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A Time-domain Readout Technique for Neural 

Interfaces based on VCO-Timestamping  
Fernando Cardes, Member, IEEE, Ebrahim Azizi, Andreas Hierlemann, Member, IEEE 

Abstract— CMOS neural interfaces are aimed at studying the 

electrical activity of neurons and may help to restore lost functions 

of the nervous system in the future. The central function of most 

neural interfaces is the detection of extracellular electrical 

potentials by means of numerous microelectrodes positioned in 

close vicinity to the neurons. Modern neural interfaces require 

compact low-power, low-noise readout circuits, capable of 

recording from thousands of electrodes simultaneously without 

excessive area consumption and heat dissipation. In this paper, we 

propose a novel readout technique for neural interfaces. The 

readout is based on a voltage-controlled oscillator (VCO), the 

frequency of which is modulated by the input voltage. The novelty 

of this work lies in the postprocessing of the VCO output, which is 

based on generating digital timestamps that contain temporal 

information about the oscillation. This method is potentially 

advantageous, because it requires mostly digital circuitry, which is 

more scalable than analog circuitry. Furthermore, most of the 

digital circuitry required for VCO-timestamping can be shared 

among several VCOs, rendering the architecture efficient for 

multi-channel architectures. This paper introduces the VCO-

timestamping concept, including theoretical derivations and 

simulations, and presents measurements of a prototype fabricated 

in 0.18-µm CMOS technology. The measured input-referred noise 

in the 300 Hz – 5 kHz band was 5.7 µVrms, and the prototype was 

able to detect pre-recorded extracellular action potentials.  

Index Terms—ADC, CMOS, microelectrode array, neural 

interface, time domain, VCO-ADC. 

I. INTRODUCTION

ction potentials (APs) are voltage signals generated by 

electrogenic cells, such as cardiomyocytes or neurons, 

and result from transmembrane ionic currents. In the 

brain, APs are the main feature of neuronal information 

processing, and their study is key for progress in neuroscience 

and the development of treatments to restore lost functions. APs 

can be detected by placing small electrodes close to neurons, 

since the ionic transmembrane currents cause small electrical-

potential variations in the extracellular medium adjacent to the 

cell membrane. The amplitude of these voltage variations, 

known as extracellular action potentials (EAPs), is typically 

smaller than 1 mVpp, with the majority of the signal power 

contained within the 300 Hz – 5 kHz band [1], [2].  

Neural information processing involves a very large number 

of neurons, while electrophysiology tools have been 
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traditionally limited in the number of electrodes that can be 

used in parallel. Over the last decades, CMOS technology has 

gained popularity for the implementation of active neural 

interfaces, enabling the recording from thousands of electrodes 

simultaneously [3]–[11]. The number of readout channels is 

typically limited by either power and heat dissipation, which 

may lead to tissue damage, or silicon real estate, which leads to 

increased fabrication costs and bulkier devices.  

Analog circuitry typically consumes a significant part of the 

silicon area and overall power and requires considerable design 

efforts. Furthermore, designers tend to avoid deep submicron 

technologies to reduce manufacturing costs, since analog 

circuitry does not benefit from CMOS technology scaling [12]–

[15]. Larger feature sizes also limit the performance of on-chip 

digital signal processing circuits, which are not efficient in old 

CMOS nodes, so that signal processing is frequently performed 

off chip. Voltage-controlled oscillator (VCO)-based analog-to-

digital converters (ADCs) have emerged as area- and power-

efficient alternatives to other to well-established architectures, 

such as successive-approximation-register (SAR) ADCs or 

classical delta-sigma () modulators [16]–[26]. VCO-ADCs 

feature different topologies, such as open-loop converters [17], 

[21], [25],  modulators with VCO-based quantizers [19], 

[20], or  modulators with VCO-based integrators [23], [24], 

[27]. In these implementations, a significant part of the signal 

path is built by using standard digital cells and minimizing large 

analog circuits, such as operational amplifiers.  Therefore, these 

“mostly-digital” circuits are particularly suitable for modern 

CMOS technologies, which are optimized for implementations 

of compact and efficient digital circuitry. 

In this manuscript, we propose a new VCO-ADC topology 

designed for neural interfaces. The overall idea is the use of one 

VCO-based input-stage per channel, each of which generates a 

digital oscillation, modulated in frequency, which can then be 

processed using digital circuitry. However, instead of building 

one standalone VCO-ADC per channel frequency, we propose 

the use of shared digital circuitry to capture the position of VCO 

edges (referred to as “timestamps” in this work), which contain 

enough information to reconstruct the oscillation frequency and 

the input voltage after postprocessing. As illustrated in Figure 

1, this readout strategy is aimed at simplifying the on-chip 
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Fig. 1. (a) Simplified block diagram of a generic voltage 

microsensor array, consisting of a set of preamplifiers (A1), 

anti-aliasing filters (AAF), a multiplexer (MUX), shared 

amplification stages (A2) and ADCs, and off-chip digital signal 

processing (DSP) logic. (b) Simplified block diagram of the 

proposed readout. Each input modulates the oscillation 

frequency of a VCO, the digital output of which generates a 

sequence of timestamps on-chip. The input voltage can be 

inferred from the oscillation frequency, which is estimated off-

chip, based on the relative position of the timestamps. The 

proposed readout is aimed at simplifying on-chip analog 

circuitry at the costs of more complex off-chip digital 

processing. 

analog circuitry in the system at the costs of adding on-chip and 

off-chip digital circuitry. 

This paper is organized as follows. Section II describes the 

readout architecture, including the fundamentals of voltage-to-

frequency conversion and timestamping. Section III elaborates 

on how the input signal can be reconstructed from an 

incomplete collection of timestamps. In Section IV, we evaluate 

the performance of the system by simulation of a system that 

has been exposed to different input signals. Section V describes 

a prototype, manufactured in 0.18-µm CMOS technology, and 

shows the results of electrical characterization with sinusoids 

and pre-recorded neuronal signals. Finally, Section VI 

concludes the paper with a discussion about the potential of the 

proposed architecture. 

II. READOUT ARCHITECTURE

The proposed readout system features three steps: voltage-

to-frequency conversion, frequency-to-digital conversion 

(timestamping), and signal reconstruction. This section 

focusses on the first two steps, which comprise the on-chip 

mixed-signal operations required to transform analog input 

signals into digital ‘timestamps’. The algorithms required for 

the third step, signal reconstruction, are described in Section III. 

A. Voltage-to-Frequency Conversion

The instantaneous oscillation frequency of a VCO can be

described as 

𝑓𝑂(𝑡) = 𝑓𝑓𝑟 + 𝑔(𝑣𝑖𝑛(𝑡)) + 𝑓𝑛(𝑡), (1) 

where ffr represents the free-running oscillation frequency, vin(t) 

is the input voltage, g(·) is a function that represents the relation 

between input voltage and change in oscillation frequency, and 

fn(t) is the random frequency fluctuation due to noise (visible as 

phase noise or jitter). Assuming small input signals, the 

oscillation frequency can be linearized as 

𝑓𝑂(𝑡) = 𝑓𝑓𝑟 + 𝐾𝑉𝐶𝑂(𝑣𝑖𝑛(𝑡) +  𝑣𝐼𝑅𝑁(𝑡)), (2) 

where KVCO represents the gain of the oscillator (in Hz/V), and 

vIRN(t) describes phase noise as input-referred noise. For 

simplicity, the oscillator is considered to be linear and noise-

free for the rest of the manuscript. Nevertheless, the 

nonlinearities and phase noise of the VCO are the fundamental 

limitation in the accuracy of the voltage-to-frequency 

conversion process. A procedure to estimate the influence of 

nonlinearities and phase noise in VCOs can be found in [28].  

Figure 2 depicts a simplified model of a VCO, including the 

most relevant signals. Part of these signals can be physically 

measured in a circuit, such as the input voltage vin(t) and the 

output oscillation w(t). Other signals are only virtual and cannot 

be directly observed, such as the oscillation frequency fO(t), 

unwrapped phase ϕ(t), or wrapped phase ϕw(t). The oscillation 
frequency (in Hz) follows equation (2), assuming vIRN(t)=0. The 

oscillator phase (in radians) increases unbounded, since it is the 

integral of the oscillation frequency – always positive – over 

time. The wrapped phase is the modulo-2π of the unwrapped

phase and is, therefore, contained in the interval [0,2π). The

waveform function wf(⋅) describes the output voltage as a

function of the wrapped phase, which - for a digital oscillation 

- can be

𝑤(𝑡) = 𝑤𝑓(𝜑𝑤(𝑡)) = {
1,     if   𝜑𝑤(𝑡) < 𝜋

0,     if   𝜑𝑤(𝑡) ≥ 𝜋
. (3) 

The rising edges of w(t) indicate the timepoints at which the 

unwrapped phase crosses a multiple of 2. These timepoints 

can be listed as a discrete sequence tr[i], so that w(tr[i])=0. 

Although a similar sequence could be built using falling edges, 

in that w(tf[i])=, the rest of the manuscript only considers 

rising edges for simplicity.  

The oscillation period can be calculated as the first difference 

of tr[i], 
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Fig. 2. (a) Noise-free linear VCO modeled as a phase 

integrator. (b) Example of the most relevant signals of the VCO. 

T𝑂[𝑖] =  t𝑟[𝑖] − t𝑟[i − 1], (4) 

where TO[i] represents the average value of the instantaneous 

oscillation period (TO(t)) for tr[i-1] ≤ t ≤ tr[i]: 

𝑇𝑂[𝑖] =  
1

𝑡𝑟[𝑖]−𝑡𝑟[𝑖−1]
∫ 𝑇𝑂(𝑡)𝑑𝑡

𝑡𝑟[𝑖]

𝑡𝑟[𝑖−1]
. (5) 

Similar discrete sequences can be defined to describe the 

oscillation frequency and the input signal and their 

interdependence: 

𝑓𝑂[𝑖] =  
1

𝑡𝑟[𝑖]−𝑡𝑟[𝑖−1]
∫ 𝑓𝑂(𝑡)𝑑𝑡

𝑡𝑟[𝑖]

𝑡𝑟[𝑖−1]
,      (6) 

𝑣𝑖𝑛[𝑖] =  
1

𝑡𝑟[𝑖]−𝑡𝑟[𝑖−1]
∫ 𝑣𝑖𝑛(𝑡)𝑑𝑡

𝑡𝑟[𝑖]

𝑡𝑟[𝑖−1]
,        (7) 

𝑓𝑂[𝑖] =  
1

𝑇𝑂[𝑖]
= 𝑓𝑓𝑟 + 𝐾𝑉𝐶𝑂𝑣𝑖𝑛[𝑖].        (8) 

From equations (4) and (8) we can conclude that the 

discretized input signal vin[i] can be calculated from sequence 

tr[i].  Furthermore, as shown in equation (7), the discretized 

input voltage results from the averaging of vin(t). This averaging 

is equivalent to a low-pass filter that suppresses signal 

variations that are faster than the oscillation frequency and 

inherently acts as an antialiasing filter.  

B. Frequency-to-Digital Conversion

The proposed frequency-to-digital conversion scheme is based 

on timestamping. We assign ‘timestamping’ to the generation 

of digital words –‘timestamps’– that encode the timepoints at 

which oscillation pulses initiate. In its simplest implementation 

that we call ‘continuous timestamping’ a ‘timestamper’ is 

constantly monitoring the output of the VCO and generates a 

timestamp at every detected rising edge. The resulting sequence 

represents tr[i] which, according to equations (4) and (8), can be 

used to recover the oscillation period and input signal. 

However, this approach would require one timestamper per 

VCO, which would result in relatively high power and area 

consumption. Therefore, we propose an alternative approach 

called here ‘multiplexed timestamping’, for which a single 

timestamper is shared among several VCOs, following the 

structure presented in Fig 1(b).  

Continuous Timestamping 

Figure 3(a) shows the block diagram of the proposed 

timestamper, which consists of a time reference generator 

(TRG) and a register. The TRG generates a digital word r(t), the 

value of which changes in every cycle of the clock clk(t) in a 

deterministic manner, such as an up-count. The register samples 

r(t) at every rising edge of the VCO oscillator w(t), generating 

a digital sequence m[i].  

Figure 3(b) shows an example of the relevant signals of the 

proposed timestamp generator. The output of the up-counter is, 

neglecting overflow, 

𝑟(𝑡) = 𝑓𝑙𝑜𝑜𝑟(f𝑐𝑙𝑘𝑡), (9)

where fclk is the frequency of clk(t), and the floor() function 

returns the greatest integer number, which is less than or equal 

to its argument. The value of m[i] depends on the timepoint at 

which the latest rising edge of the oscillation has occurred: 

𝑚[𝑖] =  𝑟(t𝑟[i]) = 𝑓𝑙𝑜𝑜𝑟(f𝑐𝑙𝑘t𝑟[i]).   (10)

The ‘floor’ function is equivalent to a quantizer, that can be 

moddeled as additive quantization error e[i]: 

𝑚[𝑖] =  f𝑐𝑙𝑘t𝑟[i] + 𝑒[𝑖].  (11)

Note that the oscillation period can be estimated, combining 

(11) and (4), as follows:

𝑇�̂�[𝑖] =
(𝑚[𝑖]−𝑚[𝑖−1])

𝑓𝑐𝑙𝑘
= 𝑇𝑜[𝑖] +

(𝑒[𝑖]−𝑒[𝑖−1])

𝑓𝑐𝑙𝑘
.  (12) 

where 𝑇�̂�[𝑖] denotes the estimated oscillation period. The

difference between the oscillation period and the estimated 

oscillation period is due to the time quantization error (i.e., due 

to the limited resolution of the timestamper).  

Assuming no correlation between the oscillation w(t) and 

the reference clock clk(t), quantization error e[i] can be 

considered random, resulting in white quantization noise 

bounded to [0,1). From equation (12), we conclude that the time 

quantization error is high-pass filtered, resulting in first-order 

noise-shaping. Furthermore, as expected, increasing the 

frequency of the reference clock mitigates the effect of 

quantization noise, since higher clock frequencies increase the 

resolution of the timestamper.  

+KVCOvin(t) w(t)

ffr

fO(t)

2
(t)

mod

2

Phase wrapper

wf()
w(t)

VCO

tr[0]

t

vin(t)

w(t)

tr[1] tr[2]

t

To[1] To[2]

(t)

w(t)

t
2

4

8

12

10

6

14

16 18

20 22

(a)

(b)

This article has been accepted for publication in IEEE Transactions on Biomedical Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBCAS.2023.3274834

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



4 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Fig. 3. (a) Block diagram of the proposed timestamper. (b) 

Example of the most relevant signals of the timestamper.  

The estimated input voltage 𝑣𝑖�̂�[𝑖] can be calculated from the

complete sequence of timestamps m[i] by combining equations 

(12) and (8).

 Multiplexed Timestamping 

To minimize the area and power consumption per channel, 

the timestamper can be shared among several VCOs without a 

significant loss of accuracy. Figure 4(a) depicts the on-chip 

stage of the system introduced in Figure 1(b), with N VCOs 

multiplexed to a single timestamper. The sequence generated 

by the timestamper, mmux[i], contains timestamps triggered by 

all the VCOs that have been eventually selected by the 

multiplexer. For simplicity, we consider only the first VCO 

(VCO1) for the rest of the analysis. We can define mS1[i] as the 

subset of timestamps contained in mmux[i] triggered by VCO1, 

while its corresponding selection signal (1(t)) was active. 

Figure 4(b) shows the most significant signals related to VCO1. 

As in Section II.A, we can define sequence tr1[i] as the 

timepoints at which VCO1 rising edges occur. The selected 

rising edges, tS1[i], are the ones captured by the timestamper and 

occurred while 1(t)=1. The sequence tS1[i] can be defined as 

𝑡𝑆1[𝑖] =  t𝑟[𝑆1[i]],  (13)

where S1[i] is a discrete sequence of integer numbers denoting 

which rising edges have been selected.  

Like in equation (11), the value of timestamps can be 

described as 

𝑚𝑆1[𝑖] =  f𝑐𝑙𝑘t𝑆1[i] + 𝑒𝑆1[𝑖],  (14)

and the time elapsed between two consecutive timestamps can 

Fig. 4. (a) Block diagram of multiplexed VCOs sharing one 

timestamper. (b) Example of the subsampling of tr1[i] to 

generate tS1[i]. In this example, the first values of S1[i] were 

{0,4,8,13}, and the first values of NS1[i] were {4,4,5}. 

be described as 

∆𝑡1[𝑖] =  𝑡𝑆1[𝑖] − 𝑡𝑆1[𝑖 − 1] =
m𝑆1[i]−m𝑆1[i−1]

f𝑐𝑙𝑘
−

e𝑆1[i]−e𝑆1[i−1]

f𝑐𝑙𝑘
.  (15) 

The average oscillation period between two consecutive 

timestamps is therefore 

𝑇𝑂[𝑖] =  
1

𝑡𝑆1[𝑖]−𝑡𝑆1[𝑖−1]
∫ 𝑇𝑂(𝑡)𝑑𝑡

𝑡𝑆1[𝑖]

𝑡𝑆1[𝑖−1]
=  

∆𝑡1[𝑖]

𝑁𝑆1[𝑖]
, (16) 

where NS1[i] represents the number of oscillations that occurred 

between tS1[i] and tS1[i-1] and can be defined as 

𝑁𝑆1[𝑖] =  S1[i] − 𝑆1[𝑖 − 1]. (17)

Finally, similarly to equation (12), the oscillation period can 

be estimated as  

𝑇𝑜1̂[𝑖] =
(𝑚𝑆1[𝑖]−𝑚𝑆1[𝑖−1])

𝑁𝑆1[𝑖] ∙ 𝑓𝑐𝑙𝑘
= 𝑇𝑜1[𝑖] +

(𝑒𝑆1[𝑖]−𝑒𝑆1[𝑖−1])

𝑁𝑆1[𝑖] ∙ 𝑓𝑐𝑙𝑘
.  (18) 

Note that, while in equation (12) 𝑇𝑜1̂[𝑖] can be computed

directly from the recorded timestamps, equation (18) also 

requires NS1[i], which is a priori unknown. The following 

section explains how this unknown parameter can be estimated 

under certain assumptions, which then enables the 

reconstruction of  𝑇𝑜1̂[𝑖] and 𝑣𝑖𝑛1̂[𝑖].

m[i] = tr[i]  fclk + e[i]

Time Ref. 
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Registerw(t)
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III. SIGNAL RECONSTRUCTION 

Consider the sequence mS1[i], a subset of timestamps 

captured while 1(t) is active. This sequence is the output of the 

hardware described in Section II and is the only data available 

off-chip for the reconstruction of the signal 𝑣𝑖𝑛1̂[𝑖]. For

simplicity, we assume for the rest of this section that fclk is large 

enough, so quantization noise can be neglected and   

𝑡𝑆1[𝑖] ≈  
m𝑆1[i]

f𝑐𝑙𝑘
 . (19) 

The primary challenge of signal reconstruction is to find the 

number of oscillations that occurred between two consecutive 

timestamps, NS1[i]. From the description given in the previous 

section, we know that the number of oscillations can be - in 

theory - any natural number: 

𝑁𝑆1[𝑖] ∈ ℕ. (20)

We do not have enough information to find NS1[i] and vin1[i], 

since there are infinite possible numbers satisfying this 

condition. However, we can incorporate a-priori knowledge 

about the hardware and the input signal to facilitate finding the 

correct number of oscillations.  

Figure 5 shows an example of a reconstruction scenario, in 

which a VCO and a timestamper have been simulated with ffr = 

2 MHz, KVCO = 20 MHz/V, vin1 = 0, and random NS1[i]  [4,6]. 

For each sample, we are plotting three possible estimations of 

the input voltage (𝑣𝑖𝑛1̂[𝑖]) for different possible values of NS1[i].

It can be observed that, although all the plotted values are 

feasible from a mathematical point of view, it will be possible 

to identify the correct values of 𝑁𝑆1̂[𝑖] and 𝑣𝑖𝑛1̂[𝑖], if the input

signal is known to meet certain conditions.  

A. Input signal amplitude minimization

If the input signal is known to be small, signal reconstruction

can be based on finding the sequence NS1[i] that results in the 

smallest possible input signal. Combining equations (8) and 

(16) we get:

𝑣𝑖𝑛1[𝑖] =  
𝑁𝑆1[𝑖]

∆𝑡1[𝑖]∙𝐾𝑉𝐶𝑂
−

𝑓𝑓𝑟

𝐾𝑉𝐶𝑂
, (21) 

𝑁𝑆1[𝑖] = ∆𝑡1[𝑖] ∙ (𝑓𝑓𝑟 + 𝐾𝑉𝐶𝑂𝑣𝑖𝑛1[𝑖]). (22)

If the input voltage is known to be small, we can solve 

equation (22) for vin1[i]=0, and round the result to find an 

integer sequence NS1[i] that satisfies (20): 

𝑁𝑆1̂[𝑖] = 𝑟𝑜𝑢𝑛𝑑(∆𝑡1[𝑖] ∙ 𝑓𝑓𝑟). (23)

This approach is computationally efficient and leads to valid 

reconstructions, if the input signal is small enough. This method 

fails, if the input signal is outside the following interval: 

𝑣𝑖𝑛1[𝑖] ∈ (
𝑁𝑆1[𝑖]−0.5

∆𝑡1[𝑖]∙𝐾𝑉𝐶𝑂
−

𝑓𝑓𝑟

𝐾𝑉𝐶𝑂
,

𝑁𝑆1[𝑖]+0.5

∆𝑡1[𝑖]∙𝐾𝑉𝐶𝑂
−

𝑓𝑓𝑟

𝐾𝑉𝐶𝑂
). (24) 

 

Fig. 5. Example of correct (solid line) and incorrect (dashed 

lines) reconstructions for ffr = 2 MHz, KVCO = 20 MHz/V, vin1 

= 0, and random NS1[i] ∈ [4,6].

Note, that this approach requires accurate a priori knowledge 

of ffr, since - from the reconstruction standpoint - deviations in 

the free-running oscillation frequency (∆ffr) are

indistinguishable from input offset (∆vin = ∆ffr/KVCO).

Therefore, according to equation (24), unknown deviations in 

ffr reduce the valid input range of this reconstruction algorithm. 

B. Input signal variation minimization

If the input signal is known to be slow, signal reconstruction

can be based on minimizing the total signal variation (TSV), 

defined here as the sum of the absolute value of the first 

difference: 

𝑇𝑆𝑉(𝑥) = ∑ |𝑥[𝑖] − 𝑥[𝑖 − 1]|+∞
𝑖=−∞ . (25) 

As shown in Figure 5, incorrect reconstructions may show 

larger voltage variations than the correct reconstruction. This 

assumption is valid for slow or small input signals, for which 

two consecutive samples are expected to have similar values. 

The limits of this assumption will be explored in Section IV.  

The number of oscillations can be found as a result of the 

following optimization problem, subject to equations (20), (21) 

and (25): 

𝑁𝑆1̂[𝑖] = 𝑎𝑟𝑔 min
𝑁𝑆1[𝑖]

𝑇𝑆𝑉(𝑣𝑖𝑛1[𝑖]). (26)

This optimization problem can be solved using Viterbi 

algorithm [29], [30]. Note that, in contrast to the previous 

reconstruction method, unknown slow deviations of the free-

running oscillation frequency do not affect the validity of the 

reconstruction, since offset does not affect signal variation.  

IV. SIMULATION RESULTS

We have evaluated the performance of the proposed readout 

technique by designing and simulating a VCO-ADC for neural 

interfaces. Table I summarizes the main parameters of the 

simulated system. 

3
4
5
6
7

i [samples]

[V
]

Correct reconstruction

Incorrect reconstruction

Incorrect reconstruction

S1[i]
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TABLE I 

SYSTEM PARAMETERS USED IN SIMULATIONS 

Circuit Parameter Value used 

VCO 
ffr 2 MHz 

KVCO 20 MHz/V 

Multiplexer 
S1,T 12.2 µs 

S1,W 610 ns 

Timestamper fclk 50 MHz / 200 MHz 

We have considered the case of 20 VCOs multiplexed to a 

single timestamper, meaning that the timestamper can only 

observe each VCO during 5% of the time. The period of φS1

(φS1,T) defines the average sampling frequency of the system.

We set the average sampling frequency well above the band of 

interest (a few kHz for neural signals), in order to limit input 

signal variations between samples, which facilitates signal 

reconstruction. With φS1,T = 12.2 µs, the average sampling

frequency is approximately 82 kHz. The pulse width has been 

set to φS1,W = φS1,T/20 = 610 ns, so that the same timestamper

can monitor 20 VCOs. 

The free-running oscillation frequency is chosen in a way 

that the oscillation period is always shorter than the φS1 pulse

width, to make sure that there is at least one rising edge (and 

therefore at least one timestamp) in every φS1 window. The

sensitivity of the VCO has been chosen to be realistic for a 

specific VCO topology, as will be shown in Section V.B. 

We have first evaluated the accuracy of multiplexed 

timestamping. The behavioral model of the VCO-ADC 

described above has been simulated for a sinusoidal input of 

100 µVp at 1 kHz, generating the complete sequence of rising 

edges (tr[i]). To demonstrate the influence of fclk in the accuracy 

of the system, we have generated two sequences of selected 

timestamps (mS1[i]) with different clock frequencies, fclk = 50 

MHz  and fclk = 200 MHz. Selected timestamps have been 

combined with equations (15), (21) and (23) to estimate the 

input signal (𝑣𝑖𝑛1[𝑖]). Figure 6 shows the spectra of the 
simulated  reconstructed  signals,  obtained after interpolating 

and resampling 𝑣𝑖𝑛1[𝑖] at 200 kHz. Interpolation and 
resampling were employed to achieve uniform sampling and 

facilitate the estimation of the power spectra, since the input 

signal is non-uniformly sampled at its origin (see equation (7)). 

The input-referred noise, integrated in the 300 Hz – 5 kHz band, 

is 3.1 µVrms for fclk = 50 MHz, and 0.96 µVrms for fclk = 200 

MHz. As expected, quantization noise is inversely proportional 

to fclk, since higher clock frequencies result in more accurate 

timestamps. Nevertheless, even for fclk = 50 MHz, the in-band 

noise is low enough for action potential detection.  

After simulating the accuracy of the timestamper, we have 

evaluated the performance of the reconstruction algorithms 

described in Section III. We have simulated the system 

described in Table I for a collection of 15000 input signals, with 

different combinations of amplitude and frequency, ranging 

from 10µVp to 10mVp and from 100 Hz to 10 kHz (uniformly 

distributed at logarithmic scale). White noise (100 nV/√Hz) was

added to all input signals to model circuit noise. For each 

Fig. 6. Simulated spectra of the system described in Table I 

for an input signal of 100 µVp at 1 kHz. 

simulation of 50 ms, we have computed the selected timestamps 

(mS1[i]) and the ground truth number of oscillations (NS1[i]). 

We have then used the approaches, described in equations (23) 

and (26), to estimate the number of oscillations (𝑁𝑆1[𝑖]). A 
reconstruction has been considered valid when sequences 

𝑁𝑆1[𝑖] and NS1[i] were identical for the entire duration of each 
simulation. 

Figure 7 shows a summary of the four sets of simulations, 

combining the two reconstruction algorithms and the two 

different clock frequencies. The first approach, described by 

equation (23), results in valid reconstructions for input signals 

smaller than approximately 2 mVp, as expected from equation 

(24). The performance of the minimization of signal variation 

described in equation (26) depends on the resolution of the 

timestamper. For fclk = 200 MHz, this algorithm is consistently 

able to reconstruct large slow signals and small fast signals, and 

fails to reconstruct large fast signals. This is expected, since 

large fast signals feature higher signal variation, and there may 

be incorrect reconstructions with lower TSV than the correct 

reconstruction. For fclk = 50 MHz, the reconstruction 

performance follows a similar trend, but reconstruction is less 

consistent and fails more frequently. This may be due to the 

lower accuracy of the timestamper, which increases 

quantization noise and, therefore, signal variation.  

Based on these simulation results, both reconstruction 

algorithms appear to be suitable for most extracellular neural 

signals reconstructions, provided that extracellular action 

potential amplitudes are typically below 1 mVpp, and signal 

power is mainly contained in the 300 Hz – 5 kHz band. Input 

amplitude minimization is more robust against high-frequency 

noise, while input signal variation minimization responds better 

to large low-frequency signal fluctuations. Nevertheless, these 

methods still have limitations, and further algorithms need to 

be developed to achieve more robust signal reconstructions. 

For example, large abrupt voltage variations —which can 

be produced during neural stimulation— are likely to be missed 

by the proposed reconstruction approaches. Changes in 

system parameters, such as a different oscillation 

frequencies or multiplexing schemes, may be required to 

accommodate specific needs of different applications.  

BW
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V. EXPERIMENTAL VALIDATION 

A prototype of the system described in the previous sections 

has been fabricated in 0.18-µm CMOS technology. This section 

describes the circuit implementation and the results of the 

electrical characterization.  

A. Prototype description

The main requirements for neural interfaces and

microelectrode arrays include sensitivity and low noise (to 

detect small action potentials), and low real estate and power 

consumption (to integrate thousands of units in the same 

substrate) [31]. Therefore, ring oscillators are a good choice due 

to their simplicity, compact size, and relatively low phase noise. 

Moreover, although ring oscillators normally feature a 

nonlinear voltage-to-frequency conversion, distortion is not 

problematic due to the small amplitude of input signals.  

Figure 8(a) shows the schematic of our voltage-to-frequency 

converter. The input signal vin is first filtered by a passive RC 

high-pass filter (HPF), based on a 350-fF metal-insulator-metal 

(MIM) capacitor (C1) and a pseudoresistor (M1). The cut-off 

frequency of this filter is set at approximately 0.1 Hz in order 

to block low-frequency fluctuations and  to minimize the noise 

contribution of the pseudoresistor in the band of interest. The 

high-pass filtered voltage drives the gate of a P-type transistor 

(M1) which, in combination with a cascode (M2), acts as a 

transconductor [32]. The resulting current (iCCO) modulates the 

frequency of a current-controlled oscillator (CCO). As shown 

in Figure 8(b), the CCO consists of three CMOS inverters, with 

three 60-fF MIM capacitors (C2-4) used as load to achieve a 

lower oscillation frequency. Since the amplitude of the 

oscillation at vosc is approximately 700 mVpp, a level-shifter 

(M4-5) and a digital buffer is used to obtain a square rail-to-rail 

oscillation at output w. The size of the relevant transistors is 

summarized in Table II. 

Fig. 7. Simulated performance of the two signal reconstruction algorithms described in Section III: signal amplitude minimization 

as described in equation (23), and signal variation minimization as in equation (26). Each rectangle represents the percentage of 

correct reconstructions in 25 simulations. Each simulation lasted for 50 ms, and the input signal was the combination of white noise 

(100 nV/Hz ) and a sinusoidal signal of varying amplitude and frequency.  

0% (0%, 30%) [30%, 70%) 100%[70%, 100%)

Signal amplitude minimization, fclk = 50 MHz Signal amplitude minimization, fclk = 200 MHz

Signal variation minimization, fclk = 50 MHz Signal variation minimization, fclk = 200 MHz
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TABLE II 

VCO TRANSISTOR SIZE 

Transistor W(µm)/L(µm) Transistor W(µm)/L(µm) 

M1 1/0.4 M4 1/0.2 

M2 30/1.2 M5 1/0.2 

M3 10/1.2 M6-11 0.8/3 

The timestamper is implemented following the structure 

described in Figure 3(b), with an 8-bit Gray counter acting as 

TRG, driven at fclk = 50 MHz by an external clock. Gray-code 

has been chosen to avoid potential problems caused by 

sampling a wrong code during a transition, right after a clock 

edge. The counter was oversized to prevent overflows at very 

low oscillation frequencies or very high clock frequencies. The 

number of bits could be further optimized, based on the 

maximum number of clock cycles expected between two 

consecutive sampled VCO rising edges.  

Figure 9 shows the micrograph of the prototype, in which the 

areas containing the relevant building blocks have been 

highlighted. The estimated real estate and the simulated power 

consumption of each block are summarized in Table III. The 

total area and power of our circuits amount to 5550 µm2 and 

40.05 µW. However, since the timestamper can be shared 

among several VCOs, the effective area and power per channel 

depends on the number of multiplexed channels. For example, 

if we consider 20 VCOs sharing the same timestamper (as 

simulated in Section IV), area and power consumption per 

channel would be 1330 µm2/channel and 4.4 µW/channel.  

TABLE III 

SUMMARY OF AREA AND POWER CONSUMPTION 

Block Circuit 
Area 

(µm2) 

Power 

(µW) 

VCO 

Transconductor 630 1.2 

CCO + LS 480 1.32 

Total 1110 2.52 

Timestamper 

Register 840 1.53 

TRG 3600 36 

Total 4440 37.53 

B. Measurement results

The transconductor was programmed to generate 

approximately 1 µA, with a transconductance of 20 µA/V. The 

resulting measured free-running oscillation frequency (ffr) was 

1.95 MHz with a sensitivity (KVCO) of 22.0 MHz/V. 

Figure 10 shows the spectra of the recorded signals for a 100-

µVp signal applied at 1 kHz. The black spectrum is the result of 

continuous timestamping, where a complete sequence of 

timestamps was collected, and the input signal 𝑣𝑖𝑛[𝑖] was 
calculated combining equations (8) and (12). The noise in the 

band of interest (300 Hz – 5 kHz) was 4.5 µVrms, mainly limited 

by VCO phase noise. The blue spectrum shows the result of 

multiplexed timestamping, where timestamps were selected 

according to the multiplexing scheme used in Section IV (see 

Fig. 8. (a) Schematic of the voltage-to-frequency converter. 

(b) Schematic of the CCO.

Fig. 9. Micrograph of the prototype fabricated in 0.18 µm 

CMOS technology, with the location of three relevant circuits 

highlighted. 

Table I), and signal reconstruction was performed using the 

methods explained in Section III. Both reconstruction 

algorithms provided identical results. The noise in the band of 

interest (300 Hz – 5 kHz) was 5.7 µVrms. The contribution of 

quantization noise due to multiplexing is visible at high 

frequencies.  

VDD
M1

M2

M4

M5

C1

vb1

vb3vin

wiCCO

vosc

M3

vb2

CCO

iCCO

vosc

M6

M9

M7 M8

M10 M11

C2 C3 C4

(a)

(b)
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Fig. 10. Spectra of the recorded signals for a sinusoidal input 

of 100 µVp at 1 kHz.  

As mentioned in section IV, power spectral estimations were 

preceded by interpolation and resampling at high frequencies to 

achieve uniform sampling, since the timestamping process 

results in non-uniform sampling (see equation (7)). The 

resampling frequencies (20 MHz for continuous timestamping 

and 200 kHz for multiplexed timestamping) were chosen well 

above the average sampling frequency for each case (1.95 MHz 

for continuous timestamping, and 82 kHz for multiplexed 

timestamping). Note that interpolation and resampling were 

performed off-chip and only to facilitate spectral estimations, 

but none of these processes is required for normal operation of 

the system. 

The system has also been tested with a pre-recorded neuronal 

signal. Figure 11(a) shows the snippet of a signal captured using 

the CMOS microelectrode array described in [7], from an in-

vitro culture of rat primary cortical neurons on day in vitro 

(DIV) 23. Figure 11(b) shows the snippet of the reconstructed

signal after injecting the pre-recorded signal at the input of the

system, capturing timestamps and using equations (23) and (25)

for reconstruction (both algorithms could be used to

successfully reconstruct the signal). Note, that the prototype

BW

TABLE IV 

PERFORMANCE SUMMARY OF A 20-CHANNEL SYSTEM AND COMPARISON WITH STATE OF THE ART 

[7] [33] [34] [10] [35] [36] [32] 
Proposed 

system 

Year 2017 2018 2018 2020 2021 2021 2021 2023 

Architecture SAR ATC - SS I SAR VCO-Q VCO-TS 

Technology 

(nm) 

180 65 180 90/65 180 180 180 180 

Sampling 

frequency (Hz) 

20 k -d 25 k 70 k 20 k 11.6 k 1 M 82 ke 

Bandwidth 

(Hz) 

300 – 10 k 11 k 0.5 – 12.7 k 300 – 10 k 300 – 10 k 300 – 5 k 300 – 6 k 300 – 5 k 

Area/channel 

(mm2/ch) 

0.024a 0.006 0.058c 0.014a 0.0046c 0.001a 0.0045b 0.0013b,f 

Power/channel 

(µW/ch) 

16 1.2 3.05 130 8.59c 5.9 3.5b 4.4b,f 

Input-referred 

noise (µVrms) 

2.4 3.8 3.32 5.5 4.37 10.4 5.0 5.7 f 

ATC: Analog-to-Time Converter; SS: Single-slope; I: Incremental ; VCO-Q: VCO-based quantizer. VCO-TS: VCO-

timestamping. aEstimated. bExcluding biasing. cIncluding on-chip digital filter. dAsynchronous output. eAverage frequency 

(non-uniformly sampled). fAssuming 20:1 multiplexing. 
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Fig. 11. (a) Snippet of a pre-recorded neural signal captured 

with the HD-MEA described in [7] in an in-vitro culture of rat 

primary cortical neurons. (b) Snippet of the reconstructed 

signal. Red triangles mark significant action potentials with 

amplitudes larger than 5 times the standard deviation of the 

signal. Both signals have been band-pass filtered (300 Hz – 5 

kHz) before plotting.  

could digitize the signal successfully, and all significant APs 

(marked with red triangles, larger than 5 times the standard 

deviation of the recording noise) are visible in the reconstructed 

signal.  

VI. CONCLUSION AND OUTLOOK

In this manuscript we have presented a novel readout 

architecture for neural interfaces. As in other VCO-based 

systems, VCOs are used to transform analog input signals into 

(a)
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digital oscillations that can be post-processed using digital 

circuitry. Here, we proposed the generation of timestamps, 

which contain information about when a VCO has completed 

one oscillation. This information is enough to reconstruct the 

oscillation frequency and the input signal off chip. The main 

advantage of the proposed architecture is that on-chip analog 

circuitry is minimized, since most of the circuitry required for 

VCO-timestamping is digital. Furthermore, the proposed 

architecture is easily scalable to a large number of channels, 

since the digital timestamper can be multiplexed among several 

VCOs.  

The oscillation frequency of each VCO can be easily 

calculated when all the timestamps are collected. However, 

when multiplexing the timestamper, a significant number of 

timestamps is missed. In this case, signal reconstruction 

algorithms are required to infer the correct oscillation 

frequency. In this work, we have proposed two different 

approaches, both of them based on simple assumptions about 

the oscillation frequency and the amplitude and bandwidth of 

the input signal. Both algorithms have been simulated, and have 

been proven to be feasible solutions for the system evaluated in 

this manuscript. Nevertheless, other algorithms may be more 

efficient or robust, or may allow to relax the constraints of the 

VCO. The use of existing algorithms, developed for other fields 

that address comparable problems (such as module-ADCs [37] 

or compressed sensing [38], [39]), could be explored. 

A single-channel prototype has been fabricated in 0.18-µm 

CMOS technology. The readout circuit featured 5.7 µVrms of 

input referred noise in the 300 Hz – 5 kHz band and could 

capture pre-recorded neuronal action potentials. The area and 

power consumption of the single-channel prototype was 5’550 

µm2 and 40.05 µW. The performance of a multi-channel neural 

interface, implemented using the proposed time-domain 

readout technique, would strongly depend on parameters not yet 

explored with this prototype. Multiplexing several VCOs per 

timestamper would significantly reduce the effective area and 

power per channel, since, as shown in Table III, the 

timestamper is the main contributor to area and power 

consumption. To illustrate the potential of the proposed 

architecture, we have estimated the performance of a 

hypothetical 20-channel system combining 20 VCOs and one 

timestamper. This estimation does not consider two factors: 

multiplexing circuitry and timestamper optimization. On the 

one hand, multiplexing would require additional circuitry 

(mainly switches) that may increase area and power 

consumption. On the other hand, the timestamper could be 

further optimized, e.g., by reducing the number of bits, to 

decrease area and power consumption.  

Table IV presents a comparison between state-of-the-art 

neural readout circuits and the estimated performance of the 

hypothetical 20-channel system. The proposed system features 

very low real estate while achieving low power consumption. 

However, input-referred noise is comparatively high, and very 

small action potentials (on the order of 10-20 uV) may not be 

distinguishable from noise. Nevertheless, as shown in section 

V.B, noise is low enough to capture larger extracellular action

potentials.

One potential drawback of the proposed system is the 

relatively high data rate required to transmit all the timestamps 

off chip. Assumming an average sampling rate of 82 kSps and 

each timestamp being 8 bits long, the average data rate is 656 

kbps per channel. However, the number of bits in the 

timestamper could be further optimized, and the sampling rate 

could be reduced at the cost of making the reconstruction 

process more challenging. It is worth noting that the proposed 

technique would benefit from CMOS-technology scaling, as 

most building blocks are digital circuits that would be more 

efficient in deep submicron technologies.  

The proposed approach may be also suitable for cameras and 

other sensor arrays in which (i) several channels need to be 

monitored simultaneously, (ii) a-priori knowledge about the 

input signal is available, and (iii) advanced digital signal 

processing is possible.  
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