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NETWORK SC I ENCE

Community detection in large hypergraphs
Nicolò Ruggeri1,2*, Martina Contisciani1, Federico Battiston3, Caterina De Bacco1*

Hypergraphs, describing networks where interactions take place among any number of units, are a natural tool
to model many real-world social and biological systems. Here, we propose a principled framework to model the
organization of higher-order data. Our approach recovers community structure with accuracy exceeding that of
currently available state-of-the-art algorithms, as tested in synthetic benchmarks with both hard and overlap-
ping ground-truth partitions. Our model is flexible and allows capturing both assortative and disassortative
community structures. Moreover, our method scales orders of magnitude faster than competing algorithms,
making it suitable for the analysis of very large hypergraphs, containing millions of nodes and interactions
among thousands of nodes. Our work constitutes a practical and general tool for hypergraph analysis, broad-
ening our understanding of the organization of real-world higher-order systems.
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INTRODUCTION
Over the last decades, most relational data, from biological to social
systems, have found a successful representation in terms of net-
works, where nodes describe the basic units of the system, and
link their pairwise interactions (1). Nevertheless, such a modeling
approach cannot properly encode the presence of group interac-
tions, describing associations among three or more system units
at a time (2–5). Such higher-order interactions have been observed
in a wide variety of systems, including collaboration networks (6),
cellular networks (7), drug recombination (8), human (9) and
animal (10) face-to-face interactions, and structural and functional
mapping of the human brain (11–13). In addition, the higher-order
organization of many interacting systems is associated with the gen-
eration of new phenomena and collective behavior across many dif-
ferent dynamical processes, such as diffusion (14), synchronization
(15–20), spreading (21–23), and evolutionary games (24–26).

Networked systems with higher-order interactions are better de-
scribed by different mathematical frameworks from networks, such
as hypergraphs, where hyperedges encode interactions among an
arbitrary number of system units (2, 27). In the last few years,
several tools have been developed for higher-order network analy-
sis. These include higher-order centrality scores (28, 29), clustering
(30), and motif analysis (31, 32), as well as higher-order approaches
to network backboning (33, 34), link prediction (35), and methods
to reconstruct nondyadic relationships from pairwise interaction
records (36). A variety of approaches have been suggested to
detect communities in hypergraphs, including nonparametric
methods with hypergraphons (37), tensor decompositions (38),
latent space distance models (39), latent class models (40), flow-
based algorithms (41, 42), spectral clustering (43–45), and spectral
embeddings (46). A different line of works focuses on deriving the-
oretical detectability limits (47–49).

Recently, statistical inference frameworks have been proposed to
capture in a principled way the mesoscale organization of hyper-
graphs (35, 50, 51). Despite their success, current approaches

suffer from a number of notable drawbacks. For instance, the
method in (51) is restricted to using very small hypergraphs and hy-
peredges, due to its high computational complexity. Also, the ap-
proach in (50) suffers from a high computational complexity in
the general case and needs to make strong assumptions to scale to
real-life datasets. Finally, the model in (35) is constrained to work
only with assortative community structures.

Here, we propose a framework to model the organization of
higher-order systems. Our method allows detecting communities
in hypergraphs with accuracy exceeding that of state-of-the-art ap-
proaches, in the cases of both hard and mixed community assign-
ments, as we show on synthetic benchmarks with known ground-
truth partitions. Furthermore, its flexibility allows capturing general
configurations that could not be previously studied, such as disas-
sortative community interactions.

Finally, overcoming the computational thresholds of previous
methods, our model is extremely efficient, making it suitable to
study hypergraphs containing millions of nodes and interactions
among thousands of system units not accessible to alternative
tools. We illustrate the advantages of our approach through a
variety of experiments on synthetic and real data. Our results show-
case the wide applicability of the proposed method, contributing to
broaden our understanding of the organization of higher-order
real-world systems.

GENERATIVE MODEL
A hypergraph consists of a set of nodes V = {1, …, N} and a set of
hyperedges E. Each hyperedge e is a subset of V, representing a
higher-order interaction between a number ∣e∣ of nodes. We
denote by D the maximum possible hyperedge size, which can be
arbitrarily imposed up to a maximum value of D = N, and Ω the
set of all possible hyperedges among nodes in V. We represent the
hypergraph via an adjacency vectorA ∈ ℕΩ, with entry Ae being the
weight of e ∈ Ω. We assume the weights Ae to be nonnegative and
discrete. For real-world systems, A is typically sparse. The number
∣E∣ of nonzero entries is typically linear inN, and thus much smaller
than the dimension ∣Ω∣.

We model hypergraphs probabilistically, assuming an underly-
ing arbitrary community structure with K overlapping groups, sim-
ilarly to a mixed-membership stochastic block model. Each node i
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can potentially belong to multiple groups, as specified by a K-di-
mensional membership vector ui with nonnegative entries. We
collect all the membership assignments in a N × K matrix u. The
density of interactions within and between communities is regulat-
ed by a symmetric nonnegative K × K affinity matrix w. These two
main parameters, u and w, control the Poisson distributions of the
hyperedge weights

pðAe; u;wÞ ¼ Pois Ae;
λe
κe

� �

ð1Þ

where

λe ¼
P

i,j:i;j[e uiTw uj

¼
P

i,j:i;j[e
XK

k;q¼1
uik ujq wkq

ð2Þ

Here, κe = κ∣e∣ is a normalization factor that solely depends on the
hyperedge size ∣e∣. We develop our theory for a general form of κn.
While in principle any choice κn > 0 is possible, in our experiments

we use the form κn ¼
nðn� 1Þ

2
N � 2
n � 2

� �

, for every hyperedge of size n

(52). Because of the fact that κ2 = 1, if the hypergraph contains only
pairwise interactions our model is similar to existing mixed-member-
ship block models for dyadic networks (53, 54). Intuitively, given two

nodes i, j, the term N � 2
n � 2

� �

normalizes for the number of possible

choices of the remaining n − 2 nodes in the hyperedge. The term n(n
− 1)/2 averages among the number of possible pairwise interactions
among the n nodes in the hyperedge. Note that previous generative
models for hypergraphs were limited to detect only assortative com-
munity interactions (35, 50). By contrast, in ourmodel, each entrywkq
distinctly specifies the strength of the interactions between each k, q
community pair. Hence, for the first time, our method allows encod-
ingmore general community structures, without the need to impose a
priori assumptions to ensure computational and theoretical feasibili-
ty. In particular, the bilinear form in Eq. 2 allows for a tractable and
scalable inference, regardless of the structure of w. Another relevant
feature of the model is that the size of the affinity matrix w does not
vary with maximum hyperedge sizeD nor with the number of hyper-
edges, making it memory efficient also for hypergraphs with large in-
teractions.We name ourmodel Hy-MMSBM, for hypergraphmixed-
membership stochastic block model, and provide an open-source im-
plementation at http://github.com/nickruggeri/Hy-MMSBMgithub.
com/nickruggeri/Hy-MMSBM. We have also incorporated our algo-
rithm inside the open-source library Hypergraphx (55).

INFERENCE
Optimization procedure
In real-life scenarios, practitioners observe a list of hyperedges,
encoded in the vector A, and aim to learn the node memberships
u and affinity matrix w that best fit the data. To this end, we start by
considering the likelihood of A given the parameters θ = (u, w).
Using Eqs. 1 and 2, this is given by

pðA jθÞ ¼
Y

e[Ω
Pois Ae;

λe
κe

� �

ð3Þ

where the hyperedge weights are assumed to be conditionally inde-
pendent given (u, w). Its logarithm is given by

log pðA jθÞ ¼
P

e[Ω �
1
κe

P
i,j[e uiT w uj

þ
P

e[E Aelog
P

i,j[e uiT w uj
ð4Þ

where we discarded constant terms not depending on the parame-
ters. The first summation over ∣Ω∣ terms appears intractable due to
the exploding size of the configuration space. However, one impor-
tant feature of our model is that this high dimensionality can be
treated analytically, as the likelihood conveniently simplifies. The
summand

P
e[Ω �

1
κe

P
i,j[euiT w uj is simply taking the interac-

tion term uiTwuj as many times as it appears in all the possible hy-
peredges, each weighted by the factor 1/κe. This reasoning yields the

count C ¼
PD

n¼2
1
κn

N � 2
n � 2

� �

and the following simplified log-

likelihood

log pðA jθÞ ¼ � C
P

i,j[V uiT w uj
þ
P

e[E Aelog
P

i,j[e uiT w uj
ð5Þ

obtaining a tractable sum of terms. To maximize Eq. 5 with respect
to u and w, we use a standard variational approach via Jensen’s in-
equality logE½x� � E½logx� to lower bound the second summand as

P
e[E Aelog

P
i,j[e uiT w uj �

P
e[E Ae

P
i,j[e

XK

k;q¼1
ρðeÞijkq log uik ujq wkq

ρðeÞijkq

� �
ð6Þ

Here, the variational distribution is specified by the ρðeÞijkq values,
which can be any configuration of strictly positive probabilities such
that

P
i,j[e

PK
k;q¼1ρ

ðeÞ
ijkq ¼ 1. The equality in Eq. 6 is achieved when

ρðeÞijkq ¼
uikujqwkq

P
i,j[e

XK

k;q¼1
uikujqwkq

¼
uikujqwkq

λe
ð7Þ

Hence, maximizing logp(A∣θ) is equivalent to maximizing

Lðu;w; ρÞ ¼ � C
P

i,j[V uiT w uj

þ
P

e[E Ae
P

i,j[e
XK

k;q¼1
ρðeÞijkq log uik ujq wkq

ρðeÞijkq

� �

with respect to both (u, w) and ρ. This can be done by alternating
between updating ρ and (u, w), as in the expectation-maximization
(EM) algorithm.

The update for θ ∈ {u, w} is obtained by setting the partial de-
rivative ∂ℒ(θ, ρ)/∂θ to 0, which yields the following expressions

uik ¼
P

e[E:i[e Aeρ
ðeÞ
ik

C
P

q wkq
P

j=i[V ujq
ð8Þ

wkq ¼

P
e[E Aeρ

ðeÞ
kq

C
P

i,j[V uikujq
ð9Þ
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The terms ρðeÞik ; ρ
ðeÞ
kq are defined as

ρðeÞik ¼
X

j[e:j=i

X

q
ρðeÞijkq

ρðeÞkq ¼
X

i,j[e
ρðeÞijkq

and obtained after updating ρðeÞijkq according to Eq. 7. These updates
presented in this section are based on maximum likelihood estima-
tion, where we do not set any prior for (u, w). However, we can get
maximum a posteriori estimates (MAP) with similar derivations
and complexity by arbitrarily setting prior distributions for the pa-
rameters, as we show in the Supplementary Materials [Appendix
Maximum-a-Posteriori (MAP) estimation]. We comment on how
to obtain efficient matrix operations that implement the updates
in Eqs. 8 and 9 in the “Practical implementation and efficien-
cy” section.

Identifiability, interpretation, and theoretical implications
In the following, we make some observations on relevant aspects
regarding the identifiability, interpretation, and theoretical implica-
tions of the proposed generative model. First, the log-likelihood in
Eq. 5 is invariant under permutations of the groups and under the
rescaling u→ c u and w→ w/c2, for any constant c > 0. This obser-
vation may raise questions about identifiability of the parameters.
However, both permutation and rescaling do not change the com-
position of the communities or the relative magnitude of the entries
of w; thus, the mesoscale structure is not affected by them. Never-
theless, one can easily make the model identifiable by setting a prior
probability on w and considering MAP estimates (see Appendix
Identifiability in the Supplementary Materials for details).

Second, for similar invariance reasons, the constant C can be ne-
glected and absorbed after convergence, by either rescaling u0 ¼
ffiffiffiffi
C
p

u or w0 = C w. While the forms of the rescaling constants κe
play no role during inference, as they only enter the updates
through the C term, they do instead affect the generative process
when sampling hypergraphs from it (52). For instance, calculations
similar to those in the Supplementary Materials (Appendix Average
degree) allow getting a closed-form expression for the average
weighted degree when only considering interactions of size k. The

resulting formula E½dwk � ¼
N � 2
k � 2

� �
k

κk N
P

i,j[VuiT w uj shows

that rescaling the constant κk translates into a rescaling of the
average degree. Similar considerations apply to the expected
number of hyperedges of a given size and show that the normaliza-
tion constants κe play an important role in determining the expected
statistics of the model and hence of the samples they produce. Gen-
erally, the sampling procedure from the generative model in Eq. 3,
allows determining the degree sequence (i.e., the degree array of the
single nodes) as well as the size sequence (i.e., the count of hyper-
edges for every specified size), which depend on the Poisson param-
eters and hence on the κe normalizers. Alternatively, the sampling
procedure from our generative model can be conditioned to respect
such sequences (52).

Third, it is possible to obtain the analytical expressions of the
expected degree of a node i, which evaluates to

E½dwi � ¼
P

e[Ω:i[e E½Ae�
¼ Cui

Tw
P

j[V:j=i uj þ C0
P

j,m[V:j;m=i uTj wum

where C0 ¼
PD

d¼3

N � 3
d � 3

� �

κd is a constant similar to C (see Appen-
dix Average degree in the Supplementary Materials). This expres-
sion has a relevant interpretation, as it reveals a fundamental
difference between simple networks and higher-order systems.
Since in dyadic systems C0 = 0, we can think of the rightmost
summand as a term contributing only to higher-order interactions,
while the leftmost one is a shift of the expected degree coming from
binary interactions only. One can also observe an analogy with net-
works of interactions in physical systems. In this context, the left-
most summand can be seen as a mean-field acting on node i in a
cavity system where the node is hypothetically removed, while the
rightmost term acts as a background field generated by all interac-
tions involving any pair of nodes that does not include node i. This
background term is peculiar to higher-order systems, as remarked
above. Its presence has a relevant effect of building higher-order in-
teractions between nodes in different groups. This can be illustrated
with a simple example of a system with assortative w and node i be-
longing to a different community than all the other nodes. While
the leftmost summand yields expected degree zero in dyadic
systems, the background field allows i to form on average nonzero
edges. Intuitively, this difference is due to the bilinear form in Eq. 2,
which allows observing hyperedges that are not completely homo-
geneous, where there could be a minor fraction of nodes that are in
different communities than the majority. Notice that such a gener-
ation, allowing for mixed hyperedges, is a desirable feature. On the
one hand, it is appropriate to model contexts where individuals have
multiple preferences and thus are expected to belong to multiple
groups. On the other hand, recent work (56) proves the combina-
torial unfeasibility of hypergraphs where all nodes exhibit majority
homophily—implying rather uniform hyperedges contained in
single communities—and encourages the development of more
flexible generative models.

Practical implementation and efficiency
From an optimization perspective, the EM algorithm starts by ini-
tializing u andw at random and then repeatedly alternating between
the Eq. 8 and Eq. 9 updates until convergence of ℒ(u, w, ρ). This
does not guarantee to reach the global optimum, but only a local
one. In practice, one runs the algorithm several times, each time
from a different random initialization, and outputs the parameters
corresponding to the realization with highest log-likelihood ℒ(u,w,
ρ). We provide a pseudocode description of the whole inference
procedure in Algorithm 1. For all our experiments, we perform
MAP inference on the affinity w, setting a factorized exponential
prior with rate 1, and maximum likelihood inference on the assign-
ment u. This choice corresponds to the half-Bayesian model pre-
sented in the Supplementary Materials [Appendices Maximum-1-
Posteriori (MAP) estimation and Identifiability]. The updates have
linear computational cost, obtained by exploiting the sparsity of
most real-world datasets with efficient matrix operations, as we
show in Appendix Computational considerations in the
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Supplementary Materials. Overall, the complexity scales asO(N K +
∣E∣), allowing to tackle inference on hypergraphs whose number of
nodes and hyperedges was previously prohibitive (see the “Model-
ing of real data” section). Another advantage of our inference pro-
cedure is that it is stable and reliable for extremely large hyperedges.
Because of computational and numerical constraints, previous
models were also limited to considering hyperedges with maximal
size D = 25 (35, 50). As we illustrate in the “Modeling of real data”
section with an Amazon and a Gene-Disease dataset, large interac-
tions (respectively D = 9350 and D = 1074) should not be neglected
as they provide useful information and substantially boost the
quality of inference.

RECOVERY OF GROUND-TRUTH COMMUNITIES
A standard way to assess the effectiveness of a community detection
algorithm is to check if the inferred node memberships match those
of a given ground truth. Such ground truth is generally not available
for real-world systems (57), while it can be imposed as a planted
configuration for synthetic data. For this reason, we consider a re-
cently developed sampling method to produce structured synthetic
hypergraphs with flexible structures specified in input (52). For
further details, see Appendix Recovery of community assignments
in the Supplementary Materials.

In Fig. 1, we generate hypergraphs with an underlying diagonal
affinity matrix w (assortative structure) and show the recovery per-
formance for the cases of hard (left) and mixed-membership (right)
community assignments. The detailed description of the data gen-
eration process is provided in Appendix Recovery of community as-
signments in the Supplementary Materials. We compare our
approach with Hypergraph-MT (35), an inference algorithm de-
signed to detect overlapping community assignments and assorta-
tive interactions; Spectral Clustering (43), which recovers hard

communities via hypergraph cut optimization; and Hypergraph
AON-MLL (50), which performs a modularity-like optimization
based on a Poisson generative model with hard memberships. For
our comparisons, we compute the cosine similarity between the
ground truth and the inferred communities, which is appropriate
to measure the similarity for both hard and mixed-membership
vectors. A value of zero represents no similarity, while a value of
one is attained by completely overlapping vectors. In both cases,
we find that our model successfully recovers the ground-truth com-
munities as more information is made available in terms of hyper-
edges of increasing sizes. This is somehow expected because the
generating process of these data reflects the one of our method,
and is a sanity check of our maximum likelihood approach. Spectral
Clustering andHypergraph-MTattain comparable cosine similarity
scores on hard-membership data (left), while their performances
differ when detecting mixed memberships (right), with Hyper-
graph-MT performing better. This is because Spectral Clustering
performs an approximate combinatorial search and can only
recover hard communities, while Hypergraph-MT allows for over-
lapping communities via maximum likelihood inference. The low
performance of Hypergraph AON-MLL is explained by its genera-
tive assumptions. AON-MLL assigns the same probability to all the
hyperedges containing nodes from more than one community. As
most of the hyperedges in this synthetic data are made of nodes
from more than one community, the recovery of hypergraph mod-
ularity on such systems is close to random. Altogether, such results
highlight the effectiveness of the inference procedure, making our
model suitable for networked systems with higher-order interac-
tions. Although relevant, the results in Fig. 1 are just one possible
comparison among algorithms with different generative assump-
tions. Such assumptions are expected to yield better or worse
results depending on the data, and in general, the no-free-lunch
theorem implies that no algorithm will consistently outperform
all others on all types of data. As a case for this argument, in Ap-
pendix Additional experiments on ground truth recovery in the
Supplementary Materials, we present additional results on different
synthetic data.

DETECTABILITY OF COMMUNITY CONFIGURATION
Previous inference algorithms rely on the strong assumption of as-
sortative community interactions, hampering their ability to model
more complex mesoscale patterns observed in the real world. By
contrast, our model allows detecting a variety of different regimes,
as it assumes a more flexible w.

Here, we investigate the detection—and detectability—of differ-
ent assortative and disassortative community structures in hyper-
graphs, generalizing previous work on pairwise systems (58). In
particular, we generate hypergraphs with hard community assign-
ments and different community interactions. We take affinity ma-
trices w with diagonal values cin and out-diagonal values cout, and
vary both cin and the ratio cout/cin. By fixing the value of cout/cin, we
expect higher detectability with increasing cin, as this term regulates
the expected degree and consequently the information contained in
the data. On the contrary, for a fixed value of cin, we expect the dis-
assortative model to attain better recovery as the ratio cout/cin in-
creases, due to the stronger intercommunity interactions. Details
on data generation are provided in Appendix Detection of commu-
nity structure in the Supplementary Materials.
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We compare the log-likelihoods obtained by the model when the
affinity matrix w is initialized as diagonal or full, which we refer to
as assortative and disassortative, respectively. Notice that the mul-
tiplicative updates in Eq. 9 guarantee that, if w is initialized as diag-
onal, it will remain as such during training. It is also possible that a
full matrix will converge to diagonal during inference. Nonetheless,
the strong bias of a diagonal initialization restricts the parameter
space of the assortative model, facilitating the convergence to
better optima for the detection of assortative structures.

Given the log-likelihood of the assortative (ℒa) and disassorta-
tive (ℒd) models, wemeasure the difference ℒa− ℒdwhile varying
the values of cin and cout/cin. Positive values denote stronger perfor-
mance of the assortative model, as its likelihood is higher, while
negative values favor the disassortative one. We observe that the as-
sortative model attains higher likelihood for low values of cout/cin,
when within-community interactions are stronger, as shown in
Fig. 2A. Its performance deteriorates as we increase cout/cin, with
the disassortative one taking over with higher likelihood values.
Furthermore, we can notice an inflexion point at cout/cin = 1,
where the difference in likelihood between the models is null.

While one would expect the disassortative model to perform
better in such a scenario, we highlight that this regime is a challeng-
ing and noisy one, as the affinity matrix is the uniform matrix of
ones. Hence, recovery is difficult and not guaranteed, regardless
of the model. We finally notice an increase of ℒa − ℒd with cin,
which regulates the strength of the signal and makes it easier to sep-
arate the two regimes.

While we expect recovery to improve at more detectable regimes,
this may not be observed by only looking at the ℒa− ℒd difference.
For this reason, in Fig. 2B, we complement our analysis by plotting
only the log-likelihood ℒd attained via the disassortative initializa-
tion. In this case, we notice that the performance of the disassorta-
tive model increases with both cout/cin and cin, as the
intercommunity interactions get stronger and the expected degree
gets higher. Altogether, our algorithm provides a principled way to
extract arbitrary community interactions from higher-order data
with varying structural organizations.

Fig. 1. Recovery of ground-truth community assignments. We measure the cosine similarity between the ground truth and the inferred assignments. We vary the
maximum hyperedge size D in synthetic data and study the cases of hard (left) and mixed (right) ground-truth memberships. When information is scarce, represented by
few hyperedges of small maximum size D, our method is comparable to the most efficient approaches currently available. However, as larger hyperedges are considered,
our method outperforms competing algorithms, on both hard and mixed-membership planted partitions.

Fig. 2. Detection of assortative and disassortative community interactions.We generate data where the affinity matrices contain diagonal values cin and out-diag-
onal cout and measure the ability of our model to detect different assortative and disassortative regimes. (A) Positive (negative) differences in log-likelihood values in-
dicate that the assortative (disassortative) model attains a better fit. An intermediate regime, highlighted in yellow, also emerges. Here, the detectability is compromised
due to not having enough structure (cout ≈ cin) or enough information (low cin). (B) Log-likelihood of the disassortative model. In this case, the model attains better fit for
data with marked disassortative structure (darker red).
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CORE-PERIPHERY STRUCTURE
Many real-world systems are characterized by a different mesoscale
organization known as core-periphery (CP) structure (59, 60). Net-
works characterized by such structure present a group of core of
nodes connected among themselves, and often with high degree
(61, 62), and a separate periphery of weakly connected nodes. Re-
cently, methods to study and detect the existence of such patterns in
hypergraphs have been proposed (63, 64). Conceptually, Hy-
MMSBM has not been developed with the purpose of CP detection.
Nevertheless, we can show its ability in capturing CP structures in
hypergraphs through the generation of synthetic data that resemble
the core structures of the input dataset.

To measure the recovery of CP structures, we use the method
developed by Tudisco and Higham (64), HyperNSM, that assigns
to each node of a hypergraph a core-score quantifying how close
the node is to the core, where higher values denote stronger partic-
ipation. HyperNSM achieved good performance on synthetic and
real-world data, and its implementation is extremely efficient.

We analyze the Enron email dataset (65). Notably, the dataset
comes with metadata information identifying a group of core
nodes, employees of the organization who send batch emails to
the periphery, which in turn only receive emails. This allows us to
evaluate the ability of a model to recover a CP structure. In our
study, we use the dataset used by Tudisco and Higham (64) with
a planted core set that arises directly from the data collection
process, as discussed by Amburg et al. (63) (it is preprocessed by
keeping only hyperedges of size D ≤ 25). The dataset has N =
4423 nodes and a core composed by 132 nodes. We apply Hy-
perNSM to quantify the CP structure of the input Enron email
dataset, as well as of the samples generated with Hy-MMSBM. To
generate the samples, we first run our inference procedure on the
Enron email dataset and then sample hypergraphs distributed ac-
cording to the obtained u, w parameters. Further details on how
to generate the samples are provided in Appendix Core-periphery
experiments in the Supplementary Materials. For comparison, we
also generate samples with a configuration model for hypergraphs
(66) and obtain their core-score vectors with HyperNSM as well.

To evaluate the quality of the CP assignments in the different
samples, we use the CP profile, the metric defined in (64) as

γðSÞ ¼
# hyperedges with all nodes in S

# hyperedges with at least one node in S
; S # V ð10Þ

For any k∈ {1,…,N}, we calculate the value γ[Sk(x)], where Sk(x)
is the set of k nodes with smallest core-score in x. Given its defini-
tion, γ(S) is small if S is largely contained in the periphery of the
hypergraph and it should increase drastically as k crosses some
threshold value k0, which indicates that the nodes in V\Sk0(x)
form the core.

In Fig. 3A we show the CP profiles corresponding to the core-
scores computed with HyperNSM on the different datasets, i.e.,
the input Enron email, the samples generated with Hy-MMSBM,
and the samples generated with the configuration model for hyper-
graphs. We plot 600 nodes with the highest core-score in decreasing
order, and for all datasets, we notice a sharp drop, which highlights
the existence of a CP structure. The main difference is given by the
threshold k0 at which this drop happens. This determines the di-
mension of the core. Remember that the data have a core composed

by 132 nodes, and when applying HyperNSM on the input data, we
obtain a core dimension equal to 117, validating the good core-de-
tection performance of this algorithm. The samples generated with
the configuration model present a core with an average of 530.6
nodes, quite far from what observed in the input dataset. On the
other hand, Hy-MMSBM generates samples that better resemble
the property of the Enron email dataset, with an average core di-
mension of 195.7 nodes.

To understand the impact of nonpairwise interactions on
higher-order CP structure, we also study the connection between
hyperedge size and CP score. In Fig. 3B, we plot the CP score of a
given node against the mean size of the hyperedges it belongs to.
While we can observe a strong relationship between these two quan-
tities at low CP scores, such regularity disappears in the center of the
plot, which contains core nodes and presents a high scattering of
hyperedge size values. This unexplained variance is justified by
the rich information encoded in the CP score, which jointly
depends on different factors related to the topology of the hyper-
graph. Yet, the scatter plots obtained on the Enron email dataset
and the samples generated with Hy-MMSBM have higher similarity
than the samples generated with the configuration model. Quanti-
tatively, we measure the similarity between the core-scores of the
different datasets for the 132 core nodes with the Pearson correla-
tion, a measure ρ ∈ [ − 1,1] of linear correlation between two sets of
data. The CP scores of the data have a Pearson correlation equal to
0.81 ± 0.01 with the samples generated with Hy-MMSBM, and of
0.76 ± 0.03 with the samples generated with the configuration
model. Similar results are found on the relation between CP score
and another structural property, namely, the degree of a node (see
fig. S2 in Appendix Additional results on the Enron email dataset in
the Supplementary Materials).

MODELING OF REAL DATA
In this section, we perform an extensive investigation of higher-
order real-world systems. As explained in the “Inference” section
and in the Supplementary Materials (Appendix Computational
considerations), the linear-cost EM updates, together with a
careful implementation that exploits the sparsity of most datasets,
make our method suitable for the analysis of a variety of hyper-
graphs that were previously inaccessible due to computational con-
straints. Our method proves to be scalable with respect to both the
number of system units and the size of the interactions, improving
substantially on competing algorithms currently available in the lit-
erature. Moreover, our model is based on a probabilistic formula-
tion, allowing it to perform additional operations and extract
information that is not viable via other approaches, such as spectral
clustering. First, we evaluate the quality of fit of various community
detection methods based on their hyperedge prediction capabilities
on a Gene Disease dataset, where nodes are genes, and interactions
contain genes that are associated with a disease. To this end, we use
the area under the curve (AUC) measure, a link prediction metric
defined as follows: Given a randomly selected observed edge, and a
randomly selected nonobserved one, the AUC ∈[0,1] computes the
number of times that the generative model assigns a higher proba-
bility to the observed edge. Here, we split the datasets into train and
test subsets, where the train sets are used to estimate the parameters,
and we evaluate the prediction performance in terms of AUCon the
test sets (see Appendix Experiments on real data in the
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Supplementary Materials for details). Scalability with respect to hy-
peredge size is a crucial aspect of models for higher-order data.
However, due to computational and numerical constraints, previ-
ous methods are limited to considering interactions of moderate
size only, possibly causing a loss of information and a biased repre-
sentation of the full system. In contrast, our model is able to effi-
ciently process all the information provided in the dataset,
reliably scaling to hyperedges of size of the order of the thousands.
In Fig. 4A, we compare our method with other probabilistic ap-
proaches with hyperedge prediction capabilities. When only small
interactions are considered, our model outperforms the competitive
algorithms. At the computational limit of other approaches D = 25,
Hypergraph-MT and our model attain a similar score, signaling the
importance of considering large interactions. Beyond this compu-
tational threshold, our method continues to exploit the information
provided by interactions among a growing number of units up to
the maximum size observed of D = 1074, which results in an
AUC score of 0.79.

We then extend our analysis to a variety of datasets from differ-
ent domains, as described in Fig. 4B. For each dataset, we show the

inference running time as a function of the number of nodes N and
the size of the largest hyperedge D. The AUC scores, reported in
Table 1 and ranging from 0.74 to 0.98, show that the model gener-
ally yields a good fit and predicts the existence of hyperedges reli-
ably. While these scores are on average aligned with those of other
existing algorithms (35), the running time of our model is orders of
magnitude lower. This allows studying very large hypergraphs such
as the Arxiv, Trivago 2core, and Amazon datasets, containing up to
millions of nodes and hyperedges. Overcoming the resulting com-
putational challenges, our method allows the efficient modeling of a
variety of previously unexplored datasets, which, to the best of our
knowledge, could not be tackled by competing higher-order com-
munity detection algorithms.

Taken all together, these results show the effectiveness of our
model in tackling datasets of small and large dimensions, in
terms of both quantitative performance and computational scalabil-
ity, and make Hy-MMSBM a valid tool for the study of complex
higher-order systems.

Fig. 3. Recovery of structural CP information. (A) CP profile (Eq. 10) corresponding to the core-scores computed with HyperNSM on the input Enron email (yellow), 10
synthetic samples generatedwith Hy-MMSBM (blue), and 10 synthetic samples generatedwith a configurationmodel for hypergraphs (magenta). We plot 600 nodes with
the highest core-score in decreasing order and report the averages and standard deviations of the core dimension for the different datasets. Our method generates
samples that closely resemble the property of the input dataset, with an average core dimension close to 132 nodes. (B) Mean size of the hyperedges a node belongs to
against its CP score. We observe higher agreement between the data and the inference-based sample generated with Hy-MMSBM. This is also highlighted by the Pearson
correlation of the 132 core nodes that is equal to 0.81 ± 0.01 for Hy-MMSBM versus the value of 0.76 ± 0.03 for the samples generated with the configuration model.

Fig. 4. Modeling of real data: hyperedge prediction and running time. (A) Quality of hyperedge prediction measured by the AUC score on a Gene Disease dataset,
where nodes are genes and hyperedges contain genes that are associated with a disease. For Hypergraph-MT and Graph-MT, the plot shows a computational threshold at
the maximum hyperedge size D = 25. Hy-MMSBM attains the highest scores and is able to model the entire hypergraph, up to D = 1074. (B) Running time of Hy-MMSBM
for a variety of real-world datasets. The node represents the data domain. Both N and D are in log scale. The corresponding AUC scores are reported in Table 1.
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DISCUSSION
Here, we have developed a probabilistic framework to model hyper-
graphs. Our method allows performing inference on very large hy-
pergraphs, detecting their community structure, and reliably
predicting the existence of higher-order interactions of arbitrary
size. When compared to other available methods on synthetic hy-
pergraphs with known ground truth, for both hard and mixed as-
signments, our model attains the most efficient recovery of the
planted partitions. Moreover, compared to previous proposals,
Hy-MMSBM relies on less restrictive assumptions on the latent

community structure in the data and is thus able to detect configu-
rations, such as disassortative community interactions, which could
not be previously identified. Furthermore, our method is extremely
fast. Its efficient numerical implementation exploits optimized
closed-form updates and dataset sparsity and has linear cost in
the number of nodes and hyperedges. The resulting formulas are
also numerically stable, not resulting in under- or overflows
during the computations. Such numerical stability carries over to
extremely large interactions, a substantial improvement over the
computational threshold of previous methods, allowing to explore
higher-order datasets with millions of nodes and interactions
among thousands of units, that could not be previously tackled.

There are several directions for future work. From a theoretical
perspective, our proposed likelihood function is based on a bilinear
form for capturing dependencies within the hyperedges, a key in-
gredient for ensuring bothmixed-membership nodes and fast infer-
ence. A possible extension would be to consider alternative
likelihood definitions where the probability of the hyperedges is de-
termined by multilinear forms, which would in principle allow cap-
turing more complex interactions within the hyperedges. Similarly,
here, we have assumed the hyperedges to be independent condi-
tioned on the latent variables. Relaxing this assumption may ame-
liorate the expressiveness of the model, allowing to capture
topological properties that involve more than two hyperedges, as
already observed in the case of networks (67–69). From an algorith-
mic perspective, there are different questions that may allow further
stabilizing and improving the inference procedure. Among these,
the propensity of different initial conditions to be trapped in local
optima during EM or MAP inference has not yet been investigated.
Devising suitable initialization procedures or parameter priors to
favor different membership types, as done in other works (70),
offers a promising path in this direction. Finally, we have considered
here a standard scenario where the input data are a list of hyper-
edges, and these are provided all at once. Other approaches may
be needed in case of availability of extra information such as node
attributes (71, 72) or for dynamic data (73).

Altogether, our work provides an accurate, flexible, and scalable
tool for the modeling of very large hypergraphs, advancing our
ability to tackle and study the organization of real-world higher-
order systems.

Supplementary Materials
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Supplementary Text
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