
ETH Library

On the Cryptographic Fragility of
the Telegram Ecosystem

Conference Paper

Author(s):
von Arx, Theo ; Paterson, Kenneth G.

Publication date:
2023-07-10

Permanent link:
https://doi.org/10.3929/ethz-b-000620789

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1145/3579856.3582811

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-3641-8516
https://doi.org/10.3929/ethz-b-000620789
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1145/3579856.3582811
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

On the Cryptographic Fragility of the Telegram Ecosystem
Theo von Arx

ETH Zurich
Switzerland

theo.vonarx@inf.ethz.ch

Kenneth G. Paterson
ETH Zurich
Switzerland

kenny.paterson@inf.ethz.ch

ABSTRACT
Telegram is a popular messenger with more than 550 million active
users per month and with a large ecosystem of different clients. The
wide adoption of Telegram by protestors relying on private and
secure messaging provides motivation for developing a profound
understanding of its cryptographic design and how this influences
its security properties. Telegram has its own bespoke transport
layer security protocol, MTProto 2.0. This protocol was recently
subjected to a detailed study by Albrecht et al. (IEEE S&P 2022).
They gave attacks on the protocol and its implementations, along
with a security proof for a modified version of the protocol. We
complement that study by analysing a range of third-party client
implementations of MTProto 2.0. We report practical replay attacks
for the Pyrogram, Telethon and GramJS clients, and a more theoret-
ical timing attack against the MadelineProto client. We show how
vulnerable third-party clients can affect the security of the entire
ecosystem, including official clients. Our analysis reveals that many
third-party clients fail to securely implement MTProto 2.0. We dis-
cuss the reasons for these failures, focussing on complications in the
design of MTProto 2.0 that lead developers to omit security-critical
features or to implement the protocol in an insecure manner. We
also discuss changes that could be made to MTProto 2.0 to rem-
edy this situation. Overall, our work highlights the cryptographic
fragility of the Telegram ecosystem.

1 INTRODUCTION
Messenger services have become an indispensable tool to billions
of people. Telegram is one of the most popular messenger services:
Telegram reached 500M monthly active users in January 2021 [1]
and 550M by October 2021 [2], making it the fifth most popular mes-
senger service globally. Telegram is not only popular for everyday
messaging, but is also widely used by activists and demonstrators
for group organization [3]: protestors favour Telegram over other
messenger apps since Telegram allows both small private as well
as large public group chats. Activists have further perceived Tele-
gram’s security to be stronger than that of any other messenger.
Telegram does not require its users to register with a phone number,
and therefore provides enhanced privacy compared to, for example,
Signal and WhatsApp, which do require such registration. In short,
Telegram’s popularity among potentially vulnerable and sensitive
democratic actors shows that it is crucial to understand its security.

Of particular importance in this endeavour is Telegram’s trans-
port protocol MTProto. This protocol acts as the equivalent of the
TLS record protocol and is the only security mechanism protecting
messages in transit between Telegram servers and clients. Prior

ACM ASIACCS 2023, 2023, Melbourne, Australia
2023.

work has shown multiple attacks against an earlier version of MT-
Proto [4, 5]. In a recent paper, Albrecht et al. [6] presented the
first in-depth analysis of MTProto 2.0. Their work had two com-
plementary aspects. First they showed four different attacks, two
of them at the protocol specification level, and two against spe-
cific MTProto 2.0 implementations in official clients. Second, they
provided a cryptographic proof of security of a slightly modified
version of MTProto 2.0, albeit under previously unstudied crypto-
graphic assumptions. Altogether, [6] has substantially increased
our understanding of the security of the MTProto 2.0 protocol.

As opposed to other chat platforms such asWhatsApp, the source
code of Telegram’s official clients is publicly available (though
the server source code is not). Furthermore, Telegram allows and
encourages developers to implement and deploy custom clients:
the Telegram web pages provide detailed information about the
server APIs [7], the MTProto 2.0 protocol [8], and the custom
schema used [9]. Consequently, there is a flourishing implementa-
tion ecosystem around Telegram. The number of available clients
and libraries as well as their popularity is hard to estimate, but
Telegram already lists 13 clients on the official webpage [10].

Another vital part of the Telegram ecosystem are bots which
can interact with other services such as email, YouTube, payments,
and games. Therefore, Telegram cannot be regarded as an isolated
platform with the sole purpose of exchanging text messages. Rather,
it is developing towards being a system that connects multiple, dif-
ferent services and offers users a simple way of interaction. Clearly,
this further underlines the importance of having a correctly imple-
mented, secure protocol at its core.

The vulnerabilities in MTProto 2.0 in various official clients
highlighted in [6] suggest that third-party implementations of MT-
Proto 2.0 might also contain security flaws. It is plausible that these
flaws might be more severe than those presented in [6], given the
unregulated nature of the ecosystem and the well-documented
propensity of non-expert developers to make mistakes when imple-
menting complex cryptographic protocols. Moreover, the diverse
and complex collection of available Telegram clients and libraries
potentially opens new attack vectors: vulnerable third-party clients
could be used to harm users of official clients. Consequently, the
ease with which secure implementations of MTProto 2.0 can be
built is essential to the security of the entire ecosystem.

1.1 Contributions
In this paper, we analyse the security of the Telegram client ecosys-
tem, focussing on different client implementations of MTProto 2.0.
Specifically, we present multiple attacks against third-party Tele-
gram client implementations of MTProto 2.0. We show how vul-
nerabilities in third-party clients affect the security of the entire
ecosystem. While the attacks are not particularly novel from a
technical perspective, their presence is surprising. We explain how

ACM ASIACCS 2023, 2023, Melbourne, Australia Theo von Arx and Kenneth G. Paterson

the design choices in MTProto 2.0 make implementations prone to
errors and open these implementations up to known attack vectors.

Our first contribution, presented in Section 4, is a replay attack
against two Python libraries (Pyrogram, Telethon) and a JavaScript
library (GramJS). The vulnerabilities arise from those implementa-
tions failing to implement a set of checks on the message ID field
that are required in the Telegram documentation for client devel-
opers. These checks are designed to ensure that every message is
processed exactly once. We describe a practical replay attack for
exemplary clients in a real-world setting. The vulnerable Python
libraries Pyrogram and Telethon are quite popular: by the time of
writing they have 2.4K and 6.2K stars on GitHub, respectively, and
are, according to GitHub, used by 39.2K and 25.9K other projects.
While GramJS is less popular (379 stars), it is used in an official
client (Telegram Web Z). Due to its use of WebSockets over TLS
1.3, Telegram Web Z was not vulnerable to the replay attack.

As a second contribution, we present in Section 5 a timing side-
channel attack against MTProto 2.0 decryption in the PHP library
MadelineProto. The attack is similar to the one described in [6], but
differs in its details to match our specific target. It exploits the way
in which the encrypt-and-MAC scheme employed by MTProto 2.0
is implemented in MadelineProto: the code does not check the
integrity of the plaintext directly after decryption, but first performs
sanity checks on the unauthenticated plaintext and only then checks
integrity. Notably, this approach ignores advice aimed at developers
in the Telegram security guidelines [11].

Depending on the input, the message processing time differs
significantly. This allows an attacker to learn some parts of the
plaintext. We evaluate the timing differences that arise, implement
the attack in a synthetic setting, and evaluate the attack’s limita-
tions. We consider the attack to be mostly of theoretical interest:
for an arbitrary target block<8 , the attacker has to know the previ-
ous plaintext block<8−1 as well as<1 which contains the 64-bit
values server_salt and session_id. As noted in [6], it is indicated
in the Telegram protocol description [12] that these values are not
intended to be treated as sensitive values, and it is possible they
could be revealed in future implementations. On the other hand,
the attack in [6] that enables the attacker to learn them by attacking
the MTProto 2.0 key exchange protocol is likely not to be possible
any longer due to server-side changes made by Telegram.

We discuss how these vulnerabilities in third-party clients affect
the security of the entire Telegram ecosystem: security issues arise
because of the flexibility with which Telegram can be used, and
these issues go beyond pure messaging applications.

As a third contribution, in Section 6 we address a more funda-
mental question: how can security be guaranteed in a proliferating
ecosystem? This question is prompted by the vulnerabilities in sev-
eral official clients noted in [6] and the new ones we report here.
The replay and reordering attacks are examples of fundamental, yet
easy-to-defend-against attacks on a protocol level. The reported is-
sues do therefore collectively indicate that Telegram’s MTProto 2.0
protocol is hard to implement in a secure manner. Specifically, we
highlight two design choices that hinder secure implementation:
the use of encrypt-and-MAC and the complex checks on the mes-
sage ID field. We suggest how to simplify these design choices and
lower the implementation hurdles for developers.

Telegram presents yet another example of the challenges of
ensuring security in an open ecosystem. In this sense, the situation
is broadly analogous to what we have seen over the last decade
in the spheres of mobile banking [13], SSL/TLS [14–16], certificate
validation [17], and (at a much lower level) primality testing [18].
Indeed, the problem of building a secure communications channel
is an ancient one that is by now well-understood at a theoretical
level by the research community. Yet it is a largely open problem
in the cryptographic community – interpreted broadly, to include
both researchers and developers – to find ways of ensuring that
this theoretical understanding is properly translated into practice.
The problems arise at multiple levels: at the lowest level of ensuring
that strong cryptographic algorithms are used, to the middle level
of ensuring that these algorithms are combined in suitable ways to
build more complex systems like secure channels, to the highest
level, of ensuring that a protocol specification is simple enough that
it can be securely implemented in an ecosystem populated with
developers without cryptographic expertise.

1.2 Ethical Principles
We experimentally verified the feasibility of the replay attack using
Telegram’s test servers. We have neither interacted with Telegram’s
production servers nor were any users involved in our experiments.

We informed the maintainers of the vulnerable libraries about
our findings in the week of 20 November 2021 by e-mail, proposing
a standard 90-day disclosure window. In each case, as well as ex-
plaining the discovered vulnerabilities, we also recommended fixes
and highlighted the missing checks.

MadelineProto’s developer informed us that as of version 6.0.118
the timing side-channel vulnerability was fixed. Shortly after the
release 6.0.118, MadelineProto rolled out the major update 7.0 which
is declared mandatory for all MadelineProto users.

The maintainer of GramJS fixed the replay vulnerability inver-
sion 1.11.1, but without giving any notice of the issue to users of
GramJS. We also informed Telegram’s security team about the vul-
nerability in GramJS, since it is used in the official client Telegram
Web Z. We were informed that Telegram Web Z uses the latest ver-
sion of GramJS including the fix for the vulnerability we disclosed.
Telegram awarded a bug bounty.

The maintainer of Telethon confirmed receipt of our disclosure
e-mail. Since the vulnerability was not fixed by the end of the 90-
day disclosure window, we offered our help in another e-mail and
informed the maintainer that we would publicly disclose the vulner-
ability. As we did not receive an answer, we filed a public GitHub
issue in which we described the attack. At the time of writing, the
issue has been partially addressed but remains open [19].

The maintainer of Pyrogram deployed the security fixes in ver-
sion 1.3. The vulnerability is mentioned in the release notes and all
users are strongly encouraged to update.

During our research, we analysed six more clients and libraries
for similar vulnerabilities: Kotatogram-Desktop, Nicegram, Tele-
gram React, Telegram Web K, Telegram Web Z, Telegram-FOSS,
and Unigram. However, we did not find any vulnerabilities in these
clients.

On the Cryptographic Fragility of the Telegram Ecosystem ACM ASIACCS 2023, 2023, Melbourne, Australia

�
−1

<1

21

�
−1

<2

22

�+2

�+<

· · · · · · �
−1

<=

2=

Figure 1: IGE decryption with 20 = �+2 and<0 = �+< .

2 PRELIMINARIES
We closely follow the conventions and definitions of [6], but remov-
ing complexity that is unnecessary for our presentation.

For any string G ∈ {0, 1}★, let |G | denotes its bit-length, G [8]
denote its 8-th bit for 0 ≤ 8 < |G |, and G [0 : 1] = G [0] ...G [1 − 1]
for 0 ≤ 0 < 1 ≤ |G |. Furthermore, let G [0 :] = G [0 : |G |] and
G [: 1] = G [0 : 1]. For two strings G,~ ∈ {0, 1}★, we define G | |~ as
their concatenation. In algorithms, let G ← E denote the assignment
of the value E to a variable G .

2.1 IGE block cipher mode of operation
Let E : {0, 1}: × {0, 1}1 → {0, 1}1 be a block cipher with :-bit
key and 1-bit block. We write � (%) to denote the block cipher
operation on 1-bit plaintext block % with :-bit key . Let the In-
finite Garble Extension (IGE) mode of operation be defined with
encryption and decryption as in Algorithms 1 and 2, respectively. A
visualization of the decryption can be seen in Fig. 1. The inputs to
the algorithms are the secret key , the initialization vectors (IVs)
<0 and 20, and the plaintext<, respectively the ciphertext 2 .

We require that the plaintext < and the ciphertext 2 have a
size divisible by the block length 1. For a bit string G we write
G = G1 | |...| |G= such that ∀8 |G8 | = 1 to indicate the different blocks
of G . Here, we implicitly set = =

|G |
1

.

Algorithm 1 IGE[E] .Enc(,<0, 20,<)
1: for 8 = 1, ..., = do
2: 28 ← � (<8 ⊕ 28−1) ⊕<8−1
3: return 21 | |...| |2=

Algorithm 2 IGE[E] .Dec(,<0, 20, 2)
1: for 8 = 1, ..., = do
2: <8 ← �−1

(28 ⊕<8−1) ⊕ 28−1

3: return<1 | |...| |<=

We further define the AES-256-IGE symmetric encryption: we
let E be the Advanced Encryption Standard (AES) block cipher with

block length1 = 128 and key length : = 256 as defined in [20].Then
let AES-256-IGE describe the symmetric encryption and decryption
as defined in Algorithms 1 and 2.

2.2 Attack scenario and targets
For all of our attacks, we consider the active person-in-the-middle
(PitM) scenario: the attacker is able to arbitrarily drop, reorder
and inject TCP messages. The attacker only sees the encrypted
MTProto 2.0 packets but can compose arbitrary (potentially invalid)
ciphertexts and send those to the client.

This scenario is indeed realistic: first, TCP does not provide any
security guarantees against malicious modification of TCP packets.
Second, the adversary can easily achieve become a PitM, e.g., by
seducing victims to use a malicious Wi-Fi access point [21].

The attacker’s goal is twofold: for the replay attack in Section 4,
the attacker wants to alter the meaning of a conversation for at least
one participant. For the timing side-channel attack in Section 5, the
attacker’s goal is to learn some bits of the target plaintext.

We selected to inspect the most popular clients and libraries (cf.
Tables 1 and 2) for the mentioned vulnerabilities. The analysis was
done by manually looking at the source code and by exploiting
found vulnerabilities in a simulated environment.

Table 1: Analysed clients. “F” denotes the number of stars on
GitHub and is a rough indicator for the popularity. Clients
marked with “*” are officially supported by Telegram.

Name F Upstream Library

Kotatogram-Desktop 542 Telegram Desktop -
Nicegram 297 Telegram-iOS -
Telegram React 1.8K - TDLib
Telegram Web K* 449 - -
Telegram Web Z* 1.1K - GramJS
Telegram-FOSS 1.6K Telegram (Android) -
Unigram 2K - TDLib

Table 2: Analysed libraries. “F” denotes the number of stars
on GitHub and is a rough indicator of the popularity. “Used
by” indicates the number of projects on GitHub which de-
pend on the library. For TDLib this number is not available.
The only official library (marked with “*”) is TDLib.

Name F Used by Language

GramJS 379 580 JavaScript
MadelineProto 1.9K 167 PHP
Pyrogram 2.4K 39.2K Python
TDLib* 4.5k - C++
Telethon 6.2K 25.9K Python

ACM ASIACCS 2023, 2023, Melbourne, Australia Theo von Arx and Kenneth G. Paterson

3 DESCRIPTION OF THE SYMMETRIC PART
OF MTPROTO 2.0

We have chosen to focus messages in cloud chats which are the
default setting in Telegram and are, according to Telegram’s founder
Pavel Durov, “designed for the majority of users” [22]. End-to-end
encrypted secret chats are, in contrast to cloud chats, not available
in all official clients [23].

The messages in cloud chats are not end-to-end encrypted but
only encrypted between the server and the client. We focus on the
symmetric part of MTProto 2.0 as described in [12]. The symmetric
part of MTProto 2.0 is Telegram’s equivalent to the TLS record
protocol. We refer to [12] for a description of the asymmetric part.

MTProto 2.0 aims to guarantee security for application layer
messages. The reliable transport protocol TCP is specified for trans-
port of MTProto 2.0. While the unreliable transport protocol UDP
is listed as another option, it is neither further specified nor does it
seem to be used in any implementations [8]. We stress, that TCP
(as well as UDP) cannot provide any security guarantees and there-
fore – without any further defence mechanisms such as TLS or
MTProto 2.0 – the payload can be arbitrarily manipulated. Further-
more, MTProto 2.0 specifies optional transport obfuscation which
mainly aims to bypass censorship and does not increase the secu-
rity on a cryptographic level. There are more options available for
transport such as HTTPS or WebSockets over TLS which involve
another layer of encryption. However, the security of MTProto 2.0
cannot rely on the presence of such additional layers since they are
only optional or available in certain settings.

3.1 MTProto 2.0 Encryption
The payload ? of a MTProto 2.0 message consists of the fields
described in Table 3. The server_salt and the session_id in the
first block are identifiers that are valid for multiple messages in
a given time period respectively in the same session. The second
block contains metadata with validity limited to the given message.
Finally, the remaining blocks contain the actual message data and
random padding with size between 12 B to 1024 B.

A plaintext< with blocks<1 | |<2 | |...| |<= is parsed into the fields
defined in Table 3, and denoted by server_salt(<1), session_id(<1),
msg_id(<2), msg_seq_no(<2), msg_length(<2), as well as the re-
maining msg_data(<3 | |...| |<=) and padding(<3 | |...| |<=), respec-
tively.

After the asymmetric key establishment, the server and the client
have established a common secret: the auth_key. It is used to derive
the auth_key_id, the msg_key, and the final ciphertext 2 . The en-
cryption is visualised in Fig. 2 and explained in the following lines.
Let G = 0 for messages sent by the client and G = 64 for messages
sent by the server.

The hash of auth_key is computed as

auth_key_id := SHA-1(auth_key) [96 : 160] (1)

and used to uniquely identify an authorization key for both the
server and the client. The message authentication code (MAC) of
the payload ? is computed as

ℎ :=SHA-256(auth_key[704 + G : 960 + G] | |?) (2)
msg_key :=ℎ[64 : 192] (3)

Table 3: MTProto payload format [6]. The horizontal lines
mark the boundaries of the 128 bit blocks.

Field Type Description

server_salt int64 Server-generated random number valid in
a given time period.

session_id int64 Client-generated random identifier of a ses-
sion under the same auth_key.

msg_id int64 Time-dependent identifier of a message
within a session. Approximately equal to
Unix time multiplied by 232.

msg_seq_no int32 Message sequence number.
msg_length int32 Length of msg_data in bytes.

msg_data bytes Actual body of the message.
padding bytes 12 - 1024B of random padding.

auth_key

server_salt session_id

msg_id msg_seq_no msg_length

msg_data padding

HASH
SHA-1

KDF
SHA-256

MAC
SHA-256

SE
AES-256-IGE

auth_key_id msg_key encrypted data

Figure 2: Overview of message processing in MTProto 2.0.
Note that only parts of auth_key are used inMAC and KDF.
This figure is a modified copy from [6].

and allows the receiver to verify that the sent plaintext was not
tampered with. The auth_key_id and the msg_key are sent in plain
as external headers. Together with the auth_key, the msg_key is
used as an input to the key derivation function (KDF) to compute
the key and the IV for the symmetric encryption (SE):

� := SHA-256(msg_key| |auth_key[G : 288 + G]) (4)
� := SHA-256(auth_key[320 + G : 608 + G] | |msg_key) (5)

key := �[0 : 64] | |� [64 : 192] | |�[192 : 256] (6)
iv := � [0 : 64] | |�[64 : 192] | |� [192 : 256] (7)

Finally, the ciphertext 2 is computed using AES-256 in IGE mode:

2 := AES-256-IGE(key, iv, ?) . (8)

On the Cryptographic Fragility of the Telegram Ecosystem ACM ASIACCS 2023, 2023, Melbourne, Australia

3.2 Required checks on metadata
When receiving a message, the client has to perform the following
checks, according to [11]:
(C1) Directly after decryption, the clientmust checkwhethermsg_key

is equal to the SHA-256 hash of the plaintext. To prevent timing
side-channel attacks, this check has to be done independently
of any potential previous errors.

(C2) The client must check that msg_length is not bigger than the
total size of the plaintext. The size of the padding is computed
as the difference between the total size of the plaintext and
msg_length and has to be within the range from 12 B to 1024 B.
The msg_length has to be divisible by four and non-negative.

(C3) The client must check that the session_id in the decrypted
message is equal to the one of an active session.

(C4) The client must check the validity of msg_id:
(C4.1) The client must check that msg_id is odd.
(C4.2) The client must store the msg_id of the last # received

messages. Here, the value of # is not specified [11]. 1
The client must check that an incoming msg_id is not
smaller than all # stored message IDs and that msg_id
is not already stored.

(C4.3) Furthermore, the client must ignore msg_id values
which are more than 30 seconds in the future or more
than 300 seconds in the past.

In case of a failure, the client has to discard the message and
should close and re-establish the TCP connection to the server.

4 REPLAY ATTACK
4.1 Description of the vulnerability
In a replay attack, an attacker can resend certain messages and
fool the receiver into believing that both messages originate from
the sender. While the attacker cannot read the messages, it is a
simple yet powerful attack to modify conversations. By leveraging
patterns in communication and stereotypical message lengths (only
partially hidden by variable-length padding), the attacker can decide
which messages to target, improving the effectiveness of such an
attack [26]. Here, we omit these fingerprinting steps and focus on
demonstrating the general feasibility of a replay attack.

To prevent against replay attacks in MTProto 2.0, receivers must
perform the check (C4.2) discussed in Section 3.2. Namely, the
receiver has to ensure that no two messages with the same msg_id
are processed. During our analysis we discovered that the following
third-party libraries miss the relevant checks: the Python libraries
Pyrogram [27] and Telethon [28], as well as the JavaScript library
GramJS [29]. The relevant code snippets can be seen in Listings 1
to 3. Pyrogram only checks that the msg_id is odd. Telethon and
GramJS do not even check this. Furthermore, Telethon and GramJS
both include comments that hint at the missing checks.

While Pyrogram and Telethon appear to be independent projects,
the core of GramJS is fully based on Telethon. The relevant lines in
the code only differ in syntax. Table 2 shows the popularity of the
libraries on GitHub. Even though GramJS is not that popular, it is
used by one of Telegram’s official web clients, Telegram Web Z [33].

1Official implementation use different values: Telegram Desktop [24] uses # = 400,
TDLib [25] uses # = 2000.

Listing 1: mtproto.py. Message processing in Pyrogram [30].
Modified for readability.

1 def unpack(b: BytesIO , session_id: bytes , auth_key: bytes
, auth_key_id: bytes) -> Message:

2 # [...]
3 data = BytesIO(aes.ige256_decrypt(b.read(), aes_key ,

aes_iv))
4 # [...]
5 message = Message.read(data)
6 # [...]
7 # https :// core.telegram.org/mtproto/

security_guidelines#checking -msg -id
8 assert message.msg_id % 2 != 0
9 return message

Listing 2: mtprotostate.py. Message processing in
Telethon [31]. Modified for readability.

1 def decrypt_message_data(self , body):
2 # TODO Check salt , session_id and sequence_number
3 # [...]
4 body = AES.decrypt_ige(body [24:], aes_key , aes_iv)
5 # [...]
6 reader = BinaryReader(body)
7 reader.read_long () # remote_salt
8 if reader.read_long () != self.id:
9 raise SecurityError('Wrong session ID')

10 remote_msg_id = reader.read_long ()
11 remote_sequence = reader.read_int ()
12 reader.read_int () # msg_len
13 obj = reader.tgread_object ()
14 return TLMessage(remote_msg_id , remote_sequence , obj)

Listing 3: MTProtoState.ts. Message processing in GramJS
[32]. Modified for readability.

1 async decryptMessageData(body: Buffer) {
2 // [...]
3 // TODO Check salt ,sessionId , and sequenceNumber
4 const keyId = helpers.readBigIntFromBuffer(body.slice

(0, 8));
5 // [...]
6 body = new IGE(key , iv).decryptIge(body.slice (24));
7 // [...]
8 const reader = new BinaryReader(body);
9 reader.readLong (); // removeSalt

10 const serverId = reader.readLong ();
11 if (serverId !== this.id) {
12 // throw new SecurityError('Wrong session ID ');
13 }
14 const remoteMsgId = reader.readLong ();
15 const remoteSequence = reader.readInt ();
16 reader.readInt (); // msgLen
17 // [...]
18 const obj = reader.tgReadObject ();
19 return new TLMessage(remoteMsgId ,remoteSequence ,obj);
20 }

An attacker can perform a replay attack against a client using
any one of these three libraries: the attacker records an encrypted
message from the server to the client and replays it at a later point
in time. Both messages will appear valid to the victim.

4.2 Attack implementation
To experimentally verify the presence of the vulnerability, we im-
plemented clients using the libraries above (c.f. Listings 5 to 7 in
Appendix A). To exploit the attack we configure the clients to route
all traffic to a local proxy server. For the proxy server, we use mitm-
proxy [34] with the add-on shown in Listing 8 to easily record and

ACM ASIACCS 2023, 2023, Melbourne, Australia Theo von Arx and Kenneth G. Paterson

User
Alice

SERVER
Telegram
Server

User-Secret
Mallory
(Proxy)

User-Tie
Bob

EnvelopeEnvelope

Envelope
Envelope

EnvelopeEnvelope

local

Figure 3: Overview of the replay attack.The symbols “Envelope” and
“Envelope” denote two different messages.

replay specific TCP packets. Instead of injecting additional TCP
packets we replace the content of every second TCP packet con-
taining a text message with the previous one. This facilitates the
attack since we neither have to update all TCP sequence numbers,
nor do we need to handle additional acknowledgement packets.

Figure 3 illustrates the attack: the sender Alice sends two differ-
ent messages which arrive correctly at the Telegram server. The
Telegram server decrypts, re-encrypts and forwards the messages
to the proxy to which Bob is connected. The malicious proxy is
run by the attacker Mallory. Mallory records the first message (Envelope)
and replaces the TCP payload of the second packet (Envelope) with the
recorded message. Hence, Bob receives the same message twice.

The attack was successful against all three of the tested libraries.
However, the attack does not apply to Telegram Web Z. The reason
is, that Telegram Web Z uses WebSockets over TLS 1.3 for the
transport layer. Hence, MTProto 2.0 is run on top of TLS 1.3. While
the implementation of MTProto 2.0 cannot prevent replay attacks,
this is – luckily – done by TLS 1.3.

Not all clients which use a vulnerable library are automatically
vulnerable to the replay attack. As messages come with an integrity-
protected time-stamp that is set by the Telegram server, some clients
then use this time-stamp to store the message in an internal data
structure that allows only one message with a given time-stamp.
Hence, a replayed message is not displayed twice. Nevertheless, the
security of a library must not depend on unspecified requirements.

We stress that the attack only applies for messages sent from the
Telegram server to a vulnerable client. The attacker cannot replay
messages sent by a vulnerable client since the Telegram servers
correctly defend against replay attacks.

4.3 Wider impacts of replay attacks
The attack is even more powerful when a vulnerable library is used
to implement the control of, e.g., a server. Telminal [35] is such a
program based on Telethon. Instead of sending commands over a
Secure Shell (SSH), the user sends the commands over Telegram
messages. If the user, e.g., sends the command to remove the first
entry of a database, the attacker can flush the entire database by
repeatedly replaying the command. While Telminal is currently a
niche application (only 20 stars on GitHub), it illustrates a potential
future attack vector.

Other interesting settings include message forwarding from Tele-
gram to WhatsApp and vice versa [36] (based on GramJS), cryp-
tocurrency trading [37] (based on GramJS), as well as bots that
broadcast a received message [38] (based on Pyrogram). In the
broadcast setting, the (vulnerable) bot automatically wraps the re-
ceived message content into a new message and relays it via the
Telegram server to multiple receivers. An attacker can thus inter-
cept and replay the messages towards the broadcast bot which will
then in turn forward all messages including the replayed ones. Since
all messages appear to be new, all final receivers will accept and
process them normally, independently of whether the receivers use
a vulnerable library or not. In particular, there is no cryptographic
defence that allows them to recognize that an attacker has replayed
the original message.

While not tested in practice, these examples show that the mere
possibility of interaction of a vulnerable client with other clients
translates the security risk of a vulnerable third-party client to the
entire Telegram ecosystem, including official clients. Moreover that,
there is a potential reputation damage for the entire ecosystem com-
ing from the vulnerability of popular libraries and clients. Telegram
consequently has a strong interest in the security of third-party
clients.

4.4 A note on reordering attacks
In a reordering attack, the attacker aims to modify the order of
the received messages. The attack is similar to the replay attack:
record and hold back the first message, let the second message pass
and finally release the withheld message. Again, the meaning of a
conversation can be significantly altered.

We tested this attack against Pyrogram, Telethon, and GramJS.
All of them are vulnerable to the reordering attack as well. The used
add-on for mitmproxy is shown in Listing 9.

A reordering attack is generally considered a serious weakness
and similar protocols such as TLS or the Signal messaging protocol
successfully defend against this type of attack. However, this vul-
nerability is not a violation of the security guarantees specified by
[11]: unless # = 1, the check (C4.2) on the msg_id does not force
message IDs to be strictly monotonically increasing and therefore
messages can be processed out of order [6]. The reordering vulner-
ability is inherent to the cryptographic specification, and is only
defended against at the application level in official clients [6].

While Telegram could argue that reordering attacks are not a
concern because official clients are effectively not vulnerable to
them, the argument does not hold for library implementations. The
implementer of the library simply cannot know how their library
will be used by applications. Hence, assuming the library provides
a reasonable amount of flexibility to its users, no general security
guarantees that rely on the application can be given.The reordering
attack should therefore be defended against by MTProto 2.0 itself.

5 TIMING SIDE-CHANNEL ATTACK ON
MADELINEPROTO

The fact that three official Telegram clients were found to be vul-
nerable to a timing side-channel attack in [6] led us to suspect
that some third-party clients and libraries might be vulnerable to
a similar attack. In fact, aside from MadelineProto, none of the

On the Cryptographic Fragility of the Telegram Ecosystem ACM ASIACCS 2023, 2023, Melbourne, Australia

implementations of MTProto 2.0 listed in Tables 1 and 2 were found
to be vulnerable to a timing side-channel attack.

In the remainder of this section, we focus on MadelineProto.
We first recapitulate the core idea of the attack from [6], and then
explain in depth how we adapt this attack to MadelineProto.

5.1 Attack idea
For a given ciphertext 21 | |...| |2= corresponding to an unknown
plaintext<1 | |...| |<= and an arbitrary target block<8 with 2 ≤ 8 ≤ =,
the attacker’s goal is to learn some bits of<8 . For a successful exploit
of the timing side-channel attack, we need additional assumptions
on the knowledge of the attacker. Specifically, the attacker needs
to know both<1 and<8−1.

Recall that in MTProto 2.0,<1 contains the server_salt and ses-
sion_id fields. While these values were not intended to be secrets,
they are not sent in plaintext at any point in the protocol. The more
complex attack on theMTProto 2.0 key exchange protocol described
in Section F of [6] allows an attacker to learn server_salt and ses-
sion_id. Even though this attack is hard and likely not possible any
longer due to server-side changes by Telegram, there might be a
successful attack against<1 in the future. An additional argument
in favour of assuming that<1 is known is that the security of a
secure channel protocol like MTProto 2.0 should not rest on main-
taining the confidentiality of a specific plaintext block: the design
goal of such a protocol should be to protect all of the plaintext data
all of the time.

The requirement for the attacker to know<8−1, the plaintext
block preceding the target block, is a weaker one. This is because
general plaintext blocks often contain stereotypical values. Consider
for example the situation where<8−1 = “The password” and<8 =
“is SECRET”. In general, we consider this assumption to be realistic.

The attacker then creates a two-block ciphertext 21 | |2★ with
2★ = 28 ⊕<8−1 ⊕<1. This ciphertext decrypts to<1 | |<★ where:

<★ = �−1 (2
★ ⊕<1) ⊕ 21 (9)

= �−1 (28 ⊕<8−1) ⊕ 21 (10)
=<8 ⊕ 28−1 ⊕ 21 . (11)

Consequently, if there is a side-channel that allows an attacker
to learn some bits of the second block (containing<★), then the
attacker can learn the corresponding bits of<8 by using Eq. (11).
The key insight from [6] is that this second block is interpreted
as containing the packet length field, and that field may be sanity
checked prior to the MTProto 2.0 MAC being verified. The success
or failure of the sanity checking may be visible through timing
behaviour of the client, so leaking some information about<★, and
hence about<8 .

5.2 MadelineProto
MadelineProto is a PHP library that implements a MTProto 2.0
client. The library is officially listed on Telegram’s webpage as an
exemplary implementation [8]. The library can be used for multiple
purposes including voice over IP (VoIP) webradio, downloading
files and controlling a server [39].

5.2.1 Message processing. When receiving a packet, Madeline-
Proto processes it as follows (c.f. Listing 4):

(1) Check whether received auth_key_id matches the computed
one.

(2) Reduce the ciphertext such that its size is a multiple of 16 B.
(3) Decrypt the ciphertext.
(4) Check the session_id according to (C3).
(5) Check the msg_id mostly following (C4), see [40].
(6) Check the validity of the packet length according to (C2). Here,

the padding size is computed as the difference between the
length of the ciphertext and msg_length.

(7) Check the integrity of the decrypted data (C1) by comparing
the received msg_key with the computed one.
The reduction of the ciphertext to a multiple of 16 B by removing

at most 15 B is a leftover from the implementation of a previous
version of MTProto. 2 The restriction of ciphertexts being a multiple
of 16 B arises from the use of AES with block size 16 B. However,
instead of this reduction, the client could directly reject a malformed
message since it must have been tampered with.3

The operations between decryption at step 3 and the integrity
check at step 7 in MadelineProto are carried out on unauthenticated
data. Thus, an attacker can supply a forged ciphertext with a valid
auth_key_id and session_id which will be processed until a failure
occurs. Consequently, if the attacker can differentiate between
different failure types, it can tell whether the checks on the packet
length field (C2) executed at step 6 have passed or failed. Since
the packet length field is contained in the second plaintext block,
and this can be replaced by<★ =<8 ⊕ 28−1 ⊕ 21 in the attack, the
success or failure of these checks may allow the attacker to learn
some bits of the targeted message<8 .

As we show in the next section, the difference between a failure
in a msg_id, msg_length and a msg_key are indeed observable by
measuring the client’s processing time. Not only does the processing
time differ for different failure types, but the TCP connection is
re-established as well.

However, failure does not force a re-establishment of the MT-
Proto session, so the keys, the server_salt and the session_id stay
the same. Hence, many forged ciphertexts can be sent in a single
attack against a single target ciphertext block 28 , and these cipher-
texts will all be decrypted and further processed in the same way.
So, many decryption trials can be executed against a single target
28 , allowing noise in the timing measurements to be averaged out
and the timing signal to be amplified.

In turn, this makes it easier for an attacker to determine the
cause of failure, and hence determine whether checks on the packet
length field have passed or failed. Finally, by executing enough
trials, this makes it theoretically possible to recover some bits of<8
in a reliable way. This contrasts with the more common situation in
such timing attacks (e.g. for Lucky 13 [42]) where each error leads
to a session termination and keys being thrown away – in such
a situation, each target ciphertext block can only be tested once,
requiring the introduction of an additional assumption, namely that
the same plaintext target<8 is repeated across many sessions.
2This leads to a trivial attack in the indistinguishability under chosen ciphertext
attack (IND-CCA) model! The adversary can trivially extend a challenge ciphertext
with random bits of its choice to make a new cipheretext, and then submit it for
decryption. While theoretically interesting, this does not lead to a practical attack
against MTProto 2.0.
3This is a special case where the early abortion and the skipped computation of
msg_key do not allow an attacker to learn new information about the plaintext.

ACM ASIACCS 2023, 2023, Melbourne, Australia Theo von Arx and Kenneth G. Paterson

Listing 4: Message processing in MadelineProto [41]. Modi-
fied for readability. $seq_no and $message_data_length cor-
respond to msg_seq_no andmsg_length respectively.

1 public function readMessage (): \Generator {
2 # [...]
3 $auth_key_id = yield $buffer ->bufferRead (8);
4 # [...]
5 if ($auth_key_id === $shared ->getTempAuthKey ()->getID()

) {
6 # [...]
7 $encrypted_data = yield $buffer ->bufferRead(

$payload_length - 24);
8 $protocol_padding = \strlen($encrypted_data) % 16;
9 if ($protocol_padding) {

10 $encrypted_data = \substr($encrypted_data , 0, -
$protocol_padding);

11 }
12 $decrypted_data = Crypt:: igeDecrypt($encrypted_data ,

$aes_key , $aes_iv);
13 # [...]
14 $message_id = \substr($decrypted_data , 16, 8);
15 $connection ->msgIdHandler ->checkMessageId($message_id

, ['outgoing ' => false , 'container ' => false]);
16 $seq_no = \unpack('V', \substr($decrypted_data , 24,

4))[1];
17
18 $message_data_length = \unpack('V', \substr(

$decrypted_data , 28, 4))[1];
19 if ($message_data_length > \strlen($decrypted_data))

{
20 throw new \SecurityException('message_data_length

is too big');
21 }
22 if (\ strlen($decrypted_data) -32- $message_data_length

< 12) {
23 throw new \SecurityException('padding is too

small ');
24 }
25 if (\ strlen($decrypted_data) -32- $message_data_length

> 1024){
26 throw new \SecurityException('padding is too big'

);
27 }
28 if ($message_data_length < 0) {
29 throw new \SecurityException('message_data_length

not positive ');
30 }
31 if ($message_data_length % 4 != 0) {
32 throw new \SecurityException('message_data_length

not divisible by 4');
33 }
34 $message_data = \substr($decrypted_data , 32,

$message_data_length);
35 if ($message_key != \substr (\hash('sha256 ', \substr(

$shared ->getTempAuthKey ()->getAuthKey (), 96, 32)
.$decrypted_data , true), 8, 16)) {

36 throw new \SecurityException('msg_key mismatch ');
37 }
38 }
39 # [...]
40 }

5.2.2 Practical timing experiments. By measuring the response
time, an attacker can estimate the time it takes to process a mes-
sage. To verify the existence of the timing differences between
failures of themsg_id, themsg_length and themsg_key checks, we
measured the message processing time in a simulated environment:
we modified the program to be synchronous and created a clean
interface, i.e., the messages are not sent over the network but passed
as arguments. We conducted the experiments on an Intel i7-6500U

200 220 240 260

Time [`s]

0

1

2

Number
×105

Measured time for different failure types

msg_length msg_key msg_id

Figure 4: Timings of failures of msg_id, msg_length and
msg_key checks, measured under ideal conditions. Packet
size: 2048 B.

Table 4: Statistics of processing time measured in µs

Error type # samples Mean Median St. dev

msg_length 996057 204.010 203.133 4.313
msg_key 993465 221.408 221.014 4.291
msg_id 967952 247.271 247.002 2.835

processor running Linux-libre 5.10.72 at 2.5GHz with turboboost
and hyper threading both disabled.

Our results are visualized in Fig. 4 and key statistics are shown
in Table 4. The time difference arising between failures of the
msg_length and msg_id checks is due to the additional SHA-256
computation in the case of a passing msg_length check. The size of
this time difference linearly depends on the payload size which is
passed to SHA-256. Even though the msg_id checks are evaluated
first, the processing time is larger in case of a msg_id failure. The
reason is, that msg_id failures are logged which involves relatively
slow operations.

At the beginning, the attacker can forge a ciphertext consisting
of only 21 | |2★ which will not pass the msg_length check as there
is no padding. Therefore, the attacker does not always have to
distinguish betweenmsg_key andmsg_id failures, but only between
msg_length and msg_id failures.

There is one significant limitation, however: we cannot assume
that the timing differences between failures of the different length
checks (e.g., that the padding size is bigger than 12 B or that the
padding size is smaller than 1024 B) are measurable. The reason is
that no computationally intensive operations are involved between
two such checks. This complicates our attack slightly.

5.2.3 Attack in a clean oracle model. As a proof of concept, we now
describe how an attacker can exploit timing differences described
above to recover part of the target plaintext block<8 . To simplify,
we present an attack that works in a “clean oracle” setting, i.e.,
we assume that the attacker can perfectly distinguish between the
three different error types. The pseudocode of the attack is given in
Algorithm 3. We successfully implemented the attack in Python.

On the Cryptographic Fragility of the Telegram Ecosystem ACM ASIACCS 2023, 2023, Melbourne, Australia

Algorithm 3 Timing side-channel attack against MadelineProto.

1: procedure AO(8,<1,<8−1, payload)
2: auth_key_id← payload[0 B : 8 B]
3: msg_key← payload[8 B : 24 B]
4: 21, . . . , 2= ← payload[24 B :] ⊲ ∀9 : |2 9 | = 16 B
5: 2★← 28 ⊕<8−1 ⊕<1
6: 2̃ ← auth_key_id| |msg_key| |21 | |2★; ; ← 0
7:

⊲ Increment ; until msg_key failure or reaching the limit
8: repeat
9: 2′ ← 2̃ | |randomBytes(;)

10: if len(2′) > 222 then
11: Log(”The 10 MSBs or the 2 LSBs of<★ are nonzero”)
12: return ⊥
13: ans← O(2′)
14: if ans = MSG_ID_FAIL then
15: Log(”msg_id (<★) is too big or its LSB is nonzero”);
16: return ⊥
17: if ans = LENGTH_FAIL then
18: ; ← ; + 1008
19: until ans = INTEGRITY_FAIL
20: ; ← ; − 1008⊲ Set ; to the max value s.t. the padding is too

small
21:
22: lo← 0; hi← 1008/16 ⊲ Binary search to get lowest

msg_key failure
23: while lo ≠ hi do
24: mid = d lo+hi2 e
25: 2′ = 2̃ | |randomBytes(16 ·mid)
26: ans← O(2′)
27: if ans = LENGTH_FAIL then
28: lo← mid
29: else if ans = INTEGRITY_FAIL then
30: hi← mid−1
31: ; ← ; + 16 ·mid
32: if ans = LENGTH_FAIL then
33: ; ← ; + 16⊲ Add a block to get an integrity check failure
34:
35: 2′ ← 2̃ | |randomBytes(; + 1008)
36: ans← O(2′)
37: if ans = LENGTH_FAIL then
38: ;★← ; − 17
39: else
40: ;★← ; − 12
41: <★← ;★ ⊕ (28−1 ⊕ 21)[96:128] ⊲ Compute the guess
42: return<★ ⊲ Only guess length field

The attack takes as input a target block index 8 , the known plain-
text blocks<1,<8−1 and the target payload payload consisting of
auth_key_id, msg_key and ciphertext blocks 21, . . . , 2= .

The core idea of the attack is to vary the number ; of ran-
dom bytes that are appended to a partial payload of the form
2̃ = auth_key_id| |msg_key| |21 | |2★, where 2★ = 28 ⊕ <8−1 ⊕ <1
as before.

Such payloads will then be decrypted to <1 | |<★ | |<′3 | |...| |<
′
=

where<1 contains the valid server_salt and session_id,<★ is as in
Eq. (11) and<′3, ...,<

′
= are garbled blocks with = = b ;16 c + 2.

The key point is, that the MadelineProto client interprets <★

as containing msg_id, msg_seq_no, and msg_length, while blocks
<′3, ...,<

′
= are interpreted as msg_data and padding. The Madeline-

Proto client computes the size of the padding as |msg_data(<′3 | |...
| |<′=) | + |padding(<′3 | |...| |<

′
=) | −msg_length(<★) which is equal

to ; −msg_length(<★).
By using such a payload with varying ; , the attacker can trigger

different errors. The idea is to find the smallest value for ; , such that
the msg_key check fails. This will give the attacker information
about the valuemsg_length(<★) and allows the corresponding bits
of the target block<8 to be inferred using Eq. (11).

Since MadelineProto reduces the size of the ciphertext to be a
multiple of 16 B, an attacker increases ; by multiples of 16 B. There
is a window of 1012 B between a msg_length check failure due
to a too small padding and a msg_length failure due to a too big
padding. This allows the attacker to first increase ; linearly by
1008 B = 16 · 63 B at a time while being sure that the window of
a msg_key failure is not missed. We stress that a binary search is
not possible in this part of the attack, due the attacker not being
able to distinguish having a too small and a too big padding. In a
binary search, an attacker would thus not know when to increase
and when to decrease ; .

Once a msg_id check failure is encountered for a given ; , we
know that the padding size is between 12 B to 1024 B, hence the
following inequalities hold:

12 ≤ ; −msg_length(<★) ≤ 1024 . (12)

Since there is a lower limit (of ; − 1008) and an upper limit (of ;) for
the minimal size that triggers a msg_key check failure, the attacker
can now switch to using a binary search to find the smallest value
;− which is a multiple of 16 B and which triggers a msg_key check
failure. Once this ;− is found, we know that

12 ≤ ;− −msg_length(<★) < 12 + 16 (13)

8 .4 . 0 ≤ ;− −msg_length(<★) − 12 < 16 . (14)

At this point, the attacker can correctly recover all but the four
least significant bits (LSBs) of msg_length(<★). However, there is
a trick to learn the fourth LSB: The attacker queries the oracle with
;− + 1008 random bytes. If the answer is a msg_key check failure,
we have

;− + 1008 −msg_length(<★) ≤ 1024 (15)

and hence 0 ≤ ;− −msg_length(<★) − 12 ≤ 4 . (16)

Otherwise, in case of a msg_length check error, we get

;− + 1008 −msg_length(<★) > 1024 (17)

and hence 4 < ;− −msg_length(<★) − 16 < 12 . (18)

In other words: the fourth LSB of ;− −msg_length(<★) −G with
either G = 12 or G = 16 is fixed, and the attacker successfully learns
it. Since the attacker knows ;− and G , the attacker can transform
this knowledge to that of the 29 most significant bits (MSBs) of
msg_length(<★) and finally to the corresponding bits of<8 .

ACM ASIACCS 2023, 2023, Melbourne, Australia Theo von Arx and Kenneth G. Paterson

The number of queries needed for the above attack is the sum
of queries in the linear phase and in the binary search phase. It
amounts to approximately

msg_length(<★)
1008

+ log2 (63) ≈
msg_length(<★)

1008
+ 6. (19)

The experimentally measured number of queries for varying
values of msg_length(<★) matches the expected behaviour: for
msg_length(<★) ≤ 210 the number of queries is dominated by the
binary search. For larger msg_length(<★), the number of queries
grows linearly because it is dominated by the linear search. Note
that the number of queries needed only depends on the value of
msg_length(<★). If we limit<★ to have msg_length ≤ ! for an
arbitrary ! < 232, then the average value of<★ is !2 . The attacker
thus needs ≈ ! · 2−11 queries on average in the clean oracle setting.

5.2.4 Limitations. Several conditions need to hold for a successful
attack. There are two types of limitations. First, the attacker needs
to have the possibility to trigger amsg_key check failure.This is not
the case if themessagewas already rejected due to an invalidmsg_id
(<★) or if msg_length (<★) is not divisible by four. Then there is a
practical limitation. If msg_length(<★) is too big, then the attack
does not finish in reasonable time. Furthermore, the attacker needs
to send a message with length on the order of msg_length(<★)
bytes which may trigger an OS exception due to a large amount
of memory being allocated, leading to a crash of the client. For
our experimental setup, we had to require msg_length ≤ 222. To
summarize, the attack is successful in the following cases:
(1) msg_id(<★) is smaller than the maximum limit of about 263.
(2) msg_id(<★) has odd parity.
(3) msg_length(<★) is smaller than 222.
(4) msg_length(<★) is divisible by four.

If 8 = 2, then<★ =<2 and all conditions are fulfilled. Hence, an
attacker can find the true message length up to the last three LSBs
with a success probability of 100 % in a clean oracle setting. So the
length of a message is no longer obfuscated.

If 8 ≠ 2, the success probability is reduced to ≈ 2−1 · 2−1 · 2−10 ·
2−2 = 2−14 since the four conditions listed abovemust all hold (here
we rely for the probability analysis that msg_length(<★) is effec-
tively randomised since it arises as a 32-bit subfield of<8 ⊕28−1⊕21
and we can treat ciphertext blocks 28−1, 21 as being random 128-bit
strings). Here, as above, we assume a clean distinction between the
three failure conditions.

Note that the attack can be carried out for every block of a
message with independent success probability. Thus, an attacker
can expect to recover 29 bits of plaintext from one in every 214

blocks.

5.2.5 Attack with noisy oracles. In a real-world setting, we have
to take into account the fact that the correctness of the oracle
responses is probabilistic, with sources of noise coming from the
presence of other processes running on the client and from network
jitter arising between the client and the attacker.

However, the attacker can repeatedly send the same message,
observe the client processing times, and average over multiple
measurements to improve the timing accuracy. Here we are as-
sisted by the fact that the MadelineProto client does not force a
re-establishment of MTProto sessions on decryption failures. This

makes it possible to build an (effectively) clean oracle from the
actual noisy one that is available. Assuming an independent and
identically distributed Gaussian distribution of the response time
for multiple queries, the variance of the average scales down by
the square root of the number of trials. Using standard statistical
techniques involving the different means and variances for the 3
different timing distributions (cf. Fig. 4), it is possible to compute
how many trials are required to obtain an (effectively) clean ora-
cle as a function of the noise distribution. In short, it is sufficient
to make each pair of peaks of average timings for the 3 different
distributions lie a few standard deviations apart to obtain a reliable
oracle. As Fig. 4 and Table 4 show, there is a gap on the order of
16 µs between the different failure types. This should already be
large enough to carry out the attack with the client and attacker
located in the same LAN. As a point of comparison [42] showed
this to be the case with timing differences on the order of only 1 µs.

However, we again stress that the required knowledge of the
values of the server_salt and the session_idmakes the attack mostly
of theoretical interest. For this reason we have not implemented the
full attack against the actual client with a remote attacker, but were
content to describe the attack and experiment with it in a simulated
environment. This said, the values server_salt and session_id are
not specified to be secret [12] so the two values may be revealed in
a future implementation.

6 SECURITY IN A PROLIFERATING
ECOSYSTEM

The presence of the replay vulnerability in three different Telegram
libraries indicates the difficulty that developers face in implement-
ing the required checks correctly. Two implementations (Listings 2
and 3) explicitly mention the missing implementation within a
comment. Additionally, during the disclosure, one developer asked
us for help to implement the fixes correctly. This indicates a more
fundamental problem: the replay protection as specified in [11]
and described in Section 3.2 is too large a burden for developers.
It is neither straight forward to implement them, nor does it seem
that enough help is provided. The specification requires a relatively
complex text and no implementation examples are provided. To
illustrate the complexity of the specifications, we quote the security
guidelines for client developers for the checks on the msg_id [11]:

The client must check thatmsg_id has even parity for messages
from client to server, and odd parity for messages from server
to client.
In addition, the identifiers (msg_id) of the last # messages
received from the other side must be stored, and if a message
comes in with an msg_id lower than all or equal to any of the
stored values, that message is to be ignored. Otherwise, the
new message msg_id is added to the set, and, if the number
of stored msg_id values is greater than # , the oldest (i. e. the
lowest) is discarded.
In addition, msg_id values that belong over 30 seconds in
the future or over 300 seconds in the past are to be ignored
(recall that msg_id approximately equals unixtime * 232). This
is especially important for the server. The client would also
find this useful (to protect from a replay attack), but only

On the Cryptographic Fragility of the Telegram Ecosystem ACM ASIACCS 2023, 2023, Melbourne, Australia

if it is certain of its time (for example, if its time has been
synchronized with that of the server).
Certain client-to-server service messages containing data sent
by the client to the server (for example, msg_id of a recent
client query) may, nonetheless, be processed on the client even
if the time appears to be “incorrect”. This is especially true of
messages to change server_salt and notifications about invalid
time on the client.

The specification is not only quite long and contains checks that
are not relevant for a client developer, it is also not very clear and
proposes to accept certain messages even if they do not strictly
match the requirements. It is worthmentioning that even the official
implementation in TDLib deviates from the specification by keeping
at most 2 · # message IDs and removing the oldest # message IDs
in one go [43].

Since vulnerabilities in third-party clients affect not only Tele-
gram in terms of reputational damage, but also directly on the
application level (e.g., by the use of a vulnerable client to broadcast
messages [38]), we argue that Telegram should address the underly-
ing issue of hard-to-implement specifications directly. The handling
of a sliding window for incoming messages required in MTProto 2.0
is significantly more complex compared to other protocols such
as DTLS [44, Section 4.5] and IPsec [45, Section B.2]. It would be
straightforward to require and check that the msg_id increases by
exactly 1 for every sent message, as it is implicitly done in the TLS
record protocol [46, Section 5.3]. This is easy to implement and
would directly rule out any reordering attack. Since Telegram de
facto relies on TCP and thus on reliable transport, it is unclear why
the current complexity is needed. Our proposed change can thus
be implemented without further consequences.

Furthermore, the vulnerabilities that we found in third-party
clients and libraries together with the ones discussed in [6] suggest
a much wider question: how can security be guaranteed in an envi-
ronment consisting of a variety of independent implementations?

The origin of the problems seems to be three-fold. Firstly, Tele-
gram is developer-friendly and encourages developers to implement
their own clients and bots [7]. This attracts developers without a
cryptographic background. Secondly, as shown above, the custom
protocol MTProto 2.0 does not make it easy to build a secure imple-
mentation. Thirdly, when security issues in the Telegram protocol
and official clients were discovered [6], Telegram’s official clients
were patched without any vulnerability announcement being made
by Telegram.There is no communication channel between Telegram
and third-party developers to publish vulnerabilities and give secu-
rity advices. The lack of transparency could hint at a strategy that
favours adoption over security. We consider this as being a missed
opportunity for Telegram to draw the attention of developers in
their broader ecosystem to the security issues.

The first problem is partially addressed by the introduction of
the cryptographic library TDLib in 2018 [47]. We propose that Tele-
gram formally verifies TDLib and makes a strong recommendation
to use the library. A downside of adopting this recommendation
would be the introduction of a single point of failure on the imple-
mentation side. But, as our and prior work on other ecosystems
suggests, secure implementations and fixes against known attacks
are hard to implement in a broad ecosystem, cf. [13–18]. While

the question about the optimal trade-off is open for future work,
we consequently advocate for security over having an open and
distributed development. To reduce the potentially resulting central-
ization of clients, Telegram could further separate security critical
parts from the rest of the client code. This way, openness on the
application level could be guaranteed while improving security.

However, not all developers will use TDLib. Although the library
can be integrated with various programming languages includ-
ing Python, the popularity of the Python libraries Pyrogram and
Telethon indicate that developers tend to use a library written in
the same language as the rest of the code. An officially supported
and thoroughly tested Python library could partially mitigate the
issue. Otherwise, the Telegram specifications and security guide-
lines need to be more precise and easily understandable for non-
cryptographers. Improvements in this direction include publishing
pseudocode of the correct implementation of MTProto 2.0, provid-
ing test vectors, and applying formal methods.

The second problem is not addressed yet. To the contrary, design
choices such as the relatively complex checks on the message ID
could be simplified without loss of security. Similarly, the design
choice to use encrypt-and-MAC opens the door for bad implemen-
tations of the decryption process and the introduction of potential
timing side-channels. This was also observed in [6] but is endemic
to encrypt-and-MAC, see for example the analysis of encrypt-and-
MAC in SSH in [48] and the generic treatment in [49]. The use
of encrypt-then-MAC in place of encrypt-and-MAC would signifi-
cantly lower the potential for timing side-channel vulnerabilities
in implementations because the MAC would be verified on the
ciphertext, removing the temptation to perform decryption at all
if the verification fails. Even better, Telegram could switch to us-
ing an AEAD scheme (as TLS has done exclusively in TLS 1.3). To
summarize, the number of Telegram clients having critical security
vulnerabilities shows that the security checks should be as simple
as possible so that they will be correctly implemented.

More fundamentally, the justification to use a custom proto-
col in Telegram is questionable. Telegram mentions reliability for
weak mobile connections and speed for cryptographic processing
of large files as the reason for introducing MTProto 2.0 [50]. How-
ever, even the official client Telegram Web Z uses TLS 1.3 on top
of MTProto 2.0. While the best security of both protocols may be
achieved, the performance is limited by the slower protocol. In
contrast to MTProto 2.0, TLS 1.3 is well-studied in the literature
and many state-of-the-art libraries for various languages exist.4

However, one argument in favour of MTProto 2.0 lies in the root
of trust. By designing and deploying their own protocol, Telegram
can carefully choose the root of trust for server authentication
and need not rely on trust in dozens to hundreds of root certficate
authorities (CAs) as TLS 1.3 does. But this argument is weakened
by the reliance on secure transport of the client software itself to
the user: most likely this will be secured by TLS. Telegram could
moreover use TLS but hard-code the trusted root CAs.

Finally, the solution to the third problem is simple: Telegram
should communicate in an open and transparent way with their
developer community (and with their users) when security vulner-
abilities are disclosed to them. Indeed, prior work has shown, that

4We note that 0-RTT messages are not replayable following the TLS 1.3 specification.

ACM ASIACCS 2023, 2023, Melbourne, Australia Theo von Arx and Kenneth G. Paterson

full public disclosure does not reduce security [51]. In a competi-
tive ecosystem with multiple providers of software with the same
functionality, security may even be increased by this practice [52].
Moreover, a recent study suggests that well-documented security
changes with minimal migration effort have a high chance to be
quickly adopted by open source developers [53]. Lastly, a policy of
transparent disclosure would align with Telegram’s will to attract
developers and let Telegram assume their responsibility: while Tele-
gram provides a wide range of functions and flexibility, they should
also allow developers to learn from previous mistakes.

7 CONCLUSION AND FUTUREWORK
We have shown replay and reordering attacks against the Pyrogram,
Telethon, and GramJS Telegram clients. The attacks are practical
and can be exploited by, e.g., running a malicious Wi-Fi access
point. The attacks are powerful in that they can significantly alter
the view of a conversation for any participant using a vulnerable
client.

We have also presented a timing side-channel attack against
MadelineProto that lets an attacker learn the true length of a mes-
sage as well as 29 bits of an arbitrary plaintext block with a proba-
bility of 2−14. We have shown how to implement the attack. This
attack is mostly of theoretical interest due to the hard-to-achieve
requirements of knowing the server_salt and the session_id.

Most important, we have explained why our attacks should not
be viewed as isolated vulnerabilities, but how they highlight the
need for action on a deeper level to improve the security of the
Telegram ecosystem, to the eventual benefit of its users’ privacy.The
fact that developers systematically fail to implement MTProto 2.0
correctly as well as the severe consequences a vulnerability in one
clientmay imply for the othersmotivates the production of a precise,
complete specification of the MTProto 2.0 protocol, akin to the TLS
1.3 specification [46]. This would facilitate secure implementation
of MTProto 2.0, as well as promote interoperability and further
security analysis.

In our analysis, we focused on the symmetric part of the en-
cryption of cloud chats. With its large ecosystem and the broad
variety of applications, a lot of interesting work remains. Future
work includes research on secret chats, bots, and control messages.

Finally, Telegram’s reasoning for their decision to continue to
use the custom protocol MTProto 2.0 should be examined: extensive
measurements of the reliability and performance of MTProto 2.0
would help to settle the question of whether MTProto 2.0 actually
has advantages over TLS 1.3.

ACKNOWLEDGEMENTS
This research received no specific grant from any funding agency
in the public, commercial, or not-for-profit sectors. The authors
received a bug bounty from Telegram after disclosing the research.
We thank the anonymous reviewers of AsiaCCS for their valuable
comments.

REFERENCES
[1] P. Durov, “500 million users,” https://t.me/durov/147, 2021.
[2] Statista, “Most popular global mobile messenger apps as of October 2021, based

on number of monthly active users,” https://www.statista.com/statistics/258749/
most-popular-global-mobile-messenger-apps/, 2021.

[3] M. R. Albrecht, J. Blasco, R. B. Jensen, and L. Mareková, “Collective Information
Security in Large-Scale Urban Protests: the Case of Hong Kong,” in USENIX
Security 2021.

[4] N. Kobeissi, “Formal Verification for Real-World Cryptographic Protocols and
Implementations,” Ph.D. dissertation, 2018.

[5] T. Sušánka and J. Kokeš, “Security Analysis of the Telegram IM,” in ACM ROOTS,
2017.

[6] M. R. Albrecht, L. Mareková, K. G. Paterson, and I. Stepanovs, “Four attacks and
a proof for Telegram,” in IEEE S&P 2022.

[7] Telegram, “API,” https://web.archive.org/web/20211127010953/https:
//core.telegram.org/api, 2021.

[8] ——, “MTProto mobile protocol,” https://web.archive.org/web/20211213201047/
https://core.telegram.org/mtproto, 2021.

[9] ——, “Telegram schema,” https://telegram.org/schema, 2022.
[10] ——, “Telegram applications,” https://web.archive.org/web/20211201125716/https:

//telegram.org/apps, 2021.
[11] ——, “Security guidelines for client developers,” https://web.archive.org/web/

20211028151304/https://core.telegram.org/mtproto/security_guidelines, 2021.
[12] ——, “Mobile Protocol: Detailed Description,” https://web.archive.org/web/

20211016013637/https://core.telegram.org/mtproto/description/, 2021.
[13] B. Reaves, J. Bowers, N. Scaife, A. Bates, A. Bhartiya, P. Traynor, and K. R. B.

Butler, “Mo(bile) Money, Mo(bile) Problems: Analysis of Branchless Banking
Applications,” ACM Transactions on Privacy and Security, 2017.

[14] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss,
A. Pironti, P. Strub, and J. K. Zinzindohoue, “A messy state of the union: Taming
the composite state machines of TLS,” in IEEE S&P 2015.

[15] E. Ronen, K. G. Paterson, and A. Shamir, “Pseudo Constant Time Implementations
of TLS Are Only Pseudo Secure,” in ACM CCS 2018.

[16] M. Oltrogge, N. Huaman, S. Amft, Y. Acar, M. Backes, and S. Fahl, “Why Eve and
Mallory still love Android: Revisiting TLS (in)security in android applications,”
in USENIX Security 2021.

[17] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov, “The
most dangerous code in the world: validating SSL certificates in non-browser
software,” in ACM CCS 2012.

[18] M. R. Albrecht, J. Massimo, K. G. Paterson, and J. Somorovsky, “Prime and preju-
dice: Primality testing under adversarial conditions,” in ACM SIGSAC CCS 2018.

[19] “Security Vulnerability: Replay Attack Against Telethon · Issue #3753,” 2022.
[Online]. Available: https://github.com/LonamiWebs/Telethon/issues/3753

[20] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback, and J. Dray,
“Advanced Encryption Standard (AES),” 2001.

[21] N. Sombatruang, M. A. Sasse, and M. Baddeley, “Why do people use unsecure
public Wi-Fi? An investigation of behaviour and factors driving decisions,” in
ACM STAST 2016, 2016.

[22] P. Durov, “Why Isn’t Telegram End-to-End Encrypted by Default?” Telegraph.
[Online]. Available: https://web.archive.org/web/20220310005110/https://telegra.
ph/Why-Isnt-Telegram-End-to-End-Encrypted-by-Default-08-14

[23] Telegram Support Force, “End-to-End Encryption FAQ,” 2022. [Online].
Available: https://web.archive.org/web/20220315180848/https://tsf.telegram.org/
manuals/e2ee-simple

[24] Telegram, “Telegram Desktop, mtproto_received_ids_man-
ager.h,” https://github.com/telegramdesktop/tdesktop/blob/
9308615361c77d983bac458e48196646b0660c3b/Telegram/SourceFiles/mtproto/
details/mtproto_received_ids_manager.h#L15, 2019.

[25] ——, “TDLib, mtproto_received_ids_manager.h,” https://github.com/
telegramdesktop/tdesktop/blob/dev/Telegram/SourceFiles/mtproto/details/
mtproto_received_ids_manager.h#L15, 2021.

[26] J. Kohout and T. Pevný, “Network Traffic Fingerprinting Based on Approximated
Kernel Two-Sample Test,” IEEE Transactions on Information Forensics and Security,
2018.

[27] Dan ”delivrance”, “Pyrogram. Telegram MTProto API framework for Python,”
https://github.com/pyrogram/pyrogram, 2017–.

[28] “LonamiWebs”, “Telethon,” https://github.com/LonamiWebs/Telethon, 2016–.
[29] GramJS, “Gramjs. NodeJS/Browser MTProto API Telegram client library,” https:

//github.com/gram-js/gramjs, 2019–.
[30] Dan ”delivrance”, “mtproto.py,” https://github.com/pyrogram/pyrogram/blob/

34b6002c689273d7233ca1a0976da009a3aafe09/pyrogram/crypto/mtproto.py#L52,
2021.

[31] “LonamiWebs”, “mtprotostate.py,” https://github.com/LonamiWebs/Telethon/
blob/f9643bf7376a5953da2050a5361c9b465f7ee7d9/telethon/network/
mtprotostate.py#L133, 2021.

[32] GramJS, “MTProtoState.ts,” https://github.com/gram-js/gramjs/blob/
7474e57e1f5e392ce9750871db1ca78bf3fcc453/gramjs/network/MTProtoState.ts#
L190, 2021.

[33] A. Zinchuk, “Telegram Web Z,” https://github.com/Ajaxy/telegram-tt, 2021.
[34] A. Cortesi, M. Hils, T. Kriechbaumer, and contributors, “mitmproxy: A

free and open source interactive HTTPS proxy,” 2010–. [Online]. Available:
https://mitmproxy.org/

https://t.me/durov/147
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://web.archive.org/web/20211127010953/https://core.telegram.org/api
https://web.archive.org/web/20211127010953/https://core.telegram.org/api
https://web.archive.org/web/20211213201047/https://core.telegram.org/mtproto
https://web.archive.org/web/20211213201047/https://core.telegram.org/mtproto
https://telegram.org/schema
https://web.archive.org/web/20211201125716/https://telegram.org/apps
https://web.archive.org/web/20211201125716/https://telegram.org/apps
https://web.archive.org/web/20211028151304/https://core.telegram.org/mtproto/security_guidelines
https://web.archive.org/web/20211028151304/https://core.telegram.org/mtproto/security_guidelines
https://web.archive.org/web/20211016013637/https://core.telegram.org/mtproto/description/
https://web.archive.org/web/20211016013637/https://core.telegram.org/mtproto/description/
https://github.com/LonamiWebs/Telethon/issues/3753
https://web.archive.org/web/20220310005110/https://telegra.ph/Why-Isnt-Telegram-End-to-End-Encrypted-by-Default-08-14
https://web.archive.org/web/20220310005110/https://telegra.ph/Why-Isnt-Telegram-End-to-End-Encrypted-by-Default-08-14
https://web.archive.org/web/20220315180848/https://tsf.telegram.org/manuals/e2ee-simple
https://web.archive.org/web/20220315180848/https://tsf.telegram.org/manuals/e2ee-simple
https://github.com/telegramdesktop/tdesktop/blob/9308615361c77d983bac458e48196646b0660c3b/Telegram/SourceFiles/mtproto/details/mtproto_received_ids_manager.h#L15
https://github.com/telegramdesktop/tdesktop/blob/9308615361c77d983bac458e48196646b0660c3b/Telegram/SourceFiles/mtproto/details/mtproto_received_ids_manager.h#L15
https://github.com/telegramdesktop/tdesktop/blob/9308615361c77d983bac458e48196646b0660c3b/Telegram/SourceFiles/mtproto/details/mtproto_received_ids_manager.h#L15
https://github.com/telegramdesktop/tdesktop/blob/dev/Telegram/SourceFiles/mtproto/details/mtproto_received_ids_manager.h#L15
https://github.com/telegramdesktop/tdesktop/blob/dev/Telegram/SourceFiles/mtproto/details/mtproto_received_ids_manager.h#L15
https://github.com/telegramdesktop/tdesktop/blob/dev/Telegram/SourceFiles/mtproto/details/mtproto_received_ids_manager.h#L15
https://github.com/pyrogram/pyrogram
https://github.com/LonamiWebs/Telethon
https://github.com/gram-js/gramjs
https://github.com/gram-js/gramjs
https://github.com/pyrogram/pyrogram/blob/34b6002c689273d7233ca1a0976da009a3aafe09/pyrogram/crypto/mtproto.py#L52
https://github.com/pyrogram/pyrogram/blob/34b6002c689273d7233ca1a0976da009a3aafe09/pyrogram/crypto/mtproto.py#L52
https://github.com/LonamiWebs/Telethon/blob/f9643bf7376a5953da2050a5361c9b465f7ee7d9/telethon/network/mtprotostate.py#L133
https://github.com/LonamiWebs/Telethon/blob/f9643bf7376a5953da2050a5361c9b465f7ee7d9/telethon/network/mtprotostate.py#L133
https://github.com/LonamiWebs/Telethon/blob/f9643bf7376a5953da2050a5361c9b465f7ee7d9/telethon/network/mtprotostate.py#L133
https://github.com/gram-js/gramjs/blob/7474e57e1f5e392ce9750871db1ca78bf3fcc453/gramjs/network/MTProtoState.ts#L190
https://github.com/gram-js/gramjs/blob/7474e57e1f5e392ce9750871db1ca78bf3fcc453/gramjs/network/MTProtoState.ts#L190
https://github.com/gram-js/gramjs/blob/7474e57e1f5e392ce9750871db1ca78bf3fcc453/gramjs/network/MTProtoState.ts#L190
https://github.com/Ajaxy/telegram-tt
https://mitmproxy.org/

On the Cryptographic Fragility of the Telegram Ecosystem ACM ASIACCS 2023, 2023, Melbourne, Australia

[35] M. Jafari, “telminal. A terminal in Telegram!” https://github.com/fristhon/
telminal, 2021.

[36] S. Affan and R. Pathiyil, “WhatsGram. Yet another userbot for Whatsapp,” https:
//github.com/WhatsGram/WhatsGram, 2021.

[37] S. Almeroth, “telegram-signals,” https://github.com/stav/telegram-signals, 2021.
[38] F. Noushad, N. Eashy, and “MrBotDeveloper”, “BroadcastBot,” https://github.com/

nacbots/BroadcastBot, 2021.
[39] D. Gentili, “MadelineProto – Readme.md,” https://github.com/danog/

MadelineProto/blob/5969ebe783692c8c7aa1b38d380489954a540f66/README.md,
2021.

[40] ——, “MadelineProto – MsgIdHandler64.php,” https://github.com/danog/
MadelineProto/blob/1389b24751fa3f06ba783888c4eee7b1c42dea84/src/danog/
MadelineProto/MTProtoSession/MsgIdHandler/MsgIdHandler64.php#L50, 2021.

[41] ——, “MadelineProto – ReadLoop.php,” https://github.com/danog/MadelineProto/
blob/1389b24751fa3f06ba783888c4eee7b1c42dea84/src/danog/MadelineProto/
Loop/Connection/ReadLoop.php#L106, 2020.

[42] N. J. Al Fardan and K. G. Paterson, “Lucky thirteen: Breaking the TLS and DTLS
record protocols,” in IEEE S&P 2013.

[43] Telegram, “TDLib, AuthData.cpp,” 2022. [Online]. Available:
https://github.com/tdlib/td/blob/fa8feefed70d64271945e9d5fd010b957d93c8cd/td/
mtproto/AuthData.cpp

[44] E. Rescorla, H. Tschofenig, and N. Modadugu, “The Datagram Transport Layer
Security (DTLS) Protocol Version 1.3,” IETF, RFC 9147, 2022.

[45] S. Kent, “IP Authentication Header,” IETF, RFC 4302, 2020.
[46] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,” IETF, RFC

8446, 2018.
[47] Telegram, “TDLib -– Build your own Telegram,” https://telegram.org/blog/tdlib,

2018.
[48] M. R. Albrecht, K. G. Paterson, and G. J. Watson, “Plaintext recovery attacks

against SSH,” in IEEE S&P 2009.
[49] M. Bellare and C. Namprempre, “Authenticated encryption: Relations among

notions and analysis of the generic composition paradigm,” in ASIACRYPT 2000.
[50] Telegram, “FAQ for the technically inclined,” https://web.archive.org/web/

20211115225615/https://core.telegram.org/techfaq, 2021.
[51] D. Nizovtsev and M. Thursby, “To disclose or not? An analysis of software user

behavior,” Information Economics and Policy, 2007.
[52] A. Arora, R. Krishnan, R. Telang, and Y. Yang, “An Empirical Analysis of Software

Vendors ’ Patch Release Behavior: Impact of Vulnerability Disclosure,” Information
Systems Research, 2010.

[53] N. Imtiaz, A. Khanom, and L. Williams, “Open or Sneaky? Fast or Slow?
Light or Heavy?: Investigating Security Releases of Open Source Packages,”
arXiv:2112.06804, 2021.

A IMPLEMENTATION OF REPLAY AND
REORDERING ATTACKS

A.1 Client implementations
The Listings 5 to 7 show how to implement simple clients using the
different libraries. All clients have the same behaviour: For every
incoming message, they print the received text. Additionally, the
clients connect to the Telegram server over a HTTP or SOCKS5
proxy running on localhost port 8080.

A.1.1 Pyrogram.

Listing 5: pyrogram_client.py: a simple Pyrogram receiver.
The use of the proxy must be specified in the config.ini file.

1 from pyrogram import Client , filters
2
3 app = Client("test_account", test_mode=True)
4
5 @app.on_message(filters.text)
6 def print_message(client , message):
7 print(message.text)
8
9 if __name__ == '__main__ ':

10 app.run()

A.1.2 Telethon.

Listing 6: telethon_client.py: a simple Telethon receiver.
1 from telethon import TelegramClient , events

2
3 api_id = 123456
4 api_hash = 'your_hash_here '
5 proxy = ("http", '127.0.0.1 ', 8080)
6
7 with TelegramClient('test', api_id , api_hash , proxy=proxy

) as client:
8 @client.on(events.NewMessage(chats="me"))
9 async def handler(event):

10 print(event.message.message)
11
12 client.run_until_disconnected ()

A.1.3 GramJS.

Listing 7: gramJS_client.js: a simple GramJS receiver.
1 const { TelegramClient } = require('telegram ')
2 const { StringSession } = require('telegram/sessions ')
3 const {NewMessage} = require('telegram/events ')
4
5 const apiId = 123456 // Change to your API ID
6 const apiHash = '' // Insert your API hash
7 const stringSession = new StringSession('');
8
9 function eventPrint(event) {

10 // Everytime you receive a mesage , print it
11 console.log(event.message.text);
12 }
13
14 const client = new TelegramClient(stringSession , apiId ,

apiHash , {
15 useWSS: false ,
16 proxy: {
17 ip: "127.0.0.1", // Proxy host IP
18 port: 8080, // Proxy port
19 MTProxy: false , // Use SOCKS
20 socksType: 5, // Use SOCKS5
21 timeout: 2 // Timeout (in seconds) for

connection ,
22
23 }
24 })
25
26 client.addEventHandler(eventPrint , new NewMessage ({}));
27 client.connect ();

A.2 Mitmproxy add-ons
Listing 8 shows how to replay text messages using mitmproxy. To
run the attack, execute
mitmproxy -s [replay ,reorder]_addon.py [--mode socks5]

where socks5 is only needed for the attack against GramJS.

A.2.1 Replay attack.

Listing 8: replay_addon.py
1 from mitmproxy import ctx
2
3 class Replayer:
4 def __init__(self):
5 self.saved = None
6
7 def tcp_message(self , flow):
8 message = flow.messages [-1]
9 message_len = len(str(message))

10
11 ctx.log.info(str(message_len))
12 if 700 < message_len < 1000: # Only save text

messages
13 if self.saved is None:
14 ctx.log.info("SAVE packet")
15 self.saved = message.content
16 else:

https://github.com/fristhon/telminal
https://github.com/fristhon/telminal
https://github.com/WhatsGram/WhatsGram
https://github.com/WhatsGram/WhatsGram
https://github.com/stav/telegram-signals
https://github.com/nacbots/BroadcastBot
https://github.com/nacbots/BroadcastBot
https://github.com/danog/MadelineProto/blob/5969ebe783692c8c7aa1b38d380489954a540f66/README.md
https://github.com/danog/MadelineProto/blob/5969ebe783692c8c7aa1b38d380489954a540f66/README.md
https://github.com/danog/MadelineProto/blob/1389b24751fa3f06ba783888c4eee7b1c42dea84/src/danog/MadelineProto/MTProtoSession/MsgIdHandler/MsgIdHandler64.php#L50
https://github.com/danog/MadelineProto/blob/1389b24751fa3f06ba783888c4eee7b1c42dea84/src/danog/MadelineProto/MTProtoSession/MsgIdHandler/MsgIdHandler64.php#L50
https://github.com/danog/MadelineProto/blob/1389b24751fa3f06ba783888c4eee7b1c42dea84/src/danog/MadelineProto/MTProtoSession/MsgIdHandler/MsgIdHandler64.php#L50
https://github.com/danog/MadelineProto/blob/1389b24751fa3f06ba783888c4eee7b1c42dea84/src/danog/MadelineProto/Loop/Connection/ReadLoop.php#L106
https://github.com/danog/MadelineProto/blob/1389b24751fa3f06ba783888c4eee7b1c42dea84/src/danog/MadelineProto/Loop/Connection/ReadLoop.php#L106
https://github.com/danog/MadelineProto/blob/1389b24751fa3f06ba783888c4eee7b1c42dea84/src/danog/MadelineProto/Loop/Connection/ReadLoop.php#L106
https://github.com/tdlib/td/blob/fa8feefed70d64271945e9d5fd010b957d93c8cd/td/mtproto/AuthData.cpp
https://github.com/tdlib/td/blob/fa8feefed70d64271945e9d5fd010b957d93c8cd/td/mtproto/AuthData.cpp
https://telegram.org/blog/tdlib
https://web.archive.org/web/20211115225615/https://core.telegram.org/techfaq
https://web.archive.org/web/20211115225615/https://core.telegram.org/techfaq

ACM ASIACCS 2023, 2023, Melbourne, Australia Theo von Arx and Kenneth G. Paterson

17 ctx.log.info("LOAD packet")
18 message.content = self.saved
19 self.saved = None
20
21 addons = [
22 Replayer ()
23]

A.2.2 Reordering attack.

Listing 9: reorder_addon.py
1 """
2 Addon for mitmproxy that reorders packets.
3
4 Usage:
5 mitmproxy -s reorder_addon.py
6 mitmdump -s reorder_addon.py
7 """
8
9 from mitmproxy import ctx

10
11 class Reorder:
12 def __init__(self):
13 self.packets = []
14 self.next = 0
15 self.basic_message = None
16
17 def tcp_message(self , flow):
18 message = flow.messages [-1]
19 message_len = len(str(message))
20 ctx.log.info(str(message_len))
21
22 if 700 < message_len < 1000: # Only deal with

text messages
23 if self.basic_message == None:
24 ctx.log.info("SAVE basic message")
25 self.basic_message = message.content
26 return
27
28 # Store the first four packets. Replace them

with the basic_message
29 if 0 <= len(self.packets) < 4:
30 ctx.log.info("SAVE packet")
31 self.packets += [message.content]
32 message.content = self.basic_message
33
34 # Only reorder the first 4 packets after

basic_message
35 elif self.next < 12:
36 ctx.log.info("LOAD packet")
37 message.content = self.packets[self.next

% len(self.packets)]
38 self.next += 3
39
40
41
42
43 addons = [
44 Reorder ()
45]

