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Global framework for uncertainty quantification

Step A
Model(s) of the system

Assessment criteria

Step B
Quantification of

sources of uncertainty

Step C
Uncertainty propagation

Random variables Computational model Distribution
Mean, std. deviation
Probability of failure

Sudret, B. Uncertainty propagation and sensitivity analysis in mechanical models. Habilitation à diriger des recherches, 2007.

▶ Requires many evaluations of the costly computational model
▶ Solution: replace the computational model with a cheap-to-evaluate surrogate
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Problem setup

Static system
▶ The surrogate is build from experimental

design inputs

X = {x(1), . . . , x(NED)}

and corresponding model outputs

Y = {y(1), . . . , y(NED)}

▶ Typically, the surrogate maps a set of scalar
inputs to one or more scalar quantities of
interest (outputs)

M̃ : Dx ⊂ RM → R

Dynamical system
▶ System has time-dependent exogenous

inputs and output

x : T → RM and y : T → R

that evolve along a time axis

T = {0, δt, 2δt, . . . , Nδt}

▶ The surrogate predicts the output at time t
based on the input up to and including time t

y(t) = M(x(T ≤ t)) ≈ M̃(x(T ≤ t))
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Surrogate models for dynamical systems

Dynamical systems can often be modelled using AutoRegres-
sive with eXogenous inputs (ARX) models

▶ Autoregressive: model uses its own past predictions
▶ Exogenous input: excitation that governs the system

response

We denote such models as:

y(t) = M(φ(t), c)

▶ φ(t) ∈ RMφ : gathers the exogenous inputs and system output at different time steps
▶ c: finite set of model parameters, e.g. regression coefficients or weights
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Calibrating an ARX model

Building an ARX model can be cast into ordinary regression problem y = M̃(Φ, c) with regression
matrix Φ and output vector y:

Φ =


φ(t0)

φ(t0 + δt)
...

φ((N − 1)δt)

 , y =


y(t0)

y(t0 + δt)
...

y((N − 1)δt)

 ,

where each row φ(•) reads

φ(t) = {y(t − ℓy
1), y(t − ℓy

2), . . . , y(t − ℓy
ny ),

x1(t − ℓx1
1 ), x1(t − ℓx1

2 ), . . . , x1(t − ℓx1
nx1

),

x2(t − ℓx2
1 ), x2(t − ℓx2

2 ), . . . , x2(t − ℓx2
nx2

),

. . . ,

xM (t − ℓ
xM
1 ), xM (t − ℓ

xM
2 ), . . . , xM (t − ℓ

xM
nxM

)}

▶ System response y ∈ RN

▶ Exogenous input x ∈ RN×M

▶ Autoregressive lags

ℓy
i ∈ {δt, 2δt, . . . , (N − 1)δt}

▶ Exogenous input lags

ℓ
xj

i ∈ {0, δt, . . . , (N − 1)δt}
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Challenges with ARX models

Only one timestep at a time:

ŷ(t) = M̂(x(T ≤ t), ŷ(T < t))

▶ past predictions ŷ(T < t)
▶ exogenous input x(T ≤ t)

Main difficulties
1. Curse of dimensionality
2. Control systems making the response non-smooth
3. Dampers, nonlinear springs and coupling introducing nonlinearities
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Dealing with high-dimensional exogenous inputs

Reduce dimensionality of the system excitation x along non-
temporal coordinates:

x̃ = G(x)

where x ∈ RN×M and x̃ ∈ RN×m such that m ≪ M

▶ Original time scale T is preserved
▶ Wide array of methods available, e.g.:

– n-dimensional discrete cosine transform
– principal component analysis
– (deep) autoencoders
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Dealing with complex dynamical systems

▶ Building a surrogate solely on the original exogenous input x ∈ RN×M input can be suboptimal:

M̃ : x(T ≤ t) → y(t)

▶ A more informative set of features ζ ∈ RN×Mζ can simplify the mapping to y:

M̃ : ζ(T ≤ t) → y(t) where ζ = F(x)

▶ The feature set ζ:
– does not necessarily have a reduced dimensionality (i.e. Mζ > M )
– can and should incorporate prior knowledge about the system

How can we construct and select these features?
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Construction of auxiliary quantities

Auxiliary quantities zi are constructed incrementally by applying any transform Fi:

z1(t) = F1(x(T ≤ t), z1(T < t))
z2(t) = F2(z1(T ≤ t), x(T ≤ t), z2(T < t))

...

zi(t) = Fi(z1(T ≤ t), . . . , zi−1(T ≤ t), x(T ≤ t), zi(T < t))

M̃ : ζ(T ≤ t) → y(t) where ζ = {x, z1, . . . zi}

▶ Transform Fi can be an ARX model
▶ An auxiliary quantity can depend on other auxiliary

quantities
▶ Possible auxiliary quantities are e.g.:

– control system outputs
– moving averages, integrals/derivates
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Automatic selection of auxiliary quantities

Function SelectFeatures(x̃, z, y)
ζ ← {}, ỹ ← y
while x̃ ̸= {} or z ̸= {} do

ρ← Correlate ({x̃, z}, ỹ)
if max (|ρ|) < θ then

break
ζi ← arg max(|ρ|)
if ζi ∈ x̃ then

ζ ← {ζ, ζi}
x̃← x̃\ζi

else if ζi ∈ z then
ζ′ ← SelectFeatures ({x̃, ζ}, z\ζi, ζi)
x̃← {x̃, z ∩ ζ′}
z ← z\z ∩ ζ′

ζ ← {ζ, ζi}
z ← z\ζi

ỹ ← y − M̃(ζ)
return ζ

Function Correlate(x, y)
ρ← {}
for xi ← x1, . . . , xM do

ρ← {ρ, KendallTau(xi, y)}
return ρ

▶ x̃: features only depending on exogenous input
▶ z: auxiliary quantities
▶ y: system response
▶ ζ: selected features
▶ ρ: measure of association, e.g Kendall’s tau

ρ(xi, y) = 2
n(n−1)

∑
k<ℓ

sgn(xi,k − xi,ℓ)sgn(yk − yℓ)

▶ θ: minimum correlation to stop algorithm
▶ M̃: ARX model
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Case study - aero-servo-elastic simulation of a wind turbine

▶ Input turbulence box v : T → Rνw×νy×νz

– Discrete time axis T = {0, δt, 2δt, . . . , Nδt}
– Wind speed components νw

– Discrete spatial grid νy × νz

▶ Response time series f : T → R

Find a surrogate M̃ for the
aero-servo-elastic wind turbine

simulator M:
f(t) = M(v(T ≤ t)) ≈ M̃(v(T ≤ t))
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Dimensionality reduction

▶ Only dominant longitudinal wind speed component vx is kept
▶ Decompose each slice vx(t) into its spectral coefficients ξi,j(t) using the 2-dimensional discrete

cosine transform
▶ Dimensionality is reduced by choosing ni < νy and nj < νz

vκ,ℓ
x (t) =

ni−1∑
i=0

nj−1∑
j=0

ξi,j(t) cos
[

π
ni

(
κ + 1

2

)
i
]

cos
[

π
nj

(
ℓ + 1

2

)
j
]

Original frame
vx(t = t∗)

Spectral coefficients
log |ξ(t = t∗)|

Reconstructed frame
ṽx(t = t∗)

Time-dependent spectral
coefficients
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Feature selection

▶ Quantity of interest: Power output P

▶ Pool of features
– Spectral coefficients ξ0,0, . . . , ξ6,6
– Blade pitch ϕ
– Rotor speed ω

▶ Stopping criterion: ρ < θ = 0.05
▶ Using Polynomial NARX model:

y(t) =
∑

α∈A cαPα(φ(t))

where

Pα(φ(t)) =
∏Mφ

i=1 φi(t)αi

Power output P

Rotor speed ω

Blade pitch ϕ
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Results - Blade pitch

Auxiliary quantity
ϕ̂(t) = M̃(ξ(T ≤ t), ϕ̂(T < t))

▶ Root-mean-squared (RMSE) error on the
out-of-sample validation dataset

▶ Simulation with lowest and highest RMSE
▶ Surrogate shows high accuracy
▶ Surrogate is slightly less responsive than the

turbine controller
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Results - Rotor speed

Auxiliary quantity
ω̂(t) = M̃(ξ(T ≤ t), ϕ̂(T ≤ t), ω̂(T < t))

▶ Surrogate shows high accuracy
▶ Prediction is missing very high-frequency

components
▶ Prediction remains stable also when relying

on the blade pitch prediction
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Results - Generator power

Quantity of interest
P̂ (t) = M̃(ξ(T ≤ t), ϕ̂(T ≤ t), ω̂(T ≤ t), P̂ (T < t))

▶ Surrogate tends to slightly overestimate
power output (< 2 % in average)

▶ Sharp dips are not captured well by the
surrogate

▶ Accurate surrogate over the full 10 minutes,
even when relying on blade pitch and rotor
speed prediction
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Conclusion and outlook

Conclusion
▶ Multistep surrogate modelling approach can be favourable as it simplifies the input-output

mapping at each step
▶ The final surrogate prediction is stable over extended time periods, even when relying on

auxiliary quantities
▶ Construction order of auxiliary quantities can be determined in a data-driven recursive fashion

Outlook
▶ Investigate the effect of different stopping criteria and measures of association
▶ Application to other problems, such as buildings under wind loads and ground motion
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The Uncertainty Quantification
Software

www.uqlab.com

www.uqpylab.uq-cloud.io

The Uncertainty Quantification
Community

www.uqworld.org
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