austenite-martensite phase boundaries, in
relaxor ferroelectrics to mimic vibrations of interphase boundaries of polar
regions, and in multiferroics whose numerous physical couplings would
provide insight into interference and crosstalk of multiple pertubed fields.
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