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A Novel Approach For Steeringwheel Synchronization With

Velocity/Acceleration Limits And Mechanical Constraints

Ulrich Schwesinger, Cedric Pradalier and Roland Siegwart

Abstract—Pseudo-omnidirectional robots with independently
steerable wheels require a method to synchronize the steering
motion of the wheels in order to keep a unique instantaneous
center of rotation (ICR). For standard wheels, the instantaneous
center of rotation is defined as the intersection point of all
wheel axes. We present a novel approach to deal with the
problem of continuously shifting the center of rotation of a
pseudo-omnidirectional rover from an initial to a demanded
position in the Cartesian plane. The main contribution is the
consideration of substantial velocity and acceleration limits
on the steering units, as well as mechanical constraints and
noise affected sensor measurements. We solve this problem by
deriving a relationship between the steering accelerations of the
single wheels and the acceleration of the center of rotation. We
furthermore provide a contribution to the tracking of the ICR
in the presence of significant sensor noise.
Our results are evaluated by tests on the rover breadboard
developed during the activities for the ExoMars mission.

I. INTRODUCTION

Robots with independently steerable wheels offer superior

maneuverability, most valuable in rough terrains. However,

without a sophisticated synchronization method of the

wheels, misalignments can occur which may result in

lower efficiency locomotion and power usage. Ideally, the

rover’s wheels ought to form a unique instantaneous center

of rotation (ICR) at all times. If all intersection points

coincide, the rover is moving on a well-defined trajectory.

Misalignments arise due to the fact that a system with more

than two independently steerable wheels is over-actuated

[1]. This is intuitively obvious, since the ICR is already

uniquely defined by two wheels. When the wheels are

misaligned, friction, slip and internal forces will arise,

leading to higher energy consumption. In space exploration

scenarios such as ExoMars, available energy is limited

and must be conserved. Since Mars is approximately one

and half times further away from the Sun than the Earth,

the energy collectable by solar panels is significantly

reduced. In order to reduce the mass of the actuators, while

maintaining sufficient torque capabilities, one might raise

the gear reduction ratios of the steering units. However,

this measure is traded for lower velocities and accelerations

of the actuators. Low acceleration limits put a substantial

difficulty on the problem of maintaining a unique ICR

during a steering maneuver. The main problem we tackle

in this paper is how to continuously move the ICR of the

rover, while accounting for acceleration and velocity limits

of the steering actuators at all times. Our approach is able to

consider different kinds of velocity and acceleration profiles

of the actuators and incorporates them in the calculations

of the actuator commands. It can be regarded as a low-level

Fig. 1. ExoMars rover - phase B1 concept, source: ESA/Cluster

controller module for steering synchronization on top of the

single wheels’ motor controllers.

Mechanical limits of the steering units create zones in

the ICR-space, that cannot be left unless at least one wheel

rotates by 180 degrees [2]. Nevertheless, one zone can

be connected over infinity in the cartesian plane. Thus, a

discontinuity arises when moving the ICR from the right

half-plane to the left or vice versa, which can cause problems

within algorithms that control the rover’s movement in the

ICR-space. However, this movement of the ICR is totally

permissible. It corresponds to a switching of the half-planes

by going over a parallel wheel configuration as displayed

in figure 2. In this specific figure, the steering angles are

limited to the range of [−π/2, π/2] as it was the case for

the ExoMars platform. This creates the two different zones

as shown. It is impossible to move the ICR from outside

the rover frame to the inside without having to re-orient

at least one wheel by 180 degrees. To simplify things, we

therefore consider two different kinds of driving modes: an

Ackermann mode, which is characterized by having the ICR

outside the rover frame, and a point turn mode, where the

ICR lies within.

The literature referring to the problem we address in this

paper is rare. To the best of our knowledge, no previous

work has addressed the problem of ICR control with

acceleration limits. Moore et al. [3], designed a feedback

linearization controller to track a given trajectory of an
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Fig. 2. Example of two ICR-zones introduced by mechanical constraints.
The zones are connected over infinity. Entering e.g. “Zone 1” from “Zone
2” is not possible without re-orienting one wheel by 180◦ .

omni-directional rover by deriving a kinematic model of it,

but did not account for any actuator limits or mechanical

constraints. Connette et al. [4], utilized a model predictive

controller to introduce constraints in the velocity space of

the ICR. Acceleration constraints were not in the author’s

focus.

In section II we will describe our strategy of moving the

ICR without violating the velocity and acceleration limits of

the actuators. We will also explain our approach to avoid

mechanical limits and present a control strategy to ensure a

smooth arrival at the target ICR. The tracking of the current

ICR’s position and velocity in the presence of sensor noise is

explained in section III, followed by the results of our tests

on the ExoMars1 breadboard in IV.

II. STEERING METHOD

Our goal is to synchronize the rover’s steering motion, that

is, to ensure that the ICR is well-defined during all steering

maneuvers. We do not consider a path tracking of the rover

in a global frame and regard steering and driving motion

separately. Our algorithm can be used in conjunction with a

higher-level path-tracker that produces steering commands to

follow a global path. We consider the input to our algorithm

to be a desired ICR defined in the rover’s body frame. To

guarantee the compliance of the motion of the ICR with the

limits of the actuators, our approach is to explicitly derive

the relation between the velocity/acceleration of the ICR and

those of the actuators. Actuator limits can then be expressed

as limits on the dynamics of the ICR.

A. Linking Steering Acceleration and ICR Acceleration

We define the position of the ICR with respect to the

rover’s body frame in the Cartesian plane at time t with

pc(t) = [x(t), y(t)]
T
. The steering angle of wheel i corre-

sponding to the ICR pc(t) can then be expressed via

si(t) = − arctan

(
pc,1(t)− wx,i

pc,2(t)− wy,i

)

, (1)

1More information about the ExoMars mission can be found on the ESA
homepage at http://exploration.esa.int/

where wx and wy define the Cartesian coordinates of the

wheels, with i ∈ {1, 2, · · · , N} and N ≥ 3 the number

of steerable wheels. Steering angles are defined w.r.t. to the

rover’s body frame. In our case the body frame is a right-

handed coordinate system with its x-axis pointing in rover

forward direction and its y-axis pointing to its left (see also

Figure 3). Note that the inverse function, mapping a set of

N ≥ 3 steering angles to a unique ICR is not defined,

since the
(
N
2

)
intersection points of the wheel axes do not

necessarily coincide. One can easily deactivate one or more

wheels’ steering units during execution of the algorithm (it

might be necessary due to a detected blockage of the wheel),

just by disregarding these wheels in all calculations.

The representation of the ICR in Cartesian coordinates bears

singularities in the case of parallel wheel configurations

[2]. Then, the coordinates of the ICR lie on a circle with

infinite radius. To avoid this singularity, the ICR is projected

onto a unisphere with its support point in the center of the

rover’s coordinate frame. By applying this transformation

to spherical coordinates, the ICR can be represented by its

azimuth θ and its elevation φ as depicted in figure 3. Note

that these spherical coordinates are not the conventional ones,

but a representation we chose. Now the ICR, when having

a parallel wheel configuration, lies on the equator of the

unisphere (φ = π
2
) with θ = si +

π
2
. si is the common

steering angle for all wheels.

Fig. 3. Projection of the ICR onto a unisphere

When having ICR zones connected over infinity in the

Cartesian plane, switching the half-plane corresponds to

moving the ICR across the equator of the unisphere. The

discontinuity in the Cartesian plane vanishes in the φ/θ-
plane, and a continuous planning of the ICR’s motion is

possible.

The equation of the steering angles depending on the position

of the new ICR pu(t) = [φ(t), θ(t)]
T

located on the

unisphere then transforms into

si(t) = − arctan

(
cos (pu,2(t)) tan (pu,1(t))− wx,i

sin (pu,2(t)) tan (pu,1(t))− wy,i

)

.

(2)

For point turn mode, it is not necessary to perform this

projection, since the ICR will always be within the rover

frame and no singularities can arise in Cartesian coordinates.

Additionally, the projection of the ICR onto the unisphere

is not defined at [x, y] = [0, 0], due to θ = arctan
(
y
x

)
.

By building the first and second derivative of the steer-



ing angles with respect to time given in equation (2)

for Ackermann mode, respectively equation (1) for point

turn mode, one can derive the link between the steering

speeds/accelerations of the steering units and the veloc-

ity/acceleration of the ICR.

The relationships between steering speeds ω, steering accel-

erations ω̇ and ICR velocity v and acceleration a are given

by

ωi = Ji(p) · v =
[
∂si
∂p1

∂si
∂p2

]

·

[
v1
v2

]

≤ Ωmax ∀i , (3)

ω̇i =
∂

∂t
(Ji(p)) · v+ Ji(p) ·

∂

∂t
(v)

= Gi(p, v) · v+ Ji(p) · a ≤ Amax ∀i , (4)

with Ji(p) being the i-th row of the Jacobian (N×2 matrix)

of equation (1) or (2) at ICR position p. G(p, v) contains

the derivatives of the entries of the Jacobian with respect to

time and is dependent on the ICR position and velocity. The

actuator’s maximum speed and acceleration are given by

Ωmax and Amax. J and G were computed with the aid of

MAPLE, but are unfortunately too complex to be displayed

here2. They have to be recalculated in every time-step

based on an estimation of the ICR’s current position p and

velocity v. We dropped the index of the ICR, describing the

representation (either Cartesian or spherical) of the ICR so

far, to indicate that these equations hold regardless of the

transformation applied to the ICR.

Having two free parameters a1 and a2, the direction of a

is freely selectable at this point. By specifying this direction

of acceleration β = arctan
(

a2
a1

)

of the ICR, equation 4 can

be evaluated to get the maximum permitted acceleration of

the ICR amax, which respects the acceleration limit Amax

of the steering units. The maximum permitted acceleration

of the ICR follows from (4):

amax,1 = argmax
i

{
Amax −Gi(p, v) · v

Ji,1 + Ji,2 tan(β)

}

, (5)

amax,2 = tan(β) · amax,2 . (6)

We assume a constant Amax, implying velocity ramps of the

actuators. However, different velocity profiles are possible by

varying Amax depending on the actuators’ current speeds.

In order to obtain a feasible velocity and position of the

ICR at the next time-step, a is integrated with a bilinear

integration over one sample period. To assure that the cal-

culated velocity of the ICR complies with the maximum

speed of the steering units, equation (3) is used to evaluate
∂s
∂t
. If the calculated velocity of the ICR should result in a

violation of one or more wheels’ maximum steering speeds,

one can easily scale down the ICR’s velocity due to the linear

relationship to the steering speeds.

2The full equations can be found in the technical report at
http://www.asl.ethz.ch/people/sculrich/exomars technical report.

B. Potential Field Approach to Determine Direction of ICR-

Acceleration

We apply an artificial force on the ICR to determine its

moving direction. This artificial force can be designed to

avoid forbidden configurations or frontiers in the ICR-space

[2], [4], [5].

It is important to prevent the ICR from crossing frontiers in

the ICR space introduced by mechanical limits. Due to sensor

noise and various imperfections of the system, it cannot

be guaranteed by the algorithm itself, that these frontiers

will not be traversed slightly. This is especially likely when

operating close to these frontiers. Additionally, forbidden

regions in the ICR-space exist at the origins of the wheel

axes. Here, the steering angle of the specific wheel is not

defined. In order to avoid these forbidden configurations,

an artificial potential field, consisting of an attractive force

originating from the target ICR and a repulsive force, was

introduced [4]. We utilized this potential field approach

only for point turn mode in Cartesian coordinates, since

ExoMars-specific maximum curvature conditions prevented

an operation close to ICR frontiers in Ackermann mode.

Applying the potential field approach in the φ/θ-plane is

in general possible. One might design the potential field -

since easier to handle - in the x/y-plane, and transform

it into the φ/θ-plane afterwards. In our implementation of

point-turn mode, the repulsive force was designed to push

the ICR towards the lateral center of the rover and was

chosen to be linear with the lateral offset of the ICR. The

repulsive force was reduced linearly with the distance to

the target ICR, to decrease the influence when approaching

the target. This potential field design avoids local minima

of the potential function and turned out to be sufficient for

our needs despite its simplicity. The attractive force of the

v fa
frfp

v̂

p̂
p

β

Fig. 4. Virtual forces fa and fr applied to the ICR to determine the desired
velocity v̂ and the desired direction of acceleration β.

potential field points from the current position to the goal

position. With the repulsive force of the potential field, we

modify this direction to avoid frontiers in the ICR-space (see

Figure 4). In our case we applied a purely lateral repulsive



force

fp = fa
︸︷︷︸

attractive force

+ fr
︸︷︷︸

repulsive force

(7)

= p̂− p+

[
0

−ǫ · p2

]

,

with p̂ being the target ICR and ǫ a factor to modify the

strength of the repulsive force.

An exemplary potential field is shown in figure 5. It is

apparent, that this potential field design is local minima

free, however differing mechanical constraints might require

another design [6], [7].
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Fig. 5. Potential field designed for point turn mode. Grey box: rover
chassis, green dot: target ICR, arrows: color-coded potential field forces
(darker colors correspond to larger forces).

C. Control of the ICR in ICR-Space

When approaching the desired ICR p̂, it is obvious that a

strategy is required to slow down the steering units. We chose

to implement a control strategy in which the movement of the

ICR is controlled by a nested P-Controller. This controller

assures a smooth approach to the target ICR. Since the

maximum permitted acceleration of the ICR is determined

by the steering synchronization described above, a saturation

function is introduced in the process. Therefore, the control

is only active in close proximity to the target ICR, depending

on the gains Kv and Ka. Wind-up effects are no issue, since

no integral part in the controller is present. The closed loop

control system is displayed in figure 6.

We applied a rectangular forward integration to the accel-

eration since the acceleration was considered to be constant

between two sample times. Thus, for velocity we used a

bilinear integration. The transfer function (neglecting the

saturation function) can be determined to be

G(z) =
Kv Ka T 2 (z + 1)

2z2 + (KvKaT 2 − 4 + 2KaT ) z +Ka(KvT 2 − 2T ) + 2
.

(8)

Fig. 6. Nested P-Controller to control the ICR’s position and velocity

The controller is stable if the poles of the transfer function

lie within the unit circle. An overshoot can be avoided by

eliminating the imaginary part of the poles. The obtained

value pk+1 for the new position of the ICR in the next time-

step can be converted into the corresponding steering angles

with equation (1), respectively (2).

D. Calculation of Feasible Actuator Commands

Our algorithm produces desired steering angles s for every

time-step. Most commercial motor controllers offer low-

level position and velocity control modes. In principle, our

algorithm has to run in velocity control, since sending the

calculated steering angles in each time-step would cause

the internal motor controllers to break down to come to

standstill at the desired position. In this work, velocity

ramp profiles, respectively rectangular acceleration profiles

were assumed. Therefore, the previously calculated steering

angle commands have to be transformed into steering speed

commands ωc, considering the velocity ramp profile shown

in figure 7.

v
el
o
ci
ty

time

ωn,i: current velocity
ωc,i: required velocity
T : sample time

T

ωn,i

ωc,i

Fig. 7. Velocity ramp profile

One can calculate the steering speed required to reach the

demanded position for wheel i via

ωc,i = ωn,i +Amax ·



T −

√

T 2 +
2(ωn,iT −∆si)

Amax



 ,

(9)

with T being the sample time, ωc,i and ωn,i the commanded

and actual steering speed of wheel i, and ∆s being the

steering angle difference to the requested position in the next

time-step.



III. TRACKING OF THE ICR

The steering synchronization method described above re-

quires and strongly depends on a good estimate of the current

ICR’s position and velocity. As the sensor values regarding

steering position and velocity are always noisy up to a certain

amount, or the actual steering positions might deviate from

the desired ones due to a partial blockage of the wheels, an

extended Kalman filter (EKF) was implemented to estimate

the ICR’s position and velocity.

A. Setup of the Extended Kalman Filter

The state vector for the EKF contains the ICR’s position

and velocity, either in the φ/θ-plane (for Ackermann mode)

or the x/y-plane (for point-turn mode):

x =

[

p,
∂p

∂t

]T

. (10)

The measurement vector z consists of all steering angles

and steering speeds, leading to 2N entries, where N is the

number of steerable wheels:

z =

[

s,
∂s

∂t

]T

. (11)

The measurement matrix H is built by the partial derivatives

of the steering angles and steering speeds with respect to the

ICR position and velocity

H =

[
∂s
∂x

∂
∂x

[
∂s
∂t

]

]

=

[
J 0

G · v J

]

, (12)

and forms a [2N × 4] matrix. The prediction of the state

is taken from the controller output described above. For the

prediction of the covariance matrix, the system matrix F is

required, which can be easily determined to be

F =







1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1







, (13)

with sample time T . The measurement noise refers directly

to the position and velocity noise of the actuators and a

white noise assumption seems justified. The system noise

most likely depends on various influences, like time-delays

in the system and also on the current position and velocity of

the ICR. Assuming a fixed white system noise yielded good

results but might describe the true noise imperfectly.

B. Initialization of the Extended Kalman Filter

The initialization of the filter requires a first estimate of the

ICR position and velocity. If this estimation is bad, the filter

might diverge due to the linearizations made. We calculated a

first estimate of the ICR’s position by choosing the intersec-

tion point of two wheels, that leads to the minimum steering

angle deviation variance for all wheels. This position is then

refined with a standard Levenberg-Marquardt approach. This

turned out to be sufficient to assure a fast convergence and to

avoid divergence of the filter. However, a more sophisticated

approach leading to better estimations for near-parallel wheel

configurations can be found in [8].

After having an initial guess for the ICR’s position, the

ICR’s velocity is then obtained by a linear Least-Squares

estimator, solving equation (3) for v:

v =
(
JTJ

)
−1

JTω . (14)

IV. RESULTS

To evaluate the effectiveness and the benefit of synchro-

nizing the steering wheels, tests on the rover breadboard

developed for the ExoMars project were performed. The

six-wheeled rover breadboard was driven in a sand testbed,

designed to simulate the conditions on the Martian surface.

Since none of the approaches described in [2] or [4] incorpo-

rates acceleration limits, and therefore a reasonable behavior

cannot be guaranteed, we compare our synchronized ap-

proach (SM) to a naive method (NM). The NM sets the

wheels’ steering speeds according to their remaining angular

deviation to the target position with

ωc,i = Ωmax ·
∆si

argmax
i

{∆si}
. (15)

The wheel with the largest deviation is commanded the

maximum permitted steering speed Ωmax. This naive

method leads to a concurrent arrival of the steering units at

their target position in the absence of acceleration constraints.

Two predefined steering sequences were tested, one se-

quence each for Ackermann and point turn mode. Each

steering sequence was repeated three times for the syn-

chronized and the naive steering approach. The sequences

were defined by time-stamped steering/driving events, which

are given in Table I. The driving speed for Ackermann

mode corresponds to the translational speed of the center

of the rover, in point turn mode it defines the rotational

speed around the current ICR. The steering sequences were

designed to perform maximum steering motion with the

space available in the testbed. They also comply with the

ExoMars-specific maximum curvature constraints. Because

of these constraints, no repulsive potential field was applied

in Ackermann mode, since the constraints prevented an

operation near the mechanical limits anyways. In both cases

the wheel driving speeds were synchronized with respect to

the estimated ICR.

As a quantitative measure of performance, the lateral

forces provided by three force sensors mounted on the drive

axes on the right side of the rover were recorded. Current

readings were available for all six drive axes. In addition,

the root mean square error (RMSE) of the steering angles

to the perfect synchronization was calculated. The perfect

synchronization was defined by the ICR estimated by the

Levenberg-Marquardt Algorithm. The sample rate of the

algorithms was set to fs = 5Hz to demonstrate the good

performance despite lower update rates. In the following,

the abbreviations FR, FL, CL, CR, RL and RR in the

figures’ legends will indicate the rover’s six wheel positions



Ackermann point turn

event
in s

ICRx

in m
ICRy

in m
speed
in
m/s

ICRx

in m
ICRy

in m
speed
in
rad/s

1 0.00 ∞ 0.02 0.00 0.00 0.00
10 0.00 +0.70 0.02 +1.00 0.00 +0.01
20 0.00 -0.70 0.02
30 -1.00 0.00 -0.01
40 0.00 +0.70 0.02
60 0.00 -0.70 0.02 +1.00 +0.30 +0.01
80 +0.92 +1.09 0.02
90 -1.00 -0.30 -0.01
100 -0.92 +1.09 0.02
120 +0.92 -1.09 0.02
130 0.00 0.00 +0.01
140 -0.92 -1.09 0.02
150 0.00 0.00 0.00
160 0.00 ∞ 0.02
170 0.00 ∞ 0.00

TABLE I

SEQUENCE OF INPUT COMMANDS FOR TEST RUNS

(F)ront/(C)enter/(R)ear - (L)eft/(R)ight. Table II provides the

values for maximum steering speed, acceleration and the

rover dimensions.

steering actuator limits rover dimensions

Amax Ωmax rover width rover length

0.0302
[

rad
s2

]

0.16
[

rad
s

]

1.2 m 1.36 m

TABLE II

ROVER SPECIFIC SETTINGS

In figure 8 and 9, the lateral forces on the wheels and the

RSME of the steering alignment are compared for a point-

turn run. Each time, the upper plot displays the SM. One

can observe a decrease of approximately 26% of the mean

forces on the wheels, as well as a significant reduction in

the RMSE for the SM.

The progress of the steering angles is depicted in figure

10. This time, the Ackermann maneuver was chosen, since

the synchronization of the wheels is clearly visible when

the steering angles pass the parallel configuration, when

switching the half-planes of the ICR. In general, the duration

to reach the target ICR is prolonged for the SM, so we

are trading the benefit of lower internal forces for a slower

steering movement. This is due to the fact that for SM, the

wheel with the maximum steering angle difference to the

target position is not always allowed to steer fastest, which

can be observed by the smoothed plateau in figure 10 for the

SM.

Table III shows the relation of integrated absolute values

of driving currents over the whole run with respect to the

maximum value. Mean values of the three runs performed

were taken. For Ackermann mode, no significant reduction in

energy consumption could be observed. However, for point

turn mode, the SM is able to reduce the energy consumption

by 16.04%. This discrepancy between Ackermann mode and
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Fig. 8. Lateral forces recorded during point turn maneuver. The wheel
synchronization results in a noticeable reduction of lateral forces on the
wheels. Black event lines mark the occurrence of new ICR commands. The
synchronization reduces the mean side-forces on the wheels by 26%.
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Fig. 9. Root mean square error of steering angles recorded during point
turn maneuver.

point turn mode is due to the fact, that steering motions

were wider for point turn mode and the misalignment of the

steering units became larger during the motion.

Ackermann Point Turn
∫

|I| · dt
synchronized: 100 % 83.96 %
naive: 98.57 % 100 %

TABLE III

INTEGRATED DRIVE CURRENTS FOR ACKERMANN AND POINT TURN

MANEUVER

The effect of a blocked wheel could only be evaluated

in simulation. Simulation results showed that the SM for

the unblocked wheels is still working; the unblocked wheels

keep a unique ICR. However, as an effect of the Kalman

filtering, the target ICR is never reached completely. The
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Fig. 10. Steering angles recorded during Ackermann maneuver. Synchro-
nization is mainly visible at the intersection of the six steering angles in
the upper plot, referring to parallel wheel configurations when moving the
ICR from one side of the rover to the other.

measurements of the blocked wheel tend to pull the estimated

ICR towards the blocked wheel, due to the averaging proper-

ties of the Kalman filter. However, this problem could easily

be avoided by deactivating a wheel based on its deviation to

the estimated ICR.

Finally, Figure 11 shows the path of the ICR for a

simulated point turn maneuver. The influence of the repulsive

force of the potential field results in a deformed path,

avoiding ICRs close to lateral side of the rover.

startgoal

x

y

Fig. 11. ICR trajectory during simulated point turn maneuvre. The potential
field pushes the ICR towards the lateral center of the rover. Markers are
placed at equal time increments.

V. CONCLUSION

We presented a novel approach for steering wheel synchro-

nization in the presence of significant velocity and accelera-

tion limits. We achieved this by projecting the constraints

of the steering units into the space of the instantaneous

center of rotation. The ICR could then be controlled in

a system-compliant manner. Our approach is able to deal

with reasonable sensor noise through the filtering of steering

angle and steering speed measurements with an EKF. In the

case of large steering motions, the steering synchronization

showed measurable benefits in the energy consumption of

the drive units due to lower internal forces and slip. We

believe that savings in energy would even be larger in

applications where overactuated vehicles have to drive on

harder surfaces than the sandy soil we had available for our

evaluation. Undesirable side forces, that can be avoided with

our approach, would become more severe on firmer ground.

Furthermore, the algorithm showed good results in simula-

tion with blocked wheels, which is an important property for

rough terrain operation.

Further investigations could tackle the problem of calculating

the ICR trajectory, that leads to the fastest possible arrival at

the target ICR or to incorporate the steering synchronization

into a global trajectory-tracking algorithm.
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