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Object and Animation Display with Multiple Aerial Vehicles

Javier Alonso-Mora, Marcel Schoch, Andreas Breitenmoser, Roland Siegwart and Paul Beardsley

Abstract—This paper presents a fully automated method to
display objects and animations in 3D with a group of aerial
vehicles. The system input is a single object or an animation
(sequence of objects) created by an artist. The first stage is
to generate physical goal configurations and robot colors to
represent the objects with the available number of robots. The
run-time system includes algorithms for goal assignment, path
planning and local reciprocal collision avoidance that guarantee
smooth, fast and oscillation-free motion. The presented algo-
rithms are tested in simulations and verified with real quadrotor
helicopters and scale to large robot swarms.

I. INTRODUCTION

Screens that can display visual content in the third di-
mension and are no longer limited to flat surfaces remain
an interesting challenge. In this paper we present a method
to display visual content with a swarm of aerial vehicles.
In [1] a method and setup to display images and animations
with multiple ground vehicles was presented. We build
on that work and extend it to a 3D display with aerial
vehicles. In this line, [2] proposed a large swarm of micro
helicopters which act as three-dimensional pixels in free
space. The work still appears to be in concept phase, but
the animations demonstrate the exciting potential of flying
displays. Although when using a low amount of robots no
complex objects can be formed, if used for specific purposes
in the right environment, such a flying display can very well
show fascinating effects.
The last five years have seen an increasing research interest

in agile multi-rotor aerial vehicles. An overview of an aerial
vehicle testbed, state of the art methods and challenges is
given in [3]. In [4] a centralized and costly optimization
method was presented to create agile motions for groups
of quadrotors (including obstacle avoidance). In parallel,
[5] presented algorithms to produce choreographic motions
for a group of quadrotors, synchronizing them to music.
In contrast to our objective, in these works, the desired
trajectories are not only precomputed, but also specified
individually for each vehicle, which may not scale well
to large systems. When controlling large groups of aerial
vehicles collision avoidance is of paramount importance, in
particular, [6] presented a method for reciprocal collision
avoidance for simple airplanes. We choose a similar strategy
to guarantee collision-free motions and build on the 3D
extension of [7].
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Like in our experiments, most of the previously mentioned
works rely on an external motion tracking system. In con-
trast, [8] presented an on-board vision based localization
method that could allow for fully autonomous navigation.
Given an input object, both surface and volumetric repre-

sentations are possible. In this work we transform the object,
which is defined through a surface mesh, into a volumetric
representation. This choice is discussed in more detail in
Section III-E. The alternative of using a surface mesh as
direct representation of the surface is common in computer
graphics. Mesh simplification and remeshing operations like
those in [9] and [10] are furthermore based on a tessellation
of the surface. This is related to distributing a group of robots
over a surface mesh, as demonstrated in [11] which applies
a Centroidal Voronoi tessellation for covering surfaces with
a group of climbing robots.
The remainder of the paper is structured as follows.

Section II provides an overview of the system. Section III
describes the goal generation for the object display. In
Section IV the real-time controller is presented, including
goal assignment, path planning and collision avoidance.
The extension from static objects to animated displays is
described in Section V. Section VI contains experimental
results with physical robots and in simulation. Section VII
concludes the paper and indicates future work.

II. SYSTEM OVERVIEW

The presented system extends our work [1] for image and
animation display in 2D to flying displays in 3D. The system
consists of a set of N aerial vehicles, a motion tracking
system, and a central computer that wirelessly sends motion
commands to the robots. Due to the limitations in space and
cost, experiments with a large swarm of robots are provided
in simulation using an identified dynamic model of a real
quadrotor helicopter. Experiments with two real quadrotors
are also presented as proof of concept.
Given an input object and N robots of radius {r1, . . . , rN}

the method is divided into two steps, first goal generation,
followed by a real-time controller that drives the robot to the
goal positions.
Goal generation is the computation of the robot positions

in order to represent a desired object given a specified
number of robots; the algorithm for the goal generation is
described in Section IV. The goal positions for a given object
are computed independently of the current position of the
robots and thus can be pre-computed.
At run time, a real-time controller (described in Section V)

drives the robot pixels to the computed goal positions. In
each time step the following three computations take place.



(a) (b) (c) (d)

Fig. 1. Goal generation for a dog using 80 agents. (a) Rendered obj-file. (b) Volumetric point cloud. (c) Initial samples using a Poisson distribution. (d)
Goal positions after k-means optimization.

Firstly, the robots are assigned to the goal positions by an
auction algorithm. Secondly, a preferred velocity towards its
assigned goal position is computed for each robot indepen-
dently. Finally, a distributed reciprocal collision avoidance
algorithm finds a collision-free velocity for each robot, taking
its dynamics and the current positions and velocities of its
neighbors into account. The new velocities are close to the
robots’ preferred velocities, and enable a safe motion update.
Although the dynamics of the vehicles are considered in the
collision avoidance algorithm, the robots are treated to be of
spherical shape.
As shown in [12] it is intractable to compute the optimal

motions of N robots interacting in a common workspace
because the search space is exponential in N . Thus a
distributed scheme, like the one that we propose, is needed
for scalability to large swarms of robots.

III. GOAL GENERATION
A. Preprocessing of object files
In computer graphics there exists a variety of formats on

how to represent an object in 3D space. Most of them use
vertices, edges and faces to describe the surface of an object
and do not include details about the volume inside, since it
is not needed for rendering. In this work, the input object
is given in the wavefront obj-file format, which is relatively
widespread and available as an import/export option in most
3D design programs. In this format, an object is given by
vertices and faces forming a surface mesh. Furthermore,
texture coordinates can be stored.
The first step of the method is to convert the surface

representation of the object into a uniformly distributed point
cloud of its volume (see Figure 1 (a) and (b)). This is done
by generating a grid of points and keeping those points that
lie inside the volume enclosed by the object’s surface mesh.
The generated volumetric point cloud V is then used to obtain
the goal positions of the robots.

B. Initial samples
To obtain the goal positions, an iterative optimization is

used (see following section). This optimization distributes
the goal positions in the volume by converging to a local

optimum. Therefore a near-optimal distribution of initial
samples is vital to obtain a balanced representation of the
object upon convergence of the iterative optimization. Initial
goal positions are sampled within the volumetric point cloud
following a Poisson distribution [13].
We compared this method with random, farthest first and

subset initialization [14] and in all cases Poisson sampling
provides the best results, both, visually and in computational
time (see Figure 1 (c), and Table I for the case of the
dog object). The grid to generate the point cloud for this
experiments has dimensions 20 x 80 x 60, 80 goal positions
are computed, the methods are repeated 200 times and
the average computational time and cost W of the final
distribution are obtained. See Section III-C for details.

C. Iterative optimization
Given the initial goal positions and the volumetric point

cloud, the final goal positions for good representation of the
input object are found by an optimization using a k-means
clustering algorithm [13] (see Figure 1 (d)). The algorithm
iteratively performs the following two steps. First, the point
cloud is clustered with respect to the current goal positions
and second, goal positions are updated to the centroids
of each one of the clusters. This method asymptotically
converges to a local optima of the cost measure

W =
N∑

i=1

∑

z∈Ti

‖gi − z‖2, (1)

where gi are the goal positions and Ti ⊂ V are the clusters
of a partition of V given by

Ti = {z ∈ V | ||z − gi|| ≤ ||z − gj ||, j ∈ [1, N ], j �= i}. (2)

This method is equivalent to the Voronoi coverage method
used in [1] to distribute N robots in a planar image.

D. Post-processing of goal positions
First, the resulting goal positions are rescaled to ensure a

minimal distance between them.
Second, color can be added. In object files the color of the

surface mesh is given by a texture. In our implementation,
for each goal position its color is selected equal to that of



Initialization Init. [s] Optim. [s] W/Wmax Iterations
Random < 0.01 2.03 0.969 91.2
k-means++ 0.09 1.51 0.967 75.6
Farthest first 0.27 2.18 0.972 101.0
20 subsets 0.9273 2.08 1.000 35.7

TABLE I
COMPARISON OF THE COMPUTATION TIME, COST AND NUMBER OF

ITERATIONS FOR VARIOUS INITIALIZATION METHODS.

the closest surface point. This adds an extra cue to identify
an object represented with a low number of robots.

E. Volumetric vs. surface representation

Objects can be displayed either by their surface or their
volume. Given enough robots, an object may be displayed
more accurately if the points are placed on the surface
manifold since inner points are not necessary to define the
shape. Nevertheless, consider now representing long and thin
objects (such as the rod of Figure 2) with a low number of
robots, due to cost limitations for instance. In this case, if the
robots are distributed on the surface manifold, their positions
are not aligned, leading to a bad representation, as shown in
the right of Figure 2. On the other hand, if the robots are
distributed over the volume, a clear representation of the long
and thin object can be obtained, as shown in the middle of
Figure 2. Arbitrary objects in general include long and thin
parts, such as legs like the ones of the dog in Figure 1. For
this reason and the limitation in the number of robots, the
volumetric representation is used.

IV. REAL-TIME CONTROL

A real-time controller that scales well with the number
of robots is implemented to drive the robots to the set
of goal positions representing the input object. In each
iteration the robots are first uniquely assigned to the goal
positions; secondly, a preferred velocity is computed without
taking the other vehicles into account; thirdly, a collision-
free velocity is computed via a distributed local collision
avoidance method. The collision-free velocity is then tracked
by a controller that is based on an identified model of the
vehicle dynamics. This method is an extension to aerial
vehicles of the method presented in [1] for image display.
Therefore we refer to [1] for some more details.
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Fig. 2. Comparison between representation methods by the example
of a rod using 5 robots. Left: Rendered obj-file. Middle: Volumetric
representation. Right: Surface representation

A. Goal assignment
In order to minimize the convergence time, the robots

at current position pi are uniquely assigned to the goal
positions gj by minimizing the sum of squared distances
||pi − gj ||2. This minimization is solved via the auction
algorithm presented in [15] and previously used in [1], which
scales very well with the number of robots.

B. Preferred velocity
For each vehicle, a preferred velocity vpi is given by

the vector pointing towards its goal position (gj − pi) and
with magnitude proportional to the distance. This preferred
velocity is saturated to the preferred speed Vpref of the
vehicle.

C. Reciprocal collision avoidance
The reciprocal collision avoidance algorithm is fully dis-

tributed. All vehicles are considered to have spherical shape.
For each robot, given its preferred velocity vpi and the
current velocities vj and positions pj of its neighbors, a
new collision-free velocity vi is computed. In order to avoid
collisions while guaranteeing smooth motions in the case of
complex dynamics, the optimal reciprocal collision avoid-
ance (ORCA) method presented in [7] is extended. ORCA is
an optimization with linear constraints (one per neighboring
robot) based on velocity obstacles [16] and exploits the fact
that all controlled robots in the environment react following
the same scheme, thus avoiding oscillations. This method
guarantees oscillation-free and smooth motions in multi-
robot scenarios but assumes the robots to be holonomic
and does not take acceleration constraints into consideration.
Following the line of thought of [17], we extend it to verify
the dynamics of the aerial vehicles used in our experiments.
1) Idea: For each vehicle and at each time step, a straight-

line constant-velocity reference trajectory (given by vnewj )
is computed as if the robot was holonomic following [7].
In this optimization, an extra constraint is added (IV-C.3)
to account for the kino-dynamic capabilities of the vehicle.
Furthermore, the radius of the vehicle is enlarged (IV-C.4)
to account for the tracking error of the reference trajectory
when using the specified controller (IV-D).
2) Reachable velocities: For simplicity (although not re-

quired for our method), we consider a maximum acceler-
ation equal in all directions and independent of the initial
conditions of the vehicle. For the identified model of the
quad-rotor used in the experiments, this was a reasonable
assumption. We further consider a maximum time δ to reach
the desired velocity and we obtain the sphere

Svi = {v | ||v− vi|| < δamax}. (3)

3) Tracking error: The space of feasible states and reach-
able velocities is discretized. The trajectory of the quad-
rotor is simulated (note the symmetries) using an identified
model and the LQR trajectory tracker for the quad-rotor
(which is also used in the experiments) of Section IV-D.
The maximum tracking errors are computed and for each
set of initial conditions, the inner-sphere Svi,E ⊂ Svi of the



velocities with tracking error lower than E is stored. This
can be precomputed for the dynamics of the robot.
4) Extended radius: If the radius of the robots is extended

by E and the constraint vnewi ∈ Svcurrent

i
,E is added to the

optimization with linear constraints, the trajectories of the
robots are collision-free, for the identified model and design
trajectory tracker. Note that E is variable and may decrease
if two robots are close to each other.
5) Avoiding deadlocks due to symmetry: The method

presented in [7] can lead to deadlocks in symmetric and ideal
cases (for example when two robots are in direct collision
course in a noise-free scenario), this can be avoided by
adding an inner cone of aperture α to the Velocity Obstacle
formed by two vehicles preventing the linear constraint to be
perpendicular to the axis of the cone, which would have led
to an asymptotic decrease in speed to zero in this particular
case.

D. Trajectory tracking
In our simulated experiments we use an identified second

order model of the dynamics of the AscTec Hummingbird
quadrotor [18]. Both a PID and an LQR trajectory controller
were derived in [18] for the aforementioned vehicle. These
controllers guarantee smooth convergence to the desired
trajectory, in our case given by the velocity vi. In the
experiments presented in this paper, the LQR controller is
used.

V. ANIMATION DISPLAY
The previous sections describe a method to display a single

object with multiple aerial robots. This section extends the
method to display 3D animations specified by a sequence of
input object files or keyframes. Modifications of the methods
of Sections III and IV are described below.
For each frame (given by an object file) of the animation,

a set of goal positions is obtained using the method in
Section III. In parts of the animation where there is sufficient
correlation, the goal positions computed in the previous
frame serve as initial positions for the computation of the
goal positions in the current frame, replacing the Poisson
sampling described in Section III-B. This initialization re-
duces computation time and disparities between consecutive
goal sets.
The controller of Section IV drives the robots through the

given goal positions, representing the frames in sequence at
given time-instances with KfΔt separation. Kf ∈ N is a
design constant and Δt is the time-step of the controller.
In order to achieve smoother motions, the velocities of the
robots are synchronized when the set of goal positions is
changed

||vp,fi || = min(Vmax, ||pi − g
f
i ||/(KfΔt)), (4)

where vp,fi and gfi are the preferred velocity and goal
position of robot i at frame f .
With this method, an artist can create an animation with

standard software and export the keyframes as object files
that are imported in our framework.

VI. EXPERIMENTAL RESULTS
In this section we present experiments of object and

3D animation display with a simulated swarm of quad-
rotors. We further verify the algorithms in experiments with
two real quad-rotors. A video containing the experiments
accompanies this paper.

A. Experimental setup
AscTec Hummingbird quad-rotors1 are used in the experi-

ments. The quad-rotors communicate via XBee modules1b
with a central computer. A commercial motion tracking
setup1c is used to accurately localize the vehicles. In the
simulations, a second order identified model of the AscTec
Hummingbird quad-rotor is used (see [18]).
Given the input object files, the goal positions are pre-

computed using the algorithms of Section III. The control
loop explained in Section IV is performed at 25Hz and an
internal rate controller2 on the quad-rotors is further used.
Due to the reduced size of the experimental space (5.5m

x 5m x 2.5m), the maximum velocity of the quad-rotors
is limited and the walls of the room are added as linear
constraints in the local collision avoidance.
In the simulations, the aerial vehicles are displayed as

spheres able to change color, although their behavior follows
the same dynamics of the quad-rotors used in the experi-
ments.
The following parameters are used: radius of the quad-

rotor r = 0.3m, desired radius enlargement E = 0.2m,
maximum speed Vmax = 3m/s, preferred speed Vpref =
2.4m/s, maximum acceleration amax = 2.5m/s2, time to
reach a new velocity δ = 0.3s.

B. Object display
The object display is demonstrated with three different

object files: a star, an ant and a dog (see Figure 3 top and
middle right and in Figure 1). In the first experiment, eleven
simulated quad-rotors lift off from ground and display a star.
In the second experiment, 80 simulated quad-rotors display
the ant starting from the dog. The vehicles’ trajectories are
depicted on the right-most images. In the third experiment
(bottom row), 80 simulated quad-rotors lift off the ground
and display the dog. The minimum distance between vehicles
is displayed in the right-most graphic. Note that although
robots may come close (due to their dynamics) no collisions
happen.

C. Animation display
This method allows an artist to design a 3D animation that

is then displayed by aerial vehicles in a fully automated way.
In Figure 4 we present an experiment where 50 simulated
quadrotors display an animation of a human walking. Images
are captured every 5s and distances are displayed in meters.
The input animation is shown in the top row, the 3D-frontal
view of the aerial display in the middle row and a side view
in the bottom row.
1www.asctec.de; www.digi.com; www.vicon.com
2www.ros.org/wiki/asctecmavframework
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Fig. 3. Top row and left to right: Input object star; eleven simulated quad-rotor helicopters in their initial configuration, followed by an intermediate
capture after 2s and in their final positions (4s) displaying the star; trajectory of each quad-rotor in different colors. Middle row and left to right: Input
object ant; 80 simulated quad-rotor helicopters in their initial configuration displaying a dog, followed by an intermediate capture after 3s and in their final
positions (7s) displaying the ant; trajectory of each quad-rotor in different colors. Bottom row: 80 simulated quad-rotors take off and display the dog (three
screenshots at 0s, 4s and 9s; the minimum distance between quad-rotors in each time instance is shown in the right-most image. The minimum distance
stays over twice the radius of the vehicles and thus collisions are avoided. Realistic background is added to visualize the effect of such a display.
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Fig. 5. Six simulated quadrotors (with identified dynamic model and
measurement noise) exchange positions on a circle. Left: Top view of the
trajectories [m]. Right: Frontal view.

D. Collision avoidance

We present two experiments to show the performance of
the collision avoidance algorithm for aerial vehicles. The first
one consists of six simulated quadrotors (with identified dy-
namic model and measurement noise) exchanging positions
on a circle. The trajectories are shown in Figure 5. The results
of the second experiment are shown in Figure 6, where two
real quadrotors exchange their positions in flight.
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Fig. 6. Two real quadrotors exchange positions. Left: Top view of the
trajectories. Right: Distance between the quadrotors at each time instance
(blue) and desired minimal distance (red).

VII. CONCLUSION AND FUTURE WORK

In this paper we present a method to create 3D displays
with aerial vehicles. An object or 3D animation created by
an artist is taken as input, and is first transformed into a
set of goal positions. In real time, the aerial vehicles are
assigned to the goal positions and driven towards them.
Resulting trajectories are collision-free. The underlying local
reciprocal collision avoidance algorithm can be distributed
and enables the method to scale well to large groups of
vehicles. Simulated experiments are presented with up to 80



Fig. 4. 50 simulated quadrotors display an animation of a human walking. Images are captured every 10s and distances are in meters. The robot color
is adjusted according to color from surface mesh texture. Realistic background is again added to visualize the effect of the display. Top: Input animation.
Middle: 3D-frontal view. Bottom: Side view. The full animation is found in the accompanying video.

quad-rotors subject to their real dynamics, and the method
is further verified with two real quadrotors.
It becomes apparent that when using a low number of

aerial vehicles, the view-point of the object has an important
effect on the accurate representation. In this work we have
presented a general method, but one could benefit from view-
point information in the future.
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