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A B S T R A C T

“How much is my data worth?” is an increasingly common question posed by
organizations and individuals alike. An answer to this question could allow,
for instance, fairly distributing profits among multiple data contributors,
determining prospective compensation when data breaches happen. This
dissertation takes a first step toward data valuation by presenting a prin-
cipled framework utilizing the Shapley value, a popular notion of value
which originated in cooperative game theory.

First, we show that the Shapley value defines a unique payoff scheme
that satisfies many desiderata for the notion of data value. However, the
Shapley value often requires exponential time to compute. To meet this chal-
lenge, we propose efficient algorithms for approximating the Shapley value
with provable error bounds for general machine learning (ML) utilities.
Alongside its theoretical robustness, our empirical findings indicate that the
Shapley value aligns with people’s intuitive understanding of data value.
Second, we present a family of efficient algorithms for computing the exact
Shapley values for KNN classification and regression. We demonstrate that
both the exact algorithm and the approximate algorithm for KNN Shapley
can scale to millions of data points, making them suitable for valuing data
in common ML datasets.
Lastly, we explore the practical challenges that data marketplaces are fac-
ing focusing on two main concerns: Training machine learning models
on private data and curating specialized and complex datasets. To study
and address these challenges, we demonstrate a decentralized design of a
marketplace for private data and incentivize the creation of a real-world
ecological dataset benchmark.
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Z U S A M M E N FA S S U N G

“Wie viel sind meine Daten wert?” ist eine immer häufiger gestellte Frage von
Organisationen und Einzelpersonen. Eine Antwort auf diese Frage könnte
beispielsweise dazu beitragen, Gewinne fair unter mehreren Datenliefe-
ranten aufzuteilen und potenzielle Entschädigungen bei Datenverstößen
festzulegen. Diese Dissertation unternimmt einen ersten Schritt in Richtung
Datenwertanalyse, indem sie einen prinzipientreuen Rahmen auf der Grund-
lage des Shapley-Werts präsentiert, einer populären Wertvorstellung, die
ihren Ursprung in der kooperativen Spieltheorie hat.
Zuerst zeigen wir, dass der Shapley-Wert ein einzigartiges Auszahlungs-
schema definiert, das viele Desiderate für den Begriff des Datenwerts erfüllt.
Der Shapley-Wert erfordert jedoch häufig exponentielle Zeit für die Berech-
nung. Um dieser Herausforderung zu begegnen, schlagen wir effiziente
Algorithmen für die Approximation des Shapley-Werts mit nachweisbaren
Fehlergrenzen für allgemeine maschinelle Lernfunktionen (ML) vor. Ne-
ben seiner theoretischen Robustheit zeigen unsere empirischen Ergebnisse,
dass der Shapley-Wert mit einem intuitiven Verständnis für den Datenwert
übereinstimmt. Zweitens präsentieren wir eine Familie von effizienten Algo-
rithmen zur Berechnung der exakten Shapley-Werte für KNN-Klassifikation
und Regression. Wir demonstrieren, dass sowohl der exakte Algorithmus
als auch der approximative Algorithmus für KNN-Shapley auf Millionen
von Datenpunkten skaliert werden können, was sie für die Bewertung von
Daten in gängigen ML-Datensätzen geeignet macht. Schließlich untersu-
chen wir die praktischen Herausforderungen, denen sich Datenmarktplätze
gegenübersehen, und konzentrieren uns dabei auf zwei Hauptanliegen:
Das Trainieren von maschinellen Lernmodellen auf privaten Daten und
das Kuratieren von spezialisierten und komplexen Datensätzen. Um diese
Herausforderungen anzugehen, zeigen wir ein dezentrales Design eines
Marktplatzes für private Daten und motivieren die Erstellung eines realen
ökologischen Datenbenchmark.
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1
M O T I VAT I O N A N D R E S E A R C H Q U E S T I O N S

Measure what is measurable, and make measurable
what is not so.

— Galileo Galilei

Throughout our history, humanity has seen value in collecting, storing,
and exchanging data. From the development of the first writing systems
in Mesopotamia around 5,000 years ago, that has allowed us to record,
store and share stories and observations from our ancestors, to the inven-
tion of modern computer systems in the last century, that enabled us to
process and derive data-driven insights, products and decisions, datasets
have played a crucial role for scientists, companies and governments. In
recent decades, the development of mature machine learning (ML) systems
have facilitated the rise of successful data-driven applications, including
e-commerce (Ballestar, Grau-Carles, and Sainz, 2019; Rao et al., 2020), online
advertising (Lacerda et al., 2006; Perlich et al., 2014; Rafieian and Yoga-
narasimhan, 2021), personalized medicine (Carpenter et al., 2006; Bray et al.,
2016; McQuin et al., 2018; Bunne et al., 2021), sustainability (Rolf et al.,
2021; Rolnick et al., 2022; Beery et al., 2022), ride-hailing services (Huval
et al., 2015; Bojarski et al., 2016; Grigorescu et al., 2020), and social media
(Chancellor, Baumer, and De Choudhury, 2019). Consequently, these appli-
cations collect large amounts of, often sensitive and personal, data from
their users in order to provide their goods and services. In 2022 alone, by
predicting targeted advertisement from its user data, Google and Facebook
were able to jointly generate over 330 billion dollars in advertising revenue1.
Advocates of the data economy often emphasize that "data is the new oil"
to underscore its importance (Delacroix and Lawrence, 2019). Naturally,
given the economic significance of data, it raises the question of whether
it is possible to quantify and compute the worth of a single data point.

1 https://dweb.link/ipfs/bafkreidszsuulthvfi3u42ym273rgiw5xzgi3ar3unvuloiqm4qjwzdr4i

1
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2 motivation and research questions

Dogs Fish

Train a dog vs �sh classi�er for me

User gets ML Model 
trained on 1.5M images

How to distribute $100
to data contributors?

Data Marketplace Challenges of
practical applications?

What is a 
principled value?

How to e�ciently 
compute at scale?

Figure 1.1: Data market example scenario. A customer requests a dog vs fish
classifier and chooses his data sources from various data contributors
through a marketplace. How should he distribute his payment of 100$
in an equitable (addressing low data quality) and scalable (millions
of images) way?

Organizations and individuals alike pose an increasingly common question:
"How much is my data worth?"

On the one hand, this question is of great interest to data contributors.
More and more initiatives in consumer and healthcare markets propose that
individuals should be compensated for the personal data they generate. For
example, emerging data markets (Richter and Slowinski, 2019; McConaghy,
2022) already enable users to sell their data. An answer to this question
could allow, for instance, fairly distributing profits among multiple data
contributors or determining prospective compensation when data breaches
happen (Scaria et al., 2018).

Additionally, from the perspective of ML, data consumers would like to
understand which data points to choose from. Alternatively, if they already
have an existing dataset, they would like to understand the value and im-
portance of their training examples, relative to other training examples, in
order to explaining model predictions (Lundberg and S.-I. Lee, 2017). Data
importance can help ML practitioners in determining which data point to
include or exclude to improve the model’s utility with profound impact
on a range of applications including interpretability, robustness, and data
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Profit Allocation

Machine Learning (ML)

Data

Data

Data

...

$

$

$

Service
provider

$

Customers

Data contributors

$

Service

Figure 1.2: Fundamental problem of data valuation. Data contributors provide
data points that are being used for machine learning training. A
service provider than uses the resulting model to sell a product to
customers. The customers pay out the service provider. How should
the service provider allocate the profit to the data contributors?

acquisition among others.

Surprisingly, unlike the clear quantifiable value of a barrel of oil (with
which data is often compared to), or the goods and services that are directly
derived from data, setting a price tag and valuation on an individual data
point itself is a complex and challenging task. A fair valuation for data is
not easily defined as many aspects of data values have not been previously
explored in this context.

motivating example To illustrate this, envision a data marketplace
where data contributors can sell data to train a classifier (see Figure 1.2).

Problem of Data Valuation

Given a data set D provided by many data contributors and
a model owner who is willing to pay $X to train a machine
learning (ML) model over D, how should we distribute $X to
each data point to reflect its “value”?



4 motivation and research questions

Intuitively, a value concept should satisfy some key characteristics of data.
For instance, the value of a data source is combinatorial and depends on
the presence of other data sources. Furthermore, the value of a data point
depends on the outcome of the ML model and the specific task. Also, since
data is non-rival (allowing to be trained for multiple models), the idea
of value should be cumulative. Moreover, data contributors might provide
low-quality data (e.g., in Figure 1.1, a data contributor mislabeled a fish as a
cat). How can we ensure that the value is equitable for all data contributors?
In addition to meeting these requirements, a data marketplace must also
be scalable to handle millions of data points as well as tackle real-world
challenges, such as privacy concerns and data processing.

research questions In this dissertation we break down this scenario
into three high-level questions that guide our research agenda and address
different aspects, including desired theoretical guarantees and properties,
scalability, and real-world challenges.

Research Question 1

What is a principled framework to address data valuation in the con-
text of supervised machine learning?

We aim to study the question of data valuation first from a theoretical
perspective. By developing a principled framework, it will help us to iden-
tify desired properties that data valuation methods should possess and
establish theoretical guarantees that ensure the reliability and accuracy of
our methods.

Research Question 2

Can we efficiently compute the value of millions of individual data
points?

Machine learning has achieved great success in recent years, largely due to
the ability to work with increasingly large data sets and faster computation.



1.1 scientific contributions 5

As a result, it is crucial to develop efficient algorithms for data evaluation
that can handle real-world training data sets, which can contain millions of
data points.

Research Question 3

What are the challenges when building practical applications that
utilize and benefit from data markets?

To ensure that a data marketplace with data valuation for real-world data
is beneficial, it is important to carefully consider the specific environment
and needs of the application. This includes taking into account factors
such as privacy, incentives for data contribution and curation, and other
considerations that are relevant to the application’s real-world context.

1.1 Scientific Contributions

We provide three main contributions that address the above raised questions
in this dissertation. More detailed descriptions of each contribution can be
found in the beginning of each respective chapter.

contribution 1 We provide a principled framework for data valuation
based on the Shapley value. We show that this framework uniquely satisfies
many desired properties. In order to estimate the Shapley value in diverse
scenarios, we developed methods considering general machine learning
utilities. Alongside its theoretical robustness, our empirical findings show
that the Shapley value aligns with people’s intuitive understanding of data
value.

contribution 2 We present an efficient algorithm for computing the
exact Shapley values for unweighted KNN classification. We demonstrate
that both the exact algorithm and the approximate algorithm utilizing
locality sensitive hashing (LSH) can scale to millions of data points, making
them suitable for real-world data valuation. Furthermore, we expand our
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algorithms to address additional scenarios, such as (1) weighted KNN
classifiers, (2) data points clustered by distinct data curators, and (3) valuing
computation and data jointly.

contribution 3 We explore the practical challenges faced by data
marketplaces, with a primary focus on two key concerns: training ma-
chine learning models using private data and curating specialized, complex
datasets. We introduce two applications Sterling and ReforesTree, each tack-
ling these challenges. Sterling demonstrate a decentralized design of a
task-driven marketplace for private data, while ReforesTree incentivizes the
creation of a real-world ecological dataset benchmark.

1.2 Organization of the Thesis

This thesis is organized as follows: We start by providing relevant back-
ground in Chapter 2 and a comprehensive overview of related work in
data valuation. In Chapter 3, we then proceed by introducing a principled
framework for data valuation based on the Shapley value. We examine
some general properties of machine learning models and analyze their
implications for calculating the Shapley value. In Chapter 4, we study
Shapley-based data valuation for K Nearest Neighbor methods to provide
exact algorithms that can scale to millions of data points. In Chapter 5 we
study potential applications of data marketplaces and their corresponding
challenges. We conclude this thesis with Chapter 6 by summarizing the
contributions and limitations of this thesis, along with outlining potential
future work.

1.3 Author’s Publications

This dissertation is largely based on four publications presented in the
order of appearance of this thesis (∗ co-first authorship):

• Ruoxi Jia∗, David Dao∗, Boxin Wang, Frances Ann Hubis, Nick Hynes,
Nezihe Merve Guerel, Bo Li, Ce Zhang, Dawn Song, Costas J. Spanos.
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• Leonel Aguilar, David Dao, ... Wentao Wu and Ce Zhang. “Ease.ML:
A Lifecycle Management System for Machine Learning”. Conference on
Innovative Data Systems Research 2021.

• Ruoxi Jia, ... David Dao, ... Bo Li and Dawn Song “Scalability vs. Util-
ity: Do We Have To Sacrifice One for the Other in Data Importance
Quantification?”. CVPR 2021.

• Laure Berti-Equille, David Dao, Stefano Ermon, Bedharta Goswami.
“Challenges in KDD and ML for Sustainable Development”. KDD 2021.
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2
B A C K G R O U N D

If you cannot explain something in simple terms, you
don’t understand it.

— Richard Feynman

In this chapter, we give a high-level background on some of the relevant
topics, with the aim of providing readers with a common foundation on
which to approach the content of this thesis. In the following sections, we
will give:

1. A primer of the basic principles of supervised machine learning, ex-
plaining the relevant terminology and dependencies for data valuation

2. Foundational concepts of cooperative game theory which provide
a starting point for a principled framework and discussion on data
valuation

3. A comprehensive overview of related work in data valuation and
beyond.

2.1 Background on Machine Learning

The goal of this section is to emphasize the connection between a ma-
chine learning algorithm, the specific task being performed and its training
dataset. Unlike traditional computer programs that require manual fea-
ture engineering, ML models are trained on data and examples. In recent
years, machine learning has allowed us to tackle many complex tasks with
great success such as computer vision (Simonyan and Zisserman, 2014;
Krizhevsky, Sutskever, and G. E. Hinton, 2017; K. He et al., 2016; Szegedy
et al., 2016a; Russakovsky et al., 2015; Tan, Pang, and Le, 2020; Dosovitskiy
et al., 2021), natural language processing, (LeCun, Bengio, and G. Hinton,

9
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2015; Vaswani et al., 2017; Bommasani et al., 2021; OpenAI, 2023; T. B. Brown
et al., 2020) speech recognition (G. Hinton et al., 2012; Amodei et al., 2015;
Devlin et al., 2018; Raffel et al., 2020), and reinforcement learning (Mnih
et al., 2013; Horgan et al., 2018; Kapturowski et al., 2019; Schrittwieser et al.,
2019). This accomplishment is due to a number of factors, including the
explosion of large amounts of available data, advancements in hardware
infrastructure and computing power, and the development of novel algo-
rithms in deep learning.

(Mitchell, 1997) provided a widely recognized definition of machine learn-
ing that highlights the link between the learning algorithm, the task and
the data: "A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance at tasks in
T, as measured by P, improves with experience E". Based on the type of data
that the learning algorithms are allowed to experience during the learning
process, one can thus broadly classify machine learning algorithms into
unsupervised or supervised learning. In unsupervised learning, algorithms
are trained on a dataset that contains many features, and they aim to learn
useful properties or structures that can be utilized to solve a particular
task. On the other hand, in supervised learning, each data point, besides
the features, is also associated with a label or target. The term "supervised
learning" originates from the concept that the labels or targets provided
can be interpreted as a supervision signal to the machine learning system,
guiding it on what to do.

2.1.1 Classification and Regression Tasks

In this thesis we will be focusing mainly on supervised learning. Given a
feature space X , a label space Y , n samples, and a labeled dataset D :=
{(zi)}i∈[n] with data points (or examples) zi = (xi, yi) ∈ X ×Y . Each data
point is a pair of an instance xi and its corresponding label yi. Typically the
feature space is a subset of the real numbers X ⊂ Rd and each instance xi

is a d-dimensional vector where each dimension corresponds to a feature
(e.g a pixel in an image) whilst the label space Y depends on the specific
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task T and can be either discrete or continuous. For example, if task T
is a classification task (e.g. recognize objects in images) on C number of
distinct classes, we usually assume that the label space is discrete and
Y = {1, 2, . . . , C}. The ML algorithm can then be asked to produce a
predictor f : Rn → {1, . . . , C} that predicts the correct class given x. On the
other hand, in a regression task (e.g. predict future stock prices) the label
space is continuous and usually takes the form Y = R. A machine learning
algorithm can then for instance be asked to produce a predictor f : Rn → R

which predicts the correct numerical value given the sample.

2.1.2 Performance measure

In order to assess a machine learning algorithm, we need to design a
quantitative number of how well it is doing. For that, we need a performance
measure. Often, this can be i.e. a loss function L : Y ×Y → R that quantifies
the cost of each possible prediction for a given true outcome. It is important
to note that choosing an appropriate measure is not a straightforward
process and depends strongly on the specific task being performed and the
desired behaviour of the system. For instance, in classification, if the model
owner is interested in an accuracy, we commonly choose the equivalent
error rate as a performance measure defined as L(ŷ, y) = 1[ŷ = y] where
ŷ is a predicted label from a machine learning model given an example x
and y is its true label. The error rate (also called 0-1 loss) is 0 if the model
correctly classifies a sample and 1 if it is not. In regression tasks and for
continuous label spaces Y , we typically use the mean squared error (MSE)
given by L(ŷ, y) = (ŷ− y)2. On the other hand, if the model owner’s task
is to make fair predictions that do not discriminate against any sensitive
group and prevent algorithmic bias (e.g. for credit scores), accuracy or mean
squared error may not be the most appropriate performance measure and
fairness metrics such as equalized odds or demographic parity may be more
relevant. In many cases, the right performance metric is inherently hard
to define such as in large language models where incorporating human
feedback has been invaluable. As we will see in the next chapters, choosing
a suitable performance measure is not only crucial for training a model to
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perform the desired task, but the specific properties of a chosen performance
measure can also lead to vastly different solutions for data valuation.

2.1.3 Validation and Test Set

One of the central challenges of machine learning is to train a predictor
f : X → Y that can generalize to unseen examples, meaning it can perform
well on previously unobserved samples and not just the data it was trained
on. Supervised learning turns the task of finding this predictor into an
optimization problem called empirical risk minimization (ERM) using the
available data set and a given loss function. The risk is equal to the expected
value of a loss function and since the number of training examples is finite,
we can’t directly compute the risk. Instead, we use the empirical risk as a
proxy of the risk by averaging the loss function over the available data points.
Give a set of labeled data points and a class of functions F ⊆ X → Y , we
can find a predictor f by solving

min
f∈F

1
n

n

∑
i=1

L( f (xi), yi) (2.1)

ML practitioners then typically divide their dataset into a training set, a
validation set and a test set. The training loss is used for training the model,
while the validation loss is used to choose the best possible hyperparameters
for the training. Lastly, the test loss is used for evaluating the overall
performance of the predictor. As the value of data is often associated to
improving the learning performance, such as validation or test accuracy, of
a predictor, this introduces a close link between the value of a data point in the
training set and the available data in the validation and test set.

2.2 A Primer on Cooperative Game Theory

Game theory, introduced by von Neumann and Morgenstern’s Theory of
Games and Economic Behavior (Neumann and Morgenstern, 1947), is the
study of mathematical models to analyze strategic interactions among ratio-
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nal players and has applications in a variety of fields, including economics,
political science, psychology, and biology. While non-cooperative game the-
ory (Nash, 1951) studies conflicting interactions and competition between
players, cooperative game theory instead focuses on studying cooperation
between players. In this thesis, we will restrict ourselves to cooperative
game theory as a natural way to analyze the behaviors of coalitions formed
by game players.

2.2.1 Cooperative game setting

Formally, a cooperative (or coalition) game (see Figure 2.1) is defined
by a pair (I, U), where I = {1, . . . , N} denotes the set of all players and
U : 2N → R is the utility function, which maps each possible coalition to a
real number to the usefulness of the subset to the coalition. 2N represents
the power set of N, i.e., the collection of all subsets of N, including the
empty set and N itself. To make these concepts more concrete, consider a
hypothetical company with N employees that generates profit based on the
set of employees who choose to work on a given day. Let U(S) be the profit
generated by a set of employees S. The natural question that arises is how
to fairly compensate the employees for their contribution to the company’s
profit?

2.2.2 The Shapley value

Since any arbitrary mapping between player sets and outcomes is possi-
ble, how to assign individual compensations can be unclear. The Shapley
value (Shapley, 1953) is a classic method in cooperative game theory to
distribute the total gains generated by the coalition of all players, and has
been applied to problems in various domains, ranging from economics (Gul,
1989), counter-terrorism (T. Michalak et al., 2013; Lindelauf, Hamers, and
Husslage, 2013), environmental science (Petrosjan and Zaccour, 2003), to
ML (Cohen, Ruppin, and Dror, 2005). Continuing with our example of
the hypothetical company, let us now assume that we have information
about the profit generated by all possible subsets of employees, for instance,
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Figure 2.1: Example of the Shapley values of two coalitional games. There are
three players: r,g and b. Each game is defined through its utility Ui.

through past balance sheets. Shapley values assign a payout to an individ-
ual i by calculating a weighted average of the profit increase when i works
with group S versus when i does not work with group S (the marginal
contribution). Averaging this difference over all possible subsets S to which
i does not belong S ⊆ I \ {i}, we arrive at the definition of the Shapley
value:

i’s Shapley value︷ ︸︸ ︷
si(U) = ∑

S⊆I\{i}

1

(N−1
|S| )︸ ︷︷ ︸

S’s weight

[

i’s marginal contribution︷ ︸︸ ︷
U(S ∪ {i})−U(S) ] (2.2)

The formula in (2.2) can also be stated in the equivalent form:

si =
1

N! ∑
π∈Π(S)

[
U(Pπ

i ∪ {i})−U(Pπ
i )

]
(2.3)

where π ∈ Π(S) is a permutation of individuals and Pπ
i is the set of individ-

uals which precede individual i in π. Intuitively, imagine all individuals to
arrive in a random order, and that every individual i receives their marginal
contribution with respect to the existing current group. If we average these
contributions over all the possible orders of individuals, we obtain si.
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2.2.3 Properties of the Shapley Value

Although, there exist other methods within cooperative game theory for
valuing the contributions of players, such as the core and nucleolus, the
Shapley values are the only method that satisfies some very basic and
desirable properties. Typically these properties are given as four axioms,
where the Shapley values uniquely satisfies all four axioms:

Efficiency: The sum of the Shapley values of all players equals the value of
the grand coalition and thus all the gain is distributed among the players:

U(I) = ∑
i∈I

si (2.4)

Symmetry: Two players who are identical with respect to what they con-
tribute to a utility should have the same value:

U(S ∪ {i}) = U(S ∪ {j}), ∀S ⊆ I \ {i, j}, then si = sj (2.5)

Null effects: Players with zero marginal contributions to all subsets of the
dataset receive zero payoff:

si = 0 if U(S ∪ {i}) = U(S) for all S ⊆ I \ {i} (2.6)

Linearity: The values under multiple utilities sum up to the value under a
utility that is the sum of all these utilities:

s(U1, i) + s(U2, i) = s(U1 + U2, i) for i ∈ I (2.7)

Alternative axiomatizations have been put forward and, i.e. (Young, 1985)
showed that it is possible to replace the null player axiom (2.6) and the
linearity axiom (2.7) by the monotonicity axiom.

Monotonicity: A payout to a player depends only on his marginal contribu-
tions and monotonically:

if ∀S ⊆ I \ {i} : U1(S ∪ {i}))−U1(S) ≥ U2(S ∪ {i})−U2(S)
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then si(U1) ≥ si(U2)

Below we will explore further how these game theory properties can be
translated to machine learning and specifically the problem of valuing data.

2.3 Related Work

2.3.1 Data Valuation

There have been several proposed strategies for valuing data, which has
inspired or build upon the work presented in this dissertation. For clarity,
we broadly classify the various strategies into seperate categories:

(a) Leave-one-out and influence functions

(b) Principled cooperative game theory-based approaches; these notably
include strategies using the Shapley value, the (least) core, and the
Banzhaf value

(c) Reinforcement learning

(d) Deep Neural Networks

(e) Data-centered

In the following, we review related work and group them according to these
categories (see Table 2.1 for an overview). For a more in-depth and technical
analysis of these strategies, interested readers can refer to the study by
(Sim, X. Xu, and Low, 2022). This work thoroughly evaluates existing data
valuation approaches in terms of their properties and desired outcomes,
while also highlighting the current challenges and future research directions.
For completeness, we have also included our work in Table 2.1.

leave-one-out and influence functions Leave-one-out is a sim-
ple approach to data valuation that calculates the value of each sample as
its marginal utility, i.e., the performance change caused by excluding that
sample from training (Sim, X. Xu, and Low, 2022; Jia, F. Wu, et al., 2021).
However, this method has several fundamental problems including that it is
prohibitively expensive to compute for large datasets or complex models, as
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Category Reference Year Utility type Proposed Method

Cooperative
Game
Theory

(Jia, Dao, B. Wang, Hubis, Hynes, et al., 2019) 2019 task-dependent Shapley value (in Chapter 3)
(Ghorbani and Zou, 2019) 2019 task-dependent Shapley value
(Frye, Rowat, and Feige, 2020) 2019 task-dependent Asymmetric Shapley value
(Ohrimenko, Tople, and Tschiatschek, 2019) 2019 task-dependent Robust Shapley value
(Ghorbani, Kim, and Zou, 2020) 2020 task-dependent Distributional Shapley value

(Jia, Dao, B. Wang, Hubis, Gurel, et al., 2020) 2020
task-dependent and
learning-agnostic

KNN-Shapley (in Chapter 4)

(Sim, Y. Zhang, et al., 2020) 2020 task-dependent Shapley value and information gain
(Okhrati and Lipani, 2021) 2021 task-dependent Owen Sampling for Shapley value
(Yan and Procaccia, 2021) 2021 task-dependent Least core
(X. Xu, L. Lyu, et al., 2021) 2021 task-dependent Cosine gradient Shapley value
(Kwon and Zou, 2022) 2022 task-dependent Beta Shapley
(Schoch, H. Xu, and Ji, 2022) 2022 task-dependent CS-Shapley
(J. T. Wang and Jia, 2023a) 2023 task-dependent Banzhaf value

Leave-One-Out and
Influence Functions

(Koh and Liang, 2017) 2017 task-dependent Influence functions

Reinforcement
Learning

(Yoon, Arık, and Pfister, 2019) 2019
task-dependent and
learning-agnostic

Data Valuation using
Reinforcement Learning
(DVLR)

Deep
Neural
Networks

(Z. Wu, Shu, and Low, 2022) 2022 learning-agnostic Data valuation at initialization
(DaVinz)

Data-Centered
(X. Xu, Z. Wu, et al., 2021) 2021 learning-agnostic Robust volume

(Just et al., 2023) 2023 learning-agnostic Learning-agnostic data valuation
(LAVA)

Energy-Based (Bian et al., 2022) 2022 task-dependent Variational Index

Table 2.1: Overview of proposed data valuation strategies in literature. The
publications related to this dissertation is marked with a reference to
the corresponding chapter.

retraining models on every single data subset to exactly compute the leave-
one-out error scales linearly with the number of samples (Just et al., 2023).
To address the computational expense of computing the leave-one-out error
for large datasets or complex models, (Koh and Liang, 2017) propose using
influence functions to efficiently estimate the leave-one-out and identify the
training points most responsible for a model’s given predictions. However,
this approach inherits some of the other fundamental problems with leave-
one-out, such as inaccurate utility estimations. In contrast, other strategies,
such as cooperative game theoretic ones, may not have these issues (Sim,
X. Xu, and Low, 2022).
(Koh, Ang, et al., 2019) extend their research to study the use of influence
functions in measuring the effects of large groups of samples, rather than
just individual points. This allows for more efficient computation of influ-
ence functions, particularly in the context of data valuation. The authors
find that their predicted group effect correlates well with the actual effect
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in practice, despite some large errors. However, they caution that this corre-
lation may not hold in general and may be due to some unique properties
of real-world datasets.
In the context of data valuation, it is important to note that influence func-
tions, like most other data valuation strategies, depend upon the choice of
learning algorithm. While influence functions are well-defined for linear
models due to their convexity, deep learning models often use non-convex
loss functions, making their influence functions more complex. To inves-
tigate this, (Basu, Pope, and Feizi, 2021) conducted an empirical study on
the use of influence functions in a deep learning context. Their findings
suggest that influence functions can be accurate for shallow networks, but
their performance degrades in deeper networks. Furthermore, the accuracy
of the influence estimates may depend on the specific test points examined
and how the network was trained.

shapley value Concurrent to the work in this dissertation, Ghorbani
et al. (Ghorbani and Zou, 2019) developed two heuristics to accelerate the
estimation of the Shapley value for complex learning algorithms, such as
neural networks. One is to truncate the calculation of the marginal contri-
butions as the change in performance by adding only one more training
point becomes smaller and smaller. Another is to use one-step gradient
to approximate the marginal contribution. The authors also demonstrate
the use of the approximate Shapley value for outlier identification and
informed acquisition of new training data. However, their algorithms do
not provide any guarantees on the approximation error, thus limiting its
viability for practical data valuation. It should be noted that Data Shapley is
sensitive to changes in input and lacks stability in terms of “Lipschitzness”
with respect to data contributors, as pointed out by (Sim, X. Xu, and Low,
2022). This implies that the Data Shapley must be recalculated when new
data contributors are introduced or removed.
The work of (Ghorbani, Kim, and Zou, 2020) address this lack of stability
and need for recomputing by proposing distributional Shapley. Unlike the
conventional Shapley value that defines the value of a point based on a fixed
dataset, distributional Shapley defines the value of a point in the context of
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an underlying data distribution. This approach guarantees stability even
when there are minor variations in the data or underlying distribution. The
authors also proposed an efficient sampling-based algorithm to compute
the distributional Shapley value. This algorithm employs a separate regres-
sion model to predict distributional Shapley values for unseen data and
provides robust approximation guarantees.
(Kwon, Rivas, and Zou, 2021) improved the distributional Shapley value by
creating practical and manageable analytic expressions for its estimation
in linear regression, binary classification, and non-parametric density es-
timation. These expressions enabled the development of new algorithms
that accurately and efficiently estimate the distributional Shapley value,
enhancing its practicality and applicability. By reducing the computational
complexity associated with existing algorithms, the proposed methodology
broadens the scope of the distributional Shapley value and improves its
efficiency.
To overcome data replication issues, (Ohrimenko, Tople, and Tschiatschek,
2019) proposed a modified version of the Shapley value that guarantees
robustness to data replication. However, their approach comes at a cost: it
sacrifices the efficiency axiom (2.4).
To reduce the exponential complexity of the Shapley value computation,
(Okhrati and Lipani, 2021) suggest using a multilinear extension technique
from game theory. Their proposed Owen sampling algorithm provides
a computationally efficient approach for estimating Shapley values, sur-
passing the Castro sampling method (Castro, Gómez, and Tejada, 2009) by
reducing the estimator’s variance and generating more precise and efficient
estimates. Importantly, their technique can be applied to all learning algo-
rithms.
Aside from its high computational complexity, the Shapley value has an-
other limitation. It cannot accommodate causal knowledge, as emphasized
by (Frye, Rowat, and Feige, 2020). To address this limitation, the authors
propose a less restrictive framework called Asymmetric Shapley Values
(ASVS), which can incorporate causal knowledge. This new framework is
built on a rigorous set of axioms, enabling the integration and respect of any
causal structure present in the data. The ASVS approach does not require
a complete causal graph underlying the data, making it more practical
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in real-world applications. The authors demonstrate the effectiveness of
ASVS when causal knowledge is present, providing empirical evidence of
its potential.
In their work, (Sim, Y. Zhang, et al., 2020) present a data valuation approach
that employs separate ML models as rewards based on the Shapley value
and information gain on model parameters given the data. The authors
establish various conditions for incentives, such as Shapley fairness, sta-
bility, individual rationality, and group welfare, which are appropriate for
their model reward scheme’s freely replicable nature. Their reward scheme
also includes an adjustable parameter that allows a trade-off between these
conditions while maintaining fairness since they cannot all be achieved
simultaneously. Notably, the proposed data valuation method does not
require any assumptions about the distribution of test samples.
The authors of (Schoch, H. Xu, and Ji, 2022) introduce CS-Shapley, a new
valuation method that builds upon the Shapley value to differentiate be-
tween training samples that belong to either the in-class or out-of-class
distribution. Value functions based on predictive accuracy cannot distin-
guish between samples that benefit their own class accuracy and those that
harm it. CS-Shapley is able to overcome this limitation by decomposing the
value function into two functions that emphasize in-class accuracy and in-
troduce a discount for out-of-class accuracy. The proposed approach yields
a single function that satisfies two desirable properties for evaluating data
values in classification, and empirical results demonstrate its effectiveness
and transferability to various models and applications.
The cosine gradient Shapley value, introduced by (X. Xu, L. Lyu, et al., 2021),
provides a fair evaluation of each agent’s parameter update in federated
learning. This method does not require a separate test set and is therefore
validation-free. The authors also propose a gradient reward mechanism
during training to ensure fairness and demonstrate its effectiveness in ex-
periments.
(Kwon and Zou, 2022) introduce Beta Shapley, a generalization of Data
Shapley by relaxing the efficiency axiom. Instead, the authors suggest that
ranking is sufficient in most machine learning settings. They consider all
semi-values that satisfy all other axioms except the efficiency axiom and
use the Beta function to choose weights for the weighted sums of marginal
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utilities over all data subsets. This results in the Beta Shapley method, for
which the authors provide efficient algorithms for estimation.

least core (Yan and Procaccia, 2021) challenge the use of the Shapley
value as the standard criterion in data valuation and propose the core,
another game theoretic solution concept that satisfies group fairness, as
an alternative. They demonstrate that a relaxation of the core, called the
least core, can be approximated using a Monte Carlo algorithm, making
it computationally tractable. The authors also show empirically that the
approximate least core can outperform the approximate Shapley value in
certain settings. (Tianhao Wang, Yang, and Jia, 2022) introduce a general
framework to enhance the efficiency of strategies that use sampling-based
Shapley value or least core estimation heuristics. Their proposed approach
involves learning to estimate the performance of a learning algorithm on
unseen data combinations, known as data utility learning. This significantly
reduces the need for retraining and leads to cheaper Shapley value and
least core estimations. The authors derive theoretical bounds on the error
of data utility learning and demonstrate empirically that it improves the
accuracy of these estimations.

banzhaf value In the context of noisy models, (J. T. Wang and Jia,
2023a) investigate the robustness of data valuation notions. They find that
randomness introduced by stochastic gradient descent and other factors can
lead to inconsistent data value rankings between model runs, particularly
for high variance data subsets, when using data value notions such as
the Shapley value. To address this issue, the authors propose a concept
called safety margin as a robustness measure for data value notions. They
show that the Banzhaf value, another solution concept from game theory,
achieves the largest safety margin among all semi-values, including the
Shapley value. The authors also develop an efficient algorithm for Monte
Carlo approximation of the Banzhaf value and highlight it as a promising
alternative data value notion.
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reinforcement learning Most data valuation strategies separate
the training of the learning algorithm from the data valuation process. How-
ever, (Yoon, Arık, and Pfister, 2019) proposed a different approach called
data valuation reinforcement learning (DVRL) that combines learning of
data values and the predictor model. This joint learning method uses a data
value estimator to estimate the values of individual samples and select the
most valuable ones for training the predictor model. By incorporating data
valuation into the training procedure, the strategy enables the predictor
model to optimize for high-value samples, leading to better model perfor-
mance and data valuation estimates. The use of reinforcement learning in
DVRL is motivated by the non-differentiability of the sample selections in
the data value estimator, which makes gradient-based methods impractical.

deep neural networks (Z. Wu, Shu, and Low, 2022) present a new
approach for efficient data valuation with large and complex deep neu-
ral networks (DNNs) that is both validation-based and training-free. The
authors develop a domain-aware generalization bound for DNNs, called
DaVinz, which can characterize the performance of the model without
the need for training. This generalization bound is used as the scoring
function in the data valuation process, while alternative techniques such
as the Shapley value are employed as the utility or valuation function.
By using DaVinz, it is possible to evaluate data valuation methods with
DNNs in a more cost-effective manner, while avoiding uncertainties aris-
ing from hyperparameter selection and other handcrafted design choices
in model training. Compared to other training-free methods, such as the
validation-free robust-volume based approach proposed by (X. Xu, Z. Wu,
et al., 2021), DaVinz is well-suited for high-dimensional input and can
retain useful information from the validation dataset. This is particularly
beneficial in scenarios where data consumers prefer datasets that result in
better performance as measured on a validation dataset.

data-centered (Just et al., 2023) propose a novel framework for LAVA
that can efficiently estimate data values independent of downstream learn-
ing algorithms, removing the dependency on design choices of the learning
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algorithm in the utility function. They use a proxy for the validation perfor-
mance associated with a training set, based on the class-wise Wasserstein
distance between the two datasets, which measures the minimum cost of
transforming one probability distribution to another. The authors show
that the class-wise Wasserstein distance provides an upper bound on the
validation performance for any given model under certain Lipschitz con-
ditions. They then use the calibrated gradients of the optimal transport
distance to value individual samples, which can be obtained for free in
off-the-shelf solvers for Wasserstein distance. The authors demonstrate that
their framework can significantly improve the performance of various use
cases related to detecting low-quality data while being orders of magnitude
faster than state-of-the-art methods. However, the authors note that LAVA
may not be suitable for tasks that aim for goals beyond accuracy, such as
fairness or equitability.
(X. Xu, Z. Wu, et al., 2021) suggest using data diversity via robust volume
of the data matrix as a means of quantifying data value. This method is
agnostic to both task and learning algorithm and is based solely on the trace
of the feature matrix inner product, making it validation-free. The method
also has theoretical guarantees on replication robustness, which discourages
data contributors from duplicating data. However, the method suffers from
the curse of dimensionality, making it less effective in high-dimensional
spaces. Additionally, this approach may disregard valuable information in
the validation set and cannot detect labeling errors. The Shapley value is
still used to measure the value of individual samples.

energy-based The valuation of data is often performed using coopera-
tive game theory, with solution concepts such as the Shapley value, least
core, or Banzhaf value. However, (Bian et al., 2022) have recently proposed
a novel approach that generalizes these concepts and connects them with
energy-based models. By using mean-field variational inference, the authors
can recover classical game-theoretic valuation criteria through a fixed-point
iteration for maximizing the evidence lower bound objective. They also
introduce the Variational Index, which is defined as the lowest conceivable
decoupling error among a trajectory of variational valuations obtained by
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running the fixed-point iteration for multiple steps. This index satisfies three
important game-theoretic axioms, including null player, marginalism, and
symmetry. Finally, the authors show that the Variational Index has a lower
decoupling error and better valuation performance than other variational
valuations in some scenarios.

2.3.2 Further related work

more data pricing model Before withdrawn by Microsoft, the Azure
Data Marketplace adopted a subscription model that gave users access to a
certain number of result pages per month (Koutris et al., 2015), SkyFi sells
access to satellite imagery, Xignite sells financial datasets and prices data
based on the data type, size, query frequency, etc. There is rich literature on
query-based pricing (Koutris et al., 2015; Koutris et al., 2013; Koutris et al.,
2012; Deep, Koutris, and Bidasaria, 2017; Lin and Kifer, 2014; C. Li and
Miklau, 2012; Upadhyaya, Balazinska, and Suciu, 2016), aimed at design
pricing schemes for fine-grained queries over a dataset. In query-based
pricing, a seller can assign prices to a few views and the price for any
queries purchased by a buyer is automatically derived from the explicit
prices over the views.
Koutris et al. (Koutris et al., 2015) identified two important properties that
the pricing function must satisfy, namely, arbitrage-freeness and discount-
freeness. The arbitrage-freeness indicates that whenever query Q1 discloses
more information than query Q2, we want to ensure that the price of Q1 is
higher than Q2; otherwise, the data buyer has an arbitrage opportunity to
purchase the desired information at a lower price. The discount-freeness
requires that the prices offer no additional discounts than the ones specified
by the data seller. The authors further proved the uniqueness of the pricing
function with the two properties, and established a dichotomy on the
complexity of the query pricing problem when all views are selection
queries.
Li et al. (C. Li and Miklau, 2012) proposed additional criteria for data
pricing, including non-disclosiveness (preventing the buyers from inferring
unpaid query answers by analyzing the publicly available prices of queries)
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and regret-freeness (ensuring that the price of asking a sequence of queries
in multiple interactions is not higher than asking them all-at-once), and
investigated the class of pricing functions that meet these criteria.
Zheng et al. (Zheng et al., 2019) studied how data uncertainty should
affect the price of data, and proposed a data pricing framework for mobile
crowd-sensed data. Recent work on query-based pricing focuses on enabling
efficient pricing over a wider range of queries, overcoming the issues such as
double-charging arising from building practical data marketplaces (Koutris
et al., 2013; Deep, Koutris, and Bidasaria, 2017; Upadhyaya, Balazinska, and
Suciu, 2016), and compensating data owners for their privacy loss (C. Li,
D. Y. Li, et al., 2017).

ml model pricing Due to the increasing pervasiveness of ML-based
analytics, there is an emerging interest in studying the cost of acquiring
data for ML. Chen et al. (L. Chen, Koutris, and A. Kumar, 2018; L. Chen,
Koutris, and A. Kumar, 2017) proposed a formal framework to price ML
model instances, wherein an optimization problem was formulated to find
the arbitrage-free price that maximizes the revenue of a seller. The model
price can be also used for pricing its training dataset. While the interaction
between data analytics and economics has been extensively studied in the
context of both relational database queries and ML, few works have dived
into the vital problem of allocating revenues among data owners. (Koutris
et al., 2012) presented a technique for fair revenue sharing when multiple
sellers are involved in a relational query. By contrast, data valuation focuses
on the revenue allocation for ML models. Raskar et al (Raskar et al., 2019)
presented a taxonomy of data valuation problems for data markets and
discussed challenges associated with data sharing. Specifically, the paper
discussed intrinsic (e.g., data quality) vs. extrinsic (e.g., demand-supply)
factors of data valuation as well as goal-dependent vs. goal-independent
depending on whether or not there is a specific well-defined goal for the
data purchase.

efficient estimation of shapley values . Originated from game
theory, the Shapley value, in its most general form, can be #P-complete to
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compute (X. Deng and Papadimitriou, 1994). Efficiently estimating Shap-
ley value has been studied extensively for decades. For bounded utility
functions, (Maleki et al., 2013) described a sampling-based approach that
requires O(N log N) samples to achieve a desired approximation error in
l∞ norm and O(N2 log N) in l2 norm. Bachrach et al. (Bachrach et al., 2008)
also leveraged a similar approach but focused on the case where the utility
function has binary outputs. By taking into account special properties of the
utility function, one can derive more efficient approximation algorithms. For
instance, (Fatima, Wooldridge, and Jennings, 2008) proposed a probabilistic
approximation algorithm with O(N) complexity for weighted voting games.
(T. P. Michalak et al., 2013) showed that for specific network games, the
exact Shapley value can be computed efficiently.

value of personal data . The game-theoretic analysis of the value
of personal data has been explored in (Chessa and Loiseau, 2017; Kleinberg,
Papadimitriou, and Raghavan, 2001), which proposed a fair compensation
mechanism based on the Shapley value. They derived the Shapley value
under simple data utility models abstracted from network games or recom-
mendation systems, while data valuation focuses on more complex utility
functions derived from ML applications. In our case, the Shapley value
no longer has closed-form expressions. We develop novel and efficient
approximation algorithms to overcome this hurdle.

shapley value for feature attribution. Using the Shapley
value in the context of ML is not new. For instance, the Shapley value has
been applied to feature selection (Lundberg and S.-I. Lee, 2017; Cohen,
Ruppin, and Dror, 2005; X. Sun et al., 2012; Mokdad et al., 2015; Sasikala,
Balamurugan, and Geetha, 2015). While their contributions have inspired
this work, many assumptions made for feature “valuation” do not hold
for data valuation. As we will see, by studying the Shapley value tailored
to data valuation, we can develop novel algorithms that are more efficient
than the previous approaches (Maleki et al., 2013).
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data importance There exist various methods to rank the importance
of training data, which can also potentially be used for data valuation. For
instance, influence functions (Koh and Liang, 2017), beyond their use for
data valuation, is primarily used as an approximate the change of the model
performance after removing a training point for smooth parametric ML
models, a variant (Sharchilev et al., 2018) for non-parametric ones. Ogawa
et al. (Ogawa, Suzuki, and Takeuchi, 2013) proposed rules to identify and
remove the least influential data when training support vector machines
(SVM) to reduce the computation cost. One can also construct coresets—
weighted data subsets—such that models trained on these coresets are
provably competitive with models trained on the full dataset (Dasgupta
et al., 2009). However, unlike the Shapley value, these approaches do not
satisfy the efficiency, fairness, and linearity properties simultaneously. Nev-
ertheless, as the Shapley value becomes increasingly prevalent in data
importance, its appropriateness for feature selection is called into question
by (Fryer, Strümke, and Nguyen, 2021). The authors advise caution against
the magical thinking that presenting the abstract general axioms of the
Shapley value as “favorable and fair” may introduce. Additionally, the
authors argue that the four axioms of efficiency, null player, symmetry, and
additivity do not guarantee that the Shapley value is well-suited for feature
selection and may even imply the opposite in some cases.





3
A P R I N C I P L E D F R A M E W O R K F O R D ATA VA L UAT I O N
B A S E D O N T H E S H A P L E Y VA L U E

I consider myself a mathematician. I never, never in
my life took a course in economics.

— Lloyd Shapley

3.1 Introduction

Machine learning (ML) and data analytics is an increasingly common
practice in science and business and with today’s data-centric development
pattern of ML applications, high-quality data has become increasingly
valuable. For many large organizations, the data for building an ML model
are often provided by multiple data contributors. For instance, a large
internet enterprises analyze various users’ data to improve product design,
customer retention, and initiatives that help them earn revenue. On the
other hand, particularly for smaller organizations and entities, acquiring
necessary high-quality data to build accurate ML models can often be a
non-trivial task. However, even though a single small organization may have
limited data, it is still possible to develop better, high-quality ML models by
training them on aggregated data from a combination of multiple parties.

ml models are built collaboratively. Collaborative ML ap-
proaches which leverages data from multiple organizations and working
together to develop models are gaining popularity (Richter and Slowinski,
2019; Scaria et al., 2018). These approaches are more accurate and robust
than those developed using a single data source and allows organizations to
tap into the collective knowledge and expertise of different entities, leading
to improved results. Examples of collaborative ML can be seen in precision
agriculture, a farmer with limited land area and sensors can combine his
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collected data with the other farmers to improve the modeling of the effect
of various influences (e.g., weather, pest) on his crop yield (Claver, 2019)
Such data sharing also benefits other application domains, including real
estate in which a property agency can pool together its limited transactional
data with that of the other agencies to improve the prediction of property
prices (Conway, 2018). In healthcare, a hospital or healthcare firm whose
data diversity and quantity are limited due to its small patient base can
draw on data from other patients, hospitals and firms to improve the pre-
diction of some disease progression (e.g., glaucoma) (Center for Open Data
Enterprise, 2019). This collaboration can be encouraged by a government
agency, such as the National Institute of Health in the United States.
Moreover, in many real-world applications, the datasets that support queries
and ML are often contributed by multiple individuals without their knowl-
edge. One example is that complex ML tasks such as foundation models
(e.g Stable Diffusion (Rombach et al., 2021), GPT (OpenAI, 2023; T. B. Brown
et al., 2020)) training often relies on massive crowdsourcing efforts i.e. Com-
monCrawl, LAION-5B (Schuhmann et al., 2022). A recent public movement
among writers and artists has emerged to advocate for the fair distribution
of revenue generated from queries and machine learning models among
the various contributors of data.

a fair distribution of value . Our motivation for valuing data
first arose by a system we were building at the time together with one
of the largest hospital in the US. In the system (called Sterling, further
described in Chapter 5), patients submit part of their medical records onto
a “data market,” and analysts pay a certain amount of money to train a ML
model on patients’ data. Naturally, the question arises how to distribute
the payment from analysts back to the patients, or specifically "how much
is the patient’s data worth?". Answering the question of how to distribute
payments from analysts back to patients in a data market has significant
implications. One of the most important benefits is the fair distribution of
profits among multiple data contributors. In many data markets, multiple
individuals or entities contribute data, and it is essential to ensure that
each party receives equitable share of the profits generated from the data.
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Another potential benefit is the ability to determine prospective compen-
sation when data breaches happen. If a data breach occurs, patients may
be entitled to compensation for any harm caused by the breach. Having a
clear understanding of how payments should be distributed among data
contributors can help to determine how compensation should be divided
among those affected.

desiderata for data valuation. Recalling our toy example in
Figure 1.1, we believe a comprehensive framework for data valuation should
have desired properties (see Figure 3.1):
1) Data points are often only valuable in (large) combinations with other data
points within the set. 2) The overall profit is typically task-dependent (for
instance, a classifier for rare diseases may yield greater returns than one
for distinguishing between dogs and fish). 3) The quality of individual data
points can vary, necessitating equitable valuations. Lastly, 4) since data points
can be frequently repurposed for multiple tasks, any generated value should
be cumulative. Note that some desiderata are derived from the specifics of
ML-based utilities (e.g. combinatorial and cumulative). Therefore, we aim
to find a valuation strategy with the following challenging desiderata:

Challenge 1

What is a principled framework for data valuation that is combinato-
rial, task-dependent, cumulative and equitable?

In this chapter, we propose a natural way of tackling the data valuation
problem by adopting a game-theoretic viewpoint, where each data con-
tributor is modeled as a player in a coalitional game and the usefulness of
data from any subset of contributors is characterized via a utility function.
As we have seen in Chapter 2 the Shapley value (2.2) defines a unique
profit allocation scheme that satisfies a set of properties with appealing
real-world interpretations for machine learning, such as rationality (through
satisfying axiom 2.4), fairness (through axioms 2.6 and 2.5) and decentraliz-
ability (through axiom 2.7). We demonstrate that these axioms can also be
connected to the desired properties mentioned above.
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Assumptions Techniques Complexity Approximation
incrementally trainable models otherwise

Existing Bounded utility Permutation sampling O(N log N) model training
and O(N2 log N) eval

O(N2 log N)

model training and eval
(ϵ, δ)

Application
-agnostic

Bounded utility Group testing O(N(log N)2) model training
and eval

O(N(log N)2)

model training and eval
(ϵ, δ)

Monotone utility &
sparse value

Compressive
permutation sampling

O(log log N) model training
and O(N log log N) eval

O(N log log N)

model training and eval
(ϵ, δ)

ML-specific Stable learning Uniform division O(1) computation (ϵ, 0)
Smooth utility Influence function O(N) optimization routines Heuristic

Table 3.1: Summary of Technical Results. N is the number of data points.

exponential compute time . Despite the desirable properties of the
Shapley value, computing the Shapley value is known to be expensive; the
number of utility function evaluations required by the exact Shapley value
calculation grows exponentially in the number of players. Even worse, for
ML tasks, evaluating the utility function itself (e.g., testing accuracy) is
already computationally expensive, as it requires training a model. Due
to the computational challenge, the application of the Shapley value to
data valuation has thus far been limited to stylized examples, in which the
underlying utility function of the game is simple and the resulting Shapley
value can be represented as a closed-form expression (Chessa and Loiseau,
2017; Kleinberg, Papadimitriou, and Raghavan, 2001). The state-of-the-art
method to estimate the Shapley value for a black-box utility function is
based on Monte Carlo simulations (Maleki et al., 2013), which still requires
evaluating ML models for O(N2 log N) many times in order to compute
the Shapley value of N data points and is thus clearly impracticable. Thus,
we would like to address another challenge:

Challenge 2

How can we efficiently estimate the Shapley value for general utilties
while achieving the same performance guarantee as the state-of-the-art
method?
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3.1.1 Contributions

The contributions in this chapter are products of joint work with many
collaborators and have been previously published in AISTATS under

Ruoxi Jia∗, David Dao∗, Boxin Wang, Frances Ann Hubis, Nick Hynes,
Nezihe Merve Guerel, Bo Li, Ce Zhang, Dawn Song, Costas J. Spanos.
“Towards Efficient Data Valuation Based on the Shapley Value”. AISTATS.
2019.

contribution 1 : a principled framework for data valuation.
Addressing the first challenge, we present a principled framework for data
valuation grounded in the Shapley value. This framework uniquely tackles
our desired criteria for data valuation. It is combinatorial, considering all
potential subsets; task-dependent, as it relies on a specific utility function
tasked by the service provider; cumulative, due to the linearity property
of the Shapley value; and equitable, thanks to Shapley fairness. The princi-
pled framework enables us value a data point by calculating its respective
Shapley values of a cooperative game in which the data contributors serve
as players.

contribution 2 : algorithms for efficient estimation of the

shapley value . To efficiently estimate the Shapley value, we first
address Challenge 2 from a theoretical perspective and provide following
contributions:

C2.1 Approximation for Bounded Utilities. In the most general case we
only make a bounded utility assumption. We show that, to approximate
the Shapley value of N data points with provable error guarantees, it is pos-
sible to design an algorithm with O(N(log N)2) model evaluations based
on group testing (Du, F. K. Hwang, and F. Hwang, 2000). The idea is to
share the information we get from a single utility evaluation across all data
points, as opposed to treating different data points independently as in
existing approaches. In cases where the utility function cannot be efficiently
evaluated for new data points in an incremental manner, and when the
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number of training data points is large, our group testing-based approach
has been shown to require significantly fewer model evaluations than the
state-of-the-art sampling-based approach (Maleki et al., 2013).

C2.2 Approximation for Monotone Utilities and Sparse Value. More-
over, if it is reasonable to assume that the utility function is monotone and
the Shapley value is “sparse” in the sense that only few data points have
significant values, then we are able to further reduce the number of model
training to O(log log N), when the model can be incrementally maintained.

Although there may be theoretical improvements, retraining models multi-
ple times can still be impractical for large datasets and ML models. Thus
we introduce two practical Shapley value estimation algorithms specific to
ML tasks by introducing various assumptions on the utility function:

C2.3 Uniform Value Division for Stable Algorithms. For stable learning
algorithms, such as many norm regularized models (Bousquet and Elisseeff,
2002), the model only changes slightly when the training data is changed
slightly. Intuitively, stable algorithms are not sensitive to individual training
points and therefore all training points should have very similar values.
Our theoretical results show that uniform data value division is a fairly
good approximation to the Shapley value for stable learning algorithms.

C2.4 Using the Influence Function Heuristic. For a smooth utility
function one can use influence functions (Koh and Liang, 2017) as a proxy
to the Shapley value by assuming (1) the value of a data point depends only
on its marginal contribution to the data subset that contains all other points,
and (2) the influence function is a good local approximation to the change
of the utility caused by adding one more training data point. Whether this
heuristic is acceptable is application-specific.

It is worth noting that the algorithms in (C2.1) and (C2.2) are agnostic
to the context wherein the Shapley value is computed; hence, they are
also useful for the applications beyond data valuation. Furthermore for
algorithms (C2.3) and (C2.4), the efficiency does not come for free. (C2.3)
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relies on the stability of a learning algorithm, which is difficult to prove for
complex ML models, such as deep neural networks. The compromise that
we have to make in (C2.4) is that the resulting Shapley value estimates no
longer have provable guarantees on the approximation error. Filling the gap
between theoretical soundness and practicality is important future work.

Table 3.1 summarizes the contributions of this chapter. In the rest of the
chapter, we will elaborate on the idea and analysis of these algorithms,
and further use them to compute the data values for various benchmark
datasets.

3.1.2 Overview

In the following, we first introduce our principled framework for data
valuation based on the Shapley value in Section 3.2. Next we introduce
a repository of efficient approximation algorithms by studying general
properties of ML-based utilities in Section 3.3. We evaluate our proposed
algorithms through a set of experiments in Section 3.4. Lastly, we discuss
our findings in Section 3.5 and provide a short summary in Section 3.6.

3.2 A Principled Framework for Data Valuation

ml as a cooperative game Consider two types of agents that inter-
act in a data marketplace: the sellers (or data contributors) and the buyer (or
data consumers). Sellers provide training data instances, each of which is a
pair of a feature vector and the corresponding label. The buyer is interested
in analyzing the training dataset aggregated from various sellers and pro-
ducing an ML model, which can predict the labels for unseen features. The
buyer pays a certain amount of money which depends on the utility of the
ML model. Our goal is to distribute the payment fairly between the sellers.
A natural way to tackle the question of profit allocation is to view ML as a
cooperative game and model each seller as a player. This game-theoretic
viewpoint allows us to formally characterize the “power” of each seller and
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Figure 3.1: Overview of our data valuation framework. A data valuation frame-
work should be combinatorial, task-dependent, cumulative and eq-
uitable. The Shapley value provides a uniquely maps all desiderata.
Tackling the last desiderata, scalability, will be the main focus of the
next chapters.

in turn determine their deserved share of the revenue. Let us first identify
the necessary components of the cooperative game (see Figure 3.2):

Data D. Both the number M of individual sellers and the total number of
data points of the aggregated dataset N will affect the cost of calculating
the data valuation. For ease of exposition, we will assume that every seller
contributes one data instance in the training set; therefore M = N. This is
usually not the case as data contributors can, in general, contribute multiple
data points. Later in Chapter 4, we will discuss the extension to the case
where a seller contributes multiple data instances.

Learning Algorithm A. The worth of data is not static and can fluctu-
ate depending on the properties of the learning algorithm A(·) that maps a
dataset D onto a ML model. The choice of a learning algorithm can also
impact the subsequent utility function U, which in return will have effects
on computing the value.

Utility U. The utility UA(D) ≜ Um(A(D)) provides a higher performance
score for more desirable models. One intuitive U is through training a
learning algorithm A and evaluating it through a performance measure Um.
However, it is also possible to formulate U(·) in a learning-agnostic manner
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Data Valuation �

Learning Algorithm �

Utility �

Data ��

Data ��

Data ��

...

Value ��

Value ��

Value �� Validation Set

Model

Score

Figure 3.2: An overview of the individual components of data valuation and
their relationships. Data valuation aims to map a value s to data z
given a learning algorithm, a utility (usually validation accuracy),
and a data valuation strategy (we will focus on the Shapley value in
this dissertation).

by evaluating directly on dataset D i.e. U(D). For the scope of this chapter,
we will restrict ourselves to the case of task-dependent data valuation. Thus,
for the rest of this chapter, we will leave out the dependency on A in cases
where the learning algorithm is self-evident, and use U(·) instead.

shapley-based data valuation. Consider a dataset D = {zi}N
i=1

containing data from N users. Let U(S) be the utility function, repre-
senting the value calculated by the additive aggregation of {zi}i∈S and
S ⊆ I = {1, · · · , N}. Note that for an ML task, we can write the utility
function U(S) ≜ Um(A(S)), where A(·) is the learning algorithm and Um(·)
is a task-specific utility. Without loss of generality, we assume throughout
the next Chapters Um()̇ to be the validation loss and U(∅) = 0. Our goal is
to partition Utot ≜ U(I), the utility of the entire dataset, to the individual
users; more formally, we want to find a function that assigns to user i
a number s(U, i) for a given utility function U. We further suppress the
dependency on U when the utility is self-evident and use si to represent
the value allocated to user i.

Let us briefly recall the definition of the Shapley Value (Equation 2.2)
from Chapter 2. Given a utility function U(·), the Shapley value for user i
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is defined as the average marginal contribution of zi to all possible subsets
of D = {zi}i∈I formed by other users:

si = ∑
S⊆I\{i}

1

N(N−1
|S| )

[
U(S ∪ {i})−U(S)

]

shapley properties for data valuation. The importance of the
Shapley value stems from the fact that it is the unique value division scheme
that satisfies the following desirable properties discussed in Chapter 2. To
make it easier for the reader, we will provide the properties below and
explain their practical implications for data valuation:

1. Efficiency: The value of the entire dataset is completely distributed
among all users, i.e., U(I) = ∑i∈I si.

2. Symmetry: Two data contributors who are identical with respect to
what they contribute to a dataset’s utility should have the same value.
That is, if user i and j are equivalent in the sense that U(S ∪ {i}) =
U(S ∪ {j}), ∀S ⊆ I \ {i, j}, then si = sj.

3. Null property: Users with zero marginal contributions to all subsets
of the dataset receive zero payoff, i.e., si = 0 if U(S ∪ {i}) = 0 for all
S ⊆ I \ {i}.

4. Linearity: The values under multiple utilities sum up to the value
under a utility that is the sum of all these utilities: s(U, i) + s(V, i) =
s(U + V, i) for i ∈ I.

The efficiency axiom in Equation (2.4) states that any rational group of data
contributors would expect to distribute the full yield of their coalition. The
symmetry in Equation (2.5) and null axioms in Equation (2.6) are "fairness"
properties. They requires that the names of the users play no role in de-
termining the value, which should be sensitive only to how the utility
function responds to the presence of a user’s data. The linearity axiom in
Equation (2.7) facilitates efficient value calculation when data is used for
multiple applications, each of which is associated with a specific utility
function. Furthermore, the properties of the Shapley value map to the
desiderata for data valuation (see Figure 3.1):
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1. Combinatorial: The Shapley value accounts for the interaction and
combination of different data contributors by considering all possible
coalitions and their utilities. This ensures that the value calculation
reflects the joint contribution of data points in various configurations.

2. Task-dependent: The Shapley value relies on a utility function that
quantifies the effectiveness of the data for a specific task. By adopting
different utility functions for different tasks, the Shapley value remains
flexible to incorporate task-specific requirements in the data valuation
process.

3. Cumulative: The linearity axiom facilitates efficient value calculation
when data is used across multiple applications with distinct utility
functions. It allows decomposing a given utility function into a sum
of utility functions and computing utility shares separately, thereby
supporting the accumulation of value from various applications.

4. Equitable: The fairness properties, i.e., symmetry and null axiom,
ensure that the data valuation process is equitable. The symmetry
property guarantees that the value assigned to a data point is solely
based on its impact on the utility function, regardless of the contribu-
tor’s identity. The null property ensures that a data contributor with
no impact on the utility function receives no value, which upholds
fairness in the valuation process.

The fact that the Shapley value uniquely possesses these properties, com-
bined with its flexibility to support different utility functions, leads us to
employ the Shapley value to attribute the total gains generated from a
dataset to each user.

3.3 Efficient Shapley Value Estimation

The challenge in adopting the Shapley value lies in its computational cost.
Evaluating the exact Shapley value using Equation (2.2) involves computing
the marginal utility of every user to every coalition, which is O(2N). Even
worse, in many ML tasks, evaluating utility per se (e.g., validation accuracy)
is computationally expensive as it requires training an ML model. In this
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section, we present various efficient algorithms for approximating the
Shapley value.

Definition 1. We say that ŝ ∈ RN is a (ϵ, δ)-approximation to the true Shapley
value s = [s1, · · · , sN ]

T ∈ RN with respect to lp-norm if

Pŝ[||ŝi − si||p ≤ ϵ] ≥ 1− δ

Throughout this chapter, we will measure the approximation error in terms
of l2 norm.

3.3.1 Baseline: Permutation Sampling

We start by describing a baseline algorithm (Maleki, 2015) that approxi-
mates the Shapley value for any bounded utility functions with provable
guarantees. The central idea behind the baseline algorithm is to regard the
Shapley value definition in Equation (2.3):

si =
1

N! ∑
π∈Π(D)

[
U(Pπ

i ∪ {i})−U(Pπ
i )

]
as the expectation of a training instance’s marginal contribution over a
random permutation and then use the sample mean to approximate it.
More specifically, let π be a random permutation of I and each permutation
has a probability of 1/N!. Consider the random variable

ϕi = U(Pπ
i ∪ {i})−U(Pπ

i )

By (2.3), the Shapley value si is equal to E[ϕi]. Thus,

ŝi =
1
T

T

∑
t=1

U(Pπt
i ∪ {i})−U(Pπt

i ) (3.1)

is a consistent estimator of si, where πt be t-th sample permutation uni-
formly drawn from all possible permutations Π(I). Let r be the range of
utility differences ϕi. By applying the Hoeffding’s inequality, (Maleki et al.,
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2013) shows that for general, bounded utility functions, the number of
permutations T needed to achieve an (ϵ, δ)-approximation is

T =
2r2N

ϵ2 log
2N
δ

(3.2)

For each permutation, the utility function is evaluated N times in order to
compute the marginal contribution for all N users; therefore, the number
of utility evaluations involved in the baseline approach is

meval = NT = O(N2 log N)

We present a formal proof in Appendix A.1 and the pseudocode of our
baseline in Algorithm 1. Typically, a substantial part of computational
costs associated with the utility evaluation lies in A(·). Hence, it is useful
to examine the efficiency of an approximation algorithm in terms of the
number of model training required. In general, one utility evaluation would
need to re-train a model. Particularly, when A(·) is incrementally trainable,
one pass over the entire training set allows us to evaluate ϕi for all i =
1, · · · , N. Hence, in this case, the number of model training needed to
achieve an (ϵ, δ)-approximation is meval = O(N log N).

Algorithm 1: Baseline: Permutation Sampling-Based Approach

input : Training set - D = {(xi, yi)}N
i=1

Utility function U(·) with range r

Approximation error parameters ϵ, δ

output : The Shapley value of each training point - ŝ ∈ RN

1 T ← 2r2

ϵ2 log 2N
δ

2 for t← 1 to T do

3 πt ← GenerateUniformRandomPermutation(D);

4 ϕt
i ← U(Pπt

i ∪ {i})−U(Pπt
i ) for i = 1, . . . , N;

5 end

6 ŝi =
1
T ∑T

t=1 ϕt
i for i = 1, . . . , N;
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3.3.2 Group Testing-Based Approach

We now describe an algorithm that makes the same assumption of bounded
utility as the baseline algorithm, but requires significantly fewer utility
evaluations than the baseline.

Our proposed approximation algorithm is inspired by previous work apply-
ing the group testing theory to feature selection (Zhou et al., 2014). Recall
that group testing is a combinatorial search paradigm (Du, F. K. Hwang,
and F. Hwang, 2000), in which one wants to determine whether each item in
a set is “good” or “defective” by performing a sequence of tests. The result
of a test may be positive, indicating that at least one of the items of that
subset is defective, or negative, indicating that all items in that subset are
good. Each test is performed on a pool of different items and the number of
tests can be made significantly smaller than the number of items by smartly
distributing items into pools. Hence, the group testing is particularly useful
when testing an individual item’s quality is expensive.

Analogously, we can think of Shapley value calculation as a group testing
problem with continuous quality measure. Each user’s data is an “item”
and the data utility corresponds to the item’s quality. Each “test” in our
scenario corresponds to evaluating the utility of a subset of users and is
expensive. Drawing on the idea of group testing, we hope to recover the
utility of all user subsets from a small amount of customized tests.

Let T be the total number of tests. At test t, a random set of users is
drawn from I and we evaluate the utility of the selected set of users. If we
model the appearance of user i and j’s data in a test as Boolean random
variables βi and β j, respectively, then the difference between the utility of
user i and that of user j is

(βi − β j)U(β1, · · · , βN) (3.3)

where U(β1, · · · , βN) is the utility evaluated on the users with the Boolean
appearance random variable equal to 1.
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Using the definition of the Shapley value in Equation (2.2), one can derive
the following formula of the Shapley value difference between any pair of
users.

Lemma 1. For any i, j ∈ I, the difference in Shapley values between i and j is

si − sj =
1

N − 1 ∑
S⊆I\{i,j}

U(S ∪ {i})−U(S ∪ {j})
(N−2
|S| )

(3.4)

The key idea of the proposed algorithm is to smartly design the sampling
distribution of β1, · · · , βN such that the expectation of Equation (3.3) mirrors
the Shapley difference in Equation (4.5). This will enable us to calculate
the Shapely differences from the test results with a high-probability error
bound. The following Lemma states that if we can estimate the Shapley
differences between all data pairs up to (ϵ/

√
N, δ/N), then we will be able

to recover the Shapley value with the approximation error (ϵ, δ). The formal
proof of this lemma can be found in the Appendix A.2.

Lemma 2. Suppose that Cij is an (ϵ/(2
√

N), δ/(N(N − 1)))-approximation to
si − sj. Then, any solutions to the feasibility problem

N

∑
i=1

ŝi = Utot (3.5)

|(ŝi − ŝj)− Ci,j| ≤ ϵ/(2
√

N) ∀i, j ∈ {1, . . . , N} (3.6)

is an (ϵ, δ)-approximation to s with respect to l2-norm.

The formal proof can be found in the Appendix A.3. Algorithm 2 presents
the pseudo-code of the group testing-based algorithm, which first estimates
the Shapley differences and then derives the Shapley value from the Shapley
differences by solving a feasibility problem.
The following theorem provides a lower bound on the number of tests T
needed to achieve an (ϵ, δ)-approximation.
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Algorithm 2: Group Testing Based Shapley value Estimation.

input : Training set - D = {(xi, yi)}N
i=1

Utility function U(·)
The number of tests - T

output : The estimated Shapley value of each training point - ŝ ∈ RN

1 Z ← 2 ∑N−1
k=1

1
k ;

2 q(k)← 1
Z (

1
k +

1
N−k ) for k = 1, · · · , N − 1;

3 Initialize βti ← 0, t = 1, ..., T, i = 1, ..., N;

4 for t = 1 to T do

5 Draw kt ∼ q(k);

6 Uniformly sample a length-kt sequence S from {1, · · · , N} ;

7 βti ← 1 for all i ∈ S;

8 ut ← U(S);

9 end

10 ∆Uij ← Z
T ∑T

t=1 ut(βti − βtj) for i = 1, .., N, j = 1, ..., N and j ≥ i ;

11 Find ŝ by solving the feasibility problem

∑N
i=1 ŝi = U(I), |(ŝi − ŝj)− ∆Ui,j| ≤ ϵ/(2

√
N), ∀i, j ∈ {1, · · · , N};

Theorem 1. Algorithm 2 returns an (ϵ, δ)-approximation to the Shapley value
with respect to l2-norm if the number of tests T satisfies

T ≥ 8 log
N(N − 1)

2δ
/
(
(1− q2

tot)h
( ϵ

Zr
√

N(1− q2
tot)

))
where

qtot =
N − 2

N
q(1) +

N−1

∑
k=2

q(k)[1 +
2k(k− N)

N(N − 1)
]

h(u) = (1 + u) log(1 + u)− u

Z = 2
N−1

∑
k=1

1
k



3.3 efficient shapley value estimation 45

and r is the range of the utility function.1

Using the Taylor expansion of h, it can be proved that when N is large, T is
O(N(log N)2). Since only one utility evaluation is required for a single test,
the number of utility evaluations is at most

meval = O(N(log N)2)

On the other hand, in the baseline approach, the number of utility evalua-
tions is O(N2 log N). Hence, the group testing requires significantly fewer
model evaluations than the baseline. We refer to Appendix A.4 for the
formal proof.

3.3.3 Exploiting the Sparsity of Values

We now present an algorithm inspired by our empirical observations of
the Shapley value for large datasets. This algorithm can produce an (ϵ, δ)-
approximation to the Shapley value with only O(N log(N) log(log(N)))

utility evaluations.

Figure 3.3 illustrates the distribution of the Shapley value of the MNIST
dataset, from which we observed that the Shapley value is “approximately
sparse”—most of values are concentrated around its mean and only a
few data points have significant values. In the literature, the “approximate
sparsity” of a vector s is characterized by a small error of its best K-term
approximation:

σK(s) = inf{∥s− z∥1, z is K-sparse} (3.7)

This observation opens up a vast collection of tools from compressive
sensing for the purpose of calculating the Shapley value.

1 Wang and Jia (J. T. Wang and Jia, 2023b) has since provided an improved version of this result
with a more efficient lower bound that saves a factor of 8 and improves q2

tot to qtot.
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Figure 3.3: The distribution of the Shapley value of a size-1000 training set
randomly sampled from MNIST. σ367(s)/(∑N

i=1 si) = 0.5. The utility
function is the validation accuracy.

Compressive sensing studies the problem of recovering a sparse signal
s with far fewer measurements y = As than the length of the signal. A
sufficient condition for recovery is that the measurement matrix A ∈ RM×N

satisfies a key property, the Restricted Isometry Property (RIP). In order to
ensure that A satisfies this property, we simply choose A to be a random
Bernoulli matrix. The results in random matrix theory imply that A satisfies
RIP with high probability. Define the kth restricted isometry constant δk for
a matrix A as

δk(A) = min{δ : ∀s, ∥s∥0 ≤ k,

(1− δ)∥s∥2
2 ≤ ∥As∥2

2 ≤ (1 + δ)∥s∥2
2} (3.8)

It has been shown in (Rauhut, 2010) that every k-sparse vector s can be
recovered by solving a convex optimization problem

min
s∈RN

∥s∥1, s.t. As = y (3.9)

if δ2s(A) < 1/3. This result can also be generalized to noisy measure-
ments (Candes, Romberg, and Tao, 2006). Drawing on the ideas of com-
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pressed sensing, we present Algorithm 3, termed compressive permutation
sampling.

Algorithm 3: Compressive Permutation Sampling.

input : Training set - D = {(xi, yi)}N
i=1

Utility function U(·)
The number of measurements - M

The number of permutations - T

output : The Shapley value of each training point - ŝ ∈ RN

1 Sample a Bernoulli matrix A, where Am,i ∈ {−1/
√

M, 1/
√

M} with

equal probability;

2 for t← 1 to T do

3 πt ← GenerateUniformRandomPermutation(D);

4 ϕt
i ← U(Pπt

i ∪ {i})−U(Pπt
i ) for i = 1, . . . , N;

5 for m← 1 to M do

6 ŷm,t ← ∑N
i=1 Am,iϕ

t
i ;

7 end

8 end

9 ȳm = 1
T ∑T

t=1 ŷm,t for m = 1, . . . , M;

10 s̄ = U(D)/N;

11 ∆s∗ ← argmin∆s∈RN ∥∆s∥1, s.t. ∥A(s̄ + ∆s)− ȳ∥2 ≤ ϵ;

12 ŝ = s̄ + ∆s∗;

Theorem 2. Suppose that U(·) is monotone. There exists some constant C′ such
that if

M ≥ C′(K log(N/(2K)) + log(2/δ))

and T ≥ 2r2

ϵ2 log
4M

δ
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except for an event of probability no more than δ, the output of Algorithm 3 obeys

∥ŝ− s∥2 ≤ C1,Kϵ + C2,K
σK(s)√

K
(3.10)

for some constants C1,K and C2,K.

Therefore, the number of utility evaluations (and model training) required
for achieving the approximation error guarantee in Theorem 2 is

meval = NT = O(N log(log(N)))

Particularly, when the utility function is defined with respect to an incre-
mentally trainable model, only log log(N) full model training is needed for
achieving the error guarantee. The formal proof is provided for the reader
in Appendix A.5.

3.3.4 Stable Learning Algorithms

We say a learning algorithm is stable if the model learned by the algo-
rithm is insensitive to the removal of an arbitrary point in the training
dataset (Bousquet and Elisseeff, 2002).

Definition 2. An algorithm G has uniform stability γ with respect to the loss
function l if

∥l(G(S), ·)− l(G(S\i), ·)∥∞ ≤ γ for all i ∈ {1, · · · , |S|}

where S denotes the training set and S\i denotes the one by removing ith element
of S

Indeed, a broad variety of learning algorithms are stable, including all learn-
ing algorithms with Tikhonov regularization. Stable learning algorithms
are appealing as they enjoy provable generalization error bounds (Bousquet
and Elisseeff, 2002). Assume that the model is trained via a stable learning
algorithm and training data’s utility is measured in terms of the validation
loss. Due to the inherent insensitivity of a stable learning algorithm to the
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training data, we expect that the Shapley value of each training point is
similar to one another. The following theorem confirms our intuition and
provides an upper bound on the Shapley value difference between any pair
of training data points.

Theorem 3. For a learning algorithm A(·) with uniform stability β = Cstab/|S|,
where |S| is the size of the training set and Cstab is some constant. Let the utility of
D be

U(D) = M− Lval(A(D), Dval)

where

Lval(A(D), Dval) =
1
N

N

∑
i=1

l(A(D), zval,i) and 0 ≤ l(·, ·) ≤ M

Then

si − sj ≤ 2Cstab
1 + log(N − 1)

N − 1

and the Shapley difference vanishes as N → ∞.

By Lemma 2, if

2Cstab
1 + log(N − 1)

N − 1
≤ ϵ/(2

√
N)

then uniformly assigning Utot/N to each data contributor provides an
(ϵ, 0)-approximation to the Shapley value in constant time O(1). We refer
to Appendix A.6 for the formal proof.

3.3.5 Heuristic Based on Influence Functions

Computing the Shapley value involves evaluating the change in utility of
all possible sets of data points after adding one more point. A plain way to
evaluate the difference requires training a large number of models on dif-
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ferent subsets of data. Koh et al. (Koh and Liang, 2017) show that influence
functions can be used as an efficient approximation of parameter changes
after adding or removing one point. Therefore, the need for re-training
models is circumvented. Assume that model parameters are obtained by
solving an empirical risk minimization problem

θ̂m = argminθ

1
m

m

∑
i=1

L(zi, θ)

Applying the result in (Koh and Liang, 2017), we can approximate the
parameters learned after adding z by using the relation

θ̂m+1
z = θ̂m − 1

m
H−1

θ̂m ∇θ L(z, θ̂m)

where Hθ̂m = 1
m ∑m

i=1∇2
θ L(zi, θ̂m) is the Hessian. The parameter change after

removing z can be approximated similarly, except for replacing the − by +

in the above formula. The efficiency of the baseline permutation sampling
method can be significantly improved by combining it with influence
functions. Moreover, we can employ a more sophisticated sampling scheme
to reduce the variance of the result. Indeed, we can re-write the Shapley
value as

si =
1
N

N

∑
k=1

E[Xk
i ]

where Xk
i = U(S ∪ {i})−U(S) is the marginal contribution of user i to a

size-k subset that is randomly selected with probability 1/(N−1
k ). This sug-

gests that stratified sampling can be used to approximate the Shapley value,
which customizes the number of samples for estimating each expectation
term according to the variance of Xk

i .

Largest-S Approximation. One practical heuristic of using influence
functions is to consider a single subset S for computing si, namely, I \ {i}.
With this heuristic, we can simply take a trained model on the whole dataset,
and calculate the influence function for each data point. For logistic regres-
sion models, the first and second derivations enjoy closed-form expressions
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and the change in parameters after removing one point z = (x, y) can be
approximated by

−
( N

∑
i=1

σ(xT
i θ̂N)σ(−xT

i θ̂N)xixT
i
)−1

σ(−yxT
i θ̂N)yx

where σ(u) = 1/(1 + exp(−u)) and y ∈ {−1, 1}. Unfortunately, the fact
that largest-S influence only considers a single subset makes it impossible
to satisfy the efficiency and linearity properties simultaneously as shown
below.

Theorem 4. Consider the value attribution scheme that assigns the value ŝ(U, i) =
CU [U(S ∪ {i})−U(S)] to user i where |S| = N − 1 and CU is a constant such
that ∑N

i=1 ŝ(U, i) = U(I). Consider two utility functions U(·) and V(·). Then,

ŝ(U + V, i) ̸= ŝ(U, i) + ŝ(V, i)

unless

V(I)[
N

∑
i=1

U(S ∪ {i})−U(S)] = U(I)[
N

∑
i=1

V(S ∪ {i})−V(S)]

We refer to the Appendix A.7 for the formal proof. In the experimental
section, we empirically validate this approach. On the iris dataset we
show that this heuristic can produce a value that is correlated with the true
Shapley value.

3.4 Experimental Results

comparing approximation accuracy. We first compare the pro-
posed approximation methods that only require mild assumptions on the
ML models (e.g., bounded or differentiable utility), including

(a) the permutation sampling baseline

(b) the group testing-based method

(c) using influence functions to approximate all marginal contributions
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(d) approximating the Shapley value with only the influence function to
the largest subset.

The last two methods are hereinafter referred to as all-S influence and largest-
S influence, respectively.
We use a small-scale dataset, iris, and use (a) to estimate the true Shapley
value for a regularized logistic regression up to ϵ = 1/N. Figure 3.4 (a)
shows that the approximations produced by (a)-(c) are closest to each other.
The result of the largest-S influence is correlated with that of the other
techniques, although it cannot recover the true Shapley value.

runtime comparison. We implement the Shapley value calculation
techniques on a machine with 16 cores (Intel Xeon CPU E5-2620 v4 @
2.10GHz) and compare the runtime of different techniques on a two-class
dog-vs-fish dataset (Koh and Liang, 2017) of size 900 constructed from the
ImageNet dataset. To evaluate the runtime for training sizes above 900, we
concatenate duplicate copies of the dog-vs-fish dataset. For each training
data point, we first pre-compute the 2048-dimensional inception features
and then train a logistic regression using the stochastic gradient descent for
150 epochs. The utility function is the negative testing loss of the logistic
regression model.

For the largest-S influence and the all-S influence, we use the method
in (Koh and Liang, 2017) to compute the influence function. The runtime of
different techniques in logarithmic scale is displayed in Figure 3.4 (b). We
can see that the group testing-based method outperforms the permutation
sampling baseline by several orders of magnitude for a large number of
data points. By exploiting influence function heuristics and the stratified
sampling trick in Section 3.3.5, the computational costs can be further re-
duced. Due to the fact that the largest-S influence heuristic only focuses on
the marginal contribution of each training data point to a single subset, it
is much more efficient than the permutation sampling, group testing and
the all-S influence, which compute the marginal contributions to a large
number of subsets.
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Figure 3.4: Consider the Shapley value approximation methods that do not rely
on specific assumptions on the underlying learning algorithms and
compare the (a) data values produced by them for training a logistic
regression model and (b) their runtime.

approximation under sparsity assumptions . When it is plausi-
ble to assume the Shapley value of a training set is sparse, we could employ
the idea of compressive sensing to recover the Shapley value with fewer
samples. Figure 3.5 compares the sample efficiency of the baseline permu-
tation sampling and the compressive permutation sampling method on a
size-1000 dataset sampled randomly from MNIST. For a given approximation
error, the compressive permutation requires significantly fewer samples
and model valuations than the baseline approach. The superiority of the
compressive permutation becomes less evident at the large sample regime.

stable learning algorithms . Our theoretical result in Section 3.3.4
shows that the Shapley value of training data tends to be uniform for a stable
learning algorithm, which has a small stability parameter β. We empirically
validate this result by training a ridge regression on the diabetes dataset
and varying the strength of its regularization term. In (Bousquet and
Elisseeff, 2002), it is shown that the stability parameter β of the ridge
regression minθ

1
N ∑N

i=1 l(θ, zi) + λ∥θ∥2 is proportional to σ2/λ, where σ

is the Lipschitz constant of the loss function with respect to the model
parameter θ and equal to 2|xT

i θ − yi| · |xi|. When the model fits the training
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Figure 3.5: Comparison of approximation errors with different numbers of per-
mutations for the baseline permutation sampling and the compressive
permutation sampling method.

data well, the change in σ is small; therefore, applying more regularization
leads to a more stable learning algorithm, which has lower variance in
the training data values as illustrated in the shaded area of Figure 3.6. On
the other hand, if the model no longer fits the data well due to excessive
regularization, then σ will dominate the stability parameter. In this case,
since σ increases with the regularization strength, β and thereby the variance
of the Shapley value also increase. Note that the variance of the Shapley
value is identical to the approximation error of a uniform value division
scheme.

value for privacy-preserving data . Differential privacy (Dwork,
2008) has emerged as a standard privacy notation and is often achieved by
adding noise that has a magnitude proportional to the desired privacy level.
On the other hand, noise diminishes the usefulness of data and thereby
degrades the value of data. We construct a training set using the MNIST,
and divide the training dataset into two halves, one half containing normal
images and the other half containing noisy ones. The testing accuracy on
normal images is used as the utility function. Figure 3.6 (b) illustrates a
clear tradeoff between privacy and data value - the Shapley value decreases
as data becomes noisier.
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Figure 3.6: (a) Variance of data values for a ridge regression with different regu-
larization strength (λ). (b) Tradeoff between data value and privacy.

value for adversarial examples . Mixing adversarial examples
with benign examples in the training dataset, or adversarial training, is
an effective method to improve the adversarial robustness of a model. In
practice, we measure the robustness in terms of the testing accuracy on
a dataset containing adversarial examples. We expect that the adversarial
examples in the training dataset become more valuable as more adversarial
examples are added into the testing dataset. Based on the MNIST, we con-
struct a training dataset that contains both benign and adversarial examples
and synthesize testing datasets with different adversarial-benign mixing
ratios. Two popular attack algorithms, namely, Fast Gradient Sign Method
(FGSM) (Goodfellow, Shlens, and Szegedy, 2014) and the Carlini and Wag-
ner (CW) attack (Carlini and Wagner, 2017) are used to generate adversarial
examples. Figure 3.7 (a, b) compares the average Shapley value for adversar-
ial examples and for benign examples in the training dataset. The negative
testing loss for logistic regression is used as the utility function. We see
that the Shapley value of adversarial examples increases as the testing data
becomes more adversarial and contrariwise for benign examples. This is
consistent with our expectation. In addition, the adversarial examples in the
training set are more valuable if they are generated from the same attack
algorithm for testing adversarial examples.



56 a principled framework for data valuation based on the shapley value

0.00E+00

2.00E-03

4.00E-03

6.00E-03

8.00E-03

1.00E-02

0 50 100

Benign (FGSM)

Benign (CW)

Adversarial (FGSM)

Adversarial (CW)

More adversarial samples
Sh

ap
le

y 
V

al
ue

Proportion of adversarial samples in test set (%)

0

0.002

0.004

0.006

0.008

0.01

0 50 100
Benign (FGSM)

Benign (CW)

Adversarial (FGSM)

Adversarial (CW)

(a) (b) More adversarial samples

Figure 3.7: (a, b) Comparison of Shapley value of benign and adversarial exam-
ples. FGSM and CW are different attack algorithms used for gen-
erating adversarial examples in the testing dataset: (a) (resp. (b)) is
trained on Benign + FGSM (resp. CW) adversarial examples.

3.5 Discussion

implications of task-specific data valuation Since the Shap-
ley value depends on the utility function associated with the game, data
dividends based on the Shapley value are contingent on the definition of
model usefulness in specific ML tasks. The task-specific nature of our data
valuation framework offers clear advantages—it allows to accommodate
the variability of a data point’s utility from one application to another and
assess its worth accordingly. Moreover, it enables the data buyer to defend
against data poisoning attacks, wherein the attacker intentionally contributes
adversarial training data points crafted specifically to degrade the perfor-
mance of the ML model. In our framework, the “bad” training points will
naturally have low Shapley values because they contribute little to boosting
the performance of the model.

Having the data values dependent on the ML task, on the other hand,
may raise some concerns about whether the data values may inherit the
flaws of the ML models as to which the values are computed: if the ML
model is biased towards a subpopulation with specific sensitive attributes
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(e.g., gender, race), will the data values reflect the same bias? Indeed, these
concerns can be addressed by designing proper utility functions that de-
value the unwanted properties of ML models. For instance, even if the ML
model may be biased towards specific subpopulation, the buyer and data
contributors can agree on a utility function that gives lower score to unfair
models and compute the data values with respect to the concordant utility
function. In this case, the training points will be appraised partially accord-
ing to how much they contribute to improving the model fairness and the
resulting data values would not be affected by the bias of the underlying
model. Moreover, there is a venerable line of works studying algorithms to
help improve fairness (Zemel et al., 2013; Woodworth et al., 2017; Hardt,
Price, Srebro, et al., 2016). These algorithms can also be applied to resolve
the potential bias in value assignments. For instance, before providing the
data to the data buyer, data contributors can preprocess the training data so
that the “sanitized” data removes the information correlated with sensitive
attributes (Zemel et al., 2013). However, to ensure that the data values are
accurately computed according to an appropriate utility function that the
buyer and the data contributors agree on or that the models are trained
with proper fairness criteria, it is necessary to develop systems that can
support transparent machine learning processes.

3.6 Summary

ML has opened up exciting opportunities to tackle a wide variety of prob-
lems; nevertheless, very few works have attempted to understand the value
of data used for training models. A principled way of data valuation is
the key to stimulating data exchange, enabling the development of more
sophisticated and robust ML models. In this Chapter, we adopt the Shapley
value, a classic concept from cooperative game theory, for data valuation
and provide a principled framework. The Shapley value has many unique
properties appealing to data valuation. However, the lack of efficient meth-
ods to compute the Shapley value has prevented it from being adopted in
the past. We develop a repertoire of techniques for estimating the Shapley
value in different scenarios under general ML utilities. In addition to its
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theoretical soundness, we empirically demonstrated that the Shapley value
coincides with people’s intuition of data value. For instance, noisy images
tend to have lower Shapley values than the high-fidelity ones; the training
data whose distribution is closer to the validation data distribution tends to
have higher Shapley values. These empirical results further back up the use
of the Shapley value for data valuation.



4
S C A L A B L E D ATA VA L UAT I O N F O R N E A R E S T
N E I G H B O R A L G O R I T H M S

Any sufficiently advanced technology is
indistinguishable from magic.

— Arthur C. Clarke

4.1 Introduction

scaling data valuation to millions of data points . Intu-
itively, the Shapley value measures the marginal improvement of utility
attributed to the data point zi, averaged over all possible subsets of data
points. Calculating exact Shapley values requires exponentially many utility
evaluations. Thus, when N grows to millions or even billions in a real-
istic ML-based data valuation setting, how can we design more efficient
algorithms? This poses a radical challenge to using the Shapley value for
practical data valuation for machine learning:

Challenge 1

Can we efficiently compute the Shapley value at scale for millions or
even billions of data points?

This scale is rare to the previous applications of the Shapley value but is
not uncommon for real-world data valuation tasks tailored to ML models.
In Chapter 3, we examined some general properties of machine learning
models, such as the boundedness of the utility functions, stability of the
learning algorithms, and analyzed their implications for calculating the
Shapley value. The algorithms presented were only capable of producing
(ϵ, δ)-approximations to the Shapley value. When the desired level of ap-

59
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proximation error is small, these algorithms entail significant computational
costs, making them unsuitable for handling large-scale data.

To tackle this challenge, we focus on a specific family of ML models which
restrict the class of utility functions U(·) that we consider. Specifically, we
study K-nearest neighbors (KNN) classifiers (Dudani, 1976), a simple yet
popular supervised learning method used in image recognition (Hays and
Efros, 2015), recommendation systems (Adeniyi, Wei, and Yongquan, 2016),
healthcare (C. Li, S. Zhang, et al., 2012), etc.

Given a validation set, Dval = {z′1, ..., z′Nval
}, we focus on a natural util-

ity function, called the KNN utility, which, intuitively, measures the boost
of the likelihood that KNN assigns the correct label to each validation data
point. When K = 1, this utility is the same as the validation accuracy. The
most surprising result is that for unweighted KNN classifiers and regres-
sors, the Shapley value of all N data points can be computed, exactly, in
O(N log N) time – an exponential improvement on computational com-
plexity! We show that for (ϵ, δ)-approximation, we are able to develop an
approximate KNN Shapley algorithm based on Locality Sensitive Hashing
(LSH) with only sublinear complexity O(Nh(ϵ,K) log N) when ϵ is not too
small and K is not too large. We empirically evaluate our algorithms on
up to 10 million data points and even our exact algorithm is up to three
orders of magnitude faster than the baseline approximation algorithm. The
LSH-based approximation algorithm can accelerate the value calculation
process even further.

extending the data valuation framework . Furthermore, in
Chapter 3, we presented data valuation as a cooperative game in which
a data contributor supplies only one data point, and the service provider
manages data processing and computation, thereby solely allocating profit
to data contributors. Nonetheless, in many real-world situations, a data
provider might contribute multiple data points. For example, in social
media platforms such as Twitter, Facebook or Instagram, the users are
data contributors that generate multiple data by posting messages, im-
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Exact Approximate

Baseline 2N N log N N2

ϵ2 log N log N
δ

Unweighted KNN classifier N log N Nh(ϵ,K) log N log K∗
δ

Unweighted KNN regression N log N —
Weighted KNN NK N

ϵ2 log K log K
δ

Multiple-data-per-curator KNN MK N
ϵ2 log K log K

δ

Figure 4.1: Time complexity for computing the Shapley value for KNN models.
N is the total number of training data points. M is the number of
data contributors. h(ϵ, K) < 1 if K∗ = max{1/ϵ, K} < C for some
dataset-dependent constant C.

ages, and videos linked to their account. This data is used to develop e.g.
sentiment analysis algorithms to understand user preferences. Moreover,
service providers may also outsource the machine learning development
to a dedicated data analyst or to a data science competition (e.g. Kaggle).
This introduces the challenge of how to fairly value not just data but also
computation and introduces. Expanding on our result for unweighted KNN,
we would like to study if our practical algorithms are applicable for these
variations.

Challenge 2

Can we extend data valuation problems according to whether data
contributors are valued separately or in tandem with a data analyst
and whether each data contributor contribute a single data instance or
multiple ones?

4.1.1 Contributions

The contributions presented in this chapter are the results of joint work of
many co-authors and have been previously published in VLDB under
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Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve
Gurel, Bo Li, Ce Zhang, Costas J. Spanos, Dawn Song. “Efficient Task-
Specific Data Valuation for Nearest Neighbor Algorithms”. VLDB. 2019.

The contribution of this work is a collection of novel algorithms for efficient
data valuation within the above scope. Figure 4.1 summarizes our technical
results. Specifically, we made following contributions:

contribution 1 : data valuation for Knn classifiers The
main challenge of adopting the Shapley value for data valuation is its com-
putational complexity — for general, bounded utility functions, calculating
the Shapley value requires O(2N) utility evaluations for N data points.
Even getting an (ϵ, δ)-approximation (error bounded by ϵ with probability
at least 1− δ) for all data points requires O(N log N) utility evaluations
using state-of-the-art methods (See Section 4.2.1). For the KNN utility, each
utility evaluation requires to sort the training data, which has asymptotic
complexity O(N log N).

C1.1 Exact Computation We first propose a novel algorithm specifi-
cally designed for KNN classifiers. We observe that the KNN utility satisfies
what we call the piecewise utility difference property: the difference in the
marginal contribution of two data points zi and zj over has a “piecewise
form” (See Section 4.2.2):

U(S ∪ {zi})−U(S ∪ {zj}) =
T

∑
t=1

C(t)
i,j 1[S ∈ St], ∀S ∈ D\{zi, zj}

where St ⊆ 2D\{zi ,zj} and C(t)
i,j ∈ R. This combinatorial structure allows us

to design a very efficient algorithm that only has O(N log N) complexity
for exact computation of Shapley values on all N data points. This is an
exponential improvement over the O(2N N log N) baseline!

C1.2 Sublinear Approximation The exact computation requires to sort
the entire training set for each test point, thus becoming time-consuming for
large and high-dimensional datasets. Moreover, in some applications such
as document retrieval, test points could arrive sequentially and the values
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of each training point needs to get updated and accumulated on the fly,
which makes it impossible to complete sorting offline. Thus, we investigate
whether higher efficiency can be achieved by finding approximate Shapley
values instead. We study the problem of getting (ϵ, δ)-approximation of
the Shapley values for the KNN utility. This happens to be reducible to the
problem of answering approximate max{K, 1/ϵ}-nearest neighbor queries
with probability 1− δ. We designed a novel algorithm by taking advantage
of LSH, which only requires O(Nh(ϵ,K) log N) computation where h(ϵ, K) is
dataset-dependent and typically less than 1 when ϵ is not too small and K
is not too large.

Limitation of LSH The h(ϵ, K) term monotonically increases with max{ 1
ϵ , K}.

In experiments, we found that the LSH can handle mild error requirements
(e.g., ϵ = 0.1) but appears to be less efficient than the exact calculation
algorithm for stringent error requirements. Moreover, we can extend the
exact algorithm to cope with KNN regressors and other scenarios detailed
in Contribution 2; however, the application of the LSH-based approximation
is still confined to the classification case.

To our best knowledge, the above results are one of the very first stud-
ies of efficient Shapley value evaluation designed specifically for utilities
arising from ML applications.

contribution 2 : extensions Our second contribution is to extend
our results to different settings beyond a standard KNN classifier and
the KNN utility (Section 4.3). The connection between different settings
are illustrated in Figure 4.2, where each vertical layer represents a differ-
ent slicing to the data valuation problem. In some of these scenarios, we
successfully designed algorithms that are as efficient as the one for KNN
classifiers. In some other cases, including weighted KNN and the multiple-
data-per-curator setup, the exact computation algorithm is less practical
although being improved exponentially. Thus, we introduce an improved
MC approximation for KNN that is able to improve the state-of-the-art.
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C2.1 Unweighted KNN regressors. We introduce an efficient algorithm
for unweighted KNN regressors, extending our findings beyond classifica-
tion tasks.

C2.2 Weighted KNN classifiers and regressors. We develop an algorith-
mic framework for weighted KNN classifiers and regressors, broadening
our approach to handle varying importance of data points.

C2.3 Data/analytics joint valuation. We introduce composite games
that extends to a “data analyst” player that provides ML analytics and
provide a system that attaches value to both the analyst and data curators.

C2.4 Multiple data per contributor. We extend to scenarios where
one “data curator” contributes multiple data points and has the freedom to
delete all data points at the same time.

C2.5: Improved Monte Carlo Approximation for KNN. To further im-
prove the efficiency in the less efficient cases, we strengthen the sample com-
plexity bound of the state-of-the-art approximation algorithm, achieving
an O(N log2 N/ log2 K) complexity improvement over the state-of-the-art.
Our algorithm requires in total O(N/ϵ2 log2 K) computation and is often
practical for reasonable ϵ.

experiments We implement our algorithms and evaluate them on
datasets up to ten million data points. We observe that our exact Shapley
value calculation algorithm can provide up to three orders of magnitude
speed-up over the state-of-the-art Monte Carlo approximation approach.
With the LSH-based approximation method, we can accelerate the Shap-
ley value calculation even further by allowing approximation errors. The
actual performance improvement of the LSH-based method over the ex-
act algorithm depends the dataset as well as the error requirements. For
instance, on a 10M subset of the Yahoo Flickr Creative Commons 100M
dataset, we observe that the LSH-based method can bring another 4.6×
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Figure 4.2: Taxonomy of data valuation problems. Each parent node has two
children. However, due to the size of the figure, we have omitted most
of the branches and represented them as dots.

speed-up. Moreover, to our best knowledge, this work is also one of the
first to evaluate data valuation at scale.

4.1.2 Overview

The rest of this Chapter is organized as follows. We present our efficient
algorithms for KNN classifiers in in Section 4.2. We discuss the extensions
in Section 4.3 and propose a Monte Carlo approximation algorithm in
Section 4.5, which significantly boosts the efficiency for the extensions that
have less practical exact algorithms. We evaluate our approach in Section 4.6.
Lastly, we conclude with a discussion in Section 4.7 and a summary of the
Chapter in Section 4.8.

4.2 Valuing Data for KNN Classifiers

In this section, we present an algorithm that can calculate the exact Shapley
value for KNN classifiers in quasi-linear time. Further, we exhibit an ap-
proximate algorithm based on LSH that could achieve sublinear complexity.
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4.2.1 A Baseline Algorithm for KNN Shapley Computation

Despite the desirable properties of the Shapley value, efficient algorithms
to compute it exactly have not yet been developed. For large datasets, it is
therefore common to approximate the Shapley value through Monte Carlo
(MC) sampling (Maleki, 2015) as introduced in Chapter 3. We will use MC
sampling as a baseline for our subsequent studies. Consider the random
variable

ϕi = U(Pπ
i ∪ {i})−U(Pπ

i )

where π be a random permutation of I and each permutation has a proba-
bility of 1/N!. According to Equation (2.3), si = E[ϕi] and we can estimate
si by the sample mean. The number of permutations needed to achieve an
(ϵ, δ)-approximation is

(2r2N/ϵ2) log(2N/δ)

where r is the range of the utility function. We refer the reader to Chapter 3

for a detailed discussion.

Take the KNN classifier as an example and assume that U(·) represents the
validation accuracy of the classifier. Then, evaluating U(S) needs to sort the
training data in S according to their distances to the validation point, which
has O(|S| log |S|) complexity. Since on average |S| = N/2, the asymptotic
complexity of calculating the Shapley value for a KNN classifier via the
baseline algorithm is

O(N2 log2 N)

which is prohibitive for large-scale datasets. In the following sections,
we will show that leveraging the locality of KNN models allows for the
development of much more efficient algorithms for computing the Shapley
value.
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4.2.2 Exact Shapley Value Calculation

KNN algorithms are popular supervised learning methods, widely adopted
in a multitude of applications such as computer vision, information re-
trieval, etc. Suppose the dataset D consisting of pairs (x1, y1), (x2, y2), . . .,
(xN , yN) taking values in X ×Y , where X is the feature space and Y is the
label space. Depending on whether the nearest neighbor algorithm is used
for classification or regression, Y is either discrete or continuous.

The training phase of KNN consists only of storing the features and labels
in D. The testing phase is aimed at finding the label for a given query
(or test) feature. This is done by searching for the K training features
most similar to the query feature and assigning a label to the query ac-
cording to the labels of its K nearest neighbors. Given a single validation
point xval with the label yval, the simplest, unweighted version of a KNN
classifier first finds the top-K training points (xα1 , · · · , xαK ) that are most
similar to xval and outputs the probability of xval taking the label yval as
P[xval → yval] =

1
K ∑K

k=1 1[yαk = yval], where αk is the index of the kth
nearest neighbor.

One natural way to define the utility of a KNN classifier is by the like-
lihood of the right label:

U(S) =
1
K

min{K,|S|}

∑
k=1

1[yαk(S) = yval] (4.1)

where αk(S) represents the index of the training feature that is kth closest
to xval among the training examples in S. Specifically, αk(I) is abbreviated
to αk.

Using this utility function, we can derive an efficient and exact way of
computing the Shapley value.
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Theorem 5. Consider the utility function in (4.1). Then, the Shapley value of each
training point can be calculated recursively as follows:

sαN =
1[yαN = yval]

N
(4.2)

sαi = sαi+1+
1[yαi = yval]− 1[yαi+1 = yval]

K
min{K, i}

i
(4.3)

Note that the above result for a single validation point can be readily
extended to the multiple-validation-point case, in which the utility function
is defined by

U(S) =
1

Nval

Nval

∑
j=1

1
K

min{K,|S|}

∑
k=1

1[y
α
(j)
k (S)

= yval,j] (4.4)

where α
(j)
k (S) is the index of the kth nearest neighbor in S to xval,j. By

the additivity property, the Shapley value for multiple test points is the
average of the Shapley value for every single test point. The pseudo-code for
calculating the Shapley value for an unweighted KNN classifier is presented
in Algorithm 4. The computational complexity is only

O(N log NNval)

for N training data points and Nval validation data points—this is simply
to sort Nval arrays of N numbers!

proof idea for 1nn. Before, we introduce the formal proof below, we
want to illustrate the proof idea for K = 1 in Figure 4.3. Given an ordered
list of training data points and one validation data point, we analyze the
difference in utility between two neighboring training data points. Consider
Case 1, where two data points i and j have different labels yi ̸= yj. If there
is no data point in S ⊆ I \ {i, j} that ranks higher (is more similar) than
i and j (Case 1.1) then the utility difference between i and j will be ±1,
because i or j will be used by the 1NN algorithm to make a prediction.
However, if the subset S contains a point l ranked lower than i or j (Case
1.2) then the utility difference will be 0, because neither i nor j, but only l,



4.2 valuing data for Knn classifiers 69

Algorithm 4: Exact algorithm for calculating the Shapley value for

an unweighted KNN classifier.

input : Training data D = {(xi, yi)}N
i=1

Validation data Dval = {(xval,i, yval,i)}
Nval
i=1

output : The Shapley value {si}N
i=1

1 for j← 1 to Nval do

2 (α1, ..., αN)← Indices of training data in an ascending order using

d(·, xval);

3 sj,αN ←
1[yαN=yval]

N ;

4 for i← N − 1 to 1 do

5 sj,αi ← sj,αi+1 +
1[yαi=yval,j ]−1[yαi+1=yval,j ]

K
min{K,i}

i ;

6 end

7 end

8 for i← 1 to N do

9 si ← 1
Nval

∑Nval
j=1 sj,i;

10 end

will be used for prediction, i.e., U(S ∪ {i}) = U(S) = U(S ∪ {j}). If i and j
have identical labels (Case 2), the utility difference is 0 for any S. Therefore,
we can simply calculate the Shapley value difference between i and j by
counting how many subsets S fall into Case 1.1.

formal proof . The formal proof of Theorem 5 relies on lemma 1 from
Chapter 3 which states that the difference in the utility gain induced by
either point i or point j translates linearly to the difference in the respective
Shapley values.
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Figure 4.3: Illustration of the proof idea for 1NN. There are two distinct classes
of data points: red and blue. The nodes colored in grey can belong to
either the red or blue class.

Lemma 3. For any i, j ∈ I, the difference in Shapley values between i and j is

si − sj =
1

N − 1 ∑
S⊆I\{i,j}

U(S ∪ {i})−U(S ∪ {j})
(N−2
|S| )

(4.5)

Proof of Theorem 5. W.l.o.g., we assume that x1, . . . , xn are sorted accord-
ing to their similarity to xval, that is, xi = xαi . For any given subset
S ⊆ I \ {i, i + 1} of size k, we split the subset into two disjoint sets S1 and
S2 such that S = S1 ∪ S2 and |S1|+ |S2| = |S| = k. Given two neighboring
points with indices i, i + 1 ∈ I, we constrain S1 and S2 to S1 ⊆ {1, ..., i− 1}
and S2 ⊆ {i + 2, ..., N}.

Let si be the Shapley value of data point xi. By Lemma 1, we can draw
conclusions about the Shapley value difference si − si+1 by inspecting the
utility difference U(S ∪ {i})−U(S ∪ {i + 1}) for any S ⊆ I \ {i, i + 1}. We
analyze U(S ∪ {i})−U(S ∪ {i + 1}) by considering the following cases.
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(1) |S1| ≥ K.
In this case, we know that i, i + 1 > K and therefore U(S ∪ {i}) = U(S ∪
{i + 1}) = U(S), hence U(S ∪ {i})−U(S ∪ {i + 1}) = 0.

(2) |S1| < K.
In this case, we know that i ≤ K and therefore U(S ∪ {i})−U(S) might be
nonzero. Note that including a point i into S can only expel the Kth nearest
neighbor from the original set of K nearest neighbors. Thus, U(S ∪ {i})−
U(S) = 1

K (1[yi = yval]− 1[yK = yval]). The same hold for the inclusion
of point i + 1: U(S ∪ {i + 1})−U(S) = 1

K (1[yi+1 = yval]− 1[yK = yval]).
Combining the two equations, we have

ϕi,K ≜ U(S ∪ {i})−U(S ∪ {i + 1}) = 1[yi = yval]− 1[yi+1 = yval]

K

Combining the two cases discussed above and applying Lemma 1, we have

si − si+1

=
1

N − 1

N−2

∑
k=0

1

(N−2
k )

∑
S1⊆{1,...,i−1},
S2⊆{i+2,...,N}:
|S1|+|S2|=k,|S1|<K

ϕi,K

=ϕi,K ×
1

N − 1

N−2

∑
k=0

1

(N−2
k )

min(K−1,k)

∑
m=0

(
i− 1

m

)(
N − i− 1

k−m

)
(4.6)

The sum of binomial coefficients in (4.6) can be simplified as follows:

N−2

∑
k=0

1

(N−2
k )

min{K−1,k}

∑
m=0

(
i− 1

m

)(
N − i− 1

k−m

)
(4.7)

=
min{K−1,i−1}

∑
m=0

N−i−1

∑
k′=0

(i−1
m )(N−i−1

k′ )

(N−2
m+k′)

(4.8)

=
min{K, i}(N − 1)

i
(4.9)

where the first equality is due to the exchange of the inner and outer sum-
mation and the second one is by taking v = N − i− 1 and u = i− 1 in the
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binomial identity ∑v
j=0

(u
i )(

v
j)

(u+v
i+j )

= u+v+1
u+1 .

Therefore, we have the following recursion

si − si+1 =
1[yi = yval]− 1[yi+1 = yval]

K
min{K, i}

i
(4.10)

Now, we analyze the formula for sN , the starting point of the recursion.
Since xN is farthest to xval among all training points, xN results in non-zero
marginal utility only when it is added to the subsets of size smaller than K.
Hence, sN can be written as

sN =
1
N

K−1

∑
k=0

1

(N−1
k )

∑
|S|=k,S⊆I\{N}

U(S ∪ N)−U(S) (4.11)

=
1
N

K−1

∑
k=0

1

(N−1
k )

∑
|S|=k,S⊆I\{N}

1[yN = yval]

K
(4.12)

=
1[yN = yval]

N
(4.13)

4.2.3 LSH-based Approximation

The exact calculation of the KNN Shapley value for a query instance re-
quires to sort the entire training dataset, and has computation complexity
O(Nval(Nd + N log(N))), where d is the feature dimension. Thus, the exact
method becomes expensive for large and high-dimensional datasets. We
now present a sublinear algorithm to approximate the KNN Shapley value
for classification tasks.

The key to boosting efficiency is to realize that only O(1/ϵ) nearest neigh-
bors are needed to estimate the KNN Shapley value with up to ϵ error.
Therefore, we can avert the need of sorting the entire database for every
new query point.
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Algorithm 5: LSH-based algorithm for estimating the Shapley value

for an unweighted KNN classifier.

input : Training data D = {(xi, yi)}N
i=1

Validation data Dval = {(xval,i, yval,i)}
Nval
i=1

Hash tables H

output : The estimated Shapley value of each training point{ŝi}N
i=1

1 K∗ ← max(K, ⌈1/ϵ⌉)
2 ŝi,j ← 0;

3 for j← 1 to Nval do

4 (α1, ..., αK∗)← Indices of LSH(H, D, xval) candidates in ascending

order using d(·, xval);

5 for i← K∗ − 1 to 1 do

6 ŝj,αi ← ŝj,αi+1 +
1[yαi=yval,j ]−1[yαi+1=yval,j ]

K
min{K,i}

i ;

7 end

8 end

9 for i← 1 to N do

10 ŝi ← 1
Nval

∑Nval
j=1 ŝj,i;

11 end

Theorem 6. Consider the utility function defined in Equation (4.1). Consider
{ŝi}N

i=1 defined recursively by

ŝαi = 0 if i ≥ K∗ (4.14)

ŝαi = ŝαi+1 +
1[yαi = yval]− 1[yαi+1 = yval]

K
min{K, i}

i
if i ≤ K∗ − 1

(4.15)

where K∗ = max{K, ⌈1/ϵ⌉} for some ϵ > 0. Then, [ŝα1 ,. . ., ŝαN ] is an (ϵ, 0)-
approximation to the true Shapley value [sα1 ,. . ., sαN ] and ŝi − ŝi+1 = si − si+1

for i ≤ K∗ − 1.
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Theorem 6 indicates that we only need to find max{K, ⌈1/ϵ⌉}(≜ K∗) nearest
neighbors to obtain an (ϵ, 0)-approximation. Moreover, since ŝi − ŝi+1 =

si − si+1 for i ≤ K∗ − 1, the approximation retains the original value rank
for K∗ nearest neighbors.

A common technique used to search for the nearest neighbors is locality
sensitive hashing (LSH) (Charikar, 2002). In LSH, every training instance x
is converted into codes in each hash table by using a series of hash functions
hj(x), j = 1, . . . , m. Each hash function is designed to preserve the relative
distance between different training instances; similar instances have the
same hashed value with high probability. Various hash functions have been
proposed to approximate KNN under different distance metrics (Charikar,
2002; Datar et al., 2004). We will focus on the distance measured in l2 norm;
in that case, a commonly used hash function is h(x) =

⌊
wT x+b

r

⌋
, where

w is a vector with entries sampled from a p-stable distribution, and b is
uniformly chosen from the range [0, r]. It is shown in (Datar et al., 2004):

P[h(xi) = h(xval)] = fh(∥xi − xval∥2) (4.16)

where the function fh(c) =
∫ r

0
1
c f2(

z
c )(1−

z
r )dz is a monotonically decreas-

ing with c. Here, f2 is the probability density function of the absolute value
of a 2-stable random variable.

We now present a theorem which relates the success rate of finding ap-
proximate nearest neighbors to the intrinsic property of the dataset and the
parameters of LSH.

Theorem 7. LSH can find the exact K nearest neighbors with probability 1− δ

and

O(d log(N)Ng(CK) log
K
δ
) time complexity

O(Nd + Ng(CK)+1 log
K
δ
) space complexity

O(Ng(CK) log
K
δ
) hash tables
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where g(CK) = log fh(1/CK)/ log fh(1) is monotonically decreasing. CK =

Dmean/DK, where Dmean is the expected distance of a random training instance
to a query xval and DK is the expected distance between xval to its Kth nearest
neighbor denoted by xαi (xval), i.e.,

Dmean = Ex,xval [D(x, xval)] (4.17)

DK = Exval [D(xαi (xval), xval] (4.18)

The above theorem essentially extends the 1NN hardness analysis in Theo-
rem 3.1 of (J. He, S. Kumar, and S.-F. Chang, 2012) to KNN. CK measures
the ratio between the distance from a query instance to a random training
instance and that to its Kth nearest neighbor. We will hereinafter refer to
CK as Kth relative contrast. Intuitively, CK signifies the difficulty of finding
the Kth nearest neighbor. A smaller CK implies that some random train-
ing instances are likely to have the same hashed value as the Kth nearest
neighbor, thus entailing a high computational cost to differentiate the true
nearest neighbors from the false positives. Theorem 7 shows that among
the datasets of the same size, the one with higher relative contrast will need
lower time and space complexity and fewer hash tables to approximate the
K nearest neighbors. Combining Theorem 6 and Theorem 7, we obtain the
following theorem that explicates the tradeoff between KNN Shapley value
approximation errors and computational complexity.

Theorem 8. Consider the utility function defined in Equation (4.4). Let x̂
α
(j)
k

denote the kth closest training point to xval,j output by LSH with

O(Nvald log(N)Ng(CK∗)log
NvalK∗

δ
) time complexity

O(Nd + Ng(CK∗)+1log
NvalK∗

δ
) space complexity

O(Ng(CK∗)log
NvalK∗

δ
) hash tables
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where K∗ = max(K, ⌈1/ϵ⌉). Suppose that {ŝi}N
i=1 is computed via

ŝi =
1

Nval

Nval

∑
j=1

ŝi,j

and ŝi,j (j = 1, . . . , Nval) are defined recursively by

ŝ
α
(j)
i ,j

= 0 if i ≥ K∗ (4.19)

ŝ
α
(j)
i ,j

= ŝ
α
(j)
i+1,j

+
1[ŷ

α
(j)
i

= yval,j]− 1[ŷ
α
(j)
i+1

= yval,j]

K
min{K, i}

i
if i ≤ K∗ − 1

(4.20)

where ŷ
α
(j)
i

and yval,j are the labels associated with x̂
α
(j)
i

and xval,j, respectively.

Let the true Shapley value of x̂αk be denoted by sαi . Then, [ŝα1 , . . . , ŝαN ] is an
(ϵ, δ)-approximation to the true Shapley value [sα1 , . . . , sαN ].

The gist of the LSH-based approximation is to focus only on the Shapley
value of the retrieved nearest neighbors and neglect the values of the rest of
the training points since their values are small enough. For a error require-
ment ϵ not too small such that CK∗ > 1, the LSH-based approximation has
sublinear time complexity, thus enjoying higher efficiency than the exact
algorithm, especially for large training datasets. We provide the pseudocode
for the LSH-based approximation in Algorithm 5.

A note on choosing LSH. The question on how to efficiently retrieve nearest
neighbors to a query in large-scale databases has been studied extensively
in the past decade. Various techniques, such as the kd-tree (Mount and
Arya, 1998), LSH (Datar et al., 2004), have been proposed to find approxi-
mate nearest neighbors. Although all of these techniques can potentially
help improve the efficiency of the data valuation algorithms for KNN, we
focus on LSH in this chapter, as it was experimentally shown to achieve
large speedup over several tree-based data structures (Datar et al., 2004;
Gionis, Indyk, Motwani, et al., 1999; Har-Peled, Indyk, and Motwani, 2012).
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4.3 Valuing Data for KNN Regressions and Extensions

In this section, we extend the exact algorithm for unweighted KNN to other
settings. Specifically, as illustrated by Figure 4.2, whether the underlying
ML model is a weighted KNN or unweighted; and whether the model
solves a regression or a classification task. We will discuss the valuation
algorithm for each of the above settings.

4.3.1 Unweighted KNN Regression

For regression tasks, we define the utility function by the negative mean
square error of an unweighted KNN regressor:

U(S) = −
(

1
K

min{K,|S|}

∑
k=1

yαk(S) − yval

)2

(4.21)

Using similar proof techniques to Theorem 5, we provide an efficient
iterative procedure to compute the n exact Shapley value for unweighted
KNN regression. The derivation of the theorem requires to analyze the
utility difference between two adjacent training points, similar to KNN
classification, which we provided in the Appendix B.4.1.

Theorem 9. Consider the KNN regression utility function in (4.21). Then, the
Shapley value of each training point can be calculated recursively as follows:

sαN = −K− 1
NK

yαN

[
1
K

yαN − 2yval +
1

N − 1 ∑
l∈I\{N}

yαl

]
− 1

N

[
1
K

yαN − yval

]2

(4.22)

sαi = sαi+1 +
1
K
(yαi+1 − yαi )

min{K, i}
i

(
1
K

N

∑
l=1

A(l)
i yαl − 2yval) (4.23)
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where

A(l)
i =


min{K−1,i−1}

i−1 if 1 ≤ l ≤ i− 1

1 if l ∈ {i, i + 1}
min{K,l−1}min{K−1,l−2}i

(l−1)(l−2)min{K,i} if i + 2 ≤ l ≤ N

(4.24)

According to (4.23), two adjacent training points will have the same Shapley
value if they have the same label. Otherwise, their Shapley value difference
will depend on three terms:

1. their difference in the labels yαi+1 − yαi

2. the rank of their distances to the test point min(K,i)
i

3. the goodness of fit term 1
K ∑N

l=1 A(l)
i yαl − 2yval of a “weighted” KNN

regression model in which A(l)
i stands for the weight.

By simple algebraic operations, it can be obtained that yαi and yαi+1 are
weighted highest among all training points; therefore, the third term can be
roughly thought of as how much error yαi and yαi+1 induce for predicting
yval. If the goodness of fit term represents a positive error and yαi > yαi+1 ,
then adding (xαi , yαi ) into the training dataset will even enlarge the positive
prediction error. Thus, (xαi , yαi ) is less valuable than (xαi+1 , yαi+1) in terms
of the Shapley value. Similar intuition about the interaction between the
first and third term can be established when yαi < yαi+1 . Moreover, the
training points closer to the validation test point are more influential to
the prediction result; this phenomenon is captured by the second term. In
summary, the Shapley value difference between two adjacent training points
is large when their labels differ largely, their distances to the validation
test point are small, and their presence in the training set leads to large
prediction errors.

We present the pseudo-code for calculating exact Shapley values for KNN
regressors in Algorithm 6. Similar to unweighted KNN classifiers (Algo-
rithm 4) the computational complexity is only

O(N log NNval)
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for N training data points and Nval validation data points due to sorting
Nval arrays of N numbers.

Algorithm 6: Exact algorithm for calculating the Shapley value for

an unweighted KNN regressor.

input : Training data D = {(xi, yi)}N
i=1

Validation data Dval = {(xval,i, yval,i)}
Nval
i=1

output : The Shapley value {si}N
i=1

1 for j← 1 to Nval do

2 (α1, ..., αN)← Indices of training data in an ascending order using

d(·, xval);

3 C ← 1
N−1 ∑l∈I\{N} yαl ;

4 sj,αN = −K−1
NK yαN

[
1
K yαN − 2yval + C

]
− 1

N

[
1
K yαN − yval

]2

;

5 for i← N − 1 to 1 do

6 A(l)
i ← Calculate weight according to (4.43);

7 sj,αi ← sαi+1 +
1
K (yαi+1 − yαi )

min{K,i}
i ( 1

K ∑N
l=1 A(l)

i yαl − 2yval);

8 end

9 end

10 for i← 1 to N do

11 si ← 1
Nval

∑Nval
j=1 sj,i;

12 end

4.3.2 Weighted KNN

A weighted KNN estimate produced by a training set S can be expressed as

ŷ(S) =
min{K,|S|}

∑
k=1

wαk(S)yαk (4.25)
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Figure 4.4: Illustration of the idea to compute the Shapley value for weighted
KNN.

where wαk(S) is the weight associated with the kth nearest neighbor of the
test point in S. The weight assigned to a neighbor in the weighted KNN
estimate often varies with the neighbor-to-test distance so that the evidence
from more nearby neighbors are weighted more heavily (Dudani, 1976).
Correspondingly, we define the utility function associated with weighted
KNN classification as

U(S) =
min{K,|S|}

∑
k=1

wαk(S)1[yαk(S) = yval] (4.26)

and for regression tasks as

U(S) = −
( min{K,|S|}

∑
k=1

wαk(S)yαk(S) − yval

)2

. (4.27)

For weighted KNN classification and regression, the Shapley value can no
longer be computed exactly in O(N log(N)) time. Theorem 10 shows that it
is however possible to compute the exact Shapley value for weighted KNN
in O(NK) time.
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To see the reason, we consider the 1NN example depicted in Figure 4.3 and
the following inverse-distance-based weighting function:

wαk(S) =
1/d(xαk(S), xval)

∑K
k′=1 1/d(xαk′ (S)

, xval)
(4.28)

We can see that for Case 1.1 and Case 2 in Figure 4.3, since i and j might
have different distances to xval, wαk(S∪{i}) ̸= wαk(S∪{j}) for all k = 1, . . . , K.
Thus, unlike the unweighted 1NN classification case, the utility difference
between i and j is no longer a constant; instead, it hinges on the distance
from every element in S to xval and we can no longer just rely on counting
Case 1.2.

Despite the difficulty in analyzing the utility difference in the weighted
KNN case, we show that it is possible to compute the Shapley value in
O(NK) time. The theorem applies the definition in Equation (2.2) to cal-
culating the Shapley value and relies on the following idea to circumvent
the exponential complexity as illustrated by the toy example in Figure 4.4:
When applying Equation (2.2) to KNN, we only need to focus on the sets S
whose utility might be affected by the addition of ith training instance. Since
there are only NK possible distinctive combinations for K nearest neighbors,
the number of distinct utility values for all S ⊆ I is upper bounded by NK,
in contrast to 2N for general utility functions.

Theorem 10. Consider the utility function in (4.26) or (4.27) with some weights
wαk(S). Let Bk(i) = {S : |S| = k, i /∈ S, S ⊆ I}, for i = 1, . . . , N and k =

0, . . . , K. Let r(·) be a function that maps the set of training data to their ranks of
similarity to xval. Then, the Shapley value of each training point can be calculated
recursively as follows:

sαN =
1
N

K−1

∑
k=0

1

(N−1
k )

∑
S∈Bk(αN)

[
U(S ∪ {αN})−U(S)

]
(4.29)

sαi+1 = sαi +
1

N − 1

N−2

∑
k=0

1

(N−2
k )

∑
S∈Di,k

Ai,k (4.30)
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where

Di,k =

 Bk(αi) ∩ Bk(αi+1), 0 ≤ k ≤ K− 2

BK−1(αi) ∩ BK−1(αi+1, K− 1 ≤ k ≤ N − 2
(4.31)

and

Ai,k =

 1, 0 ≤ k ≤ K− 2

(N−max r(S∪{αi ,αi+1})
k−K+1 ), K− 1 ≤ k ≤ N − 2

(4.32)

Note that |Bk(i)| ≤ (N−1
k ). Thus, the complexity for computing the weighted

KNN Shapley value is at most

N(N − 1)×
(

N − 1
K− 1

)
≤

( e
K− 1

)K−1NK+1 (4.33)

We provide the full proof in the Appendix.

4.4 Valuing Data and Computation

In this section, we categorize a data valuation problem according to whether
data contributors are valued in tandem with a data analyst; whether each
data contributor provides a single data instance or multiple ones.

4.4.1 Shapley Value Computation in the Composite Game

Oftentimes, the buyer may outsource data analytics to a third party, which
we call the analyst. The analyst analyzes the training dataset aggregated
from different sellers and returns an ML model to the buyer. In this process,
the analyst contributes various computation efforts, which may include
intellectual property pertaining to data anlytics, usage of computing infras-
tructure, among others. Here, we want to address the problem of appraising
both sellers (data contributors) and analysts (computation contributors)
within a unified game-theoretic framework.
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Profit Allocation

Data

Data
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Composite game (data/analytics joint valuation)
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Figure 4.5: A description of the composite game in data valuation to jointly value
data and analytics. A composite game includes the data-only game
and simply extends it with an additional (critical) player, the data
analyst.

Firstly, we extend the game-theoretic framework for data valuation to
model the interplay between data and computation as shown in Figure 4.5.
The resultant game is termed a composite game. By contrast, the game dis-
cussed previously which involves only the sellers is termed a data-only game.
In the composite game, there are M + 1 players, consisting of M sellers
denoted by Is and one analyst denoted by C. We can express the utility
function Uc associated with the game in terms of the utility function U in
the data-only game as follows. Since in the case of outsourced analytics,
both contributions from data sellers and data analysts are necessary for
building models, the value of a set S ⊆ Is ∪ {C} in the composite game is
zero if S only contains the sellers or the analyst; otherwise, it is equal to U
evaluated on all the sellers in S. Formally, we define the utility function Uc

by

Uc(S) =

 0, if S = {C} or S ⊆ Is

U(S \ {C}), otherwise
(4.34)

The goal in the composite game is to allocate Uc({Is, C}) to the individual
sellers and the analyst. s(Uc, i) and s(Uc, C) represent the value received by
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seller i and the analyst, respectively. We suppress the dependency of s on
the utility function whenever it is self-evident, denoting the value allocated
to seller i and the analyst by si and sc, respectively.

We show that one can compute the Shapley value for both the sellers
and the analyst with the same computational complexity as the one needed
for the data-only game. In the composite game, we simply extend our core
proof idea as shown in Figure 4.3, by adding a new higher-level case that
considers a set with and without the analyst C. We can see that the Shapley
value differences are non-zero only for Case 1.1 with the analyst. Thus, by
counting all these cases, similarly to the previous proofs, we can derive our
theorems. The procedures to compute the Shapley value for unweighted
KNN classifiers and regressors is shown below. We are providing the theo-
rems for calculating the Shapley values for weighted KNN in the composite
game setup, in the Appendix.

4.4.1.1 Unweighted KNN classification

Theorem 11. Consider the utility function Uc in (4.34), where U(·) is the KNN
classification performance measure in (4.1). Then, the Shapley value of each training
point and the computation contributor can be calculated recursively as follows:

sαN =
K + 1

2(N + 1)N
1[yαN = yval] (4.35)

sαi = sαi+1 +
1[yαi = yval]− 1[yαi+1 = yval]

K
· min{i, K}(min{i, K}+ 1)

2i(i + 1)
(4.36)

sC = U(I)−
N

∑
i=1

si (4.37)

Comparing s(U, i) in Theorem 5 and s(Uc, i) in the above theorem, we have

s(Uc, αN)

s(U, αN)
=

min{N, K}+ 1
2(N + 1)

(4.38)

s(Uc, αi)− s(Uc, αi+1)

s(U, αi)− s(U, αi+1)
=

min{i, K}+ 1
2(i + 1)

(4.39)
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Note that the right-hand side of (4.38) and (4.39) are at most 1/2 for all
i = 1, . . . , N − 1; thus, each seller will receive a much smaller share of
the total revenue in the composite game than that in the data-only game.
Moreover, the analyst obtains at least one half of the total revenue in the
composite game setup.

4.4.1.2 Unweighted KNN Regression

Theorem 12. Consider the utility function in (4.34), where U(·) is the KNN
regression performance measure in (4.21). Then, the Shapley value of each training
point and the computation contributor can be calculated recursively as follows:

sαN = − 1
K(N + 1)

yαN

[
(K + 2)(K− 1)

2N
(

1
K

yαN − 2yval)

+
2(K− 1)(K + 1)

3N(N − 1) ∑
l∈I\{αN}

yl

]
− 1

N(N + 1)

[
1
K

yαk(N) − yval

]2

(4.40)

sαi = sαi+1 +
1
K
(yαi+1 − yαi )Bi ·

min{K, i}
i

(
1
K

N

∑
l=1

A(l)
i yαl − 2yval) (4.41)

sC = U(I)−
N

∑
i=1

si (4.42)

where

A(l)
i =


2
3

min{K−1,i−1}
(i−1) if 1 ≤ l ≤ i− 1

1
2 if l ∈ {i, i + 1}
2
3

min{K+1,l}min{K,l−1}min{K−1,l−2}i
(l−1)(l−2)min{K,i}Bi

if i + 2 ≤ l ≤ N

(4.43)

and Bi =
min{K+1,i+1}

i+1

Not surprisingly, two adjacent training points will have the same Shapley
value if they have the same label. Otherwise, their Shapley value differences,
as in KNN Shapley regression depend on the three terms, their difference
in the labels, the rank of their distances to the test point min(K,i)

i and the

goodness of fit term 1
K ∑N

l=1 A(l)
i yαl − 2yval of a “weighted” KNN regression
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model in which A(l)
i stands for the weight.

The difference to the data-only game for both, KNN classification and regres-
sion, is that the composite game “reweights” the data-only Shapley values
due to the adjusted utility function UC and the addition of an additional
powerful analyst C. Therefore both algorithms to calculate the Shapley
values for composite games benefit from the same runtime as it would be
for a data-only games.

4.4.2 Multiple Data Per Contributor

Now, we investigate the method to compute the Shapley value when each
seller provides more than one data instance. The goal is to fairly value
individual sellers for their individual training points.

notation Following the previous notations, we still use I = {1, . . . , N}
to denote the set of all training instances and use Is to denote the set of all
sellers, i.e., Is = {1, . . . , M}. The number of training instances owned by
jth seller is Nj. We denote the ith training point contributed by jth seller as

x(i)j . Without loss of generality, we assume that every seller’s data is sorted
such that

d(x(1)j , xval) ≤ . . . ≤ d(x
(Nj)

j , xval)

Let h(i) denote the owner of ith training instance. With slight abuse of
notations, we denote the owners of a set S of training instance as h(S),
where S ⊆ I, and denote the training instances from the set of sellers S̃ ⊆ Is

by h−1(S̃). Let

N (S) = {α1(S), . . . , αmin{K,|S|}(S)}
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be a function that maps a set of training instances to its K-nearest neighbors.
Let

A = {S : S̃ ⊆ Is, |S̃| ≤ K, S = N (h−1(S̃))}

be the collection of all possible K-nearest neighbors formed by sellers;
|S̃| ≤ K because the top K instances cannot belong to more than K sellers.

data-only game The next theorem shows that we can compute the
Shapley value of each seller for the data-only game with O(MK).

Theorem 13. Consider the utility functions (4.1), (4.21), (4.26) or (4.27). Let

A\j = {S : S ∈ A, j /∈ h(S)}

be the set of top-K elements that do not contain seller j’s data,

D(S̃) = {S : S ∈ A, h(S) = S̃}

be the set of top-K elements of the data from the set S̃ of sellers, and

G(S, j) = {j′ : d(x(1)j′ , xval) ≥ max
x∈S

d(x, xval), S ∈ A\j, j′ ∈ Is \ {h(S), j}}

be the set of sellers that do not affect the K-nearest neighbors when added into the
sellers h(S) and S does not include seller j’s data. Then, the Shapley value of seller
j can be represented as

sj =
1
M ∑

S∈A\j

|G(S,j)|

∑
k=0

(|G(S,j)|
k )

( M−1
|h(S)|+k)

[
U(D(h(S) ∪ {j}))−U(S)

]
(4.44)

composite game Furthermore, as shown previously, we can adapt our
data-only game to the composite game. The following theorem demonstrates
that it is possible to calculate the Shapley value of every seller and the
analyst for the composite game in O(MK).
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Theorem 14. Consider the utility functions (4.1), (4.21), (4.26) or (4.27). Let

A\j = {S : S ∈ A, j /∈ h(S)}

be the set of top-K elements that do not contain seller j’s data,

D(S̃) = {S : S ∈ A, h(S) = S̃}

be the set of top-K elements of the data from the set S̃ of sellers, and

G(S, j) = {j′ : d(x(1)j′ , xval) ≥ max
x∈S

d(x, xval), S ∈ A\j, j′ ∈ Is \ {h(S), j}}

be the set of sellers that do not affect the K-nearest neighbors when added into the
sellers h(S) and S does not include seller j’s data. Then, the Shapley value of seller
j can be represented as

sj =
1

M + 1 ∑
S∈A\j

|G(S,j)|

∑
k=0

(|G(S,j)|
k )

( M
|h(S)|+k+1)

[
U(D(h(S) ∪ {j}))−U(S)

]
(4.45)

and the Shapley value of the computation contributor is

sC = U(I)−
M

∑
i=1

si (4.46)

complexity for 1nn. In the 1NN case, even though each seller can
provision multiple instances, the utility function only depends on the point
that is nearest to a query point in each seller’s data. Thus, for 1NN, the
problem of computing the multi-data-per-seller KNN Shapley value reduces
to the the single-data-per-seller case; thus, the corresponding computational
complexity is O(M log M).

4.5 Improved MC Approximation

As discussed previously, the Shapley value for unweighted KNN classifica-
tion and regression can be computed exactly with O(N log N) complexity.
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However, for the variants including the weighted KNN and multiple-data-
per-seller KNN, the complexity to compute the exact Shapley value is
O(NK) and O(MK), respectively, which are clearly not scalable. We pro-
pose a more efficient way to evaluate the Shapley value up to provable
approximation errors, which modifies the existing MC algorithm presented
in Section 3.3.1. By exploiting the locality property of the KNN-type algo-
rithms, we propose a tighter upper bound on the number of permutations
for a given approximation error and exhibit a novel implementation of the
algorithm using efficient data structures.

The existing sample complexity bound is based on Hoeffding’s inequality,
which bounds the number of permutations needed in terms of the range
of utility difference ϕi. This bound is not always optimal as it depends on
the extremal values that a random variable can take and thus accounts for
the worst case. For KNN, the utility does not change after adding training
instance i for many subsets; therefore, the variance of ϕi is much smaller
than its range. This inspires us to use Bennett’s inequality, which bounds
the sample complexity in terms of the variance of a random variable and
often results in a much tighter bound than Hoeffding’s inequality.

Theorem 15. Given the range [−r, r] of the utility difference ϕi, an error bound ϵ,
and a confidence 1− δ, the sample size required such that

P[∥ŝ− s∥∞ ≥ ϵ] ≤ δ

is T ≥ T∗. T∗ is the solution of

N

∑
i=1

exp(−T∗(1− q2
i )h(

ϵ

(1− q2
i )r

)) = δ/2. (4.47)

where h(u) = (1 + u) log(1 + u)− u and

qi =

 0, i = 1, . . . , K
i−K

i , i = K + 1, . . . , N
(4.48)
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Given ϵ, δ, and r, the required permutation size T∗ derived from Bennett’s
bound can be computed numerically. For general utility functions the range
r of the utility difference is twice the range of the utility function, while for
the special case of the unweighted KNN classifier, r = 1

K .

Although determining exact T∗ requires numerical calculation, we can nev-
ertheless gain insights into the relationship between N, ϵ, δ and T∗ through
some approximation. We leave the detailed derivation to Appendix B.6, but
it is often reasonable to use the following T̃ as an approximation of T∗:

T̃ ≥ r2

ϵ2 log
2K
δ

(4.49)

The sample complexity bound derived above does not change with N. On
the one hand, a larger training data size implies more unknown Shapley
values to be estimated, thus requiring more random permutations. On
the other hand, the variance of the Shapley value across all training data
decreases with the training data size, because an increasing proportion of
training points makes insignificant contributions to the query result and
results in small Shapley values. These two opposite driving forces make the
required permutation size about the same across all training data sizes.

The algorithm for the improved MC approximation is provided in Al-
gorithm 7. We use a max-heap to organize the KNN. Since inserting any
training data to the heap costs O(log K), incrementally updating the KNN
in a permutation costs O(N log K). Using the bound on the number of
permutations in (4.49), we can show that the total time complexity for our
improved MC algorithm is

O( N
ϵ2 log K log

K
δ
) (4.50)
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Algorithm 7: Improved MC Approach

input : Training set - D = {(xi, yi)}N
i=1

Utility function U(·)
The number of measurements - M

The number of permutations - T

output : The Shapley value of each training point - ŝ ∈ RN

1 for t← 1 to T do

2 πt ← GenerateUniformRandomPermutation(D);

3 Initialize a length-K max-heap H to maintain the KNN;

4 for i← 1 to N do

5 Insert πt,i to H;

6 if H changes then

7 ϕt
πt,i
← U(πt,1:i)−U(πt,1:i−1);

8 else

9 ϕt
πt,i
← ϕt

πt,i−1
;

10 end

11 end

12 end

13 ŝi =
1
T ∑T

t=1 ϕt
i for i = 1, . . . , N;

4.6 Experiments

We evaluate the proposed approaches to computing the Shapley value of
training data for various nearest neighbor algorithms.

4.6.1 Experimental Setup

datasets We used the following popular benchmark datasets of differ-
ent sizes:
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(1) dog-fish (Koh and Liang, 2017) contains the features of dog and cat
images extracted from ImageNet, with 900 training examples and
300 test examples for each class. The features have 2048 dimensions,
generated by the state-of-the-art Inception v3 network (Szegedy et al.,
2016b) with all but the top layer.

(2) MNIST (LeCun and Cortes, 2010) is a handwritten digit dataset with
60000 training images and 10000 test images. We extracted 1024-
dimensional features via a convolutional network.

(3) The CIFAR-10 dataset consists of 60000 32× 32 color images in 10
classes, with 6000 images per class. The deep features have 2048
dimensions and were extracted via the ResNet-50 (K. He et al., 2016).

(4) ImageNet (J. Deng et al., 2009) is an image dataset with more than 1
million images organized according to the WordNet hierarchy. We
chose 1000 classes which have in total around 1 million images and
extracted 2048-dimensional deep features by the ResNet-50 network.

(5) Yahoo Flickr Creative Commons 100M that consists of 99.2 million pho-
tos. We randomly chose a 10-million subset (referred to as Yahoo10m

hereinafter) for our experiment, and used the deep features extracted
by (Amato et al., 2016).

parameter selection for lsh The three main parameters that affect
the performance of the LSH are

m - the number of projections per hash value

h - the number of hash tables

r - the width of the projection

Decreasing r decreases the probability of collision for any two points, which
is equivalent to increasing m. Since a smaller m will lead to better efficiency,
we would like to set r as small as possible. However, decreasing r below
a certain threshold increases the quantity g(CK), thereby requiring us to
increase h. Following (Datar et al., 2004), we performed grid search to find
the optimal value of r which we used in our experiments. Following (Gionis,
Indyk, Motwani, et al., 1999), we set m = α log N/ log( fh(Dmean)−1).
For a given value of m, it is easy to find the optimal value of h which will
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Figure 4.6: The Shapley value produced by the exact algorithm and the baseline
MC approximation algorithm.

guarantee that the Shapley value approximation error is no more than a
user-specified threshold. We tried a few values for α and reported the m
that leads to lowest runtime. For all experiments pertaining to the LSH, we
divided the dataset into two disjoint parts: one for selecting the parameters,
and another for testing the performance of LSH for computing the Shapley
value.

4.6.2 Experimental Results

4.6.2.1 Unweighted KNN Classifier

correctness We first empirically validate our theoretical result. We
randomly selected 1000 training points and 100 test points from MNIST. We
computed the Shapley value of each training point with respect to the KNN
utility using the exact algorithm and the baseline MC method. Figure 4.6
shows that the MC estimate of the Shapley value for each training point
converges to the result of the exact algorithm.

performance We validated the hypothesis that our exact algorithm
and the LSH-based method outperform the baseline MC method. We take
the approximation error ϵ = 0.1 and δ = 0.1 for both MC and LSH-based
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approximations. We bootstrapped the MNIST dataset to synthesize training
datasets of various sizes. The three Shapley value calculation methods were
implemented on a machine with 2.6 GHz Intel Core i7 CPU.

The runtime of the three methods for different datasets is illustrated in
Figure 4.7 (a). The proposed exact algorithm is faster than the baseline ap-
proximation by several orders magnitude and it produces the exact Shapley
value. By circumventing the computational complexity of sorting a large
array, the LSH-based approximation can significantly outperform the exact
algorithm, especially when the training size is large.

Figure 4.7 (b) sheds light on the increasing performance gap between the
LSH-based approximation and the exact method with respect to the training
size. The relative contrast of these bootstrapped datasets grows with the
number of training points, thus requiring fewer hash tables and less time to
search for approximate nearest neighbors. We also tested the approximation
approach proposed in Chapter 3, which achieves the-start-of-the-art perfor-
mance for ML models that cannot be incrementally maintained. However,
for models that have efficient incremental training algorithms, like KNN,
it is less efficient than the baseline approximation, and the experiment for
1000 training points did not finish in 4 hours.

Using a machine with the Intel Xeon E5-2690 CPU and 256 GB RAM,
we benchmarked the runtime of the exact and the LSH-based approxima-
tion algorithm on three popular datasets, including CIFAR-10, ImageNet,
and Yahoo10m. For each dataset, we randomly selected 100 test points, com-
puted the Shapley value of all training points with respect to each test point,
and reported the average runtime across all test points.

The results for K = 1 are reported in Figure 4.8. We can see that the
LSH-based method can bring a 3×-5× speed-up compared with the exact
algorithm. The performance of LSH depends heavily on the dataset, espe-
cially in terms of its relative contrast. This effect will be thoroughly studied
in the sequel. We compare the prediction accuracy of KNN (K = 1, 2, 5)
with the commonly used logistic regression and the result is illustrated in
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Figure 4.7: Performance of unweighted KNN classification in the single-data-per-
seller case.

Dataset Size Estimated
Contrast

Runtime
(Exact)

Runtime
(LSH)

CIFAR-10 6E+4 1.2802 0.78s 0.23s

ImageNet 1E+6 1.2163 11.34s 2.74s

Yahoo10m 1E+7 1.3456 203.43s 44.13s

Figure 4.8: Average runtime of the exact and the LSH-based approximation
algorithm for computing the unweighted KNN Shapley value for a
single test point. We take ϵ, δ = 0.1 and K = 1.

Figure 4.9. We can see that KNN achieves comparable prediction power to
logistic regression when using features extracted via deep neural networks.
The runtime of the exact and the LSH-based approximation for K = 2, 5 is
similar to the K = 1 case in Figure 4.8, so we will leave their corresponding
results to Appendix B.1.1.

effect of relative contrast on the lsh-based method Our
theoretical result suggests that the K∗th relative contrast where K∗ =

max{K, ⌈1/ϵ⌉} determines the complexity of the LSH-based approxima-
tion. We verified the effect of relative contrast by experimenting on three
datasets, namely, dog-fish, deep and gist. deep and gist were constructed
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Dataset 1NN 2NN 5NN Logistic Regression
CIFAR-10 81% 83% 80% 87%

ImageNet 77% 73% 84% 82%

Yahoo10m 90% 96% 98% 96%

Figure 4.9: Comparison of prediction accuracy of KNN vs. logistic regression on
deep features.

by extracting the deep features and gist features (Siagian and Itti, 2007)
from MNIST, respectively. All of these datasets were normalized such that
Dmean = 1.

Figure 4.10 (a) shows that the relative contrast of each dataset decreases
as K∗ increases. In this experiment, we take ϵ = 0.01 and K = 2, so the
corresponding K∗ = 1/ϵ = 100. At this value of K∗, the relative contrast is
in the following order: deep (1.57) > gist (1.48) > dog-fish (1.17).
From Figure 4.10 (b) and (c), we see that the number of hash tables and
the number of returned points required to meet the ϵ error tolerance for
the three datasets follow the reversed order of their relative contrast, as
predicted by Theorem 8. Therefore, the LSH-based approximation will be
less efficient if the K in the nearest neighbor algorithm is very large or the
desired error ϵ is small.
Figure 4.10 (d) shows that the LSH-based method can better approximate
the true Shapley value as the recall of the underlying nearest neighbor
retrieval gets higher. For the datasets with high relative contrast, e.g., deep
and gist, a moderate value of recall (∼ 0.7) can already lead to an approx-
imation error below the desired threshold. On the other hand, dog-fish,
which has low relative contrast, will need fairly accurate nearest neighbor
retrieval (recall ∼ 1) to obtain a tolerable approximation error.

The reason for the different retrieval accuracy requirements is that for
the dataset with higher relative contrast, even if the retrieval of the nearest
neighbors is inaccurate, the rank of the erroneous elements in the retrieved
set may still be close to that of the missed true nearest neighbors. Thus,
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Figure 4.10: Performance of LSH on three datasets: deep, gist, dog-fish. (a)
Relative contrast CK∗ vs. K∗. (b), (c) and (d) illustrate the trend of
the Shapley value approximation error for different number of hash
tables, returned points and recalls.

these erroneous elements will have only little impacts on Shapley value
approximation errors.

simulation of the theoretical bound of lsh According to
Theorem 8, the complexity of the LSH-based approximation is dominated
by the exponent g(CK∗), where K∗ = min{K, 1/ϵ} and g(·) depends on
the width r of the p-stable distribution used for LSH. We computed CK∗
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Figure 4.11: (a) The exponent g(CK∗ ) in the complexity bound of the LSH-based
method and the relative contrast CK∗ computed for different ϵ. K is
fixed to 1. (b) g(CK∗ ) vs. the projection width r of the LSH.

and g(CK∗) for ϵ ∈ {0.001, 0.01, 0.1, 1} and let K = 1 in this simulation. The
orange line in Figure 4.11 (a) shows that a larger ϵ induces a larger value of
relative contrast CK∗ , rendering the underlying nearest neighbor retrieval
problem of the LSH-based approximation method easier. In particular, CK∗

is greater than 1 for all epsilons considered except for ϵ = 0.001. Recall that
g(CK) = log fh(1/CK)/ log fh(1); thus, g(CK∗) will exhibit different trends
for the epsilons with CK∗ > 1 and the ones with CK∗ < 1, as shown in
Figure 4.11 (b). Moreover, Figure 4.11 (b) shows that the value of g(CK∗) is
more or less insensitive to r after a certain point. For ϵ that is not too small,
we can choose r to be the value at which g(CK∗) is minimized. It does not
make sense to use the LSH-based approximation if the desired error ϵ is too
small to have the corresponding g(CK∗) less than one, since its complexity
is theoretically higher than the exact algorithm. The blue line in Figure 4.11

(a) illustrates the exponent g(CK∗) as a function of ϵ when r is chosen to
minimize g(CK∗). We observe that g(CK∗) is always below 1 except when
ϵ = 0.001.
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4.6.2.2 Evaluation of Other Extensions

We introduced the extensions of the exact Shapley value calculation al-
gorithm to the settings beyond unweighted KNN classification. Some of
these settings require polynomial time to compute the exact Shapley value,
which is impractical for large-scale datasets. For those settings, we need to
resort to the MC approximation method. We first compare the sample com-
plexity of different MC methods, including the baseline and our improved
MC method (Section 4.5). Then, we demonstrate data values computed in
various settings.

sample complexity for mc methods The time complexity of the
MC-based Shapley value approximation algorithms is largely dependent on
the number of permutations. Figure 4.12 compares the permutation sizes
used in the following three methods against the actual permutation size
needed to achieve a given approximation error (marked as “ground truth”
in the figure):

(1) “Hoeffding”, which is the baseline approach and uses the Hoeffding’s
inequality to decide the number of permutations

(2) “Bennett”, which is our proposed approach and exploits Bennett’s
inequality to derive the permutation size;

(3) ”Heuristic”, which terminates MC simulations when the change of
the Shapley value estimates in the two consecutive iterations is below
a certain value, which we set to ϵ/50 in this experiment.

We notice that the ground truth requirement for the permutation size
decreases at first and remains constant when the training data size is large
enough. From Figure 4.12, the bound based on the Hoeffding’s inequality is
too loose to correctly predict the correct trend of the required permutation
size. By contrast, our bound based on Bennett’s inequality exhibits the
correct trend of permutation size with respect to training data size. In terms
of runtime, our improved MC method based on Bennett’s inequality is more
than 2× faster than the baseline method when the training size is above
1 million. Moreover, using the aforementioned heuristic, we were able to
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Figure 4.12: Comparison of the required permutation sizes for different number
of training points derived from the Hoeffding’s inequality (baseline),
Bennett’s inequality and the heuristic method against the ground
truth.

terminate the MC approximation algorithm even earlier while satisfying
the requirement of the approximation error.

performance We conducted experiments on the dog-fish dataset to
compare the runtime of the exact algorithm and our improved MC method.
We took ϵ = 0.01 and δ = 0.01 in the approximation algorithm and used
the heuristic to decide the stopping iteration.
Figure 4.13 compares the runtime of the exact algorithm and our improved
MC approximation for weighted KNN classification. In the first plot, we
fixed K = 3 and varied the number of training points. In the second plot, we
set the training size to be 100 and changed K. We can see that the runtime
of the exact algorithm exhibits polynomial and exponential growth with
respect to the training size and K, respectively. By contrast, the runtime of
the approximation algorithm increases slightly with the number of training
points and remains unchanged for different values of K.

Figure 4.14 compares the runtime of the exact algorithm and the MC
approximation for the unweighted KNN classification when each seller can
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Figure 4.13: Performance of the weighted KNN classification.

own multiple data instances. To generate Figure 4.14 (a), we set K = 2 and
varied the number of sellers. We kept the total number of training instances
of all sellers constant and randomly assigned the same number of training
instances to each seller. We can see that the exact calculation of the Shapley
value in the multi-data-per-seller case has polynomial time complexity,
while the runtime of the approximation algorithm barely changes with the
number of sellers. Since the training data in our approximation algorithm
were sequentially inserted into a heap, the complexity of the approximation
algorithm is mainly determined by the total number of training data held
by all sellers. Moreover, as we kept the total number of training points
constant, the approximation algorithm appears invariant over the number
of sellers.
Figure 4.14 (b) shows that the runtime of exact algorithm increases with K,
while the approximation algorithm’s runtime is not sensitive to K. To sum-
marize, the approximation algorithm is preferable to the exact algorithm
when the number of sellers and K are large.

unweighted vs . weighted Knn shapley value We constructed
an unweighted KNN classifier using the dog-fish. Figure 4.15 (a) illustrates
the training points with top KNN Shapley values with respect to a specific
test image.
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Figure 4.14: Performance of the KNN classification in the multi-data-per-seller
case.

We see that the returned images are semantically correlated with the test
one. We further trained a weighted KNN on the same training set using the
weight function that weighs each nearest neighbor inversely proportional
to the distance to a given test point; and compared the Shapley value
with the ones obtained from the unweighted KNN classifier. We computed
the average Shapley value across all test images for each training point
and demonstrated the result in Figure 4.15 (b). Every point in the figure
represents the Shapley values of a training point under the two classifiers.
We can see that the unweighted KNN Shapley value is close to the weighted
one. This is because in the high-dimensional feature space, the distances
from the retrieved nearest neighbors to the query point are large, in which
case the weights tend to be small and uniform. Another observation from
Figure 4.15 (b) is that the KNN Shapley value assigns more values to dog
images than fish images.
Figure 4.15 (c) plots the distribution of the number test examples with
regard to the number of their top-K neighbors in the training set are with a
label inconsistent with the true label of the test example. We see that most
of the nearest neighbors with inconsistent labels belong to the fish class.
In other words, the fish training images are more close to the dog images
in the test set than the dog training images to the test fish. Thus, the fish
training images are more susceptible to mislead the predictions and should
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Figure 4.15: Data valuation on Dog-Fish dataset (K = 3). (a) top valued data
points; (b) unweighted vs. weighted KNN Shapley value on the
whole test set; (c) Per-class top-K neighbors labeled inconsistently
with the misclassified test example.

have lower values. This intuitively explains why the KNN Shapley value
places a higher importance on the dog images.

data-only vs . composite game We introduced two game-theoretic
models for distributing the gains from an ML model and would like to
understand how the shares of the analyst and the data contributors differ in
the two models. We constructed an unweighted KNN classifier with K = 10
on the dog-fish dataset and compute the Shapley value of each player in
the data-only and the composite game. Recall that the total utility of both
games is defined as the average validation accuracy trained on the full set
of training data.

Figure 4.16 (a) shows that the Shapley value for the analyst increases
with the total utility. Therefore, under the composite game formulation,
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the analyst has huge incentive to train a good ML model as the values
assigned to the analyst gets larger with a better ML model. In addition,
in the composite game formulation, the analyst has exclusive control over
the computational resources and the data only creates value when it is
analyzed with computational modules, the analyst should take the greatest
share of the utility extracted from the ML model. This intuition is reflected
in Figure 4.16 (a).
Figure 4.16 (b) demonstrates that the Shapley value of the data contribu-
tors in the composite game is correlated with that in the data-only game,
although the actual value is much smaller.
Figure 4.16 (c) exhibits the trend of the Shapley value of the analyst and
data contributors as more data contributors participate in a data transaction.
The Shapley value of the analyst gets larger with more data contributors,
while the average value obtained by each data contributor decreases in both
composite and data-only games.
Figure 4.16 (d) zooms into the change of the maximum and minimum value
among all data contributors in the data-only game setting (the result in
the composite game setting is similar). We can see that both the maximum
and minimum value decreases at the beginning; as more data contributors
are involved in a data transaction, the minimum value demonstrates a
small increment. The points with lowest values tend to hurt the ML model
performance when they are added into the training set. With more data con-
tributors and more training points, the negative impacts of these “outliers”
can get mitigated.

4.7 Discussion

remarks We summarize several takeaways from our experimental eval-
uation.
(1) For unweighted KNN classifiers, the LSH-based approximation is more
preferable than the exact algorithm when a moderate amount of approx-
imation error can be tolerated and K is relatively small. Otherwise, it is
recommended to use the exact algorithm as a default approach for data
valuation.
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Figure 4.16: (a) The Shapley value of the analyst in the composite game vs. total
utility obtained from the ML model; (b) the correlation between the
data contributors’ Shapley value in the composite game with that
in the data-only game; (c) The Shapley value of all players in the
two games for different number of data contributors; (d) The mean,
maximum, minimum of the data contributors’ Shapley values in the
data-only game.

(2) For weighted KNN regressors or classifiers, computing the exact Shap-
ley value has O(NK) complexity, thus not scalable for large datasets and
large K. Hence, it is recommended to adopt the Monte Carlo method in
Algorithm 7

(3) Setting up a data valuation problem as a data-only game or a composite
game presents no difference in computational complexity. In both setups,
the relative contribution of each data contributor decreases with the number
of data contributors. In the composite game setup, the data analyst will
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Figure 4.17: Comparison of the Shapley value for a logistic regression and a
KNN trained on the Iris dataset.

account for the largest proportion of the total profit generated by the model.
Moreover, using the heuristic based on the change of Shapley value esti-
mates in two consecutive iterations to decide the termination point of the
algorithm is much more efficient than using the theoretical bounds, such as
Hoeffding or Bennett.

computing the shapley value for models beyond Knn The
efficient algorithms presented in this chapter are possible only because of
the “locality” property of KNN. However, given many previous empirical
results showing that a KNN classifier can often achieve a classification
accuracy that is comparable with classifiers such as SVMs and logistic
regression given sufficient memory, we could use the KNN Shapley value
as a proxy for other classifiers.
We compute the Shapley value for a logistic regression classifier and a KNN
classifier trained on the same dataset namely Iris, and the result shows
that the Shapley values under these two classifiers are indeed correlated
(see Figure 4.17). The only caveat is that KNN Shapley value does not dis-
tinguish between neighboring data points that have the same label. If this
caveat is acceptable, we believe that the KNN Shapley value provides an
efficient way to approximately assess the relative contribution of different
data points for other classifiers as well.
Moreover, for calculating the Shapley value for general deep neural net-
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works, we can take the deep features (i.e., the input to the last softmax layer)
and corresponding labels, and train a KNN classifier on the deep features.
We calibrate K such that the resulting KNN mimics the performance of the
original deep net and then employ the techniques presented in this chapter
to calculate a surrogate for the Shapley value under the deep net.

4.8 Summary

We previously introduced the Shapley value as a valuable economic con-
cept for quantifying the value of data. However - even with improved
estimation algorithms - its practical application has been limited so far by
the challenge of dealing with exponential computational complexity. This
issue becomes particularly acute in real-world data valuation settings that
involve enormous datasets with billions of data points. In this chapter, we
focus on one popular family of ML models relying on K-nearest neighbors
(KNN) and provide an efficient algorithm to calculate the exact Shapley
values for unweighted KNN classification. We show that the exact algo-
rithm and the approximate algorithm using LSH can scale to millions of
data points and is thus suitable for the above mentioned challenge. We
then extend our algorithms to other scenarios such as (1) weighed KNN
classifiers, (2) different data points are clustered by different data curators,
and (3) there are data analysts providing computation who also requires
proper valuation. Some of these extensions, although also being improved
exponentially, are less practical for exact computation (e.g., O(NK) com-
plexity for weighted KNN). We thus propose a Monte Carlo approximation
algorithm, which is O(N(log N)2/(log K)2) times more efficient than the
baseline approximation algorithm.





5
VA L U I N G C O N T R I B U T O R S I N P R I VAT E D ATA M A R K E T S
A N D D ATA C U R AT I O N

All theory, dear friend, is gray, but the golden tree of
life springs ever green

— Johann Wolfgang von Goethe

5.1 Introduction

Machine learning (ML) systems benefit from large quantities of diverse
training data. In recent years, numerous initiatives have attempted to build
data marketplaces, as a way for individuals and organizations to share, buy,
and sell data (McConaghy, 2022; Azcoitia and Laoutaris, 2022). Neverthe-
less, multiple aspects of the design of such a marketplace remain unclear,
including the transfer of data and payments, the handling of potentially
private and sensitive data, the potential need for data curation and cleaning,
and the applicability of impactful real-world use cases. In this Chapter, we
we focus on two settings (see Figure 5.1): First, a data marketplace tailored
for private data in healthcare, and second, a mutually beneficial curated
dataset for forest carbon.

data marketplace for private data . First, let us revisit the in-
troductory toy example from Chapter 1. Imagine that instead of training a
dog and fish classifier, the data consumer is aiming to develop a machine
learning model for healthcare purposes that requires sensitive information,
such as patient healthcare records. Additionally, the data consumer is reluc-
tant to disclose or share his model weights for training purposes (e.g. due
to IP concerns). How will the exchange of private data be managed in this
context? Collecting high-quality data sets, especially for sensitive data, is
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Figure 5.1: We will study two use cases of a data marketplace to guide our
implementation: 1) How can we train an ML model without revealing
the data to the data consumer, nor the model parameters to the data
contributors? 2) How can we incentivize and curate data contributions
effectively?

challenged by data regulatory and ethical privacy requirements. Thus, the
development and implementation of such platforms for private data are
not without challenges which include, but are not restricted to:

Data privacy and security. Protecting sensitive information while enabling
data exchange is a critical concern for data marketplaces. E.g. in the context
of healthcare, providing access to patient data can enable the training of
ML models that enable more accurate diagnoses. However, sharing this
sensitive data can potentially expose patients’ private information, which
could lead to ethical issues, privacy breaches and non-compliance with data
protection regulations such as HIPAA in the United States or GDPR in the
European Union.

Valuing data ahead of time. As discussed in previous chapters, one im-
portant component of a data marketplace involves the creation of robust,
efficient, and task-specific data valuation methods to accurately determine
the value of individual data points. However, a data consumer would often
like to assess ahead of time if the data is of value, which might not be
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possible in the case of sensitive data. Thus it is unclear how to integrate
data valuation into a data marketplace for private data.

Data governance and ownership. An important question in the design of
data marketplaces is the question of who owns the data and who can use
it. Addressing these issues can help ensure that that sensitive data usage
aligns with the values and preferences of the data contributors, while also
preventing unauthorized or unethical practices from any data consumer.
For instance, a patient may choose to allow their health records to be only
used for research on disease classification, but they might prohibit its use
for any commercial purposes, such as targeted advertising.

In this Chapter, we want to address the above mentioned challenges by
studying the question:

Challenge 1

What are the key design considerations required to develop a data
marketplace that effectively handles private data while maintaining
privacy and governance?

incentivizing real-world data curation. In a data market-
place, the mutual benefit of data contributors and consumers is an impor-
tant aspect that drives the success and sustainability of the ecosystem. This
is particularly relevant in data collection and curation scenarios, where
datasets do not readily exist, and their creation depends upon connecting
them to real-world use cases and benefits. Providing payments and incen-
tives to data contributors, as well as offering compelling reasons for data
consumers to support the growth of the dataset, is therefore important to
understand. Additionally, data payments and market mechanisms can offer
novel opportunities to involve local communities and individuals, who
are traditionally not part of the machine learning development process,
to benefit from the existing data economy. Consequently, our aim is to
incentivize an impactful real-world example that highlights the mutual
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benefits for data contributors and consumers as well as challenges when
working with the resulting data.

Challenge 2

How can we effectively incentivize data contributions, engage local
communities, and provide mutual benefits for data contributors and
consumers in real-world machine learning applications?

5.1.1 Contributions

contribution 1 To address the first challenge, we propose Sterling, a
data marketplace for private datasets. Our approach combines blockchain
smart contracts, trusted execution environments (e.g., Intel SGX (Anati et al.,
2013), Sanctum (Lebedev, Hogan, and Devadas, 2018), Keystone (D. Lee
et al., 2020)), and differential privacy, to offer strong security and privacy
guarantees for user data and machine learning models. Smart contracts
allow the enforcement of data contributors’ constraints on how their data
is used. For example, they can require analytics performed on their data
to be differentially private. Smart contracts also enable users to define
payments and rewards. By leveraging privacy-preserving smart contracts
running in trusted execution environments, we can compute analytics and
train machine learning models while keeping all data and models private.
Sterling thus enables mutually distrusting parties to collaboratively train
privacy-preserving machine learning models, compensating parties while
keeping their data private. Specifically we make the following technical
contributions:

C1.1 Smart contract framework We present a framework supporting
generic data contributor and data consumer smart contracts which uphold
their creators’ interests.

C1.2 Contributor-defined terms of usage We provide a mechanism
for data contributors to control the use of their data through automatic
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verification of data consumer contracts, allowing contributors to express
constraints such as pricing and differential privacy.

C1.3 Privacy-preserving ML training Sterling enables privacy-preserving
distribution and use of data. We achieve this by preventing data contrib-
utors and data consumers from directly accessing each other’s respective
private data and models.

C1.4 Use case for medical diagnosis We provide a concrete demon-
stration of the aforementioned contributions by applying them to the task
of medical diagnosis in ophthalmology.

Sterling is the result of joint work with my co-authors and has been previ-
ously presented as a VLDB demo.

Nick Hynes, David Dao, David Yan, Raymond Cheng, Dawn Song “A
demonstration of Sterling: A Privacy-Preserving Data Marketplace”. VLDB
Demo. 2018.

contribution 2 To study the second challenge, we present a real-
world use case with mutual benefit: ReforesTree, a benchmark dataset for
forest carbon stock prediction that encompasses 6 (agro-)forestry carbon
offsetting sites and more than 4463 individual tree measurements which has
been collected on the ground by 18 community members. We incentivized
the creation of this specific dataset by compensating local community mem-
bers with 1$ for every 3 trees collected. ReforesTree proved useful for ML
practitioners in accurately estimating carbon stocks and detecting overes-
timation in existing satellite-based estimations, emphasizing the need for
continued collection and a mutual benefit of data contributors and con-
sumers. We provide four technical contributions:

C2.1 Data contributor framework We present a low-cost framework for
collecting tree measurements, utilizing mobile applications and low-cost
drones for data entry in remote regions, and ensuring data quality and con-
sistency throughout the process. The framework enables local and Indige-
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nous communities, who conduct the field work to receive payments for
data collection efforts.

C2.2 Data processing pipeline We develop a robust data processing
pipeline that extracts the GPS coordinates the collected field and drone
images and transforming it into a format suitable for machine learning
algorithms.

C2.3 Satellite-based evaluation Surprisingly, based on the ReforesTree
dataset, our analysis shows that existing forest carbon estimates from satel-
lite imagery can overestimate above-ground biomass by up to 10-times for
tropical reforestation projects.

C2.4 ML models for carbon stock estimation We show that a deep
learning-based end-to-end model using individual tree detection from
low cost RGB-only drone imagery is accurately estimating forest carbon
stock within official carbon offsetting certification standards. Additionally,
our baseline ML model outperforms state-of-the-art satellite-based forest
biomass and carbon stock estimates for this type of small-scale, tropical
agro-forestry sites.

ReforesTree is the result of joint work co-led by the author and has been
previously published at AAAI.

Gyri Reiersen, David Dao, Björn Lütjens, Konstantin Klemmer, Kenza
Amara, Attila Steinegger, Ce Zhang, Xiaoxiang Zhu.
“ReforesTree: A Dataset for Estimating Tropical Forest Carbon Stock with
Deep Learning and Aerial Imagery”. AAAI. 2022.

5.1.2 Overview

In this chapter, we first present Sterling, a data marketplace for private
data, and outline our method in Sterling for automatically enforcing data
contributor constraints (Section 5.2.2), the resulting data economy (Sec-
tion 5.2.3), and our implementation of a comprehensive privacy-preserving
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machine learning pipeline (Section 5.2.4). Next, we discuss the Sterling
demonstration use case, which involves training a disease prediction model
using electronic health records (Section 5.2.5).
Following that, we introduce ReforesTree, a benchmark dataset for carbon
estimation created through field measurements by local communities. We
describe the mutual advantages of this dataset for both data contributors
and users (Section 5.3.1), the essential collaboration with data contributors
(Section 5.3.2), and the necessary data processing to make the dataset ready
for analysis (Section 5.3.5). Finally, we conclude with experiments that
demonstrate the value of such a benchmark dataset in the development of
ML models (Section 5.3.6) and provide an overall summary (Section 5.4).

5.2 Sterling: A Data Marketplace for Private Data

There have been several attempts at creating distributed AI and data mar-
ketplaces for public datasets, some of which are implemented as smart
contracts on distributed ledgers known as blockchains. Although smart
contracts enable reaching consensus on the result of a computation, current
mechanisms for verifying correctness requires public disclosure of contract
inputs and state. This poses a difficulty for data marketplaces since any
user of the blockchain can directly view and copy the data and models.
Furthermore, even in the benign case, there is no way to ensure that data
are not used in a manner that conflicts with its contributor’s constraints
(e.g., using biometric data to train ad-serving models).

To address this question, we demonstrate Sterling, a decentralized market-
place for private data. Sterling enables privacy-preserving distribution and
use of data by using privacy-preserving smart contracts which run on a per-
missionless blockchain. These smart contracts, written by data contributors
and consumers, immutably and irrevocably represent the interests of their
creators. In particular, we provide a mechanism for data contributors to con-
trol the use of their data through automatic verification of data consumer
contracts, allowing contributors to express constraints such as pricing and
differential privacy.
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Figure 5.2: Diagram of the interaction between data producers and consumers in
the Sterling marketplace. The economic and privacy interests of each
party is mediated and enforced using privacy-preserving smart con-
tracts. The circled numbers refer to steps of the workflow described
in Section 5.2.1.

5.2.1 The Sterling Marketplace

Let us revisit our motivating example of a medical researcher wishing to
train a predictive model of disease. Currently, this would require a lengthy
process of negotiating with hospitals for data (Rajkomar et al., 2018). Ob-
taining a truly representative dataset may require collaborations with clinics
across the globe. Instead Sterling, a privacy-preserving data marketplace,
allows individuals to provide their EHR data for direct use by researchers
and organizations. Thus, individuals can realize the economic value of their
data without compromising privacy. Notably, this application is unsuitable
for marketplaces built using public smart contracts as leakage of a single
record can compromise an individual’s privacy.

Generally, we seek to provide the following workflow (Figure 5.2):

1. A data contributor, Ud, uploads encrypted data to a centralized or
decentralized storage service (e.g., AWS, IPFS, Swarm). Ud publishes
a smart contract Cd containing the address of the data and, optionally,
constraints like payment or privacy requirements. Ud provisions Cd

with a data decryption key which is privately stored by the contract.
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2. A data consumer, Uc, desiring to use provided data writes a smart
contract Cc which satisfies the constraints of Cd.

3. Uc invokes Cc which sends a signed request, attesting to its identity,
to Cd.

4. Cd automatically verifies that Cc satisfies the constraints and securely
returns a data decryption key.

5. Cc performs its computation on the decrypted data and Ud is com-
pensated according to the terms of use.

Enabling a secure protocol like the above is challenging due to attacks on
data/model privacy and we will explain the following each component in
detail.

5.2.2 Automatically Enforcing Terms of Use

A primary contribution of the Sterling marketplace is the ability for data
contributors to impose terms of use, or constraints, on the use of their data.
In our system, the privacy-preserving smart contracts are programmed in a
general-purpose language (e.g., Rust, JavaScript). Thus, data contributors
can encode flexible requirements within the Sterling framework. Perhaps
the simplest term of use is requiring payment for each use of the data.
Recalling the motivating example, a more nuanced term might be that a
consumer contract bearing the cryptographic signature of a hospital re-
ceives the EHR data for free.

By executing the contracts on a blockchain, Sterling ensures correct au-
tonomous execution of smart contracts. The high availability and immutabil-
ity of the blockchain ensures that consensus on the correct enforcement of
constraints is achieved. Indeed, Byzantine fault tolerance guarantees that if
a consumer contract is run on constrained data, then the consumer contract
has been verified by a majority of participants to satisfy the constraints. Ster-
ling runs on the Oasis blockchain platform which extends Ekiden (Cheng
et al., 2018) and provides privacy-preserving smart contracts.
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5.2.2.1 Terms of Use for Training ML Models

In our initial system, we focus on the constraints of payment and differential
privacy (Dwork, Rothblum, and Vadhan, 2010) of models trained on the
data. In both cases, our approach relies on static analysis to ensure that the
data consumer contract satisfies the constraints of data contributor contract.
For ensuring differential privacy, we provide functionality for training dif-
ferentially private ML models like logistic regression and neural networks
using stochastic gradient descent (Abadi et al., 2016). We use techniques
from Optio (Near et al., 2018) to perform privacy-aware type checking of a
consumer contract’s model definition, so to ensure that it satisfies differen-
tial privacy.

We further describe differential privacy constraints in Section 5.2.4.2.
Since Sterling supports flexible logic (which includes calls to other con-
tracts), a data contributor can straightforwardly create additional, custom
constraints within the general framework.

5.2.3 Data Economics

In general, the data economy is governed by the terms of use set by data
contributors. Since data contributors are free to create additional contributor
contracts, they can re-share data under modified terms of use–for instance,
lowering the price to reflect other contributors’ actions in the marketplace.

A main challenge of working with private data is that the consumer is
unable to determine ahead of time that the data are of value. In a benign
case, a data contributor may simply offer poor documentation. An adver-
sarial contributor, however, may attempt to defraud buyers by submitting
random noise or even plausible fake data. Thus it would be advantageous–
indeed essential–for a data consumer contract to automatically determine
the value of the data it receives. Generally, appraising data requires domain
specific knowledge of what constitutes good data. In the section to follow,
we present as examples techniques usable in machine learning applications.
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Assuming that data consumers are able to verify the utility of data, the
economics of the market ensure that the objectives of contributors and con-
sumers are aligned. For example, an adversary might submit fake data with
the constraint that payment be made upfront, but no rational data consumer
would use the data without first verifying its utility. Conversely, an honest
data contributor would not want their data to be used without payment,
so they might require that a data consumer contract not reveal the results
of its computation until a payment is made. Since each party’s terms are
immutably and irrevocably encoded in a privacy-preserving smart contract,
Sterling guarantees that all parties requirements are fulfilled.

integrating data valuation into sterling For the specific use
case of machine learning, we draw on techniques from data valuation intro-
duced in the previous Chapters and adapt them for use on the blockchain.
Programs written as smart contracts on blockchains are computationally
expensive in runtime and gas costs (a miner’s fee that you have to pay
for the computation) to evaluate as each node within the network has to
execute the program. Therefore data valuation needs to be highly scalable.
While none of the baseline algorithms discussed in Chapter 3 are able to be
implemented or deployed directly into a blockchain-based smart contract,
the KNN data valuation presented in Chapter 4 and its extensions are the
only family of valuation algorithms that can be supported directly within
a decentralized execution model. Implemented as smart contract, we ob-
serve an average of 1300ms execution time for a single KNN data valuation
iteration on the iris dataset and an average gas cost of 24 million gas.

5.2.4 Privacy-Preserving Machine Learning

To protect the contents of data and models and ensure their fair use, we must
guarantee that the complete machine learning pipeline remains privacy-
preserving–from data loading to evaluation of the trained model. To this
end, we use the unique combination of trusted execution environments and
differential privacy.
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5.2.4.1 Trusted Execution Environments

In Sterling, trusted execution environments (TEEs) (D. Lee et al., 2020) can
serve as the foundation for secure computation. The ML pipeline begins
with the TEE remotely attesting to the veracity of the consumer smart
contract. Once verified, the TEE runs the smart contract while keeping
the program state safe from external observation or manipulation. The
consumer contract is then able to obtain encrypted data via the contributor
smart contract, decrypt it, and use it to directly update the model param-
eters, inside the TEE. Even with the overhead of memory encryption and
privacy-preserving context switches, this approach is significantly more
efficient than direct cryptographic methods like homomorphic encryption
or secure multi-party computation. Indeed, machine learning in TEEs has
performance comparable to non-private CPU-based training (Hynes, Cheng,
and D. Song, 2018).

The TEE threat model does not include side-channel attacks, however.
We address this using data-oblivious implementations of common training
algorithms (Ohrimenko, Schuster, et al., 2016) which do not depend on the
values of input data. Moreover, the threat model does not aim to protect
the host from the computation. For example, since an TEE can directly
access host RAM, a malicious smart contract could probe host memory
for sensitive information like private keys. To counter such an attack, we
sandbox the smart contracts by running them within a WebAssembly inter-
preter which provides complete memory isolation and limits the resources
available to the computation. As a side benefit, compiling to Wasm enables
Sterling to operate non-privately on other Wasm-enabled blockchains like
the Kovan testnet1.

Having established a secure way to operate on ML models, we now turn to
ensuring that the model does not learn the exact values of the training data.

1 https://kovan-testnet.github.io/website/
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5.2.4.2 Differential Privacy

Even if data and model parameters are secured within a TEE, naive imple-
mentations of machine learning algorithms can memorize and later reveal
training data (Carlini, C. Liu, et al., 2018).

Differential privacy (DP), in essence, provides strong theoretical guarantee
that the risk to a data contributor’s privacy is not significantly increased by
the use of the data. In other words, applying a DP mechanism ensures that
the results of analyzing the data are relatively insensitive to the exact values
of any particular contributor’s data. A simple and intuitive DP mechanism
is the addition of noise to the model’s gradients during training. The trade-
off between privacy and precision is controlled by the privacy budget. An
important element of DP is that making queries of the data (e.g., through
model training or inference) “spends” the privacy budget.

The Sterling framework allows the data contributor contract to specify
the differential privacy parameters as terms of use. We make the novel
contribution of an automatic tracker for privacy budget expenditure which
does not require trust assumptions (c.f. (McSherry, 2009)): the privacy
requirements of every consumer request is automatically determined by
analyzing its computation graph (Near et al., 2018). When the consumer
contract uses the data, the contributor smart contract’s privacy budget is
correspondingly reduced; when the budget reaches zero, the contract ceases
to yield data and consumer contracts admit no further queries. Sterling
permits an economy to develop around privacy budget by allowing con-
tributors to require payment in proportion to privacy usage, perhaps using
principles from the literature (Hsu et al., 2014; Fleischer and Y. Lyu, 2012).

5.2.4.3 Efficient private machine learning

Given the growing scale of both data and ML models, the ability to quickly
train complex models is a desirable property. For our benchmarks we train
a multi-layer perceptron on MNIST using hidden layers of size 500 and 300

and ReLU activations; these are followed by a softmax and cross-entropy
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Figure 5.3: Data contributors upload encrypted data and list it on Sterling. Data
consumers can browse and purchase those data which satisfy their
requirements.

loss. We train using SGD with a batch size of 32 and learning rate of 0.1.
The classification accuracy on the test set reaches 98.7% after ten epochs of
training.

5.2.5 Use Case: Medical Data

To demonstrate the utility of the Sterling data marketplace, we implement
the disease modeling scenario described in the beginning of Section 5.2.1.
The concrete application is diagnosis of diabetic retinopathy from fundus
(back of eye) images. Examples of which are shown in Figure 5.3).

We simulate multiple data contributors by splitting a public dataset of
fundus images among several data contributors. Each contributor contract
will offer a randomly sized partition of the data and have its own privacy
and payment requirements. Demo participants then assume the role of
medical researchers and design consumer smart contracts, through our web
interface, which train and evaluate privacy-preserving models on contrib-
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utors’ data. As a basis for customization, we provide several examples of
models including logistic regression and deep neural networks.

In this setting of medical diagnosis, we provide a walkthrough which
highlights the key features of Sterling. Namely:

1. the ability of a data contributor to specify a rich set of constraints, like
payment and privacy, on privately shared data,

2. the ability of a data consumers to, via a web interface (shown in
Figure 5.3), browse the marketplace, assemble a custom dataset, and
create contracts which satisfy the constraints of all selected contribu-
tors,

3. efficient, secure training of differentially private ML models, and
automatic appraisal of training data and the resulting model.

To yield insight into the otherwise opaque blockchain operations, we de-
velop a blockchain explorer that displays events like pending transactions
and model training progress (shown in the Appendix Figure C.2).

5.2.6 Discussion & Summary

The goal of demonstrating Sterling is to propose an end-to-end design of a
data marketplace for private data that help us study the big picture, while
providing us on the insights and dependencies on the roles of data valuation
in respect to other components. Sterling is only possible through a set of
opinionated assumptions including: privacy-preserving smart contracts and
efficient compute requirements. Lastly, the demonstration highlights that, in
addition to data valuation and data economics, a significant amount of work
is necessary to make data marketplaces secure and viable for private data.
This includes trusted computation, secure data transfer, enforcement of
terms of service, and the design of appropriate incentives beyond valuation
to ensure the participation of reliable actors.

In summary, Sterling is a data marketplace demonstration based on privacy-
preserving smart contracts, which allows participants to exchange and use
private data without revealing the data or the analytics performed thereon
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to untrusted parties. These interactions are mediated through novel data
contributor and consumer smart contracts; each automatically enforces the
terms-of-use set by its creator. Upon this generic platform, we build a mar-
ket for privacy-preserving machine learning data and models. Models are
kept from leaking the training data by automatic verification of differential
privacy. In this way Sterling enables applications including credit scoring,
smart home automation, and medical diagnosis.

5.3 ReforesTree: A Curated Dataset for ML-based Carbon
Estimation

In this section, we will focus on a specific practical scenario for data pay-
ments: Machine learning for Monitoring, Reporting and Verification (MRV)
of forests. In this setting, data payments can offer mutual advantages for
both data contributors and consumers, with particular emphasis on the role
of data payments to empower historically underserved communities.

ReforesTree offers an initial dataset derived from this approach. The dataset
comprises six tropical agroforestry reforestation project sites, featuring in-
dividual tree crown bounding boxes for over 4,600 trees, along with their
corresponding diameter at breast height (DBH), species, species group,
aboveground biomass (AGB), and carbon stock. This ground truth field
data is combined with cost-effective, high-resolution RGB drone imagery,
which can be utilized to train new models for carbon offsetting protocols
and to assess existing models. Data payments incentivized the acquisition
of both high-resolution RGB imagery and field measurements. Addition-
ally, we present supplementary work that quantifies the extent of carbon
stock overestimation, demonstrating the value of ReforesTree in enhancing
existing models.
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5.3.1 The Setting

The deterioration of the natural world is unparalleled in human history and
a key driver of the current climate crisis and global extinction (IPCC, 2021;
Ceballos and Ehrlich, 2018; Exposito-Alonso et al., 2022). In the past twenty
years, we have lost forest area equivalent to the size of Europe, accounting
for more than 7% of global anthropogenic emissions (Hansen et al., 2013;
IPCC, 2019). Reducing deforestation, restoring ecosystems, and natural
sequestrating of carbon are therefore of uttermost importance and urgency.
A current approach to finance the needed restoration of forest ecosystems
are carbon offsets. The carbon offsetting market is expected to grow 100-fold
until 2050 due to high demand and available capital (Blaufelder et al., 2021;
Ecosystem Marketplace, 2021). However, an obstacle is the limited supply of
offsetting projects, as forest owners lack upfront capital and market access
(Kreibich and Hermwille, 2021).

manual forest inventory The standardized forest carbon stock
inventory consists of manually measuring and registering sample trees of a
project site. Tree metrics such as diameter at breast height (DBH), height,
and species are then put through scientifically developed regression models
called allometric equations to calculate the aboveground biomass (AGB) as
seen in Figure 5.4. The total biomass of a forest is the total AGB added with
the below-ground biomass (BGB), calculated using a root-to-shoot ratio
specific to the forest type and region (H. Ma et al., 2021). The procedure how
to calculate the correct amount of carbon offsets (CO2e) to be certified for a
project is standardized through (Pearson, Walker, and S. Brown, 2005) as
shown in Figure 5.4. The (CO2e), also known as the baseline forest carbon
stock, is equivalent of the total biomass divided by two. Despite being
prone to error propagation (Petrokofsky et al., 2012; Malhi et al., 2004) and
shown to systematically overestimate carbon stock (Badgley et al., 2021),
this is currently the standardized forest inventory method for certification
of forestry projects.
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Figure 5.4: The standard procedure for calculating the correct amount of carbon
offsets to be certified for a reforestation project. The tree metrics are
collected from manual forest inventory.

ml for forest carbon estimation Accurately estimating forest
carbon stock, especially for small-scale carbon offset projects below 10,000

ha, presents several challenges, such as high variance of species and oc-
clusion of individual tree crowns (White et al., 2018; Global Forest Watch,
2019). There are many promising approaches, such as hyper-spectral species
classification (Schiefer et al., 2020), lidar-based height measurements (Ganz,
Käber, and Adler, 2019) and individual tree crown segmentation across
sites (Ben G. Weinstein et al., 2020). In recent years, remote sensing and ML
have been used to estimate biomass (Narine, Popescu, and Malambo, 2020;
Dubayah et al., 2022) based on drone and satellite data, to automate parts
of the certification process of forestry carbon offsetting projects (Kellner
et al., 2019). We may soon have mapped every tree on earth (Hanan and
Anchang, 2020), enabling forest above-ground biomass and carbon to be esti-
mated at scale (Dubayah et al., 2022; Saatchi et al., 2011; Santoro et al., 2021).

Recent research has however shown that the current manual forest car-
bon stock practices systematically overestimate forestry carbon offsetting
projects (Badgley et al., 2021; West et al., 2020), unless they are properly
calibrated and transparently validated. This even applies to the latest gen-
eration satellite programs such as GEDI (Dubayah et al., 2022; Silva et al.,
2021). One reason is that these applications have been developed mainly on
datasets from boreal and temperate forests, which are not suitable for other
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Figure 5.5: Drone imagery of each site of the ReforesTree dataset with a resolution
of 2cm/px.

types of ecosystems. To the best of our knowledge, there is no publicly
available dataset of tropical forests with both aerial imagery and ground
truth field measurements, and very little available data of that kind from
the Global South in general, putting these regions at a disadvantage when
competing in the global carbon emission market. There is thus need for
higher-quality carbon offsetting data to achieve more transparency and
accountability in the MRV of the forest carbon stock (Haya et al., 2020).

role of data payments for fair data Thus, high-quality data on
tropical forests are in high demand. But ground forest measurements are
hard to sustain and the people who make them are extremely disadvantaged
compared to those who use them (R. A. F. d. Lima et al., 2022). Data
payments provide a new approach to forest data that focuses on the needs
of local data contributors, and ensure that they are rewarded properly.
Data consumers incentivize the collection and curation of geographically-
balanced gold-standard open datasets of small-scale forest plots of currently
underrepresented forest ecosystems in the Global South. At the same time,
data marketplaces can provide significant economic opportunity for local
and Indigenous communities by rewarding them as data contributors.
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Figure 5.6: The raw data and its subsequent data processing pipeline for the
ReforesTree dataset, resulting in labels matched to bounding boxes
per tree. Data consumers reward data contributors upon receiving
the processed data points.

5.3.2 Community-centered data collection

With our approach, we want to establish a compromise between cost and
scope. Using small RGB drones and smart phones for the data collection
allows our approach to be employed cheaply, hence offering potential to
be adapted for small-scale projects worldwide. However, this comes with
certain limitations, such as more difficulty in measuring aspects such as tree
height from the drone data, compared to, e. g., LIDAR-based technology.
For the ground-level field data, we developed a mobile tree mapper app 2

that can estimate biomass based on species and diameter of each individual
tree. Both the species and the diameter are estimated from a single photo
of the tree trunk, making it easy and fast to collect data on many individ-
ual trees. As these estimates are based on ground-level data, they can be
used as ground-truth and accurately matched with satellite image based
data. Where logistically feasible, we further collect aerial images using RGB
drones, operated by experts in the local projects we are collaborating with.

2 The app is openly available at: https://play.google.com/store/apps/details?id=com.
sprinteins.treeapp

https://play.google.com/store/apps/details?id=com.sprinteins.treeapp
https://play.google.com/store/apps/details?id=com.sprinteins.treeapp
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The data collection is implemented in collaboration with local and Indige-
nous communities, who conduct the field work. Their expert knowledge
on the local flora can also be leveraged to manually corrected the tree
species estimated by TreeMapper, if needed. To streamline our scenario, we
will exclusively concentrate on fixed payouts in this context, as opposed
to dynamic pricing facilitated by data valuation in Chapter 3. Through
conversations with collaborators and local community members during
our work with ReforesTree, we learned that Shapley-based data valuation,
despite its desirable properties, can be challenging to interpret or explain to
data contributors in practice. We consider tackling this issue to be a crucial
area for future research. Thus, we determine a fixed payment rate of 1$
for every 3 trees collected, based on local hourly wages in each region for
field-based data. Drone data has been collected through a local operator at
a fixed rate of 5̃00$ per site.

social impact Recognizing the true costs of forest data origination
is critical to empower an equitable benchmark (R. A. d. Lima et al., 2022).
Rewarding for data collection has the potential to provide an important ad-
ditional funding source to frontline communities. For instance, the average
monthly salary of forest rangers helping us to collect data in Ecuador is
$400 per month. By contributing to ReforesTree, rangers have experienced
an immediate financial improvement. Additionally, the benchmark incen-
tivizes local upskilling through the frequent use of drone monitoring, a
skill that empowers communities to monitor and protect larger forest areas.

The resulting ReforesTree dataset consists of six agro-forestry sites in
the central coastal region of Ecuador. The sites are of dry tropical forest
type and eligible for carbon offsetting certification with forest inventory
done and drone imagery captured in 2020. See Table 5.1 for information on
each site.
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Site No. of No. of Site total total

no. Trees Species Area AGB CO2e

1 743 18 0.53 8 5

2 929 22 0.47 15 9

3 789 20 0.51 10 6

4 484 12 0.56 5 3

5 872 14 0.62 15 9

6 846 16 0.48 12 7

total 4463 28 3.17 66 40

Table 5.1: Overview of the six project sites in Ecuador, as gathered in field
measurements. Each tree includes a diameter and species measurement.
The resulting significant aboveground biomass (AGB) is measured in
metric tons and area in hectares.

5.3.3 Forest Inventory Data and Drone Imagery

Field measurements were done by hand for all live trees and bushes within
the site boundaries and include GPS location, species, and diameter at
breast height (DBH) per tree. Drone imagery was captured by an RGB
camera from a Mavic 2 Pro drone with a resolution of 2cm per pixel. Each
site is around 0.5 ha, mainly containing banana trees (Musaceae) and cacao
plants (Cacao), planted in 2016-2019.

AGB f ruit = 0.1466 ∗ DBH2.223 (5.1)

AGBmusacea = 0.030 ∗ DBH2.13 (5.2)

AGBcacao = 0.1208 ∗ DBH1.98 (5.3)

AGBtimber = 21.3− 6.95 ∗ DBH + 0.74 ∗ DBH2 (5.4)

The aboveground biomass (AGB) is calculated using published allometric
equations for tropical agro-forestry, namely Equation (5.1) for fruit trees,
including citrus fruits (Segura, Kanninen, and Suárez, 2006), Equation (5.2)
for banana trees (Van Noordwijk et al., 2002), Equation (5.3) for cacao
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(Yuliasmara, Wibawa, and Prawoto, 2009), and Equation (5.4) for shade
trees (timber) (S. Brown and Iverson, 1992). These are commonly used in
global certification standards. The carbon stock is calculated through the
standard forest inventory methodology using a root-to-shoot ratio of 22%,
which is standard for dry tropical reforestation sites (L. Ma et al., 2019).

5.3.4 Limitations

gps noise When collecting the field data the collectors recorded the gps
coordinates, latitude and longitude, of each tree on their phone. It turns
out that the coordinates are very noisy as seen in Figure 5.7 and therefore
makes the mapping of the drone imagery with individual trees challenging.

unbalanced diameter and species measurements The dataset
is unbalanced with regards to species, of which 43% is cacao and 32% is
banana. Additionally, due to all of the trees being planted between 2016-
2019, many of the trees have a similar size (e.g. diameter) and half of the
trees have diameters between 7-10cm.

5.3.5 Data Processing and Method

The collected raw data undergoes multiple processing steps, shown in
Figure 5.6, due to the challenges of data curation. The goal of this data
processing is to have a ML ready dataset that consists of matched drone
images of individual trees with the trees labels, such as the carbon stock.

Tree Crown Detection. Initially the RGB orthomosaics are cut into 4000×4000

tiles and sent through DeepForest, a python package for predicting individ-
ual tree crowns from RGB imagery (Ben G Weinstein et al., 2019), fine-tuned
on some manually labelled bounding boxes from the sites.

White Filter and Manual Labeling. By visual inspection, several of the
bounding boxes were of poor quality such as not being of a tree, too small
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Figure 5.7: A plot of site no. 5 and the raw GPS coordinates (latitudes and
longitudes) of the field data collected. Blue crosses represent non-
banana and red crosses represents banana. As we can see the noise of
the GPS data is significant, and it is difficult to recognize any pattern
of trees which they belong to.

(zoomed in on a leaf) or large (several trees), or being on the edge of the
drone imagery and therefore largely consist of white pixels. Thus, the
bounding boxes containing more than 80% white were filtered out, e.g.
bounding boxes lying on the border of the drone imagery, and manually
labeled to banana and non-banana, due to the easily recognizable charac-
teristics of banana trees, resulting in clear bounding boxes of all trees as
shown in Figure 5.8.

GPS Matching. To fuse the tree information extracted from the ground
measurements with the bounding boxes of the trees detected, we map
between the two closest GPS positions (center of bounding box from drone
imagery and GPS location of tree from field data) that has the similar labels.
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Figure 5.8: Bounding box annotations per tree, as a result of fine-tuned DeepFor-
est tree crown detection and manual cleaning. Red boxes represent
banana trees and blue boxes represent other species.

5.3.6 Experiments

We demonstrate the usefulness of the ReforesTree benchmark for data
consumers in two sets of experiments. First, we train an end-to-end ML
model (Baseline CNN Model) that can accurately predict AGB from aerial
imagery. Second, we benchmark existing and widely used satellite-based
predictions.

5.3.6.1 Baseline CNN Model

With a dataset of matched bounding boxes and tree labels, we fine-tuned a
basic pre-trained CNN, ResNet18 (K. He et al., 2015) with a mean-square-
error loss to estimate individual tree AGB from aerial imagery. The results
(shown in Table 5.2 with cross validation on 6 sites) were satisfying despite
the simple baseline model, and proves that the individual tree estimation
from drone imagery has potential. Fourteen images were identified as being
larger than the expected crown size of a tree, and they were center cropped
at 800×800. To preserve the crown size information, the smaller images
were zero-padded up to 800×800, before all images were resized to fit the
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network architecture. The dataset is unbalanced with regards to species,
of which 43% is cacao and 32% is banana. Additionally, due to the trees
being planted between 2016-2019, many of the trees have similar size (e.g.
DBH) and half of the trees have DBH between 7-10cm. The training dataset
consisted of equal number of samples of species and DBH, and from the
different project sites.

5.3.6.2 Benchmarking Satellite-Based Estimation

With the emerging new biomass maps and forest stock estimation models,
we used the ReforesTree dataset to benchmark these maps and compare
with our baseline CNN model for AGB estimation. We compared the maps
taken from Global Forest Watch (Global Forest Watch, 2019), Spawn (Spawn,
Sullivan, and Lark, 2020), and Santoro (Santoro et al., 2021). The Global For-
est Watch’s Above-Ground Woody Biomass dataset is a global map of AGB
and carbon density at 30m×30m resolution for the year 2000. It is based
on more than 700,000 quality-filtered Geoscience Laser Altimeter System
(GLAS) LIDAR observations using machine learning models based on allo-
metric equations for the different regions and vegetation types. The second
dataset from Spawn (Spawn, Sullivan, and Lark, 2020) is a 300m×300m
harmonized map based on overlayed input maps. The input maps were
allocated in proportion to the relative spatial extent of each vegetation
type using ancillary maps of tree cover and landcover, and a rule-based
decision schema. The last, and most recent 100m×100m dataset from San-
toro (Santoro et al., 2021) is obtained by spaceborne SAR (ALOS PALSAR,
Envisat ASAR), optical (Landsat-7), LIDAR (ICESAT) and auxiliary datasets
with multiple estimation procedures with a set of biomass expansion and
conversion factors following approaches to extend ground estimates of
wood density and stem-to-total biomass expansion factors. To benchmark
the low-resolution satellite-based maps, we fitted it to the high-resolution
drone imagery overlapping the GPS coordinates. The calculation of the total
AGB was done in five steps, illustrated in Figure 5.9:

1. Cropping the low-resolution satellite map with a padding around the
polygon of the site to reduce computation intensity (Satellite Raw)
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Site Field GFW Spawn Santoro Baseline

no. Data 2019 2020 2021 (Ours)

1 8 90 84 14 7

2 15 99 102 12 8

3 10 25 33 19 15

4 5 9 82 12 9

5 15 78 76 15 11

6 12 30 35 16 15

tot. 66 331 413 89 65

Table 5.2: The benchmark results from comparing different models for estimating
AGB with the forest inventory of the ReforesTree sites. All numbers
are given as AGB in kg. GFW is (Global Forest Watch, 2019), Spawn
is (Spawn, Sullivan, and Lark, 2020), Santoro is (Santoro et al., 2021).
All of these three are satellite-based. Lastly, the baseline CNN is our
drone-based model.

2. Linearly interpolating the values for this map and resize the map
with the same high-resolution pixel resolution as the drone imagery
(Satellite Interpolated)

3. Cropping the map further fitting with the GPS locations (max/min)
of the drone imagery

4. Filtering out the site area by removing all pixels in the satellite-based
map, that are outside of the drone imagery, coloured white (Satellite
Filtered)

5. Lastly, multiplying the AGB mean density of the filtered map with
the project site area to get the total AGB

As seen in Table 5.2, all of the available global AGB maps have a tendency
to overestimate the ground truth measurements up to a factor of ten. These
are not encouraging results showing that these maps are far from being
accurate enough to be used in remote sensing of forest carbon stock at a
small scale, as is the case for the ReforesTree dataset.

Our baseline model, on the other hand, has a slight tendency of underesti-
mating the biomass. The model has an evident advantage, to be trained on
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Figure 5.9: This figure represents the different steps in the benchmark analysis
and how we calculated the total AGB amount from the satellite-based
maps for the ReforesTree sites. This is taken from site no. 0. The
values represented in the image is AGB density (tons/ha).

the dataset, but these initial results show promise for the individual tree
estimation approach using drone imagery for forest carbon inventory.

5.3.7 Discussion & Summary

We introduce the ReforesTree benchmark dataset in hopes of encourag-
ing the fellow machine learning community to take on the challenge of
developing low-cost, scalable, trustworthy and accurate solutions for mon-
itoring, verification and reporting of tropical reforestation inventory. We
also present an outlined methodology for creating an annotated machine
learning dataset from field data and drone imagery, and train a baseline
CNN model for individual tree aboveground biomass estimation. This
methodology includes a data processing pipeline leveraging a fine-tuned
tree crown detection algorithm to fuse drone imagery and field-based data
measurement.
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The ReforesTree benchmark dataset, along with the baseline CNN model,
can be found at https://zenodo.org/record/6813783. As tropical forest
data is often gathered by individuals from lower-income communities,
providing payouts to local data collectors has demonstrated potential for
creating a positive social impact while also benefiting the remote sensing
community. To further this effort, we are in the process of expanding our
data collection to include more sites covering a broader geographical range
of tropical forest areas. An enhanced benchmark dataset is currently under
development, featuring 45,141 data points from an additional 20 sites and
contributions from 77 local individuals.

5.4 Summary

In this chapter, our goal was to examine the real-world challenges that data
marketplaces may encounter, with a specific focus on two primary issues:
Training ML on private data and curating unique and demanding datasets.
We presented two data marketplace applications, Sterling and ReforesTree,
each addressing these challenges. Sterling proposes a design for an opin-
ionated marketplace for private data, while ReforesTree encourages the
curation of an ecological dataset in difficult conditions. Both applications
emphasize the importance of looking beyond data valuation when studying
data marketplaces.

To ensure the success of data marketplaces and data valuation, it is crucial
to take a comprehensive view of the marketplace, addressing key ques-
tions such as the mutual benefits for data contributors and consumers, the
privacy and security of data exchange, and the overall design of the market-
place. Although Sterling and ReforesTree have demonstrated potential and
received initial support from the community (Sterling has led to follow-up
projects within the Oasis Blockchain (D. Lee et al., 2020), and ReforesTree
serves as a benchmark dataset within TorchGeo (Stewart et al., 2022) and
was able to receive funding to curate a 10x larger dataset), we believe that

https://zenodo.org/record/6813783
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there is still considerable future work needed to make such marketplaces
effective and resilient for real-world applications.



6
C O N C L U S I O N

I never think about the future - it comes soon enough.
— Albert Einstein

In this Chapter, we summarize our findings and its potential impact. We
conclude by offering insights into prospective future research paths, em-
phasizing the opportunities and constraints associated with data valuation.

6.1 Impact

data markets The research presented in this dissertation has inspired
various follow-up studies that build on the idea of Shapley-based (or
generally cooperative game theory-based) data valuation, as valuation is a
fundamental component of markets and incentive-based machine learning.
A short overview of data valuation methods is provided in Section 2.3,
while a comprehensive list can be found in (Sim, X. Xu, and Low, 2022).
The work presented in this dissertation has also impacted the growing
political movements of data as labor (Arrieta-Ibarra et al., 2018; Posner and
Weyl, 2019) and data dignity (Delacroix and Lawrence, 2019), as it offers
a principled approach to address data values within a machine learning
context.

data debugging A recent observation that has gained significant atten-
tion is the notion that the quality of a machine learning model is frequently
a reflection of the quality of the underlying training data. Consequently,
the most practical and efficient approach to enhancing machine learning
model performance is often to improve the quality of the data. Specifically
data debugging, the process of discovering and repairing data errors in order
to improve the quality of data, has received recent interest in leveraging the

139
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Shapley value. (Ghorbani, Kim, and Zou, 2020) demonstrated that Shapley
values can be used to assess the influence and significance of a data point.
(Jia, F. Wu, et al., 2021) conducted various experiments showing that KNN
Shapley values can act as efficient learning-agnostic heuristics for data im-
portance beyond KNN models. (Karlaš et al., 2022) introduced DataScope 1,
a system that effectively computes Shapley values of training examples
across an end-to-end machine learning pipeline, showcasing its applications
in data debugging for ML training. We anticipate that our exact algorithms
for KNN Shapley will persist as efficient and practical heuristics for data
debugging purposes.

open-source software The research presented in this dissertation
has been adopted and reimplemented in various open-source software
projects. For instance, our work presented in Chapter 3 and Chapter 4 has
been incorporated into pyDVL 2, while the the ReforesTree benchmark from
Chapter 5 has been integrated into the widely-used TorchGeo 3 package
(Stewart et al., 2022).

6.2 Future Work

from the shapley value to monetary reward In Chapter 3 we
have focused on the problem of attributing an ML utility to each data and
computation contributor. In practice, the buyer pays a certain amount of
money depending on the model utility and it is required to determine the
share of each contributor in terms of monetary rewards. Thus, a remaining
question is how to map the Shapley value, a share of the total model utility,
to a share of the total revenue acquired from the buyer. A simple method
for such mapping is to assume that the revenue is an affine function of
the model utility, i.e., R(S) = aU(S) + b where a and b are some constants
which can be determined via market research. Due to the linearity property,
we have s(R, i) = as(U, i) + b. Thus, we can apply the same affine function

1 https://github.com/easeml/datascope
2 https://github.com/appliedAI-Initiative/pyDVL
3 https://github.com/microsoft/torchgeo

https://github.com/easeml/datascope
https://github.com/appliedAI-Initiative/pyDVL
https://github.com/microsoft/torchgeo
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to the Shapley value to obtain the the monetary reward for each contributor.
Nonetheless, in Chapter 5 and via conversations with collaborators and
local community members in our work with ReforesTree, we found that
Shapley-based valuation, despite its desirable properties, can be difficult
to interpret or explain to data contributors in practice. As a result, data
valuation is often better treated as internal information, and it is usually
simpler to rely on fixed payouts.

truthful reporting A concern related to the task-dependence of the
data valuation scheme is that the buyer can be trusted to truthfully report
the total worth of the model, which will then be split between different
contributors. Suppose that the data buyer coincides with the analyst of the
data and his contribution is valued together with data contributors using
the composite game framework. Then, as shown in 4.16 (b), the buyer will
get a larger share of the total worth if the model produced by the buyer is
more performant. In other words, the buyer is incentivized to train a good
model and truthfully report the total worth when his contribution is valued
in tandem with the data contributors. Now, we turn to a different scenario
where the data buyer does not participate in the model training process or
his contribution is not valued in the composite game framework. In that
case, the buyer is no longer incentivized to report truthfully and future
work is necessary to build systems to ensure transparency of the training
process.

lack of data demand In Chapter 5, we discovered that data demand
is not a certainty. Continuing the analogy of data as oil, unprocessed data
can be likened to crude oil, which is not suitable for direct use in production.
Just as we need an oil refinery to process crude oil, we must comprehend
and process raw data to make it ready for analysis. However, even then,
justifying demand can be challenging. In today’s society, we have become
accustomed to free data due to the targeted advertising business model.
Consequently, users are not familiar with the concept of being paid or
having to pay for data and services, and often data purchases happen
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passively through the means of another business model (e.g. data labeling).
Future work is needed to further understand the data demand side.

towards a production-ready system Real-world data markets
hold significant potential to enhance data curation and decentralized ma-
chine learning research. However, future work is needed to understand
how to transform data valuation into actionable incentives for users - and
eventually develop a production-ready system. We believe will require
interdisciplinary collaboration involving expertise from various fields, in-
cluding economics, law, social sciences, and computer science. Designing
robust, secure, and fair data markets can not only benefit researchers and
businesses but also empower individuals to maintain control over their data
and receive the rewards of their contributions.
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A.1 Theoretical Results on the Baseline Permutation Sam-
pling

Let πt be a random permutation of D = {zi}N
i=1 and each permutation

has a probability of 1
N! . Let ϕt

i = U(Pπt
i ∪ {i})−U(Pπt

i ), we consider the
following estimator of si:

ŝi =
1
T

T

∑
t=1

ϕt
i

Given the range of the utility function r, an error bound ϵ, and a confidence
1− δ, the sample size required such that

P[∥ŝ− s∥2 ≥ ϵ] ≤ δ

is

T ≥ 2r2N
ϵ2 log

2N
δ

Proof.

P[ max
i=1,··· ,N

|ŝi − si| ≥ ϵ] = P[∪i=1,··· ,N{|ŝi − si| ≥ ϵ}] ≤
N

∑
i=1

P[|ŝi − si| ≥ ϵ]

≤ 2N exp
(
− 2Tϵ2

4r2

)
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The first inequality follows from the union bound and the second one is
due to Hoeffding’s inequality. Since ∥ŝ− s∥2 ≤

√
N∥ŝ− s∥∞, we have

P[∥ŝ− s∥2 ≥ ϵ ≤ P[∥ŝ− s∥∞ ≥ ϵ/
√

N] ≤ 2N exp
(
− 2Tϵ2

4Nr2

)

Setting 2N exp(− Tϵ2

2Nr2 ) ≤ δ yields

T ≥ 2r2N
ϵ2 log

2N
δ

A.2 Proof of Lemma 1

Proof.

si − sj = ∑
S⊆I\{i}

|S|!(N − |S| − 1)!
N!

[
U(S ∪ {i})−U(S)

]
− ∑

S⊆I\{j}

|S|!(N − |S| − 1)!
N!

[
U(S ∪ {j})−U(S)

]
= ∑

S⊆I\{i,j}

|S|!(N − |S| − 1)!
N!

[
U(S ∪ {i})−U(S ∪ {j})

]
+ ∑

S∈{T|T⊆I,i/∈T,j∈T}

|S|!(N − |S| − 1)!
N!

[
U(S ∪ {i})−U(S)

]
− ∑

S∈{T|T⊆I,i∈T,j/∈T}

|S|!(N − |S| − 1)!
N!

·
[
U(S ∪ {j})−U(S)

]
= ∑

S⊆I\{i,j}

|S|!(N − |S| − 1)!
N!

[
U(S ∪ {i})−U(S ∪ {j})

]
+ ∑

S′⊆I\{i,j}

(|S′|+ 1)!(N − |S′| − 2)!
N!

[
U(S′ ∪ {i})−U(S′ ∪ {j})

]
= ∑

S⊆I\{i,j}

( |S|!(N − |S| − 1)!
N!

+
(|S|+ 1)!(N − |S| − 2)!

N!
)
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·
[
U(S ∪ {i})−U(S ∪ {j})

]
=

1
N − 1 ∑

S⊆I\{i,j}

1

C|S|N−2

[
U(S ∪ {i})−U(S ∪ {j})

]
.

Loosely speaking, the proof distinguishes subsets S which include neither i
nor j (such that the subset utility U(S) of the marginal contribution directly
cancels) and subsets including either i or j. In the latter case, S can be
partitioned to a mock subset S′ by excluding the respective point from
S such that a common sum over S′ again eliminates all terms other than
U(S′ ∪ {i})−U(S′ ∪ {j}).

A.3 Proof of Lemma 2

Proof. Let ϵ′ = ϵ/(2
√

N). Assume that ŝi − si > ϵ/
√

N. Let ŝi − si = cϵ′

where c > 2.

Since Ci,j is an (ϵ′, δ/(N(N − 1)))-approximation to si − sj, we have that
with probability at least 1− δ/(N(N − 1)),

|(si − sj)− Ci,j| ≤ ϵ′ (A.1)

Moreover, the inequality (3.6) implies that

|(ŝi − ŝj)− Ci,j| ≤ ϵ′

Therefore,

|ŝi − si + sj − ŝj| = |ŝi − ŝj − Ci,j − (si − sj − Ci,j)| (A.2)

≤ |ŝi − ŝj − Ci,j|+ |si − sj − Ci,j| (A.3)

≤ 2ϵ′ (A.4)
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with probability at least 1− δ/(N(N− 1)). By the assumption that ŝi − si =

cϵ′ and c > 2, we have

(c− 2)ϵ′ ≤ ŝj − sj ≤ (c + 2)ϵ′ (A.5)

which further implies that ŝj − sj > 0 for some j ̸= i. Thus, with probability
1− δ/N, we have ŝj − sj > 0 for all j ̸= i.

Then,

N

∑
j=1

(ŝj − sj) = ∑
j ̸=i

(ŝj − sj) + (ŝi − si) > 0 (A.6)

Since ∑N
j=1 sj = Utot, it follows that ∑N

j=1 ŝj > Utot, which contradicts with
the fact that ŝj (j = 1, . . . , N) is a solution to the feasibility problem (3.5)
and (3.6).

The contradiction can be similarly established for si − ŝi = cϵ′. Therefore,
we have that with probability at least 1− δ/N, |si− ŝi| ≤ 2ϵ′ for some i. This
in turn implies that with probability at least 1− δ, ∥ŝ− s∥∞ ≤ 2ϵ′ = ϵ/

√
N.

Moreover, since ∥ŝ− s∥2 ≤
√

N∥ŝ− s∥∞ = ϵ, we have that ∥ŝ− s∥2 ≤ ϵ

with probability at least 1− δ.

A.4 Proof of Theorem 1

We prove Theorem 1, which specifies a lower bound on the number of tests
needed for achieving a certain approximation error. Before delving into the
proof, we first present a lemma that is useful for establishing the bound in
Theorem 1.

Lemma 4 (Bennett’s inequality (Bennett, 1962)). Given independent zero-mean
random variables X1, · · · , Xn satisfying the condition |Xi| ≤ a, let σ2 = ∑n

i=1 σ2
i

be the total variance. Then for any t ≥ 0,

P[Sn > t] ≤ exp(−σ2

a2 h(
at
σ2 ))
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where h(u) = (1 + u) log(1 + u)− u.

We now restate Theorem 1 and proceed to the main proof.

Theorem. Algorithm 1 returns an (ϵ, δ)-approximation to the Shapley value
with respect to l2-norm if the number of tests T satisfies T ≥ 8 log N(N−1)

2δ /
(
(1−

q2
tot)h

(
ϵ

Zr
√

N(1−q2
tot)

))
, where qtot =

N−2
N q(1)+∑N−1

k=2 q(k)[1+ 2k(k−N)
N(N−1) ], h(u) =

(1 + u) log(1 + u)− u, Z = 2 ∑N−1
k=1

1
k , and r is the range of the utility function.

Proof. By Lemma 1, the difference in Shapley values between points i and j
is given as

si − sj =
1

N − 1 ∑
S⊆I\{i,j}

1

C|S|N−2

[
U(S ∪ {i})−U(S ∪ {j})

]

=
1

N − 1

N−2

∑
k=0

1
Ck

N−2
∑

S⊆I\{i,j},|S|=k

[
U(S ∪ {i})−U(S ∪ {j})

]
.

Let β1, · · · , βN denote N Boolean random variables drawn with the follow-
ing sampler:

1. Sample the “length of the sequence” ∑N
i=1 βi = k ∈ {1, 2, · · · , N − 1},

with probability q(k).

2. Uniformly sample a length-k sequence from (N
k ) all possible length-k

sequences

Then the probability of any given sequence β1, · · · , βN is

P[β1, · · · , βN ] =
q(∑N

i=1 βi)

C∑N
i=1 βi

N

.

Now, we consider any two data points xi and xj where i, j ∈ I = {1, · · · , N}
and their associated Boolean variables βi and β j, and analyze

∆ = βiU(β1, · · · , βN)− β jU(β1, · · · , βN)

Consider the expectation of ∆ where γk =
q(k+1)
Ck+1

N
. Obviously, only βi ̸= β j

has non-zero contributions:
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E[∆] =
N−2

∑
k=0

γk ∑
S⊆I\{i,j},|S|=k

[
U(β1, · · · , βi−1, 1, βi+1, · · · , β j−1, 0, β j+1, · · · , βN)

−U(β1, · · · , βi−1, 0, βi+1, · · · , β j−1, 1, β j+1, · · · , βN)
]

=
N−2

∑
k=0

γk ∑
S⊆I\{i,j},|S|=k

[
U(S ∪ {i})−U(S ∪ {j})

]
We would like to have ZE[∆] = si − sj

Z
q(k + 1)

Ck+1
N

=
1

(N − 1)Ck
N−2

which yields

q(k + 1) =
N

Z(k + 1)(N − k− 1)
=

1
Z
(

1
k + 1

+
1

N − k− 1
)

for k = 0, · · · , N − 2. Equivalently,

q(k) =
1
Z
(

1
k
+

1
N − k

)

for k = 1, · · · , N − 1. The value of Z is given by

Z =
N−1

∑
k=1

(
1
k
+

1
N − k

) = 2
N−1

∑
k=1

1
k
≤ 2(log(N − 1) + 1)

Now, E[Z∆] = si − sj. Assume that the utility function ranges from [0, r];
then, we know from (4.5) that Z∆ is random variable ranges in [−Zr, Zr].

Consider

∆ := βiU(β1, · · · , βN)− β jU(β1, · · · , βN)

Note that ∆ = 0 when βi = β j. If P[βi = β j] is large, then the variance of ∆
will be much smaller than its range.
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P[βi = β j] = P[βi = 1, β j = 1] + P[βi = 0, β j = 0]

=

[ N−1

∑
k=2

q(k)
Ck

N
Ck−2

N−2

]
+

[
q(1) +

N−1

∑
k=2

q(k)
Ck

N
Ck

N−2

]

=
N − 2

N
q(1) +

N−1

∑
k=2

q(k)
[

1 +
2k(k− N)

N(N − 1)

]
≡ qtot

Let W = 1[∆ ̸= 0] be an indicator of whether or not ∆ = 0. Then, P[W =

0] = qtot and P[W = 1] = 1− qtot.

Now, we analyze the variance of ∆. By the law of total variance,

Var[∆] = E[Var[∆|W]] + Var[E[∆|W]]

Recall ∆ ∈ [−r, r]. Then, the first term can be bounded by

E[Var[∆|W]] = P[W = 0]Var[∆|W = 0] + P[W = 1]Var[∆|W = 1]

= qtotVar[∆|∆ = 0] + (1− qtot)Var[∆|∆ ̸= 0]

= (1− qtot)Var[∆|∆ ̸= 0]

≤ (1− qtot)r2

where the last inequality follows from the fact that if a random variable is

in the range [m, M], then its variance is bounded by (M−m)2

4 .

The second term can be expressed as

Var[E[∆|W]] = EW [(E[∆|W]−E[∆])2]

= P[W = 0](E[∆|W = 0]−E[∆])2 + P[W = 1](E[∆|W = 1]−E[∆])2

= qtot(E[∆|∆ = 0]−E[∆])2 + (1− qtot)(E[∆|∆ ̸= 0]−E[∆])2

= qtot(E[∆])2 + (1− qtot)(E[∆|∆ ̸= 0]−E[∆])2 (A.7)

Note that

E[∆] = P[W = 0]E[∆|∆ = 0] + P[W = 1]E[∆|∆ ̸= 0]
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= (1− qtot)E[∆|∆ ̸= 0] (A.8)

Plugging (A.8) into (A.7), we obtain

Var[E[∆|W]] = (qtot(1− qtot)
2 + q2

tot(1− qtot))(E[∆|∆ ̸= 0])2

Since |∆| ≤ r, (E[∆|∆ ̸= 0])2 ≤ r2. Therefore,

Var[E[∆|W]] ≤ qtot(1− qtot)r2

It follows that

Var[∆] ≤ (1− q2
tot)r

2

Given T samples, the application of Bennett’s inequality in Lemma 4 yields

P
[ T

∑
t=1

(Z∆t −E[Z∆t]) > ϵ′
]
≤ exp

(
− T(1− q2

tot)

4
h
( 2ϵ′

TZr(1− q2
tot)

))

By letting ϵ = ϵ′/T,

P
[
(Z∆̄−E[Z∆]) > ϵ

]
≤ exp

(
− T(1− q2

tot)

4
h
( 2ϵ

Zr(1− q2
tot)

))

Therefore, the number of tests T we need in order to get an
(ϵ/(2

√
N), δ/(N(N − 1)))-approximation to the difference of two Shapley

values for a single pair of data points is

T ≥ 4
(1− q2

tot)h(
ϵ

Z
√

Nr(1−q2
tot)

)
log

N(N − 1)
δ

By union bound, the number of tests T for achieving (ϵ/(2
√

N), δ/(N(N−
1)))-approximation to the difference of the Shapley values for all N(N −
1)/2 pairs of data points is

T ≥ 8
(1− q2

tot)h(
ϵ

Z
√

Nr(1−q2
tot)

)
log

N(N − 1)
2δ
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By Lemma 2, we approximate the Shapley value up to (ϵ, δ) with
(ϵ/(2

√
N), δ/(N(N − 1))) approximations to all N(N − 1)/2 pairs of data

points.

complexity calculation. It can be shown that qtot = 1− 2
Z and so

Z(1− q2
tot) = Z(1− qtot)(1 + qtot) = 2(1 + qtot) ∈ [2, 4] (A.9)

Therefore, as N → ∞,

ϵ

Zr
√

N(1− q2
tot)
→ 0 (A.10)

The Tayor series of h(u) centered at 0 is u2

2 + · · · . Thus, we have

8
(1− q2

tot)h(
ϵ

Z
√

Nr(1−q2
tot)

)
log

N(N − 1)
2δ

(A.11)

= O
(

log N

(1− q2
tot)

ϵ2

Z2 Nr2(1−q2
tot)

2

)
(A.12)

= O(NZ2(1− q2
tot) log N) (A.13)

= O(NZ log N) (A.14)

Since Z ≤ 2(log(N − 1) + 1), we have O(NZ log N) = O(N(log N)2).

A.5 Proof of Theorem 2

Theorem. Suppose that U(·) is monotone. There exists some constant C′ such
that if M ≥ C′(K log(N/(2K)) + log(2/δ)) and T ≥ 2r2

ϵ2 log 4M
δ , except for an

event of probability no more than δ, the output of Algorithm 3 obeys

∥ŝ− s∥2 ≤ C1,Kϵ + C2,K
σK(s)√

K
(A.15)

for some constants C1,K and C2,K.
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Proof. Due to the monotonicity of U(·), ŷm,t can be lower bounded by
− 1√

M ∑N
i=1 U(Pπt

i ∪{i})−U(Pπt
i ) = − 1√

M
U(πt) ≥ − r√

M
; the upper bound

can be similarly analyzed. Thus, the range of ŷm,t is [−1/
√

Mr, 1/
√

Mr].
Since E[ŷm,t] = ∑N

i=1 Am,iE[U(Pπt
i ∪ {i}) − U(Pπt

i )] = ∑N
i=1 Am,isi for all

m = 1, . . . , M, an application of Hoeffding’s bound gives

P[∥As− ȳ∥2 ≥ ϵ] ≤ P[∥As− ȳ∥∞ ≥
ϵ√
M

] (A.16)

≤
M

∑
m=1

P[|Ams− ȳm| ≥
ϵ√
M

] (A.17)

≤ 2M exp(− ϵ2T
2r2 ) (A.18)

Let s = ∆s + s̄. Thus, P[∥A(s̄ + ∆s)− ȳ∥2 ≤ ϵ] holds with probability at
least δ/2 provided

T ≥ 2r2

ϵ2 log
4M

δ
. (A.19)

By the random matrix theory, the restricted isometry constant of A satisfies
δ2K ≤ Cδ = 0.465 with probability at least 1− δ/2 if

M ≥ CC−2
δ (2K log(N/(2K)) + log(2/δ)) (A.20)

where C > 0 is a universal constant.

Applying the Theorem 2.7 in (Rauhut, 2010), we obtain that the output of
Algorithm 2 satisfies

∥ŝ− s∥ = ∥∆s∗ − ∆s∥ ≤ C1,Kϵ + C2,K
σK(s)√

K
(A.21)

with probability at least 1− δ provided that (A.19) holds and
M ≥ C′(K log(N/(2K)) + log(2/δ)) for some constant C′.
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A.6 Proof of Theorem 3

For the proof of Theorem 3 we need the following definition of a stable
utility function.

Definition 3. A utility function U(·) is called λ-stable if

max
i,j∈I,S⊆I\{i,j}

|U(S ∪ {i})−U(S ∪ {j})| ≤ λ

|S|+ 1

Then, Shapley values calculated from λ-stable utility functions have the
following property. If U(·) is λ-stable, then for all i, j ∈ I and i ̸= j

si − sj ≤
λ(1 + log(N − 1))

N − 1

Proof. By Lemma 1, we have

si − sj ≤
1

N − 1 ∑
S⊆I\{i,j}

1

C|S|N−2

λ

|S|+ 1
=

1
N − 1

N−2

∑
|S|=0

λ

|S|+ 1

Recall the bound on the harmonic sequences

N

∑
k=1

1
k
≤ 1 + log(N)

which gives us

si − sj ≤
λ(1 + log(N − 1))

N − 1

Then, we can prove Theorem 3.

Theorem. For a learning algorithm A(·) with uniform stability β = Cstab
|S| ,

where |S| is the size of the training set and Cstab is some constant. Let the
utility of D be U(D) = M − Lval(A(D), Dval), where Lval(A(D), Dval) =
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1
N ∑N

i=1 l(A(D), zval,i) and 0 ≤ l(·, ·) ≤ M. Then, si − sj ≤ 2Cstab
1+log(N−1)

N−1
and the Shapley difference vanishes as N → ∞.

Proof. For any i, j ∈ I and i ̸= j,

|U(S ∪ {i})−U(S ∪ {j})|

= | 1
N

N

∑
i=1

[l(A(S ∪ {i}), zval,i)− l(A(S ∪ {j}), zval,i)]|

≤ 1
N

N

∑
i=1
|l(A(S ∪ {i}), zval,i)− l(A(S), zval,i)|

+ |l(A(S), zval,i)− l(A(S ∪ {j}), zval,i)|

≤ 1
N

N

∑
i=1

2Cstab
|S|+ 1

=
2Cstab
|S|+ 1

Combining the above inequality with Proposition A.6 proves the theorem.

A.7 Proof of Theorem 4

Theorem. Consider the value attribution scheme that assign the value ŝ(U, i) =
CU [U(S ∪ {i}) − U(S)] to user i where |S| = N − 1 and CU is a constant
such that ∑N

i=1 ŝ(U, i) = U(I). Consider two utility functions U(·) and V(·).
Then, ŝ(U + V, i) ̸= ŝ(U, i) + ŝ(V, i) unless V(I)[∑N

i=1 U(S ∪ {i})−U(S)] =
U(I)[∑N

i=1 V(S ∪ {i})−V(S)].

Proof. Consider two utility functions U(·) and V(·). The values attributed
to user i under these two utility functions are given by

ŝ(U, i) = CU [U(S ∪ {i})−U(S)]

and

ŝ(V, i) = CV [V(S ∪ {i})−V(S)]
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where CU and CV are constants such that ∑N
i=1 ŝ(U, i) = U(I) and ∑N

i=1 ŝ(V, i) =
V(I). Now, we consider the value under the utility function W(S) =

U(S) + V(S):

ŝ(U + V, i) = CW [U(S ∪ {i})−U(S) + V(S ∪ {i})−V(S)]

where

CW =
U(I) + V(I)

∑N
i=1[U(S ∪ {i})−U(S) + V(S ∪ {i})−V(S)]

Then, ŝ(U + V, i) = ŝ(U, i) + ŝ(V, i) if and only if CU = CV = CW , which is
equivalent to

V(I)[
N

∑
i=1

U(S ∪ {i})−U(S)] = U(I)[
N

∑
i=1

V(S ∪ {i})−V(S)]





B
A P P E N D I X : C H A P T E R 4

B.1 Additional Experiments

b.1.1 Runtime Comparision for Computing the Unweighted KNN SV

For each dataset, we randomly selected 100 test points, computed the SV of
all training points with respect to each test point, and reported the average
runtime across all test points. The results for K = 2, 5 are presented in
Figure B.1. We can see that the LSH-based method can bring a 3×-5×
speed-up compared with the exact algorithm.

Dataset Size C
K=2 K=5

Exact LSH Exact LSH
CIFAR-10 6E+4 1.2802 0.83s 0.25s 0.82s 0.26s

ImageNet 1E+6 1.2163 12.71s 3.29s 12.57s 3.25s

Yahoo10m 1E+7 1.3456 198.73s 41.83s 200.06s 39.20s

Figure B.1: Average runtime of the exact and the LSH-based approximation
algorithm for computing the unweighted KNN SV for a single test
point. We take ϵ, δ = 0.1 and K = 2, 5.

B.2 Proof of Theorem 6

Proof. We first observe that if the true Shapley value |sαi | ≤ min( 1
i , 1

K ), then
|si| ≤ ϵ for i ≥ i∗ = max(K, ⌈1/ϵ⌉). Hence, when i ≥ i∗, the approximation
error is given by

|ŝαi − sαi | = |sαi | ≤ ϵ. (B.1)

157
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When i ≤ i∗ − 1, ŝαi and sαi follow the same recursion, i.e.,

ŝαi − ŝαi+1 = sαi − sαi+1 =
1[yαi = ytest]− 1[yαi+1 = ytest]

K
min(K− 1, i− 1) + 1

i
.

(B.2)

As a result, we have

|ŝαi − sαi | = |ŝαi+1 − sαi+1 | = · · · = |ŝαi∗ − sαi∗ | ≤ ϵ (B.3)

To sum up, |ŝαi − sαi | ≤ ϵ for all i = 1, . . . , N, provided that |sαi | ≤
min( 1

i , 1
K ). In the following, we will prove that the aforementioned condi-

tion is satisfied.

We can convert the recursive expression of the KNN Shapley value in
Theorem 5 to a non-recursive one:

sαN =
1[yαN = ytest]

N
(B.4)

sαi =
1[yαi = ytest]

i
−

N

∑
j=i+1

1[yαj = ytest]

j(j− 1)
for i ≥ K (B.5)

sαi =
1[yαi = ytest]

K
−

N

∑
j=K+1

1[yαj = ytest]

j(j− 1)
for i ≤ K− 1 (B.6)

We examine the bound on the absolute value of the Shapley value in three
cases: (1) i = N, (2) i ≥ K, and (3) i ≤ K− 1.

Case (1). It is easy to verify that |sαN | ≤ 1
N .

Case (2). We can bound the second term in (B.5) by

0 ≤
N

∑
j=i+1

1[yαj = ytest]

j(j− 1)
≤

N

∑
j=i+1

1
j(j− 1)

=
N

∑
j=i+1

(
1

j− 1
− 1

j
) =

1
i
− 1

N

(B.7)

Thus, sαi can be bounded by

−(1
i
− 1

N
) ≤ sαi ≤

1
i

, (B.8)
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which yields the bound on the absolute value of sαi :

|sαi | ≤
1
i

. (B.9)

Case (3). The absolute value of sαi for i ≤ K − 1 can be bounded using a
similar technique as in Case (2). By (B.6), we have

−( 1
K
− 1

N
) ≤ sαi ≤

1
K

(B.10)

Therefore, |sαi | ≤ 1/K.

Summarizing the results in Case (1), (2), and (3), we obtain |sαi | ≤ min(1/i, 1/K)
for i = 1, . . . , N.

B.3 Proof of Theorem 7

Proof. For the hashing function h(x) =
⌊

wT x+b
t

⌋
, (Datar et al., 2004) have

shown that

P(h(xi) = h(xtest)) = fh(∥xi − xtest∥p) (B.11)

where the function fh(a) =
∫ t

0
1
a fp(

z
a (1−

z
t )dz is monotonically decreasing

with a. fp is the probability density function of the absolute value of a
p-stable random variable.

Suppose the data are normalized by a factor such that Dmean = 1. Since
such a normalization does not change the nearest neighbor search results,
Dk = 1/Ck for k = 1, . . . , K. Denote the probability for one random test
point xtest and a random training point to have the same code with one hash
function by prand and the probability for xtest and its k-nearest neighbor to
have the same code by pk

nn. According to (B.11),

prand = fh(1) (B.12)
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and

pnn,k = fh(1/Ck) (B.13)

because the expected distance between xtest and a random training point
is Dmean = 1, and the expected distance between xtest and its k-nearest
neighbor is 1/Ck.

Let Ek denote the event that the k-nearest neighbor of xtest is included by
one of the hash tables. Then, the probability of the inclusion of all K nearest
neighbors is

P(E1, . . . , EK) = 1− P(∪K
k=1Ēk) (B.14)

≥ 1−
K

∑
k=1

P(Ēk). (B.15)

We want to make sure that P(E1, . . . , EK) ≥ 1 − δ, so it suffices to let
P(Ēk) ≤ δ/K for all k = 1, . . . , K.

Suppose there are m hash bits in one table and l hash tables in LSH. The
probability that the true k-nearest neighbor has the same code as the query
in one hash table is pm

nn,k. Hence, the probability that the true k-nearest
neighbor is missed by l hash tables is P(Ēk) = (1− pm

nn,k)
l . In order to

ensure P(Ēk) ≤ δ/K, we need

l ≥
log δ

K
log(1− pm

nn,k)
(B.16)

The RHS is upper bounded by − log δ
K

pm
nn,k

= p−m
nn,k log K

δ . Therefore, it suffices to
ensure

l ≥ p−m
nn,k log

K
δ

(B.17)
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Note that pnn,k = p
log pnn,k
log prand
rand and we can choose Npm

rand = O(1), i.e., m =

O( log N
log p−1

rand
), as discussed in (Gionis, Indyk, Motwani, et al., 1999). Hence,

pm
nn,k = p

m
log pnn,k
log prand

rand = O(( 1
N
)

log pnn,k
log prand ) = O(N−g(Ck)) (B.18)

where g(Ck) =
log pnn,k
log prand

=
log fh(1/Ck)

log fh(1)
. Plugging (B.18) into (B.16), we obtain

l ≥ O(Ng(Ck) log
K
δ
) (B.19)

In order to guarantee P(Ēk) ≤ δ/K for all k = 1, · · · , K, the number of hash
tables needed is

O(Ng(CK) log
K
δ
) (B.20)

B.4 Detailed Algorithms and Proofs for the Extensions

b.4.1 Unweighted KNN Regression

For regression tasks, we define the utility function by the negative mean
square error of an unweighted KNN regressor:

U(S) = −
(

1
K

min{K,|S|}

∑
k=1

yαk(S) − ytest

)2

(B.21)

The following theorem provides a simple iterative procedure to compute
the SV for unweighted KNN regression. The derivation of the theorem
requires to analyze the utility difference between two adjacent training
points, similar to KNN classification.

Proof of Theorem 9. W.l.o.g., we assume that x1, . . . , xn are sorted according
to their similarity to xtest, that is, xi = xαi . We split a subset S ⊆ I \ {i, i + 1}
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into two disjoint sets S1 and S2 such that S = S1 ∪ S2 and S1 ∩ S2 = ∅.
Given two neighboring points with indices i, i + 1 ∈ I, we constrain S1 and
S2 to S1 ⊆ {1, . . . , i− 1} and S2 ⊆ {i + 2, . . . , N}.
We analyze the difference between si and si+1 by considering the following
cases:

Case 1. Consider the case |S1| ≥ K. We know that i > K and therefore
U(S ∪ {i}) = U(S ∪ {i + 1}) = U(S). From Lemma 1, it follows that

si − si+1 =
1

N − 1

N−2

∑
k=0

1

(N−2
k )

∑
S1⊆{1,...,i−1},
S2⊆{i+2,...,N}:
|S1|+|S2|=k,|S1|≥K

[
U(S ∪ {i})−U(S ∪ {i + 1})

]

= 0.

Case 2. Consider the case |S1| < K. The difference between U(S ∪ {i})
and U(S ∪ {i + 1}) can be expressed as

U(S ∪ {i})−U(S ∪ {i + 1})

=(
1
K

K

∑
j=1

yαj(S∪{i+1}) − ytest)
2 − (

1
K

K

∑
j=1

yαj(S∪{i}) − ytest)
2

=
1
K
(yi+1 − yi) ·

(
1
K
(yi+1 + yi)− 2ytest +

2
K ∑

j=1,...,K−1
yαj(S)

)

By Lemma 1, the Shapley difference between i and i + 1 is

si − si+1 =
1
K
(yi+1 − yi)

·
(

1
N − 1

N−2

∑
k=0

1

(N−2
k )

∑
S1⊆{1,...,i−1},
S2⊆{i+2,...,N}:

|S1|+|S2|=k,|S1|≤K−1

( 1
K
(yi+1 + yi)− 2ytest

)
︸ ︷︷ ︸

U1
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+
2
K

1
N − 1

N−2

∑
k=0

1

(N−2
k )

∑
S1⊆{1,...,i−1},
S2⊆{i+2,...,N}:

|S1|+|S2|=k,|S1|≤K−1

∑
j=1,...,K−1

yαj(S)

︸ ︷︷ ︸
U2

)

We firstly simplify U1. Note that 1
K (yi+1 + yi)− 2ytest does not depend on

the summation; as a result, we have

U1 =
( 1

K
(yi+1 + yi)− 2ytest

) 1
N − 1

N−2

∑
k=0

1

(N−2
k )

(
∑

S1⊆{1,...,i−1},
S2⊆{i+2,...,N}:

|S1|+|S2|=k,|S1|≤K−1

1
)

=
( 1

K
(yi+1 + yi)− 2ytest

) 1
N − 1

N−2

∑
k=0

1

(N−2
k )

min(K−1,k)

∑
m=0

(
i− 1

m

)(
N − i− 1

k−m

)
(B.22)

The sum of binomial coefficients in (B.22) can be further simplified as
follows:

N−2

∑
k=0

1

(N−2
k )

min(K−1,k)

∑
m=0

(
i− 1

m

)(
N − i− 1

k−m

)

=
min(K−1,i−1)

∑
m=0

N−i−1

∑
k=0

(i−1
m )(N−i−1

k )

(N−2
m+k)

=
min(K−1,i−1)

∑
m=0

N − 1
i

= min(K, i)
N − 1

i

where the second equality follows from the binomial coefficient identity

∑M
j=0

(N
i )(

M
j )

(N+M
i+j )

= M+N+1
N+1 . Hence,

U1 =
( 1

K
(yi+1 + yi)− 2ytest

)min(K, i)
i
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Then, we analyze U2. We let

∑
S1⊆{1,...,i−1},
S2⊆{i+2,...,N}:

|S1|+|S2|=k,|S1|≤K−1

∑
j=1,...,K−1

yαj(S) = ∑
l∈I\{i,i+1}

clyl (B.23)

where cl counts the number of occurrences of yl in the left-hand side
expression and

cl =

 ∑
min(K−2,k−1)
m=0 (i−2

m )(N−i−1
k−m−1) if l ∈ {1, . . . , i− 1}

∑
min(K−2,k−1)
m=0 (l−3

m )( N−l
k−m−1) if l ∈ {i + 2, . . . , N}

(B.24)

Plugging in (B.23) and (B.24) into U2 yields

U2 =
2

K(N − 1)

N−2

∑
k=0

1

(N−2
k )

[
∑

l∈{1,...,i−1}

min(K−2,k−1)

∑
m=0

(
i− 2

m

)(
N − i− 1
k−m− 1

)
yl

+ ∑
l∈{i+2,...,N}

min(K−2,k−1)

∑
m=0

(
l − 3

m

)(
N − l

k−m− 1

)
yl

]

=
2

K(N − 1)

[
∑

l∈{1,...,i−1}
yl

]
·
[ N−2

∑
k=0

1

(N−2
k )

min(K−2,k−1)

∑
m=0

(
i− 2

m

)(
N − i− 1
k−m− 1

)
︸ ︷︷ ︸

U21

]

+
2

K(N − 1)

[
∑

l∈{i+2,...,N}
yl ·

N−2

∑
k=0

1

(N−2
k )

min(K−2,k−1)

∑
m=0

(
l − 3

m

)(
N − l

k−m− 1

)
︸ ︷︷ ︸

U22

]

(B.25)

Using the binomial coefficient identity ∑M
j=0

(N
i )(

M
j )

(N+M+1
i+j+1 )

= (i+1)(M+N+2)
(N+2)(N+1) , we

obtain

U21 =
min(K−2,i−2)

∑
m=0

N−i−1

∑
k=0

(i−2
m )(N−i−1

k )

( N−2
k+m+1)

=
min(K−2,i−2)

∑
m=0

N − 1
(i− 1)i

(m + 1)
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=
N − 1
(i− 1)i

min(K, i)min(K− 1, i− 1)
2

(B.26)

and

U22 =
min(K−2,l−3)

∑
m=0

N−l

∑
k=0

(l−3
m )(N−l

k )

( N−2
k+m+1)

=
min(K−2,l−3)

∑
m=0

N − 1
(l − 1)(l − 2)

(m + 1)

=
N − 1

(l − 1)(l − 2)
min(K, l − 1)min(K− 1, l − 2)

2
(B.27)

Now, we plug (B.26) and (B.27) into the expression of U2 in (B.25). Rear-
ranging (B.25) gives us

U2 =
1
K ∑

l∈{1,...,i−1}
yl

min(K, i)min(K− 1, i− 1)
(i− 1)i

+
1
K ∑

l∈{i+2,...,N}
yl

min(K, l − 1)min(K− 1, l − 2)
(l − 1)(l − 2)

Therefore, we have

si − si+1

=
1
K
(yi+1 − yi)(U1 + U2)

=
1
K
(yi+1 − yi) ·

[( 1
K
(yi+1 + yi)− 2ytest

)min(K− 1, i− 1) + 1
i

+
1
K ∑

l∈{1,...,i−1}
yl

min(K, i)min(K− 1, i− 1)
(i− 1)i

+
1
K ∑

l∈{i+2,...,N}
yl

min(K, l − 1)min(K− 1, l − 2)
(l − 1)(l − 2)

]

Now, we analyze the formula for sN , the starting point of the recursion.
Since xN is farthest to xtest among all training points, xN results in non-zero
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marginal utility only when it is added to a set of size smaller than K. Hence,
given γ = U({N})

N , sN can be written as

sN =
1
N

K−1

∑
k=0

1

(N−1
k )

∑
|S|=k,S⊆I\{N},

U(S ∪ {N})−U(S)

=
1
N

K−1

∑
k=1

1

(N−1
k )

∑
|S|=k,S⊆I\{N}

[
(

1
K ∑

i∈S
yi − ytest)

2 − (
1
K ∑

i∈S∪{N}
yi − ytest)

2
]
+ γ

=
1
N

K−1

∑
k=1

1

(N−1
k )

∑
|S|=k,S⊆I\{N}

[
(− 1

K
yN) · (

2
K ∑

i∈S
yi +

1
K

yN − 2ytest)

]
+ γ

= −K− 1
NK

yN(
1
K

yN − 2ytest)−
2

NK2 yN

K−1

∑
k=1

(N−2
k−1 )

(N−1
k )

∑
l∈I\{N}

yl + γ

= − 1
N

yN

[
K− 1

K
(

1
K

yN − 2ytest) +
2

K2 ( ∑
l∈I\{N}

yl)
K−1

∑
k=1

k
N − 1

]
+ γ

= −K− 1
NK

yN

[
1
K

yN − 2ytest +
1

N − 1 ∑
l∈I\{N}

yl

]
+ γ

b.4.2 Proof of Theorem 10

Proof of Theorem 10. Without loss of generality, we assume that the training
points are sorted according to their distance to xtest, such that d(x1, xtest) ≤
. . . ≤ d(xN , xtest).
We start by analyzing the SV for xN . Since the farthest training point does
not affect the utility of S unless |S| ≤ K− 1, we have

sN =
1
N

K−1

∑
k=0

1

(N−1
k )

∑
|S|=k,S⊆I\{N}

[
U(S ∪ {N})−U(S)

]
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For i ≤ N − 1, the application of Lemma 1 yields

si − si+1 =
1

N − 1

N−2

∑
k=0

∑
|S|=k,S⊆I\{i,i+1}

1

(N−2
k )
·
[
U(S ∪ {i})−U(S ∪ {i + 1})

]
(B.28)

Recall that for KNN utility functions, U(S) only depends on the K training
points closest to xtest. Therefore, we can also write si − si+1 as follows:

si − si+1 =
1

N − 1

K−1

∑
k′=0

∑
S′∈Bk′ (i)∩Bk′ (i+1)

Mk′
i,i+1

[
U(S′ ∪ {i})−U(S′ ∪ {i + 1})

]
(B.29)

which can be computed in at most ∑K−1
k′=0 (

N−2
k′ ) ∼ O(NK), in contrast to

O(2N−2) with (B.28). Our goal is thus to find Mk′
i,i+1 such that the right-

hand sides of (B.29) and (B.28) are equal. More specifically, for each S′ ∈
Bk′(i)∩ Bk′(i+ 1), we want to count the number of S ⊆ I \ {i, i+ 1} such that
|S| = k, and U(S∪{i}) = U(S′ ∪{i}) and U(S∪{i+ 1}) = U(S′ ∪{i+ 1});
denoting the count by Ck,k′

i,i+1, we have

Mk′
i,i+1 =

N−2

∑
k=0

Ck,k′
i,i+1/

(
N − 2

k

)
. (B.30)

When k′ ≤ K − 2, only S = S′ satisfies U(S ∪ {i}) = U(S′ ∪ {i}) and
U(S ∪ {i + 1}) = U(S′ ∪ {i + 1}). Therefore,

Ck,k′
i,i+1 =

 1 if k′ ≤ K− 2 and k = k′

0 otherwise
(B.31)

When k′ = K − 1, there will be multiple subsets S of I \ {i, i + 1} that
obey U(S ∪ {i}) = U(S′ ∪ {i}) and U(S ∪ {i + 1}) = U(S′ ∪ {i + 1}). Let
r denote the index of the training point that is farthest to xtest among
S ∪ {i, i + 1}, i.e., r = max S ∪ {i, i + 1}. Note that adding any training
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points with indices larger than r into S′ ∪ {i} or S′ ∪ {i + 1} would not
affect their utility. Hence,

Ck,k′
i,i+1 =

 ( N−r
k−K+1) if k′ = K− 1, k ≥ k′

0 otherwise
(B.32)

Combining (B.29), (B.30), (B.31), and (B.32) yields the recursion in (4.29)
and (4.30).

b.4.3 Valuing Computation

b.4.3.1 Weighted KNN

Theorem 16. Consider the utility function in (4.34), where U(·) is the weighted
KNN performance measure in (4.26) or (4.27) with some weights wαk(S). Let
Bk(i) = {S : |S| = k, i /∈ S, S ⊆ I}, for i = 1, . . . , N and k = 0, . . . , K. Let r(·)
be a function that maps the set of training data to their ranks in terms of similarity
to xtest. Then, the SV of each training point and the computation contributor can
be calculated recursively as follows:

sαN =
1

N + 1

K−1

∑
k=0

1

( N
k+1)

∑
S∈Bk(αN)

U(S ∪ {αN})−U(S) (B.33)

sαi+1 = sαi +
1
N

K−2

∑
k=0

1

(N−1
k+1 )

∑
S∈Bk(αi)∩Bk(αi+1)

U(S ∪ {αi})−U(S ∪ {αi+1})

+
1
N

N−2

∑
k=K−1

1

(N−1
k+1 )

∑
S∈BK−1(αi)∩BK−1(αi+1)

(
N −max r(S ∪ {αi, αi+1})

k− K + 1

)
·U(S ∪ {αi})−U(S ∪ {αi+1}) (B.34)

sC = U(I)−
N

∑
i=1

si (B.35)
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B.5 Proof of Theorem 15

Proof. We will use Bennett’s inequality to derive the approximation error
associated with the estimator in (3.1). Bennett’s inequality provides an
upper bound on the deviation of the empirical mean from the true mean
in terms of the variance of the underlying random variable. Thus, we first
provide an upper bound on the variance of ϕi for i = 1, . . . , N.
Let the range of ϕi for i = 1, . . . , N be denoted by [−r, r]. Further, let
qi = P[ϕi = 0]. Let Wi be an indicator of whether or not ϕi = 0, i.e.,
Wi = 1[ϕi ̸= 0]; thus P[Wi = 0] = qi and P[Wi = 1] = 1− qi.
We analyze the variance of ϕi. By the law of total variance,

Var[ϕi] = E[Var[ϕi|Wi]] + Var[E[ϕi|Wi]] (B.36)

Recall ϕi ∈ [−r, r]. Then, the first term can be bounded by

E[Var[ϕi|Wi]]

= P[Wi = 0]Var[ϕi|Wi = 0] + P[Wi = 1]Var[ϕi|Wi = 1] (B.37)

= qiVar[ϕi|ϕi = 0] + (1− qi)Var[ϕi|ϕi ̸= 0] (B.38)

= (1− qi)Var[ϕi|ϕi ̸= 0] (B.39)

≤ (1− qi)r2 (B.40)

where the last inequality follows from the fact that if a random variable is

in the range [m, M], then its variance is bounded by (M−m)2

4 .

The second term can be expressed as

Var[E[ϕi|Wi]]

= EWi [(E[ϕi|Wi]−E[ϕi])
2] (B.41)

= P[Wi = 0](E[ϕi|Wi = 0]−E[ϕi])
2

+ P[Wi = 1](E[ϕi|Wi = 1]−E[ϕi])
2 (B.42)

= qi(E[ϕi|ϕi = 0]−E[ϕi])
2 + (1− qi)(E[ϕi|ϕi ̸= 0]−E[ϕi])

2 (B.43)

= qi(E[ϕi])
2 + (1− qi)(E[ϕi|ϕi ̸= 0]−E[ϕi])

2 (B.44)
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Note that

E[ϕi] = P[Wi = 0]E[ϕi|ϕi = 0] + P[Wi = 1]E[ϕi|ϕi ̸= 0] (B.45)

= (1− qi)E[ϕi|ϕi ̸= 0] (B.46)

Plugging (B.46) into (B.41), we obtain

Var[E[ϕi|W]] = (qi(1− qi)
2 + q2

i (1− qi))(E[ϕi|ϕi ̸= 0])2 (B.47)

Since |ϕi| ≤ r, (E[ϕi|ϕi ̸= 0])2 ≤ r2. Therefore,

Var[E[ϕi|W]] ≤ qi(1− qi)r2 (B.48)

It follows that

Var[ϕi] ≤ (1− q2
i )r

2 (B.49)

Therefore, we can upper bound the variance of ϕi in terms of the probability
that ϕ=0. Now, let us compute P[ϕi = 0] for i = 1, . . . , N.

Without loss of generality, we assume that xi are sorted according to their
distance to the test point xtest in an ascending order.

When i ≤ K, then whatever place xi appears in the permutation π, adding
xi to the set of points preceding i in the permutation will always potentially
lead to a non-zero utility change. Therefore, we know that qi ≥ 0 and

Var[ϕi] ≤ r2 ≡ σ2
i for i = 1, . . . , K (B.50)

When i ≥ K + 1, adding xi to Pϕ
i may lead to zero utility change. More

specifically, if there are no less than K elements in {x1, . . . , xi−1} appearing
in Pϕ

i , then adding i would not change the K nearest neighbors of Pϕ
i

and thus ϕi. Let the position of xi in the permutation pi be denoted by k.
Note that if there are at least K elements in {x1, . . . , xi−1} appearing before
xi in the permutation, then xi must at least locate in order K + 1 in the
permutation, i.e., k ≥ K + 1.
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The number of permutations such that xi is in the kth slot and there are at
least K elements appearing before xi is

min{i−1,k−1}

∑
m=K

(
k− 1

m

)(
N − k

i− 1−m

)
(i− 1)!(N − i)! (B.51)

Thus, the probability that ϕi is zero is lower bounded by

q∗i =
∑N

k=K+1 ∑
min{i−1,k−1}
m=K (k−1

m )( N−k
i−1−m)(i− 1)!(N − i)!

N!
(B.52)

=
∑N

k=K+1 ∑
min{i−1,k−1}
m=K (k−1

m )( N−k
i−1−m)

(N−1
i−1 )N

(B.53)

=
i− K

i
(B.54)

By (B.49), we have

Var[ϕi] ≤ (1− q∗2i )r2 for i = K + 1, . . . , N (B.55)

By Bennett’s inequality, we can bound the approximation error associated
with ŝi by

P[|ŝi − si| > ϵ] ≤ 2 exp(−
Tσ2

i
r2 h(

rϵ

σ2
i
)) (B.56)

By the union bound, if P[|ŝi− si| > ϵ] ≤ δi for all i = 1, . . . , N and ∑N
i=1 δi =

δ, then we have

P[max
i
|ŝi − si| > ϵ] = P[∪i=1,...,N]{|ŝi−si

| > ϵ}] ≤
N

∑
i=1

P[|ŝi − si| > ϵ]

≤
N

∑
i=1

δi = δ (B.57)
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Thus, to ensure that P[maxi |ŝi − si| > ϵ] ≤ δ, we only need to choose T
such that

2 exp(−
Tσ2

i
r2 h(

rϵ

σ2
i
)) ≤ δi (B.58)

which yields

T ≥ r2

σ2
i h( rϵ

σ2
i
)

log
2
δi

(B.59)

Since

r2

σ2
i h( rϵ

σ2
i
)
≤ 1

(1− q2
i )h(

ϵ
(1−q2

i )r
)

(B.60)

it suffices to let

T ≥
log 2

δi

(1− q2
i )h(

ϵ
(1−q2

i )r
)

(B.61)

for all i = 1, . . . , N. Therefore, we would like to choose {δi}N
i=1 such that

maxi=1,...,N T∗i is minimized. We can do this by letting

log 2
δi

(1− q2
i )h(

ϵ
(1−q2

i )r
)
= T∗ (B.62)

which gives us

δi = 2 exp(−T∗(1− q2
i )h(

ϵ

(1− q2
i )r

)) (B.63)

Since ∑N
i=1 δi = δ, we get

N

∑
i=1

exp(−T∗(1− q2
i )h(

ϵ

(1− q2
i )r

)) = δ/2 (B.64)

and the value of T∗ can be solved numerically.
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B.6 Derivation for the Improved MC Approximation

Because log(1 + u) > 2x
2+x (Topsok, 2006), we have h(u) > x2

2+x . Thus,

(1− q2
i )h(

ϵ
(1−q2

i )r
)) > ϵ2

2(1−q2
i )r+ϵr

. Furthermore, by the definition of qi, (1−
qi)

2 = 1 for i = 1, . . . , K and decreases approximately with the speed 2K/i
otherwise. Thus, the lower bound of (1− q2

i )h(
ϵ

(1−q2
i )r

)) increases linearly

with i when i ≥ K + 1. Letting x = exp(−T∗), we can rewrite (4.47) as

∑N
i=1 x

(1−q2
i )h(

ϵ

(1−q2
i )r

))
= δ/2. In light of the above analysis, x

(1−q2
i )h(

ϵ

(1−q2
i )r

))

will have significant values when i ≥ K and is comparatively negligible
otherwise. Therefore, we can derive an approximate solution T̃ to T∗ by
solving the following equation

K exp(−T̃h(
ϵ

r
)) = δ/2. (B.65)

which gives us

T̃ =
1

h(ϵ/r)
log

2K
δ

(B.66)

Due to the inequality h(u) ≤ u2, we can obtain the following lower bound
on T̃:

T̃ ≥ r2

ϵ2 log
2K
δ

(B.67)
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C.1 Sterling Runtime

Time (ms/batch)

Context Threads Training Inference

CPU (Hynes, Cheng, and D. Song, 2018) 1 28.15 16.20

8 12.565 2.84

Sterling (ours) 1 38.19 16.27

GPU 24k 3.72 0.19

Table C.1: Performance of running a deep neural network on the CPU, GPU, and
Sterling (i.e. WASM in SGX) execution contexts. Comparing single-
threaded CPU to Sterling reveals that privacy-preservation introduces
minimal overhead.
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Figure C.1: Web IDE for creating and editing smart contracts. From here, data
providers can specify precise constraints on the use of their data; and
data consumers can design machine learning models which use the
data.

Figure C.2: Blockchain explorer which provides visibility into Sterling transac-
tions. Here, we see two requests for data and the creation of a new
provider contract.
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