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The technology of tunnel boring machine (TBM) has been widely applied for underground construction
worldwide; however, how to ensure the TBM tunneling process safe and efficient remains a major
concern. Advance rate is a key parameter of TBM operation and reflects the TBM-ground interaction, for
which a reliable prediction helps optimize the TBM performance. Here, we develop a hybrid neural
network model, called Attention-ResNet-LSTM, for accurate prediction of the TBM advance rate. A
database including geological properties and TBM operational parameters from the Yangtze River Natural
Gas Pipeline Project is used to train and test this deep learning model. The evolutionary polynomial
regression method is adopted to aid the selection of input parameters. The results of numerical exper-
iments show that our Attention-ResNet-LSTM model outperforms other commonly-used intelligent
models with a lower root mean square error and a lower mean absolute percentage error. Further,
parametric analyses are conducted to explore the effects of the sequence length of historical data and the
model architecture on the prediction accuracy. A correlation analysis between the input and output
parameters is also implemented to provide guidance for adjusting relevant TBM operational parameters.
The performance of our hybrid intelligent model is demonstrated in a case study of TBM tunneling
through a complex ground with variable strata. Finally, data collected from the Baimang River Tunnel
Project in Shenzhen of China are used to further test the generalization of our model. The results indicate
that, compared to the conventional ResNet-LSTM model, our model has a better predictive capability for
scenarios with unknown datasets due to its self-adaptive characteristic.
� 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

With the increased exploration and utilization of subterranean
space across the world, the technology of tunnel boring machine
(TBM) has been widely applied in a wide range of underground
construction projects due to its high mechanization level, great
operational efficiency and low environmental impact (Yagiz, 2017;
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Zhang et al., 2017, 2020a, b, 2022a; Gao et al., 2019; Liu et al., 2019).
However, the performance of a TBM tends to fluctuate during the
tunneling process because of the complicated TBM-ground in-
teractions, such that the TBM driver has to constantly adjust the
operational parameters based on empirical knowledge, which
however may lead to large uncertainties and unpredictable risks
(Rostami, 2016; Cardu et al., 2021). Thus, in order to improve the
safety and efficiency of TBM construction, it is essential to accu-
rately and promptly predict the TBM performance (Yang et al.,
2022; Zhang et al., 2022b). In general, the TBM performance is
expressed by two key parameters, i.e. the advance rate (AR) and the
penetration rate, where the latter is the former divided by the
rotation speed of the cutterhead. The AR, which reflects TBM-
ground interactions, often dominates the total construction time
and cost, hence it is of central importance to robustly predict it
(Elbaz et al., 2020; Wang et al., 2020; Fu and Zhang, 2021).
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Table 1
Summary of previous work using deep learning algorithms for TBM performance
prediction.

Source Method Input Prediction
parameter

Benardos and
Kaliampakos
(2004)

ANN Geological and geotechnical
properties

Advance
rate

Yagiz et al.
(2009)

ANN Intact rock and rock mass properties Penetration
rate

Mobarra et al.
(2013)

ANN UCS, point load strength index, RPM
and normal force designation

Penetration
rate

Armaghani
et al. (2017)

ANN
PSO-ANN
ICA-ANN

UCS, BTS, RMR, RQD, WZ, TH and RPM Penetration
rate

Armaghani
et al. (2019)

ANN
PSO-ANN
ICA-ANN

UCS, BTS, RMR, RQD, quartz content,
WZ, TF and RPM

Advance
rate

Afradi et al.
(2019)

ANN UCS, BTS, RQD, cohesion, elasticity
module, Poisson’s ratio, density, joint
angle and joint space

Penetration
rate

Gao et al.
(2019)

RNN
LSTM
GRU

44 TBM parameters Advance
rate

Zhang et al.
(2020b)

LSTM Geometric, geological, operational,
and anomalous parameters

Penetration
rate

Zhou et al.
(2020)

ANN
GP

UCS, BTS, RQD, RMR, TH, and RPM Advance
rate

Wang et al.
(2020)

LSTM 12 TBM parameters Advance
rate

Elbaz et al.
(2020)

PSO-
ANFIS

TOR, TH, soil pressure, rotational
speed of the screw rate, RPM,
grouting pressure, grouting amount
and excavation depth

Advance
rate

Fu and Zhang
(2021)

LSTM TH, TOR, RPM, earth pressure of the
chamber and penetration rate

Penetration
rate

Gao et al.
(2021)

LSTM TH, TOR, cutterhead power and
penetration rate

Penetration
rate

Agrawal et al.
(2022)

Multi-
layer
shallow
NN

TOR, TH, UCS, CERCHAR abrasivity
index and radial position of the cutter

Penetration
rate

Zhang et al.
(2022)

PSOeBi-
LSTM

21 TBM parameters Advance
rate

Note: ANN ¼ artificial neural networks, PSO ¼ particle swarm optimization,
ICA ¼ imperialist competitive algorithm, RNN ¼ recurrent neural network,
LSTM ¼ long-short term memory, GRU ¼ gated recurrent unit, GP ¼ genetic pro-
gramming, ANFIS¼ adaptive neuro-fuzzy inference system, Bi-LSTM¼ Bidirectional
long short-term memory; UCS ¼ uniaxial compressive strength, RPM ¼ revolution
per minute, RQD ¼ rock quality designation, RMR ¼ rock mass rating,
WZ ¼ weathering zone, BTS ¼ Brazilian tensile strength, TH ¼ thrust force,
TOR ¼ torque.
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In previous studies, many empirical (Yagiz, 2008; Gong and
Zhao, 2009; Delisio et al., 2013; Fatemi et al., 2018) and theoret-
ical (Farmer and Glossop, 1980; Sanio, 1985; Hughes, 1986; Rostami
and Ozdemir, 1993; Rostami, 1997) models have been developed to
predict the TBM performance. Empirical models establish TBM-
ground relationships through regression analysis of the available
data from historical engineering projects. However, the applica-
bility of such relationships to other site conditions and specific
engineering projects is often plagued by large uncertainties.
Theoretical models compute the TBM thrust by assuming that the
interaction forces between the disc cutters and the excavation face
obey a simplified linear or Gaussian distribution (Rostami and
Ozdemir, 1993; Rostami, 2013; Labra et al., 2017). Such theoretical
formulations are usually calibrated by cutting tests on a single
stratum but can hardly consider the intricate TBM-ground inter-
action in mixed strata, limiting their applicability to real-world
tunneling projects.

The recent rapid development in data collection and trans-
mission technology enables tunnel engineers to gain access to a
large amount of raw data generated from TBM operations, which
presents great opportunities to apply advanced machine learning
techniques for TBM performance prediction (Sheil et al., 2020). For
example, Salimi et al. (2016) used two artificial intelligence-based
methods, i.e. an adaptive neuro-fuzzy inference system and a
support vector regression, to predict the AR of a TBM. Armaghani
et al. (2018) estimated the TBM performance based on a gene
expression programming model using the data from the Pahang-
Selangor raw water transfer tunnel in Malaysia. Koopialipoor
et al. (2019) developed a model based on deep neural networks
for predicting the TBM penetration rate, which achieved a higher
accuracy compared with conventional predictive models. Zhou
et al. (2021) employed a hybrid model of extreme gradient boost-
ing with Bayesian optimization to predict the AR of a TBM in hard
rock based on a comprehensive compilation of 1286 datasets. Sun
(2022) proposed a shield tunneling parameter matching model
based on the support vector machine method and improved par-
ticle swarm algorithm to provide guidance for selecting optimal
tunneling parameters. Wang et al. (2022) developed an online
platform using extreme gradient boosting for estimating the
penetration rate of TBM tunneling with a good accuracy obtained.
Mahmoodzadeh et al. (2022) used a hybrid long short-term
memory (LSTM) model enhanced by grey wolf optimization for
predicting the TBM penetration rate based on 1125 datasets. Fu
et al. (2023) designed a deep learning model combining a graph
convolutional network and LSTM to predict the TBM vertical and
horizontal deviations. Yu et al. (2023) established an attention
mechanism-based dual-path ResNet (residual network) prediction
model for an accurate estimation of the TBM utilization factor,
defined as the ratio of the AR to the tunneling speed. Song et al.
(2023) developed a new hybrid intelligent model named stacking
framework for predicting the TBM performance with the aid of the
whale optimization algorithm, which outperformed several other
machine learning models and showed a stronger generalization
capability. Wang et al. (2023a) established an ensemble model
combining the XGBoost algorithm and a semi-theoretical model to
predict the TBM penetration rate. Wang et al. (2023b) proposed a
data-driven multi-step TBM attitude prediction model called con-
volutional gated-recurrent-united neural network, which can sta-
bly achieve a high accuracy within 21 steps. Among all these
machine learning algorithms, deep learning methods have been
increasingly used, due to their exceptional capabilities of extracting
multi-dimensional and nonlinear features without a priori as-
sumptions. An overview of previous studies using deep learning
algorithms for TBM performance prediction is presented in Table 1.
It is noted that most of these studies predict the advance rate or
penetration rate using a conventional feed-forward neural network
combined with some optimization algorithms like the particle
swarm optimization method to overcome convergence problems
during the training process. Among these models, LSTM
(Hochreiter and Schmidhuber, 1997) is usually employed to extract
the long-term information embedded in the time-varying and
long-lasting raw data recorded during TBM tunneling to improve
the accuracy of TBM performance prediction (Fu and Zhang, 2021;
Wang et al., 2021; Guo et al., 2022).

Existing deep learning algorithms, despite their wide applica-
tion to TBM performance prediction, still face some limitations.
First, the prediction accuracy tends to reduce when these models
are applied to complex ground conditions or to datasets with sig-
nificant noise. Furthermore, the model performance may be
plagued by the so-called model degradation problem, i.e. the ac-
curacy gets saturated and then degrades in a deep neural network
(He et al., 2016; Qin et al., 2021; Shi et al., 2021). To overcome these
shortcomings, this paper presents a novel hybrid deep learning
model. In our model, LSTM is used to fully utilize the past



Fig. 1. Schematic diagram of a convolutional neural network (CNN).

S. Yu et al. / Journal of Rock Mechanics and Geotechnical Engineering 16 (2024) 65e80 67
information of TBM tunneling, such that time-dependent charac-
teristics can be extracted to enhance the model performance. In
addition, ResNet (He et al., 2016) is incorporated into our model to
extract spatial characteristics associated with the nonlinear and
complex tunneling environment. Meanwhile, the residual connec-
tion in ResNet can help address the degradation problem when
more layers being added. Third, to improve the generalization of
our model, the attention mechanism is introduced to adaptively
generate self-modifying weights for variable geological conditions.
Such an attentionmechanism is one of the hot topics in the artificial
intelligent research field and has been applied to many different
problems, such as machine translation (Choi et al., 2018), action
recognition (Tian et al., 2019), and text classification (Liu and Guo,
2019). Recently, the attention mechanism has also been integrated
into neural network models for TBM performance prediction
because it can guide the model to focus on the most informative
components of the task even if the environment alters as what
usually occurs during TBM tunneling. For example, Pan et al. (2022)
proposed an attention-based graph convolutional network for the
prediction of penetration rate and energy consumption, which was
superior to other machine learning algorithms; Chen et al. (2022)
used a temporal pattern attention detection structure together
with a temporal pattern attention mechanism module to predict
TBM tunneling parameters, exhibiting a better performance than
the baseline Transformer model. However, it remains unclear about
the generalization of such an attention mechanism-based model,
especially when dealing with a completely unseen dataset.

To comprehensively capture the complicated nonlinear and
temporally-varying TBM characteristics during long-term
tunneling process, we propose a performance-based hybrid
model for real-time prediction of the TBM advance rate. In the
model, we use ResNet and LSTM to process the spatial and temporal
features of raw data, and obtain the adaptive weights for different
inputs based on the attention mechanism. Additionally, the
evolutionary polynomial regression (EPR) algorithm is adopted to
determine the optimal combination of input parameters. The
effectiveness of our model is verified based on the data of the
Yangtze River Natural Gas Pipeline Project. Afterwards, the in-
fluences of the sequence length and model architecture on the
prediction accuracy are analyzed. Furthermore, we also investigate
the input-output correlations and analyze the application scope of
our Attention-ResNet-LSTMmodel through a case study containing
variable strata. Finally, we test the model based on another con-
struction project, i.e. Baimang River Tunnel Project in Shenzhen,
China, to evaluate the model’s generalization.
2. Methodology

2.1. Convolutional neural network (CNN) and residual network
(ResNet)

A CNN, which has a strong capability in feature extraction, is
composed of convolution layers and pooling layers. A local convo-
lution operation on the input data is performed by the convolution
layers and then a feature dimension reduction is realized by the
pooling layers (Fig. 1). The resulting transformations, also called
feature maps, could reveal features that are decisive for the prob-
lem at hand (Xue and Li, 2018; Kattenborn et al., 2021). A ResNet is a
special CNN incorporating the technique of residual learning to
solve the degradation problem of conventional deep CNNs (He
et al., 2016). The basic unit or building block of a ResNet as
shown in Fig. 2 can be defined as

HðxÞ ¼ FðxÞ þ x (1)

where x and H(x) are the input and output vectors, respectively;
and F(x) represents the residual mapping to be learned. Instead of
building relationships directly between H(x) and x, a ResNet
searches for a residual function F(x) which is realized through
identity shortcut connections. In the case where the shallow part of
Fig. 2. The building block of a residual network (ResNet) (after He et al., 2016).
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a ResNet has been properly trained to fully extract the character-
istics of the object, the residual mapping F(x) of the deep part of the
network will be set to zero during the training process, which can
avoid the degradation problem in a deep neural network. There-
fore, a ResNet is used to extract features from inputs in our model.

2.2. LSTM

LSTM is a special RNN that has been commonly used in the area
of natural language processing such as semantic analysis and ma-
chine translation. A traditional RNN structure is as shown in Fig. 3.
The value of each unit in the hidden layer at the current time step is
determined jointly by the input at the current time step and the
hidden unit at the previous time step, such that it can store his-
torical information. However, the gradient of a RNN is prone to
vanish or explode during the backpropagation process when the
input sequence is too long. LSTM successfully solves this issue by
incorporating memory cells, in which the concept of gate is used to
process and save essential temporal information over extended
time intervals (Hochreiter and Schmidhuber, 1997). Fig. 4 illustrates
a typical structure of LSTM cells. The memory cell consists of three
gates, i.e. forget gate, input gate and output gate. The forget gate
regulates what information to be deserted, while the input gate and
output gate determinewhat to be preserved in the current memory
cell and what to be exported at each time step. The formulae for the
three gates are as follows:

Forget gate:

ft ¼ sigmoid
�
Wf , ½ht�1; xt � þ bf

�
(2)

Input gate:

it ¼ sigmoidðWi , ½ht�1; xt � þ biÞ (3)

Output gate:

ot ¼ sigmoidðWo , ½ht�1; xt � þ boÞ (4)

Update of the current cell state:

~Ct ¼ tanhðWc , ½ht�1; xt � þ bcÞ (5)

Ct ¼ ft1Ct�1 þ it1 ~Ct (6)

Output information of the current cell state:

ht ¼ tanhðCtÞ1ot (7)

where Wf, Wi, Wc and Wo are the weight matrices; bf, bi, bc and bo
denote the biases; sigmoid(x) ¼ 1/(1þeex); tanh(x) ¼ (e2xe1)/
(e2xþ1); the operation 1 stands for the Hadamard product; ~Ct and
Ct respectively represent the candidate cell state and updated cell
state at time t. These parameters remain unchanged in each LSTM
Fig. 3. Schematic diagram of a conventio
cell, so that cells at different time steps share the same set of pa-
rameters. In our model, we use LSTM to further extract temporal
information from multi-dimensional features.

2.3. Attention mechanism

The attentionmechanism is inspired by the biological systems of
humans that tend to quickly concentrate on the most distinctive
andmeaningful parts of a problem (Niu et al., 2021; Pan and Zhang,
2022). Conventional neural networks usually get fixed weight
matrices after the training and the matrices remain unchanged
even when the network receives completely different inputs. Thus,
conventional neural network models have difficulty in adapting
themselves to fast changing environments (Irie et al., 2022). By
incorporating the attention mechanism, a neural network could
generate self-modifying weights and thus focus on the most rele-
vant components of the input. Up to now, various attention
mechanism methods have been proposed, and we utilize the
channel attention and temporal attention mechanisms in the cur-
rent paper.

2.3.1. Channel attention
As stated above, a ResNet can extract informative characteristics

from multi-dimensional inputs through convolution operations,
which is a process of fusing spatial and channel-wise information. It
has been demonstrated that the performance of a network can be
improved by explicitly modeling the interdependencies among the
channels of feature maps. As a result, we add the channel attention
mechanism into the ResNet to adaptively recalibrate channel-wise
features, by assigning a weight parameter to each channel of
feature maps. These weight parameters can still be trained through
the backpropagation process. To achieve such operations, the
squeeze-and-excitation block (Hu et al., 2018) is used. During the
squeeze process, the global average pooling is utilized to generate
channel-wise information. In the following excitation process, we
use two fully-connected (FC) layers to capture channel de-
pendencies and limit the complexity, where one FC layer with a
reduction ratio reduces the dimension of the inputs and then the
other FC layer returns to the original channel dimension. The final
output of this block is obtained by applying a channel-wise
multiplication between channel weights and feature maps gener-
ated from the ResNet (Hu et al., 2018).

2.3.2. Temporal attention
In a classic time series forecasting task using LSTM, one always

directly takes the final hidden state as the output. However, the
prediction accuracy will decrease as the length of input series in-
creases (Bahdanau et al., 2015). To solve this problem, we add a
temporal attention layer to the last LSTM layer so that all the hidden
states can be considered. Since the hidden state at the last time step
contains previous information, it is set as the standard state. We
nal recurrent neural network (RNN).



Fig. 4. A typical cell structure of LSTM.
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then compare all the hidden states with it and calculate their cor-
responding scores. The hidden state with a higher score will be
assigned higher weights. Thus, the network can selectively
emphasize the informative features of different inputs and have a
good adaptability to both long-term and short-term input se-
quences. The computational process of the temporal attention layer
is as follows:

scoreðht ; hTÞ ¼ vT tanhðW½ht ; hT �Þ (8)

at ¼ expðscoreðht ;hT ÞÞPT
k¼1 expðscoreðhk; hT ÞÞ

(9)

ho ¼
XT
t¼1

atht (10)

where ht is the hidden state at the tth time step, hT is the final
hidden state at the last time step T, at represents the attention
weight that corresponds to the hidden state at the tth time step,
and vT and W are the learnable matrix parameters. Here, the score
function is calculated referring to Luong et al. (2015). ho in Eq. (10) is
the final output of the temporal attention layer.
2.4. EPR

EPR is a hybrid regression method combining conventional
numerical regression with genetic programming symbolic regres-
sion techniques, which can be used to describe correlations be-
tween multiple input and output variables (Giustolisi and Savic,
2006). In our model, EPR is used as a feature selection algorithm
that can be summarized into two steps. First, the genetic algorithm
is applied to search for the symbolic expression of the polynomial,
and the transformed variables can be expressed as

zj ¼ xESðj;1Þ1 ,., xESðj;iÞi ,.,xESðj;kÞk (11)

where xi represents the ith input variable, k is the number of input
variables, ESm�k is the exponential matrix obtained from the ge-
netic algorithm, zj denotes the jth transformed variable, m is the
number of transformed variables which can be determined
manually in advance. Furthermore, it should be noted that other
optimization algorithms like particle swarm optimization can also
be used instead of the genetic algorithm.

In the second step, the regression coefficient for each term of the
polynomial is estimated by performing least-squares linear
regression. The final EPR expression is derived as
y ¼
Xm
j¼1

ajzj þ a0 (12)

where y is the prediction result, aj denotes the coefficient for the jth
transformed variable, and a0 is an optional bias term.

2.5. Evaluation parameters

To assess the performance of the prediction model, the mean
absolute percentage error (MAPE) and the root mean square error
(RMSE) are adopted as the evaluation parameters. Here, MAPE is
scale-independent (actually there is also no need to take the scale
of data into consideration). However, when the true value is close to
0, MAPE is likely to approach a meaningless infinity. RMSE is
dependent on the scale of data, which is an indicator directly
reflecting the prediction error. Thus, the combination of these two
parameters can comprehensively quantify the model performance.
Lower values of MAPE and RMSE indicate a higher prediction ac-
curacy, where the discrepancy between predicted and measured
values is smaller. The two evaluation parameters can be calculated
as follows:

MAPE ¼ 1
n

Xn

i¼1

����yi � byi
yi

���� (13)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðyi � byiÞ2

r
(14)

where n is the total number of samples; and yi and byi are the
measured and predicted values, respectively. Moreover, the coef-
ficient of determination R2 is also introduced for a more compre-
hensive assessment of models, and its calculation formula is as
follows:

R2 ¼ 1�
Pn

i¼1ðyi � byiÞ2Pn
i¼1ðyi � yÞ2

(15)

where y is the mean of samples. It is worth noting that we did not
utilize this metric during the model optimization process, as it only
serves as an additional evaluation indicator for comparing different
prediction models.

2.6. A hybrid intelligent model

We develop a novel Attention-ResNet-LSTM deep learning
model (Fig. 5) by innovatively combining the different tools



Fig. 5. Schematic diagram of the Attention-ResNet-LSTM model architecture. GAP and FC in the figure represent the global average pooling layer and the fully-connected layer,
respectively. Conv1d is one-dimensional convolution layer whose kernel is convolved over a single dimension. The symbol 5 denotes the channel-wise multiplication.
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described in Sections 2.1-2.5. The model consists of a ResNet
module, an LSTM module and two attention modules (viz. channel
attention and temporal attention). The ResNet module contains
convolution layers with a kernel size of 3, stride of 1 and padding of
1. The LSTM module contains LSTM layers and an FC layer used to
adjust the dimension. In addition, a channel attentionmodule and a
temporal attention module are embedded into the ResNet and the
LSTM, respectively. First, we use the ResNet to extract nonlinear
features from input data. Second, the generated feature maps are
fed into the channel attention module to adaptively capture
channel dependencies; here, we use a channel-wise multiplication
between feature maps and obtained channel weights. Afterwards,
the weighted features are sent to the LSTM layer to obtain long-
term and time-varying dependencies. The temporal attention
layer is added here through which ho is obtained. Finally, we
concatenate ho to the hidden state at the last time step (hT in Fig. 5)
and then send it to an FC layer as the final output. The numbers of
ResNet blocks and LSTM layers (m and n in Fig. 5, respectively) are
hyper-parameters that need to be determined through further
experiments.

3. Database

3.1. Data source

The data used in this study were collected from the Yangtze
River Natural Gas Pipeline Project. The pipeline passes beneath the
Yangtze River between Nantong and Changshu of Jiangsu Province,
China, with a crossing length of about 10.23 km, which is the key
part of the entire project. A slurry pressure balance shield TBM was
adopted to guarantee the face stability during the tunneling across
the Yangze River under high water and earth pressures. The
external and internal diameters of the tunnel are 7.6 m and 6.8 m,
respectively. The segment thickness is 0.4 m and the width is 1.5 m.
Fig. 6 presents the geological profile of the study area. The TBM
operating parameters were recorded in real time during the con-
struction at a frequency of 1 Hz, such that in total 17.6 million re-
cords were documented.
3.2. Data preprocessing

The size of the original data is extremely large, containing
numerous invalid data and noises that need to be excluded. In
addition, there are large differences in the magnitude of the data,
thus they cannot be directly used for model training. Therefore,
preprocessing of the raw data is necessary before importing the
data into the model (Xiao et al., 2022).

3.2.1. Data extraction
Tunneling parameters are automatically recorded per second

(i.e. at a frequency of 1 Hz) through the data collection and trans-
mission system. However, it is computationally expensive and
unnecessary to use the entire raw data for training the prediction
model. As a compromise, the raw data are first resampled at a time
interval of 1 min (a comparative analysis indicates that the
resampled data are sufficient to capture the key features of the raw
data). In addition, a large number of empty data are generated
during the downtime, which are also recorded in the original
datasets. To build a clean database, we need to delete these empty
data at the first step. A detection algorithm for empty data pro-
posed by Zhang et al. (2020b) is used in our study, by computing

Fi ¼ THi,TORi,ARi,RSi (16)

where THi, TORi, ARi and RSi denote the thrust force, torque, advance
rate and rotation speed of the cutterhead at the ith time step,
respectively. If the value of Fi equals 0, we consider that the TBM
machine is not in the working state, thus the corresponding data
will be discarded from the original datasets.

3.2.2. Outliers detection
Not all the data obtained during the TBM tunneling are reliable.

For example, some anomalous values may be generated due to
external interference and/or sensor malfunction. In our study, the
Mahalanobis distance is used as the criterion for detecting outliers
(Mahalanobis, 1936). Compared with the Euclidean distance, the
Mahalanobis distance can get rid of correlations between variables,



Fig. 6. Geological profile of the Yangtze River Natural Gas Pipeline Project.
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making it more suitable for outlier identification in themultivariate
time series analysis. For a multivariate sequence x ¼
ðx1; x2; x3;.; xnÞT with a mean vector m ¼ ðm1;m2;m3;.;mnÞT and a
covariance matrix S, the Mahalanobis distance DM is calculated as

DMðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� mÞTS�1ðx� mÞ

q
(17)

It can be seen from Eq. (17) that, when all the data are uncor-
related variables, the Mahalanobis distance is equal to the
Euclidean distance and the covariance matrix S is a unit matrix. The
0.9-quantile of DM is set as the threshold for outlier discrimination
(Zhang et al., 2020a), i.e. any data with the Mahalanobis distance
larger than this critical value are treated as outliers and then
removed from the dataset. Fig. 7 shows an example of outliers
(marked by red circles) detected in the TBM advance rate data.
3.2.3. Data scaling and normalization
The data need to be then mapped to the range of 0e1 to elim-

inate the effects of data scale and to accelerate the model conver-
gence. For a parameter x, the normalized value is calculated as
follows: xnorm ¼ (xexmin)/(xmaxexmin), where xmax and xmin denote
the maximum and minimum values of the variable x, respectively.
The outputs of neural networks trained with normalized data are
then transformed to the initial vector space.
Fig. 7. Example of outliers detected in the TBM advance rate data.
3.3. Selection of input parameters

The datasets that have been preprocessed still contain more
than 100 operating parameters. If we consider all of them as input
parameters to predict the AR, both the complexity and calculation
time of the model will increase dramatically. On the other hand, an
insufficient number of inputs will make the prediction model
difficult to fully learn the interrelationships between inputs and
outputs, leading to a low prediction accuracy. Therefore, it is
important to select proper input parameters before training a deep
learning model. A combination of features having a strong corre-
lation with the predicted label should be selected from the dataset
as inputs to the neural network, which enables the network to have
a good predictive performance while reducing the complexity as
much as possible. Different methods have been developed and used
for selecting input parameters. For example, Li et al. (2022) used the
Pearson correlation coefficient to quantify the linear correlation
between two variables, and then eliminated those with a correla-
tion coefficient close to zero. Zhang et al. (2020a) used the grey
relational grade (Deng, 1982) to measure the degree of relevance
between the variables according to the trend of their development,
among which features with higher grades are selected as inputs.
However, these methods can only measure the degree of correla-
tion between one variable and another, i.e. with a one-to-one
mapping. The deep learning network, however, is a many-to-one
mapping model. Thus, it is essential to explore the correlations
between the label and different plausible combinations of input
parameters before the feature selection.

In this paper, EPR (see Section 2.4) is used to select input pa-
rameters due to its capability of quantifying correlations between
multiple inputs and the output. The geological data represented by
the modulus of compressibility (Es) and the characteristic value of
bearing capacity (BC) are added into the database. The former re-
flects the deformation of the ground subject to loads and the latter
is a strength parameter that reflects the strength characteristics
and bearing capacity of the strata. There are multiple ways to
determine BC. One of the most reliable and frequently used ap-
proaches is plate loading tests. BC is defined as the pressure cor-
responding to the deformation specified in the linear section of the
soil pressure-deformation curve obtained by the loading test. AR is
a representative parameter for TBM performance that cannot be
directly adjusted by TBM operators. Instead, it is highly dependent
on the TBM operational parameters which can be manually



Table 2
The searching range of hyper-parameters.

Hyper-parameter Value

Attention-
ResNet-LSTM

ResNet-
LSTM

LSTM GRU RNN

Building block_1
filters

[16, 32, 64] [16, 32,
64]

Building block_2
filters

[32, 64, 128] [32, 64,
128]

LSTM neurons [32, 64, 128] [32, 64,
128]

[32, 64,
128]

GRU neurons [32, 64,
128]

RNN neurons [32, 64,
128]

Batch size [16, 32, 64, 128]
Learning rate Uniform distribution in [0.0001, 0.1]

Table 3
The optimal combination of hyper-parameters.

Hyper-parameter Value

Attention-
ResNet-LSTM

ResNet-
LSTM

LSTM GRU RNN

Building block_1
filters

64 64

Building block_2
filters

128 128

LSTM neurons 32 64 128
GRU neurons 32
RNN neurons 64
Batch size 32 128 32 64 128
Learning rate 0.000227 0.000910 0.000125 0.000228 0.001792
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adjusted in the TBM control system (Liu et al., 2021). In our model,
the rotation speed of the cutterhead (RS), thrust (TH), torque (TOR)
and slurry pressure in the working chamber (SPW) are chosen as
possible input features according to Wang et al. (2020) and Zhang
et al. (2020b). In addition to these geological and operational pa-
rameters, the wear extent of TBM cutters may also have some effect
on the tunneling performance because the specific energy for
breaking rocks may increase if using worn cutters (Liu et al., 2017;
Ren et al., 2018; Zhao et al., 2019; Karami et al., 2021). However,
replacing cutters in time after a routine period of excavation can
well eliminate such an impact. Here, we do not consider the effect
of cutter wear on AR. The calculated results of different combina-
tions using EPR are shown in Fig. 8. It can be seen that the combi-
nation of RS, TOR, TH, BC and Es achieves the lowest value for the
objective function within the least generations, meaning that it
gives the minimum error with the least amount of time. Mean-
while, they are the parameters that can easily be adjusted by a TBM
driver during the construction. The combination of TOR and TH also
shows a strong correlation with AR. In the aspect of single variable,
TH is themost significant factor that affects the value of AR, which is
also consistent with the engineering experience that TH is generally
the most dominant factor for AR. From the perspective of EPR, we
finally choose RS, TOR, TH, BC, Es and AR itself as input parameters of
the proposed model. It should be noted that the combination of
input parameters may be slightly altered if using data from a totally
different project. However, based onmassive tunneling experience,
the dominant factors affecting the TBM performance have been
revealed to be fixed, i.e. thrust, torque, cutterhead rotation speed
and geological conditions (Fu and Zhang, 2021; Liu et al., 2021; Pan
et al., 2022). Thus, the above-determined combination for the
Yangtze River Natural Gas Pipeline Project is considered to be
transferrable to other TBM projects.
4. Experiments and results

4.1. Dataset segmentation

First, we extract time series from the datasets as inputs for the
prediction model. We use a sliding window with a stride of 1 to
segment the datasets, and the length of the sliding window is set at
20, which can be optimized further as a hyper-parameter. The
prediction target is AR at the tth time step, which can be expressed
as
Fig. 8. Results of EPR analysis.
ARjt ¼ f
h
ðRS; TH; TOR; Es;BC;ARÞjt�1;t�2;.;t�20

i
(18)

where the function f represents the mapping relationship fitted by
the intelligent model. It should be noted that historical values of AR
are also used as inputs to help the model fully exploit the historical
information to increase the prediction accuracy. Then, the datasets
are divided into training, validation and test sets with a ratio of
8:1:1 (see Appendix A regarding the selection of this ratio). The
training set is used for model training, the validation set is used for
optimization of the hyper-parameters, and the test set is used to
evaluate the model performance.
4.2. Model establishment and training

All experiments were conducted using the PyTorch library on a
PC with an AMD Ryzen 5800X CPU with 4.60 GHz, 16 GB RAM and
an NVIDIA GeForce RTX 3080 graphics card. The model was trained
in a fully-supervised manner with an error backpropagation algo-
rithm. The early stopping strategy was adopted during the training
process to prevent overfitting. The random search method was
used to determine the optimal hyper-parameter combination of the
model, and the number of random searches was set at 100. In order
to verify the performance of our Attention-ResNet-LSTM model
directly, ResNet-LSTM, LSTM, GRU and RNN models were also
created for comparison. It should be noted that the Adam optimi-
zation algorithm was used in all models. The searching range and
optimal combination of hyper-parameters in each neural network
are listed in Tables 2 and 3, respectively.



Fig. 9. Predicted TBM advance rate using the test set by different prediction models: (a) Attention-ResNet-LSTM, (b) ResNet-LSTM, (c) LSTM, (d) GRU, and (e) RNN.
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Table 5
RMSE and MAPE values of the prediction results by the Attention-ResNet-LSTM and
ResNet-LSTM models for different clays.

Evaluation parameter Model Value

Stiff clay Soft clay Overall

RMSE (mm/min) Attention-ResNet-LSTM 2.31 2.96 2.52
ResNet-LSTM 2.6 3.21 2.79

MAPE (%) Attention-ResNet-LSTM 2.19 4.53 3.48
ResNet-LSTM 3.27 5.03 4.39
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4.3. Results

The prediction results of each neural network on the test set are
shown in Fig. 9 with their performances presented in Table 4. In
Fig. 9, the left line graphs compare the measured and predicted
values as a function of predicted point, the middle histograms
display the discrepancy in the counts of the measured and pre-
dicted values at an interval of 1 mm/min, and the right scatter plots
show the prediction accuracy comparedwith the perfect prediction
line, i.e. the solid line with a slope of 1. It can be seen that the
Attention-ResNet-LSTM model can accurately capture the variation
of AR with the lowest RMSE and MAPE (1.31 mm/min and 1.52%,
respectively), and the predicted values are basically in line with the
measured ones (Fig. 9a). When the AR fluctuates locally, the model
can still predict the extremum with high accuracy. In addition, the
predicted values by the Attention-ResNet-LSTM model have the
most matched distribution compared with the measured ones. The
RMSE of the ResNet-LSTMmodel, reaching 1.38 mm/min, is slightly
larger than that of the Attention-ResNet-LSTMmodel. This ResNet-
LSTM model also achieves a good prediction accuracy as shown in
the scatter plot of the predicted and measured AR around the line
with a slope of 1. The histogram, however, shows that the ResNet-
LSTMmodel predicts significantly more values around 55 mm/min
compared to the real data (Fig. 9b). The prediction performances of
the LSTM and GRU models are worse than those of the above two
models, with some of the predicted values significantly deviating
from the measured AR values (Fig. 9c and d). The line chart shows
that the LSTM and GRUmodels are only sensitive to local peaks, and
they perform poorly for non-peak values. Among all these predic-
tion models, the RNN model has the lowest accuracy (Fig. 9e), with
the predicted values significantly larger than the actual AR values.
The RMSE andMAPE of the RNNmodel are 2.82 mm/min and 4.69%,
respectively, which are considerably larger than those of the other
models. It should be noted that all the prediction models have poor
performance for predicting AR values below 40 mm/min. This
section of data below 40 mm/minmay be caused by the clogging or
some anomalous operations of the TBM and thus is hard to pre-
cisely predict.

Additionally, the coefficient of determination R2 is also pre-
sented in Table 5. In general, the analysis using R2 is compatible
with that using RMSE and MAPE, which serve as the evaluation
parameters in the training procedure. However, it seems that the R2

values for all models appear to be relatively low, especially for the
RNNmodel, which may be explained by the following two reasons.
First, the value of R2 is related to the mean value of samples, and
thus the dispersion of the data has a significant effect on this in-
dicator. In our dataset, most of the AR data lie in the range of 50e
65 mm/min, which results in a low R2. Second, there exists some
anomalous data that were generated by sudden start/stoppage or
improper operations, but the prediction models cannot provide
perfectly-matched values at these points, as we have mentioned
Table 4
Performance assessment of different prediction models for predicting AR on the test
set.

Model Evaluation parameter Training time of each
epoch (s)

RMSE (mm/
min)

MAPE
(%)

R2

Attention-ResNet-
LSTM

1.31 1.52 0.614 48.12

ResNet-LSTM 1.38 1.61 0.572 41.58
LSTM 1.56 2.05 0.449 25.19
GRU 1.69 2.35 0.357 8.02
RNN 2.82 4.69 �0.785 4.17
above. The offset therein leads to a low R2. All the algorithms
selected for comparison are commonly used in time-series fore-
casting (Cai et al., 2019; Abbasimehr et al., 2020; Qin et al., 2022)
and are considered to be able to produce relevant results. Wewould
like to emphasize that lower values of RMSE and MAPE, and a
higher R2 can generally provide a more accurate prediction for the
same dataset. In summary, the Attention-ResNet-LSTM and ResNet-
LSTM models have a better performance than other models on the
test set. A further comparison of the two models will be presented
in Section 5.

The training time of each epoch in Table 4 suggests that higher
accuracy requires more calculation time, with the Attention-
ResNet-LSTM model consuming 48.12 s per epoch, nearly 12
times that of the RNN. It is noteworthy that sometimes we may
need to use the LSTM or GRU models for a quick estimation rather
than using the Attention-ResNet-LSTMmodel for precise prediction
for given limited computing resources.

In order to further investigate the characteristics of the error
distribution of the Attention-ResNet-LSTM model, a violin plot and
a histogram are drawn in Fig. 10. It can be seen from the violin plot
that the prediction errors are relatively high when the AR is less
than 40 mm/min or between 40 mm/min and 50 mm/min. Espe-
cially when it is below 40 mm/min, the mean prediction error for
the AR is close to 16 mm/min, and this also gives an explanation for
the relatively low R2 values. In contrast, the errors generally range
from0 to 2mm/minwhen the actual AR value is larger than 50mm/
min. Fig.10b shows that themajority of measured AR data are in the
range of 50 mm/min to 65 mm/min, and only a small fraction of
them is under 40 mm/min. That is to say, the result of error dis-
tribution on the test set is highly correlated to the distribution of
the training data. Thus, it is expected that the prediction accuracy of
the deep learning model can be further improved if more data less
than 40 mm/min are available in the training dataset.
5. Discussion

5.1. Model application

We have demonstrated the good performance of the proposed
prediction model in Section 4.3. However, when the model is
applied to a real project, it should provide prediction results over a
long term (say next 10e60 min) rather than only for the next
minute. We use a recursive method to achieve such a multi-step
prediction. Assuming that the predicted AR at the tth time step
was obtained according to Eq. (17), then the output can be imported
into the model as input data to predict the AR at the (tþ1)th time
step. We can achieve the long-term prediction of the TBM perfor-
mance by repeating this process. To obtain the maximum time
window up to which our model can predict, we conduct a long-
term forecast experiment using 10 different sections of the data
on the test set. The variation of RMSE as a function of the prediction
time period with an interval of 5 min is plotted in Fig. 11. The
horizontal dashes and the square markers represent the 95%



Fig. 10. (a) Violin plot of error distribution at different intervals of the actual AR on the
test set for the Attention-ResNet-LSTMmodel, and (b) Histogram of the AR distribution
for the training set.

Fig. 11. Variation of the RMSE with the prediction time period for 10 sections of data in
the long-term forecast experiment. The vertical bars represent the 95% confidence
intervals.
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confidence intervals and the mean values, respectively, and the red
dashed line links themean values of all the cases. It can be seen that
the RMSE generally increases with the prediction time period in the
range from 5 min to 60 min. When the prediction period is smaller
than about 25 min, the error increases at a relatively slow rate and
maintains a small magnitude. However, when the prediction period
reaches 25e35 min (the shaded area in Fig. 11), the RMSE increases
significantly, indicating a rapid decrease of the prediction accuracy.
The lengths of the vertical bars also increase beyond 25 min, which
is a sign of instability of the prediction model. The reason might be
that the prediction error accumulates during the recursive predic-
tion, finally leading to an unreliable prediction after many time
steps. To summarize, the proposedmodel can be used to predict the
long-term TBM performance for up to about 25 min with relatively
high accuracy, and the TBM drivers in practice can adjust relevant
operational parameters (e.g. thrust and torque) during this time
period to ensure a high tunneling efficiency.

5.2. Effect of sequence length

In Section 4.1, we set the value of sequence length at 20, i.e. a 20-
min data sequence was considered as the input to the neural
network. In this section, we will conduct a parametric study on the
sequence length as it is an important parameter affecting the pre-
diction result. A short historical sequence cannot provide enough
information for the model, leading to a decrease in the prediction
accuracy. On the other hand, the complexity of input features
would increase dramatically if the sequence duration is too long, so
that it is difficult for the model to extract valid characteristics.
Considering xt as a time series variable, the partial autocorrelation
function analysis (Ghimire et al., 2019) is usually adopted to
determine the degree of correlations between xt and xtek. For
measured AR sequence in the database, the partial autocorrelation
coefficient is calculated in Fig. 12. Data points falling outside the
two blue lines mean that they have statistically significant corre-
lations with the current value xt. Accordingly, the partial autocor-
relation coefficient decays with the increase of the lag time, the
value of which declines to around 0 at about 30-min lag and then
remains basically unchanged beyond the 30-min lag. It can be
inferred that historical values delaying more than 30-min lag have
little effect on the instant AR, thus we set the sequence length to 10,
15, 20, 25 and 30 min separately to explore their influences on the
prediction accuracy.

As shown in Fig. 13, the training time of each epoch increases
with the sequence length. The required calculation time is 37.45 s
when 10-min historical sequences are considered. However, it
Fig. 12. Plot of partial autocorrelation function of AR series per minute.



Fig. 13. Impact of sequence length on the model performance and computational cost. Fig. 14. Impact of the number of ResNet layers on the model performance and
computational cost.

Fig. 15. Impact of the number of LSTM layers on the model performance and
computational cost.
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reaches 55.43 s at a 30-min interval. There is no obvious relevance
between the prediction accuracy and the sequence length. The
model with a sequence length of 20 min has the lowest RMSE on
the test set at 1.308 mm/min, while the error increases rapidly with
the decrease of the sequence length, probably because the model
cannot obtain sufficient information from previous data. Thus, it
might be appropriate to set the sequence length at 20 min to bal-
ance the prediction accuracy and calculation cost.

5.3. Effect of model structure

The numbers of layers of ResNet and LSTM might have certain
impacts on the model performance. In order to obtain an optimal
model structure, wewill investigate the influences of these two key
structural parameters in this section.

5.3.1. Number of ResNet layers
The relationship between the number of ResNet layers (basic

blocks) and themodel prediction accuracy is presented in Fig.14. As
the number of ResNet layers increases, the training time per epoch
rises linearly, from 48.12 s to 87.66 s. The prediction error of the
model decreases slightly and then rises markedly with the number
of ResNet layers.When there are 3 layers, themodel has the highest
prediction accuracy, with the RMSE being 1.305 mm/min, which is
just slightly lower than the model with 2 ResNet layers (1.308 mm/
min). We thus set the number of ResNet layers as 2 in our model to
achieve a high prediction accuracy while keeping a low computa-
tional cost.

5.3.2. Number of LSTM layers
A similar pattern is observed in Fig. 15, where the calculation

time increases linearly with the number of LSTM layers, from
48.12 s for single layer to 73.86 s for 4 layers. The number of LSTM
layers has no significant effect on the model accuracy, with the
RMSE varying within a small range from 1.308 mm/min to
1.344 mm/min. It can therefore be seen that stacked LSTM layers
occupymore calculation resources while having little impact on the
model performance. Results from this parametric study show that
single LSTM layer is enough for the proposed model.

5.4. Correlation analysis between input and output parameters

Operators of TBM cannot directly change the AR value during the
construction; instead, they can only adjust AR in an indirect way by
altering different TBM operational parameters, e.g. RS, TOR and TH.
Thus, it is essential to investigate the correlations between input
parameters and output AR in order to provide guidance for TBM
tunneling operations. Otherwise, it would be hard for the operator
to adjust AR finely even if an accurately predicted value is obtained
by ourmodel. According to the findings ofWang et al. (2020) and Fu
and Zhang (2021), the input at the (te1)th time step has the
greatest impact on the predicted value of AR at the tth step, which is
also confirmed in Fig. 12. Therefore, we change the input parame-
ters to be studied from the minimum value to the maximum value
at the (te1)th time step while all the other parameters remain
unchanged. The relationships between the input and output pa-
rameters are presented in Fig. 16. As shown in Fig. 16a, AR experi-
ences a slight decrease at first and then maintains an upward trend
with an increasing RS. Different patterns are observed in TOR and
TH (see Fig. 16b and c): their increases are both accompanied by a
decrease in AR. When TOR exceeds 1500 kNm, the decreasing trend
of AR becomes slower. Meanwhile, the slope of the AR-TH curve
reduces at the beginning and then increases after TH reaches
w3700 kN. The aforementioned conclusions are also consistent
with the engineering experience, i.e. large values of TOR or TH
usually indicate that the strata are hard to excavate, such that the
AR of the TBM decreases accordingly.
5.5. Model performance for variable strata

During long-distance TBM tunneling, the ground condition
might vary significantly, resulting in strong fluctuations in the AR.
As shown in Fig. 17, the stratum has a sudden change at around the
2140th predicted point, varying from stiff clay to soft clay, where



Fig. 16. Relationships between the input parameters (a) RS, (b) TOR and (c) TH, and the output parameter AR.
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the measured AR decreases dramatically. In order to verify the
model performance on the two types of strata, we use the proposed
Attention-ResNet-LSTM and ResNet-LSTMmodels to predict the AR
with corresponding error indicators presented in Table 5. Our
Attention-based model has lower RMSE and MAPE values for both
stiff and soft clays compared to the baseline model. Meanwhile, the
values of error indicators for stiff clay are slightly lower than those
for soft clay. For example, the RMSE of the proposed model is
2.31 mm/min for stiff clay, while the value is 2.96 mm/min for soft
clay. The reason might be that the proportion of data collected
during tunneling in stiff clays occupies the majority in the training
set. In terms of the overall error, RMSE and MAPE of the former
model are 2.52 mm/min and 3.48%, respectively, lower than those
of the latter one (2.79 mm/min and 4.39%). As shown in the inset of
Fig. 17, our model shows excellent performances on both stiff and
soft clays, and it can even precisely capture the decreasing trend of
AR at the transition point. The performance of ResNet-LSTM,
Fig. 17. Prediction results of the Attention-ResNet-LSTM and ResNet mod
however, is relatively poorer near the 2140th point. It can be
inferred that our model is capable of adjusting weights properly
according to the ever-changing input characteristics so that it has a
better adaptability to varying geological conditions.
5.6. Generalization capability

To examine the generalization capability of our Attention-
ResNet-LSTM model, the prediction performance will be further
explored on unknown datasets. New data were collected from the
Baimang River Tunnel Project in Shenzhen, China. The tunnel is
3366 m in length including 2244 lining rings and is constructed by
an earth pressure balance shield TBM (Xu et al., 2022). The external
and internal diameters of the lining segments are 6.7 m and 6 m,
respectively. The tunnel mainly crosses residual soils and slightly to
highly weathered granite, as shown in Fig. 18. It can be noted that
the geological condition of the Baimang River Tunnel Project is
els when the ground condition changes from stiff clay to soft clay.



Table 6
The performance of our prediction model for applying to the Baimang River Tunnel
Project.

Evaluation
parameter

Model Value

0 data
added

100 data
added

1000 data
added

10,000 data
added

RMSE (mm/
min)

Attention-
ResNet-LSTM

10.93 8.55 6.07 5.68

ResNet-LSTM 30.08 12.14 8.75 6.13
MAPE (%) Attention-

ResNet-LSTM
32.2 24.69 21.48 17.35

ResNet-LSTM 125.57 32.2 29.32 18.41
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completely different from that of the Yangtze River Natural Gas
Pipeline Project.

In order to test the model robustness comprehensively, we
perform a series of experiments with a total of 0, 100, 1000 or
10,000 data records from the Baimang River Tunnel Project added
into the original training set. The model is retrained based on the
new training set if the number of newly added data records is not
zero. The test set is comprised of data from the Baimang River
Project and then the performance of the prediction model is
examined using this dataset. It should be emphasized that adding
0 data from the Baimang River Tunnel Project means that only data
from the Yangtze River Natural Gas Pipeline Project are used to
predict the TBM performance in the Baimang River Tunnel Project.
Here, the ResNet-LSTM is used as the baseline model. The test re-
sults are listed in Table 6. It can be observed that the prediction
accuracy gradually increases with more data from the Baimang
River Tunnel Project included in the training set, since the intelli-
gent model can learn more information about the strata conditions
and construction processes of the Baimang River Tunnel Project.
Compared to the Attention-ResNet-LSTM, the performance of
ResNet-LSTM is unstable and more sensitive to the number of new
data, with RMSE varying from 30.08 mm/min to 6.13 mm/min.
However, the Attention-ResNet-LSTM maintains a relatively low
prediction error regardless of the amount of new data, indicating a
high generalization capability. If the training set only consists of
data from the Yangtze River Natural Gas Pipeline Project, the RMSE
of the Attention-ResNet-LSTM is 10.93mm/min on the new test set,
much lower than that of the ResNet-LSTM. The error continually
decreases withmore data added into the training set, and the RMSE
and MAPE become 5.68 mm/min and 17.35%, respectively, when
extra 10,000 data records are included in the training set. To
summarize, when being applied to a completely different project
without additional data included in the training set, the perfor-
mance of the Attention-ResNet-LSTM is significantly better than
that of the ResNet-LSTM. Compared to the error indicators listed in
Table 4, both RMSE and MAPE values show an increase due to
dramatic changes in geological formations. The proposed
Attention-ResNet-LSTMmodel is likely to provide better prediction
results in such situations, because the model can adapt itself to
different inputs due to the introduced attention mechanism. If we
want to achieve the same performance by other prediction models,
e.g. ResNet-LSTM, approximately 1000 training data from the new
project need to be added for training. In the future, we will prepare
a large database covering a variety of geological conditions to make
Fig. 18. Geological profile of the B
the model well-trained and more generalized. Undoubtedly, the
proposed Attention-ResNet-LSTM would greatly reduce the
required amount of data as it can achieve satisfactory performance
with limited data for training.
6. Conclusions

In this paper, a new hybrid intelligent model, Attention-ResNet-
LSTM, was proposed for real-time TBM advance rate prediction.
Considering the complicated characteristics of TBM tunneling, we
incorporated attention mechanisms to obtain adaptive weights for
varying inputs. This deep learning model also contains a ResNet
module and an LSTM module, such that nonlinear spatial and
temporal information can be well extracted. Data from the Yangtze
River Natural Gas Pipeline Project were utilized to examine the
model performance, which were preprocessed via data extraction,
outlier detection and data normalization before being used for the
experiments. The EPR algorithm was adopted to select the optimal
combination of input parameters. The effects of sequence length
and model structure as well as input-output correlations were
investigated. A case study containing variable strata was conducted
to test the capability of our model for handling complex ground
conditions. Finally, we investigated the generalization capability of
our model using another independent database from the Baimang
River Tunnel Project in Shenzhen, China. The following conclusions
are drawn:

(1) Through the EPR algorithm, the combination of rotation
speed of cutterhead (RS), thrust (TH), torque (TOR), modulus
of compressibility (Es) and characteristic value of bearing
aimang River Tunnel Project.
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capacity (BC) was determined as the optimal combination of
inputs. Among all of these parameters, TH and TOR exhibited
strong correlations with AR. Moreover, the predicted AR had
different dependencies on the operational parameters: AR
decreases slightly with RS when RS is lower than 0.7 r/min,
beyond which AR increases with RS; TOR and TR are both
negatively correlated with AR, consistent with previous en-
gineering experience.

(2) The results of the partial autocorrelation function analysis
showed that 20-min historical data sequences can achieve
satisfactory performances in terms of both prediction accu-
racy and calculation cost. Similar parametric studies were
conducted to explore the effect of model architecture, i.e. the
numbers of ResNet layers and LSTM layers, on the model
performance. The results suggested that two ResNet layers
and one LSTM layer generate a good model architecture. The
predicted values by our model fitted well with the actual AR
data. We also showed that our model is superior to other
intelligent models such as ResNet-LSTM, LSTM, GRU and
RNN. The RMSE and MAPE of our model were 1.31 mm/min
and 1.53%, respectively, both lower than those of other
models.

(3) Our Attention-ResNet-LSTM model outperformed the
ResNet-LSTM model when predicting the AR of a TBM
through variable strata conditions. We demonstrated this in
a case study involving both stiff and soft clays, and the RMSE
of the Attention-ResNet-LSTM model is lower than that of
the ResNet-LSTM model (i.e. 2.52 mm/min in comparison
with 2.79 mm/min). The generalization of our model is also
better than that of the ResNet-LSTM. When being applied to
a different database, the Attention-ResNet-LSTM was shown
to be robust and achieved a higher prediction accuracy
regardless of the amount of new data in the training set. The
ResNet-LSTM, however, might generate unacceptable errors
when it is transferred to a completely new project with no
data available beforehand. Thus, our model is able to self-
adapt according to engineering and geological conditions
instead of being case specific, because of the incorporation of
attention mechanisms. In the future, with more data from
different tunneling projects included, the Attention-ResNet-
LSTMmodel is expected to give even better performances for
new projects. Ultimately, with more precise input-output
relationships established, TBM drivers would be able to
adjust operational parameters to achieve safe and efficient
tunneling.
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