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Abstract
For positive integers s, t, r , let K (r)

s,t denote the r -uniform hypergraph whose vertex
set is the union of pairwise disjoint sets X ,Y1, . . . ,Yt , where |X | = s and |Y1| =
· · · = |Yt | = r − 1, and whose edge set is {{x} ∪ Yi : x ∈ X , 1 ≤ i ≤ t}. The study
of the Turán function of K (r)

s,t received considerable interest in recent years. Our main
results are as follows. First, we show that

ex
(
n, K (r)

s,t

)
= Os,r

(
t

1
s−1 nr−

1
s−1

)
(1)

for all s, t ≥ 2 and r ≥ 3, improving the power of n in the previously best bound and
resolving a question of Mubayi and Verstraëte about the dependence of ex(n, K (3)

2,t )

on t . Second, we show that (1) is tight when r is even and t � s. This disproves a
conjecture of Xu, Zhang and Ge. Third, we show that (1) is not tight for r = 3, namely

that ex(n, K (3)
s,t ) = Os,t (n

3− 1
s−1−εs ) (for all s ≥ 3). This indicates that the behaviour

of ex(n, K (r)
s,t ) might depend on the parity of r . Lastly, we prove a conjecture of

Ergemlidze, Jiang and Methuku on the hypergraph analogue of the bipartite Turán
problem for graphs with bounded degrees on one side. Our tools include a novel twist
on the dependent random choice method as well as a variant of the celebrated norm
graphs constructed by Kollár, Rónyai and Szabó.
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1 Introduction

Let H be an r -uniform hypergraph. The Turán function ex(n, H) of H is the largest
number of edges in an r -uniform hypergraph on n vertices with no copy of H . The
study of the function ex(n, H) for various hypergraphs H is one of the central problems
of extremal combinatorics. In the graph case r = 2, the Turán function is fairly well
understood unless H is bipartite. On the other hand, for r ≥ 3, our understanding of
the Turán function is much worse and there are only few tight results. For example,
determining the answer for the 3-uniform clique on 4 vertices is still open. Some of
the few cases where tight results are known involve hypergraphs which are derived
from graphs, see e.g. [6, 9, 11, 13, 15]. We refer the interested reader to an extensive
survey of Keevash [8] on Turán problems for non–r -partite r -uniform hypergraphs.

It is well-known that for r -partite H , one has ex(n, H) = O(nr−ε) for some
ε = ε(H) > 0 and the main goal here is to determine or estimate the best possible
ε(H). One of the very old such Turán-type questions for hypergraphs is a problem
of Erdős [3], asking for the maximum number fr (n) of edges in an r -uniform hyper-
graph on n vertices which does not have four distinct edges A, B,C, D satisfying
A ∪ B = C ∪ D and A ∩ B = C ∩ D = ∅. Note that in this problem the for-
bidden hypergraphs originate quite naturally from a four-cycle. Erdős in particular
asked whether fr (n) = O(nr−1). This was answered affirmatively by Füredi [7], who
showed that fr (n) ≤ 3.5

( n
r−1

)
. Mubayi and Verstraëte [12] extended Erdős’s ques-

tion by considering the following family of r -uniform hypergraphs which generalize
complete bipartite graphs: for positive integers r , s, t , let K (r)

s,t denote the r -uniform
hypergraph whose vertex set consists of disjoint sets X ,Y1, . . . ,Yt , where |X | = s
and |Y1| = · · · = |Yt | = r − 1, and whose edge set is {{x} ∪ Yi : x ∈ X , 1 ≤ i ≤ t}.
Note that K (r)

s,t is r -partite and for r = 2, K (2)
s,t is just the s× t complete bipartite graph.

Observe that the edges of K (r)
2,2 form a configuration A, B,C, D as in the definition of

fr (n). Hence, fr (n) ≤ ex(n, K (r)
2,2) (this is in fact an equality for r = 3). Mubayi and

Verstraëte [12] proved that ex(n, K (r)
2,2) ≤ 3

( n
r−1

)+O(nr−2), improving the constant in
Füredi’s result. Pikhurko and Verstraëte [14] improved the coefficient of

( n
r−1

)
further.

It remains open whether ex(n, K (r)
2,2) = (1 + o(1))

(n−1
r−1

)
, as conjectured by Füredi.

That
(n−1
r−1

)
is a lower bound can be seen by considering the star, i.e. the hypergraph

consisting of all edges containing a fixed vertex.
Mubayi and Verstraëte [12] initiated the study of ex(n, K (3)

s,t ) for general s, t , and

proved that ex(n, K (3)
s,t ) ≤ Cs,t n3−1/s as well as that ex(n, K (3)

s,t ) ≥ ctn3−2/s for
t > (s − 1)!. For small values of s, they obtained more accurate estimates. Namely,
for s = 3, they improved their bound to ex(n, K (3)

3,t ) ≤ Ctn13/5, while for s = 2,

they showed that ex(n, K (3)
2,t ) ≤ t4

(n
2

)
and that ex(n, K (3)

2,t ) ≥ 2t−1
3

(n
2

)
for infinitely
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many n. They further asked to determine the correct dependence of ex(n, K (3)
2,t ) on t .

Ergemlidze et al. [4] improved the upper bound to ex(n, K (3)
2,t ) ≤ (15t log t + 40t)n2,

leaving a log t gap from the lower bound of �(tn2). For r > 3, little is known.
Ergemlidze, Jiang and Methuku found a construction showing ex(n, K (4)

2,t ) = �(tn3).

Xu et al. [16, 17] proved a tight bound on ex(n, K (r)
s,t ) when s is much larger than t ,

using a standard application of the random algebraic method of Bukh [2].
Our first result, Theorem 1.1, achieves two goals. First, it resolves the problem of

Mubayi andVerstraëte by proving that ex(n, K (3)
2,t ) = �(tn2). And second, it improves

the upper bound of [12] on ex(n, K (3)
s,t ) for every s and t by reducing the exponent of

n from 3 − 1
s to 3 − 1

s−1 . We also obtain an analogous result for every r ≥ 3. The
proof of this bound relies on a new weighted variant of the dependent random choice
method (see [5] for a description of the technique and a brief history).

Theorem 1.1 For any s, t ≥ 2 and r ≥ 3 there is a constant Cs depending only on s
such that

ex
(
n, K (r)

s,t

)
≤ Cst

1
s−1 nr−

1
s−1 .

In particular,

ex
(
n, K (3)

2,t

)
≤ Ctn2

for some absolute constant C.

Our next result shows that, somewhat surprisingly, the bound in Theorem 1.1 is
tight in terms of both n and t if the uniformity r is even and t � s. Our construction
uses as building blocks a variation of the norm graphs, introduced by Kollár et al. [10],
which might be of independent interest.

Theorem 1.2 For any positive integers s ≥ 2 and k, there is a positive constant
c = c(k, s) such that for every integer t > (s − 1)!, if n is sufficiently large, then

ex
(
n, K (2k)

s,t

)
≥ ct

1
s−1 n2k−

1
s−1 .

By combining Theorems 1.1 and 1.2, we see that ex(n, K (r)
s,t ) = �r ,s(t

1
s−1 nr−

1
s−1 )

if r ≥ 4 is even and t > (s − 1)!. (Here and elsewhere in the paper, �r ,s means
that the implied constants can depend on r and s.) In the special case s = 2, this
gives ex(n, K (r)

2,t ) = �r (tnr−1) for even r ≥ 4. This partially answers a question

of Ergemlidze et al. [4], who asked to determine the dependence of ex(n, K (r)
2,t ) on

t . Also, Theorem 1.2 disproves a conjecture of Xu et al. [17, Conjecture 5.1] which
stated that ex(n, K (r)

s,t ) = �r ,s,t (nr−2/s) for all 2 ≤ s ≤ t .
It is natural to ask whether the bound in Theorem 1.1 is tight for odd uniformities

as well. Our next theorem shows that this is not the case for r = 3. This indicates that,
perhaps surprisingly, the parity of r may play a role.

Theorem 1.3 For any s ≥ 3, there exists some ε = ε(s) > 0 such that for any t,

123
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ex
(
n, K (3)

s,t

)
≤ Cs,t n

3− 1
s−1−ε.

The ε = ε(s) in Theorem 1.3 can be chosen on the order of s−5.
Theorems 1.2 and 1.3 together show that ex(n, K (r)

s,t )/n
r−1 has a different order

of magnitude for even r ≥ 4 and for r = 3. Indeed, for even r the function

ex(n, K (r)
s,t )/n

r−1 is asymptotically �r ,s,t (n
1− 1

s−1 ), assuming s 	 t , while for r = 3
this function is smaller by at least a factor of nε. This contradicts a claim made
in the concluding remarks of [4] (see [4, Proposition 1]), where it was stated that
ex(n, K (r)

s,t ) ≤ Or ,s,t (nr−3) · ex(n, K (3)
s,t ). One can check that the proof suggested in

[4] is incorrect.Moreover, aswe now see, the statement itself is disproved byTheorems
1.2 and 1.3.

It would be very interesting to determine if Theorem 1.3 can be extended to all odd
uniformities r . If so, then this would be a rare example of an extremal problem where
the answer depends on the parity of the uniformity. (See [9] for another hypergraph
Turán problem where the extremal construction depends heavily on number theoretic
properties of the parameters.) The first open case is r = 5: is it true that ex(n, K (5)

s,t ) =
O(n5−

1
s−1−ε)?

We end with some results for a more general family of hypergraphs. Let G be
a bipartite graph with an ordered bipartition (X ,Y ), Y = {y1, . . . , ym}. Following
[4], we define G(r)

X ,Y to be the r -uniform hypergraph whose vertex set consists of
disjoint sets X ,Y1, . . . ,Ym , |Y1| = · · · = |Ym | = r − 1, and whose edge set is
{{x} ∪ Yi : {x, yi } ∈ E(G)}. Note that if G = Ks,t with X being the part of size s
and Y being the part of size t , then G(r)

X ,Y = K (r)
s,t . Ergemlidze, Jiang and Methuku

[4] asked whether it is true that if all vertices in Y have degree at most 2 in G, then
ex(n,G(r)

X ,Y ) = O(nr−1) where the implied constant depends only on G and r . Here
we resolve this conjecture in greater generality.

Theorem 1.4 Let s ≥ 2, r ≥ 3 and let G be a bipartite graph with an ordered
bipartition (X ,Y ) such that every vertex inY has degree atmost s. Then ex(n,G(r)

X ,Y ) ≤
Cnr−

1
s−1 where C only depends on G and r.

Note that Theorem 1.2 shows that this bound can be attained whenever r is even.
Finally, we consider the hypergraph G(r)

X ,Y when G = C2t is the cycle of length 2t .

Let us write C (r)
2t for this hypergraph. In an unpublished work, Jiang and Liu showed

that �r (tnr−1) ≤ ex(n,C (r)
2t ) ≤ Or (t5nr−1). The lower bound is obtained by taking

all edges which contain one of t −1 vertices. This hypergraph has cover number t −1,
so it cannot contain C (r)

2t , which has cover number t . Ergemlidze, Jiang and Methuku

[4] improved the upper bound to ex(n,C (r)
2t ) ≤ Or (t2(log t)nr−1). We determine the

correct dependence on t .

Theorem 1.5 For every t ≥ 2 and r ≥ 3, we have that ex(n,C (r)
2t ) = �r (tnr−1).

The rest of the paper is organized as follows. In Sect. 2, we prove a general result
which implies Theorems 1.1, 1.4 and 1.5. In Sect. 3, we prove Theorem 1.2. In Sect. 4,
we prove Theorem 1.3. In Sect. 5, we give some concluding remarks.
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2 Upper Bounds

In what follows, for an r -uniform hypergraph G and a set S = {v1, . . . , vr−1} ⊂ V (G),
we write dG(S) or dG(v1, . . . , vr−1) for the number of vertices vr ∈ V (G) such that
v1v2 . . . vr ∈ E(G). We omit the subscript when the hypergraph is clear. Given a
vertex v ∈ V (G), the link hypergraph of v (with respect to G) is the (r − 1)-uniform
hypergraph containing all (r − 1)-sets which together with v form an edge in G.
Definition 2.1 In an r -uniform hypergraphG, we call a set S ⊂ V (G) t-rich if there are
sets T1, T2, . . . , Tt ⊂ V (G) of size r − 1 such that S, T1, . . . , Tt are pairwise disjoint
and {u} ∪ Ti ∈ E(G) for every u ∈ S and i ∈ [t].

Note that if G has any t-rich set of size s, then it contains K (r)
s,t as a subgraph.

Theorem 2.2 Let α > 1 be a real number and let r ≥ 3, s ≥ 2, t and n be positive
integers. Then there is a constant C which depends only on s such that the following

holds. If G is an n-vertex r-uniform hypergraph with at least Cα
1

s−1 t
1

s−1 nr−
1

s−1 hyper-

edges, then there is a set A ⊂ V (G) of size at least α
1

s−1 t
1

s−1 n1−
1

s−1 (and at least s)
such that the proportion of t-rich sets of size s in A is at least 1 − α−1.

Observe that the conclusion of this theorem implies that G contains K (r)
s,t as a

subgraph, so Theorem 1.1 follows immediately (by taking α = 2, for example).
Moreover, as we will see shortly, Theorem 2.2 also implies Theorems 1.4 and 1.5
fairly easily.

The proof of Theorem 2.2 uses a novel variant of the dependent random choice
method. The rough idea is to choose random vertices v2, v3, . . . , vr ∈ V (G) and
take A to be the set of v1 ∈ V (G) such that v1v2 . . . vr ∈ E(G). However, we
add two major twists to this. Firstly, we only put into A those vertices v1 for
which d(v2, . . . , vr ) = maxi d(v1, . . . , vi−1, vi+1, . . . , vr ). Secondly, the vertices
v2, . . . , vr are not chosen uniformly at random, but with probability proportional to
1/d(v2, . . . ,
vr ).

Let us briefly comment on the purpose of these two twists. If we were to choose
v2, . . . , vr uniformly at random and let A be the set of v1 ∈ V (G) such that
v1v2 . . . vr ∈ E(G), then by the usual dependent random choice argument, we could
conclude that for most s-sets {u1, . . . , us} ⊂ A, there are many sets of size r − 1

forming an edge with each of the ui . (“Many” here means roughly ω(nr−2− 1
s−1 ).) If

at least t of these (r − 1)-sets are pairwise disjoint, then we can find a copy of K (r)
s,t ,

but we run into trouble if say all these (r − 1)-sets contain some vertex x . In this case,
the reason why the event {u1, . . . , us} ⊂ A is not very unlikely is that conditional on
x ∈ {v2, . . . , vr }, the probability of this event is fairly large. However, now the pair
(u1, x) belongs to slightly more edges than a typical pair of vertices in G. This can be
exploited bymodifying the probability distribution of the randomvertices (v2, . . . , vr )
in a way that (r − 1)-sets with large degree are chosen with lower probability.

Moreprecisely, by choosingv2, . . . , vr withprobability proportional to 1/d(v2, . . . ,
vr ) and taking A to be the set of those vertices v1 for which d(v2, . . . , vr ) =
maxi d(v1, . . . , vi−1, vi+1, . . . , vr ), we achieve that for a typical s-set {u1, . . . , us} ⊂

123
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A, not only there are many (r − 1)-sets forming an edge with each ui , but in fact the
stronger statement holds that there cannot be a constant-sized set which intersects all
such (r − 1)-sets. See Claims 3-5 for the full details (Claims 1-2 would hold similarly
without the twists).

We proceed with the detailed proof.

Proof of Theorem 2.2 Choose C such that C ≥ 4s and Cs−1((r−1)!)s
2sr !ss − r2 ≥ 1. Since

s ≥ 2, C can be chosen to be independent from r . Let G be an n-vertex r -uniform

hypergraph with e(G) ≥ Cα
1

s−1 t
1

s−1 nr−
1

s−1 . Let

D = C

2
α

1
s−1 t

1
s−1 n1−

1
s−1 .

By successively deleting all edges containing a set of size r − 1 which lies in less
than D edges, we obtain a subhypergraph G′ (on the same vertex set) with e(G′) ≥
e(G) − nr−1D ≥ e(G)/2 such that for every set S ⊂ V (G) of size r − 1, we have
either dG′(S) = 0 or dG′(S) ≥ D. For the rest of the proof, we let d(S) := dG′(S) for
every set S of size r − 1.

For distinct vertices v2, . . . , vr ∈ V (G′), let

Av2,...,vr = {v1 ∈ V (G′) : v1v2 . . . vr ∈ E(G′), d(v2, . . . , vr )

= max
i

(d(v1, . . . , vi−1, vi+1, . . . , vr ))}

and let a(v2, . . . , vr ) = |Av2,...,vr |.
Define

p =
∑

v2,...,vr :
d(v2,...,vr )>0

D

nr−1d(v2, . . . , vr )
.

By the definition of G′, if d(v2, . . . , vr ) > 0, then d(v2, . . . , vr ) ≥ D, so we have
p ≤ 1. Let us define a random setA ⊂ V (G′) as follows.With probability 1− p, we let
A = ∅. With probability p, we choose a random (r − 1)-tuple (v2, . . . , vr ) of distinct
vertices in G′ in a way that the probability that vi = vi for every i is D

nr−1d(v2,...,vr )
if

d(v2, . . . , vr ) > 0 and 0 otherwise. Set A = Av2,...,vr . �
Claim 1

∑
v2,...,vr

a(v2, . . . , vr ) ≥ (r − 1)!e(G′).
Proof of Claim 1 For any e ∈ E(G′), there are at least (r − 1)! ordered r -tuples
(v1, . . . , vr ) such that e = v1v2 . . . vr andd(v2, . . . , vr ) = maxi (d(v1, . . . , vi−1, vi+1,

. . . , vr )). For any such r -tuple, we have v1 ∈ Av2,...,vr . �
Claim 2 E[|A|s] ≥ ((r−1)!)s

r ! Ds .

Proof of Claim 2 UsingHölder’s inequality for three functionswith parameters p1 = s,
p2 = s, p3 = s/(s − 2), we get

(∑ a(v2, . . . , vr )
s

d(v2, . . . , vr )

) (∑
d(v2, . . . , vr )

) (∑
1
)s−2 ≥

(∑
a(v2, . . . , vr )

)s
,

123
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where each sum is over all (r − 1)-tuples of distinct vertices (v2, . . . , vr ) with
d(v2, . . . , vr ) > 0. Hence,

∑ a(v2, . . . , vr )
s

d(v2, . . . , vr )
≥

(∑
a(v2, . . . , vr )

)s
n(r−1)(s−2)

∑
d(v2, . . . , vr )

,

so

E[|A|s] =
∑ D

nr−1d(v2, . . . , vr )
a(v2, . . . , vr )

s ≥ D

n(r−1)(s−1)

(
∑

a(v2, . . . , vr ))
s

∑
d(v2, . . . , vr )

≥ D

n(r−1)(s−1)

((r − 1)!e(G′))s

r !e(G′)
= ((r − 1)!)s D

r !n(r−1)(s−1)
e(G′)s−1

≥ ((r − 1)!)s D
r !n(r−1)(s−1)

(Dnr−1)s−1 = ((r − 1)!)s
r ! Ds,

where the second inequality used Claim 1. �
Claim 3 Let u1, u2, …, us , v2, …, vr−1 be distinct vertices in G′. Then the probability
that u1, u2, . . . , us ∈ A and vi = vi for all 2 ≤ i ≤ r − 1 is at most D/nr−1.

Proof of Claim 3 Assume that vr ∈ V (G′) is such that u j ∈ Av2,...,vr for each
j ∈ [s]. Then in particular u1v2v3 . . . vr ∈ E(G′) and d(v2, v3, . . . , vr ) ≥
d(u1, v2, . . . , vr−1). Clearly, there are at most d(u1, v2, . . . , vr−1) choices for vr sat-
isfying these two properties, and for each such choice, the probability that vi = vi
for all 2 ≤ i ≤ r is D

nr−1d(v2,v3,...,vr )
≤ D

nr−1d(u1,v2,...,vr−1)
. Hence, summing over all

possibilities for vr proves the claim. �
Claim 4 Let u1, u2, …, us and v2 be distinct vertices in G′. Then the probability that
u1, . . . , us ∈ A and v2 = v2 is at most D/n2.

Proof of Claim 4 This follows from Claim 3 and the union bound over all choices for
v3, . . . , vr−1. �
Claim 5 Suppose that u1, u2, …, us are distinct vertices in G′ such that {u1, . . . , us}
is not t-rich in G′. Then the probability that u j ∈ A for every j ∈ [s] is at most
(r−1)2(t−1)D

n2
.

Proof of Claim 5 Since {u1, . . . , us} is not t-rich, the common intersection of the link
hypergraphs of u1, . . . , us does not contain a matching of size t . Hence, there is
a set T ⊂ V (G′) of size at most (r − 1)(t − 1) with the property that whenever
u jv2 . . . vr ∈ E(G′) for every j ∈ [s], we have vi ∈ T for some 2 ≤ i ≤ r . Therefore,
if u j ∈ A for every j ∈ [s], then vi ∈ T for some 2 ≤ i ≤ r . By Claim 4, the
probability that u j ∈ A for every j ∈ [s] and v2 ∈ T is at most |T |D/n2. By
symmetry, for any fixed 2 ≤ i ≤ r , the probability that u j ∈ A for every j ∈ [s] and
vi ∈ T is also at most |T |D/n2. The claim follows. �
Let b be the number of sets of size s in A which are not t-rich. It follows from
Claim 5 that E[b] ≤ (n

s

) · (r−1)2(t−1)D
n2

≤ r2t Dns−2. By Claim 2 and since D ≥ 4s,
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E
[|A|s1(|A| ≥ s)

] ≥ E
[|A|s] − ss ≥ ((r−1)!)s

r ! Ds − ss ≥ ((r−1)!)s
2r ! Ds , so using that(x

s

) ≥ (x/s)s for x ≥ s, we have

E

[(|A|
s

)]
≥ E

[(|A|
s

)
1(|A| ≥ s)

]
≥ E[|A|s1(|A| ≥ s)]/ss ≥ ((r − 1)!)s

r !2ss Ds .

Hence,

E

[(|A|
s

)
−αb

]
≥ ((r−1)!)s

r !2ss Ds−αr2t Dns−2=
(

((r−1)!)s
r !2ss Ds−1−αr2tns−2

)
D

=
(
Cs−1((r−1)!)s

2sr !ss −r2
)

αtns−2D≥αtns−2D≥α
s

s−1 t
s

s−1 ns−
s

s−1 .

It follows that there is an outcome for which
(|A|
s

) − αb ≥ α
s

s−1 t
s

s−1 ns−
s

s−1 . Then

|A| ≥ s, |A| ≥ α
1

s−1 t
1

s−1 n1−
1

s−1 and the proportion of t-rich sets of size s in A is at
least 1 − α−1, as desired. �

It is now not hard to deduce Theorems 1.4 and 1.5.

Proof of Theorem 1.4 Let t = |V (G(r)
X ,Y )| and let α = t s . Let C be the constant pro-

vided by Theorem 2.2 and letC ′ = Cα
1

s−1 t
1

s−1 . Note thatC ′ is a constant that depends
only on G and r .

Let G be an n-vertex r -uniform hypergraph with at least C ′nr−
1

s−1 edges. By The-

orem 2.2, there is a set A ⊂ V (G) of size at least α
1

s−1 t
1

s−1 n1−
1

s−1 such that the
proportion of t-rich sets in A is at least 1 − α−1. Note that then |A| ≥ t ≥ |X |.
Moreover, the proportion of t-rich sets in A is greater than 1 − (|X |

s

)−1
, so A has a

subset A′ of size |X | in which all s-sets are t-rich. This implies that G contains G(r)
X ,Y

as a subgraph. Indeed, using that t = |V (G(r)
X ,Y )|, we can construct a copy of G(r)

X ,Y
by embedding X arbitrarily into A′ and then embedding the sets Y1, . . . , Ym from the
definition of G(r)

X ,Y greedily one by one. �
Proof of Theorem 1.5 The lower bound was justified in the paragraph before the state-
ment of the theorem, so it is enough to prove the upper bound. Let C be the constant
provided by Theorem 2.2 with s = 2, and let G be an n-vertex r -uniform hypergraph
with at least 100Crtnr−1 edges. By Theorem 2.2 applied with α = 100, s = 2 and r t
in place of t , there is a set A ⊂ V (G) of size at least 100r t such that the proportion of
r t-rich sets of size 2 in A is at least 99/100. By known results on the Turán number of
cycles, this implies that there is a t-cycle formed by rich pairs, i.e., there are distinct
vertices x1, x2, . . . , xt in A such that {x1, x2}, {x2, x3}, …, {xt , x1} are r t-rich pairs.
We give a direct proof of this statement for completeness.

We claim that there is a set A′ ⊂ A of size at least 4t such that for each u ∈ A′, the
number of v ∈ A′ for which {u, v} is r t-rich is at least 3|A′|/4. Indeed, let A0 = A
and, recursively for every i :

• if there is some u ∈ Ai such that the number of vertices v ∈ Ai for which {u, v}
is r t-rich is less than 3|Ai |/4, then choose such a vertex and let Ai+1 = Ai \ {u},
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• else terminate the process and let A′ = Ai .

Clearly, we obtain a set A′ such that for each u ∈ A′, the number of v ∈ A′ for which
{u, v} is r t-rich is at least 3|A′|/4; we just need to show that |A′| ≥ 4t . If |A′| < 4t ,
then we have deleted at least |A|/2 vertices which implies that there were at least
|A|
2 · (|A|/8 − 1) > 1

100

(|A|
2

)
pairs in A which are not r t-rich. This is a contradiction,

so indeed |A′| ≥ 4t .
Observe that for any v, v′ ∈ A′, there are at least |A′|/2 ≥ 2t vertices u ∈ A′ such

that the pairs {u, v} and {u, v′} are r t-rich. We can now greedily find distinct vertices
x1, x2, . . . , xt in A′ such that {x1, x2}, {x2, x3}, …, {xt , x1} are r t-rich pairs.

Since |V (C (r)
2t )| = r t , we can greedily find pairwise disjoint sets Y1, . . . ,Yt in

V (G)\{x1, . . . , xt } such that {xi } ∪ Yi , {xi+1} ∪ Yi ∈ E(G) for all i ∈ [t], where we
let xt+1 = x1. Hence, G contains C (r)

2t as a subgraph, completing the proof. �

3 Lower Bounds

In this section we prove Theorem 1.2. The key ingredient is the following lemma.

Lemma 3.1 Let A and B be two disjoint sets of size n. Assume that there exist pairwise
edge-disjoint bipartite graphs G1,G2, . . . ,Gm with parts A and B such that for any
distinct vertices x1, x2, . . . , xs ∈ A∪ B, there are fewer than t vertices y ∈ A∪ B for
which there exists i ∈ [m] (that may depend on y) with x1y, x2y, . . . , xs y ∈ E(Gi ).
Let e = ∑m

i=1 e(Gi ). Then

ex
(
2kn, K (2k)

s,t

)
≥ ek/m.

Proof Let X1, X2, . . . , X2k be pairwise disjoint sets of size n. For every 1 ≤ p ≤ m,
we define a 2k-partite 2k-uniform hypergraph G(p) with parts X1, X2, . . . , X2k as
follows. For x1 ∈ X1, . . . , x2k ∈ X2k , we let x1x2 . . . x2k be a hyperedge in G(p) if
and only if there exist 1 ≤ i1, i2, . . . , ik ≤ m such that i1 + · · · + ik ≡ p mod m and
for each 1 ≤ � ≤ k, we have x2�−1x2� ∈ E(Gi� ), where X2�−1 is identified with A
and X2� is identified with B. Now clearly, |⋃m

p=1 E(G(p))| = |⋃m
i=1 E(Gi )|k = ek .

Hence, there exists some p for which e(G(p)) ≥ ek/m.
It is therefore sufficient to prove that G(p) is K (2k)

s,t -free for every p. Suppose other-
wise. By symmetry, wemay assume that there are distinct vertices x1,1, . . . , x1,s ∈ X1,
xα,β ∈ Xα for all 2 ≤ α ≤ 2k and 1 ≤ β ≤ t such that x1,i x2,βx3,β . . . x2k,β ∈ E(G)

for each 1 ≤ i ≤ s and 1 ≤ β ≤ t . Clearly, for each 2 ≤ � ≤ k and 1 ≤ β ≤ t , there is
a unique i�(β) ∈ [m] such that x2�−1,βx2�,β ∈ E(Gi�(β)).Moreover, for any 1 ≤ j ≤ s
and 1 ≤ β ≤ t there is a unique i1( j, β) ∈ [m] such that x1, j x2,β ∈ E(Gi1( j,β)).

By the definition of G(p), for any 1 ≤ j ≤ s and 1 ≤ β ≤ t , i1( j, β) + i2(β) +
· · ·+ik(β) ≡ p mod m. Hence, i1(1, β) = i1(2, β) = · · · = i1(s, β). Then for every
1 ≤ β ≤ t , there is some i ∈ [m] such that x1,1x2,β , x1,2x2,β , . . . , x1,s x2,β ∈ E(Gi )

(namely i = i1(1, β) = i1(2, β) = · · · = i1(s, β)). By assumption, the vertices
x2,β , 1 ≤ β ≤ t are all distinct which contradicts the properties of the graphs Gi . �
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We now want to show that for m ≈ (n/t)
1

s−1 , one can almost completely cover the
edge set of Kn,n withpairwise edge-disjoint graphsG1, . . . ,Gm satisfying theproperty
described in Lemma 3.1. The bound in Lemma 3.1 will then give ex(2kn, K (2k)

s,t ) �
t

1
s−1 n2k−

1
s−1 .

The following lemma provides a suitable collection of subgraphs under some mild
divisibility conditions.

Lemma 3.2 Let s ≥ 2 and h be positive integers and let p be a prime congruent
to 1 modulo h. Let m = (p − 1)/h. Then there are pairwise edge-disjoint bipartite
graphs G1, . . . ,Gm with the same parts A and B such that |A| = |B| = ps−1,
| ⋃m

i=1 E(Gi )| = p2s−2 − ps−1 and for any distinct vertices x1, . . . , xs ∈ A ∪ B
there are at most hs−1(s − 1)! vertices y ∈ A ∪ B for which there exists i ∈ [m] with
x1y, x2y, . . . , xs y ∈ E(Gi ).

In the proof, wemake use of the following result of Kollár, Rónyai and Szabówhich
was used to obtain their celebrated lower bound for the Turán number of complete
bipartite graphs; see also [1] for a refinement.

Lemma 3.3 [10, Theorem 3.3] Let K be a field and let ai, j , bi ∈ K for 1 ≤ i, j ≤ t
such that ai, j1 �= ai, j2 for any i ∈ [t] and j1 �= j2. Then the system of equations

(z1 − a1,1)(z2 − a2,1) . . . (zt − at,1) = b1,

(z1 − a1,2)(z2 − a2,2) . . . (zt − at,2) = b2,
...

(z1 − a1,t )(z2 − a2,t ) . . . (zt − at,t ) = bt

has at most t ! solutions (z1, z2, . . . , zt ) ∈ K t .

Proof of Lemma 3.2 Let A and B be disjoint copies of the field Fps−1 . Let H be a
subgroup of F×

p of order h, where F
×
p denotes the multiplicative group of Fp. Let

S1, S2, . . . , Sm be the cosets of H in F×
p .

Recall that the normmap N : Fps−1 → Fp is defined as N (x) = x ·x p ·x p2 · · · x ps−2

and note that N (xy) = N (x)N (y) for any x, y ∈ Fps−1 . For x ∈ A, y ∈ B and
i ∈ [m], let xy be an edge in Gi if and only if N (x + y) ∈ Si . Since S1, . . . , Sm
partition F

×
p and N (z) = 0 if and only if z = 0, it follows that G1,G2, . . . ,Gm are

pairwise edge-disjoint and
⋃m

i=1 E(Gi ) = (A × B)\{(x,−x) : x ∈ Fps−1}. Hence,
| ⋃m

i=1 E(Gi )| = p2 s−2 − ps−1.
We are left to show that for any distinct vertices x1, . . . , xs ∈ A∪B there are at most

hs−1(s−1)!vertices y ∈ A∪B forwhich there exists i ∈ [m]with x1y, x2y, . . . , xs y ∈
E(Gi ). We may assume without loss of generality that x j ∈ A for each j ∈ [s].
Suppose that for some y ∈ B there is i ∈ [m] with x1y, x2y, . . . , xs y ∈ E(Gi ).
This means that N (x j + y) ∈ Si holds for each j ∈ [s]. Then N (

x j+y
xs+y ) = N (x j +

y)/N (xs + y) ∈ H for each j ∈ [s − 1]. �
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Claim 6 Let x1, . . . , xs be distinct elements of Fps−1 and let λ1, . . . , λs−1 ∈ H . Then

there are at most (s − 1)! elements y ∈ Fps−1 such that N (
x j+y
xs+y ) = λ j for each

j ∈ [s − 1].

Since there are hs−1 ways to choose the possible values of N (
x j+y
xs+y ) for j ∈ [s − 1]

from H , the claim implies the lemma.

Proof of Claim Note that N (
x j+y
xs+y ) = λ j is equivalent to N ( 1

xs+y + 1
x j−xs

) =
λ j/N (x j − xs). Setting z = 1

xs+y , a j = 1
x j−xs

and b j = λ j/N (x j − xs), the problem
is reduced to counting the number of solutions to the system of equations

N (z + a1) = b1,

N (z + a2) = b2,

...

N (z + as−1) = bs−1

(2)

in the variable z. Since N (z + a j ) = (z + a j )(z p + a p
j ) . . . (z p

s−2 + a ps−2

j ), we can

apply Lemma 3.3 (with K = Fps−1 , t = s − 1, ai, j = −a pi−1

j , zi = z p
i−1

) to see that
(2) has at most (s − 1)! solutions for z, completing the proof of the claim. �

Remark 3.4 One can prove a variant of Lemma 3.2 using the random algebraic method
of Bukh (see [2] for a detailed example of how this method is applied). More precisely,
one can take a uniformly random polynomial f : F

2s−2
p → Fp of a given (large)

degree and set E(Gi ) = {xy : x, y ∈ F
s−1
p , f (x, y) ∈ Si } for all i ∈ [m], where Si

are defined as in the proof of Lemma 3.2. The proof above uses essentially the same
construction for the explicit choice f (x, y) = N (x + y) (with the minor difference
that the parts there are identified with Fps−1 rather than F

s−1
p ).

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2 Let h = �((t−1)/(s−1)!) 1
s−1 � ≥ 1. Choose a prime p such that

p ≡ 1 mod h and 1
2 (

n
2k )

1
s−1 ≤ p ≤ ( n

2k )
1

s−1 (since n is sufficiently large, such a prime
exists by the prime number theorem for arithmetic progressions). Letm = (p− 1)/h.
Note that hs−1(s − 1)! ≤ t − 1. By the existence of the bipartite graphs provided by
Lemma 3.2 and by Lemma 3.1, we get

ex(2kps−1, K (2k)
s,t ) ≥ (p2s−2 − ps−1)k/m ≥ 2−k p2(s−1)k/m

≥ 2−khp2(s−1)k−1 ≥ ct
1

s−1 n2k−
1

s−1

for some positive constant c = c(k, s). Since 2kps−1 ≤ n, this completes the proof.
�
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4 An Improved Upper Bound for r = 3

In this section we prove Theorem 1.3. The following definition will be crucial in
the proof. Here and in the rest of this section, we will ignore floor and ceiling signs
whenever doing so does not make a substantial difference.

Definition 4.1 Let s ≥ 3 be an integer and let G be a 3-uniform 3-partite hypergraph
with parts X , Y and Z of size n each. We call a vertex z ∈ Z s-nice in G if there exist

partitions X = X1 ∪ · · · ∪ X
n

1
s−1

and Y = Y1 ∪ · · · ∪ Y
n

1
s−1

into sets of size n1−
1

s−1

such that if xyz ∈ E(G) for some x ∈ Xi , then y ∈ Yi . We define s-nice vertices in X
and Y analogously.

Observe that if some vertex z is s-nice in G, then it is also s-nice in any subhyper-
graph of G.

The proof of Theorem 1.3 will consist of two main steps. First, we prove the
following structural result which states that (under a mild condition on the maximum

degree) if a K (3)
s,t -free hypergraph has close to n

3− 1
s−1 edges, then it contains a subgraph

with a similar number of edges in which all vertices in two of the parts are nice.

Lemma 4.2 Let s ≥ 3, let t be a positive integer, let ε > 0 and let n be sufficiently
large. Let G be a K (3)

s,t -free 3-uniform 3-partite hypergraph with parts X, Y and Z of

size n each. Assume that e(G) ≥ n3−
1

s−1−ε and that every pair of vertices belongs to

at most n1−
1

s−1+ε hyperedges. Then G has a subhypergraph H (on the same vertex

set) such that e(H) ≥ n3−
1

s−1−225 s4ε and every vertex in X ∪ Y , Y ∪ Z or Z ∪ X is
s-nice inH.

The second step is showing that (again under some mild conditions on the degrees)
such a structured hypergraph must contain K (3)

s,t .

Lemma 4.3 Let s ≥ 3, let t be a positive integer, let 0 < ε < 1
4s+6 and let n be

sufficiently large. Let G be a 3-uniform 3-partite hypergraph with parts X, Y and Z
of size n each. Assume that the number of hyperedges containing any given pair of

vertices in G is either 0 or between n1−
1

s−1−ε and n1−
1

s−1+ε. Assume that xyz ∈ E(G)

for some x ∈ X, y ∈ Y and z ∈ Z and that every vertex in Z ∪ {x} is s-nice in G.
Then G contains a copy of K (3)

s,t .

We will give the proof of Lemmas 4.2 and 4.3 in Sects. 4.1 and 4.2, respectively.
Now let us see how these lemmas imply Theorem 1.3. The last ingredient is a lemma
that shows that we can assume that no pair of vertices belongs to many hyperedges.

Lemma 4.4 Let s ≥ 3, let t be a positive integer, let 0 < ε < 1/2, let n be sufficiently
large and let G be a K (3)

s,t -free 3-uniform hypergraph with 3n vertices and at least

n3−
1

s−1−ε hyperedges. ThenG has a 3-partite subgraphHwith parts of size n such that

e(H) ≥ n3−
1

s−1−2ε and any pair of vertices belongs to at most n1−
1

s−1+2ε hyperedges
inH.
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Proof ClearlyG has a 3-partite subgraphG′, with parts X ,Y , Z of size n each, such that
e(G′) ≥ 2

9e(G). For each e = xyz ∈ E(G′), let λ(e) = max(dG′(x, y), dG′(y, z), dG′
(z, x)). Now there is a positive integer 1 ≤ b ≤ log2 n such that G′ has at least
e(G′)/ log2 n edges e with 2b−1 ≤ λ(e) ≤ 2b. By symmetry, we may assume that

there are at least n3−
1

s−1−ε−o(1) triples (x, y, z) ∈ X × Y × Z such that xyz ∈ E(G′),
dG′(x, y) ≥ 2b−1 and dG′(x, y), dG′(y, z), dG′(z, x) ≤ 2b. Let H be the subgraph of

G′ consisting of precisely these edges xyz. Clearly, 2b ≥ n1−
1

s−1−ε−o(1) ≥ ω(1), so

there are at least n3−
1

s−1−ε−o(1)(2b−1)s−1 many (s + 2)-tuples (x, y, z1, . . . , zs) ∈
X × Y × Zs of distinct vertices such that xyz1 ∈ E(H) and xyzi ∈ E(G′) for each
i ∈ [s]. Write A for the set of these tuples. By the pigeon hole principle, we can

choose some (z1, . . . , zs) ∈ Zs which features at least n−sn3−
1

s−1−ε−o(1)(2b−1)s−1

many times inA. SinceG′ does not contain K (3)
s,t as a subgraph, there is a set T ⊂ X∪Y

of size at most 2(t − 1) such that if (x, y, z1, . . . , zs) ∈ A, then x ∈ T or y ∈ T .
By symmetry, we may therefore assume that for some y0 ∈ T ∩ Y there are at

least 1
2t−2n

−sn3−
1

s−1−ε−o(1)(2b−1)s−1 vertices x ∈ X such that (x, y0, z1, . . . , zs) ∈
A. In particular, dG′(y0, z1) ≥ 1

2t−2n
−sn3−

1
s−1−ε−o(1)(2b−1)s−1. On the other hand,

dG′(y0, z1) ≤ 2b by the definition of A. Hence,

1

2t − 2
n−sn3−

1
s−1−ε−o(1)(2b−1)s−1 ≤ 2b,

so 2b ≤ n1−
1

s−1+ ε
s−2+o(1) ≤ n1−

1
s−1+2ε. This implies that every pair of vertices belongs

to at most n1−
1

s−1+2ε hyperedges inH. �
We can now prove Theorem 1.3.

Proof of Theorem 1.3 Let ε < 1
900s4(2s+3)

, let n be sufficiently large and assume, for

the sake of contradiction, that G is a K (3)
s,t -free 3-uniform hypergraph with 3n vertices

and at least n3−
1

s−1−ε edges.
By Lemma 4.4, G has a 3-partite subgraph G′ with parts X ,Y , Z of size n such that

e(G′) ≥ n3−
1

s−1−2ε and any pair of vertices belongs to at most n1−
1

s−1+2ε hyperedges
in G′. Lemma 4.2 implies that G′ has a subgraph G′′ (on the same vertex set) such that

e(G′′) ≥ n3−
1

s−1−450s4ε and every vertex in X ∪ Y , Y ∪ Z or Z ∪ X is s-nice in G′′.
By successively removing edges which contain a pair of vertices lying in less than

D = 1
10n

1− 1
s−1−450s4ε edges, we obtain a non-empty subgraph G′′′ (on the same vertex

set) in which every pair of vertices belongs to either 0 or at least D hyperedges. Hence,
since 450s4ε < 1

4s+6 , Lemma 4.3 implies that G′′′ contains K (3)
s,t as a subgraph, which

is a contradiction. �

4.1 Finding a Structured Subgraph inG

In this subsection, we prove Lemma 4.2. In what follows, for a graph G and vertices
u1, . . . , uk ∈ V (G), we write dG(u1, . . . , uk) for the number of common neighbours
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of u1, . . . , uk in G. With a slight abuse of notation, for a 3-uniform hypergraph G, we
still write dG(u, v) for the number of hyperedges in G containing both u and v.

Lemma 4.5 Let s ≥ 3, let ε > 0 and let n be sufficiently large. Let G = (X ,Y ) be

a bipartite graph on n + n vertices such that 
(G) ≤ n1−
1

s−1+ε and the number of

s-tuples (u1, . . . , us) ∈ Xs with dG(u1, . . . , us) ≥ n1−
1

s−1−ε is at least ns−1−ε. Then
there are pairwise disjoint sets U1,U2, . . . ,Uk ⊂ X and V1, V2, . . . , Vk ⊂ Y of size

n1−
1

s−1 for some k ≥ n
1

s−1−(3 s+1)ε such that G[Ui , Vi ] has at least n2− 2
s−1−4ε edges

for each i ∈ [k].
Proof Assume that for some j < n

1
s−1−(3s+1)ε wehave already found pairwise disjoint

setsU1,U2, . . . ,Uj ⊂ X and V1, V2, . . . , Vj ⊂ Y of size n1−
1

s−1 such that G[Ui , Vi ]
has at least n2−

2
s−1−4ε edges for each i ∈ [ j]. We show how to find the next pair

of subsets Uj+1, Vj+1. Write U = ⋃
i∈[ j] Ui and V = ⋃

i∈[ j] Vi . Clearly, |U | ≤
n1−(3s+1)ε and |V | ≤ n1−(3s+1)ε. LetW = {x ∈ X : |NG(x)∩ V | ≥ 1

2n
1− 1

s−1−ε}. By
double counting the edges between W and V , we get |W | · 1

2n
1− 1

s−1−ε ≤ |V |
(G),
which implies that |W | ≤ 2n1−(3s−1)ε.

For a vertex u ∈ X , let Su = {x ∈ X : dG(u, x) ≥ n1−
1

s−1−ε}. By double

counting the edges between Su and NG(u), we get |Su |n1− 1
s−1−ε ≤ 
(G)2, so |Su | ≤

n1−
1

s−1+3ε. It follows that for any u ∈ X , the number of (u2, . . . , us) ∈ Xs−1 with

dG(u, u2, u3, . . . , us) ≥ n1−
1

s−1−ε is at most |Su |s−1 ≤ ns−2+3(s−1)ε. Therefore, the

number of (u1, . . . , us) ∈ Xs with dG(u1, . . . , us) ≥ n1−
1

s−1−ε such that ui ∈ U ∪W
for some i ∈ [s] is at most s(|U | + |W |)ns−2+3(s−1)ε ≤ 3sns−1−2ε ≤ 1

2n
s−1−ε.

On the other hand, by assumption, the number of s-tuples (u1, . . . , us) ∈ Xs with

dG(u1, . . . , us) ≥ n1−
1

s−1−ε is at least ns−1−ε. Hence, there exists some u ∈ X \ (U ∪
W ) such that there are at least 1

2n
s−2−ε tuples (u2, . . . , us) ∈ (X \ (U ∪W ))s−1 with

dG(u, u2, u3, . . . , us) ≥ n1−
1

s−1−ε. This implies that there are at least ( 12n
s−2−ε)

1
s−1 ≥

1
2n

1− 1
s−1−ε vertices x ∈ X\(U ∪ W ) with dG(u, x) ≥ n1−

1
s−1−ε. Since u /∈ W ,

we have |NG(u) ∩ V | < 1
2n

1− 1
s−1−ε, so there are at least 1

2n
1− 1

s−1−ε vertices x ∈
X\(U ∪W ) with |NG(u) ∩ NG(x)\V | ≥ 1

2n
1− 1

s−1−ε. This means that we can choose

a set Uj+1 ⊂ X\U of size n1−
1

s−1 which sends at least ( 12n
1− 1

s−1−ε)2 = 1
4n

2− 2
s−1−2ε

edges to NG(u) \ V . Since |NG(u)\V | ≤ 
(G), there exists a set Vj+1 ⊂ Y\V of

size n1−
1

s−1 such that the number of edges in G[Uj+1, Vj+1] is at least 1
4n

2− 2
s−1−2ε ·

min
(
1, n1−

1
s−1 /
(G)

)
≥ 1

4n
2− 2

s−1−3ε ≥ n2−
2

s−1−4ε. This completes the proof. �
Lemma 4.6 Let s ≥ 3, let t be a positive integer, let ε > 0 and let n be sufficiently
large. Let G be a K (3)

s,t -free 3-uniform 3-partite hypergraph with parts X, Y and Z of

size n each. Assume that e(G) ≥ n3−
1

s−1−ε and that every pair of vertices belongs to

at most n1−
1

s−1+ε hyperedges. Then G has a subhypergraph G′ (on the same vertex

set) such that e(G′) ≥ n3−
1

s−1−15 s2ε and either every vertex in Y or every vertex in Z
is s-nice in G′.
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Proof We may assume that ε < 1/4, else the conclusion of the lemma holds trivially.

Using e(G) ≥ n3−
1

s−1−ε, by convexity there is a set T of at least�s(n2(n
1− 1

s−1−ε)s) =
�s(n

s+1− 1
s−1−sε) tuples (x1, x2, . . . , xs, y, z) of distinct vertices such that xi ∈ X ,

y ∈ Y and z ∈ Z and xi yz ∈ E(G) for every i . Since G is K (3)
s,t -free, for any

distinct x1, . . . , xs ∈ X there is a set S ⊂ Y ∪ Z of size at most 2t − 2 such that
for each y ∈ Y and z ∈ Z for which (x1, x2, . . . , xs, y, z) ∈ T , we have y ∈ S

or z ∈ S. Since every pair of vertices in G is in at most n1−
1

s−1+ε hyperedges, it

follows that any fixed (x1, . . . , xs) extends to at most (2t − 2)n1−
1

s−1+ε members

of T . Hence, there are at least
1
2 |T |

(2t−2)n
1− 1

s−1+ε
tuples (x1, . . . , xs) which extend to at

least
1
2 |T |
ns members of T . For each such (x1, . . . , xs) there is some z ∈ Y ∪ Z such

that dG({x1, . . . , xs}, z) ≥ 1
2t−2 · 1

2 |T |
ns ≥ �s,t (n

1− 1
s−1−sε) ≥ n1−

1
s−1−(s+1)ε. Here

dG({x1, . . . , xs}, z) denotes the number of vertices y ∈ V (G) such that xi yz ∈ E(G)

holds for all i ∈ [s]. Hence, the number of tuples (x1, x2, . . . , xs, z) ∈ Xs ×(Y ∪Z) of

distinct vertices with dG({x1, . . . , xs}, z) ≥ n1−
1

s−1−(s+1)ε is at least
1
2 |T |

(2t−2)n
1− 1

s−1+ε
≥

�s,t (ns−(s+1)ε) ≥ 4ns−(s+2)ε. By the symmetry of Y and Z , we may assume, without
loss of generality, that there are at least 2ns−(s+2)ε tuples (x1, x2, . . . , xs, z) ∈ Xs × Z

with dG({x1, . . . , xs}, z) ≥ n1−
1

s−1−(s+1)ε.
For every z ∈ Z , define a bipartite graph Gz with parts X and Y where xy is

an edge in Gz if and only if xyz ∈ E(G). Observe that for any z ∈ Z , we have


(Gz) ≤ n1−
1

s−1+ε. By the previous paragraph,

∑
z∈Z

∣∣∣
{
(x1, . . . , xs) ∈ Xs : dGz (x1, . . . , xs) ≥ n1−

1
s−1−(s+1)ε

}∣∣∣ ≥ 2ns−(s+2)ε. (3)

On the other hand, we claim that for any z ∈ Z , we have

∣∣∣
{
(x1, . . . , xs) ∈ Xs : dGz (x1, . . . , xs) ≥ n1−

1
s−1−(s+1)ε

}∣∣∣ ≤ ns−1+(s−1)(s+3)ε.

(4)

Indeed, let x ∈ X and let Sx = {x ′ ∈ X : dGz (x, x
′) ≥ n1−

1
s−1−(s+1)ε}.

By double counting the edges of Gz between Sx and NGz (x), we have |Sx | ·
n1−

1
s−1−(s+1)ε ≤ 
(Gz)

2 ≤ n2−
2

s−1+2ε and so |Sx | ≤ n1−
1

s−1+(s+3)ε. Hence, the

number of x2, . . . , xs ∈ X satisfying dGz (x, x2, . . . , xs) ≥ n1−
1

s−1−(s+1)ε is at most
|Sx |s−1 ≤ ns−2+(s−1)(s+3)ε . Now (4) follows by summing over x .

By (3) and (4), there are at least n1−(s+2)ε−(s−1)(s+3)ε vertices z ∈ Z for which

∣∣∣
{
(x1, . . . , xs) ∈ Xs : dGz (x1, . . . , xs) ≥ n1−

1
s−1−(s+1)ε

}∣∣∣ ≥ ns−1−(s+2)ε. (5)

We now define a suitable subhypergraph of G. For any vertex z satisfying (5),
Lemma 4.5 (applied for Gz with (s + 2)ε in place of ε) implies that for some k ≥
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n
1

s−1−(3s+1)(s+2)ε there are disjoint sets X1, . . . , Xk ⊆ X and Y1, . . . ,Yk ⊆ Y of size

n1−
1

s−1 such that for all i ∈ [k], in Gz there are at least n
2− 2

s−1−4(s+2)ε edges between
Xi and Yi . Among the hyperedges of G containing z, keep those xyz for which there
is i ∈ [k] such that x ∈ Xi and y ∈ Yi . Thus, for each z satisfying (5) we keep at

least k · n2− 2
s−1−4(s+2)ε ≥ n2−

1
s−1−(3s+5)(s+2)ε edges containing it. For each z ∈ Z

which does not satisfy (5), delete all hyperedges of G containing z. Call the resulting
subhypergraph G′.

It is clear that every vertex in Z is s-nice in G′. Moreover,

e(G′) ≥ n1−(s+2)ε−(s−1)(s+3)ε · n2− 1
s−1−(3s+5)(s+2)ε ≥ n3−

1
s−1−15s2ε,

as s + 2 + (s − 1)(s + 3) + (3s + 5)(s + 2) ≤ 15s2 for s ≥ 3. This completes the
proof. �
Proof of Lemma 4.2 The lemma follows from two applications of Lemma 4.6. �

4.2 Finding K(3)s,t in the Structured Subgraph

In this subsection, we prove Lemma 4.3. In what follows, for a 3-uniform hypergraph
G and distinct vertices x, z ∈ V (G), we write NG(x, z) for the set of vertices y ∈ V (G)

forwhich xyz is an edge inG. Let K (3)
1,s,1 denote the 3-uniformhypergraphwith vertices

x, y1, . . . , ys, z and edges xyi z, i = 1, . . . , s.

Lemma 4.7 Let s ≥ 3, let 0 < ε < 1/8 and let n be sufficiently large. Let G be a
3-uniform 3-partite hypergraph with parts X, Y and Z of size n each. Assume that

every pair of vertices in G is contained in either 0 or at least n1−
1

s−1−ε hyperedges.
Suppose that xyz ∈ E(G) for some x ∈ X, y ∈ Y and z ∈ Z and that z is s-nice in G.
Then G has at least ns−

2
s−1−(2s+1)ε copies of K (3)

1,s,1 containing z and with the part of
size s being a subset of NG(x, z).

Proof Let Gz be the link graph of z. Since z is s-nice in G, there are sets X ′ ⊂ X and

Y ′ ⊂ Y of size n1−
1

s−1 such that x ∈ X ′, y ∈ Y ′ and whenever x ′y′ ∈ E(Gz), then
either none or both of x ′ ∈ X ′ and y′ ∈ Y ′ hold. By the assumption in the lemma,

every vertex in Gz has degree either 0 or at least n1−
1

s−1−ε.

Let xy′ ∈ E(Gz). Clearly, y′ ∈ Y ′. Then y′ has at least n1−
1

s−1−ε neighbours

in Gz , all of which must be in X ′. Hence, there are at least n1−
1

s−1−ε · |NGz (x)| =
n−ε|X ′||NGz (x)| edges in Gz between X ′ and NGz (x). Since |NGz (x)| is much larger
than nε, by convexity there are �s(|X ′||NGz (x)|sn−sε) copies of K1,s in Gz with the

part of size s inside NGz (x). Since |X ′| = n1−
1

s−1 and |NGz (x)| ≥ n1−
1

s−1−ε, the
lemma follows. �
Proof of Lemma 4.3 Since x is s-nice, there are sets Y ′ ⊂ Y and Z ′ ⊂ Z of size n1−

1
s−1

such that y ∈ Y ′, z ∈ Z ′ and whenever xy′z′ ∈ E(G), then we have either none or both

of y′ ∈ Y ′ and z′ ∈ Z ′. Note that there are at least n1−
1

s−1−ε vertices z′ ∈ Z ′ such that
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xyz′ ∈ E(G), because each pair of vertices is in either 0 or at least n1−
1

s−1−ε edges,
by the assumption of the lemma. For each z′ ∈ Z ′ with xyz′ ∈ E(G), Lemma 4.7

gives at least ns−
2

s−1−(2s+1)ε copies of K (3)
1,s,1 containing z′ and with the part of size s

being a subset of NG(x, z′). Since NG(x, z′) ⊂ Y ′ for every such z′, it follows that G
contains at least n1−

1
s−1−ε · ns− 2

s−1−(2s+1)ε = ns+1− 3
s−1−(2s+2)ε copies of K (3)

1,s,1 with

the part of size s being a subset of Y ′. However, |Y ′|s = (n1−
1

s−1 )s = ns−1− 1
s−1 , so it

follows by the pigeon hole principle that there is a set S ⊂ Y ′ of size s which extends

to at least n
s+1− 3

s−1−(2s+2)ε

n
s−1− 1

s−1
= n2−

2
s−1−(2s+2)ε copies of K (3)

1,s,1. Let E be the set of pairs

(x ′, z′) ∈ X × Z with x ′y′z′ ∈ E(G) for every y′ ∈ S, so |E | ≥ n2−
2

s−1−(2s+2)ε. We
claim that G contains a copy of K (3)

s,t with the part of size s being S. If not, then the

pairs in E are covered by at most 2t−2 vertices. But then |E | ≤ (2t−2) ·n1− 1
s−1+ε, as

every pair of vertices is in at most n1−
1

s−1+ε hyperedges. Since 2− 2
s−1 − (2s+2)ε >

1 − 1
s−1 + ε, this contradicts |E | ≥ n2−

2
s−1−(2s+2)ε. �

5 Concluding Remarks

• The most interesting question arising from the present paper is whether

ex(n, K (r)
s,t ) = Or ,s,t (n

r− 1
s−1−ε) for s ≥ 3 and odd r ≥ 5. Recall that this is

true for r = 3 (Theorem 1.3) but false for even r if t � s (Theorem 1.2).
• Similarly, it would be interesting to decide whether ex(n, K (r)

2,t ) = �r (tnr−1) for
odd r ≥ 5. This is true for r = 3 and every even r ≥ 4. The upper bound holds
for arbitrary r ≥ 3 (Theorem 1.1).

• Mubayi andVerstraëte conjectured that ex(n, K (3)
s,t ) = �s,t (n3−2/s) for 2 ≤ s ≤ t .

This remains open for s ≥ 3.

Note added After posting our paper on the arXiv, we were informed by Dhruv
Mubayi that he had independently proved aweaker version of ourTheorem1.1, namely

that ex(n, K (r)
s,t ) ≤ nr−

1
s−1 (log n)Or ,s,t (1).
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