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appoggio niente di tutto ciò sarebbe stato possibile.
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A B S T R AC T

Over the last half-century, the economic growth has determined higher standards of living
and sustained social progress and development. As a result, the needs of modern society have
significantly evolved in several contexts such as transportation, infrastructures, energy production,
and communication systems. This social and economic transformation has driven a substantial
technological advancement, which in turn has led to new opportunities as well as new attractive
challenges. One of these stems from the ever-increasing demand for more efficient, reliable, and
sustainable engineering systems, and their resulting ever-growing complexity. Within the structural
and mechanical domains, digitalization is key to handling the challenges in design, analysis, and
monitoring as it provides tools such as forward simulations, advanced data acquisition technologies,
and powerful data processing strategies. More accurate information about the behavior of mechanical
and structural components can be gathered through these technologies and used to improve
systems design in terms of safety and reliability, as well as for enabling advanced Structural
Health Monitoring (SHM) strategies. The latter aim at maximizing systems performance, reducing
maintenance costs, and extending their life span. New avenues for the establishment of a permanent
performance assessment of structures and mechanical components are opened up by the development
of enhanced virtualization strategies aimed at defining the so-called Digital Twins (DTs), i.e., digital
mirrored representations of physical systems built with the help of both numerical simulations and
real-time collected data. The hereby proposed research focuses on the use of Virtual Sensing (VS) for
constructing DTs in structural dynamics, with spacecraft vibration testing and Wind Turbine (WT)
blades testing comprising the main application domains. VS consists in inferring Quantities of
Interest (QoI) which cannot be physically acquired for time, cost, or accessibility limitations. The
so-called “virtual sensors” are built using data assimilation methods that exploit the fusion of
physically recorded vibration data with mechanistic models to build a real-time estimate of the QoI,
e.g., unmeasured loads or responses. This thesis addresses the existing challenges and limitations
arising from the development of VS techniques for joint input-state estimation in structural dynamics.
Within this context, a major task stems from seeking representative models for the uncertainty
parameters leveraged by the adopted data assimilation strategies. Indeed, these methods lie in a
stochastic setting, where modeling and loading conditions uncertainties are taken into account via
specific parameters, whose proper selection, essential for the correct functioning of the algorithms,
often comprises a complex offline tuning task. This feature unavoidably hinders the real-time
applicability of data assimilation strategies, thus limiting their exploitation both during laboratory
testing and in operation. Data-driven and adaptive approaches are proposed in this thesis to embed
adequate a priori uncertainties representations into the models adopted within the input-state
estimation strategies, thus allowing for their real-time and user-independent deployment. The
approaches developed within this work are tested and validated for several experimental case studies.
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S O M M A R I O

La crescita economica avvenuta nell’ultima metà di secolo ha determinato un forte miglioramento
del tenore di vita e un conseguente sostenuto progresso e sviluppo sociale, il quale ha portato ad
un’evoluzione dei bisogni della società moderna in diversi contesti, come i trasporti, le infrastrutture,
la produzione energetica e i sistemi di comunicazione. Tale trasformazione sociale ed economica ha
promosso un sostanziale avanzamento tecnologico che, a sua volta, ha introdotto nuove opportunità
e, allo stesso tempo, nuove interessanti sfide. Una di queste nasce dalla crescente richiesta di sistemi
ingegneristici più efficienti, affidabili e sostenibili e, di conseguenza, dalla loro sempre maggiore
complessità. Nell’ambito meccanico e strutturale, l’avvento della digitalizzazione ha giocato un
ruolo fondamentale nel gestire le sfide derivanti dal design, l’analisi ed il monitoraggio, grazie a
strumenti come simulazioni dirette ed avanzate tecnologie di acquisizione ed elaborazione dei dati.
Un’informazione più accurata riguardo il comportamento di componenti meccanici e strutturali
può essere ricostruita tramite queste tecnologie e utilizzata per migliorare il design in termini di
sicurezza e affidabilità, cosi come per facilitare strategie avanzate di controllo strutturale. Queste
ultime ambiscono a massimizzare la performance dei sistemi, riducendone i costi di manutenzione e
allungandone la vita utile. Nuovi strumenti per la definizione di un continuo processo di verifica della
performance di strutture e componenti meccanici sono forniti dallo sviluppo di metodi potenziati
di virtualizzazione, finalizzati alla costruzione dei cosiddetti Digital Twin (DT), ossia delle fedeli
rappresentazioni digitali di sistemi fisici ottenuti attraverso l’utilizzo di simulazioni numeriche e
dati registrati in tempo reale. La ricerca proposta in questa tesi si focalizza sull’uso di metodi
di VS, anche detti metodi di sensorizzazione virtuale, per creare DT nell’ambito della dinamica
strutturale e, più specificatamente, nei contesti di test vibrazionali di satelliti e di pale di turbine
eoliche. I metodi di Virtual Sensing (VS) consistono nel ricostruire le quantità di interesse che
non possono essere acquisite tramite misure fisiche a causa di limitazioni in termini di tempi, costi
ed accessibilità. I cosiddetti “sensori virtuali” vengono derivati attraverso metodi di assimilazione
dei dati, che sfruttano la combinazione di misure vibrazionali fisiche con modelli meccanistici per
calcolare una stima delle quantità di interesse, ad esempio carichi e risposte strutturali non misurati,
in tempo reale. Questa tesi affronta le esistenti sfide e limitazioni derivanti dallo sviluppo di tecniche
di sensorizzazione virtuale per stime simultanee di carichi e stati del sistema nel dominio della
dinamica strutturale. In questo contesto, uno dei compiti principali scaturisce dalla ricerca di modelli
rappresentativi per i parametri di incertezza che vengono sfruttati dai metodi di assimilazione dei
dati. Tali tecnologie sono infatti caratterizzate da un approccio stocastico, dove le incertezze inerenti
ai modelli e alle condizioni di carico sono prese in considerazione tramite parametri specifici, la cui
accurata selezione, essenziale per il corretto funzionamento di questi algoritmi, richiede spesso una
complessa attività di regolazione offline. Questa caratteristica ostacola inevitabilmente l’applicabilità
in tempo reale delle strategie di assimilazione dei dati, limitando conseguentemente il loro utilizzo
durante test in laboratorio o misure operazionali. In questa tesi, metodi adattivi e basati sui dati
vengono proposti per includere rappresentazioni adeguate delle incertezze all’interno dei modelli
impiegati nelle strategie di stima di carichi e stati, quindi garantendone l’implementazione in tempo
reale ed in maniera indipendente dall’utilizzatore. Gli approcci sviluppati in questa tesi sono testati
e validati attraverso diversi casi studio sperimentali.
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1
I N T RO D U C T I O N

Engineering systems are complex, multidisciplinary entities that play an important role in modern
society. They must be designed, built, and maintained with a focus on functionality and reliability,
as well as safety and sustainability. To address these requirements, attention must be paid to putting
in place a controlled management of their life cycle to supervise these systems from their design,
through manufacturing and operation to disposal. Knowledge of engineering systems has thus
gained crucial importance in recent decades, especially with regard to the design and monitoring
phase. Design involves the definition of an initial plan for the system under development, and often
includes simulations and testing to ensure that the required system specifications and performance
standards are met. Monitoring, on the other hand, involves continuous observation and analysis of
the system performance during operation to identify any potential issues or deviations from the
expected behavior. This includes the collection and analysis of data, the use of sensors and control
systems, and the identification of corrective measures necessary to ensure that the system continues
to operate effectively. The combination of effective design and ongoing monitoring of engineering
systems helps to improve their performance and reliability and reduces the risk of malfunctions
and failures. It also ensures that systems continue to meet the evolving needs and requirements
of users as well as changing regulatory and safety standards. In the structural and mechanical
domains, the increasing complexity and multidisciplinarity of developed systems and the rapid pace
of technological change have increased the need for in-depth knowledge and understanding of the
underlying characteristics and phenomena. Moreover, stricter safety and environmental regulations
have also incremented the need for detailed knowledge of structures and mechanical components. In
this regard, experimental and operational measurements are essential for identifying the structural
properties of systems for both design and monitoring. During the design stage, experimental testing
is exploited to ensure that structures meet initial design, safety, and performance criteria, as well
as for ensuring that they can withstand the loads and conditions they will encounter in service.
Data-driven identification methods often referred to as inverse engineering, are in many application
cases supported by simulation efforts, i.e., forward engineering, for initial design and prototyping.
An iterative process is then installed between testing and simulation for validating the accuracy of
source models and implementing potential required modifications according to testing outcomes
with the purpose of developing trust in the model through the process of verification and validation.
The latter serves to establish a test-validated Digital Twin (DT), i.e., a digital representation
featuring encoded information on the structure “as-is”. Physical tests can be simplified by extracting
information from digital models, e.g. via model-driven data selection or the creation of model-based
virtual channels. In the monitoring context, measurements are exploited to evaluate the in-field
performance of the structures, identify possible damages, and limit the need for repair efforts
by implementing an effective monitoring strategy. The latter is referred to as Structural Health
Monitoring (SHM), whose implementation aims to continuously assess the performance level of
structures for reducing maintenance time and costs. This process is normally implemented by
exploiting on-site monitoring systems to measure Quantities of Interest (QoI) and detect irregularities
in the monitored structural behavior. However, the ever-growing systems complexity and the online
nature of collected information, which also implies large amounts of data, render the latter difficult
to interpret by means of standard system identification techniques. To cope with these restrictions
and with the limited in-field accessibility of structures, more articulated SHM strategies have been
put in place in recent times with the support of digitalization. Data-driven and physics-based models
are being exploited nowadays towards the goal of performing Predictive Engineering (PE), according
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to which the system performance can be investigated at any stage of its development, allowing for
behavior prediction rather than ad hoc solutions to issues that may arise during operation. With
this purpose, DTs developed and validated within the design stage, can be updated throughout the
entire life cycle of the system using automated condition monitoring.

1.1 Problem outline and motivation
Design, identification, verification and monitoring comprise primary activities within the life

cycle management of mechanical and structural components. Several challenges may arise from
the execution of these tasks due to systems complexity, inaccessibility limitations, time and costs
constraints and external sources of uncertainties. These aspects can be mitigated by implementing
virtualization strategies to be exploited throughout the life span of these components. The goal in this
context consists in constructing a DT of the system under study, i.e., a virtual replica of the physical
system obtained from a fusion of models and data. The implementation of such strategies in an
engineering setting has been facilitated by the digital transformation and technological advancement,
which have led to i) increasing computational power and hence more detailed mechanistic models and
ii) high levels of sensorization, which imply accessibility to large amounts of data. The main challenge
behind the definition of DTs lies in the implementation of reliable methodologies for combining
model-based and data-based information to create a predictive tool that can evolve over time. To
this end, data assimilation techniques are widely adopted in the structural dynamics context for
implementation of Virtual Sensing (VS) strategies, i.e., for inferring QoI such as system responses
and/or unknown loads in a dynamic environment. The working principle of these strategies comprises
the use of data for reduction of the uncertainties arising from the limitations of mechanistic modeling,
which is in turn exploited to expand the available data and gain further knowledge of the system
dynamic behavior. Despite VS methods are nowadays recognized as powerful tools for twinning
of dynamic systems, several limitations are still to be addressed for improvement of the accuracy
and efficiency of the underlying data assimilation process. The major constraints surrounding the
applicability of these methods to real-life scenarios derives from modeling inaccuracies and poor
data quality. The first can arise from insufficient design data, unsuitable simplifying assumptions
used for reducing models computational complexity, parameters uncertainties or numerical errors.
The latter is instead related to the correctness and completeness of the information conveyed by
physically recorded data, which can often be contaminated by noise, insufficient or sparsely sampled.
Despite the effect of these aspects can be controlled and mitigated by means of uncertainties
quantification approaches, the latter often require regular offline calibration, thus hindering the
real-time applicability and user-independence of these methods.

In this framework, the main motivation of the work presented in this dissertation stems from the
existing challenges in the implementation and deployment of a real-time predictive framework for
virtualization of dynamic systems. To this end, this thesis proposes novel approaches to limit the
necessity of offline user-dependent calibration of data assimilation methods by i) adaptive noise
parameters tuning and ii) employment of data-driven a priori models within existing VS algorithms.

1.2 State of the art
The deployment of dynamic virtualization strategies for structures is addressed in this thesis

by exploiting VS techniques defined either in a deterministic or in a stochastic framework. These
methods combine a limited set of measurements with a validated model in order to infer QoI such
as responses at unmeasured locations, unknown loads or system parameters. The task of building
“virtual sensors” is often addressed by implementing data assimilation strategies, i.e., by assimilating
physically recorded data into a model of the system to merge measured and synthetic information.

The model employed within VS approaches can be i) extrapolated from measured data via inverse
engineering methods such as system identification techniques [1, 2, 3, 4] or ii) obtained as a
physics-based representation of the system, e.g. Finite Element (FE) models [5]. This dissertation
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is focused on employing VS methods constructed on the use of the latter class of models. The
objective of this methods lies indeed in exploiting mechanistic assumptions for augmenting the
information available from data recorded by physical sensors. On the other hand, acquired vibration
data is used to contain the uncertainties derived from approximated physics-based modeling, which
often feature a too high level of discretization with respect to systems actual behavior. Nevertheless,
data-driven system identification techniques are exploited for assessment of the proper characteristics
of the structure, e.g, its modal parameters. Data is recorded during experimental or operational
measurements and structural features, e.g. modal parameters of the structure, are extrapolated via
Experimental Modal Analysis (EMA) and Operational Modal Analysis (OMA) methods respectively.
Several enhanced strategies are being developed nowadays to cope with the challenges arising from
OMA and SHM, namely the transient response characterizing operational conditions [6, 7] and
the effects of fatigue on operating structures, which causes structural parameters variability and
eventually damages [8, 9, 10, 11]. On the other hand, many novel strategies have been proposed in the
context of EMA, where particular attention has been shed on nonlinearities which may arise, e.g. for
large and flexible structures [9, 12, 13, 14]. System parameters extrapolated via data-driven system
identification techniques are then referenced to verify, validate and update available FE models,
thus allowing their employment within the analyzed VS strategies. Common techniques for model
updating rely on FE models parameterization and seek for point-estimates of the parameters, e.g.
the material properties, by minimizing the difference between the numerical and the experimental
dynamic properties. Several metrics sensitive to model parameters change can be adopted for
optimization. Most traditional ones [15, 16, 17, 18], which we found implemented in commercial
software, comprise non-probabilistic methods which do not account for model uncertainties, noise
affecting measured data and material and manufacturing variability [19]. These effects are instead
taken into consideration in probabilistic approaches to model update [20, 21, 22]. Popular model
updating techniques however, require a large number of analyses of FE models. This gives rise
to significant computational efforts, especially when large structures featuring a high number of
Degree of Freedoms (DOFs) are analyzed. To mitigate the challenges derived by model updating
of high-dimensional FE models, several studies have integrated Reduced Order Models (ROMs)
within model updating strategies [23, 24, 25]. Model Order Reduction (MOR) techniques such as
Component Mode Synthesis (CMS) [26], i.e., synthetic representation of structural components
by means of their vibration modes, Proper Orthogonal Decomposition (POD) [27, 28] or Reduced
Basis (RB) methods [29], are indeed commonly used for dimensionality reduction of FE models,
thus also allowing for a lower computational effort when making use of these models in processing
algorithms such as the ones adopted for VS. Indeed, a crucial advantage of the data assimilation
methods explored within this thesis lies in their recursive nature, which implies real-time applicability.
The online deployment of “virtual sensors” comprise an attractive feature in the field of structural
testing and monitoring, and particularly for spacecraft and Wind Turbine (WT) blade testing, which
comprise the two main application fields in this thesis, as well as WT operational measurements.
MOR is often adopted as solution to the challenges posed by the real-time performance of linear
or even nonlinear high-dimensional models. Analyzing systems of high complexity such as the
ones featuring nonlinear behavior due to nonlinear materials or large deformations, require high
modeling precision and therefore larger computational efforts. To this end, several machine learning
algorithms allowing for dimensionality reduction of nonlinear systems for their real-time deployment
have been proposed in literature[30, 31, 32, 33].

In specific cases in which the VS main focus is on structural response reconstruction, Modal
Expansion (ME) can be applied for data assimilation to predict real-time operating data at
unmeasured locations by mapping the measured responses through numerical normal modes. The
prediction relies upon a modal decomposition of the measured responses to obtain the modal
coordinates, which are expanded to the unmeasured DOFs through the FE model mode shapes.
This type of deterministic approach has been shown to provide robust predictions when applied on
displacement or strain data acquired on simple structures, e.g. Base-Upright [34] and square plate
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[35] structures, while further demonstrated for a WT application on a purely accelerations-based
dataset [36]. The latter has been also adopted in [37] for building virtual strain sensors for fatigue
analysis of an offshore oil platform scaled mockup. Additionally, ME has been tested on both
pure acceleration data and a mixed acceleration-strain data set with the purpose of strain-stress
estimation for fatigue-life prediction of an offshore monopile WT [38]. As an alternative to ME,
Bayesian filtering has also been extensively adopted in the recent years for the purpose of VS
[39, 40, 41, 42, 43, 44, 45]. In particular, Kalman-type filters were initially adopted for real-time
state estimation under the assumption of complete knowledge of the loads acting on linear or even
nonlinear structures [46, 47, 48]. Several extensions of the original algorithm have been proposed for
linear dynamic systems in order to simultaneously tackle response prediction and inverse load
identification in a stochastic setting. The so-called Augmented Kalman Filter (AKF) consists in
including the unknown input within a new augmented state vector by assuming a pure Random
Walk (RW) model for its dynamics. The algorithm and its applicability to structural dynamics have
been proposed in [49]. The AKF instability issues have been investigated in [50], where dummy
measurements are adopted to overcome the un-observability of the augmented system matrix,
which appears when acceleration measurements are exclusively considered. Numerical issues due
to un-observability exhibited by the AKF have been resolved by an alternative algorithm for joint
input-state estimation, commonly referred as the Dual Kalman Filter (DKF). The DKF, consisting
in approaching the input and states prediction into two sequential stages under the assumption that
the input follows a pure RW model, has been presented in [51] and tested in [52]. Several additional
algorithms have been proposed for joint input-state estimation with a time-delayed scheme [53, 54,
55]. It has been proved in [55] that these approaches, classified as smoothing, allow to significantly
reduce the estimation uncertainty due to measurement noise when measurements collocated with
the estimated forces are not available. The challenges derived from instantaneous system inversion
for load identification within input-state estimation algorithms have been investigated in [56], where
the requirements in terms of sensors quantity and type are investigated. In this sense, an ad hoc
Optimal Sensor Placement (OSP) strategy has been developed in [57, 58] for input-state estimation
using the AKF, while a more extended framework based on information theory is proposed in [35,
59, 60].

A more generic model for the input, i.e., a first order stationary autoregressive process, has been
used in [39] to address joint input-state-parameter estimation via a combination of the DKF and the
Unscented Kalman Filter (UKF) [61, 62, 63, 64]. Although the RW model and its adaptations are
widely adopted as prior input information in generic circumstances when applying joint input-state
estimation schemes, it is sometimes not representative of the actual loading conditions. As such,
imposing an a priori RW model for estimating loads in any laboratory or operational condition
often negatively influences the prediction accuracy. To this end, Machine Learning (ML) approaches
such as Gaussian Process (GP) regression [65] have been exploited to construct more comprehensive
models for the unknown input. A state-space representation for GP models has been proposed
in [66, 67], where a recursive regression solution has been implemented using a combination of
Kalman filtering and smoothing. The sequential GP regression solution has been used to construct
Gaussian Process Latent Force Models (GPLFMs) with applications in several domains [68, 69,
70]. In [71], GPLFMs have been introduced as flexible alternatives for unknown input modeling in
the framework of joint input-state estimation of structures. With this purpose, a GPLFM with a
Matérn kernel is used in combination with the Bayesian Dynamic Model (BDM) of the system for
joint input-state prediction via Kalman filtering and smoothing. Besides its higher flexibility, it
has been demonstrated in [71] that this method overcomes the un-observability issues arising from
the use of the AKF with acceleration-only data sets. The GPLFM has been further exploited for
input-state-parameter estimation in [72]. Additionally, GP regression has been implemented in both
time and space dimensions for recursive distributed load prediction in [73]. The need of an a priori
assumption regarding the input dynamics has been overcome in [74] by the so-called Gillijns De
Moor Filter (GDF). This estimator has been derived on the basis of the Kitanidis filter [75, 76], a
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linear state estimator operating in presence of unknown inputs which do not affect the produced
state estimation. Under this assumption, the coupled input-state estimation can be perfomed via
the GDF algorithm, in which the input true values are substituted by their optimal estimates. The
GDF has been extended for systems with a direct transmission term in [77], while an improvement
of the method regarding instabilities due to the number of adopted sensors exceeding the model
order has been suggested in [78]. The input-state prediction through Bayesian VS often implies
significant challenges when applied to complex systems subjected to uncertain loading conditions
such as WTs. In order to address the reduction of these uncertainties, a substructure approach for
input-state estimation has been proposed in [79] and validated on real-life data from an offshore
WT in [80]. Recently, Bayesian filtering and ME have been combined via the so-called ME-AKF
method. The latter consists in implementing strain responses predicted via ME into the AKF in
order to enhance the online estimation results. The method has been proposed and tested on a
full-scale rollercoaster structure in [81].

Within the context of Bayesian filtering, the assumption of a priori knowledge of the process and
measurement noise statistics is placed. The process and measurement noise terms are used in a
stochastic framework to reflect the uncertainties that stem from modeling errors/approximations,
input uncertainty and measurement noise in the system representation. These two noise variables
are commonly assumed to be independent, zero-mean white noise processes and the corresponding
covariance matrices are treated as time-invariant quantities. The adoption of incorrect values for
the process noise and measurement noise covariance matrices can lead to large estimation errors. In
many cases, these values are not known exactly and offline tuning procedures are put in place [82,
83, 84, 39, 51, 52]. In an effort to handle this, a common approach is to prescribe the measurement
noise covariance by exploiting the available physical sensors specifications. Then, an optimization
procedure regarding the process noise term is carried out in a rather heuristic manner, i.e., either
by trial and error or by means of regularization metrics, such as the L-curve [85]. Besides its
offline nature, this method often generates a plot which does not appear as a perfect L-shape. This
renders the regularization parameter choice not straightforward for several Kalman-type filters,
e.g. the AKF [49] and the DKF [52]. The application of regularization schemes is also limited to
the condition in which only one parameter is to be calibrated. The working principle behind the
L-curve has been adapted and used for simultaneously tuning more than one term in [86, 41]. An
online alternative to the previously mentioned methods for identifying the disturbances consists in
using adaptive filtering techniques. These strategies have been applied for both the process and
measurement noise terms [43] and they can be classified into four main categories [87]: Bayesian
[88], maximum-likelihood estimation [89], correlation [90, 91, 92, 93] and covariance matching
[94] methods. These approaches describe generic adaptive filtering schemes, which are typically
characterized by excessive computational times. Moreover, the majority of these techniques are
based on seeking the most suitable process and measurement noise covariance matrices steady-state
estimates, rather then their current optimal values.

1.3 Case studies
Focus will be shed in this dissertation onto the development of dynamic virtualization strategies,

i.e., methodologies aimed at creating DTs of dynamic systems by augmenting numerical models
using data. Two major application domains will be investigated by means of the analyzed case
studies: spacecrafts and WT blades testing. Within both contexts, enhanced tools will be provided
for installing a real-time dynamic virtualization process by blending the margins between testing and
simulation. In this respect, a hybrid approach is developed by exploiting VS technologies aimed at
the fusion of physically acquired vibration data with artificial information produced by mechanistic
or data-driven models.

1.3.1 Dynamic virtualization for spacecraft environmental testing
Environmental testing is a crucial step in the development of spacecrafts as it helps to ensure that

they can withstand the harsh conditions of space. This includes testing the spacecraft ability to resist
to extreme temperatures, vacuum conditions, and high levels of radiation. Environmental testing is
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also important for verifying the reliability of the spacecraft electrical and mechanical components to
the dynamical launch environment, where the most extreme excitation conditions occur. One of
the main objectives of environmental testing thus consists in verifying the resistance of the system
and its sub-components to the vibration environment these are subjected to during the launch
phase. To this end, during environmental testing campaigns such as the one represented in Fig. 1.1,
spacecrafts are positioned on a large scale electrodynamic or hydraulic shaker testing facility, which
provides a controlled excitation with the purpose of replicating the in-service structural response of
the tested structure.

Figure 1.1: The BepiColombo spacecraft stack undergoing vibration tests at the European Space Agency. Credit:
ESA - European Space Agency, CC BY-SA 3.0 IGO.

Due to prohibitive costs of testing entire complex systems as spacecrafts, it is common practice
to perform vibration control tests at a component level. To this end, the component of interest is
typically attached to the shaker via a rigid fixture [95] and excitation is provided in its main axes
of vibration. The most critical aspect in the execution of these tests is related to the erroneous
representation of the operational environment due to limitations in vibration control strategies
and in the Boundary Conditions (BCs) replication [96, 97]. Indeed, commonly adopted fixtures
often recreate incorrect interaction between the tested article and the shaker, thus producing side
effects as i) unplanned over- or under-testing, ii) incorrect estimation of remaining life time and
iii) damage. Motivated by the above, the testing community has defined a Boundary Condition
Challenge (BCC), whose goal is to improve the in-service environment replication at component
level during environmental testing. The BCC has built a collaborative environment for investigating
alternative approaches [98, 99, 100, 101, 102] for environmental testing of the Box Assembly with
Removable Component (BARC) setup shown in Fig. 1.2 [103].

Figure 1.2: The Box Assembly with Removable Component
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Under this perspective, dynamic virtualization offers powerful tools for gaining better understanding
of the structural behavior of the component under test, thus facilitating the improvement of in-service
response replication during vibration tests. In this respect, a real-time hybrid framework can be
installed for spacecraft components virtualization exploiting virtual sensors built by combining
model-based information and vibration response measurements. VS techniques can be employed in
environmental testing applications to retrieve the complete strain field on the tested component,
allowing for a more complete understanding of its structural behavior. Entire stress fields can be
derived from strain information, based on which component failure can be predicted. Real-time
virtual channels can be also exploited within vibration control strategies in order to ensure safety
and allow replication of several testing scenarios. Moreover, these methods can be used to retrieve
loads acting on the tested structure as such relevant quantities are not typically measured during
environmental tests.

1.3.2 Dynamic virtualization for wind turbine blades testing
Wind energy infrastructure represents an active area of research on multiple fronts, but particularly

within the structural dynamics domain, where multiple challenges arise due to the stochastic nature
of the loads these systems are exposed to and the inaccessibility of components after their installation.
In view of the increasing industrial need of reducing WTs operational costs, improved SHM strategies
are nowadays exploited and further boosted through innovative digitalization processes [104]. The
aim of these schemes consists in tracking and supporting blades status assessment not only in the
field, but also from conceptualization, through certification tests, all the way to operation and
end-of-life. Blades comprise WT components of elevated importance and complexity. Extensive
testing is usually performed on blades in order to build a test-validated DT and to prove that these
can withstand the anticipated loads in field conditions [105]. Although more attention is usually
placed on static [106, 107] and fatigue tests [108, 109, 110, 111, 112], dynamic tests are also adopted
for identifying basic dynamic properties, essential for the structural integrity of the entire WT.
Dynamic tests [113, 114, 115, 116, 117, 118] require a vibration source, which could be achieved via
use of a shaker or by hammer tests, with the blade typically positioned in free-free or clamped-free
boundary conditions as in Fig. 1.3, as well as the so-called pull and release tests [119, 120, 121],
where the blade is in clamped-free conditions and it is pulled close to the free-end before being
released to be able to measure its free-vibrations. The latter class involves output-only measurements
with the purpose of collecting as much information as possible regarding the operational response of
the structure.

Figure 1.3: A 14.3 m long research WT blade manufactured by Olsen Wings and tested by DTU Wind Energy at the
DTU Large Scale Facility. Credit: DTU Wind Energy.

Implementation of a thorough monitoring at a dense set of structural locations, even those that are
considered as hot spots, is often hindered by the inaccessibility of certain locations and the costs
of sensors required, which might often limit the assessment procedure. VS can be exploited for
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estimating the response of the monitored blade at locations that are not instrumented for accessibility,
time and costs limitations [122, 123, 124]. The resulting “enriched” data, e.g, full-field deformation,
can be used to build a true-to-life DT, able to reproduce representative dynamic response in
operational circumstances. The constantly updated high-fidelity models can be then employed for
refined condition assessment. Besides representing a valid solution for bulding vibrational response
“virtual sensors”, these methods can be used for prediction of additional QoI such as unknown loads
acting on blades both in operation and during laboratory testing.

1.4 Objectives and contributions
In this thesis, focus is placed on the development of VS techniques for dynamic virtualization

of structures, with spacecrafts components and WT blades testing comprising the two main
implementation case studies. The construction of “virtual sensors” is hereby addressed via state-
of-the-art and newly developed data assimilation methods designed for simultaneous real-time
structural response and unknown loads prediction. Within this framework, the major objectives
and contributions of this dissertation can be summarized as follows.

Deterministic structural response estimation

The problem of structural response estimation, i.e., real-time prediction of mainly strains and
accelerations, is treated by means of both stochastic and deterministic approaches. Within the
context of deterministic response estimation, the “enriched” response information can be obtained
via ME methods, which map the available limited set of recorded measurements through numerical
normal modes. These strategies assume that the employed FE model captures the complete physics
of the system under study, i.e., they do not account for modeling errors or uncertainties, as well
as local deformations under the analyzed loading conditions. To cope with this latter aspect,
the Component Mode Synthesis - Modal Expansion (CMS-ME) approach is derived from the
combination of ME with a CMS technique aimed at providing a more complete structural reduced
space representation of the system by including static deformations in the numerical reduction basis.

Bayesian joint input-state estimation: adaptive uncertainties modeling

A major challenge in the use of Kalman-based estimators for joint input-state estimation, i.e., for
simultaneous prediction of unknown loads and responses, comprise modeling of the uncertainties
involved in the estimation. These are grouped within the measurement and process noise terms,
which respectively quantify noise affecting observations and uncertainties in the physics-based model
adopted for data assimilation. While measurement noise is a more concrete entity as it can be
linked to physically recorded signals, the process noise term often acts as an abstract parameter
whose numerical value heavily affects the estimator results. An intuitive approach is proposed
in this thesis for adaptive process noise covariance matrix tuning for joint input-state estimation
using the AKF. In this context, both the uncertainties related to the unknown input and system
states, i.e., modeling errors, are taken into account for optimization. The covariance matrix of the
“augmented” process noise is considered to be time-variant, since the modeling uncertainty and
the dynamic characteristics of the input (load) may vary in time. The newly proposed method,
addressed as Adaptive-noise Augmented Kalman Filter (A-AKF), is based on reference response
estimates computed using the hereby proposed CMS-ME approach.

Bayesian joint input-state estimation: unknown input modeling

The joint input-state estimation performed via Kalman-type filters requires the definition of an a
priori time evolution model for the unknown loads. A common approach consists in imposing a RW
equation to shape the unknown input dynamics, which is then coupled with the mechanistic time-
domain model of the structure for simultaneously estimating its responses at unmeasured locations
and the loads it is subjected to. This assumption is adopted within state-of-the-art schemes such
as the AKF and the DKF and often employed to infer inputs and system states in several loading
scenarios. However, this assumption results in a too strict simplification, especially for loads which
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deviate from the popular ambient noise excitation scheme. This leads to challenging tuning efforts
of the estimators and difficulties in providing reliable loading predictions in generic circumstances.
This dissertation explores the use of stochastic processes (GP and Student-t Process (STP)) Latent
Force Models (LFMs) for constructing the unknown input state-space representation within a joint
input-state estimation logic.

GP regression for unknown input modeling

GP regression is adopted for defining LFMs to be employed within joint input-state estimation
strategies. A critical review on the necessary tools for building a state-space representation of a GP
is presented. Specifically, a detailed analysis of conventional and non-conventional GP covariance
functions in structural dynamics is offered, along with the derivation of their Stochastic Differential
Equation (SDE) representations. The latters have been analyzed by means of an analogy with
the harmonic oscillators theory, which has served to identify the inner dynamic features of each
investigated covariance function. This thesis proposes the use of ad hoc covariance functions
according to the analyzed experimental case study in order to maximize the joint input-state
estimation performance. To this end, the theoretical study has been complemented with a simulated
example concerning a 3 DOFs system subjected to an array of different loading conditions.

Experimental validation

An extensive experimental validation of both state-of-the-art and newly developed VS methods
is provided in this thesis. These approaches are tested using data sets acquired during testing of
i) spacecrafts mechanical components, ii) small scale WT blades (isotropic and composite) and
iii) large scale composite WT blades. The analyzed experimental applications introduce several
modeling challenges linked to BCs and material uncertainties, which have been treated by employing
specific MOR and model updating strategies. Within this context, the analyzed estimators are
tested and compared for several loading conditions. Additionally, their performance variability with
the type of installed sensors is investigated.

1.5 Organization of the text
This chapter (Chapter 1) provides an introduction to the context of dynamic virtualization by

outlining the problem and motivating the work documented in this thesis. After a presentation
of the current state of the art and a description of the analyzed case studies, the thesis objectives
and main contributions are highlighted. The remainder of the thesis is structured as follows:
Chapters 2-5 provide the required theoretical background along with a description of the developed
methodological tools, while Chapters 6-9 report on the experimental validation of the state-of-the-art
and newly developed approaches by means of several case studies.

Chapter 2 introduces the necessary tools for constructing the dynamic system models used in
the VS strategies developed in this thesis. It starts from presenting the state-space representation
and the MOR techniques adopted in this thesis to build initial deterministic physics-based models.
Next, the stochastic framework forming the core of the presented data assimilation strategies
is offered. This chapter also focuses on data-driven methods for building dynamic models from
observations-only by means of stochastic processes regression tools. Specifically, it reports on GP
regression and on the conventional covariance functions adopted in structural dynamics. Alternative
covariance functions are also proposed and a thorough analysis of the SDE representation of the
stochastic process obtained when different covariance functions are adopted is offered. This chapter
also proposes the analysis of a second regression scheme, the STP regression, more suitable for
training data containing outliers.

Chapter 3 summarizes the data assimilation methods exploited in this thesis for VS in structural
dynamics. The first part of the chapter deals with the problem of response estimation in a
deterministic setting by describing the ME approach and proposing an improvement of the method,
i.e., the so-called CMS-ME approach. Next, the Kitadininis and the GDF algorithms are proposed.
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The chapter also reports on the AKF and DKF algorithms as state-of-the-art Bayesian estimators
of input and states.

Chapter 4 pertains to the problem of uncertainties modeling in Bayesian filtering. Uncertainties
arising from modeling errors and measurement noise are indeed embedded into two noise terms, i.e.,
the process and measurement noise respectively, within Bayesian estimators such as the Kalman
Filter (KF). These terms, which are introduced in Section 2.2, robustly control the accuracy of
Kalman-based filters. Chapter 4 first describes the effect of the selected noise terms on Kalman-based
filters accuracy. Next, the use of conventional methods for process noise covariance tuning in an
input-state estimation framework are presented. Finally, a newly developed approach is proposed
in this chapter for adaptive tuning of the time-variant process noise covariance matrix using the
AKF. The method, addressed as A-AKF, is based on reference response estimates computed via
the CMS-ME approach introduced in Chapter 2.

Chapter 5 focuses on the necessary input modeling efforts within the context of input-state
estimation via Bayesian filtering. Initially, the conventional RW transition model is described, along
with a detailed analysis of the limitations derived from its employment. This chapter then proposes
a prior unknown input transition model constructed via a LFM derived from the regression concepts
proposed in Chapter 2. The applicability to several loading conditions of the LFM obtained when
different covariance functions are adopted is tested by means of a simulated example.

Chapter 6 treats the use of VS strategies for estimating unknown loads and augmenting the
response measured during environmental tests on the BARC setup. As such, this chapter provides a
primary description of the main necessary steps for implementation of conventional VS methods in
real-life scenarios. The main challenges derived from practical use of such methods, i.e., necessary
modeling accuracy, sensors fusion and estimators tuning, are thus introduced within this chapter.
After a description of the BARC, the FE model is presented along with the details of its model
updating process. Secondly, the environmental testing campaign carried out on the BARC is
described and the constructed ROM is presented. The remainder of this chapter documents the
prediction results obtained from the use of Kalman-type filters during environmental tests on the
BARC. Specifically, the responses and loads inferred via the AKF are first assessed under the
assumption of strains-only or mixed observations set. The use of a conventionally constructed
GPLFM for input-state estimation on the BARC is also tested.

Chapter 7 tackles the challenge of conventional Kalman-based estimators tuning by proposing an
experimental validation of the adaptive noise modeling approach presented in Chapter 4. Specifically,
this chapter focuses on output-only measurements performed on a large-scale WT blade. A summary
of the measurement campaign is initially reported, along with a description of the blade FE model
and its validation results. First, this case study is used to validate the CMS-ME approach proposed
in Chapter 2 by comparing the response estimation results with the standard ME results. This
chapter continues with a parametric analysis of the input-response predictions achieved by the
state-of-the-art AKF for several choices of the time-invariant process noise covariance associated
to the unknown input. This analysis is then used for proving the validity of the input-response
predictions produced by the A-AKF during pull and release tests on the blade under study. Finally, a
parametric assessment of the A-AKF and a comparison with the results achieved via the conventional
AKF and the CMS-ME approach are provided.

Chapter 8 extends the A-AKF validation provided in Chapter 7 to a random excitation scenario
by employing the A-AKF for input-state estimation during random tests of a 3D-printed scaled
blade. The WT blade test campaign replicated on the 3D-printed scaled blade is first described.
The FE model, its validation and update results are then presented. The case study analyzed
within this chapter is then exploited for providing additional validation of the GP-based approach
with conventional Matérn covariance function, introduced in Chapter 5 and previously validated
for the BARC in Chapter 6. Specifically, a comparison of the AKF and the GP-based approach
with conventional Matérn covariance function is proposed for the random tests under both the
assumptions of available strain and acceleration measurements or acceleration-only measurements.
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This chapter also provides additional assessment of the GP-based method for a different excitation
scenario by analyzing the pull and release tests performed on the 3D-printed scaled blade. During
the latter, the AKF, DKF and GP-based approach with conventional Matérn covariance function are
tested for input-response prediction. Finally, the use of ad hoc covariance functions for input-state
prediction via the GPLFMs conceptualized in Chapter 5 is tested on the 3D-printed WT blade
under different loading conditions.

Chapter 9 further explores the use of ad hoc covariance functions for a case study concerning a
scaled WT blade made of Glass Fiber Reinforced Plastics (GFRPs) undergoing laboratory testing.
Additionally, the adoption of alternative stochastic processes is hereby proposed via application of
the Student-t Process Latent Force Model (STPLFM). The latter is tested in combination with a
Wiener covariance function on the task of input-state prediction in presence of noise contaminated
data due to the GFRPs high flexibility. The estimator performance is evaluated by comparing it
against the GPLFM with the same covariance function and the state-of-the-art AKF. The proposed
case study is first addressed through a description of the measurement campaign, the FE model
and its validation and update results. VS results from the use of the mentioned data assimilation
methods during shaker testing are then reported.

Chapter 10 presents the closing remarks for this thesis and provides recommendations for further
research.





2
DY N A M I C S Y S T E M M O D E L S

A model is defined as an abstract representation of a real situation that can be manipulated
to predict the expected results for different types of inputs in real life [125]. Exploiting physics
knowledge, engineers create mechanistic models to predict real-life situations, turning physical
problems into analytical models typically represented with a set of differential equations. In a
deterministic setting, physics-based models provide specific values for output variables of the system
for any input provided. However, due to systems complexity, the predicted “output” may not
necessarily correspond to the “correct value”. As a result, it is common practice to account for
certain levels of unpredictability or randomness via the adoption of stochastic models. It is also
worth noting that, even if all the physical underlying processes can be adequately described in a
stochastic setting, the resulting model can be extremely complex due to the numerous interactions
that need to be modeled. To solve this issue, data-driven approaches are often employed to: i)
identify dynamic systems from vibration measurements, also with the purpose of validating and
update available physics-based models, ii) infer predictions purely relying on data analysis and
interpretation.
This chapter reports on the basic concepts adopted in this dissertation to build dynamic system
models and it is divided into three units. The first one treats the mechanistic approaches of
interest, mainly focusing on MOR and state-space representation, which build the dynamic models
formulation adopted in the following sections and chapters. The second one deals with Bayesian
modeling, presenting the stochastic framework which forms the basis for the algorithms adopted
within this dissertation. The third one focuses on data-driven methods proposing Bayesian regression
tools for performing predictions by means of observations-only.

2.1 Mechanistic forward modeling
Mechanistic models make use of a fairly well characterized physical process that underpins the

system to describe its physics via a set of differential equations. Despite these types of models
typically result in rather discrete representations of real-life systems due to the complexity of the
modeled physical processes, they still maintain their usefulness as they enable predictions even in
regions where there may be no available observations. An example in structural mechanics lies
in FE models of complex structures, which undergo a “discretization” process through elements
and nodes. The resulting representation is then complemented with the known physical properties
of the system and responses to the physically meaningful inputs are obtained by solving a set of
Partial Differential Equations (PDEs). FE models of large and complex structures typically feature
high computational cost. In view of mitigating this cost, therefore addressing the increasing need of
lighter virtual models to be deployed in real-time, the present section reports on the basic concepts
for the MOR methods adopted within this dissertation. Subsequently, the time-domain state-space
formulation, which will serve as link with the following chapters, will be introduced.

2.1.1 Model Order Reduction via Component Mode Synthesis
The Equation of Motion (EoM) of a linear structural system, which is usually simulated via use

of a FE model, may be formulated as a second order vector differential equation of the form:

Mz̈(t) + Dż(t) + Kz(t) = Siu(t) (2.1)
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where z(t) ∈ Rndof is the vector of displacements, corresponding to the FE model DOFs, M ∈
Rndof ×ndof , D ∈ Rndof ×ndof and K ∈ Rndof ×ndof denote the mass, damping and stiffness matrices
respectively; u(t) ∈ Rni (with ni representing the number of loads) is the input vector and
Si ∈ Rndof ×ni is the Boolean input shape matrix that selects the DOFs where loads (inputs) are
applied. A MOR technique relying on CMS can be applied to reduce the model size. CMS is a
widely applied method in substructures coupling analysis, where it is adopted to provide a synthetic
representation of structural components via their vibration modes [26]. In this dissertation, a
time-domain CMS approach will be exploited to model the analyzed systems as single structures.
According to this method, the dynamic behavior of a structure can be formulated as a superposition
of modal contributions:

z ≈ Ψp (2.2)
where Ψ ∈ Rndof ×nr is the reduction basis and p ∈ Rnr is the vector of the generalized coordinates
of the system, with nr being the dimension of the reduced coordinates. Inserting the reduction basis
into Eq. 2.1 and premultiplying each term by ΨT , the resulting equation is of the form:

Mrp̈(t) + Drṗ(t) + Krp(t) = Sru(t) (2.3)
where the mass, damping, stiffness and input shape matrices of the reduced system are respectively
Mr = ΨT MΨ, Dr = ΨT DΨ, Kr = ΨT KΨ and Sr = ΨT Si. The adopted reduction basis can be
expressed as:

Ψ =
[︂
Ψn Ψα

]︂
; (2.4)

where Ψn ∈ Rndof ×nk is the matrix of the numerical normal modes to be included in the Reduced
Order Model (ROM), i.e., the eigenmodes of the entire structure in the frequency range of interest,
and Ψα ∈ Rndof ×nα is the residual attachment modes matrix. The residual attachment modes are
usually inserted in this kind of reduction bases in order to include a representation of the static
response of the structure to an input at a specific DOF. Typically, for each load acting on the
structure, the relative residual attachment mode is included in the basis. The latter is computed
as a mode of the structure under application of a unitary static input applied at the actual input
DOF. Therefore, nα is equal to the number of loads applied to the system and nr = nk + nα.

2.1.1.1 Residual Inertia-Relief Attachment modes
In situations in which no fixed constraint is provided in the global frame, rigid body motion is

present and, as a consequence, the static solution, and hence the residual attachment modes, can
not be computed. A workaround to this issue consists in making use of the Residual Inertia-Relief
Attachment (RIRA) modes [26, 126], i.e., specific attachment modes computed through the following
steps:

1. Constrain the minimum number of random DOFs needed for having K non-singular;

2. Compute the static solution, i.e., obtain the Inertia-Relief Attachment modes ΨIRA as:
KΨIRA = PrSi (2.5)

where Pr = I − MΨRBΨT
RB is the so called inertia-relief projector, i.e., a matrix used to

re-equilibrate the applied unitary forces with a set of inertial forces that are manifested because
of the presence of the rigid body modes in ΨRB. This operation allows to obtain the net force
causing flexible motion;

3. Make ΨIRA residual with respect to normal modes Ψn included in the basis, thereby obtaining
the ΨRIRA as:

ΨRIRA = PrT ΨIRA − ΨnΛ−1ΨT
n Si (2.6)

where Λ = ΨT
n KΨn is the diagonal reduced stiffness matrix. In Eq. 2.6, the first term

renders matrix ΨIRA orthogonal to ΨRB , while the second term makes them independent with
respect to the normal modes matrix Ψn. Indeed, the latter already includes part of the static
deformation, which should be therefore excluded from the residual attachment modes.
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2.1.2 State-Space modeling
Physics-based models typically result in a set of differential equations which can be more or less

complex according to the complexity of the underlying system behavior which is being modeled.
It is a common approach to transform this set of high-order differential equations to lower order
State-Space Models (SSMs) which shape the system dynamics via a set of state variables, i.e.,
variables that fully describe the underlying system dynamics. In a more broad perspective, SSMs
are flexible time series models which allow to recover time values of specific QoI based on the system
history, i.e., to link current values of the so-called observations to past values of the system states.
In particular, SSMs are built by enforcing the dependence of the current state only on the direct
previous instant of time (Markov property). The dependence of the observation yk at the current
k-th time instant on the system states at k − 1 is postulated by coupling the so-called observation
and transition models. The first describes how the underlying dynamics can be superposed to
generate the observations, while the latter shows how these dynamics evolve through time. This
results into two separate equations building the conventional state-space formulation:

xk = f(xk−1)

yk = h(xk)
(2.7)

where f is the function defining the transition model by embedding the relationship between current
states xk and previous states xk−1, and h maps the current states xk in the current observations
yk. The behavior postulated by Eq. 2.7 can be repeated recursively, thus allowing full time series
modeling. In this section, the state-space formulation for linear structural systems will be presented
under the deterministic assumption, i.e., by assuming that exact values of the involved variables
can be calculated in a unique manner. Section 2.2 will later introduce BDMs as special case of
SSMs defined in a stochastic framework, which builds the core of this dissertation. In a structural
dynamics setting, SSMs simplify the analysis of systems dynamic behavior by reducing second-order
differential equations to first-order time models. The EoM of a linear reduced-order structural
system postulated in Eq. 2.3 can be formulated via a continuous-time deterministic state-space
representation as: {︄

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Gu(t)

(2.8)

where the state vector x =
[︂
p ṗ

]︂T
∈ R2nr groups the generalized coordinates vector p (modal

displacements) and its first derivative ṗ (modal velocities). The first equation in Eq. 2.8, i.e.,
the transition model or state equation, defines the state vector change in time as a function of
the current state vector and the external inputs u acting on the system. Matrices A and B are
computed as functions of Mr,Kr and Dr presented in Subsection 2.1.1:

A =

[︄
0nr Inr

−M−1
r Kr −M−1

r Dr

]︄
, B =

[︄
0nr×ni

M−1
r Sr

]︄
. (2.9)

The second equation of Eq. 2.8 defines the system measurements, i.e., the observations model, with
y ∈ Rno representing the observations vector, while the time-invariant matrices C ∈ Rno×2nr and
G ∈ Rno×ni are constructed as follows:

C =

⎡⎢⎣ Sd 0nd×nr

0nv×nr Sv

−SaM−1
r Kr −SaM−1

r Dr

⎤⎥⎦ , G =

⎡⎢⎣ 0nd×ni

0nv×ni

SaM−1
r Sr

⎤⎥⎦ , (2.10)

In a structural dynamics context, the output vector y may contain nd displacement or strain, nv

velocity and na acceleration measurements at specific DOFs, which are respectively selected via the
matrices Sd ∈ Rnd×nr , Sv ∈ Rnv×nr , and Sa ∈ Rna×nr . For strain measurements, the Sd matrix is
constructed through a combination of DOFs. Using the FE formulation, the strain vector ε at any
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point of an element can be expressed as a function of the displacement vector z via the following
formula:

ε = Sz (2.11)

where S is a differential operator defined as follows:

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x 0 0
0 ∂

∂y 0
0 0 ∂

∂z
∂

∂y
∂

∂x 0
0 ∂

∂z
∂

∂y
∂
∂z 0 ∂

∂x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.12)

The displacement vector z at each element point can be discretized as follows:

z ≈
∑︂

a

Naza (2.13)

where za is the displacement vector at the ath node of the element and Na are the element shape
functions. By introducing Eqs. 2.13 and 2.2 into Eq. 2.11, the following expression for the strain
vector is obtained:

ε =
∑︂

a

BaΨap (2.14)

where Ψa is the reduction basis computed at the element nodal DOFs and Ba contains the shape
functions derivatives:

Ba =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Na

∂x 0 0
0 ∂Na

∂y 0
0 0 ∂Na

∂z
∂Na

∂y
∂Na

∂x 0
0 ∂Na

∂z
∂Na

∂y
∂Na

∂z 0 ∂Na

∂x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.15)

Therefore, when the output vector y contains strain measurements, the selection matrix Sd is
obtained evaluating the matrix ∑︁a BaΨa at the strain vector components corresponding to the
measured strain quantity.
In order to ensure consistency with the discrete nature of real-life measurements, Eq. 2.8 should be
transferred to its discrete-time representation:{︄

xk = Adxk−1 + Bduk−1

yk = Cxk + Guk

. (2.16)

where the superscript □k indicates the time instant t = k∆t when ∆t is the time step. Matrices
Ad, Bd, C and G are the discrete-time versions of A, B, C, G respectively. Equation 2.16 is hereby
derived by imposing a zero-order hold assumption on the input vector, i.e., by assuming a constant
intersample behavior for the input. While matrices A and B, which describe the transition model,
are discretized following this logic, matrices C and G do not require discretization as they already
model discrete observations, i.e., time derivation is not involved in the output equation. In this
dissertation, the following exponential-time discretization scheme [127] is adopted according to the
zero-order hold assumption:

Ad = eA∆t

Bd = A−1
d [A − I]B.

(2.17)
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2.2 Bayesian dynamic modeling for data assimilation
Bayesian modeling provides mathematical tools, e.g. probability distributions and rules of

probability calculus, that can be used for modeling systems under stochastic assumptions, i.e., by
taking into account the uncertainties and randomness. In this context, a BDM can be defined as a
special case of SSM where the evolution of states over time is assumed to follow a stochastic process
with Gaussian errors modeling uncertainties on both the transition and observation equations:{︄

xk = Adxk−1 + Bduk−1 + wk−1

yk = Cxk + Guk + vk.
(2.18)

In Eq. 2.18, the state vector is described by a Gaussian distribution with mean x̂k ∈ R2nr and
covariance matrix Pk ∈ R2nr×2nr . Stationary zero-mean white noises w and v have been introduced
to respectively take into account model uncertainties and measurement noise. The whiteness
assumption for w (process noise) and v (measurement noise) excludes the presence of systematic
uncertainties affecting the state vector, i.e., the model, and the measurements, respectively. The
covariance matrices associated to v and w are denoted as R ∈ Rno×no , Q ∈ R2nr×2nr and
S ∈ R2nr×no , such that:

E

{︄(︄
wk

vk

)︄ (︂
wl

T vl
T
)︂}︄

=

[︄
Q S
ST R

]︄
δkl (2.19)

where δkl is the Kronecker delta function and the autocovariance terms Q and R represent the
covariance matrices of w and v, respectively. S depicts instead the mutual correlation of these
processes. For simplicity, the assumption of mutually uncorrelated process and measurement
noise, i.e., S = 0, is adopted in this dissertation. Additionally, in exploiting BDMs for the case
studies presented in this dissertation, further simplification will be introduced via the assumption of
uncorrelated process noise sources, i.e. diagonal Q, and uncorrelated measurement noise sources,
i.e., diagonal R.
Within the context of dynamic problems expressed through BDMs, the objective lies in the
estimation of the state vector from the transition model and the observed outputs of the system
modeled by the measurement equation. This process, often referred as data assimilation, is typically
performed via Bayesian estimators, which allow combination of physics-based paradigms and
response measurements to generate predictions of the posterior Probability Density Function (PDF)
of the model conditioned on the available observations. The posterior PDF can then be used to
derive the optimal state estimate according to the selected QoI. The first two statistical moments,
i.e., the mean and the covariance, are usually adopted within the structural dynamics framework:

Mean: x̂ = E [x]

Covariance: P = E
[︂
(x − x̂) (x − x̂)T

]︂
.

(2.20)

2.2.1 Bayesian inference
Bayesian inference constitutes the underlying process for the Bayesian tools adopted within this

dissertation for data assimilation, i.e., combination of a physics-based model with observations
to estimate the states of the system as it evolves in time. Indeed, Bayesian inference consists in
updating prior hypotheses about models as more information becomes available from data. It is
worth noting that the Bayesian approach to statistics differs from the conventional frequentist
approach for the assumption of past knowledge encoded in the prior. Indeed, while the frequentist
methods formulate predictions only relying on data from the current experiment and do not require
formulation of a prior, Bayesian approaches employ hypotheses and make use of their probabilities
in conjunction with the probability of the observed data. The key tool for Bayesian inference is
Bayes’ rule:

posterior probability =
likelihood x prior probability

marginal likelihood (2.21)
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which can be expressed analytically as:

p(θ|y) = p(y|θ)p(θ)
p(y) (2.22)

where the marginal likelihood p(y) is defined as:

p (y) =
∫︂

p(y|θ)p(θ)dθ (2.23)

and acts as a normalizing constant. Hence, according to Bayes’ rule, the posterior distribution of
a model is proportional to the product of the model prior belief p (θ) and the likelihood of the
observed data given the model p(y|θ). Bayesian inference can be performed alternatively via a
batch or a recursive solution, with the same objective of inferring the model posterior distribution
from a prior and observed data. However, while for the batch approach the entire time history of the
observed data is used to formulate the joint posterior distribution of all states, the recursive method
computes the posterior distribution at each time instant by adopting the posterior distribution of
the previous time step as a prior. The batch and recursive solutions for Bayesian inference are
respectively reported in Algs. 1 and 2.

Algorithm 1 Bayesian inference: batch solution
1: Encode prior information about the model parameters in p(θ)
2: Determine the measurement model likelihood p(y1:n|θ) given θ by assuming conditionally independent measure-

ments, i.e., p(y1:n|θ) is the product of individual measurements distributions:

p(y1:n|θ) =
n∏︂

k=1

p(yk|θ)

3: Get the observations data set: D = {(t1, y1), · · · , (tn, yn)}
4: Applying Bayes’ Rule, calculate the posterior distribution of the problem:

p(θ|y1:n) =
1

p(y1:n)
p(θ)

n∏︂
k=1

p(yk|θ).

Algorithm 2 Bayesian inference: recursive solution
1: Define:

Prior Distribution =

{︄
p(θ), if k = 1
p(θ|yk−1) if 2 ≤ k ≤ n

2: Compute the likelihood function of the measurement model at each time step: p(yk|θ), k = 1, · · · , n

3: Calculate the posterior distribution recursively by relying on the information from the previous time step:

p (θ | y1) =
1

p(y1)
p (y1 | θ) p(θ)

p (θ | y1:2) =
1

p(y2)
p (y2 | θ) p (θ | y1)

p (θ | y1:3) =
1

p(y3)
p (y3 | θ) p (θ | y1:2)

...

p (θ | y1:n) =
1

p(yn
)p (yn | θ) p (θ | y1:n−1) .

The main disadvantage of the batch solution is that the full posterior formulation has to be
recomputed as soon as a new measurement is observed. This may result in a problem when the
variables that are being estimated, vary dynamically. To the contrary, the recursive solution can be
used for real-time estimation, where the estimated parameters are updated as new measurements are



2.2 bayesian dynamic modeling for data assimilation 19

obtained, thus allowing to track their variability with time. Additionally, the posterior distribution
dimensionality is kept constant when the recursive solution is adopted, i.e., the computational
complexity does not increase at each time step. Given these advantages, within this dissertation
focus will be placed on tools that exploit Bayesian recursive inference for predicting the optimal
state vector of BDMs at each time step. Within this logic, the formulation proposed in Alg. 2
can be tailored to instantaneous estimation of the BDM state vector xk|k posterior PDF given
the observations y1:k up to the current time step k. More specifically, Bayes’ rule can be used to
condition the prior probability p (xk|y1:k−1) on the current observations yk:

p (xk|yk) = p (xk|yk, y1:k−1) =
p (yk|xk) p (xk|y1:k−1)

p (yk|y1:k−1)
(2.24)

where the prior probability p (xk|y1:k−1) is derived by propagating the available PDF p (xk−1|y1:k−1)
through the Chapman-Kolmogorov equation, which governs transition probabilities by exploiting
the Markov assumption on which BDMs rely:

p (xk|y1:k−1) =
∫︂

p (xk|xk−1) p (xk−1|y1:k−1) dxk−1. (2.25)

In Eq. 2.25, the transitional density p (xk|xk−1) defines the state evolution and it is therefore
controlled, for BDMs, by the transition model in Eq. 2.18. The likelihood function in Eq. 2.24 is
instead governed by the measurement model in Eq. 2.18. When dealing with linear BDMs, Eqs. 2.25
and 2.24 can be expressed in an analytic form, leading to the time prediction and measurement
update steps of the well-known KF algorithm.

2.2.2 Kalman filter
The KF was introduced by R. Kalman in 1960 [128] and it is commonly adopted nowadays for

estimation of a wide range of processes when a linear dynamic model and a limited number of
observations are available. In this dissertation, the KF forms the basis for all the Bayesian filtering
schemes adopted for input-state estimation of the analyzed case studies. As explained previously in
this section, the QoI for the KF predictions in a structural dynamics context are the states of the
BDM under study, which can be derived from the discrete-time state-space representation of the
EoM in Eq. 2.1.
The application of the KF algorithm for state estimation of a BDM follows three main steps:

• Initialization:
The initial values for the state mean x̂0|0 and the state covariance P0|0 need to be defined
using previous knowledge about the system dynamic behavior. Additionally, the time-invariant
process and measurement noise covariance matrices Q and R must be selected. These values
substantially influence the prediction accuracy achieved via the KF. Therefore, a detailed
investigation of their role in the estimation will be presented in Chapter 4.

• Prediction:
The initial system state x̂0|0 is propagated through the transition model of Eq. 2.18 to obtain
the state prediction at k = 1. By exploiting the Gaussian assumption for x̂ and w and
time-invariance for Ad and Bd, the linear transformation of Gaussian distributions can be
applied to obtain the predictions of both the state mean x̂1|0 and covariance P1|0:

x̂1|0 = Adx̂0|0 + Bdu0

P1|0 = Adx̂0|0AT
d + Q.

(2.26)

The state mean and covariance predicted in this step correspond to the prior probability in
Eq. 2.24.

• Update:
The prior probability obtained at the previous step needs to be updated with the current
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available measurements to obtain the posterior distribution via Eq. 2.24. To implement so,
a first transformation of Eq. 2.26 from the state space to the observation space needs to be
performed:

ŷ1|0 = Cx̂1|0 + Gu1

E

[︃(︂
y1|0 − ŷ1|0

)︂ (︂
y1|0 − ŷ1|0

)︂T
]︃
= CP1|0CT .

(2.27)

The prior probability in the observations space in Eq. 2.27 is then employed within Bayes’ rule
to obtain the posterior probability, i.e., the posterior mean and covariance in the observations
space:

Cx̂1|1 + Gu1 = Cx̂1|0 + Gu1 + K(y1 − Cx̂1|0 − Gu1)

CP1|1CT = Cx̂1|0CT − KCP1|0CT
(2.28)

where the adopted likelihood comes from the measurements at k = 1: N (y1, R) and K
has been defined as K = CP1|0CT (CP1|0CT + R)−1. By introducing the Kalman gain Kg
such that K = HKg, subtracting the term Gu1 and rearranging the resulting equations, the
posterior mean and covariance in the observations space can be derived:

Kg = P1|0CT (CP1|0CT + R)−1

x̂1|1 = x̂1|0 + Kg(y1 − Cx̂1|0 − Gu1)

P1|1 = P1|0 − CKgP1|0.
(2.29)

Equation 2.29 builds the update step of the KF algorithm. The resulting posterior mean x̂1|1
and covariance P1|1 are then employed as prior estimates for predictions at k = 2.

The prediction and update steps are recursively computed for k = 1, · · · , n where n is the number
of available data points. The resulting KF algorithm is reported in Alg. 3 and presented in Fig. 2.1
through a block diagram scheme. Here, the time prediction is shown to propagate the state vector
and the error covariance matrix from k − 1 to k through the system transition model, which
can be retrieved from the structure FE model. The resulting prediction is then corrected by the
measurement update step, which uses information given by the available observations at time step
k to build the state vector posterior estimate and the corresponding posterior estimate covariance
matrix. Once the estimated state vector has been obtained, it can be used for predicting the current
vector ŷe

k of the ne unmeasured responses using the following formula:

ŷe
k|k = Cex̂k|k + Geuk (2.30)

where Ce and Ge are respectively the output and feed-forward matrix computed at the DOFs where
the response has to be estimated.

Algorithm 3 KF algorithm
1: for k = 1, 2, ..., n do
2: (a) Kalman prediction:
3: x̂k|k−1 = Adx̂k−1|k−1 + Bduk−1
4: Pk|k−1 = AdPk−1|k−1AT

d + Q
5: (b) Kalman update:
6: Ink = yk − Cx̂k|k−1 − Guk

7: Sk = CPk|k−1CT

8: Kgk = Pk|k−1CT S−1
k

9: x̂k|k = x̂k|k−1 + KgkInk

10: Pk|k = Pk|k−1 − KgkSkKgT
k

11: end for
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Figure 2.1: KF algorithm scheme

2.2.3 Kalman smoother
The KF is an analytical tool for computing the posterior PDF of the state of a BDM at time k

by conditioning its prior probability to available data up to time k. To the contrary, the smoothing
problem deals with the posterior PDF estimation using future data, i.e., conditioning to data up
to time n > k. Specifically, the Kalman Smoother (KS) or Rauch-Tung-Striebel (RTS) smoother
aims at sequentially calculating x̂k|n and Pk|n for k = n, n − 1, · · · , 1 in reverse order. To do so, the
algorithm foresees a forward-backward pass. In the forward pass, a KF computes x̂k|k and Pk|k and
propagates them through the BDM transition model yielding x̂k+1|k and Pk+1|k. The prediction is
then “smoothed” in the backward pass using data up to n > k to get x̂k|n and Pk|n from:

p(xk|y1:n) ∝ p(xk|y1:k)p(yk+1:n|xk) (2.31)

where p(xk|y1:k) can be obtained by Kalman filtering and p(yk+1:n|xk) can be computed by
conditioning on p(xk+1):

p(yk+1:n|xk) =
∫︂

p(yk+1:n|xk|xk+1)p(xk+1|xk)dxk+1

=
∫︂

p(yk+1|xk+1)p(yk+2:n|xk+1)p(xk+1|xk)dxk+1.
(2.32)

The second equation in Eq. 2.32 can be derived from the first by exploiting the sum and product rules
and the conditional independence relations of p(yk) from p(y1:k−1|xk−1) and p(x1:k−1|xk). The first
term is obtained from the sensor model, the second one is computed recursively backwards in time
and the third one follows from the transition model. As reported for the KF in Subsection 2.2.2,
Eqs. 2.31 and 2.32 can be tailored to the BDM in Eq. 2.18 to find the linear analytic equations of
the RTS smoother presented in Alg. 4, where x̂k|k is the KF estimate at time step k.

Algorithm 4 RTS smoother algorithm
1: for k = n − 1, n − 2, ..., 1 do
2: (a) RTS prediction:
3: x̂k+1|k = Adx̂k|k + Bduk

4: Pk+1|k = AdPk|kAT
d + Q

5: (b) RTS update:
6: Rgk = Pk|kAT

d P−1
k+1|k

7: x̂k|n = x̂k|k + Rgk

(︁
x̂k+1|n − x̂k+1|k

)︁
8: Pk|n = Pk|k − Rgk

(︁
Pk+1|n − Pk+1|k

)︁
RgT

k

9: end for

The RTS algorithm can be interpreted as improving the KF estimate of the state using the additional
data observed at time steps k + 1, · · · , n. A block diagram scheme of the RTS algorithm is presented
in Fig. 2.2.
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Figure 2.2: RTS smoother algorithm

2.3 Data-driven modeling
In opposition to the methods proposed in Section 2.1, which are based on providing models

inspired by the underlying physical knowledge of the system, this section introduces techniques
designed to generate models via data-driven paradigms. These methods are widely adopted to gain
insights into the overall input-output process behavior constructing the so-called black-box model,
i.e., a model which does not rely on assumptions derived from complex physics formulation but
exclusively on experimental observations. Data-driven approaches are often referred as ML methods,
which stands for the machine ability to learn from data without being explicitly programmed. ML
can be classified into four main categories:

• Supervised learning:
Given labeled training data sampled independently, the algorithm learns about the latent data
input-output relationships.

• Semi-supervised learning:
Similar to supervised learning but the latent process is determined exploiting both labeled and
unlabeled data.

• Unsupervised learning:
The algorithm identifies relationships between data as hidden and abstract structures since
training data is unlabeled.

• Reinforcement learning:
The algorithm perceives and interpret its environment taking actions and learning via trial and
error. In doing so, favorable outputs are “reinforced” and non-favorable outputs are “punished”.
The adopted observed data is dependent on the played actions.

This section formulates the necessary basic knowledge regarding supervised learning to link with
the content of Chapter 5, where these concepts will be exploited for providing alternative schemes
to model unknown inputs in the context of Kalman-based input-state estimation in structural
dynamics.

2.3.1 Regression: from weight space to function space
Linear regression is the simplest supervised learning problem, where a linear relationship is

assumed between outputs and inputs of the underlying function. However, linear regression forms
the basis for more general types of regression problems. According to the Bayesian treatment of
linear regression, given the input vector x, the goal is to identify a function f(x) such that:

f(x) = xT w, y = f(x) + ε (2.33)

where y contains the observed outputs, which differ from the latent function f(x) by a zero-mean
Gaussian noise with variance σ2

n: ε = N (0, σ2
n). The w vector contains the weights of the linear

model, for which a zero mean Gaussian prior with covariance Σp is placed: w = N (0, Σp). The
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inference purpose is to identify the posterior distribution over the weights given a training data set
of observations D = {{x1̃, y1̃}, {x2̃, y2̃}, ..., {xñ, yñ}}. This operation can be put in place by writing
Bayes’ rule (Eq. 2.21) for the weights:

p(w|y, X) =
p(y|X, w)p(w)

p(y|X)
(2.34)

where the likelihood is expressed as the probability density of the observations given the weights.
The likelihood can be factored over the data if we assume that data is conditionally independent
given the underlying model:

p(y|X, w) =
n∏︂

i=1
p(yi|xi, w) =

n∏︂
i=1

1√
2πσn

exp

(︄
− (yi − xT

i w)2

2σ2
n

)︄

=
1

(2πσ2
n)

n/2 exp

(︃
− 1

2σ2
n

|y − XT w|2
)︃

.
(2.35)

In Eq. 2.35, each term within the product has been assumed to be Gaussian N (xT
i w, σ2

n). As a
result, the likelihood has as well a Gaussian distribution N (XT w, σ2

nI). The marginal likelihood in
Eq. 2.34 expresses the observations likelihood independently from the weights, i.e., “marginalizing”
over the latent function. It is indeed computed as the integral over the weights of the likelihood and
prior product:

p(y|X) =
∫︂

p(y|X, w)p(w)dw. (2.36)

By plugging Eq. 2.35 into Eq. 2.34 and expressing the Gaussian analytical form for the prior, the
posterior over the weights is obtained:

p(w|X, y) ∝ exp

(︃
− 1

2σ2
n

|y − XT w|2
)︃

exp

(︃
−1

2wT Σ−1
p w

)︃
∝ exp

(︃
−1

2 (w − w̄)T
(︃ 1

σ2
n

XXT + Σ−1
p

)︃
(w − w̄)

)︃
,

(2.37)

where w̄ = σ−2
n (σ−2

n XXT + Σ−1
p )−1Xy. From Eq. 2.37, it can be concluded that the posterior

distribution is a Gaussian with mean w̄ and covariance Σ̄ = σ−2
n XXT + Σ−1

p . The posterior mean
w̄ corresponds to the mode of the distribution, also called Maximum a Posteriori (MAP) estimate,
and can be also obtained as the solution of ridge regression, i.e., linear regression optimization
problem featuring a closed deterministic form solution (in a non-Bayesian setting). In order to make
predictions about the latent linear function at a test point x∗, the probability distribution of f∗
can be computed by averaging out all the possible models, i.e., by integrating over all the possible
weight values and weighting their contributions via their posterior probability:

p(f∗|x∗, X, y) =
∫︂

p(f∗|x∗, w)p(w|X, y)dw =
∫︂

xT
∗ wp(w|X, y)dw, (2.38)

where Eq. 2.33 evaluated at x∗ has been substituted. The resulting prediction distribution is a
Gaussian with mean x∗w̄ and covariance xT

∗ Σ̄−1x∗. However, this simple model is often not suitable
for real-life problems, for which often outputs cannot be computed as a linear combination of inputs.
A method to add flexibility to regression consists in projecting the D-dimensional inputs x into an
N dimensional space using basis functions ϕ(x) and apply the linear transformation on this space
rather than on the inputs. The problem, still linear in the weights, is reformulated as:

f(x) = ϕ(x)T w, (2.39)

where w has length N . The resulting predictive distribution is:

p(f∗|x∗, X, y) ∼ N
(︃ 1

σ2
n

ϕ(x∗)
T Σ̃−1

Φy,ϕ(x∗)
T Σ̃−1

ϕ(x∗)

)︃
, (2.40)
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where Φ = Φ(X) groups the columns ϕ(x) for all the training set cases and Σ̃ = σ−2
n ΦΦT + Σ−1

p .
Equation 2.40 involves the inversion of the Σ̃ ∈ N × N for computing predictions. In order to reduce
the computational complexity of this operation, Eq. 2.40 can be manipulated and rewritten as:

p(f∗|x∗, X, y) ∼ N (ϕT
∗ ΣpΦ(K + σ2

nI)−1y,ϕT
∗ Σpϕ∗ −ϕT

∗ ΣpΦ(K + σ2
nI)−1ΦT Σpϕ∗) (2.41)

where ϕ∗ = ϕ(x∗) and K = ΦT ΣpΦ. Equation 2.41 now only involves inversion of matrices
of size n × n, where n is the number of data points, normally lower than N . Additionally, the
feature space appears in Eq. 2.41 only via inner products and, if Σp is positive definite, the product
ψ(x) = Σ1/2

p ϕ(x) can be introduced in order to define the so-called kernel or covariance function
k(x, x′) = ϕ(x)T Σpϕ(x′) = ψ(x) ·ψ(x′). Replacing inner products in input space with kernels
for problems where data only appear through inner products allows to more efficiently compute
solutions. This is the so-called kernel trick.

When inference is directly performed in the function space instead of the weight space, distributions
over functions must be taken into consideration to generalize the previously presented concepts to
infinitely large domains. Stochastic processes are widely adopted to model functions distributions
for randomly varying phenomena in many areas, such as finance, chemistry, biology, physics, control
theory, telecommunications and signal processing. A stochastic process is a collection of random
variables Y = Yx : x ∈ P with values in a common set S, i.e., the state space, and indexed by a set
P , i.e., the parameter space, usually representing time (either continuous or discrete). Stochastic
processes thus comprise a generalization of random vectors to the function space and can be as such
defined by statistical moments:

µY (x) = E[ Y (x)] ; KY (xp, xq) = E[ (Y (xp) − µY (xp))(Y (xq) − µY (xq))] (2.42)

where µY (x) is the mean function and KY (x) is the covariance function of the stochastic process.
The latter specifies the covariance between pairs of random variables. Due to its random nature, a
stochastic process may have many outcomes. A unique outcome of a stochastic process is defined as
sample function or realization. A stochastic process can be also seen as a probability distribution
over a space of sample functions.
Classification of stochastic processes can be based on several criteria, e.g. its parameter space, its
state space or the type of dependence among the random variables. Common known stochastic
processes are RWs, Markov processes, Wiener processes, Bernoulli processes, Gaussian and Student-t
processes. This section will present the last two classes, which will see their application in this work
in a LFM framework for joint input-state estimation in structural dynamics.

2.3.1.1 Gaussian Process

A stochastic process Y (x) is Gaussian if for each subset of parameters x1, ..., xn the random
vector (Y (x1), . . . , Y (xn))T is Gaussian. Therefore, a GP is a stochastic process for which any
finite number of variables have a joint Gaussian distribution [65]. A GP can be defined by its mean
function µ(x) = E[ f(x)] and covariance function k(x, x′) = E[ (f(x)− µ(x))(f(x′)− µ(x′))] as:

f(x) ∼ GP(µ(x), k(x, x′)). (2.43)

It is worth noting that the regression problem in the weight space reported in Eq. 2.39 is a simple
example of GP in the function space for which the kernel k(x, x′) = ϕ(x)T Σpϕ(x′) is set as
covariance function.
A defining property of GPs is the so-called consistency or marginalization property. This property
implies that examining the function at a finite subset of points would give the same results as if the
infinite number of other points would have been taken into account. Since in practice only finite
dimensional data can be adopted, this property allows the use of infinite dimension objects such as
the GPs for real-life applications. For GPs, finite marginals are multivariate Gaussian distributions
with covariance k(xi, xj) = E[ (f(xi)− µ(xi))(f(xj)− µ(xj))] . The latter is shaped such that the
covariance decreases as xi and xj become further apart, i.e., the further the two test points are,
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the lower will be the correlation. For simplification, Fig. 2.3 shows a representation of a univariate
marginal distribution drawn from a certain GP at a given test point x∗.

f(f(x)

P(f(

)

))x* x*

x*

Figure 2.3: GP posterior (left). The gray area represents the mean (red solid curve) plus and minus two times the
standard deviation for each input value. Univariate Gaussian marginal distribution at test point x∗ (right).

As visible in Fig. 2.3, the resulting marginal distribution is a univariate Gaussian distribution with
mean and variance obtained evaluating the GP mean µ(x∗) and covariance function k(x∗, x∗) at x∗:

P (f(x∗)) = N (f(x∗); µ(x∗); k(x∗, x∗)). (2.44)

A common convention consists in adopting GPs with zero prior mean, i.e., µ = 0:

f(x) ∼ GP(0, k(x, x′)). (2.45)

This assumption allows to simplify the notation without loss of generality since a realization of a GP
with a non-zero mean function µ(x) can be retrieved from a function drawn from a zero-mean GP
with the same covariance by adding the mean function. Given a training data set of n observations
D = {{x1̃, y1̃}, {x2̃, y2̃}, ..., {xñ, yñ}} and a GP mean (conventionally 0) and covariance prior, GP
regression consists in obtaining the latent function at unobserved test points. For GPs, the posterior,
i.e., the distribution of the latent function at the unobserved locations given the n data points
available in D, is a (n + 1)-dimensional Gaussian distribution with mean and covariance of the
following closed-form:

µ̂ = Kx,x
(︂
Kx̃,x̃ + σ2

nI
)︂−1

ỹ;

K̂ = Kx,x − Kx,x̃
(︂
Kx̃,x̃ + σ2

nI
)︂−1

Kx̃,x

(2.46)

where Kx̃,x̃ is the covariance matrix between the observations in D, Kx,x is the covariance matrix
between the unobserved test points and Kx̃,x is the covariance matrix between the observations and
the unobserved test points. Equation 2.46 is obtained by conditioning the joint Gaussian distribution
on the observations in D. In Eq. 2.46, the posterior mean is obtained as a linear combination of the
observations, which are weighted according to how much the data are relevant with respect to the
test point. Within the correction term, an independent Gaussian noise ε with variance σ2

n has been
added as in Eq. 2.33 to account for noisy measurements. The same correction term is used in the
posterior covariance expression, where the prior covariance, i.e., the uncertainty, is reduced by a
term which is proportional to the correlation between the available data points and the test point.
The posterior computation features a computational cost that scales with O(n3) because of the
term

(︁
Kx̃,x̃ + σ2

nI
)︁−1.

Realizations of a GP with mean and covariance expressed by Eq. 2.46 at a chosen number of test
points are generated by applying the steps listed in Alg. 5. The results of a one-dimensional GP
regression example are reported in Fig. 2.5 (left, GP prior) and Fig. 2.6 (left, GP posterior).

Following Eq. 2.36, the marginal likelihood for GPs can be written as:

p(y|X) =
∫︂

p(y|f , X)p(f |X)df (2.47)

where the likelihood is a factorized Gaussian p(y|f , X) ∼ N (f , σ2
nI) and the prior is a Gaussian

with zero mean and covariance matrix K obtained from the prior covariance function k(x, x′):
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Algorithm 5 GP sampling
1: Compute Cholesky decomposition L of matrix K̂ = LLT

2: Generate u ∼ N (0, I)
3: Compute f∗ = µ̂+ Lu, i.e., a Gaussian distribution with mean µ̂ and covariance LE[uuT ]LT = LLT = K

p(f |X) ∼ N (0, K). Therefore, the marginal likelihood will also result in a Gaussian with the
following analytical expression:

N (0, K + σ2
nI) = 1√︂

(2π)n|K + σ2
nI|

exp(−1
2yT (K + σ2

nI)y). (2.48)

By evaluating the logarithm of Eq. 2.48, the following simplified result is achieved:

logp(y|X) = −n

2 log2π − 1
2 log|K + σ2

nI| − 1
2yT (K + σ2

nI)−1y. (2.49)

The first term in Eq. 2.49 is a normalization constant, while the second term is a complexity penalty
which depends on the covariance function and the inputs only. The last term instead quantifies the
goodness of fit, i.e, the alignment of y with the covariance matrix K + σ2

nI.
Since this dissertation will treat signals evolution in time domain, it is convenient to introduce

the definition of a one-dimensional GP defined over time:

f(t) ∼ GP(0, k(t, t′)). (2.50)

2.3.1.2 Student-t Process
A Student-t Process (STP) is a stochastic process with a marginal distribution described by a

multivariate Student-t distribution:

f(x) ∼ ST P(µ(x), k(x, x′), ν). (2.51)

The probability density of a multivariate Student-t distribution with dimension d, i.e. x ∈ Rd, is:

T (x|µ, K, ν)(x) =
Γ((ν + d)/2)

Γ(ν/2)((ν − 2)π)d/2|K|1/2

(︄
1 + 1

ν − 2 (x −µ)T K−1(x −µ)
)︄−(ν+d)/2

. (2.52)

From Eq. 2.52, it can be concluded that for ν → ∞, a multivariate Gaussian distribution with mean
µ and covariance K is recovered. Hence, a Student-t distribution consists in a generalization of the
Gaussian distribution with an additional parameter ν > 2 describing the DOFs of the distribution.
A simplified visual representation of this concept is proposed in Fig. 2.4, which reports a zero-
mean uni-variate Student-t distribution at increasing ν and compares it to a zero-mean uni-variate
Gaussian distribution. The reported comparison confirms that for ν → ∞, the Student-t distribution
matches a Gaussian distribution with the same mean. Additionally, Fig. 2.4 also highlights that a
Student-t distribution normally features heavy tails. The“tailedness” of a probability distribution is
often measured via the so-called kurtosis, i.e., the fourth standardized moment of the distribution.
The latter has the following expression for a uni-variate distribution:

Kurt[x] = E

[︄(︃
x − µ

σ

)︃4
]︄

. (2.53)

For a Student-t distribution, the kurtosis is controlled by the ν parameter: higher kurtosis values
are reached when ν is smaller, i.e., smaller values of ν give rise to heavier tails. STPs have been
derived in [129] as a mixture of GPs by placing an inverse Wishart random variable as the scaling
distribution. As a result, it has been demonstrated that STPs are the most general elliptic processes
for which an analytical expression can be retrieved for the marginal and predictive distributions.
This property is retained from GPs, together with the facilitated model selection via a kernel choice.
However, STPs have been found to provide more flexibility thanks to the scale mixture connection



2.3 data-driven modeling 27

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

Observation

P
ro
b
a
b
il
it
y
D
en
si
ty

Student-t - ν=2
Student-t - ν=5
Student-t - ν=10
Student-t - ν=15
Gaussian

Figure 2.4: Student-t univariate distribution at several values of ν

to GPs. A further benefit of STPs generates from their heavy tailed density, which introduces
more robustness to model errors thanks to an easier detectability of outliers. Additionally, while
the predictive mean of a STP has the same form of a GP predictive mean with the same kernel,
the predictive covariances of a GP and a STP differ. Indeed, while GPs predictive covariance do
not depend on training observations, STPs ones explicitly depend on the values of the training
observations. This concept can be clarified by considering a STP regression problem for which,
given a training data set of n observations D = {{x1̃, y1̃}, {x2̃, y2̃}, ..., {xñ, yñ}} , the latent function
needs to be identified at test points of interest from a STP prior. Following the same approach
adopted for GPs, a zero-mean prior can be chosen to simplify calculations without loss of generality:

f(x) ∼ ST P(0, k(x, x′), ν). (2.54)

Assuming noise-free observations, STPs posterior mean and covariance can be easily computed in
closed-form as:

µ̂ = Kx,xK−1
x̃,x̃ỹ;

K̂ =
ν + ỹT Kx̃.x̃

−1ỹ − 2
ν + n − 2

(︂
Kx,x − Kx,x̃Kx̃,x̃

−1Kx̃,x
)︂

.
(2.55)

Equation 2.55 confirms that the STP posterior mean has equivalent form of a GP with the same
prior covariance. To the contrary, the STP posterior covariance in Eq. 2.55 features an additional
term, not appearing in Eq. 2.46, which depends on the observations ỹ. As reported in the previous
paragraphs of this section, when noisy processes are treated, outputs are commonly assumed as the
sum of the latent GP and independent Gaussian noise ε. This approach cannot be implemented for
STPs since the problem would not be analytically treatable due this type of processes not being
closed under summation. An approach has been proposed in [129] to allow for analytic tractability of
STPs for noisy functions by including the noise model in the covariance function as k = kθ + σ2

nδij .
This allows to model uncorrelated noise with respect to the latent function but not independent.
When ν → ∞, the proposed scheme turns into a conventional GP with independent Gaussian noise.
Given the same adopted kernel, the deviation of the STP posterior covariance with respect to the
GP posterior covariance depends on how much the ratio (ỹT Kx̃.x̃

−1ỹ)/n deviates from unity. It
is worth noting that the value of this ratio plays a meaningless role in the STP K̂ when the DOF
parameter ν is very high. This reflects the assumption made above according to which a GP can be
obtained from a STP for ν → ∞. The difference between GP and STP is therefore more evident
for small ν values. The use of STPs instead of GPs comes with no additional computational costs.
Indeed, once the common terms of Eqs. 2.55 and 2.46 are computed, the additional factor calculation
only scales with O(n).

Realizations of the STP with mean and covariance expressed by Eq. 2.55 at a chosen number of
test points are generated by applying the steps listed in Alg. 6. Figures 2.5 and 2.6 respectively
compare random realizations (in gray) from a GP and a STP prior and posterior. For both the
GP and the STP, a prior zero mean and a commonly adopted (Matérn) covariance function have
been selected. The STP DOF parameter has been set to ν = 2.5. Figure 2.5 demonstrates that the
STP prior more likely foresees outliers with respect to a GP with the same mean and covariance
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functions. The same behavior is encountered when analyzing the GP and STP posteriors under
the adoption of the same observations set (black dots) in Fig. 2.6: outliers are more likely in the
STP posterior, where the number of realizations exceeding the confidence bounds in regions close to
observations is higher. Moreover, the uncertainty bounds are generally broader for the STP.

Algorithm 6 STP sampling
1: Generate s = 1

ν u ∼ Γ(ν/2, 2/ν), so that u ∼ χ2
ν given 1

ν > 0
2: Generate r ∼ N (0, K̂)

3: Compute f∗ = µ̂+ r/
√︂

1
ν u = µ̂+ r/

√
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Figure 2.5: GP prior (left) and STP prior (right) comparison for the same mean (zero) and covariance functions.
Mean functions are reported in red, realizations of the processes in gray. Black lines denote the 95%
confidence intervals.
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Figure 2.6: GP posterior (left) and STP posterior (right) comparison for the same mean (zero) and covariance
functions. Mean functions are reported in red, realizations of the processes in gray. Black lines denote the
95% confidence intervals. Regression is performed using the same training data set D for both GP and
STP. Observations in D are shown via black dots.

Following the same procedure adopted in Subsubsection 2.3.1.1, the logarithmic marginal likelihood
for STPs can be derived:

logp(y|X) = −n

2 log((ν − 2)π) − 1
2 log|K| + logΓ(

ν + n

2 ) − logΓ
(︃

ν

2

)︃
− ν + n

2 log

(︄
1 + yT K−1y

ν − 2

)︄
.

(2.56)



2.3 data-driven modeling 29

For facilitating the following applications, it is convenient to express the definition of a one-
dimensional zero-mean STP defined over time:

f(t) ∼ ST P(0, k(t, t′), ν). (2.57)

2.3.1.3 Covariance functions for regression via stochastic processes
The covariance function is a key tool for regression via stochastic processes since it embeds

any prior knowledge about the sought-after latent function. Validity of covariance functions for
stochastic processes theory is subject to some specific indications. An arbitrary function k of input
pairs x and x′ is a valid covariance (kernel) function if it satisfies the following properties:

• Symmetry:
k(x, x′) = k(x′, x) for all x, x′

• Positive semi-definiteness:
Given a set of input points x = xi|i = 1, ..., n, the matrix K = Kij = k(xi, xj) is the so-called
covariance matrix. K is positive semi-definite for all v ∈ Rn if vT Kv ≥ 0. In particular, a
symmetric matrix is positive semi-definite if and only if its eigenvalues are non-negative.

Valid covariance functions can be manipulated to construct more complex versions by exploiting
the following composition rules:

• sum rule:
k(x, x′) = k1(x, x′) + k2(x, x′)

• product rule:
k(x, x′) = k1(x, x′)k2(x, x′)

• scaling rule:
k(x, x′) = ck1(x, x′) for c > 0

• general rule:
k(x, x′) = f(k1(x, x′)).

Additional properties of valid covariance functions are:

• Stationarity:
k(x, x′) = k(x − x′) = k(r) with r = x − x′

• Isotropy:
k(x, x′) = k(||x − x′||2) = k(τ ) with τ = ||x − x′||2.

Conventional covariance functions in structural dynamics

Isotropic covariance functions are commonly adopted for regression via stochastic processes. These
covariance functions depend on the so-called hyperparameters, i.e., parameters of a non-parametric
model. Indeed, the underlying model parameters, i.e., the weights, have been integrated out
according to Subsection 2.3.1. The most common types of covariance functions are reported below
for one-dimensional stochastic processes.

• Squared exponential:

k(τ ) = σ2exp

(︄
− τ2

2l2

)︄
, τ = |x − x′| (2.58)

where τ is the characteristic length-scale controlling the bandwidth of the resulting process
and σ is the signal variance controlling the magnitude of the process. This covariance function
is infinitely differentiable, which implies infinite mean square differentiability of the stochastic
process with a squared exponential covariance function. The latter is therefore very smooth.
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• Exponential:

k(τ ) = σ2exp

(︃
− τ

2l

)︃
, τ = |x − x′| (2.59)

where τ is the characteristic length-scale and σ is the magnitude-scale. This type of functions
generate mean square continuous but not mean square differentiable stochastic processes, which
thus have a non-smooth shape.

• Matérn class:

k(τ ; ν, σ, l) = σ2 21−ν

Γ(ν)

(︄√
2ν

l
τ

)︄ν

Kν

(︄√
2ν

l
τ

)︄
, τ = |x − x′| (2.60)

where l is the length-scale hyperparameter, σ is the magnitude-scale hyperparameter, ν is the
smoothness parameter, Γ(ν) is the Gamma function and Kν is a modified Bessel function of
second kind. For half-integer values of ν, i.e., non-negative integer values of p = ν − 1

2 , the
covariance function can be written as the product of a decaying exponential and a polynomial
of order p:

kν=p+1/2 = σ2exp(
−

√
2ντ

l
)

Γ(p + 1)
Γ(2p + 1)

p∑︂
i=0

(p + i)!
i!(p − 1)! (

√
8ντ

l
)p−i. (2.61)

The smoothness parameter ν determines the decaying rate of the covariance function, its
differentiability and the mean square differentiability of the corresponding stochastic process.
For p = 0 (ν = 0.5), the Matérn covariance function corresponds to an exponential covariance
function, i.e., it is continuous but not differentiable. For ν → ∞, the function converges to
a squared exponential covariance function, i.e., it is infinitely differentiable. More generally,
Matérn covariance functions generate stochastic processes that are ν − 1 times mean square
differentiable [65]. These concepts are visually demonstrated by Fig. 2.7, which displays Matérn
covariance functions with assigned l and σ for different ν values (left) and corresponding
random GP realizations (right). Figure 2.7 reports the square exponential and the exponential
covariance functions as limit cases for the Matérn class, respectively achieved for ν = 0.5 and
ν → ∞. Additionally, Fig. 2.7 provides a visible insight regarding the functions differentiability
scaling with ν.
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Figure 2.7: Matérn covariance functions with σ = l = 0.5 for different values of ν (left). Realizations drawn from GPs
with Matérn covariance functions (σ = l = 0.5) for different values of ν (right).

Periodic covariance functions

Periodic stationary covariance functions can be derived via the so-called warping method, i.e.,
introducing a periodic mapping u(t) of the input t and using a stationary covariance function in
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the u space [130]. A typical choice for the periodic function is u = (sin(t), cos(t))T , for which the
following stationary property holds:

||u(t) − u(t′)||2 = (sin(t) − sin(t′))2 + (cos(t) − cos(t′))2 + 4sin2
(︃

t − t′

2

)︃
. (2.62)

A commonly adopted periodic covariance function is the so-called canonical periodic covariance
function, which is derived as a squared exponential covariance in the previously introduced u space:

k(τ ; σ, l, ω0) = σ2exp

(︄
−

2sin2 (︁ω0τ
2
)︁

l2

)︄
(2.63)

where τ = |t − t′|, l = length-scale hyperparameter, σ = magnitude-scale hyperparameter, ω0 =
frequency. It is common practice to use the period length parameter, i.e., tperiod = 2π/ω0, rather
than the frequency. Figure 2.8 illustrates a representation of the canonical periodic covariance
function (left) and corresponding GP realization at several values of tperiod.
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Figure 2.8: Periodic covariance functions with σ = l = 0.5 for different values of tperiod (left). Realizations drawn
from GPs with periodic covariance functions (σ = l = 0.5) for different values of tperiod (right).

Quasiperiodic covariance functions

In practical applications, using a periodic covariance function may result in a too strict assumption.
To account for variability effects, a quasiperiodic covariance function can be adopted. This type of
covariance function is obtained from the product of a periodic covariance function and a covariance
function with long characteristic length scale, i.e., Matérn covariance functions. This feature
allows for the introduction of a slow decay effect, i.e., damping effect, which is controlled by the
smoothness parameter of the Matérn covariance function as described in Fig. 2.7. Figure 2.9 (left)
shows a representation of the a quasiperiodic covariance function obtained from the product of a
canonical periodic function and a squared exponential covariance function (Matérn with ν → ∞ ) for
several values of tperiod. The relative GP realizations are reported in Figure 2.9 (right). The visual
information provided by Fig. 2.9 proves that the quasiperiodic covariance function is a damped
version (with damping dependent on the smoothness of the Matérn covariance function) of the
periodic covariance function.

Constant covariance functions

Constant covariance functions are conventionally adopted to model biases in stochastic processes.
A constant covariance function is defined as:

k(t, t′) = σ2 (2.64)

where σ is the magnitude-scale hyperparameter. Figure 2.10 depicts constant covariance functions
and relative GP realizations for several values of the magnitude scale hyperparameter.
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Figure 2.9: Quasiperiodic covariance functions with σper = lper = σse = lse = 0.5 for different values of tperiod (left).
Realizations drawn from GPs with periodic covariance functions (σper = lper = σse = lse = 0.5) for
different values of tperiod (right).
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Figure 2.10: Constant covariance functions for different values of σ (left). Realizations drawn from GPs with constant
covariance functions for different values of σ (right).

Biased quasiperiodic covariance functions

A biased quasiperiodic covariance function is obtained from a constant and a quasiperiodic
covariance function as:

k = kconstant + kquasiperiodic. (2.65)

The sum rule is thus exploited to build a more complex covariance function in which a constant
offset in added on top of the dynamics, which are fully modeled via the quasiperiodic function. This
operation is commonly adopted in regression problems where data are distributed around a bias,
which would not be detected without the introduction of a static term via the constant covariance
function. A visualization of the biased quasiperiodic covariance function for several values of the
constant covariance magnitude-scale is reported in Fig. 2.11 (left), while Fig. 2.11 (right) displays
the respective GP realizations.

Linear covariance functions

Linear covariance functions can be adopted for regression via stochastic processes to model linear
trends in data. A linear covariance function is defined as:

k(t, t′) = σ2tt′ (2.66)

where σ is the magnitude-scale hyperparameter. Figure 2.12 illustrates linear covariance functions
and relative GP realizations for several values of the magnitude-scale hyperparameter.
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Figure 2.11: Biased quasiperiodic covariance functions for different values of σconstant (left). Realizations drawn from
GPs with biased quasiperiodic covariance functions for different values of σconstant (right).
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Figure 2.12: Linear covariance functions for different values of σ (left). Realizations drawn from GPs with linear
covariance functions for different values of σ (right).

Wiener covariance functions

The Wiener process, i.e., a Brownian Motion (BM), is a widely adopted non-stationary process.
Its covariance function is defined as:

k(t, t′) = σ2min(t, t′) (2.67)

valid for t, t′ ≥ 0, with σ being the magnitude-scale hyperparameter. A representation of the Wiener
covariance function and relative GP realizations for several values of σ is provided in Fig. 2.13.
Figure 2.13 (right) proves that a covariance function such as Eq. 2.67 generates GP samples that
are in the form of RW models. The latter will be further treated in Chapter 5, where they will be
introduced as the basic unknown input model for input-state Kalman-based estimators. In this
sense, a GP with a Wiener covariance function is an alternative to the direct RW expression adopted
for input-state estimation via Kalman filtering.

2.3.1.4 Bayesian model selection in stochastic process regression
An important step in the use of stochastic processes for prediction consists in the selection of

the a priori model to be employed for regression given a set of available measurements. This
choice builds the starting point and substantially determines the outcome quality of regression
via stochastic processes. Model selection can be intended as the set of a priori decisions taken as
input for regression, e.g. choice of the covariance form, selection of the kernel hyperperameters.
While the first is essentially a discrete choice of the user which can rely of any available prior
knowledge regarding the nature of the analyzed data, the selection of hyperparameters needs to
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Figure 2.13: Wiener covariance functions for different values of σ (left). Realizations drawn from GPs with Wiener
covariance functions for different values of σ (right).

be performed via ad hoc algorithms. In a non-Bayesian perspective, cross-validation on predictive
performance could be employed for this purpose. According to this method, the best model could
be selected via a training data set and evaluations regarding its performance are then taken on a
validation set. This approach is known to be prone to over-fitting and often requires the use of
several validation sets. In a Bayesian inference scheme instead, model selection can be performed
by making use of just a training data set since it does not involve evaluation of the latent function
point estimates but rather foresees averaging over it. This concept translates in estimating the
covariance function hyperparameters via a training data set instead of punctual values of the latent
function. A first approach to perform this estimation consists in evaluating the hyperparameters
posterior in a hierarchical setting, which would require evaluation of complex integrals via analytical
approximations or Markov chain Monte Carlo (MCMC) methods. A much more efficient option
consists in maximizing the marginal likelihood, i.e., maximizing the probability of the data given
the model, w.r.t the hyperparameters:

argmax
θ

p(y|X,θ) = argmax
θ

∫︂
p(y|f , X,θ)p(f |θ)df . (2.68)

Following this method, values of the covariance hyperparameters are chosen such that the likelihood
of the data is maximized when marginalizing, i.e., averaging, over all the possible realizations of the
adopted stochastic process (GP, STP, etc.).
When GPs or STPs are adopted for regression, the marginal likelihood has an easy and analytically
tractable expression (see Eqs. 2.49 and 2.56 respectively), which renders its optimization computa-
tionally attractive. For the sake of simplicity, it is common choice to convert maximization of the
marginal likelihood into minimization of the negative logarithmic marginal likelihood. The resulting
optimization problem is reported in Eqs. 2.69 and 2.70 respectively for a GP and a STP:

argmin
θ

−log p(y|X,θ) = argmin
θ

n

2 log2π +
1
2 log|K + σ2

nI| + 1
2yT (K + σ2

nI)−1y (2.69)

argmin
θ

−log p(y|X,θ) = argmin
θ

n

2 log((ν − 2)π) + 1
2 log|K| − logΓ(

ν + n

2 )+

logΓ
(︃

ν

2

)︃
+

ν + n

2 log

(︄
1 + yT K−1y

ν − 2

)︄
. (2.70)

For solving the optimization problem in a GP or STP regression setting, gradient-based optimization
is widely exploited since derivatives of Eqs. 2.69 and 2.70 can be easily computed. This comprises
another advantage of regression via stochastic processes w.r.t. other methods, e.g. MAP estimation.
This type of methods can easily incur in local minima when the adopted cost functions, such as the
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ones in Eqs. 2.69 and 2.70, are non-convex. As a result, different initial guess on the hyperparameters
may be tested to avoid deterioration of the training outcome. With regards to computational
complexity, derivatives computation requires time O(n2) per hyperparameter (if n is the number of
data points, i.e. the dimension of the covariance matrix is n × n). Therefore, the most substantial
contribution is provided by the inversion of the positive definite covariance matrix, which scales
cubically with n.

2.3.2 Regression in state-space
The main drawback of the direct solution for regression via both GPs and STPs consists in

the computational complexity scaling as O(n3), where n is the number of data points. As this
paragraph will treat one-dimensional stochastic processes defined over time (see Eqs. 2.50 and 2.57),
n will correspond to the number of time samples in the observations used for regression. In real-life
measurements, time instances of collected data is relatively high, resulting in a large amount of time
needed to perform GP or STP regression. To remedy this problem, a sequential inference scheme,
whose computational complexity scales linearly with n, can be implemented using Kalman filtering
and smoothing [66], whose working principle will be thoroughly presented in Chapter 3. In view of
adopting a sequential approach, the stochastic process under consideration needs to be formulated
as a dynamical system rather than adopting the conventional kernel formalism. This consists in
expressing a stochastic process as a solution of the following mth order Linear Time Invariant (LTI)
SDE:

dmf(t)

dtm
+ am−1

dm−1f(t)

dtm−1 + · · · + a1
df(t)

dt
+ a0f(t) = w(t) (2.71)

where w is a zero-mean continuous-time white noise process. Every solution f(t) of Eq. 2.71 is a
sample function of a stochastic process defined by a certain covariance function k. Collecting the
derivative terms in Eq. 2.71 builds the so-called companion form, i.e., a linear SSM to be employed
in the recursive inference scheme: {︄

ż(t) = Fz(t) + Lw(t)

f(t) = Hz(t)
(2.72)

where the input state z ∈ Rm and the matrices F ∈ Rm×m, L ∈ Rm×1 and H ∈ R1×m are given by:

z(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f(t)
df (t)

dt...
dm−2f (t)

dtm−2
dm−1f (t)

dtm−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, F =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1
−a0 −a1 . . . . . . −am−1

⎤⎥⎥⎥⎥⎥⎥⎦ , L =

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎥⎦ , H =
[︂

1 0 . . . 0 0
]︂

.

(2.73)

2.3.2.1 Gaussian Process
To be employed for GP sequential inference, the first equation in Eq. 2.72 must be transformed in

a discrete-time model of the form:

zk = Fdk−1zk−1 + qk−1, qk−1 ∼ N (0, Qk−1) (2.74)

where the state transition and process noise covariance matrices can be calculated analytically as:
Fdk−1 = exp(F∆t)

Qk−1 =
∫︂ ∆t

0
exp(F(∆t − τ ))LqcLT exp(FT (∆t − τ ))dτ

(2.75)

where ∆t = tk − tk−1. The second equation in Eq. 2.72 instead represents the intrinsically discrete
measurement model, on top of which the noise term εk must be added to account for noisy
observations:

fk = Hzk + εk, εk ∼ N (0, σ2
n). (2.76)



36 dynamic system models

Given the model postulated by Eqs. 2.74 and 2.76, GP sequential inference consists in estimating
the state vector zk at any k given the available measurements for k = 0 : ∆t : T . This operation can
be performed in two sequential steps: the filtered posterior distribution p(zn|y1:n,θ) = N (mk, Pk)
is computed via the KF in Alg. 7, then the RTS smoother in Alg. 8 is employed to evaluate the
smoothing distribution p(zn|y1:T ,θ) = N (mk˜ , Pk

˜ ).
For replicating the naive GP regression results in Eq. 2.46, the initial condition for the estimation
should be p(z0) = N (0, P∞), where P∞ is the stationary covariance of the state vector, given by
the Riccati equation:

dP
dt

= FP + PFT + LqLT = 0. (2.77)

Algorithm 7 KF for GP regression
1: for k = 1, 2, ..., n do
2: (a) Kalman prediction:
3: mk|k−1 = Fdk−1 mk−1|k−1
4: Pk|k−1 = Fdk−1 Pk−1|k−1FT

dk−1
+ Qk−1

5: (b) Kalman update:
6: vk = yk − Hkmk|k−1
7: Sk = HkPk|k−1HT

k + σ2
nI

8: Kgk = Pk|k−1HT
k S−1

k
9: mk|k = mk|k−1 + Kgkvk

10: Pk|k = Pk|k−1 − KgkSkKgT
k

11: end for

Algorithm 8 RTS smoother for GP regression
1: for k = n − 1, n − 2, ..., 1 do
2: (a) RTS prediction:
3: mk+1|k = Fdk

mk|k
4: Pk+1|k = Fdk

Pk|kFT
dk

+ Qk

5: (b) RTS update:
6: Rgk = Pk|kFT

dk
P−1

k+1|k
7: mk|n = mk|k + Rgk

(︁
mk+1|n − mk+1|k

)︁
8: Pk|n = Pk|k − Rgk

(︁
Pk+1|n − Pk+1|k

)︁
RgT

k

9: end for

Both the KF and the RTS smoother algorithms scale with O(m3n) in computational complexity.
In this context, the state vector dimension m corresponds to the order of the LTI SDE in Eq. 2.71,
which is usually pretty small and constant with respect to n. It can be therefore concluded that GP
sequential inference scales linearly with the number of samples in the observations, hence allowing
for substantial computational time reduction with respect to GP regression naive implementation.
The same time efficiency can be achieved for covariance hyperparameters optimization via the
minimization of the negative log-likelihood presented in Subsubsection 2.3.1.4 since the marginal
likelihood in Eq. 2.49 can be sequentially evaluated as a by-product of the KF update:

p(y1:n|θ) = −1
2

n∑︂
k=1

log|2πSk| + vT
k

(︂
Sk + σ2

n

)︂−1
vk (2.78)

where vk and Sk are respectively the innovation mean and covariance evaluated by the KF
measurement update step. Additional computational improvement is introduced when computing
the marginal likelihood terms since the smoothing step is not required. The partial derivatives
involved in the optimization can also be computed recursively.
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2.3.2.2 Student-t Process

The GP sequential inference scheme proposed in the previous paragraph can be adapted for STP
regression under the assumption that STPs can be derived as a scale mixture of GPs [131]. The
latter hypothesis validates the use of the SSM in Eq. 2.72 as an alternative STP representation in
the specific circumstances in which the spectral density is set to γqc, where γ is an inverse gamma
random variable. This implies that Eqs. 2.74 and 2.75 holding for GPs can also be employed for
STP sequential inference, with the only difference lying in the expressions for the initial state
vector p(z0) = N (0, γP∞) and the process noise qk−1 ∼ N (0, γQk−1). For what concerns the
measurement noise, a valid approach consists in including the noise term in the adopted covariance
function as described in Subsubsection 2.3.1.2. Since summation of covariance function under
the kernel representation corresponds to stacking state variables in the state-space model, the
measurement noise contribution can be accounted by augmenting the state vector with the white
noise process of variance σ2

n. Along the lines of GPs, STP regression can be solved sequentially by
implementing a forward filtering problem as in Alg. 9 and using a smoother as in Alg. 10 to update
the filtering outcome. The DOF parameter is updated as νk = νk−1 + nk, where nk = 1, if there is
an update on time-step k, and nk = 0 otherwise (for prediction of test points). It is clear that for
ν → ∞, Algs. 9 and 10 respectively revert to the KF and RTS smoother adopted for GPs.

Algorithm 9 Student-t filter
1: for k = 1, 2, ..., n do
2: (a) Kalman prediction:
3: mk|k−1 = Fdk−1 mk−1|k−1
4: Pk|k−1 = Fdk−1 Pk−1|k−1FT

dk−1
+ γk−1Qk−1

5: (b) Kalman update:
6: vk = yk − Hkmk|k−1
7: Sk = HkPk|k−1HT

k + σ2
nI

8: γk =
γk−1
νk−2

(︁
νk−1 − 2 + vT

k S−1
k vk

)︁
9: Kgk = Pk|k−1HT

k S−1
k

10: mk|k = mk|k−1 + Kgkvk

11: Pk|k = γk
γk−1

(︁
Pk|k−1 − KgkSkKgT

k

)︁
12: end for

Algorithm 10 Student-t smoother
1: for k = n − 1, n − 2, ..., 1 do
2: (a) RTS prediction:
3: mk+1|k = Fdk

mk|k
4: Pk+1|k = Fdk

Pk|kFT
dk

+ γkQk

5: (b) RTS update:
6: Rgk = Pk|kFT

dk
P−1

k+1|k
7: mk|n = mk|k + Rgk

(︁
mk+1|n − mk+1|k

)︁
8: Pk|n = γn

γk

(︁
Pk|k − RgkPk+1|kRgT

k

)︁
+ GkPk+1|nGT

k

9: end for

For covariance hyperparameters optimization, the negative log marginal likelihood can be sequentially
evaluated as a by-product of the filtering recursion in Alg. 9 as:

p(y1:n|θ) =
n∑︂

k=1

1
2 log((ν − 2)π) + 1

2 log|Sk| + logΓ
(︃

νk−1
2

)︃
− logΓ

(︃
νk

2

)︃

+
1
2 log

(︃
νk−1 − 2

ν − 2

)︃
+

νk

2 log

(︄
1 + vT

k S−1
k vk

νk−1 − 2

)︄
. (2.79)
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2.3.2.3 Covariance functions as state-space models
The SDE representation of stochastic processes in Eq. 2.71 is determined by the covariance function

defining the stochastic process. According to the adopted class of covariance function, either an
exact LTI state-space SDE representation or an approximated version can be retrieved. A collection
of state-space SDE representations for the covariance functions presented in Subsubsection 2.3.1.3
is reported in the following.

Matèrn class

For stochastic processes with a covariance function of the Matérn type, an exact state-space
representation can be extracted following the rational spectrum approach. The latter derives from
the assumption of a rational spectral density for this class of covariance functions. In order to
introduce the concept of spectral density, it is convenient to define covariance functions for zero-mean
complex-valued stochastic processes: k(x, x′) = E [f(x)f∗(x′)] with x, x′ ∈ Cn. Bochner’s theorem
[65, 132] states that a complex-valued function k defined on RD is the covariance function of a
weakly stationary square continuous complex-valued stochastic process in RD if and only if it can
be represented as:

k(τ ) =
∫︂

Rd
e2πif ·τµ(df ) =

∫︂
Rd

e2πif ·τdF (f ) (2.80)

where τ = x − x′, µ is a positive finite measure and F (f ) is defined such that µ(df ) = dF (f ). If
µ is absolutely continuous, then F is differentiable almost everywhere and µ(df ) = S(f )df , where
S(f ) is defined as the spectral density or power spectrum corresponding to k. Introducing S(f ) into
Eq. 2.80 and exploiting Wiener-Khintchine theorem [133], k and S(f ) can be defined as Fourier
duals:

k(τ ) =
∫︂

S(f )e2πif ·τdf , S(f ) =
∫︂

k(τ )e−2πif ·τdτ . (2.81)

The relationships in Eq. 2.81 can be expressed for a one-dimensional temporal problem (with
τ = t − t′) as:

k(τ ) =
∫︂

S(f)e2πif ·τ df , S(f) =
∫︂

k(τ )e−2πif ·τ dτ , f =
ω

2π
. (2.82)

Following Eq. 2.82, this paragraph will make use of the Fourier Transform (FT) to link time
and frequency domains and compute the spectral density for a Matérn covariance function. In
particular, when k falls in the Matérn class of functions, its FT yields:

S(ω) = σ2 2π1/2Γ(ν + 1/2)
Γ(ν)

λ2ν(λ2 + ω2)−(ν+1/2), λ =

√
2ν

l
=

√︂
2(p + 1)

l
. (2.83)

Under the assumption of ν being a half-integer, the spectral density can be reformulated as:

S(ω) = σ2 2π1/2Γ(p + 1)
Γ(p + 1/2) λ2p+1(λ2 + ω2)−(p+1). (2.84)

After grouping all constant terms in a single constant qc, the spectral density can be factorized in a
rational fraction form:

S(ω) = qc(λ
2 + ω2)−(p+1) = qc(λ + iω)−(p+1)(λ − iω)−(p+1) = qcG(iω)G(−iω). (2.85)

Equation 2.85 can be interpreted as the spectral density of the output of a system with Transfer
Function (TF) G (iω) = (λ + iω)−(p+1), excited by an input w (t) (white noise with spectral density
qc):

F (ω) = G(iω)W (ω). (2.86)
In Eq. 2.86, F (ω) (FT of f (t)) is the output of the spectral density S (ω) and W (ω) is the FT
of the exciting term w (t), i.e., W =

√︂
(qc). The function f (t) is the GP with Matérn covariance

function k, i.e., with desired spectral density S(ω). For the Matérn class of covariance functions, the
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TF G (iω) has a rational form of the type G(iω) = ((iω)m + am−1(iω)m−1 + ... + a0)−1. Hence,
Eq. 2.86 can be reformulated as:

F (ω)[(iω)m + am−1(iω)
m−1 + ... + a0] = W (ω). (2.87)

The inverse FT of Eq. 2.87 provides the LTI SDE in Eq. 2.71. It has been therefore demonstrated
that the GP with covariance function k given by Eq. 2.61 is the output of the LTI SDE postulated
by Eq. 2.71, i.e., the LTI SDE provides the evolution in time of sample functions drawn from a GP
with covariance k [66]. The coefficients in Eq. 2.71 can be easily determined by analyzing the form
of the Matérn covariance functions TF:

G(iω) =
1

(λ + iω)p+1 . (2.88)

For example, Eq. 2.88 for ν = 5
2 (p = 2) has the form:

G(iω) =
1

(λ + iω)3 (2.89)

where the denominator can be rewritten as λ3 + (iω)3 + 3λ2(iω) + 3λ(iω)2. Hence, the coefficients
am, . . . , a0 with m = 3 are: a3 = 1, a2 = 3λ, a1 = 3λ2 , a0 = λ3 and the resulting SDE is:

d3f(t)

dt3 + 3λ
d2f(t)

dt2 + 3λ2 df(t)

dt
+ λ3f(t) = w(t). (2.90)

The roots of this SDE are real and coincident with multiplicity equal to 3: ω1 = ω2 = ω3 = −λ.
These correspond to the poles of the system with TF postulated by Eq. 2.89, whose bode plot is
displayed in Fig. 2.14.
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Figure 2.14: GP with Matérn covariance function: TF of the equivalent SDE system

The system poles can be computed by setting the denominator of Eq. 2.89 equal to zero and solve
the so-called characteristic equation. This result can be extended to all orders: roots are always
= −λ with multiplicity equal to p + 1. Therefore, the system with TF in Eq. 2.88 is “critically
damped” for any integer p, i.e., the time waveform is an exponentially decaying function with a
decaying rate driven by the value of λ =

√
2ν
l =

√
2(p+1)

l . This result is confirmed by the TF shape
visible in Fig. 2.14 for p = 2. The higher λ (and ν) is, the faster will be the decay. A mathematical
proof to this is provided by the homogeneous solution for Eq. 2.90, which could only correspond to:

g (t) = g̃ e{−λt} (2.91)
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where g̃ can be determined by substituting this expression into the unforced SDE, yielding (for
p = 2):

d3g̃

dt3 e−λt = 0. (2.92)

Since the exponential function never equals 0, the only possible solution for Eq. 2.92 is given by
d3g̃
dt3 = 0. This expression can be double integrated to get g̃ = c1 + c2t+ c3t2. Therefore, the explicit
form of Eq. 2.92 is given by:

g = (c1 + c2t + c3t2)e−λt (2.93)

where constants can be determined by applying the initial conditions on g, d g
d t , d2g

d t2 . This homo-
geneous solution should be convoluted with the forcing term w (t) to get the forced response of
the system with TF G (iω): f (t) = g (t) ∗ w (t) [134]. The same result could also be obtained by
exploiting partial fraction expansion from control theory to manipulate the TF G (ω).

Periodic class

A periodic and symmetric covariance function can be expanded into a convergent Fourier series of
the form:

k(τ ) =
∞∑︂

j=0
q2

j cos(jω0τ ). (2.94)

The spectral density corresponding to Eq. 2.94 consists of delta peaks at the harmonic frequencies
defined by ω0, i.e., the angular frequency defining the periodicity of the function:

Sp(ω) =
∞∑︂

j=0
q2

j π [δ(ω − jω0) + δ(ω + jω0)] . (2.95)

This spectral density does not exhibit a rational form, thus implying that the procedure adopted
for Matérn covariance functions can not be used for building the state-space representation of a
stochastic process with a periodic covariance function. However, each jth term in Eq. 2.94 can be
seen as the covariance function of the sum of statistically independent resonators ∑︁∞

j=0 xj(t) such
that:

fj(t) = (xj(t), yj(t))
T (2.96)

with the initial condition fj(0) ∼ N
(︂
0, q2

j I
)︂

and the following differential equations defining the
harmonic oscillator:

dxj(t)

dt
= −jω0yj(t)

dyj(t)

dt
= jω0xj(t).

(2.97)

Solving Eq. 2.97 yields:
xj(t) = xj(0)cos(ω0jt) − yj(0)sin(ω0jt) (2.98)

with associated covariance E [xj(t)xj(t + τ )] = q2
j cos(jω0τ ). As a result, these processes are

deterministic with initial state drawn from a Gaussian distribution. The corresponding state-space
formulation features block diagonal matrices composed of J matrices as the following:

• Feedback matrices:

Fj =

[︄
0 −ω0 j

ω0 j 0

]︄
(2.99)

• Noise effect matrices:
Lj = I2 (2.100)

• Stationary covariances:
P∞,j = q2

j I2 (2.101)
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• Noise effect matrices:
Qc = 0 (2.102)

since the process does not have a diffusion term.

• Measurement matrices:
Hj =

[︂
1 0

]︂
. (2.103)

In order to retrieve the form in Eq. 2.94 for the canonical covariance function in Eq. 2.63, the
relation 2 sin2 (︁ τ

2
)︁
= 1 − cos (τ ) must be substituted in the canonical covariance function expression.

After expanding the exponential function via a Taylor series, the following expression is obtained:

k(τ ) = exp(−l2)
∞∑︂

j=0

1
j!

cosj(τ ). (2.104)

This series can be truncated at an order J and the powers of cosines can be written as summation
of cosine terms with multiplied angles. This leads to the following expression for the canonical
periodic covariance function:

k(τ ) =
J∑︂

j=0
q̂2

j,Jcos(jτ ) (2.105)

with coefficients q̂2
j,J = 2

exp(l−2)

∑︁⌊ J−j
2 ⌋

i=0
(2l2)−j−2i

(j+i)!i! , where j = 1, . . . J . An approximation of this
expression can be retrieved taking the limit J → ∞ [130]. The eigenvalues associated to the
dynamical system corresponding to a GP with covariance function described by Eq. 2.105 are
complex conjugates with zero real part (each pair corresponds to the eigenvalues associated to the
jth component, with the first two eigenvalues being zero). Referring to the single jth component,
a differential equation with imaginary conjugate poles corresponds to an undamped system with
frequency specified by the magnitude of the imaginary part. Solving the eigenvalue solution for
the reconstructed SSM yields eigenvalues that are multiples of ω0 = 2π/tperiod. The solution of
the jth differential equation is therefore: xj(t) = xj(0)cos(ω0jt) − yj(0)sin(ω0jt), as anticipated
in Eq. 2.98. It follows that the resulting stochastic process will be a summation of J harmonic
components (harmonics of ω0 ). The latter are visible in Fig. 2.15, which shows the bode plot of the
TF for the dynamical system associated to a GP with canonical periodic covariance function with
ω0 = 1 and truncation order J = 6. Figure 2.15 proves that the TF features a 0Hz component and
J undamped harmonics (one for each jth component).
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Figure 2.15: GP with periodic covariance function: TFs of the equivalent SDE system
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Quasiperiodic class

Following the product rule reported in Subsubsection 2.3.1.3, a quasiperiodic covariance function
can be constructed as a product of a periodic and a Matérn covariance function. As a result, the
Kronecker product can be exploited as follows to build the related SSM:

Fj = F q ⊗ I2 + Iq ⊗ F p
j , Lj = Lq ⊗ Lp

j , Qc,j = Qq
c ⊗ q2

j I2,
P∞,j = P q

∞ ⊗ P P
∞,J , Hj = Hq ⊗ HP

j

(2.106)

where the p and q notations are respectively used for matrices associated with the periodic and
the Matérn covariance function. The eigenvalue solution for the system in Eq. 2.106 provides, for
each jth component, complex conjugate pairs of eigenvalues. The dynamical system representing a
quasiperiodic covariance function thus corresponds to an underdamped system with solution of the
type xj(t) = eαt(xj(0)cos(ω0jt) − yj(0)sin(ω0jt)). This is confirmed by the bode plot of the TF
reported in Fig. 2.16, which features a 0Hz component and J damped harmonics (one for each jth

component).
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Figure 2.16: GP with quasiperiodic covariance function: TFs of the equivalent SDE system

Constant class

A constant covariance function is degenerate and the corresponding SSM representation is given
by the matrices:

F = 0, L = 1, Qc = 0,
H = 1, P0 = σ2.

(2.107)

The bode plot for the TF associated with this model is reported in Fig. 2.17.

Linear class

A linear covariance function is degenerate and the corresponding SSM is defined by the matrices:

F =

[︄
0 1
0 0

]︄
, L =

[︄
0
1

]︄
, Qc = 0,

H =
[︂

1 0
]︂

, P0 = σ2
[︄

t2
0 t0

t0 1

]︄
.

(2.108)

The bode plot for the TF associated with this model is reported in Fig. 2.18.

Wiener class

The SSM representation of a Wiener process is defined by the matrices:
F = 0, L = 1, Qc = σ2,
H = 1, P0 = 0.

(2.109)
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The bode plot for the TF associated with this model is reported in Fig. 2.19.
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Figure 2.17: GP with constant covariance function: TF of the equivalent SDE system
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Figure 2.18: GP with linear covariance function: TF of the equivalent SDE system
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Figure 2.19: GP with Wiener covariance function: TF of the equivalent SDE system
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2.4 Summary
This chapter introduces the necessary basic principles for describing the algorithms developed

in this thesis. The state-space representation of dynamic system models and the MOR techniques
adopted in this thesis are reported in this chapter, along with an introduction to the stochastic
framework forming the core of the VS strategies developed within this dissertation. This chapter
also focuses on data-driven methods aimed at designing dynamic models from observations-only.
Specifically, recursive GP regression is treated and a thorough analysis of the conventional covariance
functions adopted in structural dynamics is proposed. Alternative covariance functions are also
studied and a second regression scheme, the STP regression, is presented.



3
R E S P O N S E A N D J O I N T I N P U T - R E S P O N S E E S T I M AT I O N

The problem of data assimilation has been introduced in Section 2.2 by proposing the KF as
an analytic tool for implementation of Bayesian inference. The standard KF can be adopted in
structural dynamics for online state, and, therefore, response estimation based on the BDM of
the structure and available measurements. When the main focus of data assimilation is only on
structural response reconstruction, ME can be applied alternatively to the KF to predict real-time
operating data at unmeasured locations by mapping the measured responses through numerical
normal modes. The ME approach, which consists in an elementary linear transformation, falls
outside the Bayesian framework introduced in Section 2.2 since it is constructed on deterministic
assumptions. Nevertheless, ME has proven to generate accurate response prediction in specific
circumstances, thus serving as a valid alternative to the KF.
In practical engineering applications, the use of response estimation strategies might be limited by
potential uncertainties regarding the loads applied to the system and/or the true parameter values
(mass, damping and/or stiffness) of a structure in operational conditions. To tackle this problem,
a method for state estimation in presence of unknown or highly non-Gaussian inputs has been
developed. This approach, often referred as Kitanidis filter [75], implements linear minimum-variance
unbiased state estimation independently of the unknown input that may be acting on the system.
In situations in which unknown loads are also of interest, an adaptation of the Kitanidis filter
providing input and state estimation concurrently, i.e., the GDF, can be adopted. For the same
purpose, several Kalman-based algorithms have been developed relying on the use of an additional
SSM. This can be adopted for both unknown loads and/or parameters and it is constructed by
coupling the measurement equation of Eq. 2.18 to an a-priori transition model which determines
the time evolution of the unknown random process. In this dissertation, the structural parameters
of the analyzed system will be treated as known time-invariant quantities and focus will be shed on
unknown loads reconstruction. To address joint input-state estimation, Kalman-based approaches,
e.g. the AKF and the DKF, have been developed and extensively tested in the structural dynamics
field. The first, proposed in [49], relies on augmenting the system state vector with the unknown
loads in order to perform simultaneous input-state estimation. To the contrary, the DKF performs
joint input-state estimation in two separate stages, as demonstrated in [51].
This chapter first introduces the ME method for deterministic response estimation, further suggesting
an improvement by coupling ME to CMS. Secondly, the Kitanidis filter for state estimation in
presence of undetermined loads is presented, followed by the description of the GDF algorithm.
Ultimately, the Bayesian estimation framework introduced in Section 2.2 is extended to the joint
input-state prediction problem by offering the AKF and the DKF algorithms.

3.1 Modal Expansion

ME is a deterministic method specifically constructed for response estimation. The prediction
relies upon a modal decomposition of the measured responses to obtain the modal coordinates,
which are expanded to the unmeasured DOFs through the FE model mode shapes. For applying

45
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ME, the numerical normal modes matrix Ψn must be expressed by distinguishing the measured
(observed) and unmeasured (predicted) DOFs as follows:

Ψn =

[︄
Ψo

n

Ψp
n

]︄
; (3.1)

with Ψo
n ∈ Rno×nk and Ψp

n ∈ Rnp×nk , where np = ndof − no. The Ψo
n matrix is obtained via the

following formulas for displacement or strain, velocity and acceleration measurements, respectively:
Ψo

n = SdΨn, Ψo
n = SvΨn and Ψo

n = SaΨn. When specifically adopted for strain measurements,
the selection matrix Sd is obtained evaluating the matrix ∑︁a BaΨa in Eq. 2.14 at the strain vector
components corresponding to the measured strain quantity.
When a high correlation between the numerical and the experimental mode shapes is available,
measured responses can be used to determine the modal displacement (or its first and second
derivative in case of velocity and acceleration measurements, respectively) at any DOF of the
structure. This approach is valid for any type of response, e.g, displacement, strain, velocity,
acceleration. Specifically, it can be adopted for real-time estimation if the measured and estimated
quantities are of the same type. If one would use a certain type of measurement, e.g. acceleration,
to estimate a different type of response, e.g. displacement, the formulation would require integration
or the use of a frequency domain approach via the FT of Eq. 2.10, which would render the method
not suitable for real-time prediction. Within this dissertation, only one type of response, i.e., strain,
will be used for ME.

By defining the measured DOFs as zo(t) and the estimated DOFs as zp(t), the relationship in
Eq. 2.2 can be written for only the no measured DOFs as:

zo
k = Ψo

npk (3.2)

where vectors zo(t) and p(t) have been transferred from continuous to discrete-time representation
for the sake of consistency with the proposed notation. From 3.2, the modal coordinates vector pk

can be expressed as:
pk = (Ψo

n
T Ψo

n)
−1Ψo

n
T zo

k = Ψo
n

†zo
k. (3.3)

It is worth mentioning that Eq. 3.3 can be solved as a determined (or overdetermined) system only
when the number of measurements no is equal to (or greater than) the number of modes included
in the reduction basis, i.e., nk. The prediction at unmeasured DOFs can be obtained by expanding
the modal coordinates vector computed in Eq. 3.3:

ẑp
k = Ψp

npk = Ψp
nΨo

n
†zo

k. (3.4)

The ME approach can be adopted for predicting any dynamic response quantity, i.e., displacement,
acceleration, or strain, by using an appropriate reduction basis.

3.1.1 Component Mode Synthesis - Modal Expansion
It is worth noting that in Eq. 3.3, the vector pk is the modal coordinates vector at the current

time step. This differs from the generalized coordinate vector p introduced in Eq. 2.2, where the
augmented reduction basis in Eq. 2.4 has been adopted to express the physical coordinates vector
as a function of p. This implies that the conventional ME approach only expands the measured
DOFs through the normal modes matrix and does not account for any behavior of different nature.
In this dissertation, the use of the generalized coordinates introduced in Eq. 2.2 via use of the CMS
reduction basis Ψ is proposed as an alternative to the conventional modal coordinates. In this
way, the observed response zo

k is interpolated via the augmented reduction basis in Eq. 2.4, which
better fits the actual structural behavior of the system by taking into account the presence of static
contribution other than the normal one:

zo
k = Ψopk. (3.5)
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The resulting formulation for the generalized vector is:

pk = (ΨoT Ψo)−1ΨoT zo
k = Ψo†zo

k (3.6)

and the prediction at unmeasured DOFs can be then computed as:

ẑp
k = Ψppk = ΨpΨo†zo

k. (3.7)

This method will be referred in this dissertation as CMS-ME.

3.2 Kitanidis filter
The Kitanidis filter [75, 76] is a linear state estimator which has been conceived to operate in

presence of unknown system inputs so that the latter does not affect the produced state estimation.
The design of the Kitanidis filter relies on a one-step minimization of the trace of the estimate
covariance matrix P defined in Eq. 2.20. Given the BDM in Eq. 2.18, a distinction between known
and unknown input vectors can be made, yielding:{︄

xk = Adxk−1 + Bduk−1 + Edfk−1 + wk−1

yk = Cxk + Guk + vk

(3.8)

where u and f are respectively the known and unknown input vectors. It is worth noting that the
Kitanidis filter works for Linear Time Variant (LTV) systems, i.e., for BDMs with time-variant
matrices. This property allows to adopt this estimator not only in presence of unknown inputs, but
also in case unknown parameters are present. As anticipated in the introduction to this chapter,
the problem of parameter estimation falls out of the scope of this dissertation and focus is shed on
the input prediction problem. For this reason, the state-space matrices in Eq. 3.8 are assumed to be
time-invariant. Starting from the system in Eq. 3.8, a generic recursive linear filter can be defined
as:

x̂+
k = Adx̂+

k−1 + Bduk−1 + Lgk

(︂
yk − CAdx̂+

k−1 − CBduk−1
)︂

(3.9)

where Lg is the filter gain matrix and a new notation for the prior/posterior estimates has been
adopted for the sake of simplicity. According to this notation, the superscript □− denotes the prior
estimate of the QoI at the current time-step k, which was previously indicated via the subscript
□k|k−1. The superscript □+ is instead used to denote the posterior estimate at k, previously
defined by the subscript □k|k. The Kitanidis filter features a particular gain matrix with sequence
Lg1:k = (Lg1, Lg2, · · · , Lgk) such that Lgk is calculated via the following optimization problem:

Lgk = argmin
Lgk

trace (Pk)

E [xk − x̂k] = 0 ∀ f0:k−1 = (f0, · · · , fk−1) .
(3.10)

The Kitanidis filter can thus be referred to as an unbiased minimum variance filter since it is based
on minimizing the trace of the estimate covariance matrix P under the unbiasedness constraint
postulated in Eq. 3.10. The minimization problem in Eq. 3.10 can be expressed analytically by
writing Pk as a function of the state-space matrices:

P+
k = Lgk

(︂
CP−

k CT + R
)︂

LgT
k − P−

k CT LgT
k − LgkCP−

k + P−
k . (3.11)

Imposing the derivatives of the trace of Eq. 3.11 equal to zero, the following expression is yielded:

2
(︂
CP−

k CT + R
)︂

LgT
k − 2CPk − 2CEdΛT

k = 0 (3.12)

where Λ is the matrix of Lagrangian multipliers. The unbiasedness constraint in Eq. 3.10 can be
also postulated as a function of the filter gain:

LgCkEdk−1 − Edk−1 = 0. (3.13)
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From Eqs. 3.11 and 3.13, the final expressions for the filter gain and the state covariance matrix is
obtained:

Lgk =P−
k CT

(︂
CP−

k CT + R
)︂−1

+

[︃
Ed − P−

k CT
(︂
CP−

k CT + R
)︂−1

CEd

]︃
×
[︃
ET

d CT
(︂
CP−

k CT + R
)︂−1

CEd

]︃−1
× ET

d CT
(︂
CP−

k CT + R
)︂−1

(3.14)

P+
k = P−

k − P−
k CT ×

(︂
CP−

k CT + R
)︂−1

CP−
k +

[︃
Ed − P−

k CT
(︂
CP−

k CT + R
)︂−1

CEd

]︃
×
[︃
ET

d CT ×
(︂
CP−

k CT + R
)︂−1

CEd

]︃−1
×
[︃
Ed − P−

k CT
(︂
CP−

k CT + R
)︂−1

CEd

]︃T

.
(3.15)

3.3 Gillijns De Moor filter
The GDF has been proposed for input-state prediction of systems with no direct feedthrough in

[74] and it has been extended for systems with a direct transmission term in [77]. An improvement
of the method regarding instabilities due to the number of adopted sensors exceeding the model
order has been suggested in [78]. The peculiarity of this estimator, which has been constructed
on the basis of the Kitadinis filter, consists in its applicability to any type of load, as it does not
require any a priori transition model for the unknown input. The GDF algorithm, which is offered
in Alg. 11, operates in three stages: a first input estimation step, a measurement update and a
prediction step.

Algorithm 11 GDF algorithm
1: for k = 1, 2, ..., n do
2: (a) Input prediction:
3: R̃k = CP−

xk
CT + R

4: Mgk =
(︂

GT R̃−1
k G

)︂−1
GT R̃−1

k

5: x̂−
k = Adx̂+

k−1 + Bdûk−1
6: ûk = Mgk

(︁
yk − Cx̂−

k

)︁
7: P+

uk
=
(︂

GT R̃−1
k G

)︂−1

8: (b) Measurement update:
9: Lgk = P−

xk
CT R̃−1

k

10: x̂+
k = x̂−

k + Lgk

(︁
yk − Cx̂−

k − Gû+
k

)︁
11: P+

xk
= P−

xk
+ Lgk

(︁
R̃k − GP+

uk
GT
)︁

LgT
k

12: P+
xuk

= P+
uxk

= −LgkGP+
uk

13: (c) State prediction:
14: x̂−

k+1 = Adx̂+
k + Bdûk

15: P−
xk+1 =

[︁
Ad Bd

]︁ [︃ P+
xk

P+
xuk

P+
uxk

P+
uk

]︃[︃
AT

d

BT
d

]︃
+ Qk

16: end for

In Alg. 11, Puk
and Pxk

respectively denote the error covariance of the estimated input and state.
Pxuk

instead indicates the state-input error cross-covariance.
The potentiality of the GDF has been demonstrated in literature for several structural dynamics
applications. However, for the case studies analyzed within this dissertation, input-state estimators
derived as direct extensions of the conventional KF, i.e., the AKF and the DKF presented next,
have been preferred.

3.4 Augmented Kalman filter
The AKF is an algorithm for joint input-state estimation which relies on the so-called state

augmentation, according to which a new augmented state vector is constructed by grouping the
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system state vector and the unknown input vector. In doing so, the unknown input excitation can
be treated as an additional variable to be estimated via a Kalman filtering scheme. Imposing that
the structure is only excited by unknown loads embedded in the vector u, the augmented state
vector xa ∈ R2nr+ni can be built as follows:

xa =
[︂
xT uT

]︂T
. (3.16)

In order to shape the unknown loads contained in the input vector u as states, the augmented
representation in Eq. 3.17 is required for the SSM in Eq. 2.8:{︄

ẋa(t) = Aaxa(t)

y(t) = Caxa(t)
, Aa =

[︄
A B
0 I

]︄
, Ca =

[︂
C G

]︂
, (3.17)

where Aa ∈ Rnaug×naug is the augmented system matrix and Ca ∈ Rno×naug is the augmented
output matrix, with naug = 2nr + ni. In Eq. 3.17, a RW model [49, 135, 136] has been adopted
to model the input dynamics due to lack of prior information regarding the loads acting on the
structure. The time-discrete version of the input (load) RW model is:

uk = uk−1 + wu
k−1 (3.18)

where wu a vector of zero-mean white uncorrelated processes with associated covariance matrix
Qu ∈ Rni×ni . Hence, the diagonal elements of Qu represent the variance of the unknown inputs
increments in time.
Transforming the continuous SSM in Eq. 3.17 into the time-discrete BDM form, the following
formulation can be derived: {︄

xa
k = Aa

dxa
k−1 + wa

k−1
yk = Caxa

k + vk.
(3.19)

In Eq. 3.19, wa =
[︂
wT wuT

]︂T
is the augmented process noise vector with associated noise

covariance matrix Qa ∈ Rnaug×naug = E{wa
kwaT

l } =

[︄
Q 0
0 Qu

]︄
≥ 0, where Q ∈ R2nr×2nr =

E{wkwT
l } takes into account uncertainties related to the system states.

Equations 3.16 and 3.19 indicate that the input location has to be known in order to build the
augmented state-space representation. In Eq. 3.19, the output matrix is obtained as Ca =

[︂
C G

]︂
,

while matrix Aa
d formulation depends on the chosen discretization scheme. The exponential time

integration scheme adopted in Eq. 2.17 for the non-augmented state-space matrices has been also
employed for this application.

A KF tailored to the discrete-time BDM in Eq. 3.19, i.e., the AKF, can be built to perform recursive
estimation of the augmented state vector mean x̂a and covariance Pk = E{(xa

k − x̂a
k) (xa

k − x̂a
k)

T },
also known as error covariance matrix. The AKF algorithm in described in Alg. 12 and the working
principle of the AKF is presented in Fig. 3.1 through a block diagram scheme.

Algorithm 12 AKF algorithm
1: for k = 1, 2, ..., n do
2: (a) Kalman prediction:
3: x̂a−

k = Aa
dx̂a+

k−1
4: P−

k = Aa
dP+

k−1AaT
d + Qa

5: (b) Kalman update:
6: Kgk = P−

k CaT
(︁
CaP−

k CaT + R
)︁−1

7: x̂a+
k = x̂a−

k + Kgk

(︁
yk − Cax̂a−

k

)︁
8: P+

k = (I − KgkCa)P−
k

9: end for
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Figure 3.1: AKF algorithm scheme

Once the estimated augmented state vector x̂a+
k has been obtained, it can be used for predicting

the vector ŷe
k of the ne unmeasured responses using the following formula:

ŷe
k = Ca

e x̂a+
k (3.20)

where Ca
e is the augmented output matrix computed at the DOFs where the response has to be

estimated.

3.5 Dual Kalman filter
The DKF is an alternative approach for simultaneous input-state estimation which relies on a

dual implementation of the standard KF. This results into a separation of the input and state
predictions into two different stages. The RW model in Eq. 3.18 is adopted for this purpose and it
is joined to the output equation to build a further SSM:{︄

uk = uk−1 + wu
k−1

yk = Cxk + Guk + vk.
(3.21)

In Eq. 3.21, the unknown input uk is treated as the state to be estimated via a first KF whereas
the system state vector plays the role of a known input to the system. The predicted input vector
is used as a known variable to predict the system state in a second KF which is constructed on the
SSM in Eq. 2.18. The two prediction steps are performed subsequently at each time step. The DKF
algorithm is described in detail in Alg. 13, where the notation for the prior/posterior estimates
previously introduced for the AKF is adopted. This procedure needs initialization of both the
system state and the input, i.e., expected values for their mean x̂−

0 , û−
0 and covariance P−

0 , Pu−
0

must be defined a priori.

Algorithm 13 DKF algorithm
1: for k = 1, 2, ..., n do
2: (a) Input prediction:
3: û−

k = û+
k−1

4: Pu−
k = Pu+

k−1 + Qu

5: (b) Input update:
6: Kgu

k = Pu−
k GT

(︁
GPu−

k GT + R
)︁−1

7: û+
k = û−

k + Kgu
k

(︁
yk − Cx̂+

k−1 − Gu−
k

)︁
8: Pu+

k = (I − Kgu
kG)Pu−

k
9: (c) State prediction:

10: x̂−
k = Adx̂+

k−1 + Bdû+
k

11: P−
k = AdP+

k−1AT
d + Q

12: (d) State update:
13: Kgx

k = P−
k CT

(︁
CP−

k CT + R
)︁−1

14: x̂+
k = x̂−

k + Kgx
k

(︁
yk − Cx̂−

k − Gû+
k

)︁
15: P+

k = (I − Kgx
kC)P−

k
16: end for
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Once the estimated state vector x̂+
k and unknown input û+

k have been computed, they can be used
for predicting the vector ŷe

k of the ne unmeasured responses using the following formula:

ŷe
k = Cex̂+

k + Geû+
k (3.22)

where Ca
e is the augmented output matrix computed at the DOFs where the response has to be

estimated. A schematic representation of the DKF algorithm is offered in Fig. 3.2.
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Figure 3.2: DKF algorithm scheme

3.6 Summary
The data assimilation methods exploited in this thesis for VS in structural dynamics are described

in this chapter. The problem of response estimation is first treated in a deterministic setting by
reporting on the ME approach and proposing an improvement of the method, i.e., the so-called
CMS-ME approach. The Kitadininis and the GDF algorithms are then described. This chapter
also presents the AKF and DKF algorithms as state-of-the-art Bayesian estimators of inputs and
states.
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A DA P T I V E N O I S E M O D E L I N G FO R B AY E S I A N I N P U T - S TAT E
E S T I M AT I O N

Within the context of Bayesian filtering, the assumption of a priori knowledge of the process and
measurement noise statistics is commonly placed. These terms, which have been introduced in
Section 2.2, are used in a stochastic framework to reflect the uncertainties that stem from modeling
errors/approximations and measurement noise in the system representation. Additionally, for
specific cases in which response estimation is coupled with input prediction, the process noise term
also embeds uncertainty regarding the loading conditions. These two noise variables are commonly
assumed to be independent, zero-mean white noise processes and the corresponding covariance
matrices are treated as time-invariant quantities. The selection of erroneous values for the process
and measurement noise covariance matrices can produce a large drop in the estimators accuracy.
These values are typically not known and offline tuning procedures are adopted to select them [82,
83, 84, 39, 51, 52]. Within this setting, a common approach is to prescribe the measurement noise
covariance by exploiting the available physical sensors specifications. An optimization procedure
regarding the process noise term is then put in place in a rather heuristic manner, i.e., either by
trial and error or by means of regularization schemes, such as the L-curve [85]. Besides its offline
nature, this method often generates a plot which exhibits a non-perfect L-shape, thus hindering the
interpretation of the regularization results for several Kalman-type filters, e.g. the AKF [49] and
the DKF [52]. This limitation is mainly caused by the formulation of the norms adopted within the
L-curve, which is often unsuitable for representing the actual estimation inaccuracies. Additionally,
the relationship between these norms is non-trivial for real-life experiments due to external sources
of uncertainty which may act on the analyzed system. The employment of regularization schemes is
also limited to the use cases in which only one parameter is to be calibrated. The working principle
behind the L-curve has been adapted and used for simultaneously tuning more than one term in
[86, 41]. An online alternative to the previously mentioned methods for identifying the disturbances
consists in using adaptive filtering techniques for both the process and measurement noise terms
[43]. These approaches can be classified into four main categories [87]: Bayesian [88], maximum-
likelihood estimation [89], correlation [90, 91, 92, 93] and covariance matching [94] methods. These
methods comprise generic adaptive filtering strategies, which are typically characterized by excessive
computational times. Additionally, the majority of these techniques are based on seeking the most
suitable process and measurement noise covariance matrices steady-state estimates, rather then
their current optimal values.
The present chapter describes the effect of the selected noise terms on Kalman-based filters accuracy.
As most of the attention in this dissertation is placed on the input-state estimation problem for
structural dynamics applications, this chapter further treats the use of conventional methods for
process noise covariance tuning in an input-state estimation framework. In this view, a more
intuitive approach is then proposed in this chapter for adaptive process noise covariance matrix
tuning using the AKF. In this context, both the terms modeling the states and the unknown input
uncertainties are taken into consideration for optimization. Moreover, the covariance matrix of the
“augmented” process noise is considered to be time-variant, since the modeling uncertainty and the
dynamic characteristics of the unknown load may vary in time. The developed method, addressed
as A-AKF, is based on reference response estimates built using the CMS-ME approach presented in
Chapters 3.
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4.1 Effect of noise covariance matrix selection on the Kalman filter
performance

In Section 2.2, the BDM of Eq. 2.18 has been derived from a conventional SSM via integration
of the process and measurement noise terms, i.e., mutually uncorrelated zero-mean white noises
used to respectively represent modeling uncertainties and noise affecting the measurements. These
two noise terms are defined by the values of their respective covariance matrices Q and R. When
dealing with input-state estimation, the process noise covariance matrix can be distinguished into
the actual Q associated to the original system state vector x and Qu, which instead embeds the
unknown input uncertainty. In specific situations in which the AKF is employed for simultaneous
prediction of the states and the unknown loads, the process noise covariance matrices associated to
the two vectors x and u are concatenated into the “augmented” process noise covariance matrix

Qa ∈ Rnaug×naug = E{wa
kwaT

l } =

[︄
Q 0
0 Qu

]︄
≥ 0. Algorithms 3, 12 and 13 show that each of the

mentioned covariance matrices appear in the analyzed Kalman-based algorithms, therefore implying
that their values can significantly drive the achievable estimation results [137].
To provide a clear explanation about the role of these noise terms in the estimation, the KF update
equations for a uni-variate distribution example are hereby postulated:

Kg =
cσ2

Q

σ2
R + c2σ2

Q

(4.1)

µ = µm + Kg(y − cµm − gu) (4.2)
σ2 = σ2

Q − cKgσ2
Q. (4.3)

In Eq. 4.1, σ2
Q and σ2

R are respectively the process and measurement noise variances. Assuming that
c, a transformation scalar value, is equal to one, two extreme cases can be analyzed. In the first
scenario, the process noise variance σ2

Q is assigned a high value and the measurement noise variance
σ2

R is close to zero such that σ2
Q ≫ σ2

R. The Kalman gain would then be close to 1. Re-evaluating
Eq. 4.1, the following expressions are obtained:

Kg ∼
σ2

Q

σ2
Q + 0 ⇔ Kg ∼ 1

µ ∼ µm + (y − µm − gu) ⇔ µ ∼ y − gu

σ2 ∼ σ2
Q − σ2

Q ⇔ σ2 ∼ 0

(4.4)

This implies that a process noise variance higher than the measurement noise variance generates a
high Kalman gain, and hence induces the KF to correct more the mean and covariance predictions
through the measurements. To the contrary, if the measurement noise variance has a high value
and the process noise variance is close to zero such that σ2

R ≫ σ2
Q, the Kalman gain results in a

very contained value (close to 0). Substituting in Eq. 4.1 yields:

Kg ∼ 0
0 + σ2

R

⇔ Kg ∼ 0

µ ∼ µm + (0)(y − µm − gu) ⇔ µ ∼ µm

σ2 ∼ σ2
Q − (0)σ2

Q ⇔ σ2 ∼ σ2
Q.

(4.5)

The equations in Eq. 4.5 imply that a measurement noise covariance higher than the process noise
covariance generate a lower Kalman gain value, introducing a lower correction of the mean and
covariance predictions through the measurements. The validity of the extrapolated logic, which is
depicted in Fig. 4.1, can be expanded to the multivariate case.



4.2 process noise covariance selection for input-state estimation via kalman-based estimators 55

Increasing R

Lower Kg

Trust prediction via model

Lower correction via measurements

Higher Kg

Distrust prediction via model

Higher correction via measurements

Increasing Q

Figure 4.1: Effect of the selected noise covariance matrices on the KF working principle

Figure 4.1 visually describes the KF functioning with respect to the noise covariance matrices
selection, which defines how the information carried by the model and the measurements is weighted,
thus determining the adjustment of their effect on the estimation results. The reported logic is
essential for the correct functioning of the KF and must be therefore taken into account in every
situation in which a Kalman-based estimator is employed for recursive prediction of QoI. This
results into a necessary tuning step, which must always be put into place prior to online employment
of the estimator. The most common approach for tuning of the noise covariance matrices consists
in setting R via the available physical sensors specifications and installing a trial and error scheme
for selecting Q. The latter relies on the generic guidelines expressed in Fig. 4.1, according to which
a balance is sought after basing on the trust posed by the user in the model/measurements. It is
worth noting that this process is not always straightforward and several runs might be needed to
find the noise covariance matrices optimal values, i.e., values which minimize the estimation error
in the specific analyzed circumstances. This renders the estimation via Bayesian filtering strongly
user-dependent and not easily applicable for real-time inference, especially when no reference is
available to evaluate the accuracy of the achieved predictions. An online alternative consists in using
techniques based on adaptive filtering schemes [87] developed for generic use of Kalman-type filters.
These approaches imply high computational effort and require adaptation to the specific estimator
and application domain. Moreover, they are often limited to the identification of steady-state
estimates of both the process and the measurement noise covariance matrices.
4.2 Process noise covariance selection for input-state estimation via

Kalman-based estimators
When joint input-state estimation is pursued, the augmented process noise covariance matrix

can be written as a block diagonal matrix Qa =

[︄
Q 0
0 Qu

]︄
≥ 0 with diagonal Q and Qu under

the assumption of uncorrelated noise sources. While the diagonal elements of Q are typically
assigned a constant value that is very low when compared against the order of magnitude of the
state vector, the process noise covariance matrix Qu associated to the unknown input is treated as a
regularization matrix, especially when joint input-state estimation is performed through the AKF.
This common practice derives from the dependence of the smoothness of the estimation on Qu ,
which can be therefore tuned to tackle the ill-conditioning of the problem [49, 50, 138]. In doing
so, the resulting diagonal elements of Qu, i.e., the uncertainty related to the unknown inputs, are
typically higher than the ones associated to the regular states (reflecting mostly modeling errors).
The diagonal elements of Qu are commonly assigned by either setting a standard regularization
parameter estimation, e.g. the L-curve [85], or via trial and error. The latter depends on the user
expertise and does not provide a unique solution to the problem. On the other hand, the L-curve
does not exhibit its standard L-shape when used for input-state estimation via use of the AKF
with experimental data [49, 52, 139], which renders the estimation of the regularization parameter
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user-dependent. This behavior is commonly not encountered for fully simulated data sets in absence
of process noise [140, 141]. It is also worth noting that regularization parameter values obtained
through the L-curve are related to the optimal estimates of the measured responses, which do not
necessarily imply optimized predictions for the unmeasured quantities. Moreover, both the L-curve
and the trial and error schemes may only be applied in an offline fashion, preventing real-time
applicability. The applicability of the L-curve will be tested for some of the case studies analyzed
within this dissertation, for which it will be adopted as reference covariance tuning method.

4.2.1 Adaptive-noise Augmented Kalman filter
In this work, an automated procedure for estimating the optimal Qa matrix for joint input-state

estimation in a near-online fashion is presented. Specifically, the simultaneous tuning of both Q
and Qu is proposed. The matrix optimality expression is based on the minimization of an overall
error estimate which takes into account the prediction inaccuracy of the quantities of interest, i.e.,
unknown input vector and measured and unmeasured responses. The process relies on the following
assumptions:

• The process noise covariance Q is assumed to be fully determined by two parameters, i.e., two
distinct covariance values respectively assigned across all the displacement and all the velocity
components of the state vector. This assumption allows to adopt different noise levels for
displacement and velocity components in order to account for their amplitude discrepancy. On
the other hand, a different input process noise covariance component is assigned to each unknown

load entry. Matrices Q and Qu can be expressed as Q =

[︄
qndI 0

0 qnv I

]︄
with I ∈ Rnr×nr and

Qu = quI with I ∈ Rni×ni and qu =
[︂
qu

1 . . . qu
ni

]︂T
. For the sake of simplicity, the situation in

which the structure is subjected to a single excitation source is considered in what follows.
While the reported methodology will thus address three scalar quantities qnd , qnv and qu,
it should be stated that it is straightforward to generalize for more excitation sources. The
procedure can be easily extended for the case of multiple loads by including all the elements of
qu in the set of scalar quantities to be optimally selected.

• The standard Qa matrix estimation procedure treats this matrix as time-invariant, implying
that the same expression is adopted for the AKF at each kth iteration [85, 52, 86, 44]. To
the contrary, the hereby proposed methodology assumes a time-variant Qa matrix, which is
updated every N time-steps. This hypothesis allows to select the optimal augmented process
noise covariance matrix in near real-time, allowing to perform input-state prediction while
measurements acquisition is running.

• The proposed approach does not require user intervention, except for an a priori assumption
regarding the ranges within which qnd , qnv and qu can vary: qnd

min ≤ qnd ≤ qnd
max, qnv

min ≤ qnv ≤
qnv

max and qu
min ≤ qu ≤ qu

max. As will be demonstrated in Chapter 7, the correct functioning of
the algorithm is guaranteed for large ranges, thus rendering the method user-independent.

The herein presented methodology can be applied starting from the a priori selected bounds for
qnd , qnv and qu. Suitable values for each variable are sampled in the assigned range on a logarithmic
uniformly distributed scale. In order to ensure that the displacement and velocity components are
differentiated, the ranges associated to qnd and qnv are set to be equivalent and a constraint between
the corresponding sampled values within these ranges is imposed. M combinations of qnd , qnv and
qu, i.e., M distinct Qa matrices, can be derived from the sampled values. Figure 4.2 shows a block
diagram scheme for the developed A-AKF. The algorithm operates by running a bank of filters
(AKF) in parallel, one for each of the generated M Qa samples, for N time-steps. For the N -steps
window, an overall error estimate Ē is computed for each candidate AKF and minimized to select the
optimal Qa. The latter is adopted to derive the best estimates for the state vector, error covariance
matrix and responses throughout the N -steps window. The estimated x̂a+

k+N and P+
k+N are used
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Figure 4.2: A-AKF scheme

as input for the estimation at step k + N + 1. The employed error quantification for each of the
parallely run filters needs to account for imprecision in both the input and measured/unmeasured
response estimates during the N -steps batch. To do so, the overall error estimate is formulated as:

Ē =∥E∥2, E =
[︂
Eo Ep Eu

]︂T
(4.6)

where Eu represents the unknown input prediction error, while Eo and Ep respectively quantify
the prediction error for the measured and unmeasured responses. Equation 4.6 postulates that the
estimated quantities for both the measured and unmeasured responses must be taken into account in
the error quantification equation, offering global insights into the AKF response prediction accuracy
during the analyzed time window. The measured and unmeasured responses can be calculated via
evaluation of Eq. 3.20 for both ŷo

k,...,k+N and ŷk,...,k+N
e by selecting the appropriate output matrix.

The error estimates for the unknown input, re-estimated observations and the predicted responses
have been formulated after practical implementation of the A-AKF on different structures and for
different type of excitation signals. Indeed, the outcome observed from the use of this approach
for the case studies presented in this dissertation led to the identification of prediction inaccuracy
indicators to be used in the algorithm in order to cover several hypothetical scenarios. The adopted
error estimate for the unknown input, the re-estimated observations and the predicted responses for
each N -steps window are reported next for two common excitation scenarios in structural testing.

4.2.1.1 Pull and release excitation
Pull and release tests are typically performed on WT blades in a laboratory environment to easily

determine their modal parameters from output-only measurements. During this type of tests, the
blade is clamped at the root and pulled downward by making use of a bungee applied at a certain
distance from the clamping. Once the blade tip reaches the desired displacement, it is released
and the free vibration response, i.e., a free decay type of response, recorded. In this scenario,
the prediction inaccuracy regarding the measured (observed) quantities can be straightforwardly
quantified by means of the following estimate:

Eo =
1
no

⌜⃓⃓⎷ no∑︂
l=1

(︂
argminθ∥θyo

l − (yo
l − ŷo

l )∥2
)︂2

(4.7)

where yo
l =

[︂
yo

l1
. . . yo

lj
. . . yo

lN

]︂
is the response acquired at the lth measured DOF, i.e., 1 ≤ l ≤ no,

during the current window (1 ≤ j ≤ N). Similarly, ŷo
l =

[︂
ŷo

l1 . . . ŷo
lj

. . . ŷo
lN

]︂
is the response re-
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estimated by the AKF at the lth measured DOF at the N time-steps within the current time batch.
The term θ in Eq. 4.7 is the scalar result of the least-squares solution of a system of linear equations
θyo

l = (yo
l − ŷo

l ) for the lth measured response, where yo
l ∈ RN and (yo

l − ŷo
l ) ∈ RN . The latter

vector quantifies the deviation between the re-estimated and the measured signals at each time-step,
while the vector yo

l is used to normalize this deviation in order to get a dimensionless estimate. For
the pull and release excitation scenario, the least-squares formulation in Eq. 4.7 has been preferred
to other types of estimates, e.g. mean value of N instantaneous errors, since it allows for a smoothed
error estimate over the N time-steps which guarantees stable input and response predictions for
large qnd , qnv and qu range bounds. This exempts the A-AKF user from the need of selecting ad
hoc bounds for the variables to be tuned.
In order to quantify the prediction error for the unmeasured (predicted) response quantities, the
formulation in Eq. 4.7 can be reformulated as follows:

Ep =
1
ne

⌜⃓⃓⎷ ne∑︂
l=1

(︂
argminβ∥βye

l − (ye
l − ŷe

l )∥2
)︂2

(4.8)

where ŷe
l =

[︂
ŷe

l1 . . . ŷe
lj

. . . ŷe
lN

]︂
is the response estimated by the AKF during the current window at

the lth unmeasured DOF, i.e., 1 ≤ l ≤ ne, and ye
l is its actual value. Being the latter quantity not

available, the A-AKF adopts a reference estimate ẑp
k computed via the CMS-ME method, yielding:

Ep =
1
ne

⌜⃓⃓⎷ ne∑︂
l=1

(︂
argminβ∥βẑp

l − (ẑp
l − ŷe

l )∥2
)︂2

(4.9)

where ẑp
l =

[︂
ẑp

l1
. . . ẑp

lj
. . . ẑp

lN

]︂
and ŷe

l are the responses respectively estimated by the CMS-ME
approach and the AKF at the lth unmeasured DOF, i.e., 1 ≤ l ≤ ne, during the current time batch
(1 ≤ j ≤ N).
To what concerns the input prediction error, when the AKF is generally adopted for input-state
estimation, this is intrinsically contained in the error covariance matrix P. The latter is indeed
defined as:

P =

[︄
Pnn Pnu

Pun Puu

]︄
(4.10)

where Puu = E{(u − û) (u − û)T } ∈ Rni×ni expresses the covariance of the unknown input error.
For the sake of clarity, the explicit time dependency in Eq. 4.10 has been omitted. The diagonal
elements of this matrix represent the variance of each unknown input estimation error. The error
term for a single input prediction û, during the current N -steps window, is therefore expressed as
follows:

Eu =

⌜⃓⃓⃓
⎷ 1

N

k+N∑︂
j=k

P uu
j

û2
j

(4.11)

where the squared amplitude of the corresponding estimated input at each jth time-step within the
window û2

j has been used for normalization. By considering zero cross-correlation of noise sources,
or in other words zero diagonal entries for Puu, the hereby presented approach works under the
assumption that negligible cross-correlation terms (both between the various inputs and between
the states and the inputs) are encountered. It is worth noting that adjustments of the method
may be needed in case large off-diagonal terms are expected in the P matrix. In case of multiple
excitation sources, the error Eu computed for each input can be included in the vector E.

4.2.1.2 Random excitation
Random signals are commonly adopted for testing of structures as they reproduce everyday life

excitation scenarios thanks to their non-predictable nature. Indeed, a random vibration test is to
be considered realistic as it allows to excite all the frequencies within a selected spectrum at any
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time. In this specific circumstances, the prediction inaccuracy related to the measured (observed)
quantities has been quantified by means of the following estimate:

Eo =
1
no

⌜⃓⃓⎷ no∑︂
l=1

(︃
RMSEŷo

l
std(yo

l
)

)︃2
, RMSE =

⌜⃓⃓⃓
⎷k+N∑︂

j=k

(ŷo
lj

− yo
lj
)2

N
(4.12)

where yo
l =

[︂
yo

l1
. . . yo

lj
. . . yo

lN

]︂
is the response acquired at the lth measured DOF, i.e., 1 ≤ l ≤ no,

during the current window (1 ≤ j ≤ N). Similarly, ŷo
l =

[︂
ŷo

l1 . . . ŷo
lj

. . . ŷo
lN

]︂
is the response re-

estimated by the AKF at the lth measured DOF at the N time-steps within the current time batch.
This formulation differs from the one proposed in Eq. 4.7 since the least-squares solution employed
for the pull and release excitation would have averaged the error quantification, thus smoothing
the resulting response estimates. To the contrary, the expression postulated in Eq. 4.12 guarantees
a limited averaging effect as it relies on i) the Root Mean Square Error (RMSE) between the
measured and the re-estimated quantities and ii) on the standard deviation, i.e., the variability, of
the measured responses.
The prediction error for the unmeasured (predicted) response quantities can be postulated adapting
the expression in Eq. 4.12 for the vector ŷe

l by exploiting the CMS-ME predictions ẑp
l as references:

Ep =
1
ne

⌜⃓⃓⎷ ne∑︂
l=1

(︃
RMSEŷe

l

std(ẑp
l
)

)︃2
, RMSE =

⌜⃓⃓⃓
⎷k+N∑︂

j=k

(ŷo
lj

− ẑp
lj
)2

N
(4.13)

where ẑp
l =

[︂
ẑp

l1
. . . ẑp

lj
. . . ẑp

lN

]︂
. Following what reported in Subsubsection 4.2.1.1, the input prediction

error can be expressed in function of the unknown input error covariance Puu for the random
excitation scenario as well. Specifically, the following formula can be employed to compute the
input inaccuracy indicator:

Eu =

√︂
1
N

∑︁k+N
j=k P uu

j

|std(û)| (4.14)

where u =
[︂
û1 . . . ûj . . . ûN

]︂
. The standard deviation of yo

l , ẑp
l and û in the current time-batch

are used in Eqs. 4.12, 4.13 and 4.14 to normalize, for a signal with random nature, the deviation
quantified by the numerators in order to obtain a dimensionless estimate. In Eqs. 4.7, 4.9 and
4.11, as well as Eqs. 4.12, 4.13 and 4.14, the square root has been introduced in order to respect
the dimensionality of the absolute quantity to which the error is referring, i.e., uE for the strain
responses and N for the input.

4.3 Summary
The problem of uncertainties modeling in Bayesian filtering is treated in this chapter. A description

of the effect of the selected noise terms on Kalman-based filters accuracy is proposed. Indeed,
Bayesian estimators rely on two noise terms, i.e., the process and measurement noise, to respectively
account for uncertainties arising from modeling errors and measurement noise. This chapter
demonstrates how these terms robustly control the accuracy of Kalman-based filters. The use of
conventional methods for process noise covariance tuning in an input-state estimation framework
are presented. A newly developed approach is then proposed in this chapter for adaptive tuning of
the time-variant process noise covariance matrix using the AKF. The method, addressed as A-AKF,
is based on reference response estimates computed via the CMS-ME approach.
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Chapter 3 has dealt with the joint input-state estimation problem by proposing the AKF and
DKF schemes. Both the algorithms rely on a prior assumption regarding the dynamic model of
the unknown input, which is constructed via a RW model. Although the RW is a widely adopted
solution, it is sometimes not representative of the actual loading conditions a structure is subject
to. This results in the need of a user-dependent dedicated offline tuning procedure for the unknown
input covariance, which strongly controls the force prediction accuracy. In Chapter 4, a method
for adaptively tuning the process noise covariance matrix for joint input-state estimation using the
AKF has been proposed. However, for loads featuring complex dynamics, thus strongly deviating
from the assumption of BM to which the RW belongs, the prediction accuracy may not reach
satisfactory values even adopting automated tuning methods. For this reason, this chapter proposes
a prior transition equation for the unknown input shaped by a LFM derived from regression via
stochastic processes using training data. The RW model is presented and investigated in Section 5.1
and the alternative input prior representation constructed using the basic regression concepts of
Subsection 2.3.1 is presented in Section 5.2.

5.1 The Random Walk model
RWs represent one of the most basic processes studied in probability theory and can be defined

as a sequence of discrete, fixed-length steps in random directions. As they easily represent random
movements, RWs are commonly adopted to mathematically model BM, i.e., the random motion
of particles suspended in a medium, by discretizing time and space, which are instead continuous
in BM as they describe movements in nature. Examples of the use of RWs in practical problems
are the modeling of a gambler financial status or the changes in stock prices in finance, which are
assumed to take a random and unpredictable path such that past movements of a stock price cannot
be used to predict its future movement.

To introduce the RW formulation, this section offers a simple one-dimensional example of a marker
on the integer number line moving via unitary steps left or right with a symmetrical probability
(50% of going left and 50% of going right). The problem is presented in Fig. 5.1, where the marker
is placed at zero, and a fair coin is flipped to determine the next position. If it lands on heads, the
marker is moved one unit to the right. If it lands on tails, the marker is moved one unit to the left.

-4 -3 -2 0 1 2 3 4-1

Heads (50%)Tails (50%)

Figure 5.1: Marker 1st movement

After the 1st coin flip, the marker position can be −1 or 1. After a 2nd coin flip, the marker can
be located at three possible positions:−2, 0, 2. A 3rd coin flip would place the marker at −3, −1, 1
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or 3. Figures 5.2-5.5, indicate the possible positions and the corresponding probability value for the
4 coin flips.

-4 -3 -2 0 1 2 3 4-1

p = 1/2 p = 1/2

Figure 5.2: 1st coin flip: possible positions and probabilities

-4 -3 -2 0 1 2 3 4-1

p = 1/2
p = 1/4 p = 1/4

Figure 5.3: 2nd coin flip: possible positions and probabilities

-4 -3 -2 0 1 2 3 4-1

p = 1/8p = 1/8 p = 3/8 p = 3/8

Figure 5.4: 3nd coin flip: possible positions and probabilities

-4 -3 -2 0 1 2 3 4-1

p = 1/4 p = 3/8 p = 1/4
p = 1/16 p = 1/16

Figure 5.5: 4th coin flip: possible positions and probabilities

For an odd number of coin flips, the marker can be placed at odd positions. On the other hand, for
an even number of coin flips, the marker can only be at even locations. The resulting distribution is
spread around the central value and it approaches a normal distribution as the number of coin flips
increases. Hence, being Xi a random variable that indicates the outcome of the ith coin flip, the Xi

distribution is defined in mathematical terms as Xi ∼ N (0, 1). Additionally, a random variable Sn

can be introduced to define the location of the RW after n flips. Sn corresponds to the sum of the
coin flips outcome:

Sn = X1 + X2 + · · · + Xn. (5.1)

As a result, Sn is also a Gaussian distribution Sn ∼ N (0, n) with mean and variance defined by:

µSn = µX1 + µX2 + · · · + µXn = 0 + 0 + · · · + 0 = 0
σ2

Sn
= σ2

X1 + σ2
X2 + · · · + σ2

Xn
= 1 + 1 + · · · + 1 = n.

(5.2)

Generalizing for a d dimensional symmetrical problem, for a RW initialized at S0 ∈ Rd, the sequence
Sn can be written as:

Sn = Sn−1 + εn, n ≥ 1 (5.3)
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where εn ∼ N (0, σ2
Xn

) is a sequence of independent and equivalently distributed random variables. In
other terms, Eq. 5.3 postulates that the current RW value is obtained via a random step, determined
by σ2

Xn
, from the previous value. As a result, the RW is to be considered a non-stationary process

by nature. In fact, one can treat a RW as a special first order Autoregressive (AR) model. AR
models are used to represent stochastic processes by specifying that a variable depends linearly on
its own previous values and on a stochastic term. An AR model of order p is denoted as:

Sn =
p∑︂

i=1
ϕiSn−i + εn (5.4)

where ϕ1, · · · , ϕn are the model parameters and εn is white noise. For each AR model, the
corresponding characteristic equation can be solved to compute the roots of the characteristic
polynomial, which determine the dynamic behavior of the model. An AR(p) model is a model of
order p, i.e., with p roots. Having all the roots lying outside the unit circle is a necessary condition
for the model to be considered wide-sense stationary. The comparison of Eqs. 5.3 and 5.4 confirms
that a RW model belongs to a specific AR(1) model class featuring a unity parameter ϕ1 = 1, which
does not satisfy the weak stationarity condition of AR models. A RW series is, therefore, often
referred to as a unit-root non-stationary time series.

As reported in Chapters 3, RWs are employed for establishing the necessary fictitious equation
dictating the unknown input dynamics within Kalman-based input-state estimators. The resulting
prior assumption on the input evolution assumes that its current value is obtained from its previous
value via a random step, which depends on the selected process noise. Hence, the chosen input
process noise covariance Qu plays an important role in the definition of the prior assumption on the
input evolution. In this sense, the selection of this value drives the achievable flexibility of the model
to adapt to the loading conditions of the specific application case, thus determining the prediction
accuracy obtained by the Bayesian estimator. This approach is typically successful for excitation
scenarios with a strong random component. However, the RW assumption is commonly used in any
case in which information regarding the loading conditions a system is subject to is lacking, including
situations that lie beyond the common identification scheme on which the RW assumption has
typically been tested on and excels in, e.g. when abrupt load changes in time are experienced or a
periodic exciting component is present. In this challenging estimation cases, conventionally adopted
settings and tuning methods do not always bring to satisfactory results. This chapter introduces
and analyzes alternative input modeling schemes which, by relying on data-driven methods, have
the ability to more easily and flexibly adapt to several articulated excitation conditions.

5.2 Latent Force Models
A more flexible and comprehensive alternative to the conventional RW for establishing a prior

model for the unkwown input in a Kalman filtering setting consists in employing LFMs [70, 69],
i.e., hybrid schemes that incorporate data-driven paradigms in a relatively simple mechanistic
model. This approach rises from the need of compensating for the lack of knowledge that physics-
based models may feature due to the high degree of simplification they embed with respect to the
complexity of systems they are designed for. Despite this, physics-based models still retain the
advantage over data-driven models of allowing for predictions in regions of the system where no
training data is available. The key idea behind LFMs construction is to make use of a mechanistic
model of the system which is augmented via data-driven techniques in order to provide enough
flexibility to allow for the resulting model to fit the actual system even when mechanistic assumptions
are not precisely met. According to this approach, any model in which the system is forced by
latent functions can be referred as LFM. Hence, the continuous-time SSM in Eq. 2.8 describing the
motion of a linear structural system can be interpreted as a LFM if the components of the forcing
vector u(t) are modeled as zero-mean independent stochastic processes. GPs represent a valuable
class of stochastic process for modeling the so-called latent forces as they can be easily incorporated
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into the inference process following the procedure described in Subsubsection 2.3.1.1. In a GPLFM
framework, the components of the forcing vector of the system in Eq. 2.8 are postulated by:

f (j)(t) ∼ GP (0, kj(t, t′)) (5.5)

where f j is the jth component of the forcing vector u, i.e., j = 1, ..., ni.
The approach proposed in [70, 69] stems from the assumption that the system state vector in Eq. 2.8
can be modeled as a multi-dimensional GP:

x(t) ∼ GP(0, Kxx(t, t′)). (5.6)

By re-writing the output equation in Eq. 2.8 in the form:

g(t) =
[︂
C G

]︂ [︄x(t)
u(t)

]︄
= Cgη(t) (5.7)

it appears that g(t) is a linear combination of two GPs. Hence, a new GP can be introduced:

g(t) ∼ GP(0, Kgg(t, t′)). (5.8)

where Kgg(t, t′) = CgKηηCT
g and the covariance matrix Kηη has the form:

Kηη(t, t′) =

[︄
Kxx(t, t′) Kxu(t, t′)
Kux(t, t′) Kuu(t, t′)

]︄
(5.9)

where Kuu = E
[︂
u(t)uT (t′)

]︂
= diag[k1(t, t′), ..., kj(t, t′), ..., kni(t, t′)] is the joint covariance matrix

of all the latent forces within the forcing vector u(t), which is diagonal according to the independence
assumption of the forcing terms. In absence of this assumption, the forcing vector would admit
correlated terms, which would thus need to be modeled by related GPs, i.e., Kuu off-diagonal terms
would be non-zero. GP regression for full covariance matrices is addressed in literature via use
of instantaneous mixing [142, 143, 144] or convolution [145, 146, 147] of a series of independent
processes to construct correlated processes. These approaches require more advanced calculations
and, consequently, additional computational effort. The independent forcing terms hypothesis is
thus adopted in this dissertation to simplify the construction of LFMs. This assumption does not
introduce a too strict simplification within the context of Kalman-based input-state estimation
algorithms, where prior information regarding the location and the direction of the unknown forcing
terms is assumed to be available. This allows to easily differentiate the several excitation sources
acting on the system, thus allowing to treat them independently. Despite this simplification, the
resulting LFM turns into a GP regression problem that still requires complex numerical integration
for computing Kxx, which may not always have a closed-form. A workaround to this problem
consists in adopting the temporal state-space GP formulation presented in Subsection 2.3.2 to model
the latent forcing terms, which are then used to augment the system mechanistic model resulting in
a practical joint state-space form.

5.2.1 Latent Force Models for joint input-state estimation
The GPLFM approach has been originally adopted for input-state estimation in a Kalman filtering

framework in [71] and further exploited in [72] for offline input-state-parameter estimation. The
basic principle consists in adopting the GP state-space representation derived in Subsection 2.3.2
to model the (unknown) latent forces acting on the system under the assumption of conventional
covariance functions, i.e., squared exponential, exponential or Matérn type. The corresponding
SSM is then used in combination with the system state-space (mechanistic) model in Eq. 2.8 by
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augmenting the state vector x with the input state vector z defined in Eq. 2.73, yielding the final
augmented model:⎡⎢⎢⎢⎢⎢⎢⎣

ẋ(t)
ż(1)(t)
ż(2)(t)

...
ż(ni)(t)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
A b1H(1) b2H(2) . . . bniH(ni)

0 F(1) 0 . . . 0
0 0 F(2) . . . 0
...

...
... . . . ...

0 0 0 . . . F(ni)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

x(t)
z(1)(t)
z(2)(t)

...
z(ni)(t)

⎤⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎣

w(t)˜︁w(1)(t)˜︁w(2)(t)
...˜︁w(ni)(t)

⎤⎥⎥⎥⎥⎥⎥⎦ (5.10)

y(t) =
[︂

C g1H(1) g2H(2) . . . gniH(ni)
]︂
⎡⎢⎢⎢⎢⎢⎢⎣

x(t)
z(1)(t)
z(2)(t)

...
z(ni)(t)

⎤⎥⎥⎥⎥⎥⎥⎦+ v(t) (5.11)

where b1, b2, · · · , bni are the columns of the B matrix and g1, g2, · · · , gni are the columns of the G
matrix in Eq. 2.8. ˜︁w(j)(t) ∈ Rm is a vector-valued GP given by ˜︁w(j)(t) = L(j)w(j)(t), with spectral
density Q(j)

c ∈ Rm×m expressed as Q(j)
c = L(j)qc(L(j))T . In shorthand notation, the augmented

SSM shown in Eqs. 5.10 and 5.11 can be expressed as follows:{︄
ẋa(t) = Aaxa(t) + wa(t)

y (t) = Caxa (t) + v(t)
(5.12)

where xa(t) ∈ Rnaug is the augmented state vector and matrices Aa ∈ Rnaug×naug , La ∈ Rnaug×ni ,
wa(t) ∈ Rnaug is the augmented process noise vector, and Ca ∈ Rno×naug , where naug = 2nr +
m × ni if the LTI SDE in Eq. 2.71 is of the same order m for all the latent forces.
Given the continuous nature of the equations in Eq. 5.12, a discretization process needs to be put in
place to allow employment of the augmented system within a Kalman filtering scheme for recursively
estimating the augmented state vector, i.e., to reconstruct the unmeasured structural response of
the system along with the unknown loads it is subject to and the respective derivatives up to order
m. For this purpose, an exponential time discretization scheme can be applied, yielding:{︄

xa
k+1 = Aa

dxa
k−1 + wa

k−1
yk = Caxa

k + vk

(5.13)

where Aa
d = e(A

a ∆t), while the output matrix Ca remains unchanged because of its inner discrete
nature. wa

k−1 is a discretized version of the augmented process noise vector, which is associated to the
covariance matrix Qa = blkdiag [Q, Qc]. In the last expression, Q is the discretized version of the
process noise covariance matrix associated with the state vector x, while Qc = blkdiag

[︁
Q1

c , ..., Qni
c

]︁
.

The discretization step for matrix Qc, which now contains information regarding the process noise
associated with all the modeled latent forces, is performed by exploiting Eq. 2.75:

Qdk−1 =
∫︂ ∆t

0
exp(Aa(∆t − τ ))Qcexp(AaT

(∆t − τ ))dτ . (5.14)

As a result of the independence assumption made on the latent inputs, the error covariance matrix
Pa

k associated with the augmented state vector xa
k has a block diagonal form of the type:

Pa
k = blkdiag

[︂
Pk, P1

k, ..., P(j)
k , ...Pni

k

]︂
(5.15)

where Pk is the covariance matrix for the non-augmented state vector xk and P(j)
k is the covariance

matrix for the j-th latent force, whose initial condition is set according to what reported in Eq. 2.77.
Joint recursive inference of states and inputs can be performed by employing the augmented

system in Eq. 5.13 in a sequential scheme made up of a KF and a RTS smoother (see Algs. 7 and 8).



66 latent force modeling for bayesian input-state estimation

The main steps necessary for the estimation are summarized in Alg. 14, while a schematic represen-
tation is provided in Fig. 5.6.

function
selection

GPLFM
construction

Covariance

SSM computation
System structural

Joint SSM KF + RTS

hyperparameters
optimization

Covariance

Figure 5.6: GPLFM for joint input-state estimation scheme

Algorithm 14 Joint input-state estimation via the GPLFM
1: Calculate the continuous-time state-space matrices A, B, C and G of the structural model and collect training

data D = {y1, · · · , yn}
2: for j = 1, ..., ni do
3: Choose the covariance function depending on the application (section 2.3.1.3) and initialize the hyperparameters

`
4: Convert the GP covariance functions into an equivalent continuous-time state space matrices and obtain F(j),

H(j), L(j), P(j)
∞ and Qc

5: end for
6: Construct the discrete-time augmented SSM matrices, Aa

d, Ca, Qa

7: Initialize the covariance matrices Q, R, Px
0|0 and mean vector x̂a

0|0. Calculate the augmented state vector
covariance matrix Pa

0|0 = blkdiag
[︁
P0|0, P∞

]︁
.

8: Compute the optimal hyperparameters, `, by maximizing the log marginal likelihood of the observed data D
9: With the optimal hyperparameters `, compute the optimal discrete time augmented SSM matrices, Âa

d, Ĉa, Q̂a

and P̂a
0|0.

10: Using the matrices constructed in the previous step, estimate the unknown inputs and states using the KF and
RTS in Algs. 7 and 8.

It is worth noting that the GPLFM can be considered as a generalization of the augmented SSM
in Eq. 3.17 used in the AKF. Indeed, the system in Eq. 5.12 reduces to Eq. 3.17 if z(t) = u(t), i.e.,
F(j) = 0m×m since ż = 0. In discrete-time, this translates in observing that Eq. 2.74 is a general
expression for Eq. 3.18, where Fdk−1 = I. Following this logic, properties of the augmented system in
Eq. 3.17 such as detectability and observability can be also evaluated for the GPLFM. Specifically,
it has been found that if the pair (A, C) (from the system structural SSM in Eq. 2.8) is observable
and each latent force has an exponentially stable state-space representation, the augmented system
(Aa, Ca) is detectable [71]. The proof for this statement can be easily derived by observing the
Popov-Belevitch-Hautus (PBH) matrix for the SSM in Eq. 5.12:

PBH =

⎡⎢⎣sI − A −B∗

0 sI − F∗

C G∗

⎤⎥⎦ (5.16)
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where matrices B∗, F∗ and G∗ are respectively defined as:

B∗ =
[︂
b1H(1) b2H(2) . . . bniH(ni)

]︂
, F∗ =

⎡⎢⎢⎢⎢⎣
F(1) 0 . . . 0

0 F(2) . . . 0
...

... . . . ...
0 0 . . . F(ni)

⎤⎥⎥⎥⎥⎦ ,

G∗ =
[︂
g1H(1) g2H(2) . . . gniH(ni)

]︂
.

(5.17)

Under the assumption of observability of (A, C) and stability of each
(︂
F(j), H(j)

)︂
for j = 1, ..., ni,

the PBH matrix in Eq. 5.16 has full column-rank ∀s ∈ C, which proves that the GPLFM is detectable
for all types of measurements. This property adds further flexibility to the use of the GPLFM
for joint input-state estimation in real-life problem for any type of data set. In particular, the
method is applicable to measurements sets containing only acceleration sensors, which is instead a
well-known limitation to the AKF due to un-observability issues arising under this condition [50].
In this dissertation, this GPLFM peculiarity will be proven via the proposed case studies, for which
it will be demonstrated that, in contrast to what provided by the AKF, the method allows accurate
estimations also in absence of displacement-level sensors.

Although the validity of using GPLFMs as postulated in Fig. 5.6 and Alg. 14 has been demonstrated
in [71, 72] and will also be proved in this dissertation via the proposed experimental case studies,
the following considerations must be made.

• The GPLFM approach has been proposed in literature for specific and rather conventional classes
of covariance functions, i.e., Matérn, squared exponential, exponential. In Subsubsection 2.3.2.3,
the equivalent state-space representation of a GP featuring such covariance functions has been
found to always have real and coincident roots with multiplicity dependent on the adopted
Matérn smoothness parameter. The achieved state-space representation hence corresponds
to a “critically damped” dynamic system whose response, i.e., the model imposed for the
unknown input in the joint input-state estimation framework, has a time waveform dominated
by the term w(t) in Eq. 2.90 and modulated by an exponentially decaying trend. As a result,
conventional covariance functions represent a generic and easy-to-derive modeling choice which,
however, does not account for specific content that the input may feature, e.g. harmonics,
biases, sudden changes. For this reason, additional covariance functions have been introduced in
Subsubsection 2.3.1.3 and the associated SSMs have been derived in Subsection 2.3.2. Among
the proposed functions, periodic covariance functions allow for a dynamic model including
undamped harmonics, thus representing the most suitable choice for regression of sinusoidal
signals. However, real-life signals too often deviate from pure sinusoidals as they are noise-
contaminated, affected by disturbances or rather obtained as compositions of signals of different
nature, i.e., random multisines. To take these aspects into account, quasiperiodic covariance
functions can be employed for regression. Additionally, linear and constant covariance functions
can be adopted in combination with other covariance functions (to obtain, e.g. the biased
quasiperiodic covariance function) to respectively model linear trends and biases in data.
Finally, the Wiener covariance function can be exploited to construct an alternative and
more flexible SSM for the unknown input satisfying the RW assumption, thus finding its best
application in regression of ambient noise signals. The hereby reported considerations will be
extensively proved in Subsubsection 5.2.1.1, where the mentioned covariance functions will
be employed for joint input-state estimation of a 3DOFs system subject to inputs of different
nature. Additionally, an experimental validation will be provided in Section 8.3 via the case
study explored in Chapters 8.

• In Subsection 2.3.2, a sequence of a KF and a RTS smoother has been reported as a solution
for recursive regression via stochastic processes. Including smoothing in the algorithm allows to
obtain estimations at the current instant of time on the basis of past and future observations.
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The combination of a KF and a RTS smoother thus allows to exactly transfer stochastic process
regression from its batch to its recursive form. Nevertheless, this operation is in contrast with
the more practical need of deploying real-time estimators for operational and experimental data
since it foresees a certain lag to be taken into account before acquiring estimations at a given
instant of time. Additionally, Subsubsection 5.2.1.1 will prove that including the smoothing
step in the algorithm renders the resulting predictions more prone to accumulation errors. This
dissertation therefore proposes to exclude the RTS from the algorithm in Fig. 5.6 and Alg. 14,
thus running a forward KF only.

• The approach in Fig. 5.6 and Alg. 14 foresees the use of the entire set of measurements used
for the joint input-state estimation for selecting the covariance function hyperparameters. This
implies that a substantially large set of observations needs to be acquired prior to the operational
employment of the estimator. Additionally, the use of multiple signals for Bayesian model
selection drastically increases the required computational time. To remedy these problems,
the use of a single pre-recorded measurement will be proposed in this dissertation for both
the simulated and the experimental case studies. It is worth noting that the most convenient
choice for the pre-recorded signal corresponds to an acceleration signal at the unknown input
location. Indeed, a collocated acceleration features a direct link to the unknown input via the
feedthrough matrix. In absence of a collocated measurement, any other acceleration on the
structure may be used to select the covariance function hyperparameters. Acceleration signals
are instead not suitable in presence of biased inputs, e.g. a pull and release load, as they do not
provide static information. In this situations, a displacement-level signal should be adopted.

• The use of LFMs for joint input-state estimation in structural dynamics relies on the use of GP
regression. However, other type of stochastic process may also find application in the analyzed
framework. When dealing with real-life data, which often contains outliers, Student-t processes
may represent a valid alternative. According to the considerations reported in Subsection 2.3.2,
a LFM can indeed be constructed by exploiting STPs instead of GPs. The formulation of a
STPLFM follows what postulated by Eq. 5.10 with the sole difference that spectral density
Q(j)

c associated to the process noise vector w̃(j) of the j-th latent force, is controlled by an
inverse gamma random variable γ: Q(j)

c = L(j)γqc(L(j))T . Similarly, the initial state vector
covariance for the j-th latent force must be set such as p(z(j)0 ) = N (0, γP(j)

∞ ). Within the
sequential inference scheme adopted for STP regression, the DOF parameter ν introduced
by the STP assumption gets updated as νk = νk−1 + nk where nk = 1 for observations and
nk = 0 for predictions of test points. Besides the mentioned modifications, the joint input-state
estimation via a STPLFM can be constructed following the steps reported in this section for
the GPLFM, with the only difference of running the Student-t filter and smoother reported in
Algs. 9 and 10 instead of the KF-RTS coupling adopted within the GPLFM scheme.

5.2.1.1 Joint input-state estimation using Latent Force Models: a 3DOFs example
This subsection makes use of the GPLFM approach for input-state estimation of the 3 DOFs

system in Fig. 5.7, excited by a force applied at the 3rd mass. The system masses m1, m2 and m3
are assumed to be 100, 80 and 80 kg, respectively. The springs stiffness values have been selected as
follows: k1 = 2 × 105, k2 = 1.5 × 105, k3 = 1.5 × 105 N/m. Damping has been defined assuming
a proportional behavior such that C = 2 × 10−2M + 3 × 10−4K. The system natural frequencies
and damping ratios are provided in Tab. 5.1. The proposed simulated example is hereby exploited
to implement and prove the comments listed in the previous subsection. To explore the spectrum
of covariance functions proposed in Subsubsection 2.3.1.3, the input-state prediction problem has
been implemented for the 3 DOFs system under the assumption of several types of inputs acting
on the 3rd mass, i.e., random, sine, random multisine, impulse, step. Every loading scenario has
been addressed adopting the corresponding most suitable covariance function and the achieved
input and response predictions have been compared with the results obtained via a conventional
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Figure 5.7: 3 DOFs system

Table 5.1: Natural frequencies and damping ratios of the 3 DOFs system

Modes 1 2 3

Natural frequency [Hz] 3.26 8.52 12.16

Damping ratio [%] 0.36 0.82 1.16

Matérn covariance function. Moreover, the hereby applied estimator is constructed using a KF
only in order to guarantee real-time applicability. To validate this choice, predictions are compared
to the ones achieved via sequential KF and RTS as in Fig. 5.6, for every loading case. The state
process noise covariance matrix Q and the measurement noise covariance matrix R, necessary
for the implementation of the adopted filtering and smoothing algorithms, have been set by trial
and error and kept unchanged across all the loading scenarios for consistency. The trial and error
process conducted to select these matrices has been based on differentiating the covariance order
of magnitude according to the associated quantity, e.g. displacements and velocities for Q and
displacements and accelerations for R, to ensure a realistic quantification of the modeled errors.
A single collocated “measurement”, i.e., a response simulated at the 3rd mass and contaminated
by noise, is adopted as observation for input-state estimation. When the input has a step profile,
the 3rd mass displacement is used as measurement to ensure that a static information is acquired.
Otherwise, a collocated acceleration measurement is preferred in order to guarantee a feedthrough
term with the unknown input. The same observed response time signal is also used for Bayesian
model selection, i.e., for determining the covariance function hyperparamenters prior to online
estimation. For implementing the marginal likelihood optimization step, the initial hyperparameters
values are chosen so as to avoid the method to incur in erroneous local minima.

Sine load

This paragraph reports on the input-state estimation results for the analyzed system excited by
a sinusoidal input (1 Hz) applied at the 3rd mass. In this loading scenario, the use of a periodic
covariance function for constructing the GPLFM is strongly preferable to the conventional Matérn
function since it allows to account for harmonic features within the adopted GP rather than relying
on the “critically damped” Matérn model. Table 5.2 summarizes the selected initialization values
of the parameters necessary for the algorithm. Figure 5.8 compares the actual input and 1st mass
displacement against the predictions achieved using the GPLFM approach with filtering only. Both
the predictions obtained via the proposed periodic covariance function and a Matérn covariance
function (ν = 1.5) are displayed in Fig. 5.8. A visual inspection of the results confirms that
the periodic covariance function is more suitable for estimating signals featuring pure harmonic
components. This is specifically applicable for simulated systems such as the one hereby analyzed,
where external noise sources are limited and damping follows a precise model. To the contrary,
when dealing with physical systems, selecting a periodic covariance function may correspond to a
too strict assumption on the content of the analyzed signals. Indeed, noise can perturb the signal
periodicity and damping may not follow the model used when defining the system state-space
equations. To mitigate these effects, a quasiperiodic covariance function is to be preferred when
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treating real-life problems.

Table 5.2: 3 DOFs system, sine load: estimators initialization values

Initial state
mean

Initial error cov.
matrix

Initial hyperparameters
periodic

Initial hyperparameters
Matérn

Process noise
cov. matrix (Q)

Measurement noise
cov. matrix (R)

x̂a
0|0 = 0 P̂x

0|0 = 0
σ2 = 1 × 10−1

l = 5 × 10−1

tperiod = 1

σ2 = 5
l = 1 × 10−2

Qdispl = 10−20 × Idispl

Qvel = 10−10 × Ivel

Rdispl = 10−15 × Idispl

Racc = 10−12 × Iacc
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Figure 5.8: 3 DOFs system: time and detailed time histories of the sine input and the resulting 1st DOF displacement.
“Measured” signals are shown by a solid black line, while those estimated (via filtering only) by making
use of a periodic and a Matérn covariance function (ν = 1.5) are respectively denoted via a dashed red
and blue line.

A time-domain comparison between the results obtained via filtering only and the ones achieved
via sequential KF and RTS smoother is offered in Fig. 5.9. The displayed signals confirm that
combining filtering and smoothing generates accumulation errors which result in low frequency
components affecting the estimated time histories.
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Figure 5.9: 3 DOFs system: time and detailed time histories of the sine input and the resulting 1st DOF displacement.
“Measured” signals are shown by a solid black line, while those estimated by filtering only and a sequence
of filtering and smoothing (periodic covariance function) are respectively denoted via a dashed red and
green line.

A quantification of the estimation errors obtained by the analyzed estimators is reported in Tab. 5.3
for both the unknown force and the estimated responses by means of the Normalized Root Mean
Square Error (NRMSE), i.e., the RMSE between the estimated and the corresponding “measured”
signal, normalized with respect to the “measured” signal Root Mean Square (RMS) value. Table 5.3
demonstrates that the employment of a periodic covariance function within a GPLFM solved
with filtering only allows for the optimal performance of both input and response estimation in a
sinusoidal loading scenario.
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Table 5.3: 3 DOFs system, sine load: NRMSE values between “measured” and estimated signals (responses and force).
NRMSEdispl NRMSEvel NRMSEacc NRMSE NRMSE

DOF1 DOF2 DOF3 DOF1 DOF2 DOF3 DOF1 DOF2 DOF3 mean resp. force
Periodic (KF) 0.245 0.245 0.245 0.247 0.247 0.247 0.248 0.248 0.003 0.220 0.261
Matérn (KF) 1.001 1.001 1.000 0.999 1.001 0.994 0.963 1.042 0.982 0.998 1.001

Periodic (KF+RTS) 1.048 1.059 1.076 0.257 0.257 0.257 0.253 0.251 0.003 0.496 1.177

Random load

This paragraph reports on the input-state estimation results for the analyzed system excited by a
pure random (white noise) input applied at the 3rd mass. In this loading scenario, the use of a Wiener
covariance function for constructing the GPLFM is proposed as an alternative to the conventional
Matérn function. As mentioned in Subsubsection 2.3.1.3, a GP with a Wiener covariance function is
a RW model. Implementing a GPLFM approach for input-state prediction with a Wiener covariance
function thus represents a non-conventional method for adopting a RW model for the unknown
input. Unlike traditional Kalman-based estimators, where the RW assumption implies the need of a
challenging tuning exercise, the GP-based formulation offers a flexible way for employing the RW
model for input-state prediction. Indeed, in this framework the tuning effort is substituted with the
preliminary training phase aimed at determining the hyperparameters. Following what stated in
Section 5.1, it is evident that a Wiener covariance function represents the best choice for regression
of purely randomic signals. Table 5.4 summarizes the selected initialization values of the necessary
parameters for the algorithm. Figures 5.10 and 5.11 respectively compare the actual input and 1st

mass displacement in time and frequency domains obtained via the proposed Wiener covariance
function and the Matérn covariance function. The analysis of Figs. 5.10 and 5.11 confirms that a
Wiener covariance function allows to better capture the stochastic nature of the input.

Table 5.4: 3 DOFs system, random load: estimators initialization values

Initial state
mean

Initial error cov.
matrix

Initial hyperparameters
Wiener

Initial hyperparameters
Matérn

Process noise
cov. matrix (Q)

Measurement noise
cov. matrix (R)

x̂a
0|0 = 0 P̂x

0|0 = 0 σ2 = 1 × 10−4 σ2 = 5
l = 1 × 10−2

Qdispl = 10−20 × Idispl

Qvel = 10−10 × Ivel

Rdispl = 10−15 × Idispl

Racc = 10−12 × Iacc
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Figure 5.10: 3 DOFs system: time and detailed time histories of the random input and the resulting 1st DOF
displacement. “Measured” signals are shown by a solid black line, while those estimated (via filtering
only) by making use of a Wiener and a Matérn covariance function (ν = 1.5) are respectively denoted via
a dashed red and blue line.

Figure 5.12 offers a time-domain comparison between the results obtained via filtering only and
the ones achieved via sequential KF and RTS smoother. The input and response time histories
estimated by combining filtering and smoothing show low frequency errors which are not generated
when using Kalman filtering only.
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Figure 5.11: 3 DOFs system: PSDs of the random input and the resulting 1st DOF displacement. “Measured” signals
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Figure 5.12: 3 DOFs system: time and detailed time histories of the random input and the resulting 1st DOF
displacement. “Measured” signals are shown by a solid black line, while those estimated by filtering only
and a sequence of filtering and smoothing (Wiener covariance function) are respectively denoted via a
dashed red and green line.

Table 5.5 quantifies the estimation inaccuracy for the analyzed estimators by offering the NRMSE
values computed between the estimated and the “measured” signals for both the unknown force and
the predicted responses. Table 5.5 confirms that adopting a Wiener covariance function within a
GPLFM solved with filtering only guarantees the highest performance for both input and response
estimation in a random loading setting.

Table 5.5: 3 DOFs system, random load: NRMSE values between “measured” and estimated signals (responses and
force).

NRMSEdispl × 105 NRMSEvel × 105 NRMSEacc × 105 NRMSE × 105 NRMSE
DOF1 DOF2 DOF3 DOF1 DOF2 DOF3 DOF1 DOF2 DOF3 mean resp. force

Wiener (KF) 0.078 0.091 0.111 0.003 0.002 0.001 0.005 0.005 0.010 0.034 0.014
Matérn (KF) 10178.163 11413.813 13798.689 5949.576 3661.975 1992.402 8319.623 7659.016 3143.413 734.630 0.459

Wiener (KF+RTS) 32660.282 38181.965 46559.658 635.706 445.016 318.899 829.560 742.271 158.739 13392.455 13.077

Random multisine load

In this paragraph, the input-state predictions obtained for the 3 DOFs system subjected to a
random multisine input at the 3rd mass are summarized. A random multisine signal is constructed
as a superposition of sines with random phase within a selected frequency range (0-20 Hz). The
use of a quasiperiodic covariance function is hereby proposed for representing this type of load and
performing the hyperparameters training by regression of the 3rd mass acceleration. Indeed, adopting
a quasiperiodic covariance function rather than a periodic one allows to simultaneously account
for periodic and damping effects, which result from the damped nature of the analyzed dynamical
system. Figures 5.13 and 5.14 compare the predictions obtained via the quasiperiodic and the Matérn
covariance functions for the actual input and the 1st mass displacement in time and frequency
domains respectively. The initialization values for the algorithm under the different covariance
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assumptions are summarized in Tab. 5.6. Figures 5.13 and 5.14 show that a quasiperiodic covariance
function allows to better match the amplitude and the frequency content of the unknown input. The
same conclusion can be drawn for the response estimate which, however, exhibits a slight mismatch
between 15 and 20 Hz. This error can be explained by the use of only one acceleration observation,
which reflects the input frequency content because of their direct feedthrough. Part of this content
is then erroneously transferred to the response estimates of different type, i.e., displacement as the
one in Figs. 5.13 and 5.14. This issue is normally solved in practically applications by including
different types of responses within the observations set.

Table 5.6: 3 DOFs system, random multisine load: estimators initialization values

Initial state
mean

Initial error cov.
matrix

Initial hyperparameters
quasiperiodic

Initial hyperparameters
Matérn

Process noise
cov. matrix (Q)

Measurement noise
cov. matrix (R)

x̂a
0|0 = 0 P̂x

0|0 = 0

σ2 = 2 × 10−2

l = 3 × 10−1

tperiod = 1
lmatern = 1.3

σ2 = 5
l = 1 × 10−2

Qdispl = 10−20 × Idispl

Qvel = 10−10 × Ivel

Rdispl = 10−15 × Idispl

Racc = 10−12 × Iacc
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Figure 5.13: 3 DOFs system: time and detailed time histories of the multisine input and the resulting 1st DOF
displacement. “Measured” signals are shown by a solid black line, while those estimated (via filtering
only) by making use of a quasiperiodic and a Matérn covariance function (ν = 1.5) are respectively
denoted via a dashed red and blue line.
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Figure 5.14: 3 DOFs system: PSDs of the multisine input and the resulting 1st DOF displacement. “Measured”
signals are shown by a solid black line, while those estimated (via filtering only) by making use of a
quasiperiodic and a Matérn covariance function (ν = 1.5) are respectively denoted via a dashed red and
blue line.

Figure 5.15 shows a time-domain comparison between the estimations obtained via filtering only
and the ones achieved via sequential KF and RTS smoother. The input and response time histories
estimated by combining filtering and smoothing exhibit a deviation error in the last two seconds of
the analyzed time window. This effect only appears when smoothing is combined with filtering.
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Figure 5.15: 3 DOFs system: time and detailed time histories of the multisine input and the resulting 1st DOF
displacement. “Measured” signals are shown by a solid black line, while those estimated by filtering only
and a sequence of filtering and smoothing (quasiperiodic covariance function) are respectively denoted
via a dashed red and green line.

The overall highest prediction performance achieved under the assumption of a quasiperiodic
covariance function (with filtering only) for a random multisine excitation is confirmed by Tab. 5.7,
which reports on the NRMSE values computed between the estimated and the “measured” signals
for both the unknown force and the estimated responses.

Table 5.7: 3 DOFs system, random multisine load: NRMSE values between “measured” and estimated signals
(responses and force).

NRMSEdispl NRMSEvel NRMSEacc NRMSE NRMSE
DOF1 DOF2 DOF3 DOF1 DOF2 DOF3 DOF1 DOF2 DOF3 mean resp. force

Quasiperiodic (KF) 0.352 0.447 0.538 0.097 0.094 0.104 0.089 0.076 0.039 0.204 0.800
Matérn (KF) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Quasiperiodic (KF+RTS) 0.253 0.174 2.666 0.187 0.156 0.069 0.177 0.173 0.046 0.434 1.039

Impulse load

This paragraph treats the input-state predictions obtained for the 3 DOFs system when an impulse
load is applied at the 3rd mass. A quasiperiodic covariance function is hereby compared with an
exponential covariance function (Matérn with ν=0.5) for regression of the 3rd mass acceleration
and subsequent construction of the unknown input model. Indeed, a quasiperiodic covariance
function is optimal for regression of damped dynamical systems free responses since these are
expected to exhibit an oscillatory response with damped frequency content linked to the system
modal properties. The exponential covariance function, i.e., a Matérn covariance function with
ν = 0.5, has been chosen as reference since this class of functions appear to be the most suitable for
detecting large discontinuities in time due to the linked GPs being non-smooth, i.e., mean square
non-differentiable. A summary of the initialization values selected for the algorithm parameters
is reported in Tab. 5.8. Figure 5.16 (left) compares the actual input time history against the
predictions achieved using the GPLFM approach with filtering only (both for a quasiperiodic and an
exponential covariance function). Figure 5.16 (right) offers the time-domain estimation results for
the 1st DOF displacement when a quasiperiodic or an exponential covariance function is adopted.
Additionally, the corresponding Power Spectral Densitys (PSDs) are presented in Fig. 5.17. From
the analysis of Figs. 5.16 and 5.17 it can be concluded that the quasiperiodic covariance function
generates larger estimation errors for both input and response estimations. This may be due to
the quasiperiodic covariance function being centered on a specific frequency, e.g. the first natural
frequency of the system, and only including its harmonics. This assumption excludes the possibility
to include higher natural frequencies (2nd and 3rd for this application) in the GP representation
and renders the hereby adopted quasiperiodic covariance function too strict for such application.
A workaround for this limitation consists in constructing a covariance function as a product of
quasiperiodic covariance functions centered at the 3 natural frequencies of the system.
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Table 5.8: 3 DOFs system, impulse load: estimators initialization values

Initial state
mean

Initial error cov.
matrix

Initial hyperparameters
quasiperiodic

Initial hyperparameters
exponential

Process noise
cov. matrix (Q)

Measurement noise
cov. matrix (R)

x̂a
0|0 = 0 P̂x

0|0 = 0

σ2 = 6 × 10−1

l = 2.5 × 10−1

tperiod = 0.3
lmatern = 1

σ2 = 5
l = 1 × 10−2

Qdispl = 10−20 × Idispl

Qvel = 10−10 × Ivel

Rdispl = 10−15 × Idispl

Racc = 10−12 × Iacc
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Figure 5.16: 3 DOFs system: time and detailed time histories of the impulse input and the resulting 1st DOF
displacement. “Measured” signals are shown by a solid black line, while those estimated (via filtering
only) by making use of a quasiperiodic and an exponential covariance function are respectively denoted
via a dashed red and blue line.
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Figure 5.17: 3 DOFs system: PSDs of the 1st DOF displacement resulting from the impulse excitation. “Measured”
signals are shown by a solid black line, while those estimated (via filtering only) by making use of a
quasiperiodic and an exponential covariance function are respectively denoted via a dashed red and blue
line.

Figure 5.18 shows a time-domain comparison between the estimations obtained via filtering only
and the ones achieved via sequential KF and RTS smoother under the assumption of an exponential
covariance function. The input and response time histories estimated by combining filtering and
smoothing exhibit a deviation error in the last two seconds of the analyzed time window. These
deviations are limited with respect to the ones experienced in the previously considered scenarios.
This may be ascribed to the low signals amplitude at the end of the analyzed time frame for impulse
response, which therefore generates lower accumulation errors.
A quantification of the estimation errors obtained by the analyzed estimators is reported in Tab. 5.9
by means of the NRMSE values computed between the estimated and the “measured” signals
for both the unknown force and the estimated responses. Table 5.9 confirms that the use of a
quasiperiodic covariance function centered at a specific frequency within a GPLFM generates large
prediction inaccuracy for both the input and response estimations under an impulse excitation.



76 latent force modeling for bayesian input-state estimation

0 20 40 60 80 100
−50

0

50

100

time [s]

fo
rc

e
[N

]

96 98 100
−0.4
−0.2

0
0.2
0.4

time [s]
0 20 40 60 80 100

−1

0

1

·10−4

time [s]

di
sp

la
ce

m
en

t
[m

]

96 98 100
−4

−2
0

2

4
·10−6

time [s]

Measured KF KF+RTS

Figure 5.18: 3 DOFs system: time and detailed time histories of the impulse input and the resulting 1st DOF
displacement. “Measured” signals are shown by a solid black line, while those estimated by filtering only
and a sequence of filtering and smoothing (exponential covariance function) are respectively denoted via
a dashed blue and green line.

Table 5.9: 3 DOFs system, impulse load: NRMSE values between “measured” and estimated signals (responses and
force).

NRMSEdispl × 102 NRMSEvel × 102 NRMSEacc × 102 NRMSE × 102 NRMSE
DOF1 DOF2 DOF3 DOF1 DOF2 DOF3 DOF1 DOF2 DOF3 mean resp. force

Quasiperiodic (KF) 37.570 44.491 54.658 7.738 5.337 2.895 10.131 10.102 9.753 20.297 1.792
Exponential (KF) 8.541 9.800 11.660 3.756 3.688 3.836 3.851 3.776 0.023 5.437 0.332

Exponential (KF+RTS) 8.605 9.876 11.751 3.768 3.708 3.864 3.854 3.780 0.074 5.475 0.334

Step load

In this paragraph, the input-state estimation results for the 3 DOFs system subject to a step load
are investigated. A quasiperiodic and an exponential covariance function have been selected for
this problem following the same reasons standing for the impulse response. However, a step type of
input features a static component which is normally difficult to identify via Bayesian estimators
since these tools exploit a dynamical model of the system under study and a non-stationary model
such as the RW for the unknown input. The GPLFM approach can remedy to this problem if: i)
displacement-level sensors are included in the observations set; ii) a constant offset is included in
the covariance function used for regression of a displacement-level response. A biased quasiperiodic
covariance function, as explained in Subsubsection 2.3.1.3, embeds a static component in the prior
when performing regression. This allows to fit the bias present in a displacement response caused
by a step input, thus guaranteeing its representation within the resulting unknown input model
employed in the input-state estimation. The same approach has been used to build a biased
exponential covariance function as a summation of a constant and an exponential (Matérn with
ν = 0.5) covariance function. The resulting covariance function has been adopted for estimation and
results have been compared with the predictions obtained via the biased quasiperiodic covariance
function. Table 5.10 presents an overview of the initialization values selected for the algorithm
necessary parameters. Figure 5.19 (left) proposes a time-domain comparison between the actual
input and the estimations achieved using the GPLFM approach with filtering only (both via the
biased quasiperiodic covariance function and the biased exponential covariance function). The
load time histories comparison shows that both the covariance functions allow to easily detect
the step profile, but the biased exponential covariance function generates a large error at the last
time instants of the analyzed time frame. Moreover, oscillations around the mean value are larger
when adopting a biased exponential covariance function. Figure 5.19 (right) offers the actual 1st

DOF displacement and the corresponding predictions achieved via the GPLFM approach in time
domain. The presented comparison shows that a good response prediction can be obtained via
both the analyzed covariance functions. However, by analyzing the PSDs comparison in Fig. 5.20,
it can be concluded that the response estimate produced by the biased quasiperiodic covariance
function better matches the “measured” response frequency content. These results are in contrast
to the impulse response case, where the exponential covariance function provides more accurate
estimations. This can be due to a different effect introduced by the constant covariance function
when used in combination with a quasiperiodic or an exponential covariance function. While in
both cases it allows to capture the bias, it may influence differently the hyperparameters values
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of the “dynamic” (quasiperiodic or exponential) covariance function selected during the training
phase. As a generic conclusion, it can be stated that both the proposed covariance functions can be
adopted for the analyzed loading scenario as the results deviation is limited.

Table 5.10: 3 DOFs system, step load: estimators initialization values

Initial state
mean

Initial error cov.
matrix

Initial hyperparameters
biased quasiper.

Initial hyperparameters
biased exp.

Process noise
cov. matrix (Q)

Measurement noise
cov. matrix (R)

x̂a
0|0 = 0 P̂x

0|0 = 0

σ2 = 2 × 10−1

σ2
constant = 2 × 10−1

l = 3 × 10−1

tperiod = 0.3
lmatern = 1.3

σ2 = 2 × 10−1

σ2
constant = 2 × 10−1

l = 3 × 10−1

Qdispl = 10−20 × Idispl

Qvel = 10−10 × Ivel

Rdispl = 10−15 × Idispl

Racc = 10−12 × Iacc
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Figure 5.19: 3 DOFs system: time and detailed time histories of the step input and the resulting 1st DOF displacement.
“Measured” signals are shown by a solid black line, while those estimated (via filtering only) by making
use of a biased quasiperiodic and a biased exponential covariance function are respectively denoted via a
dashed red and blue line.
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Figure 5.20: 3 DOFs system: PSDs of the 1st DOF displacement resulting from the step excitation. “Measured”
signals are shown by a solid black line, while those estimated (via filtering only) by making use of a
biased quasiperiodic and a biased exponential covariance function are respectively denoted via a dashed
red and blue line.

Figure 5.21 offers a time-domain comparison between the results obtained via filtering only and the
ones achieved via sequential KF and RTS smoother in the step loading scenario. The input and
response time histories estimated by combining filtering and smoothing show large deviations at the
end of the analyzed time window.
Table 5.11 quantifies the estimation inaccuracy for the analyzed estimators by offering the NRMSE
values computed between the estimated and the “measured” signals for both the unknown force and
the predicted responses. Table 5.11 proves that adopting a biased quasiperiodic covariance function
within a GPLFM solved with filtering only allows for the optimal prediction performance for both
input and responses under a step type of load.
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Figure 5.21: 3 DOFs system: time and detailed time histories of the step input and the resulting 1st DOF displacement.
“Measured” signals are shown by a solid black line, while those estimated by filtering only and a sequence
of filtering and smoothing (biased quasiperiodic covariance function) are respectively denoted via a dashed
red and green line.

Table 5.11: 3 DOFs system, step load: NRMSE values between “measured” and estimated signals (responses and
force).

NRMSEdispl NRMSEvel NRMSEacc NRMSE NRMSE
DOF1 DOF2 DOF3 DOF1 DOF2 DOF3 DOF1 DOF2 DOF3 mean resp. force

Biased quasiperiodic (KF) 0.016 0.017 0.005 0.173 0.251 0.180 0.287 0.428 0.513 0.208 0.055
Biased exponential (KF) 0.238 0.251 0.007 0.900 1.968 2.136 0.534 8.246 5.271 2.172 0.148

Biased quasiperiodic (KF+RTS) 0.040 0.023 0.009 0.328 0.205 0.212 0.765 0.611 0.488 0.298 0.066

5.3 Summary
This chapter focuses on the input modeling task within the context of input-state estimation via

Bayesian filtering. The conventional RW transition model is described, along with a detailed analysis
of the limitations derived from its employment. The use of structured LFMs is then proposed as a
more comprehensive and flexible alternative to the RW transition model. A structured LFM can
be constructed by exploiting the SDE representation for stochastic process regression derived in
Chapter 2, which exhibits different features according to the chosen kernel. The analysis conducted
in Chapter 2 has highlighted the tendency of certain classes of kernels towards a better regression
performance in specific loading conditions. This result is hereby tested by means of a simulated
example.



6
E N V I RO N M E N TA L T E S T I N G : T H E B OX A S S E M B LY W I T H
R E M OVA B L E C O M P O N E N T

Environmental testing is a standard procedure in spacecraft engineering used for qualification of
spacecrafts mechanical design. These tests, performed for verifying the resistance of the system and
all its components to the random excitation to which they are subjected, are particularly crucial for
ensuring and demonstrating the spacecraft integrity against the dynamical launch environment.
Environmental testing therefore represents an essential specification procedure during which the
spacecraft is placed on a big electrodynamic or hydraulic shaker testing facility, which provides a
controlled excitation with the purpose of replicating the in-service structural response of the tested
structure. Besides the difficulties in the execution of these tests due to the structure dimensions,
the most critical aspect is related to the poor operational environment representation which may
be achieved while testing. Indeed, limitations in the adopted vibration control strategies and the
interaction between the structure under test and the testing facility, can give rise to undesired issues,
e.g. over- or under testing, errors in time to failure estimation or even damage. In this framework,
a collaboration between Kansas City National Security Campus (managed by Honeywell Federal
Manufacturing & Tecnology) and Sandia National Laboratories introduced the BCC. The goal
of this project is to improve the in-service environment replication at a component level, leading
to the establishment of component failure mechanisms closer to the ones that may arise during
its operational life. The challenge focuses on the BARC setup, a simple mock-up that can yet
represent the relevant challenges from the BCC point of view. Several BARC specimens have been
distributed among the large number of research institutes that have accepted the BCC and that
are now investigating the BARC with the purpose of providing new solutions [99, 100, 102]. To
address the BCC, VS techniques can be employed in environmental testing applications to retrieve
the complete strain field on the tested component both in operation and during tests, allowing for a
more complete comparison of the two conditions. Entire stress fields can be derived from strain
information, based on which component failure can be more easily predicted. Moreover, forces are
usually not measured during this type of tests. Therefore, a simultaneous estimation of states and
inputs can be used to retrieve such relevant quantities. To this end, this chapter proposes the use of
data assimilation via Kalman-type filters for calculating an estimate of the QoI, e.g. excitation or
responses of the system at locations that may not be easily instrumented via physical sensors.
The first section of this chapter presents the BARC specimen and the FE model, along with the
validation and update results achieved using experimental modal parameters extrapolated from a
free-free test campaign. Secondly, the environmental testing campaign carried out on the BARC
is described. The last part of this chapter documents the VS results obtained from the use of
Kalman-type filters during environmental tests on the BARC. To this end, the adopted ROM of
the system is derived by employing RIRA modes in order to take into account the test BCs. During
the environmental tests under study, the AKF is first evaluated for a strains-only and a mixed
(strains and accelerations) observation set. The resulting predictions are then compared to the ones
obtained by employing a conventional GPLFM for input-state estimation with a Matérn covariance
function. Section 6.4 reports the conclusions for this chapter.

79
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6.1 The Box Assembly with Removable Component
The BCC addresses the development of a methodology for assessing the design of environmental

testing procedures, leading to more realistic response reconstruction for systems in operation.
When looking at environment replication at the component level, differences in BCs between single
component testing and full assembly testing must be taken into account. Removing the component
from its original subassembly and testing it on a shaker, rather than directly testing the entire
assembly, obviously gives rise to shifts in BCs, thereby impacting the structural dynamics. Common
practice consists in overtesting the structure, which typically results in undesired oversizing of the
component and an erroneous environmental vibration replication. The ultimate goal of the BCC is
to propose an alternative to overtesting, looking for new solutions able to improve the in-service
environment replication, e.g. studying the influence of different excitation mechanisms and BCs.
The BCC makes use of a test bed comprising a relatively simple aluminum structure, the BARC
shown in Figure 6.1. It consists of a “component”, made from the assembly of two C-channels
connected by a beam, and a “subassembly”, hereby referred as box, consisting of a cut box-beam,
on which the component rides. The component plays the role of the unit under testing, while the
subassembly represents a generic operational support. In the BARC specimen provided to Siemens
Industry Software (SISW), four M5 holes have been drilled at the box base to directly connect
the BARC to a commonly used 75 lbf shaker and an M8 hole has been added, in order to permit
connection to a larger shaker.

COMPONENT

SUBASSEMBLY

Figure 6.1: The Box Assembly with Removable Component

6.1.1 Finite Element model: validation and update

Figure 6.2 illustrates the FE model developed in SimcenterT M 3D (NXT M Nastran) for the BARC
specimen. The model has been generated from the available Computer Aided Design (CAD) model
using a 2D shell mesh of a total of around 2400 CQUAD4 elements, whose dimensions have been
differentiated according to the specific component. The model is indeed made up of four distinct
parts: the box, the beam and two C-channels. Bolted connections have been introduced at the
interface between the several components to model the bolts connecting the physical parts. These
bolted connections are constructed using Rigid Body Element (RBE) connections at the holes and a
BAR element to model the screws. This solution allowed to account for the screws presence, which,
given the limited dimensions of the specimen, have a non-negligible influence on the numerical
modal properties. Additionally, face contact has been modeled between the coupled surfaces to avoid
bodies interpenetration. Following the specifications provided by the BCC, the following materials
have been adopted to model the different components: 6063 aluminum alloy for the C-channels,
6061 aluminum alloy for the beam and the box, AISI 316 stainless steal for the screws.
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Figure 6.2: BARC FE model

The model has been validated with test data acquired during impact testing of the BARC in
free-free conditions (in Fig. 6.3), processed with SimcenterT M Testlab PolyMAX. To guarantee
consistency between the model and the test configuration, four masses at the four installed triaxial
accelerometers locations have been included in the FE model. The initial correlation between
experimental and numerical modal parameters has been improved through a model update procedure
via the SimcenterT M 3D Model Update tool, which makes use of NX Nastran SOL 200. By spanning
the pre-selected ranges for the design variables, the model updating process seeks for the minimal
frequency error and the maximal Modal Assurance Criterion (MAC) value between the first ten
numerical and experimental mode pairs via a genetic algorithm. The adopted design variables are
reported in Tab. 6.1, along with the corresponding initial and updated values. To improve the
correlation between FE model and test data, both material and geometrical properties have been
accounted for in the design variables set. The latter thus included: the densities and the Young’s
moduli of all the involved materials, the CQUAD4 elements thickness for each substructure, the
screws section radius.

Figure 6.3: Free-free impact testing on the BARC

Table 6.2 reports on the model update results by comparing the initial and updated numerical
frequencies with the reference test frequencies for the first 10 modes. Additionally, Tab. 6.2 offers
the initial and updated frequency errors as well as a comparison between the initial and updated
MAC values for the diagonal mode pairs. From the analysis of Tab. 6.2 it can be concluded that
the implemented update strategy allowed to achieve frequency errors below the 3% threshold and
improved MAC values for the first seven modes, with a large improvement on mode 4 and 5. These
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benefits came with the cost of reducing the correlation for modes from 8 to 10. However, the
accuracy decrease for these three modes is contained enough to justify the selection of the optimal
update results hereby reported.

Table 6.1: BARC FE model update: design variables initial and updated values
Design variables Initial value Updated value

Escrews[Mpa] 190000.000 187287.778
Ebox,beam[Mpa] 68980.000 68855.944
Echannels[Mpa] 68900.000 68169.447
ρscrews[g/cm3] 8.020 8.420

ρbox,beam[g/cm3] 2.711 2.613
ρchannels[g/cm3] 2.700 2.827
rscrewsbox [mm] 2.153 2.153

rscrewsbeam [mm] 2.807 2.867
Tbeam[mm] 3.300 3.135
Tbox[mm] 6.040 6.094

Tchannels[mm] 3.140 3.112

Table 6.2: BARC FE model initial and updated frequencies, frequency errors and MAC pairs

Modes f test
i [Hz] f initial

i [Hz] fupdated
i [Hz] errinitial

fi
[%] errupdated

fi
[%] MACinitial

ii MACupdated
ii

1 182.844 185.425 186.181 1.412 1.825 0.983 0.994
2 201.223 197.716 200.019 -1.743 -0.598 0.937 0.959
3 256.399 254.382 252.967 -0.787 -1.338 0.991 0.991
4 417.736 440.075 429.883 5.348 2.908 0.594 0.933
5 460.104 477.089 462.946 3.691 0.618 0.623 0.965
6 545.446 553.83 551.001 1.537 1.019 0.983 0.986
7 572.081 563.784 568.916 -1.45 -0.553 0.806 0.815
8 648.572 650.843 651.205 0.35 0.406 0.981 0.976
9 1069.990 1030.891 1012.083 -3.654 -5.412 0.942 0.941
10 1125.120 1109.906 1101.535 -1.352 -2.096 0.937 0.875

6.2 Environmental testing
The test setup adopted during environmental tests on the BARC foresees the clamping of the

BARC base on a commonly used shaker of comparable size. Figure 6.4 (left) shows the complete
test setup of the measurement campaign conducted on the BARC, while detailed focus on the
sensors and BARC connection to the shaker is provided in Fig. 6.4 (right). The four M5 holes on
the BARC base have been used to create a 4-points bolted connection with the “The Modal Shop”
2025E electro-dynamic modal shaker. In addition, four PCB monoaxial force cells have been placed
between the BARC and the shaker in order to measure the applied forces in the vertical direction
(Z). SimcenterT M SCADAS Mobile hardware and SimcenterT M Testlab software have been used to
control the shaker and acquire data during the hereby described tests. Several excitation signals with
different amplitude levels have been used during tests: continuous random (maximum level: 0.3, 0.4
and 0.5 V), pseudo random (RMS level: 0.1,0.15,0.2,0.25,0.3 V), sine (3.2, 20, 300, 650 Hz), linear
sine sweep (sweep rate: 2, 3 Hz; voltage level: 0.1, 0.2 V), logarithmic sine sweep (sweep rate: 1, 2
oct/min; voltage level: 0.1, 0.2 V). Sixteen strain gauges and four triaxial accelerometers have been
attached to the system to both measure strain and acceleration data. The sensors locations have
been selected via an existing OSP strategy [44, 57] which aims at selecting the optimal sensors set
to guarantee system observability for input-state estimation using Kalman-based data assimilation
strategies. Figure 6.5 shows the test sensors locations and the modeled excitation scheme, i.e., four
vertical forces transmitted at the four bolted connections between the BARC base and the shaker
head.
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Figure 6.4: BARC environmental testing: BARC mounted on a monoaxial shaker (left); detailed view of BARC
attachment to the shaker (middle); detailed view of sensors (right).
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Figure 6.5: Sensing configuration during environmental testing on the BARC: accelerometers (red), strain gauges
(blue)

6.3 Joint input-state estimation
This section proposes the use of VS techniques for the estimation of the quantities of interest

during the environmental tests performed on the BARC using a pseudo random signal (0.3 V
RMS level). In order to build the required BARC SSM, the updated FE model described in
Subsection 6.1.1 has been employed and complemented with the necessary assumptions regarding
the BCs to which the system is subjected during tests. In the analyzed configuration, the applied
constraint demands the BARC base connection points to move together with the shaker. Therefore,
no fixed constraint is provided for the vertical translation in the global frame. This layout has been
replicated in a numerical environment by fixing all the DOFs, except the vertical translation, of
the RBE2 connections central nodes at the BARC base in the free-free FE model. To reduce the
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computational effort and enable online applicability of the proposed input-state estimation methods,
the resulting model has undergone the MOR process postulated in Subsubsection 2.1.1.1. The use
of RIRA modes instead of more conventional residual attachment modes deals with the presence
of rigid body motion introduced by unconstrained DOFs such as the BARC vertical translation
enabled during environmental tests. Indeed, rigid body motion prevents the computation of the
static solution, and hence of the residual attachment modes.
In order to test the potential of the adopted estimators, the two different observations sets in Tab. 6.3
have been constructed by selecting two subsets of sensors among the physically instrumented locations
reported in Fig. 6.5. The remaining ones have been used as reference quantities to check the validity
of the achieved response estimation. For the first set, only strain responses have been considered.
The measured locations have been chosen in order to focus on response estimation at the component
level and to guarantee that measurements collocated with the applied forces could be included.
Indeed, collocated measurements allow for a more accurate reconstruction of the inputs [148].
The observability requirements for the reduced sensor set have been checked by ensuring that
the condition number of the observability matrix [149] for the reduced set is of the same order of
magnitude as the one obtained for the full sensor set, which is guaranteed by the employed OSP
adopted strategy. The second observations set has been defined as an extension of the first, to which
also the four acceleration sensors (three directions) have been added.

Table 6.3: BARC environmental tests: observations sets used for VS validation
Strains only S12,S1,S8,S13,S2,S16,S3,S4,S9

Strains and accelerations S12,S1,S8,S13,S2,S16,S3,S4,S9,A17,A18,A19,A20

6.3.1 Input-response estimation through the Augmented Kalman Filter
This section reports on the results obtained by applying the AKF for jointly estimating inputs

and responses during the BARC environmental tests illustrated in Section 6.2. A comparison will
be offered between the estimation results obtained using the two observations sets in Tab. 6.3.
In order to launch the estimation, the necessary AKF parameters have been selected a priori as
described next. The system initial displacement and velocity have been assumed to be equal to
zero, as well as the the initial error covariance matrix P0. The coviarance matrix R associated to
the measurement noise is a diagonal matrix, the elements of which are equal to the covariance of
the noise associated to each of the measurements. These values have been retrieved by recording
the background noise measured by each channel on the test day. To what concerns the process noise
covariance matrix Qa, the diagonal elements of Q have been set to very low values with respect
to the state vector components. For the strains-only case, the Qu matrix diagonal elements have
resulted from a calibration procedure based on the use of the L-curve method [150], which involves
the use of the smoothing and error norms postulated in Section 11.2. In Fig. 6.6, the L-curve for
each input targeted in the estimation problem treated in this work is reported.
The minimum of the error norm and a stable value of the smoothing norm are achieved when
the diagonal elements of Qu are all equal to 107N2, which is the value that has been set for the
estimation. The adopted values of R and Qu are such that Q ≫ R, i.e., the assumption that
the model is less reliable than the measured data has been made. For the mixed observations set
instead, the Qu matrix diagonal elements have been selected by trial and error as the L-curve plots
resulted to be of difficult interpretation.
Figure 6.7 illustrates the response estimation of strain sensors S10 and S11 when the strains-only
data set is used, compared against the corresponding physically measured signals. A comparison
with the results obtained adopting the mixed observations set is also offered. Moreover, Fig. 6.8
offers the RMSE values of the entire set of estimated responses with respect to their measured
time histories, including the adopted strain observations, for both the analyzed sensors sets. From
Fig. 6.7 and Fig. 6.8, it can be concluded that a good global agreement with the reference measured
signals is obtained for the AKF estimations achieved with both the sensors sets in Tab. 6.3.
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Figure 6.6: BARC environmental tests: L-curve for the four unknown inputs estimation via the AKF and a strain-based
observations set

The poor reconstruction of high frequency components magnitude on the sensor measuring in Y
direction can be ascribed to possible model inaccuracies. This model gap is well compensated for
measured signals in X direction, such as S10, because the X axis resulted to be more excited during
the performed measurement campaign, i.e., lower measured response levels appeared for all the
sensors in Y direction.
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Figure 6.7: BARC environmental tests: time history (left), detailed time history (middle) and PSD (right) of strain
responses S10 and S11. Measured signals are shown by a solid black line, while those estimated by the
AKF via the strain-based and the mixed observations set are respectively denoted via a solid green line
and a dashed red line. dashed green line.

Figure 6.9 proposes the input estimation results obtained in the strains-only case and compares them
with both the experimentally measured ones and the estimations achieved in case the combined
set of strains and accelerations is used. The AKF fails in providing a precise estimation of the
inputs when a strains-only data set is adopted, except for input 4. The inaccurate estimation can
be explained by the evident differences in the measured forces PSDs in Fig. 6.9 (right), which
should theoretically be equivalent. These differences are introduced by the presence of strong BCs
uncertainties that can be summarized by the following aspects:
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Figure 6.8: BARC environmental tests: RMSE values of the strain responses estimated by the AKF (strain-based
observations set - green, mixed observations set - red) with respect to their measured time histories.

• Errors in reproducing the same connection conditions for all the four bolts during tests are
present;

• Reaction forces at the connection between the BARC and the shaker arise during tests;

• The BCs used in the model introduce a strong approximation of the test configuration.
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Figure 6.9: BARC environmental tests: time history (left), detailed time history (middle) and PSD (right) of input 1,
input 2, input 3 and input 4. Measured signals are shown by a solid black line, while those estimated by
the AKF via the strain-based and the mixed observations set are respectively denoted via a solid green
line and a dashed red line.

Figure 6.9 further indicates that the introduction of the accelerometers direct feedthrough, i.e.,
a non-zero output-input matrix in the observation equation of the SSM, allows for an overall
improvement in force estimation. In particular, Fig. 6.9 (right) shows that including accelerations
allows to detect PSDs peaks, e.g. at around 250, 550 and 760 Hz, that are not identified when using
only strains. Moreover, from Fig. 6.9 (left) it can be concluded that the force amplitude better
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matches the actually measured one, with the exception of input 1, which is overestimated.
Table 6.4 compares, for the four loads, the RMS values of the estimated signals with the RMS values
of the reference measured signals. The quantitative comparison proposed in Tab. 6.4 confirms the
results reported in Fig. 6.9: the introduction of acceleration measurements allows for more accurate
detection of the actual loads amplitude. Additionally, the RMSE values of the four estimated inputs
with respect to their measured time histories are offered in Tab. 6.5. The RMSEs comparison
for input 2 reflects the enhancement achieved by introducing acceleration observations. To the
contrary, the RMSE values associated with inputs 1,3 and 4 show an increase with respect to the
corresponding quantities in the strains-only case. These poor RMSE values can be explained by the
poor reproduction of the test BCs in the model. This can negatively influence the terms relating
the loads and the acceleration observations in the output-input matrix of the system SSM.

Table 6.4: BARC environmental tests: RMS values of the inputs measured and estimated by the AKF (strain-based
and mixed observations sets)

Input 1 Input 2 Input 3 Input 4
Measured 6.9 7.1 7.3 6.9

Strains only 2.9 2.0 1.9 3.1
Strains and accelerations 14.3 6.0 7.9 7.3

Table 6.5: BARC environmental tests: RMSE values of the inputs estimated by the AKF (strain-based and mixed
observations sets) with respect to their measured time histories

Input 1 Input 2 Input 3 Input 4
Strains only 8.1 7.1 8.7 4.8

Strains and accelerations 17.7 6.9 11.6 8.9

6.3.1.1 Augmented Kalman Filter estimation improvement via modeling alternatives
The join-input estimation results reported in Subsection 6.3.1 have demonstrated the negative

effect that BCs modeling mismatches may have on the predictions achieved via Kalman-based
strategies during environmental tests, even when a mixed observation set is adopted. In this
respect, a potential improvement consists in providing modeling solutions which would reduce the
discrepancy between the adopted SSM and the experimental setup. In an environmental testing
setup, modeling the shaker and its interaction with the specimen under test represents the best
option. However, this would possibly introduce the necessity of more complex substructuring
approaches and increase the computational load, which is not beneficial for real-time applications.
For this reason, a more straightforward alternative modeling scheme is proposed in this section. The
investigated modeling alternative consists in adopting four vertical springs, one for each connection
point on the BARC base. The springs have been defined in the FE model as CBUSH1D elements
with one end corresponding to the central independent nodes of the holes on the BARC base. All
the DOFs, except the vertical translation, of the four central RBE2 holes are fixed. The free-end
of each spring is instead fixed, i.e., all the DOFs are constrained. The springs stiffness has been
determined via a MATLAB-based optimization procedure aimed at minimizing the RMSE between
the measured responses in the mixed observations set in Tab. 6.3 and the responses reconstructed
at the same location via a forward simulation of the model. The resulting value, equivalent for the
four springs, is 5000 N/m.
Figure 6.10 displays the signals at S10 and S11 estimated via the AKF using the mixed observations
set in Tab. 6.3 and the hereby proposed alternative model. The strain response predictions are
compared against the reference measured signals and the estimations presented in Subsection 6.3.1,
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i.e., achieved via the AKF when the mixed observations set is adopted in conjunction with the
original model. Figure 6.11 offers global insights regarding the response estimation accuracy delivered
by the AKF with the two analyzed models by comparing the RMSE values for the set of estimated
and re-estimated strain responses. From the analysis of Figs. 6.10 and 6.11 it can be inferred that
the employment of the alternative model does not introduce any improvement in terms of response
estimation.
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Figure 6.10: BARC environmental tests: time history (left), detailed time history (middle) and PSD (right) of strain
responses S10 and S11. Measured signals are shown by a solid black line, while those estimated by the
AKF via the original and the alternative model are respectively denoted via a solid red line and a dashed
blue line.
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Figure 6.11: BARC environmental tests: RMSE values of the strain responses estimated by the AKF (initial model -
red, alternative model - blue) with respect to their measured time histories

The load estimations are reported in Fig. 6.12 and a quantitative comparison is proposed in Tabs. 6.6
and 6.7, where the RMS and RMSE values of the estimated force signals under the two modeling
assumptions are respectively compared.

Table 6.6: BARC environmental tests: RMS values of the inputs measured and estimated by the AKF (initial and
alternative model) compared to their measured time histories

Input 1 Input 2 Input 3 Input 4
Measured 6.9 7.1 7.3 6.9

Initial model 14.3 6.0 7.9 7.3
Alternative model 7.9 4.4 7.2 7.9
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Table 6.7: BARC environmental tests: RMSE values of the inputs estimated by the AKF (initial and alternative
model) with respect to their measured time histories

Input 1 Input 2 Input 3 Input 4
Initial model 17.7 6.9 11.6 8.9

Alternative model 12.6 7.7 8.2 9.7

Table 6.6 and Fig. 6.12 (input 1, left) highlight that the overestimation affecting input 1 can be
substantially reduced if the BCs uncertainties are contained by making use of the hereby presented
alternative modeling strategy. A further improvement concerns the reduction of the RMSE for input
1 and 3, which reflects the enhanced estimation of inputs 1 and 3 PSD peaks at 915 Hz. The PSD
plot for input 4 also shows a prediction improvement for the 915 Hz peak through the alternative
model. However, the use of spring elements generates imprecise estimation at low frequency, hence
providing a slightly higher RMSE.
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Figure 6.12: BARC environmental tests: time history (left), detailed time history (middle) and PSD (right) of input
1, input 2, input 3 and input 4. Measured signals are shown by a solid black line, while those estimated
by the AKF via the original and the alternative model are respectively denoted via a solid red line and a
dashed blue line.

The results offered in this section demonstrate that the hereby proposed modeling solution allows for
a substantial enhancement of the high frequency content of the loads predictions via the AKF. To the
contrary, the input estimations at low frequency are not improved, as well as the response estimates,
whose accuracy is left unchanged. For this reasons and to provide a fair comparison between the
adopted algorithms, the remainder of the chapter will present the use of data assimilation methods
during the BARC environmental tests when the original model is employed.
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6.3.2 Gaussian Process Latent Force Model for joint input-state estimation

In this subsection, the use of GPLFMs for input-state estimation during environmental testing on
the BARC is proposed. For this purpose, the original FE model presented in Subsection 6.1.1 has
been adopted to construct the BARC SSM. Following Fig. 5.6 and Alg. 14, once the system structural
SSM is computed, a covariance function must be chosen according to the specific application. Indeed,
while the use of state-of-the-art Kalman-based recursive estimators finds its most common application
for random excitation sources such as the one shown in Figs. 6.9 and 6.12, the GP-based approach
proposed in Section 5.2 features higher flexibility regarding the nature of the unknown input targeted
by the prediction. However, thanks to their stochastic nature, environmental testing loading sources
represent a primary benchmark for the GPLFM as well. It follows that this section will deal with
the use of the most common covariance function for building the GPLFM which will serve for the
estimation, i.e., the Matérn covariance function in Eq. 2.61 with smoothness parameter ν = 1.5
(Fig. 2.7). As described in Alg. 14, the covariance function hyperparameters must be initialized
before computing the SSM for the input. For this application, the following values have been used
as initial hyperparameters: l = 2 × 10−4, σ2 = 2 × 10−4. For what concerns instead the quantities
associated to the BARC SSM, i.e., Q, R, Px

0|0, and the mean vector x̂a
0|0, they have been selected

following the logic reported in Subsection 6.3.1. The GP-based data-assimilation technique is hereby
tested by making use of two measurements sets constructed as a subset of the sensors shown in
Fig. 6.5: the mixed observations set presented in Tab. 6.3 and a pure acceleration-based set. In
both scenarios, the entire set of observations is used for the hyperparameters training phase within
the GP-based approach. The latter is constructed by maximizing the log marginal likelihood of
data via the minimization function available in MATLABT M .

6.3.2.1 Predictions via a mixed observations set

This subsection reports on the joint input-state estimation results obtained via the GPLFM
approach during the environmental tests described in Section 6.2 when the mix measurements set
in Tab. 6.3 is adopted. The achieved results are compared against the reference AKF predictions
presented in Subsection 6.3.1. In order to provide a consistent reference for the following subsection,
which will deal with the use of pure acceleration-based measurements, response predictions for both
strains and accelerations are hereby reported. Therefore, Figs. 6.13 and 6.14 respectively compare
two strain responses and an acceleration response predicted by the GP-based method against
the corresponding AKF estimations. Figures 6.15 and 6.16 provide instead a global information
regarding the strain and acceleration predictions accuracy achieved by the joint estimation via the
GPLFM. The offered results highlight that the GPLFM allows for higher prediction accuracy for
both “unobserved” and “observed” locations, e.g. all the available acceleration sensors. This proves
that the adopted input modeling in a joint input-state estimation logic, not only drives the input
estimation but also influences response prediction accuracy. It is indeed proved that, even if the
adopted measurements and the associated noise covariance matrix R are equivalent, their effect on
the estimation still depends on how the system and the input uncertainties are modeled, i.e., via a
time-invariant and manually selected process noise covariance matrix Qa as for the AKF or using a
more articulated strategy such as the GPLFM.
Figure 6.17 reports on the input estimation results obtained via the GP-based approach and compares
them to the reference AKF predictions. Figure 6.17 is complemented by Tab. 6.8, which provides a
comparison between the RMSE values of the signals estimated respectively by the AKF and the
GP-based method with respect to their measured counterpart. The resulting load predictions show
slightly higher accuracy with respect to the AKF ones, confirming that the proposed approach
allows for accurate load reconstruction without the need of particular user-dependent tuning effort.



6.3 joint input-state estimation 91

−4
−2
0
2
4
·10−5

S1
0:

+
X

st
ra

in
[/

]

−2

0

2

·10−5

10−16

10−13

10−10

PS
D

st
ra

in
[(/

)2
/H

z]

Measured
Estimated - AKF
Estimated - GPLFM

0 2 4 6 8 10

−1

0

1

·10−5

time [s]

S1
1:

+
Y

st
ra

in
[/

]

7.66 7.67 7.68 7.69 7.7
−1

−0.5
0

0.5

1
·10−5

time [s]
0 500 1,000

10−18

10−16

10−14

freq [Hz]

PS
D

st
ra

in
[(/

)2
/H

z]

Figure 6.13: BARC environmental tests: time history (left), detailed time history (middle) and PSD (right) of strain
responses S10 and S11. Measured signals are shown by a solid black line, while those estimated via the
AKF and the GPLFM are denoted via a solid red line and a dashed cyan line.
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Figure 6.14: BARC environmental tests: time history (left), detailed time history (middle) and PSD (right) of
acceleration response A20 (+Z). Measured signals are shown by a solid black line, while those estimated
via the AKF and the GPLFM are respectively denoted via a solid red line and a dashed cyan line.
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Figure 6.15: BARC environmental tests: RMSE values of the estimated strain responses (AKF - red, GPLFM - cyan)
with respect to their measured time histories

6.3.2.2 Predictions via acceleration-only measurements
This subsection finally reports on the joint input-state estimation results obtained via the GPLFM

approach during the environmental tests described in Section 6.2 when a pure acceleration-based
measurements set is adopted. The latter contains all the DOFs measured by the four accelerometers
in Fig. 6.5. The initial estimator settings described in the previous subsection have been replicated
for this application. As with the previous analyses, the estimation results are being compared
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Figure 6.16: BARC environmental tests: RMSE values of the estimated acceleration responses (AKF - red, GPLFM -
cyan) with respect to their measured time histories
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Figure 6.17: BARC environmental tests: time history (left), detailed time history (middle) and PSD (right) of input
1, input 2, input 3 and input 4. Measured signals are shown by a solid black line, while those estimated
via the AKF and the GPLFM are respectively denoted via a solid red line and a dashed cyan line.

Table 6.8: BARC environmental tests: RMSE values of the inputs estimated by the AKF and the GPLFM with
respect to their measured time histories

Input 1 Input 2 Input 3 Input 4
AKF 17.7 6.9 11.6 8.9

GPLFM 17.3 8.5 12.7 9.9

with reference AKF estimations obtained with the same observations set. It is worth noting that
the AKF is known to suffer from unobservability issues when only acceleration measurements are
adopted. This section aimes at experimentally proving that this limitation is overcome by the
GP-based approach, as mathematically demonstrated in Section 5.2. Figures 6.18 and 6.19 show
the estimations obtained via the two compared techniques for S10, S11 and A20 (vertical direction).
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Figure 6.18: BARC environmental tests: time history (left), detailed time history (middle) and PSD (right) of strain
responses S10 and S11. Measured signals are shown by a solid black line, while those estimated via the
AKF and the GPLFM are denoted via a solid red line and a dashed cyan line.
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Figure 6.19: BARC environmental tests: time history (left), detailed time history (middle) and PSD (right) of
acceleration response A20 (+Z). Measured signals are shown by a solid black line, while those estimated
via the AKF and the GPLFM are respectively denoted via a solid red line and a dashed cyan line.

A global comparison is instead offered in Figs. 6.20 and 6.21 via the RMSE values for both the
strain and acceleration responses.
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Figure 6.20: BARC environmental tests: RMSE values of the estimated strain responses (AKF - red, GPLFM - cyan)
with respect to their measured time histories
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Figure 6.21: BARC environmental tests: RMSE values of the estimated acceleration responses (AKF - red, GPLFM -
cyan) with respect to their measured time histories

The presented results indicate that even though the accelerations can be accurately re-predicted
by both the estimators, the AKF inaccuracy level is still higher due to the unobservability condition
which affects the proper functioning of the algorithm. For what concerns strain responses instead,
both the time and frequency signals reported in Fig. 6.18 and the RMSE values in Fig. 6.20
demonstrate that the GP-based approach enables accurate predictions. To the contrary, the AKF
estimations are affected by high RMSE due to amplitude mismatches and low frequency drifts
generated by the unobservability condition.
To what concerns loads estimations, the same conclusions drawn for strain responses can be inferred
by analyzing Fig. 6.22 and Tab. 6.9. It is indeed clear that while the AKF generates signals featuring
low frequency drifts and higher RMSE values, the GP-based method provides predictions with
accuracy comparable to the case study presented in the previous subsection, i.e., when also strain
responses are measured.
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Figure 6.22: BARC environmental tests: time history (left), detailed time history (middle) and PSD (right) of input
1, input 2, input 3 and input 4. Measured signals are shown by a solid black line, while those estimated
via the AKF and the GPLFM are respectively denoted via a solid red line and a dashed cyan line.
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Table 6.9: BARC environmental tests: RMSE values of the inputs estimated by the AKF and the GPLFM with
respect to their measured time histories.

Input 1 Input 2 Input 3 Input 4
AKF 17.7 6.9 11.6 8.9

GPLFM 17.0 6.4 11.9 7.2

6.4 Summary
The operational environment replication comprises one of the main challenges in the context of

spacecraft environmental testing. To facilitate this need, full-field response of components under
test can be evaluated in conjunction with additional QoI, e.g. unknown loads, via data assimilation
strategies relying on Bayesian recursive estimators. This chapter has investigated the use of
two alternative estimators during environmental tests on the BARC specimen for simultaneously
predicting responses and unknown excitation sources. The proposed approaches are based on the
employment of a validated model which accurately represents the system during tests, with a focus
on utilizing realistic BCs assumptions. To this end, a CMS method relying on the use of RIRA
modes has been used to construct the BARC ROM.
As first step, the AKF has been tested and the variation of the achieved predictions with the type
of adopted measurements has been explored. It has been found that the use of a mixed observations
set, including both strain and acceleration sensors, substantially improves the input estimation
accuracy, Additionally, an enhanced model containing springs to represent the shaker-structure
interaction has been proposed. The comparison between the AKF results obtained by employing
the original and the alternative model has demonstrated that unknown loads predictions could be
improved via a model refinement.
This chapter has further examined the use of the GP-based input modeling for input-state estimation
of the BARC. The accurate results obtained when a mixed observations set is employed, confirm
that the method comprises a valid alternative to the more conventional AKF. This is particularly
true when a pure acceleration-based observation set is adopted since in this situation, the AKF
has been proven to suffer from unobservability issues. To the contrary, it has been demonstrated
that the GP-based approach, whose observability in presence of acceleration-only measurements
has been mathematically proven in Section 5.2, provides accurate estimations also in absence of
displacement-level sensors.





7
W I N D T U R B I N E B L A D E S T E S T I N G : L A RG E S C A L E C O M P O S I T E
B L A D E

The situation in which loads acting on an engineering structure cannot be measured arises in
many areas of engineering; one key example is wind energy industry. The cyclic loading acting
on WTs may lead to high strain values at critical locations and finally to structural failure. It is
therefore important to continuously monitor the strain response time histories at these locations.
Laboratory measurements on WT blades can be exploited with the purpose of establishing a
dynamic virtualization process, which could be considered to evolve in real-time, provided that
the employed algorithms can be applied online or near-online. During this type of test campaigns,
structural response is acquired at a finite (limited) number of locations. In this context, Bayesian
filtering i) allows to extend the information from a few sensed locations to the entire full-field blade
response and ii) delivers an estimate of the unmeasured loads acting on the blade. Bayesian VS
thus offers a tool with the potential to operate in real-time, employing fusion of the measured
data with a numerical (FE-based) model of the system, thus delivering a hybrid model, suited for
virtualization. This process can be installed throughout the life cycle of WT blades (including
operational conditions) for enabling a continuous performance evaluation with the purpose of lifetime
prediction and predictive maintenance. In this chapter, a dynamic virtualization process is installed
for a 14.3 m long research WT blade during pull and release tests.
The large scale blade is presented in Section 7.1, where the output-only measurements perfomed
during laboratory testing are reported, along with its FE model validation results. Next, Subsec-
tion 7.1.3 validates the CMS-ME approach proposed in Subsection 3.1.1 by offering the response
predictions for the analyzed case study and comparing them with the standard ME results. Subsec-
tion 7.1.3 continues reporting a parametric analysis of the input-response predictions achieved by
the conventional AKF for several choices of the time-invariant process noise covariance associated
to the unknown input. The outcome of this analysis serves as reference for the input-response
predictions produced by the A-AKF, which are then presented in Subsubsection 7.1.3.3, along
with a parametric assessment of the method and a comparison with the results achieved via the
conventional AKF and the CMS-ME approach. Finally, conclusions for this chapter are drawn in
Section 7.2.
7.1 Large scale composite wind turbine blade

The experimental case study presented in this section includes pull and release tests on a 14.3 m
long research blade made of GFRPs. The WT blade was entirely designed by DTU Wind Energy
and manufactured by Olsen Wings in the framework of the “BLATIGUE” project. The DTU Wind
Energy department has kindly provided the FE model of the blade required for the present work,
along with the experimental data this work refers to.
7.1.1 Wind turbine blade output-only measurements

As shown in Fig. 7.1 (left), during the hereby considered pull and release tests, the blade was
clamped to a rigid steel-reinforced concrete block through the circular interface plate in a flapwise
configuration. The test consisted in pulling the blade downward by making use of a bungee applied
at a distance of 13.1 m from the clamping. Once the blade tip had reached the desired displacement,
the blade was released and the free vibration response recorded. The load time history has not been
acquired. Nevertheless, the scalar value of the static load applied right before the release instant
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is available. The blade was instrumented via 76 strain gauges distributed on 12 sections along its
length, all measuring along the axial direction of the blade (z-axis in Fig. 7.1). Each instrumented
section includes 4 or 8 strain gauges. The sensors configuration is reported in Fig. 7.1 (right), while
Fig. 7.2 (left) shows the strain gauges located on section 4.0 of the blade (at 4.0m distance from the
clamping). Figure 7.2 (right) shows the strain time histories measured by 2 of the 8 sensors placed
on section 4.0.

X

Z

Y

Figure 7.1: Large scale WT blade setup during the pull and release test (left). Test geometry (right).
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Figure 7.2: Large scale WT blade sensor locations on section 4.0 (left). Strain responses measured by strain gauges 4
and 8 on section 4.0 during the pull and release test.

7.1.2 Numerical model: Finite Element model validation and Reduced Order
Model

The WT blade FE model shown in Fig. 7.3 has been developed by DTU Wind Energy using
the commercial software MSCT M Nastran and afterwards exported to SimcenterT M 3D for model
validation. It consists in a 3D model made up of around 130000 six-sided layered composite (8
or 20 nodes) elements. At the blade root, a spider connection links the nodes belonging to the
circular interface plate to the central node of the root section, which is clamped. The model

Figure 7.3: Large scale WT blade FE model in SimcenterT M 3D

has been validated using modal parameters estimated via SimcenterT M Testlab PolyMAX from
hammer and shaker tests performed on the blade in free-free conditions [113, 151]. Afterwards, the
model materials characteristics have been tuned to the specific application by referencing to modal
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properties determined via SimcenterT M Testlab PolyMAX using data acquired during hammer
tests with the blade in clamped-free conditions, i.e., the same BCs adopted during the pull and
release tests. During the considered hammer test, the blade was excited either in the flapwise or
edgewise direction and it was instrumented via 64 accelerometers measuring both X and Y directions
(including the driving point one). Sensors were distributed along the blade on 14 sections as shown
in Fig. 7.4 and only half of the blade surface was covered. Figure 7.4 (left) shows the MAC diagram
resulting from the correlation of the FE model mode shapes (computed using NXT M Nastran
SOL103 Real Eigenvalues) and the experimental mode shapes obtained from the described hammer
test. Although a good matching between the numerical and experimental mode shapes is globally
achieved for the first ten normal modes, i.e., up to 43 Hz, the switching of modes 8 and 9 in the
MAC diagram must be highlighted. Modes 8 and 9 comprise a combination of torsion and high-order
flap-wise bending. Therefore, the 20% and 13% relative frequency errors, respectively associated to
mode 8 and 9, could be ascribed to the blade being instrumented only on the top surface during
tests. In Bayesian filtering, this type of modeling errors are compensated via the process noise term,
which allows for reliable predictions even in presence of model mismatches. A ROM of the blade has
been built following the procedure outlined in Subsection 2.1.1 in order to reduce the computational
effort derived from the high dimensionality of the original FE model. The ROM reduction basis has
been built taking into account the first ten modes (frequency range of interest: 0-43 Hz) and one
residual attachment mode related to the unknown force to be estimated via the chosen Bayesian
estimators. The considered application point and direction for the unknown input u are highlighted
in Fig. 7.4 (right). A visual information regarding the accuracy of the resulting ROM is displayed
in Fig. 7.5 via the comparison between the experimental and the simulated responses in frequency
domain for strain gauges 4 and 8 on section 4.0. The simulated responses have been computed by
performing a forward simulation of the model, pre-loaded by the blade weight, with a load time
history reconstructed using the available static load scalar value.
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Figure 7.4: Large scale WT blade: MAC between numerical and experimental mode shapes from hammer test (left).
WT blade test and FE model geometries alignment (right).

7.1.3 Joint input-state estimation
The target of this subsubsection lies in input and strain response estimation during the pull and

release tests of the large scale blade in clamped-free BCs. In order to validate the efficacy of the
proposed algorithms on the task of input-response prediction, it is common practice to compare
estimated signals to the corresponding measured reference. We follow such a procedure here by
splitting the set of recorded dynamic response data into a measured and an unmeasured subset.
The unmeasured subset refers to the quantities that are to be estimated via use of the proposed
scheme. The “virtually sensed” signals are then compared to the reference (measured) time histories
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Figure 7.5: Large scale WT blade pull and release test: PSD of responses measured (solid black line) and simulated
(solid gray line) at locations St.4 (Sec4.0), St.8 (Sec4.0).

in order to evaluate the prediction performance. For the hereby analyzed pull and release tests on
the research WT blade, the “measured” and “unmeasured” locations were defined by assuming that
the blade could only be instrumented at certain sections, due to time constraints and limited sensor
availability. The resulting sensing configuration, according to which strain response is acquired at
only 28 locations out of the original 76 positions, is reported in Fig. 7.6.

St. 6

Sec.1.5

St. 7

Sec.8.25

Sec.4.0

St. 5

Figure 7.6: Large scale WT blade sensing configuration during pull and release tests: “measured” (red) and “unmea-
sured” (green) locations

It is worth recalling that the A-AKF relies on CMS-ME for response estimation. As a consequence,
the number of sensors selected for the A-AKF must satisfy the CMS-ME requirement of having at
least no = nr = 11 measured signals. The fulfillment of this requisite guarantees robust response
predictions for the CMS-ME approach and, as a result, for the A-AKF as well. However, a higher
amount of sensors such as the one adopted for this case study, can be a benefit in terms of noise
suppression and possibility to capture local deformations and high frequency dynamics. In this
sense, OSP procedures constructed for the AKF, e.g. the one proposed in [57, 58], could be exploited
for determining the optimal number of measurements for the A-AKF starting from the CMS-ME
minimum threshold. The employment of such methodologies would help in guaranteeing both
accurate load and response predictions.

7.1.3.1 Response prediction through the Component Mode Synthesis - Modal Expansion

approach
This subsubsection discusses the prediction results achieved by exploiting the CMS-ME approach

proposed in Subsection 3.1.1. Figure 7.7 illustrates the strain response estimation results achieved
using the CMS-ME approach (in green) at three “unmeasured” locations according to the sensing
configuration reported in Fig. 7.6. The curves estimated via the CMS-ME approach are compared
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in Fig. 7.7 to the experimentally measured time histories (in black) and those estimated using the
standard ME technique (in orange). Moreover, Fig. 7.7 reports in gray the simulated time histories,
i.e., the response signals obtained by performing a forward simulation of the model (pre-loaded by
the blade weight) for the given loading history. During the analyzed pull and release tests, only the
scalar value of the static force applied right before the blade release instant was acquired. Therefore,
an artificial input time history has been reconstructed using this information for obtaining the
simulated free-vibrations shown in gray in Fig. 7.7.
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Figure 7.7: Large scale WT blade pull and release tests: time history (left), detailed time history (middle) and PSD
(right) of responses of strain sensors St.6 (Sec1.5), St.5 (Sec4.0) and St. 7 (Sec. 8.25). Measured and
simulated signals are respectively shown by a solid black line and a solid gray line, while those estimated
via ME and CMS-ME are respectively denoted via a dashed orange line and a dashed green line.

Figure 7.7 reports a good agreement between the experimentally measured time histories (in black)
and those estimated using ME (in orange) and CMS-ME (in green) at the corresponding locations.
Moreover, the results confirm that the process of expanding measured quantities to unmeasured
locations through a modal basis allows to correct modeling errors, as indicated by the discrepancy
delivered purely via use of the simulation model. From the time histories and PSDs comparison,
quite a high mismatch can be observed between the measured and the simulated signals due to
approximations in modeling damping. To the contrary, the curves estimated via standard ME
technique and our CMS-ME approach are not affected by this error, since the methods exploits ME
from sparse measurements; a step which delivers a correction of the response in the unmeasured
locations. The analysis of the strain response time histories highlights the slightly better performance
of the CMS-ME method with respect to the standard ME approach. Indeed, the strain response
PSDs reveal that the CMS-ME estimates have a better agreement with the experimental strain
responses in frequency domain, e.g., PSD at location Sec8.25:St7 between 7 and 15 Hz.
For extending the validity of the characteristic results reported in Fig. 7.7 to all the “unmeasured”
locations along the blade, an overview of the strain estimation results obtained through the ME
and CMS-ME approaches is offered in Figs. 7.8 and 7.9. The plots in Figs. 7.8 and 7.9 quantify
the global prediction accuracy, respectively, in time and frequency domain by making use of the
Time Response Assurance Criterion (TRAC) and Frequency Response Assurance Criterion (FRAC)
indicators postulated in Section 11.1. For the analyzed case study, the entire time length of the
recorded signals has been used for the TRAC computation.
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Figure 7.8: Large scale WT blade pull and release tests: TRAC values for the simulated strain responses (gray line),
the ME (orange line) and CMS-ME (green line) strain response predictions at “unmeasured” locations
according to the adopted sensing configuration (left). Mean TRAC values for the simulated strain responses
(gray), the ME (orange) and CMS-ME (green) strain response predictions at “unmeasured” locations
(right).
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Figure 7.9: Large scale WT blade pull and release tests: FRAC values for the simulated strain responses (gray line),
the ME (orange line) and CMS-ME (green line) strain response predictions at “unmeasured” locations
according to the adopted sensing configuration (left). Mean FRAC values for the simulated strain responses
(gray), the ME (orange) and CMS-ME (green) strain response predictions at “unmeasured” locations
(right).

Figure 7.8 (left) compares the TRAC values for the simulated strain responses (in gray) and the
ME (in orange) and CMS-ME (in green) predictions at the “unmeasured” locations ordered from
the blade root (left) to the blade tip (right). Figure 7.8 (right) reports the TRAC value averaged
over the entire set of predicted strain signals for the three cases hereby taken into account. Both the
TRAC trend and the low averaged TRAC value for the simulated responses confirm the inaccuracy
delivered via the simulation model. Figure 7.8 (left) shows that a TRAC value higher than 0.6 is
achieved via both the ME and the CMS-ME approach for the 88% of the estimated quantities and
higher than 0.8 for the 70%. The low TRAC appearing for sensors close to the blade root, i.e.,
section 1.5, can be due to possible errors in the ME and CMS-ME bases due to BC uncertainties.
The mean FRAC (Fig. 7.9 (right)) and the FRAC trend along the blade (Fig. 7.9 (left)) confirm
the potential of both the ME-based approaches to deliver accurate frequency domain predictions in
the chosen bandwidth (0-50 Hz). Moreover, the discrepancy between the simulated and measured
frequency domain signals encountered in the PSDs plots in Fig. 7.7 is clearly highlighted in Fig. 7.9.
From the global comparison provided in Fig. 7.8 (right) and Fig. 7.9 (right), it can be concluded
that the CMS-ME approach outperforms - on average - the standard ME method. Despite the
valuable response predictions achieved via the CMS-ME approach, the focus of this chapter lies
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in the Bayesian filtering context with the intent to exploit the ability of Bayesian estimators to
better account for model and measurement errors. Additionally, specific filters, e.g. the AKF,
can be adopted for joint input-state estimation, thus allowing to simultaneously address response
prediction and inverse load identification from sparse response measurements. Nevertheless, the
presented results suggest that the CMS-ME estimations can be adopted as reference for prediction
inaccuracy computation within the framework proposed in Subsection 4.2.1.

7.1.3.2 Input-response estimation through the Augmented Kalman Filter

This subsection treats the use of the AKF for input-state estimation during the pull and release
tests described in Subsection 7.1.1. The results presented in this subsection will serve as a reference
for evaluating the A-AKF performance. The AKF time-invariant Qa matrix is conventionally chosen
by setting qnd and qnv to very low numbers respectively compared to the order of magnitude of
the displacements and velocities within the state vector and selecting qu by means of the L-curve
metric. The diagonal entries of R can be instead set basing on the noise recorded by the relative
measurement channels. For this application, an order of magnitude of 10−2uE2 has been computed
and used for all the R matrix diagonal entries. The initial condition, x̂a

0, of the augmented state
vector contains the information regarding the pre-deformation of the blade under its weight. In
Fig. 7.10 the L-curve is presented, where the smoothing and error norms trend, whose formulation
is provided in Section 11.2, is shown for several values of qu. It is observed that the plot shown
in Fig. 7.10 does not appear like a perfect L-shape. However, the curve trend for the analyzed
experimental case study can be easily interpreted by the user and qu can be selected at 109N2 for
the joint input-state estimation via the AKF. For the sake of conciseness, the measurement unit for
the covariance matrices will be omitted in the remainder of the thesis.
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Figure 7.10: The L-curve for the joint input-state estimation of the large scale WT blade during pull and release tests
using the AKF. Values for qu are reported on the figure.

A parametric study regarding the AKF prediction accuracy variation with the selected input process
noise covariance is hereby presented. The study has been conducted by analyzing the evolution
of response and input estimates quality indicators when qu varies on a logarithmic uniformly
distributed scale. For simplicity, a variable Q can be defined as qu = 10Q. The TRAC and FRAC
indicators have been adopted for response estimation, while the Static Error (SE) and the Standard
Deviation (SD) have been used for input prediction evaluation. SE is formulated as the difference
between the actual static input (3.17kN before the blade release and 0N afterwards) and the mean
value of the estimated input profile. SD, instead, quantifies the oscillations that affect the estimated
time history after the blade release. Fig. 7.11 displays the evolution of the AKF response estimation
accuracy for Q varying from 2 to 21 with a 1-step increase. In particular, the evolution with Q of
the TRAC and FRAC trends along the blade, i.e., their values at “unmeasured” locations ordered
from the blade root (left) to the blade tip (right), is reported in Fig. 7.11 (left). Fig. 7.11 (right)
displays instead the values, for the several Q choices, of the TRAC and FRAC indicators averaged
over the entire set of predicted responses. The entire time length of the recorded signals has been
adopted for the TRAC computation, while the frequency range 0-50 Hz has been used for calculating
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the FRAC values. The analysis of the TRAC and FRAC trends with Q highlights that the most
reliable response predictions are achieved for Q ≥ 10.
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Figure 7.11: Large scale WT blade pull and release tests: AKF TRAC trend (top, left) and mean TRAC (top, right)
values with increasing Q. AKF FRAC trend and detailed AKF FRAC trend from location Sec4.0:St2 to
Sec11.0:St7 (bottom, left). Mean FRAC values with increasing Q (bottom, right).

While response estimates are not strongly affected by the variation of Q above Q = 10, the input
prediction accuracy is instead highly dependent on Q, as depicted in Fig. 7.12 via the SE and SD
trends. According to the latter, values of Q that optimize response estimation (Q ≥ 10) generate
high input prediction inaccuracy. Moreover, the minimization of SE is achieved for Q = 4, while
the value which minimizes SD is Q = 7. This behavior demonstrates that there is no level of Q able
to provide both the lowest amount of oscillations and the minimal static error. Fig. 7.12 also shows
that the Q value identified via the L-curve (Q = 9) produces SE and SD levels which are higher
than the achievable minima. Therefore, the SD and SE evolution reported in Fig. 7.12 proves that
the L-curve approach is not optimal for pull and release type of data sets.
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Figure 7.12: Large scale WT blade pull and release tests: AKF SE and SD evolution with increasing Q: full (left)
and detailed (right) view. Values for Q are reported on the figure.

Figure 7.13 shows a comparison between the input time histories estimated via the AKF with Q = 4
(value which allows for SE minimization), Q = 7 (value which allows for SD minimization), Q = 9
(value identified via the L-curve) and the typical step-type load adopted during pull and release
tests. As these tests are taken in an output-only fashion, only the scalar value of the static force



7.1 large scale composite wind turbine blade 105

applied right before the blade release is available from test data. The “measured” curve proposed in
Fig. 7.13 has been artificially reconstructed using this information, with the purpose of validating
the achieved load predictions. Therefore, it is worth noting that the actual load applied during the
test may be slightly deviating from the black curve reported in Fig. 7.13.
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Figure 7.13: Large scale WT blade pull and release tests: input “measured” (black) and estimated (AKF) time
histories (left) and detailed time histories (right) at different levels of Q.

The input time histories reported in Fig. 7.13 reflect the SE and SD trends: oscillations are minimal
for Q = 7, while the static load is better captured by the AKF when Q = 4. Moreover, the input
process noise covariance identified via the L-curve (Q = 9) generates large mismatches between the
estimated and the actual load profiles. This result confirms that the L-curve is not suitable for
tuning the AKF when applied for input-state estimation during tests with a pull and release type
of loading. The latter comprise a constant input which is then abruptly removed and, therefore,
deviates from the common random noise loading scenario in which the AKF normally excels. The
pull and release load, i.e., a stationary load before and after the release instant, is difficult to be
captured by the AKF, which adopts a RW model, i.e., a non-stationary model, to represent the
unknown input evolution in time. In fact, the RW model can be treated as a first order AR process
that has a root on the unit circle, which does not satisfy the stationarity condition [39]. As a result,
the oscillations and the biased error appearing in the estimated input time history can be reduced
by manual tuning but not completely removed, as displayed in Figs. 7.12 and 7.13. Despite the
inability of the L-curve to provide satisfactory input estimations, the AKF predictions obtained for
Q = 9 will be adopted as reference for evaluating the performance of the hereby proposed algorithm.
Indeed, the Q values which minimize the input errors (Q = 4 and Q = 7) would generate lower
TRAC and FRAC values, i.e., lower response prediction accuracy. Additionally, since the A-AKF
approach aims to be a user-independent procedure, reference results should also be obtained with
limited manual intervention.

7.1.3.3 Input-response estimation through the Adaptive-noise Augmented Kalman Filter
This subsection reports on the results obtained by applying the A-AKF described in Subsec-

tion 4.2.1 for joint input-state estimation during the pull and release tests on the large scale
WT blade. For assessing the algorithm validity, the sensing configuration shown in Fig. 7.6 has
been adopted. In order to apply the newly proposed algorithm for the pull and release data set,
broad ranges for qnd , qnv and qu have been selected as follows: qnd

min = qnv
min = qu

min = 10−20,
qnd

max = qnv
max = qu

max = 1020. The prediction results described in this subsection have been obtained
via the A-AKF with a N = 100 time-steps time window. Two parametric studies regarding the
variability of the estimation accuracy with, respectively, the dimension of the window length and
the selected ranges bounds adopted for the A-AKF will be presented later in this subsection. This
subsection also proposes a comparison between the prediction results achieved adopting the A-AKF
and those obtained via the AKF when qu is selected by means of the L-curve metric. Similarly to the
AKF settings, the diagonal entries of R have been set to 10−2 for the A-AKF. To the contrary, the
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A-AKF initialization is performed differently from the AKF: while the AKF initial condition only
contains the pre-deformation due to the gravity load, the A-AKF adopts the CMS-ME estimates
to define the initial condition. The latter is therefore more accurate since it already contains
information about the static response of the blade under the applied unknown load.

Response Estimation

Figure 7.14 shows the time histories and the related frequency content of the blade response
at the three locations pointed out in Fig. 7.6. A comparison between the signals estimated via
CMS-ME, the conventional AKF and the ones obtained by using the proposed A-AKF scheme is
offered. Moreover, the estimated curves are compared to the experimentally measured responses at
the corresponding locations to prove the algorithm validity.
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Figure 7.14: Large scale WT blade pull and release tests: time history (left), detailed time history (middle) and PSD
(right) of strain response for sensors St.6 (Sec1.5), St.5 (Sec4.0) and St. 7 (Sec. 8.25). Measured signals
are indicated via a solid black line. Signals estimated via CMS-ME are indicated in a dashed green line,
signals obtained via the conventional AKF in a dashed red line, while those predicted via the A-AKF are
denoted via a dashed blue line.

A global comparison between the conventional approach and the herein proposed procedure, in
terms of response estimation accuracy, is shown in Figs. 7.15 and 7.16, where, respectively, the
TRAC and FRAC values at “unmeasured” locations are displayed for the conventional AKF, the
A-AKF and the CMS-ME approach. In particular, Figs. 7.15 and 7.16 (left) show, respectively,
the TRAC and FRAC trends along the blade, i.e., their values at “unmeasured” locations ordered
from the blade root (left) to the blade tip (right). Figures 7.15 and 7.16 (right) display the TRAC
and FRAC values averaged over the entire set of predicted responses. The entire time length of
the recorded signals has been adopted for the TRAC computation, while the frequency range 0-50
Hz has been used for calculating the FRAC values. Figures 7.14, 7.15 and 7.16 demonstrate good
predictive capabilities for the A-AKF.
The time histories reported in Fig. 7.14 indicate that the A-AKF estimation captures the physical
blade response both in the static and the dynamic time frames, while the conventional AKF
predictions are affected by higher inaccuracy. Indeed, the AKF response predictions report on
average a 25% deviation from the measured value in the static time frame, which is clearly visible
in Fig. 7.14. To the contrary, the A-AKF matches the measured static responses thanks to the
more realistic initial conditions determined from the CMS-ME estimates. Figure 7.15 confirms
the comparison results in time domain: the mean TRAC achieved through the A-AKF overcomes
the AKF mean TRAC by providing a TRAC value higher than 0.6 for the 93% of the estimated
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Figure 7.15: Large scale WT blade pull and release tests: TRAC values for the CMS-ME (green line), conventional
AKF (red line) and A-AKF (blue line) strain response predictions at “unmeasured” locations according
to the adopted sensing configuration (left). Mean TRAC values for the CMS-ME (green), conventional
AKF (red) and A-AKF (blue) strain response predictions at “unmeasured” locations (right).
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Figure 7.16: Large scale WT blade pull and release tests: FRAC values for the CMS-ME (green line), conventional
AKF (red line) and A-AKF (blue line) strain response predictions at “unmeasured” locations according
to the adopted sensing configuration (left). A detailed view from location Sec4.0:St2 to Sec11:St7 is
shown on the plot. Mean FRAC values for the CMS-ME (green), conventional AKF (red) and A-AKF
(blue) strain response predictions at “unmeasured” locations (right).

quantities and higher than 0.8 for the 80%. Fig. 7.14 (right) shows that the proposed approach
allows to capture the blade response in frequency domain. Moreover, the proposed PSD plots
show that the A-AKF estimations follow the frequency content of the physically acquired responses
throughout the analyzed frequency bandwidth with good accuracy. However, Fig. 7.16 (right)
reports a 1.43% lower mean FRAC value for the A-AKF with respect to the mean FRAC delivered
by the conventional AKF. This trend can be ascribed to the instabilities that the near-online
adaptation of the process noise covariance may cause when adopting the A-AKF. Due to this
behavior, non-smooth frequency response can appear in certain bandwidths, e.g. PSD at location
Sec4.0:St5 between 20 and 30 Hz. Nonetheless, Fig. 7.14 (right) clearly demonstrates that, outside
the limited frequency ranges in which the described effect occurs, the A-AKF predicted spectra
match the measured ones with higher accuracy than the signals generated via the conventional AKF
regime. Figures 7.15 and 7.16 further show a good agreement between the predictions furnished via
the proposed A-AKF algorithm and the reference CMS-ME method both in time and frequency
domains. More specifically, a slightly higher mean TRAC value can be obtained when the A-AKF
is adopted with N = 100. The superior performance of the proposed algorithm in the frequency
domain, i.e., the higher FRAC value reported in Fig. 7.16 (right), can be visualized by comparing
the response PSDs at location Sec8.25:St7 reported in Fig. 7.14. While the A-AKF predicted signal
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correctly matches the frequency content of the measured signal in the entire frequency bandwidth,
the CMS-ME method overestimates the PSD amplitude around the 4.5 Hz and 15.5 Hz peaks and
underestimates it around the 7.2 Hz peak. Moreover, the CMS-ME estimated signal appears highly
contaminated by noise at higher frequencies. This behavior confirms that the proposed approach,
which draws from the CMS-ME method, simultaneously outperforms it thanks to the higher ability
of Bayesian filtering to track measurement and modeling errors by including the noise terms in the
system representation.

Input Estimation

Figure 7.17 shows the input estimation results for the unknown force applied to the blade when
the AKF (process noise covariance matrix via the L-curve) and the proposed methodology are
adopted.
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Figure 7.17: Large scale WT blade pull and release tests: input “measured” (black) and estimated (red – AKF, blue –
A-AKF) time histories (left) and detailed time histories (right).

The two predicted time signals are compared with the reconstructed step-profile followed by the
input during the pull and release tests. From the analysis of the time histories reported in Fig. 7.17,
it can be inferred that a good matching between the input predicted via the A-AKF and the actual
input profile can be achieved. In particular, both the time instant when the blade is released and
the previous static value are identified. To the contrary, when the AKF is used in conjunction with
a conventionally selected augmented process noise matrix, the typical pull and release step profile is
not detected, i.e., the prediction does not capture the actual input static value and it is affected
by high-amplitude oscillations after the blade release. For quantitative comparison purposes, the
SE and SD indicators are reported in Tab. 7.1 for both the AKF and the A-AKF. The major
contribution to the A-AKF SE is given by the constant offset that affects the A-AKF input profile.
Although the blade pre-deformation under its weight is already taken into account, biased errors
may be introduced by the assumptions made to model the gravity load, e.g. approximation of the
center of gravity position. Hence, part of the gravity load may be estimated together with the
external unknown force by the estimators. Moreover, it should be reminded that the unknown input
is modeled as a punctual load for VS purposes. This condition only approximates the actual system
used to apply the force during tests, i.e., a bungee applied at a certain section. Indeed, the latter
generates a distributed load over the section, which could further be affected by fluctuations due
to the bungee elasticity. The results listed in Tab. 7.1 show that a lower prediction error can be
achieved if an automated process noise covariance selection is put in place via the A-AKF. It is
important to notice that improved SE and SD indicators can be achieved via the conventional AKF,
as presented in Subsubsection 7.1.3.2 via the parametric study. However, these results would require
a substantial manual tuning effort, also implying deterioration of response estimation accuracy.
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Table 7.1: Large scale WT blade pull and release tests: input prediction errors for the conventional AKF and the
A-AKF

Conventional AKF A-AKF
SE 1978N 303N

SD 194.25N 58N

Parametric study: influence of the time window length

The newly proposed approach for joint input-state estimation relies on the use of a N-steps time
window for computing the global prediction error to be minimized within the algorithm. This
paragraph analyzes the influence of the time window length on the estimation accuracy when ranges
for qnd , qnv and qu are selected as follows: qnd

min = qnv
min = qu

min = 10−20, qnd
max = qnv

max = qu
max = 1020.

Figure 7.18 shows the evolution of the A-AKF response prediction accuracy for N varying from 10
to 500 with a 10-steps increase. From the analysis of the TRAC trend plot (Fig. 7.18 (top, left)) it
can be inferred that the influence of the chosen time window length is bounded within a narrow
range of variation. This behavior is confirmed by Fig. 7.18 (top, right), which shows that the mean
TRAC maintains a value bounded between and 0.80 and 0.86 with increasing N . It can be further
noticed that an increasing trend is exhibited for low N values. After this first adaptation phase, the
algorithm yields mean TRAC values which exhibit low variability. The evolution of the A-AKF
response estimation accuracy in the frequency domain is reported in Fig. 7.18 by means of the
FRAC trend and mean FRAC evolution with increasing N . Similarly to the mean TRAC trend,
the mean FRAC shows an initial phase affected by higher variability after which it stabilizes around
a value approximately equal to 0.97. From Fig. 7.18, it can be inferred that the mean FRAC spans
an even narrower range (0.965 − 0.975) with respect to the mean TRAC.
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Figure 7.18: Large scale WT blade pull and release tests: A-AKF TRAC trend (top, left) and mean TRAC (top,
right) values with increasing N . A-AKF FRAC trend and detailed A-AKF FRAC trend from location
Sec4.0:St2 to Sec11.0:St7 (bottom, left). Mean FRAC values with increasing N (bottom, right).

Figure 7.19 displays the variation of the SE and SD input estimation inaccuracy indicator for
increasing values of N . The conclusions drawn for the response estimation accuracy can be extended
to the input prediction based on Fig. 7.19; both SE and SD reach their maximum for low N , while
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stable minimum values for both variables are obtained from a certain N value (between 100 and
150). The last assumption is particularly valid for what concerns the SD indicator. For values
higher than N = 100, the selection of a broader time window for the A-AKF algorithm does not
improve the oscillatory behavior, which results as an artifact in the estimated input profile. It is
important to emphasize that the values for which the SE and SD minima are found lie close to the
optimal values for which both the mean TRAC and mean FRAC become stable.
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Figure 7.19: Large scale WT blade pull and release tests: A-AKF SE and SD evolution with increasing N : full (left)
and detailed (right) view. Values for N are reported on the figure.

The conducted parametric study thus demonstrates that a unique choice for N will generate the
same effect on the input and response estimation accuracy delivered via the A-AKF. The optimal
choice for N should be high enough to surpass regions of algorithmic instability. On the other hand,
an exaggerated increase in N would cause the A-AKF to deviate from the near real-time assumption
and would not bring any benefit in terms of estimation accuracy. For this reason, N values between
100 and 150 can be considered as optimal. It should be noted that, although a default choice for N
in the suggested range would already make the algorithm user-independent, a random N selection
could still be put in place. The latter would be justified by the generally limited fluctuations in the
prediction accuracy for 10 ≤ N ≤ 500 . However, such a random selection should still employ a
limited time window length in order to ensure near real-time applicability.

Parametric study: influence of qnd , qnv and qu range bounds

The A-AKF requires a priori selection of the ranges within which qnd , qnv and qu can vary. This
paragraph studies the influence of the covariances range on the overall input and response estimation
accuracy when a N = 100 time-steps window is adopted. In order to simplify the analysis, the
following assumptions are made:

• The ranges are symmetrical, i.e, qnd
min = −qnd

max, qnv
min = −qnv

max and qu
min = −qu

max;

• The same range is adopted for the three variables qnd , qnv , qu.
Therefore, a variable Q can be defined such that: qnd

min = qnv
min = qu

min = 10−Q and qnd
max = qnv

max =
qu

max = 10Q.
Figure 7.20 displays the evolution of the A-AKF response estimation accuracy for Q varying from 2
to 23 with a 1-step increase. The TRAC trend and mean TRAC plots reported in Fig. 7.20 show
that approximately up to a 3% higher response estimation accuracy could be achieved by adopting
a very low Q, i.e., by heavily bounding the range of values that qnd , qnv and qu could span. For
Q ≥ 5, the TRAC seems to stabilize around a certain value. However, the FRAC and mean FRAC
evolution reported in Fig. 7.20 show a different behavior: the response estimation accuracy in
frequency domain reaches the highest value for Q = 5 and remains stable for higher Q.
Figure 7.21 displays the variation of the SE and SD input estimation inaccuracy indicators for
increasing values of Q. For 2 ≤ Q ≤ 4, the SE indicator reaches the lowest values while SD is
maximized. This result highlights that for very narrow ranges, the best match between the predicted
input mean value and the measured one could be achieved but the estimated time history would be
affected by large oscillations, i.e., the predicted input would not be static. For Q ≥ 5, both SD and
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Figure 7.20: Large scale WT blade pull and release tests: A-AKF TRAC trend (top, left) and mean TRAC (top,
right) values with increasing Q. A-AKF FRAC trend and detailed A-AKF FRAC trend from location
Sec4.0:St2 to Sec11.0:St7 (bottom, left). Mean FRAC values with increasing Q (bottom, right).

SE stabilize, i.e., varying the ranges width would not cause any variation in the input prediction
accuracy.
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Figure 7.21: A-AKF SE and SD evolution with increasing Q: full (left) and detailed (right) view. Values for Q are
reported on the figure.

According to Figures 7.20 and 7.21, the same overall estimation accuracy can be achieved for
Q ≥ 5. Although selecting narrow ranges, i.e., Q ≤ 5, would improve the TRAC and SE estimators,
the resulting response error in frequency domain would increase and the predicted input would be
affected by large oscillations. The parametric study reported in this paragraph demonstrates that
broad ranges can be set by the user for qnd , qnv and qu without affecting the estimation results.
Therefore, no particular prior belief on the most suitable ranges for qnd , qnv and qu is required for
obtaining optimal results via the A-AKF.

7.2 Summary
The case study analyzed in this chapter, i.e., a large scale composite blade, has been exploited for

validation of the A-AKF, a novel approach to tackle the problem of adaptive noise calibration for
the task of joint input-state estimation via Kalman-type filters. This task is the driving process
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during VS applications, where typically few sparse response measurements are available and recovery
of response and inputs in unmeasured locations is sought after. The proposed methodology has
been tested for loads (input) and full-field response prediction during the so-called pull and release
experimental tests on a full-scale research WT blade. In order to reduce the computational effort
due to the high dimensionality of the blade numerical model, a ROM has been derived from an
experimentally validated FE model using a CMS technique. The results indicate that the A-AKF
provides accurate response predictions without the need for offline user-dependent selection of the
covariance matrix associated to model uncertainties, which forms a well-known limitation of the
conventional AKF. A parametric study has demonstrated that the A-AKF response prediction
accuracy outperforms both the conventional AKF and the CMS-ME methods, provided that a
sufficiently large time window is adopted for the algorithm. To what concerns the input, large errors
are encountered when a conventional augmented process noise covariance matrix is adopted, with
the input-related covariance term assigned via the classical L-curve approach. As demonstrated
via the presented parametric study, these errors could be minimized via a substantial manual
tuning. Besides the need of user intervention, the tuning procedure has proven not to be able to
simultaneously minimize both the oscillations and the static error. Additionally, minimized AKF
input errors would lead to deterioration of response estimation accuracy. When the process noise
covariance matrix is tuned via the L-curve, the AKF is not able to capture the actual input profile
(corresponding to a step) and large oscillations are affecting the estimated signal following blade
release. To the contrary, by adopting the A-AKF, the predicted input profile matches the actual
experimental load and both the static error, as well as the standard deviation of the oscillations
following release, are minimized. The same behavior for different adopted time window lengths can
be observed for the input. Moreover, the input inaccuracy indicators are minimized for the same
time window dimension which maximizes the response performance both in time and frequency
domains. It should be noted that the variability in performance as a result of the chosen window
length is sufficiently limited to justify a random selection of the latter, which should though comprise
narrow ranges in order to guarantee a near-online procedure. Under these latter assumptions, the
A-AKF can be considered as a user-independent method for joint input-state estimation in near
real-time. The latter statement is confirmed by the proved independence of the overall A-AKF
estimation accuracy from the selected covariance ranges. The parametric study with respect to
the ranges bounds has proven that no prior knowledge regarding the most suitable ranges width is
needed in order to guarantee the A-AKF optimal performance.
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This chapter reports on the use of the proposed data assimilation strategies during a test campaign
on a 3D-printed scaled titanium WT blade owned by SISW and manufactured by 3D Systems
(Leuven, Belgium) [104]. The 3D printing process of metals introduces many additional technological
challenges, e.g. limitations to 3D-printed specimens dimensions. For this reason, it is common
practice to print the several subparts of the final product individually and then weld them together.
Weld beads create areas of structural properties discontinuity which are difficult to be modeled.
Moreover, intrinsic manufacturing process defects and thickness variations due to surface post-
processing often arise. Canonical virtualization techniques produce realistic estimates under static
conditions. Within the dynamic domain, the punctual stiffness variation caused by the mentioned
limitations leads to large discrepancies between the DT and the physical structure. To overcome
these limitations, a model updating process based on experimental data has been combined with
conventional and newly developed Bayesian estimators for virtualization of the 3D-printed scaled
blade.
The blade of study is presented in Section 8.1, along with a description of the measurement
campaign, the FE model and its validation and update results. Next, Section 8.2 explores the use
of several estimators for Bayesian VS of the 3D-printed scaled WT blade. Specifically, a validation
of the A-AKF for a random load scenario is provided via its employment for input-state estimation
during random tests of the 3D-printed scaled blade. For the same random tests, the AKF and the
GP-based approach with conventional Matérn covariance function have been compared i) under the
assumption of available strain and acceleration measurements and ii) in presence of acceleration-only
measurements. Next, Subsection 8.2.2 makes use of the pull and release test data to validate the
use of the GP-based approach with conventional Matérn covariance function for an uncommon load
type. The resulting predictions are verified through a comparison with the more conventional AKF
and DKF estimators. As a final investigation, Section 8.3 explores the use of ad hoc covariance
functions for input-state prediction via GPLFMs on the 3D-printed WT blade under different
loading conditions. Lastly, Section 8.4 reports on the conclusions for this chapter.

8.1 3D-printed scaled wind turbine blade
The case study analyzed in this chapter concerns a 3D-printed scaled titanium WT blade. The

entire 3D-printed specimen, manufactured by 3D Systems, comprises the scaled blade and a flange
which was designed to allow the blade clamping to a concrete block. The CAD model employed
for printing has been retrieved scaling down an existing larger CAD model shared by DTU Wind
Energy in the framework of the “ReliaBlade” research project. Figure 8.1 shows the manufacturing
process, consisting of the following steps:

• 3D-printing of four subparts of the entire structure

• stress relief heat treatment of the four subparts

• welding of the four subparts

• plate removal via wire through Electrical Discharge Machining (EDM)

• polishing of the structure.

113
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3D printing
Stress Relief Heat

Welding wire EDM Polishing processTreatment
Plate removal using

Figure 8.1: 3D-printed scaled titanium WT blade manufacturing process

8.1.1 Measurement campaign

This section describes the setup adopted during the test campaign carried out at SISW on the
scaled blade, along with the series of tests performed with different types of excitation. Figure 8.2
shows the setup adopted during the measurements on the scaled WT blade. During all the hereby
described tests, the WT blade was clamped to a concrete block as depicted in details in Fig. 8.6.

Figure 8.2: 3D-printed scaled titanium WT blade experimental setup

The entire setup includes 3 types of sensors: 4 uniaxial strain gauges, 8 rosettes and 10 triaxial
accelerometers. Figure 8.3 shows the sensors locations. Strain sensors are arranged in sections
along the blade on both the top and bottom surfaces, while accelerometers have been positioned
only on the top surface. It is worth noting that during the described tests, the main component
of the recorded acceleration and strain are respectively oriented along the vertical (Y) and axial
(Z) directions. Therefore, the remainder of the chapter will only consider accelerations along Y
and strains along Z. During the test campaign, a SimcenterT M SCADAS system and SimcenterT M

Testlab software have been used for data acquisition. Three types of tests have been performed
according to the adopted excitation method: impact testing using a modal hammer, shaker testing
and the so-called pull and release tests. Figure 8.3 shows the shaker and the impact locations.
Data acquired during the impact test has been used to determine the scaled WT blade modal
properties, which have been extracted using SimcenterT M PolyMAX. Table 8.1 reports the resulting
experimental frequencies and damping ratios in the frequency range of interest 0-500 Hz.
During shaker testing, constant frequency sine tests and continuous random tests up to 450 Hz were
carried out. Finally, pull and release tests were performed by applying an initial static load via a
mass (known weight equal to 1.5 kg) at the blade tip. As displayed in Fig. 8.4, during this test the
blade is then released by cutting the plastic tie used to hang the mass. This leads to free vibrations
of the blade, which are recorded via the installed sensors.
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Figure 8.3: 3D-printed scaled WT blade sensing configuration: strain sensors (blue), accelerometers (magenta)

Table 8.1: Experimental modal frequencies and damping ratios for the 3D-printed scaled titanium WT blade in
clamped-free conditions

Modes Frequency [Hz] Damping [%]
1 25.0 1.27
2 55.0 0.91
3 90.4 0.56
4 193.2 0.56
5 236.4 0.32
6 343.2 1.78

Figure 8.4: Pull and release tests on the 3D-printed scaled WT blade

8.1.2 Numerical model: Finite Element model udpdate and Reduced Order
Model

The scaled WT blade FE model shown in Fig. 8.5, has been developed in SimcenterT M 3D starting
from the CAD model used for 3D printing. The mesh is made up of around 65000 nodes and 33804
six-sided solid elements. The initial isotropic material (Ti6Al4V) properties have been defined
according to the data sheet provided by the manufacturer. Figure 8.6 (left) shows the physical BCs
obtained by means of 2 bolts used to clamp the flange to the concrete block and a layer of glue. The
described BCs have been reproduced in the FE model by means of two RBE2 connections at the
holes where the bolts were placed and four springs. More specifically, the flange has been divided
into four parts, each connected to a spring via a RBE2 connection. As shown in Fig. 8.6 (right), the
free ends of the springs have been fixed. An initial stiffness value of 30000 N/mm has been adopted
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for each spring. Concentrated masses have been added to the FE model at the accelerometers
locations to account for their presence and increase the correlation with experimental data.

Figure 8.5: 3D-printed scaled titanium WT blade FE model

Figure 8.6: 3D-printed scaled WT blade clamping system (left). 3D-printed scaled WT blade FE model BCs (right).

Numerical modes in the frequency range 0-450 Hz have been computed using NXT M Nastran SOL
103. NXT M Nastran SOL 200 has been adopted in SimcenterT M 3D for updating the FE model using
the experimental modal parameters in Tab. 8.1 as reference and a genetic algorithm for optimization.
The following parameters have been set as design variables for the optimization process: springs
stiffness, isotropic material Young’s modulus, Poisson’s ratio and density. Some of the adopted
ranges for the design variables have been selected from the processing data sheet provided by the
manufacturer of the WT blade, others were kept below a 10% deviation. Table 8.2 shows the initial
and optimized values for the selected design variables. Table 8.3 reports on the model update results

Table 8.2: 3D-printed scaled WT blade FE model update: design variables initial and updated values

Design variables Initial value Updated value

Ksprings[N/mm] 30000 33167.2
E[Gpa] 121 116.039

ρ[kg/mm3] 4.430×10−6 4.873×10−6

ν[/] 0.34 0.34208

by comparing the initial and updated numerical frequencies with the reference test frequencies for
the first six modes. Additionally, Tab. 8.3 offers the initial and updated frequency errors as well as
a comparison between the initial and updated MAC values for the diagonal mode pairs. Figure 8.7
shows a visual representation of the MAC matrix between the reference experimental modes and the
updated numerical modes. From the analysis of Tab. 8.3 it can be concluded that the implemented
update strategy allowed to substantially decrease the frequency errors, as well as to improve MAC
values for the first six modes.
A ROM of the scaled blade has been built following the procedure outlined in Subsection 2.1.1
taking into account the first six modes (frequency range of interest: 0-450 Hz) and one residual
attachment mode related to the unknown force to be estimated via the chosen Bayesian estimators.
For shaker tests, the residual attachment mode has been computed by applying a unitary force at
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Table 8.3: 3D-printed scaled WT blade FE model initial and updated frequencies, frequency errors and MAC pairs

f test
i [Hz] f initial

i [Hz] fupdated
i [Hz] errinitial

fi
[%] errupdated

fi
[%] MACinitial

ii MACupdated
ii

1 25.020 26.313 24.758 5.165 -1.047 0.985 0.985
2 55.004 57.548 54.512 4.626 -0.894 0.976 0.977
3 90.426 99.557 93.405 10.098 3.294 0.947 0.949
4 193.201 199.369 187.902 3.192 -2.743 0.904 0.909
5 236.416 258.387 242.358 9.293 2.513 0.875 0.881
6 343.176 372.511 349.807 8.548 1.932 0.914 0.916
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Figure 8.7: 3D-printed scaled WT blade: MAC between numerical and experimental mode shapes from hammer test

the shaker location pointed out in Fig. 8.3 along the positive Y direction. For pull and release tests,
the unitary force for residual attachment mode computation has been applied at a tip node along
the negative Y axis.

8.2 Joint input-state estimation

In this section, the joint input-state predictions achieved via several state-of-the-art and newly
developed estimators during tests on the 3D-printed scaled WT blade are explored. Initially, the
3D-printed blade random tests are exploited to validate the ability of the A-AKF to provide a
practical solution to the challenges derived from the necessary tuning process of Kalman-based filters
for joint input-state estimation in a random load condition. Next, to complement Subsection 6.3.2
with a WT application, the GP-based approach presented in Subsection 5.2.1 will be adopted and
compared to the standard AKF for simultaneous load and response prediction during random tests
on the 3D-printed scaled blade. The comparison is provided for both a mixed observations set and
an acceleration-only measurements set. It is worth noting that the GP-based approach analyzed
in this section follows the steps in Alg. 14 and Fig. 5.6, except for the missing RTS step. Indeed,
this section aims at experimentally proving the filtering-only algorithm adaptation proposed in
Subsection 5.2.1, which is introduced and preferred due to its real-time applicability. Except to
this latter aspect, the hereby adopted algorithm follows what reported in Alg. 14, i.e., it employs a
conventional Matérn covariance function whose hyperparameters are selected in the training phase by
exploiting the entire set of observations used within the online estimation step. The hyperparameters
selection step is perfomed by setting the log marginal likelihood maximization via the SHERPA
(“Simultaneous Hybrid Exploration that is Robust, Progressive and Adaptive”) algorithm available
in SimcenterT M HEEDS. The SHERPA algorithm searches for the global maximum/minimum with
the least amount of evaluations by using a simultaneous combination of local and global search
methods for fast “learning” from the design space. The use of data assimilation techniques during
pull and release tests on the 3D-printed scaled WT blade is also treated in this chapter. The same
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GP-based approach tested for the random load is validated for pull and release tests and compared
against the conventional AKF and DKF on the task of joint input-state estimation.

8.2.1 Random test

The VS approaches compared within this subsection have been tested for joint input-state esti-
mation during shaker tests on the 3D-printed scaled titanium WT blade. During the measurements
hereby taken into account, the blade was excited using a white noise excitation applied via the
shaker at the location pointed out in Fig. 8.3. This test configuration is first adopted to validate
the applicability of the A-AKF for adaptively tuning the process noise covariance matrix during
input-state estimation under a random load condition. Next, the use of the GP-based approach
with conventional Matérn covariance function is proposed for WT blades testing by comparing it
against the state-of-the-art AKF on the task of input-state estimation under the assumption of
both a mixed observations set and an acceleration-only measurements set.

8.2.1.1 Input-response estimation through the Adaptive-noise Augmented Kalman Filter

The target of what follows lies in input and strain response prediction during shaker testing
(random excitation) of the 3D-printed scaled WT blade by means of the A-AKF algorithm presented
in Subsection 4.2.1. Specifically, the inaccuracy metric proposed in Subsubsection 4.2.1.2 is hereby
exploited to set up the A-AKF. In order to validate the efficacy of the proposed algorithm on
the task of input-response prediction, the state-of-the-art AKF is hereby proposed as reference.
Moreover, the CMS-ME response estimations are offered for demonstrating their validity and proving
that they can be employed within the A-AKF algorithm as described in Subsection 4.2.1. For
evaluating the performance of Bayesian estimators, it is common practice to compare estimated
signals to the corresponding measured reference. The set of recorded dynamic response data is thus
split into a measured and an unmeasured subset. The “unmeasured” subset refers to the quantities
that are to be estimated via use of the proposed scheme. The “virtually sensed” signals are then
compared to the reference (measured) time histories in order to evaluate the prediction performance.
The “measured” and “unmeasured” locations for the A-AKF algorithm during random tests on the
3D-printed scaled blade are reported in Tab. 8.4, where the sensors numbers refer to the layout in
Fig. 8.3. For the hereby treated case study, the observed locations have been selected to be equally
distributed over the sensed area on the scaled WT blade. Strain responses only are adopted for the
A-AKF in order to guarantee the real-time applicability of the method. Additionally, the minimum
required amount of sensors, i.e., 7 strain responses, is employed for this case study in order to prove
the efficacy of the method. Table 8.4 also offers a summary of the initialization values adopted for
the necessary estimators (AKF and A-AKF) parameters. For the AKF, the chosen time-invariant
Q and Qu matrices are reported. The latters have been conventionally chosen by setting qnd = qnv

to very low numbers compared to the order of magnitude of the state vector and selecting qu by
means of the L-curve metric presented in Fig. 8.8, where the smoothing and error norms refer to
the formulation available in Section 11.2. It is observed that the plot in Fig. 8.8 does not exhibit
a perfect L-shape. However, the curve trend for the analyzed experimental case study can be
interpreted by the user and the qu value shown in Tab. 8.4 can be selected. The diagonal entries of
R have been instead set basing on the noise recorded by the relative measurement channels. Since
the hereby investigated tests do not foresee a static load component, the initial condition, x̂a

0, of
the augmented state vector has been set to 0 for both the estimators. For the A-AKF, the chosen
time-window length (N = time steps within each analyzed batch) and the selected ranges for qnd ,
qnv and qu are offered in Tab. 8.4.
Figure 8.9 shows the time histories and the related frequency content for sensors 6 and 7, i.e., an
“unmeasured” and a “measured” strain response. A comparison between the signals estimated via
CMS-ME, the conventional AKF and the ones obtained by using the proposed A-AKF scheme is
offered. The estimated curves are compared against the experimentally measured responses at the
corresponding locations to prove the algorithm validity.
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Table 8.4: 3D-printed scaled WT blade random test: AKF and A-AKF observations sets and initialization values

Estimator Observations Initial state
mean

Initial error cov.
matrix

Input noise cov./
input noise cov. range and N

Process noise cov. /
process noise cov. ranges

Measurement noise
cov. matrix (R)

AKF 1, 3, 5, 7, 8, 10, 12 x̂a
0|0 = 0 P̂a

0|0 = 10−10 × I Qu = 10−3 × I Q = 10−10 × I Rstrain = 10−14 × I

A-AKF 1, 3, 5, 7, 8, 10, 12 x̂a
0|0 = 0 P̂x

0|0 = 10−10 × I 10−20 ≤ qu ≤ 1020

N = 15
10−20 ≤ qnd ≤ 1020

10−20 ≤ qnv ≤ 1020 Rstrain = 10−14 × I
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Figure 8.8: The L-curve for joint input-state estimation of the 3D-printed scaled WT blade during random tests using
the AKF. Values for qu are reported on the figure.
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Figure 8.9: 3D-printed scaled WT blade random test: time history (left), detailed time history (middle) and PSD
(right) of strain response for sensor 6 and 7. Measured signals are indicated via a solid black line. Signals
estimated via CMS-ME are indicated in a dashed green line, signals obtained via the conventional AKF in
a dashed red line, while those predicted via the A-AKF are denoted via a dashed blue line.

A global response estimation accuracy comparison between the conventional AKF, the CMS-ME
and the A-AKF is shown in Figs. 8.10 and 8.11, where the TRAC and FRAC values (formulated in
Section 11.1) achieved via the three methods are respectively displayed. In particular, Figs. 8.10
and 8.11 (left) show, respectively, the TRAC and FRAC trends along the blade, while Figs. 8.10
and 8.11 (right) display the TRAC and FRAC values averaged over the complete set of responses.
The entire time length of the recorded signals has been adopted for the TRAC computation and
the frequency range 0-450 Hz has been used for calculating the FRAC values.
Figures 8.9, 8.10 and 8.11 demonstrate that the A-AKF can provide a high level of accuracy
in terms of response estimation for tests featuring a random type of load. The time histories
reported in Fig. 8.9 indicate that the A-AKF predictions are comparable to the ones achieved via
the AKF and the CMS-ME methods. This is confirmed by Fig. 8.10, which shows that the three
compared approaches all provide high response prediction accuracy in time domain (high mean
TRAC value). However, from the presented comparison it can be concluded that the AKF tuned
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Figure 8.10: 3D-printed scaled WT blade random test: TRAC values for the CMS-ME (green line), conventional AKF
(red line) and A-AKF (blue line) strain response predictions (left). Mean TRAC values for the CMS-ME
(green), conventional AKF (red) and A-AKF (blue) strain response predictions (right).
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Figure 8.11: 3D-printed scaled WT blade random test: FRAC values for the CMS-ME (green line), conventional AKF
(red line) and A-AKF (blue line) strain response predictions (left). Mean FRAC values for the CMS-ME
(green), conventional AKF (red) and A-AKF (blue) strain response predictions (right).

via the L-curve metric provides the lowest mean TRAC value. Indeed, while the A-AKF and the
CMS-ME approaches exhibit approximately the same response prediction performance, the AKF
produces the lowest TRAC for almost the totality of the strain sensors, as depicted in Fig. 8.10
(left). Figure 8.9 (right) shows that the A-AKF estimations, similarly to the ones generated by the
CMS-ME and the AKF, follow the frequency content of the physically acquired responses throughout
the analyzed frequency bandwidth with good accuracy. Moreover, Fig. 8.11 (right) reports the
highest mean FRAC value for the A-AKF and the lowest value for the CMS-ME approach. The
latter is indeed negatively influenced by sensor 6, for which, according to the FRAC trend shown in
Fig. 8.11, the CMS-ME method provides the lowest FRAC. The level of accuracy reached by the
A-AKF in frequency domain instead mediates between the one achievable via the CMS-ME and the
AKF. This an indicative example confirming that the A-AKF draws from the CMS-ME but is also
able to outperform it by exploiting the stochastic framework in which it lies. Figure 8.11 (right)
also confirms the analogous response estimation performance of the three estimators for sensor 7
shown in Fig. 8.9.

Figure 8.12 shows the input estimation results for the unknown force applied to the 3D-printed
scaled blade when the AKF and the A-AKF are adopted. The predicted time signals and their
relative PSDs are compared with the measured force, which has been acquired by a force cell placed
between the shaker and the structure. From the analysis of the time histories reported in Fig. 8.12,
it can be inferred that an adequate amplitude matching between the input predicted via the A-AKF
and the actual input is achieved. To the contrary, the AKF tuned via the L-curve underestimates
the force amplitude. However, the detailed time history and PSD comparisons highlight that the
A-AKF produces artificial low frequency components which reduce the load estimation precision.
These are due to the batch nature of the algorithm, which seeks for the optimal process noise
covariance matrix within subsequent time windows. An “averaged” estimation is therefore produced
within each analyzed time window. This is contrast with the prominent dynamic nature of the
examined random input, which would be more suitable for a step-by-step error minimization rather
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than a batch computation. The resulting poor input reconstruction is also validated by Tab. 8.5,
which offers an overview of the input TRAC and FRAC produced by the A-AKF and the standard
AKF. Indeed, according to Tab. 8.5, both the data assimilation approaches provide extremely
low TRAC and FRAC values. The poor input estimation performance can be also explained by
the complete absence of acceleration measurements within the set of observations employed for
prediction. As it will be demonstrated in the remainder of this chapter, introducing acceleration
measurements within the observations set allows to better capture the dynamics of the system under
test thanks to the presence of a direct feedthrough with the unknown input, thus allowing for a
more accurate prediction of the latter.
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Figure 8.12: 3D-printed scaled WT blade random test: measured (black) and estimated (AKF - red, A-AKF - blue)
input time histories (left), detailed time histories (center), PSDs (right).

Table 8.5: 3D-printed scaled WT blade random test: AKF and the A-AKF input prediction errors
Conventional AKF A-AKF

TRAC 0.004 0.001
FRAC 0.005 0.002

This case study leaves ample room for future developments as it demonstrates that the A-AKF i)
allows for extremely accurate response estimation and ii) provides a good input amplitude prediction
but iii) fails to accurately estimate the frequency content of the actual load. Improvements could be
introduced by extending the applicability of the A-AKF for mixed observations sets, i.e., including
both strains and accelerations. Additionally, alternative error estimates could be explored to be
employed within the A-AKF algorithm with the purpose of avoiding the low frequency distortions
arising from the averaging effect of the current error metric.

8.2.1.2 Input-response estimation through the Augmented Kalman Filter and the Gaussian

Process Latent Force Model
This subsection treats the use of the GP-based approach in Alg. 14 for input-state estimation

during random tests of the 3D-printed scaled WT blade. To check the effectiveness of the method,
results are compared with predictions produced by the more conventional AKF in the same working
conditions. A first comparison between the AKF and the GPLFM is provided under the assumption
of availability of both strain and acceleration measurements. Next, focus is placed on the use of
the GPLFM for response and load prediction in presence of acceleration-only measurements. An
acceleration measurement collocated with the unknown force has been included in the observations
set for both the studies presented in this paper since it allows for more accurate load predictions.
This is justified by the force directly contributing to the acceleration at the same location via the
direct feedthrough term.

GPLFM and AKF predictions via a mixed observations set

This subsection compares the GPLFM and the AKF input-state estimation results obtained using
the mixed observations set (strain and acceleration) reported in Tab. 8.6. The chosen values for
the necessary initial conditions and the process and measurement noise covariance matrices are
also shown. The latter has been retrieved from the background noise recorded by sensors during
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tests, while the first has been instead tuned by trial and error. For the AKF, the process noise
covariance values associated to the states and the input are highlighted. To the contrary, the states
process noise covariance and the GP covariance function initial hyperparameters are presented for
the GPLFM.

Table 8.6: 3D-printed scaled WT blade random test: AKF and GPLFM observations sets and initialization values for
a mixed observations set

Estimator Observations Initial state
mean

Initial error cov.
matrix

Input noise cov./
initial hyperparameters

Process noise
cov. matrix (Q)

Measurement noise
cov. matrix (R)

AKF 1, 3, 8,12, 15, 18, 21, 22 x̂a
0|0 = 0 P̂a

0|0 = 10−10 × I Qu = 1013 × I Q = 10−10 × I Rstrain = 10−14 × I
Racc = 10−7 × I

GPLFM 1, 3, 8, 12, 15, 18, 21, 22 x̂a
0|0 = 0 P̂x

0|0 = 10−10 × I σ2 = 3 × 101

l = 1 × 10−4
Q = 10−10 × I Rstrain = 10−14 × I

Racc = 10−7 × I

Figure 8.13 shows a comparison in both time and frequency domains between the actual force
and the input predictions obtained via the AKF and the GPLFM. A quantification of the input
estimations accuracy in time and frequency domains is respectively reported in Tabs. 8.8 and 8.10
(last column) by means of the TRAC and FRAC estimators. From the results reported in Figs. 8.13,
8.8 and 8.10, it can be concluded that both the hereby analyzed estimators provide an accurate input
estimation when a mix of strain and acceleration sensors are adopted as measurements. The slightly
lower TRAC and FRAC values for the GPLFM input prediction are caused by the discrepancy
between the measured and the GPLFM estimated PSD below 100 Hz.
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Figure 8.13: 3D-printed scaled WT blade random test: measured (black) and estimated (AKF - green, GPLFM -
cyan via a mixed observations set) force signals

Figures 8.14 and 8.15 present the comparison between measured and estimated signals respectively
for a strain and an accelerometer that are not included in the observations set. These results
demonstrate that a good and comparable prediction accuracy can be achieved by the AKF and
the GPLFM for both strain and acceleration predictions. An overall information regarding the
response estimation precision is reported in Tables 8.7-8.10 respectively by means of the TRAC and
FRAC values. The presented indicators show high values for both strain and acceleration response,
confirming the results proposed in Figs. 8.14 and 8.15. Additionally, Fig. 8.16 reports a comparison
of the measured RMS trend for the entire set of responses (strain gauges-left, accelerometers-right)
with the RMS trends of the signals estimated at the same locations by means of the AKF and the
GPLFM. From the visual information provided in Fig. 8.16 it can be concluded that the response
estimation obtained via the two estimators are also comparable in terms of amplitude, with a slightly
lower AKF accuracy detectable for some of the strain responses (e.g. strain sensors 5,7,8,9).
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Figure 8.14: 3D-printed scaled WT blade random test: measured (black) and estimated (AKF - green, GPLFM -
cyan via a mixed observations set) strain at location 6
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Figure 8.15: 3D-printed scaled WT blade random test: measured (black) and estimated (AKF - green, GPLFM -
cyan via a mixed observations set) acceleration at location 19
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Figure 8.16: 3D-printed scaled WT blade random test: measured (black) and estimated (AKF - green, GPLFM -
cyan via a mixed observations set) strain (left) and acceleration (right) responses RMS values

Table 8.7: 3D-printed scaled WT blade random test: TRAC values between measured and estimated (AKF and
GPLFM via a mixed observations set) strain responses. Observations are underlined.

Estimator 1 2 3 4 5 6 7 8 9 10 11 12

AKF 0.948 0.828 0.897 0.834 0.903 0.898 0.959 0.969 0.969 0.834 0.984 0.949

GPLFM 0.985 0.691 0.995 0.880 0.746 0.938 0.965 0.997 0.969 0.745 0.960 0.983

Table 8.8: 3D-printed scaled WT blade random test: TRAC values between measured and estimated (AKF and
GPLFM via a mixed observations set) force and acceleration responses. Observations are underlined.

Estimator 13 14 15 16 17 18 19 20 21 22 force

AKF 0.916 0.517 1.000 0.300 0.125 0.995 0.913 0.635 0.999 0.993 0.910

GPLFM 0.919 0.563 1.000 0.314 0.048 1.000 0.865 0.578 1.000 1.000 0.870
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Table 8.9: 3D-printed scaled WT blade random test: FRAC values between measured and estimated (AKF and
GPLFM via a mixed observations set) strain responses. Observations are underlined.

Estimator 1 2 3 4 5 6 7 8 9 10 11 12

AKF 0.943 0.885 0.974 0.934 0.869 0.962 0.969 0.977 0.986 0.928 0.991 0.996

GPLFM 0.995 0.840 0.999 0.996 0.788 0.974 0.987 0.999 0.972 0.899 0.989 0.996

Table 8.10: 3D-printed scaled WT blade random test: FRAC values between measured and estimated (AKF and
GPLFM via a mixed observations set) force and acceleration responses. Observations are underlined.

Estimator 13 14 15 16 17 18 19 20 21 22 force

AKF 0.986 0.259 1.000 0.105 0.698 0.991 0.986 0.887 1.000 0.979 0.967

GPLFM 0.971 0.304 1.000 0.107 0.703 1.000 0.956 0.827 1.000 1.000 0.931

GPLFM and AKF predictions via acceleration-only measurements

This subsection presents the GPLFM and the AKF input-state estimation results obtained using
the acceleration-only measurements set shown in Tab. 8.11. Table 8.11 also reports the adopted
values for the estimators initial conditions, the process and measurement noise covariance matrices
and the tuned GP covariance hyperparameters.

Table 8.11: 3D-printed scaled WT blade random test: AKF and GPLFM observations sets and initialization values
for an acceleration-based observations set

Estimator Observations Initial state
mean

Initial error cov.
matrix

Input noise cov./
initial hyperparameters

Process noise
cov. matrix (Q)

Measurement noise
cov. matrix (R)

AKF 15, 18, 21, 22 x̂a
0|0 = 0 P̂a

0|0 = 10−10 × I Qu = 1013 × I Q = 10−10 × I Racc = 10−7 × I

GPLFM 15, 18, 21, 22 x̂a
0|0 = 0 P̂x

0|0 = 10−10 × I σ2 = 6 × 101

l = 1 × 10−4
Q = 10−10 × I Racc = 10−7 × I

Figure 8.17 shows a comparison in both time and frequency domains between the actual force
and the input predictions obtained via the AKF and the GPLFM. From both the time histories
and the PSD plots, it can be concluded that the GPLFM provides a good load prediction for the
analyzed data set. To the contrary, the AKF estimation suffers from the low frequency drift caused
by the unobservability condition in absence of displacement-level sensors. The previous statement is
confirmed by the TRAC and FRAC values associated to the AKF and GPLFM input estimations,
respectively reported in Tabs. 8.13 and 8.15 (last column).
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Figure 8.17: 3D-printed scaled WT blade random test: measured (black) and estimated (AKF - green, GPLFM -
cyan via an acceleration-based observations set) force signals

Figures 8.18 and 8.19 show the comparison between measured and estimated signals (AKF -
green, GPLFM - cyan) respectively for a strain and an accelerometer that are not included in
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the observations set. From the presented results, it can be concluded that the GPLFM provides
a good prediction accuracy for both the strain and the acceleration response even in presence
of accelerations-only measurements. The AKF instead, generates a sufficiently good estimation
for the acceleration response while the strain response is affected by a large low frequency drift.
This behavior is confirmed by the overall information regarding the response estimation precision
reported in Tabs. 8.12-8.15 in both time and frequency domains. High values are manifested for
both strain and acceleration response in the GPLFM case, while the AKF produces sufficiently
large values for accelerations but very low values for strain signals.
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Figure 8.18: 3D-printed scaled WT blade random test: measured (black) and estimated (AKF - green, GPLFM -
cyan via an acceleration-based observations set) strain at location 6

0 10 20 30 40
−4
−2
0
2
4
·104

A
19

[m
m

/s
2
]

9.2 9.4
−4

−2
0

2

4
·104

0 200 400
100

103

106
PS

D
[(m

m
/s

2
)2

/H
z]

Measured AKF GPLFM

Figure 8.19: 3D-printed scaled WT blade random test: measured (black) and estimated (AKF - green, GPLFM -
cyan via an acceleration-based observations set) acceleration at location 19

The RMS trend comparison for the acceleration-only case is shown in Fig. 8.20 for strains (left) and
accelerations (right). Figure 8.20 demonstrates that the response estimation obtained via the two
estimators is comparable in terms of accelerations RMS but not for the strains, for which the AKF
provides a large RMS overestimation.
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Figure 8.20: 3D-printed scaled WT blade random test: measured (black) and estimated (AKF - green, GPLFM - cyan
via an acceleration-based observations set) strain (left) and acceleration (right) responses RMS values

The comparison provided in this paragraph between the GP-based approach and the AKF shows
that the GPLFM allows for load and response estimations which are comparable to those delivered
by the AKF under the mixed measurements assumption. This confirms that the GP-based approach
represents an accurate, more flexible and user-independent alternative to standard VS methods. The
GPLFM proves good estimation capabilities also for the acceleration-only measurements scenario.
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Table 8.12: 3D-printed scaled WT blade random test: TRAC values between measured and estimated (AKF and
GPLFM via an acceleration-based observations set) strain responses. Observations are underlined.

Estimator 1 2 3 4 5 6 7 8 9 10 11 12

AKF 0.069 0.159 0.172 0.017 0.926 0.190 0.026 0.029 0.032 0.183 0.033 0.036

GPLFM 0.739 0.729 0.703 0.529 0.773 0.802 0.714 0.643 0.676 0.775 0.747 0.613

Table 8.13: 3D-printed scaled WT blade random test: TRAC values between measured and estimated (AKF and
GPLFM via an acceleration-based observations set) force and acceleration responses. Observations are
underlined.

Estimator 13 14 15 16 17 18 19 20 21 22 force

AKF 0.913 0.494 1.000 0.303 0.092 0.998 0.902 0.594 1.000 0.997 0.040

GPLFM 0.913 0.510 0.998 0.306 0.081 0.993 0.920 0.567 0.997 1.000 0.635

Table 8.14: 3D-printed scaled WT blade random test: FRAC values between measured and estimated (AKF and
GPLFM via an acceleration-based observations set) strain responses. Observations are underlined.

Estimator 1 2 3 4 5 6 7 8 9 10 11 12

AKF 6.67e-04 6.99e-03 0.013 1.30e-04 0.991 0.011 1.44e-04 9.89e-05 8.57e-05 9.66e-03 1.89e-04 1.95e-04

GPLFM 0.887 0.821 0.970 0.835 0.920 0.953 0.895 0.799 0.780 0.890 0.942 0.905

Table 8.15: 3D-printed scaled WT blade random test: FRAC values between measured and estimated (AKF and
GPLFM via an acceleration-based observations set) force and acceleration responses. Observations are
underlined.

Estimator 13 14 15 16 17 18 19 20 21 22 force

AKF 0.984 0.239 1.000 0.105 0.710 0.997 0.982 0.851 1.000 0.990 4.85e-05

GPLFM 0.987 0.261 0.996 0.103 0.706 0.992 0.986 0.840 1.000 0.999 0.906

In the latter, the GP-based algorithm is superior to the AKF, which normally generates predictions
affected by a low frequency drift due to unobservability.

8.2.2 Pull and release test
This subsection proposes the use of VS techniques for the estimation of the quantities of interest

during the pull and release tests performed on the 3D-printed scaled WT blade. Specifically, the use
of the GP-based approach formulated in Alg. 14 is hereby validated for WT blades pull and release
testing by comparing it against two state-of-the-art estimators, i.e., the AKF and DKF, on the
task of input-state estimation. The hereby adopted estimators have been employed for input-state
prediction using the mixed observations set (strain and acceleration) reported in Tab. 8.16, where
the sensors numbers refer to the layout in Fig. 8.3. The measurements acquired at the remaining
locations have been used to validate the estimations provided by the investigated methods. The
chosen values for the necessary initial conditions and the process and measurement noise covariance
matrices are also shown in Tab. 8.16. During pull and release tests, the applied static load (blade
weight + external mass) determines initial deformation of the blade, thus causing a non-zero
initial condition for the states. However, being the applied mass “unknown” for the estimators, no
information can be retrieved regarding the initial state vector. Hence, the latter is set to be equal to
a vector η containing only the blade deformation under its own weight. The initial condition related
to the unknown load is instead set to zero for all the three analyzed estimators. The measurement
noise has been retrieved from the background noise recorded by sensors during tests, while the
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process noise covariance matrix has been tuned by trial and error. For the AKF and the DKF,
the process noise covariance values associated to the states and the input are highlighted. To the
contrary, the states process noise covariance and the GP covariance function initial hyperparameters
are presented for the GP-based approach. For this application, a common Matérn covariance
function with smoothness parameter ν = 2.5 (Fig. 2.7) has been adopted for building the GPLFM
which will serve for the estimation.

Table 8.16: 3D-printed scaled WT blade pull and release test: AKF, DKF and GPLFM observations sets and
initialization values

Algorithm Observations Initial state
mean

Initial error cov.
matrix

Input noise cov./
initial hyperparameters

Process noise
cov. matrix (Q)

Measurement noise
cov. matrix (R)

AKF 1, 3, 8, 15, 17, 21 x̂a
0|0 =

⎡⎢⎣η
0

⎤⎥⎦ P̂a
0|0 = 10−10 × I Qu = 1015 × I Q = 10−20 × I Rstrain = 10−14 × I

Racc = 10−7 × I

DKF 1, 3, 8, 15, 17, 21 x̂0|0 = η

û0|0 = 0
P̂x

0|0 = 10−10 × I
P̂u

0|0 = 10−10 × I
Qu = 1011 × I Q = 10−11 × I Rstrain = 10−14 × I

Racc = 10−7 × I

GPLFM 1, 3, 8, 15, 17, 21 x̂a
0|0 =

⎡⎢⎣η
0

⎤⎥⎦ P̂x
0|0 = 10−10 × I σ2 = 2.2 × 103

l = 9 × 10−2
Q = 10−8 × I Rstrain = 10−14 × I

Racc = 10−7 × I

Figure 8.21 offers the predicted input signals provided by each estimator and compares them against
the “measured” force, i.e., the step-type of input reconstructed on the basis of the known weight of
the mass in Fig. 8.4. Table 8.17 presents the SE and the SD inaccuracy indicators, already adopted
in Chapter 7, for the three analyzed algorithms.
Figure 8.21 and Tab. 8.17 highlight that the the three analyzed estimators can easily detect the
release instant. However, the AKF provides higher SE and SD. The latter indicator quantitatively
expresses the oscillations around the zero mean value that affect the estimated time history after the
blade release. While both the AKF and DKF provide larger oscillations, the GP-based approach,
conventionally implemented via a Matérn covariance function, damps them more efficiently. It
is therefore concluded that the GP-based method outperforms the hereby analyzed conventional
approaches on the input estimation task during pull and release tests.
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Figure 8.21: 3D-printed scaled WT blade pull and release test: input “measured” (black) and estimated (AKF - green,
DKF - magenta, GPLFM - cyan) time histories (left) and detailed time histories (right)
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Table 8.17: 3D-printed scaled WT blade pull and release test: input prediction errors for the AKF, the DKF and the
GPLFM

AKF DKF GPLFM
SE 1.44N 0.44N 0.026N

SD 0.24N 0.15N 0.10N

Figures 8.22 and 8.23 show the responses estimated by the algorithms of study for strain gauge
10 and accelerometer 14 in time and frequency domain. The predictive capabilities of the three
estimators are proved by comparing their predictions against the corresponding measured signals.
However, the produced time signals are affected by i) high frequency mismatches for the AKF
predictions and ii) incorrect static contribution for the DKF and the GP-based approach.
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Figure 8.22: 3D-printed scaled WT blade pull and release test: measured (black) and estimated (AKF - green, DKF -
magenta, GPLFM - cyan) strain at location 10
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Figure 8.23: 3D-printed scaled WT blade pull and release test: measured (black) and estimated (AKF - green, DKF -
magenta, GPLFM - cyan) acceleration at location 14

The TRAC and FRAC quality indicators described in Section 11.1 are hereby adopted to provide a
complete evaluation of the global response estimation accuracy achieved by the studied estimators,
respectively in time and frequency domain. For the analyzed case study, the entire time length
of the recorded signals has been used for the TRAC computation and the frequency range 0-450
Hz has been adopted for the FRAC computation. Tables 8.18 and 8.19 provide the TRAC values
for the entire set of estimated responses (respectively strain and acceleration) produced by the
three algorithms. The FRAC values for the strain and acceleration responses are instead offered in
Tabs. 8.20 and 8.21. The analysis of the TRAC and FRAC indicators confirms that the three hereby
analyzed approaches allow for accurate strain and acceleration prediction and does not highlight
any particular difference between the results achieved via the different approaches.

Table 8.18: 3D-printed scaled WT blade pull and release test: TRAC values between measured and estimated (AKF,
DKF and GPLFM) strain responses. Observations are underlined.

Estimator 1 2 3 4 5 6 7 8 9 10 11 12

AKF 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.999 0.996 1.000 1.000 0.999

DKF 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.993 0.997 0.997 0.997

GPLFM 0.998 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.994 0.997 0.998 0.997
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Table 8.19: 3D-printed scaled WT blade pull and release test: TRAC values between measured and estimated (AKF,
DKF and GPLFM) acceleration responses. Observations are underlined.

Estimator 13 14 15 16 17 18 19 20 21

AKF 0.201 0.423 0.900 0.897 0.891 0.864 0.680 0.786 0.997

DKF 0.506 0.677 1.000 0.960 1.000 0.967 0.624 0.823 1.000

GPLFM 0.558 0.711 0.962 0.936 0.981 0.933 0.643 0.837 1.000

Table 8.20: 3D-printed scaled WT blade pull and release test: FRAC values between measured and estimated (AKF,
DKF and GPLFM) strain responses. Observations are underlined.

Estimator 1 2 3 4 5 6 7 8 9 10 11 12

AKF 0.998 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.999 1.000 1.000 1.000

DKF 0.996 0.998 0.999 0.999 0.994 0.999 0.999 0.999 0.999 0.998 0.999 0.999

GPLFM 0.993 0.990 0.994 0.997 0.970 0.992 0.996 0.997 0.996 0.990 0.995 0.997

Table 8.21: 3D-printed scaled WT blade pull and release test: FRAC values between measured and estimated (AKF,
DKF and GPLFM) acceleration responses. Observations are underlined.

Estimator 13 14 15 16 17 18 19 20 21

AKF 0.190 0.446 0.989 0.979 0.969 0.938 0.991 0.993 0.998

DKF 0.929 0.963 1.000 0.991 1.000 0.985 0.978 0.993 1.000

GPLFM 0.835 0.905 0.996 0.991 0.999 0.986 0.847 0.811 1.000

An overall information regarding the amplitude estimation accuracy is instead provided by
Fig. 8.24, where the measured RMS trend for the entire set of responses (strain gauges - left,
accelerations - right) is plotted as reference for validating the RMS trends of the signals estimated
at the same locations by means of the investigated algorithms. These plots demonstrate that an
analogous response amplitude estimation performance is globally achieved by the three estimators.
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Figure 8.24: 3D-printed scaled WT blade pull and release test: measured (black) and estimated (AKF - green, DKF -
magenta, GPLFM - cyan) strain (left) and acceleration (right) responses RMS values.

8.3 Covariance functions for joint input-state estimation via Gaus-
sian Process Latent Force Models

This section offers an experimental validation of the ad hoc covariance function selection proposed
in this dissertation for input-state estimation via GPLFMs. By proposing a 3DOFs exampled,
Subsubsection 5.2.1.1 has proved that a proper covariance function selection plays an important role
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within the use of GPLFMs for estimating unknown loads and unmeasured structural responses in a
Bayesian setting. In this section, three different loading conditions adopted during the 3D-printed
scaled WT blade tests are treated: pull and release, random and sinusoidal load. For each loading
condition, the most suitable covariance function is proposed in contrast to a conventional Matérn
covariance function for construction of the LFM to be coupled with the scaled WT blade SSM.
It is worth noting that i) the filtering-only version is hereby adopted for the GPLFM and ii)
a single measurement is used for the training phase instead of the entire observations set. As
mentioned in Subsection 5.2.1, the most convenient choice for the time signal to be used for training
consists in adopting a pre-recorded measurement collocated with the unknown input. Specifically,
an acceleration signal is ideal for the random and sinusoidal load cases, while a displacement-level
sensor, i.e., a strain signal, is preferred for the pull and release loading condition.
8.3.1 Pull and release test

This subsection proposes the use of a biased quasiperiodic covariance function for the GP adopted
to construct the LFM for input-state estimation during the pull and release test performed on the
3D-printed scaled WT blade. The ad hoc covariance function selection is validated by comparing
the estimation results against the ones achieved by making use of a biased exponential (equivalent
to a Matérn function with ν = 0.5) covariance function. It is worth noting that biased covariance
functions are hereby adopted to include a prior assumption on the static nature of the applied load.
This is in contrast with Subsection 8.2.2, where the same pull and release test is treated from a joint
input-state estimation perspective via a conventional Matérn covariance function. This discrepancy
is justified by the nature of the signals involved in the covariance function hyperparameters training:
while in Subsection 8.2.2 the entire set of observations, i.e., strain and acceleration signals, has been
used for training, a single strain measurement is hereby adopted for the same purpose. The use of an
unbiased Matérn covariance function thus provides a reasonable input prediction in Subsection 8.2.2
thanks to the presence of acceleration responses within the training data, which reduce the need of
a biased covariance function for regression. To the contrary, the latter is necessary when a unique
response featuring a static component is employed for training. Specifically, sensor 1 has been
hereby selected for training since no strain response collocated with the unknown load (applied at
the tip) was available for this loading scenario. The hereby adopted estimators have been employed
for input-state prediction using the mixed observations set (strain and acceleration) reported in
Tab. 8.22. The measurements acquired at the remaining locations have been used to validate the
estimations provided by the investigated methods. The chosen values for the necessary initial
conditions, the states process noise covariance and the measurement noise covariance matrices are
also shown in Tab. 8.22. Additionally, the analyzed GP covariance functions initial hyperparameters
are presented in Tab. 8.22.

Table 8.22: 3D-printed scaled WT blade pull and release test: GPLFMs observations sets and initialization values for
a biased exponential and a biased quasiperiodic covariance function

Algorithm Observations Initial state
mean

Initial error cov.
matrix

Initial hyperparameters Process noise
cov. matrix (Q)

Measurement noise
cov. matrix (R)

Biased exponential 1, 3, 8, 15, 17, 21 x̂a
0|0 =

⎡⎢⎣η
0

⎤⎥⎦ P̂x
0|0 = 10−10 × I

σ2 = 1.5
σ2

constant = 1.1 × 10−1

l = 1 × 10−1

Qdispl = 10−15 × I
Qvel = 10−7 × I

Rstrain = 10−14 × I
Racc = 10−7 × I

Biased quasiperiodic 1, 3, 8, 15, 17, 21 x̂a
0|0 =

⎡⎢⎣η
0

⎤⎥⎦ P̂x
0|0 = 10−10 × I

σ2 = 2 × 10−1

σ2
constant = 2 × 10−1

l = 3 × 10−1

tperiod = 4 × 10−2

lmatern = 10−1

Qdispl = 10−15 × I
Qvel = 10−7 × I

Rstrain = 10−14 × I
Racc = 10−7 × I

Figure 8.25 offers the predicted input signals provided by the GP-based approach when the two
investigated covariance functions are adopted. Predictions are compared against the “measured”



8.3 covariance functions for joint input-state estimation via gaussian process latent force models 131

force, i.e., the step-type of input reconstructed on the basis of the known weight of the mass in
Fig. 8.4. Table 8.23 presents the SE and the SD inaccuracy indicators for the two analyzed cases.
Figure 8.25 highlights that the GPLFM with both the proposed covariance functions can easily
detect the initial static load with limited inaccuracy. However, while the biased quasiperiodic
covariance function allows for a correct detection of the release instant, the biased exponential
covariance function produces a time history which does not follow the instantaneous release. Indeed,
the estimated signal features a slow decay to zero which is reflected in both high SE and SD. It
is therefore concluded that the use of a biased quasiperiodic covariance function to construct the
GPLFM outperforms the biased exponential covariance function on the input estimation task during
pull and release tests on the scaled WT blade.
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Figure 8.25: 3D-printed scaled WT blade pull and release test: input “measured” (black) and estimated (GPLFM
with biased exponential cov. - cyan, GPLFM with biased quasiperiodic cov. - red) time histories (left)
and detailed time histories (right)

Table 8.23: 3D-printed scaled WT blade pull and release test: input prediction errors for the GPLFM with biased
exponential and biased quasiperiodic covariance functions

Biased exponential Biased quasiperiodic
SE 11.23N 1.06N

SD 1.91N 0.20N

Figures 8.26 and 8.27 show the time and frequency content of the responses estimated by the
GPLFM algorithm for strain gauge 10 and accelerometer 14 when the analyzed covariance functions
are used. In both cases, the estimated signals match their measured counterparts with relatively
high accuracy. This conclusion is confirmed by Fig. 8.28 which compares the amplitude (RMS)
of the entire set of responses predicted when the two covariance functions are used, against the
measured signals RMS values. Indeed, Fig. 8.28 highlights a comparable behavior between the two
analyzed scenarios in terms of amplitude estimation. A more detailed time domain analysis of
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Figure 8.26: 3D-printed scaled WT blade pull and release test: measured (black) and estimated (GPLFM with biased
exponential cov. - cyan, GPLFM with biased quasiperiodic cov. - red) strain at location 10

the prediction results is offered in Tabs. 8.24 and 8.25 via the TRAC values for the entire set of
estimated responses (respectively strain and acceleration). The FRAC values for the strain and
acceleration responses are instead offered in Tabs. 8.26 and 8.27 respectively. The analysis of the
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Figure 8.27: 3D-printed scaled WT blade pull and release test: measured (black) and estimated (GPLFM with biased
exponential cov. - cyan, GPLFM with biased quasiperiodic cov. - red) acceleration at location 14
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Figure 8.28: 3D-printed scaled WT blade pull and release test: measured (black) and estimated (GPLFM with biased
exponential cov. - cyan, GPLFM with biased quasiperiodic cov. - red) strain (left) and acceleration
(right) responses RMS values.

TRAC and FRAC indicators shows that, while a similar result is achieved in terms of strain response
estimation, the accuracy of acceleration response prediction is substantially higher when adopting
a biased quasiperiodic covariance function. This is also demonstrated by the frequency content
provided in Fig. 8.27, where a low frequency component erroneously affects the signal estimated by
the biased exponential covariance function. To the contrary, the biased quasiperiodic covariance
function produces a PSD which matches the measured signal in the entire reported frequency range
(including low frequency).

Table 8.24: 3D-printed scaled WT blade pull and release test: TRAC values between measured and estimated (GPLFM
with biased exponential and biased quasiperiodic covariance functions) strain responses. Observations are
underlined.

Estimator 1 2 3 4 5 6 7 8 9 10 11 12

Biased exponential 0.997 0.997 0.998 0.998 0.996 0.998 0.998 0.998 0.995 0.997 0.998 0.998

Biased quasiperiodic 0.994 0.995 0.995 0.994 0.995 0.995 0.995 0.993 0.989 0.995 0.995 0.995

Table 8.25: 3D-printed scaled WT blade pull and release test: TRAC values between measured and estimated
(GPLFM with biased exponential and biased quasiperiodic covariance functions) acceleration responses.
Observations are underlined.

Estimator 13 14 15 16 17 18 19 20 21

Biased exponential 0.282 0.459 0.997 0.961 1.000 0.971 0.408 0.729 1.000

Biased quasiperiodic 0.762 0.866 1.000 0.961 1.000 0.973 0.904 0.931 1.000

8.3.2 Random test
This subsection proposes the use of a Wiener covariance function for the GP adopted within the

LFM constructed for input-state estimation during random tests performed on the 3D-printed scaled
WT blade. The ad hoc covariance function selection is validated by comparing the estimation results
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Table 8.26: 3D-printed scaled WT blade pull and release test: FRAC values between measured and estimated (GPLFM
with biased exponential and biased quasiperiodic covariance functions) strain responses. Observations are
underlined.

Estimator 1 2 3 4 5 6 7 8 9 10 11 12

Biased exponential 0.992 0.988 0.996 0.999 0.919 0.993 0.998 0.999 0.999 0.990 0.997 0.998

Biased quasiperiodic 0.982 0.991 0.994 0.997 0.972 0.993 0.996 0.997 0.997 0.992 0.995 0.996

Table 8.27: 3D-printed scaled WT blade pull and release test: FRAC values between measured and estimated (GPLFM
with biased exponential and biased quasiperiodic covariance functions) acceleration responses. Observations
are underlined.

Estimator 13 14 15 16 17 18 19 20 21

Biased exponential 0.445 0.604 1.000 0.991 1.000 0.984 0.481 0.954 1.000

Biased quasiperiodic 0.837 0.864 1.000 0.992 1.000 0.981 0.994 0.985 1.000

obtained using the mixed observations set (strain and acceleration) reported in Tab. 8.28 against
the ones achieved by making use of a conventional Matérn covariance function (ν = 1.5). The
chosen values for the necessary initial conditions and the process and measurement noise covariance
matrices are also summarized in Tab. 8.28. Additionally, the analyzed GP covariance functions
initial hyperparameters are presented in Tab. 8.28. The hyperparameters have been tuned during
the training phase by maximizing the log marginal likelihood of the acceleration collocated with
the unknown input, i.e., at the shaker location indicated in Fig. 8.3. It is thus worth noting that
the results presented in this section differ from the ones proposed for the mixed observations set in
Subsubsection 8.2.1.2, where the entire set of observations has been used within the training step
and a smoothness ν = 2.5 has been chosen for the Matérn covariance function.

Table 8.28: 3D-printed scaled WT blade random test: GPLFMs observations sets and initialization values for a Matérn
(ν=1.5) and a Wiener covariance function

Estimator Observations Initial state
mean

Initial error cov.
matrix

Initial hyperparameters Process noise
cov. matrix (Q)

Measurement noise
cov. matrix (R)

Matérn 1, 3, 8,12, 15, 18, 21, 22 x̂a
0|0 = 0 P̂a

0|0 = 10−10 × I
σ2 = 3 × 103

l = 2 × 10−4

Qdispl = 10−20 × I
Qvel = 10−10 × I

Rstrain = 10−14 × I
Racc = 10−7 × I

Wiener 1, 3, 8, 12, 15, 18, 21, 22 x̂a
0|0 = 0 P̂x

0|0 = 10−10 × I σ2 = 3 × 103 Qdispl = 10−20 × I
Qvel = 10−10

Rstrain = 10−14 × I
Racc = 10−7 × I

Figure 8.29 offers a comparison in both time and frequency domains between the actual force and
the input predictions obtained by adopting the GPLFM in combination with a Wiener and a Matérn
covariance function (ν = 1.5). A quantification of the input estimations accuracy in time and
frequency domains is respectively reported in Tabs. 8.30 and 8.32 (last column) by means of the
TRAC and FRAC estimators. From the results reported in Tabs. 8.30 and 8.32, it can be concluded
that a Wiener covariance function allows for higher input estimation accuracy. Figure 8.29 indeed
highlights that the Matérn covariance function generates a distorted frequency content between 0
and 100 Hz.
Figures 8.30 and 8.31 present the comparison between measured and estimated signals respectively
for a strain and an accelerometer that are not included in the observations set. These results
demonstrate that a good prediction accuracy can be achieved by the GPLFM for both strain and
acceleration predictions when each of the two analyzed covariance functions is adopted. However,
the Matérn covariance function seems to produce a mismatch between 0 and 90 Hz in both the strain
and the acceleration response. An overall information regarding the response estimation precision is
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Figure 8.29: 3D-printed scaled WT blade random test: input measured (black) and estimated (GPLFM with Matérn
cov. - cyan, GPLFM with Wiener cov. - red) force signals

reported in Tabs. 8.29-8.32 by means of the TRAC and FRAC indicators. The presented indicators
show higher values (especially for strains) when the Wiener covariance function is adopted, confirming
the conclusion drawn from Figs. 8.30 and 8.31. Additionally, Fig. 8.32 reports a comparison of the
measured RMS trend for the entire set of responses (strain gauges-left, accelerometers-right) with
the RMS trends of the signals estimated at the same locations by means of the GPLFM with a
Wiener and a Matérn covariance function. From the visual information provided in Fig. 8.32 it can
be concluded that the response estimation obtained via the two investigated covariance functions are
almost comparable in terms of amplitude, with a slightly higher accuracy of the Wiener covariance
function for the strain responses. The latter is linked to the prediction error (visible in Fig. 8.30)
provided by the Matérn covariance function at low frequency.
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Figure 8.30: 3D-printed scaled WT blade random test: measured (black) and estimated (GPLFM with Matérn cov. -
cyan, GPLFM with Wiener cov. - red) strain at location 6
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Figure 8.31: 3D-printed scaled WT blade random test: measured (black) and estimated (GPLFM with Matérn cov. -
cyan, GPLFM with Wiener cov. - red) acceleration at location 19

Table 8.29: 3D-printed scaled WT blade random test: TRAC values between measured and estimated (GPLFM with
Matérn and Wiener covariance functions) strain responses. Observations are underlined.

Estimator 1 2 3 4 5 6 7 8 9 10 11 12

Matérn 0.595 0.584 0.513 0.510 0.743 0.601 0.652 0.654 0.693 0.581 0.630 0.607

Wiener 0.938 0.848 0.825 0.889 0.828 0.903 0.889 0.959 0.951 0.853 0.943 0.942
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Figure 8.32: 3D-printed scaled WT blade random test: measured (black) and estimated (GPLFM with Matérn cov. -
cyan, GPLFM with Wiener cov. - red) strain (left) and acceleration (right) responses RMS values.

Table 8.30: 3D-printed scaled WT blade random test: TRAC values between measured and estimated (GPLFM with
Matérn and Wiener covariance functions) force and acceleration responses. Observations are underlined.

Estimator 13 14 15 16 17 18 19 20 21 22 force

Matérn 0.914 0.494 1.000 0.305 0.095 1.000 0.882 0.558 1.000 0.977 0.642

Wiener 0.913 0.532 0.988 0.329 0.109 0.964 0.960 0.628 0.989 0.999 0.863

Table 8.31: 3D-printed scaled WT blade random test: FRAC values between measured and estimated (GPLFM with
Matérn and Wiener covariance functions) strain responses. Observations are underlined.

Estimator 1 2 3 4 5 6 7 8 9 10 11 12

Matérn 0.730 0.673 0.937 0.943 0.907 0.912 0.855 0.851 0.899 0.794 0.756 0.878

Wiener 0.961 0.890 0.931 0.974 0.786 0.936 0.9867 0.968 0.977 0.920 0.993 0.997

Table 8.32: 3D-printed scaled WT blade random test: FRAC values between measured and estimated (GPLFM with
Matérn and Wiener covariance functions) force and acceleration responses. Observations are underlined.

Estimator 13 14 15 16 17 18 19 20 21 22 force

Matérn 0.981 0.239 1.000 0.107 0.702 1.000 0.979 0.842 1.000 0.943 0.781

Wiener 0.969 0.280 0.973 0.109 0.594 0.966 0.997 0.831 1.000 0.997 0.937

8.3.3 Sine test
The use of a quasiperiodic covariance function for constructing a GPLFM is hereby explored

for input-state estimation during sinusoidal tests performed on the 3D-printed scaled WT blade.
As anticipated in Subsection 5.2.1, experimentally recorded data are often affected by external
sources of disturbance. For this reason, even when a sinusoidal signal is selected to drive the shaker,
the actual load acting on the structure and recorded by the load cell may deviate from the pure
sine assumption. To take this effect into account when constructing the GPLFM, a quasiperiodic
covariance function is preferred to a periodic covariance function. The ad hoc covariance function
selection is hereby adopted for prediction during sine tests using the mixed observations set (strain
and acceleration) reported in Tab. 8.33. The estimation results are compared against the ones
achieved by making use of the same measurements set in combination with a conventional Matérn
covariance function (ν = 1.5). Moreover, the predictions achieved via the state-of-the-art AKF are
hereby introduced and compared with the GPLFM predictions. The chosen values for the necessary
initial conditions and the process and measurement noise covariance matrices are also shown. The
latter has been retrieved from the background noise recorded by sensors during tests, while the
first has been instead tuned by trial and error. For the AKF, the process noise covariance values
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associated to the states and the input are highlighted. To the contrary, for the GPLFM the states
process noise covariance and the GP covariance functions initial hyperparameters are presented. The
hypeparameters have been selected by maximizing the log marginal likelihood of the acceleration
collocated with the unknown input, i.e., at the shaker location indicated in Fig. 8.3.

Table 8.33: 3D-printed scaled WT blade sine test: AKF and GPLFMs observations sets and initialization values for a
Matérn (ν=1.5) and a quasiperiodic covariance function

Estimator Observations Initial state
mean

Initial error cov.
matrix

Input noise cov.
Initial hyperparameters

Process noise
cov. matrix (Q)

Measurement noise
cov. matrix (R)

AKF 1, 3, 8,12, 15, 18, 21, 22 x̂a
0|0 = 0 P̂a

0|0 = 10−10 × I Qu = 1015 × I Qdispl = 10−20 × I
Qvel = 10−10 × I

Rstrain = 10−14 × I
Racc = 10−7 × I

Matérn 1, 3, 8,12, 15, 18, 21, 22 x̂a
0|0 = 0 P̂a

0|0 = 10−10 × I σ2 = 3 × 103

l = 2 × 10−4
Qdispl = 10−20 × I
Qvel = 10−10 × I

Rstrain = 10−14 × I
Racc = 10−7 × I

Quasiperiodic 1, 3, 8, 12, 15, 18, 21, 22 x̂a
0|0 = 0 P̂x

0|0 = 10−10 × I

σ2 = 5 × 10−1

l = 5 × 10−1

tperiod = 1.2 × 10−2

lmatern = 8 × 10−1

Qdispl = 10−20 × I
Qvel = 10−10

Rstrain = 10−14 × I
Racc = 10−7 × I

Figure 8.33 offers a time domain comparison between the actual force and the input predictions
obtained via the AKF and the GPLFM with a quasiperiodic and a Matérn covariance function.
During the tests, the force applied by the shaker has been recorded by a force cell placed between
the shaker and the structure. A quantification of the input estimations accuracy is reported in
Tab. 8.35 (last column) by means of the TRAC estimator. From the results reported in Fig. 8.33, it
can be concluded that while the AKF and the GPLFM with a Matérn covariance function both
overestimate the load amplitude, a more accurate estimation is obtained via the GPLFM with a
quasiperiodic covariance function. This result is confirmed by the TRAC values offered in Tab. 8.35.
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Figure 8.33: 3D-printed scaled WT blade sine test: input measured (black) and estimated (AKF - green, GPLFM
with Matérn cov. - cyan, GPLFM with quasiperiodic cov. - red) force signals

Figures 8.34 and 8.35 present the comparison between measured and estimated signals respectively
for a strain and an accelerometer that are not included in the observations set. These results
demonstrate that a good and comparable prediction accuracy can be achieved by the GPLFM with
a quasiperiodic or a Matérn covariance function for both strain and acceleration predictions. To
the contrary, the AKF produces an accurate response prediction for the strain response, while it
underestimates the acceleration response amplitude. An overall information regarding the response
estimation precision is reported in Tabs. 8.34 and 8.35 by means of the TRAC values. The presented
indicators show comparable values for both strain and acceleration responses when the GPLFM
is adopted with one of the two analyzed covariance functions. However, lower TRAC values are
generated by the AKF for the acceleration responses. Additionally, Fig. 8.36 reports a comparison
of the measured RMS trend for the entire set of responses (strain gauges-left, accelerometers-right)
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with the RMS trends of the signals estimated at the same locations by means of the AKF and
the GPLFM (quasiperiodic or Matérn covariance function). Figure 8.36 confirms that the three
compared approaches produce a comparable strain estimation accuracy, while for the acceleration
responses an overall higher amplitude error is provided by the AKF.
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Figure 8.34: 3D-printed scaled WT blade sine test: measured (black) and estimated (AKF - green, GPLFM with
Matérn cov. - cyan, GPLFM with quasiperiodic cov. - red) strain at location 6
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Figure 8.35: 3D-printed scaled WT blade sine test: measured (black) and estimated (AKF - green, GPLFM with
Matérn cov. - cyan, GPLFM with quasiperiodic cov. - red) acceleration at location 19
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Figure 8.36: 3D-printed scaled WT blade sine test: measured (black) and estimated (AKF - green, GPLFM with
Matérn cov. - cyan, GPLFM with quasiperiodic cov. - red) strain (left) and acceleration (right) responses
RMS values.

The content offered in this section provides an experimental validation of the concepts elaborated
in Subsection 5.2.1 and proved numerically in Subsubsection 5.2.1.1. The ad hoc covariance
function selection for GPLFMs construction in the framework of joint input-state estimation is
hereby evaluated during tests on the 3D-printed scaled blade under different loading conditions.
The produced results prove that a proper a priori selection of the covariance function allows to
considerably enhance the achievable load estimation accuracy.
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Table 8.34: 3D-printed scaled WT blade sine test: TRAC values between measured and estimated (AKF, GPLFM
with Matérn and quasiperiodic covariance functions) strain responses. Observations are underlined.

Estimator 1 2 3 4 5 6 7 8 9 10 11 12

AKF 0.993 0.974 0.537 0.915 0.994 0.992 0.998 0.992 0.979 0.984 0.998 0.999

Matérn 0.994 0.988 0.221 0.999 1.000 0.946 0.997 0.994 0.992 0.987 0.995 0.992

Quasiperiodic 0.981 0.985 0.685 0.889 0.997 0.968 0.988 0.994 0.985 0.996 1.000 0.999

Table 8.35: 3D-printed scaled WT blade sine test: TRAC values between measured and estimated (AKF, GPLFM
with Matérn and quasiperiodic covariance functions) force and acceleration responses. Observations are
underlined.

Estimator 13 14 15 16 17 18 19 20 21 22 force

AKF 0.754 0.547 0.911 0.672 0.971 0.908 0.967 0.916 0.926 0.730 0.057

Matérn 0.986 0.976 1.000 0.923 0.998 1.000 0.997 0.998 1.000 1.000 0.767

Quasiperiodic 0.989 0.986 1.000 0.947 0.998 0.999 0.995 0.999 1.000 1.000 0.812

8.4 Summary
An extensive test campaign conducted on a 3D-printed scaled WT blade has been described in

this chapter and exploited to validate the methodological tools developed in this thesis. After a
first description of the scaled WT blade, details on the experiments and on the ROM employed for
VS are reported. Data collected during shaker tests on the blade under study is then adopted to
validate the A-AKF estimator for random loads. The algorithm response predictions are compared
against the ones produced by the CMS-ME and the state-of-the-art AKF tuned via the conventional
L-curve metric. The provided comparison highlights that the A-AKF provides a global accuracy
comparable to the referenced CMS-ME method, with improvements at specific locations dictated
by the enhanced stochastic setting. The conventional AKF instead features the lowest prediction
performance. Both the AKF and the A-AKF fail in the task of input estimation due to absence of
acceleration responses in the observations set. However, the A-AKF allows to better capture the
unknown load amplitude. On the other hand, low frequency components contaminate the A-AKF
input prediction due to the batch nature of the error estimates employed within this algorithm.
The investigated case study has thus demonstrated that the A-AKF can be used for automated
process noise selection in joint input-state estimation for random tests. Despite accurate response
predictions are achieved, further research must be carried out concerning the error estimates adopted
within the algorithm and the applicability of the method for observations sets containing both
displacement-level and acceleration measurements.
The use of a GP-based approach for joint input-state estimation has been then evaluated for random
tests on the scaled blade. The conventionally constructed GPLFM has been used for VS purposes
in two different scenarios: in presence of a mixed observations set composed by strain gauges and
accelerometers and under the assumption of accelerations-only availability. It is worth noting that
the hereby employed GP-based approach i) is built using a Matérn covariance function and ii)
adopts the entire set of measurements for training the covariance function hyperparameters. The
comparison of the GPLFM predictions against the ones achieved via the more conventional AKF
shows a comparable accuracy under the mixed measurements assumption. This confirms that
the GP-based approach represents an accurate, more flexible and user-independent alternative to
standard VS methods. The GPLFM proves good estimation capabilities also for the acceleration-only
measurements scenario, where the AKF instead generates predictions affected by a low frequency
drift due to unobservability. Next, the GP-based approach has been also successfully tested for pull
and release tests and compared against the state-of-the-art AKF and DKF for a mixed observations
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set. Finally, the proposed ad hoc GPLFM covariance function selection, previously validated
numerically in Subsubsection 5.2.1.1, is verified for an array of different loading scenarios (random,
pull and release, sine) reproduced during the experimental campaign on the 3D-printed scaled blade.
All three case studies confirm that i) the unknown input features are better captured if the GP
covariance function is selected ad hoc for the specific test, ii) a good prediction performance can be
achieved even adopting a single measurement for training the covariance function hyperparameters.
The hereby presented study focuses on VS for WT blades applications when observations sets
including a collocated acceleration measurement are adopted. Future investigations should focus on
addressing the same problem when collocated measurements are not available.
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W I N D T U R B I N E B L A D E S T E S T I N G : C O M P O S I T E S C A L E D B L A D E

In this thesis, light is shed on dynamic virtualization of WT blades as they comprise WT compo-
nents of elevated importance and complexity. Extensive testing campaigns are usually conducted
on blades prior to installation. The establishment and validation of a DT for each blade at this
stage of its life cycle represents an essential resource for future monitoring and maintenance of
these structures in the field. In this sense, experimentally acquired modal properties can be used
within optimization algorithms to reduce uncertainties in the available models. Bayesian VS [122]
can be then exploited to extend the information from a few sensed locations to the entire full-field
blade response and estimate the unmeasured loads acting on the blade during tests. The proposed
virtualization process has been extensively validated in Chapter 7 and 8, respectively for a large
scale composite blade and a 3D-printed scaled titanium WT blade. In this chapter instead, a novel
Kalman-based strategy is tested for joint input-state-response estimation of a SISW-owned small
scale composite blade. By proposing the implementation of a virtualization process for a small
scale WT blade made of GFRPs, this chapter introduces additional challenges for state-of-the-art
and newly developed VS strategies. Indeed, the high flexibility of the composite material coupled
with the small dimensions of the scaled blade render the vibration measurements distorted and
noise contaminated, thus rendering the use of system identification techniques challenging. As a
result, the produced experimental modal parameters feature a discrete level of uncertainty, which
complicate the model updating activities. The updated FE model thus embeds a non-negligible
level of modeling errors, which inevitably influences the degree of success of the employed data
assimilation methods.
The small scale composite blade is introduced in Section 9.1, along with a description of the mea-
surement campaign, the FE model and its validation and update results obtained via a methodology
developed in SimcenterT M HEEDS. Section 9.2 then offers the VS results obtained during shaker
testing of the small scale blade. Specifically, the STPLFM with a Wiener covariance function is
hereby proposed for the task of input-state prediction in presence of distorted data. The STPLFM
performance is evaluated by comparing it against the GPLFM and the state-of-the-art AKF. Next,
conclusions for this chapter are drawn in Section 9.3.

9.1 Small scale composite wind turbine blade

The hereby analyzed experimental case study deals with shaker testing of the SISW-owned small
scale composite WT blade in Fig. 9.1. The scaled blade has been designed and manufactured by
DTU Wind Energy via a typical resin infusion process. This technology foresees the manufacturing
of two shells which are then sealed together. For each shell, glass fibers are placed in a mold
and resin is then injected into the mold cavity under pressure. Before welding the two surfaces
together, the so-called shear webs, i.e., two reinforcements spanning 3/4 of the blade length (visible
in Fig. 9.5), are glued internally to one of the halves. The small composite blade under study also
features an aluminum insert at the root, which has been added for allowing the blade attachment to
a scaled WT hub through a bolted connection.

141
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Figure 9.1: Small scale composite WT blade

9.1.1 Measurement campaign
Figure 9.2 (left) shows the setup adopted during the shaker test carried out at SISW on the small

scale composite WT blade . During tests, the blade root has been clamped via a 6-bolts connection
between the aluminum insert and a steel plate, while random excitation has been provided by means
of a shaker positioned as in Fig. 9.2 (right). The blade response has been acquired through 10
accelerometers and 2 uniaxial strain gauges. The sensors and shaker locations are displayed in
Fig. 9.3.

Figure 9.2: Small scale composite WT blade experimental setup
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Figure 9.3: Small scale composite WT blade sensing configuration during shaker tests: strain sensors (blue), ac-
celerometers (magenta)

SimcenterT M Testlab PolyMAX has been used to determine the experimental modal parameter of
the blade summarized in Tab. 9.1.

9.1.2 Numerical model: Finite Element model udpdate and Reduced Order
Model

The FE model of the small scale composite blade, offered in Fig. 9.4, has been developed by DTU
Wind Energy via the in-house Blade Modeling Tool and solved in MSCT M Nastran. It is composed
of around 87000 CHEXA elements (8 nodes) featuring solid composite properties.
A MATLABT M -based methodology has been developed to export the FE model from MSCT M

Nastran into NXT M Nastran, to be manipulated in SimcenterT M 3D and then updated through a
strategy set up in SimcenterTM HEEDS.
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Modes Frequency [Hz] Damping [%]
1 15.07 1.26
2 30.80 2.53
3 47.88 1.38
4 102.04 2.95
5 117.19 2.73
6 181.85 2.68
7 225.75 4.27
8 256.11 2.36
9 295.02 1.48
10 373.59 1.49

Table 9.1: Small scale composite WT blade experimental modal frequencies and damping ratios in clamped-free
conditions

Figure 9.4: Small scale composite WT blade FE model

The developed updating method relies on experimental data collected during a preliminary test
with the blade in clamped-free BCs. To reproduce the test BCs, the constraints shown in Fig. 9.5
have been defined at the blade FE model root by means of 6 RBEs with fixed independent nodes.
Concentrated masses (0D elements) have been added to the FE model at the accelerometers locations
to account for their presence and increase the correlation with experimental data.

Figure 9.5: Small scale composite WT blade FE model BCs

The SimcenterTM HEEDS updating workflow, summarized in Fig. 9.6, consists in exploiting the
SHERPA algorithm to seek for the variables values combination which best matches the optimization
objectives.

Run design Responses
Objectives

Constraints
NdesignN

Change variables End study
Ndesign=N

Baseline
Performance

Calculate

Figure 9.6: Small scale composite WT blade: FE model update workflow in SimcenterTM HEEDS

For the hereby analyzed case study, the objectives consist in i) minimizing the frequency errors
between the FE model natural frequencies and the experimental natural frequencies in Tab. 9.1,
ii) maximizing the numerical-experimental MAC diagonal pairs, iii) minimizing the numerical-
experimental MAC off-diagonal pairs. An overview of the main material properties (Young’s moduli
and densities) selected as design variables within the optimization is offered in Tab. 9.2, along with
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a summary of the admitted variables ranges, their initial and updated values.

Table 9.2: Small scale composite WT blade FE model update: design variables initial and updated values, selected
and maximum % change

Design variables Initial value Updated value Selected change [%] Max. change [%]

ρal[kg/mm3] 2.70 × 10−6 2.1 × 10−6 -22.15 ±25.00
Eal[MP a] 70000 60900 -13.05 ±25.00

ρbalsa[kg/mm3] 1.45 × 10−6 1.51 × 10−6 4.00 ±20.00
Ebalsa[MP a] 2350 1880 -20.00 ±20.00

ρbiax[kg/mm3] 2.00 × 10−6 2.40 × 10−6 20.00 ±20.00
E1biax [MP a] 14520 17424 20.00 ±20.00
E2biax [MP a] 14520 17424 20.00 ±20.00
E3biax [MP a] 14520 17424 20.00 ±20.00

ρglue[kg/mm3] 1.50 × 10−6 1.80 × 10−6 20.00 ±25.00
Eglue[P a] 4000 4662.4 16.56 ±25.00

ρUD90[kg/mm3] 2.6 × 10−6 3.12 × 10−6 20.00 ±20.00
E1UD90 [MP a] 12162 11194 -7.96 ±20.00
E2UD90 [MP a] 41050 44613 8.68 ±20.00
E3UD90 [MP a] 12162 11194 -7.96 ±20.00

ρuniax[kg/mm3] 1.98 × 10−6 2.1 × 10−6 6.08 ±20.00
E1uniax [MP a] 41050 32840 -20.00 ±20.00
E2uniax [MP a] 12162 13471 10.76 ±20.00
E3uniax [MP a] 12162 13471 10.76 ±20.00

Table 9.3 shows the updating results by comparing the initial and updated numerical frequencies
and MAC diagonal pairs. A substantial improvement in terms of frequency errors and diagonal
MAC pairs has been achieved via the proposed strategy. These results are confirmed by the
initial and updated MAC diagrams offered in Fig. 9.7. Nevertheless, Fig. 9.7 highlights that,
although a diagonalization is introduced via the updating process, the final FE model still features
high correlation for some off-diagonal mode pairs. These uncertainties can be ascribed to i) BCs
approximation in the FE model and ii) the WT blade high flexibility, which has generated noisy
signals, modes mixture between 220 and 260 Hz (torsion and high-order bending) and considerable
shaker-structure interaction. These latter aspects have introduced several challenges in the selection
of the experimental mode set and, consequently, a relatively high degree of uncertainty in the
correlation with the numerical modal parameters.

Table 9.3: Small scale composite WT blade FE model initial and updated frequencies, frequency errors and MAC
pairs

Modes f test
i [Hz] f initial

i [Hz] fupdated
i [Hz] MACinitial

ii MACupdated
ii

1 15.07 16.26 14.25 0.99 0.99
2 30.80 34.60 32.97 0.96 0.97
3 47.88 53.93 47.66 0.99 0.99
4 102.04 114.54 104.85 0.88 0.96
5 117.19 127.50 117.97 0.95 0.95
6 181.85 203.18 180.53 0.96 0.97
7 225.75 269.55 243.27 0.56 0.69
8 256.11 284.00 264.98 0.35 0.68
9 295.02 306.50 280.35 0.95 0.96
10 373.59 409.05 367.79 0.95 0.95

A ROM of the composite scaled blade has been constructed following the procedure outlined in
Subsection 2.1.1 by taking into account the first ten modes (frequency range of interest: 0-450 Hz)
and one residual attachment mode related to the unknown force to be estimated via the chosen
Bayesian estimators. For the hereby analyzed shaker tests, the residual attachment mode has been
computed by applying a unitary force at the shaker location pointed out in Fig. 9.3, along the
shaker stinger direction.
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Figure 9.7: Small scale composite WT blade FE model update: initial (left) and updated (right) MAC diagram.

9.2 Joint input-state estimation through the Student-t Process La-
tent Force Model

This section proposes the use of VS techniques for the estimation of the QoI during shaker testing
of the composite scaled WT blade. Specifically, this section evaluates and compares the performance
of the GP-based and the STP-based approaches discussed in Subsection 5.2.1 for real-life data.
The use of filtering only within the proposed strategies is hereby preferred to the KF and RTS
smoother combination. This case study thus comprises an additional experimental validation for
the use of LFMs constructed via state-space formulation of stochastic processes relying on real-time
estimation only. Moreover, the analyzed data set also serves as further experimental assessment
of the ad hoc selection of the estimators covariance function proposed in Subsection 5.2.1 and
previously validated both numerically (Subsubsection 5.2.1.1) and experimentally (Section 8.3).
The reconstructed signals are compared against the state-of-the-art AKF estimations. The hereby
adopted estimators have been employed for input-state prediction using the mixed observations
set (strain and acceleration) reported in Tab. 9.4, where the sensors numbers refer to the layout
in Fig. 9.3. The measurements acquired at the remaining locations have been used to validate
the estimations provided by the investigated methods. The chosen values for the necessary initial
conditions and the process and measurement noise covariance matrices are also shown in Tab. 9.4.
The latter has been retrieved from the background noise recorded by sensors during tests, while
the first has been instead tuned by trial and error. For the AKF, the process noise covariance
values associated to the states and the input are highlighted. To the contrary, the states process
noise covariance and the Wiener covariance function initial hyperparameters are presented for the
GP-based and STP-based approaches.

Table 9.4: Small scale composite WT blade random test: AKF,GPLFM and STPLFM observations sets and initial-
ization values

Estimator Observations Initial state
mean

Initial error cov.
matrix

Input noise cov./
initial hyperparameters

Process noise
cov. matrix (Q)

Measurement noise
cov. matrix (R)

AKF 1, 3, 5, 8, 9, 13 x̂a
0|0 = 0 P̂a

0|0 = 10−10 × I Qu = 1 × I Qdispl = 10−11 × I
Qvel = 10−6 × I

Rstrain = 10−11 × I
Racc = 10−14 × I

GPLFM, STPLFM 1, 3, 5, 8, 9, 13 x̂a
0|0 = 0 P̂x

0|0 = 10−10 × I σ2 = 1 × 107 Qdispl = 10−11 × I
Qvel = 10−6 × I

Rstrain = 10−6 × I
Racc = 10−14 × I

Figure 9.8 shows a comparison in both time and frequency domains between the actual force and the
input predictions obtained via the AKF, the GPLFM and the STPLFM when a Wiener covariance
function is adopted. During the analyzed test, the force applied by the shaker has been recorded by
a force cell placed between the shaker and the structure. A quantification of the input estimations
accuracy in frequency domain is reported in Tab. 9.5 (last column) by means of the FRAC estimator
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formulated in Subsection 8.2.2. The frequency range 0-450 Hz has been selected for computing the
FRAC. From the results reported in Fig. 9.8 and Tab. 9.5, it can be concluded that none of the
tested estimators allows to reach a high level of accuracy in terms of input predictions. This is
primarily due to the high shaker-structure interaction exhibited during shaker testing of the small
composite blade, which resulted in a non-flat PSD of the measured force signal. This has increased
the complexity of the input prediction objective, especially since the employed FE model features a
level of uncertainty which is difficult to be compensated within the proposed strategies. However, a
slightly higher FRAC can be achieved by employing the STPLFM. To the contrary, the GPLFM
produces a predicted time history modulated by a low frequency component, which is reflected in a
lower FRAC value.
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Figure 9.8: Small scale composite WT blade: measured (black) and estimated (AKF - green, GPLFM - cyan and
STPLFM - red) force signals

Figures 9.9 and 9.10 present the comparison between measured and estimated signals respectively
for a strain and an accelerometer that are not included in the observations set.
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Figure 9.9: Small scale composite WT blade: measured (black) and estimated (AKF - green, GPLFM - cyan and
STPLFM - red) strain at location 2
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Figure 9.10: Small scale composite WT blade: measured (black) and estimated (AKF - green, GPLFM - cyan and
STPLFM - red) acceleration at location 6

These results demonstrate that a good and comparable prediction accuracy can be achieved by
the AKF and the STPLFM for both strain and acceleration predictions. On the other hand, the
GPLFM does not match the response signals amplitude due to a lower correlation at low frequency
for the strain response and at high frequency for the acceleration response. An overall information
regarding the response estimation precision is reported in Tab. 9.5 and Fig. 9.11, respectively in
terms of frequency content (estimated FRAC values for the entire set of responses) and amplitude
(measured and estimated RMS values for the entire set of responses). The presented indicators
report a lower accuracy for the GPLFM in terms of strain response prediction. The same is valid
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for acceleration response, although the discrepancy is more contained for this type of sensors.
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Figure 9.11: Small scale composite WT blade: measured (black) and estimated (AKF - green, GPLFM - cyan and
STPLFM - red) strain (left) and acceleration (right) responses RMS values

Table 9.5: Small scale composite WT blade: FRAC values between measured and estimated (AKF,GPLFM and
STPLFM) force and responses. Observations are underlined.

Estimator 1 2 3 4 5 6 7 8 9 10 11 12 13 force

AKF 0.994 0.710 1.000 0.400 1.000 0.280 0.650 1.000 1.000 0.877 0.086 0.230 1.000 0.0345

GPLFM 0.025 0.007 1.000 0.612 1.000 0.161 0.584 1.000 1.000 0.883 0.066 0.263 1.000 0.0210

STPLFM 1.000 0.587 1.000 0.188 1.000 0.340 0.646 1.000 1.000 0.872 0.035 0.383 1.000 0.0873

The input-response estimation results reported in this section highlight that the use of a Wiener
covariance function for constructing a LFM via stochastic process regression provides results
comparable with the ones achieved via the state-of-the-art AKF in presence of a mixed observations
set. This proves that the use of a Wiener covariance function in such a context is equivalent to the
adoption of the conventional RW equation for modeling the unknown input dynamics. However, in
the STPLFM algorithm the tuning task is limited since part of the process is put in place via the
training phase aimed at selecting the hyperparameters. Specifically, the STPLFM has proved to
overcome the GPLFM with regards to their applicability to challenging experimental case studies.
As explained in Subsection 5.2.1, STP regression allows to more easily detect outliers and it is
therefore more suitable for scenarios in which noisy and distorted data (as the ones analyzed here)
are employed.

9.3 Summary
This chapter presents an experimental case study concerning a small scale composite WT blade,

which has served for assessing the use of STP regression alternatively to GP regression for con-
struction of the unknown input model in an online joint input-state estimation framework. The
employment of a GPLFM for online input-state estimation has been extensively tested and validated
in Chapters 6 and 8, where both the options of a conventional Matérn covariance function and the
alternative ad hoc covariance function selection have been explored. In Section 9.1, the STPLFM
higher flexibility and ability to detect outliers in real-life data are exploited for input-state estimation
during shaker testing of the small scale composite blade. For this application, a Wiener covariance
function has been selected for both the GPLFM and the STPLFM, thus offering further proof of
the validity of the ad hoc covariance function approach. A ROM of the blade has been constructed
by means of a CMS method and employed within the analyzed Bayesian estimation strategies.
The presented results show that the use of STP regression guarantees lower estimation errors in
situations in which both the experimental data and the FE model features render input-response
prediction a challenging task. It is thus demonstrated that the use of STPLFMs should be preferred
to GPLFMs in such conditions.





10
C O N C L U S I O N S

This thesis treats the development of VS techniques for virtualization of structures and mechanical
components subjected to dynamic loads. Dynamic virtualization of these systems, i.e., the establish-
ment of real-time operating DTs, is addressed by constructing the so-called “virtual sensors”, i.e.,
online predictions of unmeasured loads and responses obtained via data assimilation methods. The
latters comprise the combination of observations of a system with a mechanistic model to produce
an analysis of the system states as it evolves in time. The employment of data assimilation strategies
for load and response estimation in dynamic loads environments introduces several modeling and
methodological challenges, whose investigation builds the core of this dissertation. The content of
this work is divided in two parts. The first part defines a theoretical framework and proposes new
approaches for addressing the existing limitations arising from the use of joint input-state estimation
algorithms in structural dynamics. The second part reports on the validation of the developed
methods by means of several case studies, including small scale and large scale experiments. This
chapter first summarizes the main concluding remarks of this thesis. Lastly, some recommendations
for future research directions are highlighted.

10.1 Summary of the main contributions

Chapter 2 offers the theoretical principles forming the basis for the VS methods investigated in this
thesis. Both deterministic and stochastic analytical tools necessary for the definition of the dynamic
system models employed within VS strategies are reported. Basic deterministic concepts such as
state-space modeling of dynamical systems and MOR via CMS are first presented. The stochastic
framework forming the core of this dissertation is then introduced in this chapter via the concept of
Bayesian dynamic modeling and the related uncertainties parameters, i.e., the measurement and
process noise terms typically adopted to embed modeling uncertainties and measurement noise into
the physics-based system representation. Under this perspective, the concept of Bayesian inference
is outlined in Chapter 2, along with a description of the well-known KF and RTS smoother. In the
third section of Chapter 2, basic knowledge of stochastic regression via GPs and STPs is proposed to
complement the previously introduced modeling approaches, based on pure mechanistic assumptions,
with data-driven strategies relying on observed data only. It is shown that the construction of
data-driven models via the proposed strategies is usually performed via batch processing, i.e.,
by analyzing a set of data previously stored over a certain time period. As such, conventional
formulations of these techniques i) do not allow for real-time inference and ii) demand a high
computational effort. To remedy these limitations, a framework for state-space representation of
both GPs and STPs is proposed in Chapter 2, where it is demonstrated that regression using these
stochastic processes can be formulated and solved in a recursive fashion, thus allowing to couple the
analyzed data-driven techniques to real-time Bayesian estimators derived from the standard KF.
This approach is outlined for several covariance functions adopted in stochastic process regression,
even those which are not typically employed within the structural dynamics domain. A thorough
analysis of the SDE representation associated to each of the proposed covariance functions is
provided by means of an analogy with harmonic oscillators theory. According to the latter, each
covariance function produces a stochastic process whose dynamic model features specific properties
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(state-space matrices, TF and related poles, i.e., eigenvalues of the system) that make it more suited
to approximate certain types of signals.

In Chapter 3, the main data assimilation algorithms for response and load-response estimation
are presented. A deterministic approach for response estimation, i.e., the ME method, is first
outlined, followed by a description of the most common Bayesian input-state estimators. This
chapter starts from highlighting the ME features and its limitations linked to the adopted sensors
number and type. Next, a modification of the method is proposed under the name of CMS-ME
with the purpose of embedding static deformation into the reduction basis adopted for expanding
measured data. This method is particularly useful when information about the unknown input
location is available, e.g. during experiments in which the excitation source position is known but
cannot be measured, thus allowing to enhance the numerical reduction basis via a prior information
regarding the system static response in the analyzed configuration. The CMS-ME method has been
employed within the developed A-AKF algorithm described in Chapter 4, where it is proposed
as a solution to the intricate task of tuning the AKF for input-state estimation in structural
dynamics. By relying on CMS-ME response estimates, the A-AKF performs inference of unknown
loads and responses in a near-online fashion without requiring the user intervention for selecting
the most suitable time-variant process noise covariance matrix. The latter is tuned adaptively by
the algorithm, which is particularly suitable for estimation of long-term monitoring data thanks
to the assumption of uncertainties variability embedded in the process noise covariance matrix
time-variance. The CMS-ME and A-AKF validity for input-state estimation is proved by means of
two different experimental case studies: i) a large scale composite blade during pull and release tests
in Chapter 7 and ii) a 3D-printed scaled titanium WT blade undergoing shaker testing in Chapter 8.
For both the experiments, the CMS-ME method has proved to provide accurate response estimation,
with higher accuracy than ME. The A-AKF formulation developed in Chapter 4 for the inaccuracy
indicators has been thus tested for two different excitation scenarios, providing estimations featuring
higher accuracy with respect to the conventional AKF. The A-AKF robustness with respect to the
user’s parameters choice, i.e., time window length and ranges for the process noise terms, has been
proved in Chapter 7 by means of two parametric studies.

Chapter 5 elaborates on the unknown input modeling effort posed in the construction of Kalman-
based input-state estimators. Specifically, the commonly adopted RW transition model is analyzed
and its limitations within the context of vibration testing are highlighted. In this regard, the use
of LFMs is proposed as a more comprehensive and flexible alternative to the RW model. LFMs
can be constructed by exploiting the SDE representation for stochastic process regression presented
in Chapter 2. The GPLFMs proposed in literature for joint input-state estimation in structural
dynamics, i.e., foreseeing the use of Matérn covariance function and a combination of KF and RTS
smoother for recursive regression, is presented and tested for i) environmental testing of the BARC
setup (Chapter 6), ii) pull and release tests of the 3D-printed scaled WT blade and iii) shaker testing
(random excitation) of the 3D-printed scaled WT blade (Chapter 8). The results achieved for the
three case studies highlight that the GPLFM allows for both accurate response and load predictions,
with accuracy comparable to the one achieved by more conventional estimators such as the AKF and
the DKF. Additionally, the algorithm applicability for acceleration-only data sets is validated during
shaker testing for both the BARC and the 3D-printed scaled blade, thus confirming to overcome the
unobservability limitations of the AKF when no displacement-level sensor is available. Following
the covariance functions framework presented in Chapter 2, Chapter 5 also proposes a study on the
selection of ad hoc GP covariance functions for estimation of standard excitation signals in vibration
measurements. The proposed study is validated via a simulated 3 DOFs example in Chapter 5 and
for the 3D-printed scaled blade experimental case study in Chapter 8, where regression is performed
on a single observation instead of adopting the entire set of measured responses. Additionally,
the suggested framework foresees the exclusion of the RTS smoother step from the algorithm to
allow for real-time inference. Both the simulated and the experimental applications show that a
proper selection of the covariance function adopted for GP regression allows for a more accurate
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input estimation, which features a good accuracy even when a single response measurement is
used for training the covariance function hyperparameters. Moreover, the simulated example also
demonstrates that the use of smoothing introduces accumulation errors in the input and response
predictions. Chapter 5 further suggests the use of enhanced regression schemes, more suitable for
distorted and noise-contaminated real-life data, such as STP regression for building LFMs within
the context of joint input-state estimation. The employment of STPLFMs for input-state estimation
is validated in Chapter 7 for an experimental case study concerning shaker testing of a small scale
composite WT blade. The analyzed case study shows that the predicted random load time history
is less affected by errors when STP is employed instead of GP for regression.

Chapter 6 deals with environmental testing of the BARC setup. Besides comprising an experimental
validation example for the data assimilation tools developed in this thesis, this case study introduces
modeling challenges derived from the BCs typically adopted during environmental testing. A CMS
strategy is employed to build a ROM able to deal with the BARC rigid body motion. The effect of
the employed CMS technique on the estimations achieved via the analyzed estimators is evaluated
in conjunction with the use of a FE modeling alternative comprising the use of 1D elastic elements
to model the BARC-shaker interaction. The response and load predictions reported in Chapter 6
show that the combination of the two modeling strategies allows for a discrete improvement of
the AKF performance. The latter is initially evaluated in presence of strains-only or mixed strain
and acceleration observations for the original ROM (no modeling of the shaker-BARC interaction).
A comparison of the estimations achieved in the two scenarios highlights that the use of a mixed
observations set significantly enhances the AKF performance. For this reason, a mixed observations
set has been adopted in the case studies presented thereafter for validation of state-of-the-art
estimators such as the AKF and the DKF. Specifically, Chapter 8 provides an extensive validation
of both conventional and newly developed tools on a scaled WT blade made of isotropic material,
thus allowing for a reduced number of modeling uncertainties influencing the results provided by
the analyzed data assimilation techniques. To the contrary, Chapter 7 deals with the employment
of the methodological tools developed in this thesis for a small scale and a large scale composite
blade. It is shown that, despite the updating strategies developed via commercial softwares, the
composite material and the limited blade dimension introduce several modeling challenges, as well as
limitations in the achievable model updating results, thus influencing the VS predictions accuracy.

10.2 Limitations and recommendations for future directions
The development of VS techniques for dynamic virtualization of structures and mechanical

components is treated in this thesis. Although the major challenges arising from the implementation
of data assimilation techniques for VS have been addressed, a number of unresolved matters are
still to be explored both from the practical and the methodological perspective.

The VS approaches presented in this thesis are valid under the assumption of LTI systems.
However, the ever-growing complexity and dimensions of structures may cause nonlinearities, e.g.
due to large deformations or material properties. Nonlinear structural behavior is already addressed
in literature by means of Kalman-type filters specifically designed to deal with nonlinearities.
Further research should consider the uncertainties and input modeling challenges touched upon in
this dissertation within the context of nonlinearly-behaving systems.

This thesis adopts laboratory experiments for validating the developed methodological approaches.
A future research path comprises the extension of implemented tools for in-field measurements,
thereby implying the coupling of real-time operating data with physics-based models embedding
information on the structures in operational conditions. This implies the use of more complex models
accounting for interactions between several subparts of the systems under study, e.g. multibody
models of WTs in operation. A thorough SHM strategy could be then put in place by exploiting the
full-field response information produced by VS methods for damage detection algorithms constructed
via ML approaches. In this view, physics-based models can be constructed for specific processes and
components whose behavior can be discretized via mechanistic assumptions. On the other hand,
black-box modeling can be implemented in situations in which lack of information is manifested
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leveraging ML algorithms and physically recorded data. The poor availability of information
particularly applies to the task of input modeling, which poses multiple challenges due to the
distributed nature of loads acting on WT and spacecraft components in operation, and to their
unknown locations. These major aspects could be treated within further studies by exploiting
spatio-temporal stochastic process regression to produce data-driven a priori models for the unknown
loads both in time and space.

An essential feature for VS in this context lies in the real-time applicability of the adopted
algorithms, which aim to be as less user-dependent as possible. The methodological tools developed
in this thesis could be thus adapted to and exploited in the operational setting. This is in line
with the final objective of dynamic virtualization comprising the establishment of a DT from the
conceptualization phase to operation and eventually, to end-of-life.

A further direction for future work comprises the combination of VS strategies with innovative
sensing technologies such as optical monitoring methodologies. The latters contribute indeed to
overcome conventional sensors limitations, e.g. strain gauges and accelerometers, arising from their
electrical nature, which is critical for use in the field. To this end, an improved version of the A-AKF
applicable for sensors fusion, could be implemented by exploiting frequency domain approaches
within the time windows used in the algorithm.
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A P P E N D I X

This chapter contains details on some of the tools adopted in the main text.

11.1 Appendix A
In this thesis, the performance of the analyzed data assimilation methods is measured by means

of accuracy indicators. The latters are used to quantify both in time and/or frequency domains,
how much a prediction resembles the corresponding physically acquired signal. Besides the standard
RMSE, the TRAC and FRAC indicators are adopted within this thesis to measure the employed
estimators performance. The TRAC formulation is reported in Eq. 11.1, where ẑp is the vector of
the predicted time histories at the “unmeasured” locations and zp contains the corresponding actual
responses acquired by physical sensors. In Eq. 11.1, the explicit dependency with respect to time of
the signals is omitted.

TRAC =
[zpT ẑp]2

[ẑpT ẑp][zpT zp]
(11.1)

The TRAC quantifies the correlation between the predicted and the measured time histories for a
single DOF for a chosen response window. When a good correlation between the measured time
signal at a certain location and its corresponding estimated time history is achieved, the TRAC
assumes values close to 1. A value that is close to 0, indicates therefore poor estimation accuracy.
Similarly to the TRAC, the so-called FRAC reported in Eq. 11.2, quantifies the correlation for
one DOF between the estimated Ẑp and the measured Zp frequency domain signals for the chosen
frequency range. In Eq. 11.2, the explicit dependency with respect to frequency of the signals is
omitted.

FRAC =
[ZpT Ẑp

]2

[ẐpT

Ẑp
][ZpT Zp]

. (11.2)

11.2 Appendix B
The state-of-the-art Bayesian estimators exploited in thesis normally require a considerable tuning

effort of the process noise covariance matrix. In cases where input estimation is addressed along
with state estimation, common practice consists in setting the process noise covariance associated to
the system states to a very low number. The covariance of the process noise terms associated with
the unknown input are instead tuned offline either via trial and error or by means of the so-called
Lcurve, i.e., a regularization method which evaluates the estimator performance by means of two
error indicators. The first error term, i.e., the smoothing norm, quantifies the input error estimation
as follows:

n∑︂
k=1

∥ûk∥2
2 (11.3)

where n is the total number of time steps and ûk is the vector of estimated inputs at the specific
point in time k. The error norm is instead related to the inaccuracy featured by the re-estimated
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measured responses. Under the assumption of displacement-level measurements only and use of the
AKF for joint input-state estimation, the error norm can be constructed as:

n∑︂
k=1

∥yo
k − Ha

ox̂a+
k ∥2

2 (11.4)

where yo is the observations vector, x̂a+ is the posterior estimate of the augmented state vector
and Ha

o is the augmented output matrix calculated at the measured DOFs.
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