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ResQ-IOS: An iterative optimization-based simulation framework for 
quantifying the resilience of interdependent critical infrastructure systems 
to natural hazards 
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H I G H L I G H T S  

• ResQ-IOS can quantify interdependent critical infrastructure systems’ resilience. 
• This framework can consider partial failure and functionality level for components. 
• ResQ-IOS allows for components’ nonlinear properties and time-dependent demands. 
• ResQ-IOS can be utilized for the resilience-oriented development of communities. 
• Resilience of interdependent infrastructure systems in Shelby County is assessed.  
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A B S T R A C T   

Critical Infrastructure Systems are highly complex and interdependent. Growing complexity and interdepen-
dency between infrastructure systems and frequent exposure to extreme events have inevitably increased the 
probability of cascading failures and the prolonged lack of serviceability in urban communities, especially so for 
energy systems. The resilience analysis of interdependent infrastructure systems against natural hazards provides 
stakeholders with a comprehensive outlook on recovery strategies to minimize the damage costs and losses 
caused by extreme events. This paper introduces the ResQ-IOS, a Resilience Quantification Iterative 
Optimization-based Simulation (IOS) framework for quantifying the resilience of interdependent infrastructure 
systems to natural hazards with the capability of considering the real-world conditions for the status of infra-
structure systems’ components. The ResQ-IOS framework consists of five modules: risk assessment, simulation, 
optimization, database, and controller. To evaluate the capabilities of this framework, the seismic resilience of 
interdependent energy infrastructure networks (power, natural gas, and water) in Shelby County (TN), USA, was 
assessed. The results of the resilience analysis of the case study suggest that the water network is the best 
candidate for implementing pre-disaster Resilience Enhancement Measures (REMs), like increasing the supply 
capacity. Due to the controlling role of the power network in the community’s recovery process, it is recom-
mended that post-disaster REMs, such as increasing the number of Repair and Maintenance (R&M) teams, should 
be applied to the power network to speed up the restoration of failed components in that network and conse-
quently, shorten the recovery duration of the community. The ResQ-IOS can be employed as a useful compu-
tational tool for planning the resilience-oriented sustainable development of urban communities by, for example, 
deploying Renewable Energy (RE)-based strategies to enhance their disaster resilience.   

1. Introduction 

Critical Infrastructure Systems (CISs) play a vital role in regional 

socioeconomic development by providing the essential resources, 
including different types of energy, water, transportation and commu-
nication [1–3]. A disruption in the performance of an energy infra-
structure system usually results in the inoperability of other 
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Nomenclature 

Abbreviations 
IOS Iterative Optimization-based Simulation 
CISs Critical Infrastructure Systems 
EISs Energy Infrastructure Systems 
OS Optimization-Simulation 
MILP Mixed-Integer Linear Programming 
ALR Accumulated Loss of Resilience 
SoCIS-ALR joint Accumulated Loss of Resilience (for a system of 

CISs) 
R&M Repair and Maintenance 
GTPP Gas Turbine Power Plant 
CCPP Combined-Cycle Power Plant 
PGS Power Gate Station 
LNGT Liquefied Natural Gas Terminal 
NGPP Natural Gas Processing Plant 
NGGS Natural Gas Gate Station 
ESS Electric Substation 
BSU Building Stock Unit 
NGCS Natural Gas Compressor Station 
WSF Water Supply Facility 
WPS Water Pump Station 
WST Water Storage Tank 

Indices and sets 
i Index of critical infrastructure systems 
CIS Set of critical infrastructure systems 
s Index of nodes in the critical infrastructure system 
SNi Set of nodes in the critical infrastructure system i 
f Index of facilities in the critical infrastructure system 
SFi Set of facilities in the critical infrastructure system i 
m Index of nodes in the power network 
n Index of nodes in the natural gas network 
j Index of nodes in the water network 
p Index of powerlines in the power network 
q Index of pipelines in the natural gas network 
l Index of pipelines in the water network 
NE Set of nodes in the power network 
NG Set of nodes in the natural gas network 
NW Set of nodes in the water network 
LE Set of power lines in the power network 
LG Set of pipelines in the natural gas network 
LW Set of pipelines in the water network 
t Index of time steps 
T Set of total time steps between tE and tR 
fe Index of facilities in the power network 
FE Set of facilities in the power network 
fg Index of facilities in the natural gas network 
FG Set of facilities in the natural gas network 
fw Index of facilities in the water network 
FW Set of facilities in the water network 
IGtE Set of interdependent nodes coupled between the natural 

gas and power networks (Gas to Power) 
IWtE Set of interdependent nodes coupled between the water 

and power networks (Water to Power) 
IEtG Set of interdependent nodes coupled between the power 

and natural gas networks (Power to Gas) 
IEtW Set of interdependent nodes coupled between the power 

and water networks (Power to Water) 

Variables 
Ri Accumulated loss of resilience for an individual 

infrastructure system over the disruption period 
RSoCIS Accumulated loss of resilience for interdependent 

infrastructure systems over the disruption period 
RSoCIS

t Accumulated loss of resilience for interdependent 
infrastructure systems at time t 

Pi
pre Pre-disruption performance of an individual infrastructure 

system 
Pi

post Post-disruption performance of an individual 
infrastructure system 

Cpre,i
sys Total consumption of the service in the infrastructure 

network i before disruption 
Dpre,i

sys Total demand for the service in the infrastructure network i 
before disruption 

Cpost,i
sys Total consumption of the service in the infrastructure 

network i after disruption 
Dpost,i

sys Total demand for the service in the infrastructure network i 
after disruption 

Em
G,t Total electric power generation at electric node m at time t 

Em
C,t Total electric power consumption at electric node m at time 

t 
ep

t Electric power flow through the powerline p at time t 
EGTPP,m

G,t Electric power generation of GTPP at electric node m at 
time t 

ECCPP,m
G,t Electric power generation of CCPP at electric node m at 

time t 
EPGS,m

G,t Electric power imported by PGS at electric node m at time t 

EGTPP,m
C,t Electric power consumption for GTPP at electric node m at 

time t 
ECCPP,m

C,t Electric power consumption for CCPP at electric node m at 
time t 

EESS.m
C,t Electric power consumption for ESS at electric node m at 

time t 
ENGPP,m

C,t Electric power consumption for NGPP at electric node m at 
time t 

ELNGT,m
C,t Electric power consumption for LNGT at electric node m at 

time t 
ENGCS,m

C,t Electric power consumption for NGCS at electric node m at 
time t 

EWSF,m
C,t Electric power consumption for WSF at electric node m at 

time t 
EWPS,m

C,t Electric power consumption for WPS at electric node m at 
time t 

EH
C,t Electric power consumption for BSU H located in the 

service area of electric node m at time t 
zp

E,t Binary variable indicating the operating state of powerline 
p at time t 

xm
E,t Binary variable indicating the operating state of electric 

node m at time t 
gq

t Natural gas flow through the pipeline q at time t 
Gn

G,t Total natural gas production at gas node n at time t 
Gn

C,t Total natural gas consumption at gas node n at time t 

GLNGT,n
G,t Natural gas production of LNGT at gas node n at time t 

GNGPP,n
G,t Natural gas production of NGPP at gas node n at time t 

GNGGS,n
G,t Natural gas imported by NGGS at gas node n at time t 

GGTPP,n
C,t Natural gas consumption for GTPP at gas node n at time t 

GCCPP,n
C,t Natural gas consumption for CCPP at gas node n at time t 

GNGPP,n
C,t Natural gas consumption for NGPP at gas node n at time t 

GLNGT,n
C,t Natural gas consumption for LNGT at gas node n at time t 

GNGCS,n
C,t Natural gas consumption for NGCS at gas node n at time t 
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GH
C,t Natural gas consumption for BSU H located in the service 

area of gas node n at time t 
zq

G,t Binary variable indicating the operating state of gas 
pipeline q at time t 

xn
G,t Binary variable indicating the operating state of gas node n 

at time t 
wl

t Water flow through the pipeline l at time t 
Wj

G,t Total water supply at water node j at time t 

Wj
C,t Total water consumption at water node j at time t 

WWSF,j
G,t Water supply by WSF at water node j at time t 

WWST,j
G,t Water supply by WST at water node j at time t 

WCCPP,j
C,t Water consumption for CCPP at water node j at time t 

WH
C,t Water consumption for BSU H located in the service area of 

water node j at time t 
zl

W,t Binary variable indicating the operating state of water 
pipeline l at time t 

xj
W,t Binary variable indicating the operating state of water 

node j at time t 
φGTPP,m

E,t Binary variable indicating the operating state of GTPP at 
electric node m at time t 

θGTPP,n
t Binary variable indicating the operating state of the 

interdependency link from gas node n to GTPP at electric 
node m at time t 

δGTPP,n
t Binary variable indicating the operating state of gas supply 

system for GTPP at gas node n at time t 
φCCPP,m

E,t Binary variable indicating the operating state of CCPP at 
electric node m at time t 

θCCPP,n
t Binary variable indicating the operating state of the 

interdependency link from gas node n to CCPP at electric 
node m at time t 

δCCPP,n
t Binary variable indicating the operating state of gas supply 

system for CCPP at gas node n at time t 
σCCPP,j

t Binary variable indicating the operating state of the 
interdependency link from water node j to CCPP at electric 
node m at time t 

γCCPP,j
t Binary variable indicating the operating state of water 

supply system for CCPP at water node j at time t 
φPGS,m

E,t Binary variable indicating the operating state of PGS at 
electric node m at time t 

φESS,m
E,t Binary variable indicating the operating state of ESS at 

electric node m at time t 
φLNGT,n

G,t Binary variable indicating the operating state of LNGT at 
gas node n at time t 

αLNGT,m
t Binary variable indicating the operating state of the 

interdependency link from electric node m to LNGT at gas 
node n at time t 

πLNGT,m
t Binary variable indicating the operating state of power 

supply system for LNGT at electric node m at time t 
φNGPP,n

G,t Binary variable indicating the operating state of NGPP at 
gas node n at time t 

αNGPP,m
t Binary variable indicating the operating state of the 

interdependency link from electric node m to NGPP at gas 
node n at time t 

πNGPP,m
t Binary variable indicating the operating state of power 

supply system for NGPP at electric node m at time t 
φNGGS,n

G,t Binary variable indicating the operating state of NGGS at 
gas node n at time t 

φNGCS,n
G,t Binary variable indicating the operating state of NGCS at 

gas node n at time t 

αNGCS,m
t Binary variable indicating the operating state of the 

interdependency link from electric node m to NGCS at gas 
node n at time t 

πNGCS,m
t Binary variable indicating the operating state of power 

supply system for NGCS at electric node m at time t 
φWSF,j

W,t Binary variable indicating the operating state of WSF at 
water node j at time t 

βWSF,m
t Binary variable indicating the operating state of the 

interdependency link from electric node m to WSF at water 
node j at time t 

πWSF,m
t Binary variable indicating the operating state of power 

supply system for WSF at electric node m at time t 
φWPS,j

W,t Binary variable indicating the operating state of WPS at 
water node j at time t 

βWPS,m
t Binary variable indicating the operating state of the 

interdependency link from electric node m to WPS at water 
node j at time t 

πWPS,m
t Binary variable indicating the operating state of power 

supply system for WPS at electric node m at time t 
φWST,j

W,t Binary variable indicating the operating state of WST at 
water node j at time t 

Parameters 
tE Beginning time of system disruption 
tR Ending time of the recovery process 
ωi Pre-determined weights related to the relative importance 

of infrastructure systems 
S(link) Start node of the link 
T(link) Terminal node of the link 
ep

cap Flow capacity of the powerline p 
gq

cap Flow capacity of the gas pipeline q 
wl

cap Flow capacity of the water pipeline l 
τm

E,t Binary parameter indicating whether the recovery process 
started at electric node m at time t 

τn
G,t Binary parameter indicating whether the recovery process 

started at gas node n at time t 
τj

W,t Binary parameter indicating whether the recovery process 
started at water node j at time t 

SGTPP,m
E,t Electric power generation capacity of GTPP at electric 

node m at time t 
DGTPP,m

E,t Electric power demand of GTPP at electric node m at time t 

DGTPP,n
G,t Natural gas demand of GTPP at gas node n at time t 

SCCPP,m
E,t Electric power generation capacity of CCPP at electric node 

m at time t 
DCCPP,m

E,t Electric power demand of CCPP at electric node m at time t 

DCCPP,n
G,t Natural gas demand of CCPP at gas node n at time t 

DCCPP,j
W,t Water demand of CCPP at water node j at time t 

SPGS,m
E,t Electric power import capacity of PGS at electric node m at 

time t 
DESS,m

E,t Electric power demand of ESS at electric node m at time t 
DH

E,t Electric power demand of BSU H located in the service area 
of electric node m at time t 

SLNGT,n
G,t Natural gas production capacity of LNGT at gas node n at 

time t 
DLNGT,n

G,t Natural gas demand of LNGT at gas node n at time t 

DLNGT,m
E,t Electric power demand of LNGT at electric node m at time t 

SNGPP,n
G,t Natural gas production capacity of NGPP at gas node n at 

time t 
DNGPP,n

G,t Natural gas demand of NGPP at gas node n at time t 
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interdependent civil infrastructure systems, such as water, communi-
cation and transportation networks. Thus, regional governments and 
community stakeholders are concerned about the stable, reliable, and 
sustainable supply of energy resources to maintain their communities’ 
economic growth and social development [4,5]. 

Nowadays, Energy Infrastructure Systems (EISs) are highly interde-
pendent and interconnected [6–8]. Due to interdependencies between 
the EISs and other civil infrastructure systems, a malfunction in the 
performance of energy infrastructure systems, consisting of many com-
ponents, may significantly impact the economic sectors of the society 
[8–13]. CISs are frequently exposed to the occurrence of disruptive 
events, including man-made threats and natural hazards, such as 
earthquakes, hurricanes, floods, and windstorms [10,14–16]. To mini-
mize the damage costs and losses caused by extreme events to critical 
infrastructure systems, resilience enhancement has been adopted as a 
key strategy by government agencies, infrastructure managers, and 
stakeholders [3,8,17–24]. 

The definition of resilience varies as research objectives, methodol-
ogy, and case studies change. In other words, there is no general 
agreement on the resilience definition of energy systems, indicators, and 
quantitative metrics [3]. This study defines an infrastructure system’s 
resilience as the ability of that system to minimize the consequences of 
the disturbance by anticipating, absorbing, adapting to, and recovering 
from the disruption. 

Recently, Ahmadi et al. [3] have conducted a literature review on the 
system resilience modeling approaches. They categorized the resilience 
modeling approaches into three main groups: optimization, agent- 
based, and stochastic. The frequency of using other modeling ap-
proaches, such as simulation-based, system dynamic, and indicator- 
based modeling, is lower in the surveyed literature. 

In optimization-based methods, the resilience assessment process for 
infrastructure systems is formulated as an optimization problem. The 
optimization problem aims to improve the post-disaster performance of 
the system. The optimal solution seeks to shorten the recovery process 
and reduce potential economic losses and system component damage. 
Kong et al. [8] provided a framework to optimize the resilience of 
interdependent infrastructure systems against natural disasters. This 
research work investigated some strategies to improve the resilience of 
infrastructure systems. Sang et al. [25] formulated a mixed-integer 
linear programming problem to find the optimal restoration sequence 
of damaged components in interdependent gas and electricity infra-
structure systems. Liu et al. [26] developed a multi-objective optimi-
zation problem in a hierarchical framework to determine the optimal 
strategies for the resilience enhancement of interdependent power and 
natural gas infrastructure systems. Almoghathawi et al. [27] proposed a 
multi-objective optimization model to maximize the resilience of inter-
dependent power and water networks while minimizing the cost of the 
recovery process. This model was formulated as a mixed-integer pro-
gramming problem. 

Dubaniowski and Heinimann [28] developed an agent-based Input- 
Output (IO) framework to model the interdependencies between the 

infrastructure networks and the community, including the households 
and businesses. They applied the developed framework to an urban 
community in Singapore to assess resilience [29]. Sun et al. [30] pre-
sented an agent-based model for the recovery process of communities to 
appraise their seismic resilience. They also provided a resilience quan-
tification framework for integrated civil infrastructure systems [31]. The 
studies [32,33] are examples of applying the agent-based modeling 
approach in resilience analysis. 

The Monte Carlo simulation methods, widely applied to quantify the 
uncertainties in the resilience assessment of infrastructure systems, are 
typical examples of stochastic simulation-based methods. Some research 
studies [34–36] developed simulation-based methods to analyze the 
resilience of electricity networks under intense climatic conditions like 
hurricanes. Younesi et al. [15] provided a quantitative framework to 
assess the resilience of power networks against wide-area natural haz-
ards. This framework applies Monte Carlo simulations to account for the 
uncertainties in some characteristics of natural hazards, including 
location, type, and severity level. Blagojevic et al. [37] presented a 
probability-based resilience quantification model for a virtual commu-
nity. Many scenarios were simulated to calculate the community’s 
resilience against earthquakes. The critical review of the literature on 
the resilience assessment of interdependent CISs identified the following 
research gaps: 

1- The simulation-based and agent-based methods employed for resil-
ience quantification do not necessarily guarantee the optimal dis-
tribution of resources and services throughout the infrastructure 
networks.  

2- The initial operating state of components after disruption can be: 
completely failed, partially functional, or fully functional. In 
contrast, most of the research applying optimization models for 
resilience quantification considers a binary state for the operating 
condition of components after the disruption (failed or fully 
functional).  

3- To reduce the computational burden, some papers consider a specific 
group of infrastructure systems’ components for the resilience 
assessment, even though all components are subject to damage by 
natural hazards.  

4- Some researchers apply a linear and deterministic approach for 
assessing infrastructure components’ post-disaster damage state and 
functionality level. On the contrary, the Performance-Based Earth-
quake Engineering (PBEE) methodology uses a probabilistic 
approach to estimating the functionality loss of facilities after an 
earthquake. 

5- In the recovery models developed for optimization-based frame-
works, it is often assumed that each component is restored within a 
single time step of the resilience assessment period. This assumption 
is not realistic for short time steps and is not practical for large time 
steps.  

6- Most of the reviewed research assumes that the demands posed by 
the components are constant and equal to their pre-disruption 

DNGPP,m
E,t Electric power demand of NGPP at electric node m at time t 

SNGGS,n
G,t Natural gas import capacity of NGGS at gas node n at time t 

DNGCS,n
G,t Natural gas demand of NGCS at gas node n at time t 

DNGCS,m
E,t Electric power demand of NGCS at electric node m at time t 

DH
G,t Natural gas demand of BSU H located in the service area of 

gas node n at time t 
SWSF,j

W,t Water supply capacity of WSF at water node j at time t 

SWST,j
W,t Water supply capacity of WST at water node j at time t 

DWSF,m
E,t Electric power demand of WSF at electric node m at time t 

DWPS,m
E,t Electric power demand of WPS at electric node m at time t 

DH
W,t Water demand of BSU H located in the service area of water 

node j at time t 
μp

E,t Binary parameter indicating whether the powerline p is 
restored at time t 

μq
G,t Binary parameter indicating whether the gas pipeline q is 

restored at time t 
μl

W,t Binary parameter indicating whether the water pipeline l is 
restored at time t  
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demands during the entire resilience assessment process, whereas it 
is an unrealistic assumption. For example, demands for electric 
power, natural gas, and potable water in the network may decrease 
after the disaster that damages residential buildings since the resi-
dents of damaged buildings have to move to safe locations outside 
the network, or the power demand of a water pump station during 
the recovery process is proportional to the functionality level of that 
water pump station, and it may be less than the pre-disruption de-
mand for power. 

This paper presents a novel Resilience Quantification Iterative 
Optimization-based Simulation (ResQ-IOS) framework for modeling and 
analyzing the resilience of interdependent critical infrastructure systems 
against natural hazards. The ResQ-IOS framework takes advantage of 
both simulation-based and optimization-based approaches to address 
existing research gaps identified through the literature review on the 
resilience assessment of interdependent CISs. The following items are 
the main contributions:  

1- The ResQ-IOS resilience quantification framework can determine the 
optimal flow of resources and services from and to each node in the 
network to maximize the resilience of interdependent infrastructure 
systems at each time step of the simulation and thus deliver a real-
istic resilience assessment, particularly for interacting diverse energy 
systems.  

2- The proposed ResQ-IOS framework assumes that all components of 
the considered systems may be damaged during the disaster. This 
framework applies a probabilistic approach to estimate the damage 
state of the infrastructure systems’ components. Also, the ResQ-IOS 
framework rates the functionality level of the components continu-
ously, by using a fuzzy logic-based model.  

3- In the ResQ-IOS framework, the required time for restoring the failed 
components depends on the failed component’s damage state, which 
is a function of the characteristics of the hazard. Therefore, restoring 
damaged components may take several time steps in the resilience 
assessment period.  

4- In the proposed ResQ-IOS framework, the demand for resources and 
services evolves in time after a disruptive event occurs. Thus, the 
demand for resources and services is a time-dependent function of 
the finicality level of the component during the resilience assessment 
period.  

5- This ResQ-IOS makes it possible to consider the temporary loads that 
may be imposed on infrastructure networks during the recovery 
process. For example, if a water supply facility is out of service due to 
earthquake-induced damages, it does not mean that the demand of 
that facility for power is zero. Such a temporary load will be removed 
once the restoration process of that component is done. 

The remainder of this research paper is organized as follows. Section 
2 introduces the Iterative Optimization-based Simulation (IOS) frame-
work and its modules for the resilience assessment of interdependent 
infrastructure networks. This section also presents the mathematical 
model of the optimization module for optimizing the resilience of 
interdependent CISs. Section 3 describes the case study involving the 
power, natural gas, and water systems in Shelby County, TN, USA, a 
realistic example of interdependent CISs. In Section 4, the resilience of 
the case study systems is quantified using the ResQ-IOS framework, and 
the sensitivity of the case study systems concerning a selected group of 
factors is examined. In Section 5, the conclusions of this study and the 
direction for future work are presented. 

2. The iterative optimization-based simulation (IOS) framework 
for the resilience assessment of CISs 

The capabilities of modern simulation tools to analyze complex 
systems’ behavior by assessing their performance through creating 

‘what-if’ scenarios makes simulation a robust methodology for solving 
real-world problems [38–40]. The simulation process computes system’s 
performance measures for different model alternatives to evaluate the 
effects of model parameters on systems’ behavior. However, an opti-
mization process is needed to find the best configuration of the systems 
by exploring the systems’ performance measures space generated by 
simulation. Integration of simulation and optimization is, therefore, a 
promising methodology for solving large and complex problems in the 
real-world environment [41]. 

Optimization approaches utilizing traditional mathematical optimi-
zation are readily applicable to small, deterministic, and less complex 
systems. As the system’s size, uncertainty, and complexity increase, 
mathematical modeling may fail to find an optimal solution [42–46]. In 
contrast, hybrid Simulation-Optimization (SO) approaches can deal with 
the uncertainty and complexity of large-scale systems. Accordingly, SO 
models are more suitable for real-world stochastic and complex systems 
with sizable details and intricate relationships between their compo-
nents [43,47,48]. Models using SO approaches can also consider the 
system’s non-linear relationships, dynamic features, and qualitative 
aspects [46]. Significant progress in computational capacities has led to 
meaningful growth in applying SO models to various research fields, 
such as risk management, healthcare, and industrial engineering 
[41,49–52]. In the field of disaster resilience modeling, assessment and 
quantification of interacting civil infrastructures system, SO is particu-
larly useful. This is particularly important when the involved systems 
have different disruption reaction times. For example, depending on the 
source of electric power (nuclear, natural gas, oil, coal, wind, water, 
solar), the time to stabilize the system after a disruption and restore its 
function may be very different. 

The general structure of an Iterative Optimization-based Simulation 
(IOS) framework is illustrated in Fig. 1. According to this figure, an 
optimization solver is embedded into a simulation model in the structure 
of the proposed Iterative Optimization-based Simulation (IOS) frame-
work. As shown in Fig. 1, the optimization solver is called repeatedly at 
each operational step of the IOS framework to optimize the simulated 
systems’ state variables. Specifically, the simulation run is temporarily 
paused, and the state variables of the simulated system are transferred to 
the optimization solver as input to the analytical modeling of the system 
that is formulated as an optimization problem according to the current 
state of the simulated system. After the optimizer solves the mathe-
matical model of the system and finds the solution, the framework up-
dates the system’s configuration according to the optimal solution and 
resumes the simulation run. This process is iterated between the opti-
mization and simulation frequently until a pre-set stopping criterion is 
satisfied. 

This paper introduces resilience quantification into an IOS frame-
work by combining simulation and optimization. As shown in Fig. 2, the 
proposed Resilience Quantification Iterative Optimization-based Simu-
lation (ResQ-IOS) framework for quantifying the resilience of interde-
pendent CISs benefits from a modular workflow to establish logical 
relationships between the different sections of the framework. This IOS 
framework consists of five modules: risk assessment, simulation, opti-
mization, database, and controller. 

The block diagram of the process by which the ResQ-IOS models and 
quantifies the resilience of interdependent CISs is given in Fig. 3. The 
diagram comprises four major modules: Risk Assessment, Simulation, 
Optimization, and Controller. These four modules work together to 
evaluate the resilience of interdependent infrastructure systems. As 
depicted in Fig. 3, the first module that triggers the ResQ-IOS framework 
to operate is the risk assessment module. This module simulates the 
hazard and, accordingly, evaluates the vulnerability of the components 
of the infrastructure networks. Then, data related to the post-disaster 
status of the infrastructure networks as the output of the risk assess-
ment module is conveyed to the database module. In the next step, the 
simulation module uses this data to simulate the functional recovery 
evolution of infrastructure networks’ performance by tracing the 
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functionality of components on both supply and demand sides according 
to their damage level and repair progress. This simulated data is popu-
lated to the database module and is utilized by the optimization module 
to maximize the post-disruption performance of the considered inter-
dependent CISs. The optimization module solves a Mixed-Integer Linear 
Programming (MILP) problem to determine the optimal distribution of 
services and resources in the infrastructure networks. Then, the optimal 
solution is transferred to the database module. Concerning the infra-
structure systems’ optimal performance stored in the database, the 
simulation module reconfigures the supply and demand patterns in 

infrastructure networks. It then simulates the performance evolution of 
infrastructure networks for the next time step in the recovery process. 
This time-stepping Optimization-Simulation (OS) procedure is iterated 
between the simulation, database, and optimization modules. The 
controller module computes the loss of resilience for the infrastructure 
networks at each time step. The controller module ends the OS process 
when a set of pre-defined simulation stopping criteria is met. 

Fig. 1. An illustrative structure of the Iterative Optimization-based Simulation (IOS) framework.  

Fig. 2. The proposed ResQ-IOS framework for quantifying and optimizing the resilience of interdependent CISs.  
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2.1. Risk assessment module 

The ResQ-IOS framework incorporates the risk assessment module to 
model how a hazard-induced disruption affects the functioning of a 
community and its interdependent infrastructure systems. The role of 
this module is to estimate the impact of the hazard on the performance 
of infrastructure systems’ components. This module is the starter of 
workflow in the ResQ-IOS framework for the resilience assessment of 
interdependent CISs. 

After the hazard-related disruption information is received, the risk 
assessment module begins to simulate the regional-scale impacts of the 
hazard on the infrastructure networks, considering the type and 
magnitude of the hazard. In this paper, the interdependent CISs’ loss of 
functionality due to natural hazards is classified into two groups: direct 
and indirect functionality loss. Direct functionality loss is referred to the 
physical damage to the components of infrastructure networks. The 
physical damage includes structural and non-structural damage. For 
instance, the structural damage of a water pump station can be a partial 
collapse of the pump station building, and non-structural damage can be 
referred to as the equipment failure of the electrical power supply sys-
tem in the pump station. Indirect functionality loss is referred to the 
inoperability of a component in the infrastructure system due to the 
malfunction in the performance of another infrastructure system that 
supplies the demand of that component in the dependent infrastructure 
system setting. For example, the water pump station, which remains 
intact after a natural hazard, may cease to operate if the electrical power 
network is damaged and not able to supply the pump station’s demand. 
This type of functionality loss results from the interdependency between 
different infrastructure systems. 

Taking an earthquake as an example of the hazard, the risk assess-
ment module simulates the impact of the earthquake on the 

infrastructure network by estimating intensity measures at the 
geographical location of the infrastructure networks’ components. The 
earthquake intensity measures such as PGD, PGV, and PGA are calcu-
lated from the ground motion characteristics. To estimate the intensity 
measures at the locations of the systems’ components, attenuation 
models that are the function of the earthquake magnitude and epicenter 
location are used. Then, the risk assessment module utilizes the seismic 
fragility curves of the infrastructure networks’ components provided 
within component specification data. Considering the fragility curves 
and earthquake intensity measures at their location, the module assesses 
the components’ vulnerability against the hazard and sets their initial 
post-disruption damage state. To this end, five damage states similar to 
the methodology of the FEMA-HAZUS Earthquake Model Technical 
Manual [53] are considered, namely, None, Slight, Moderate, Extensive, 
and Complete. The workflow of the risk assessment module is consistent 
with the Performance-Based Earthquake Engineering (PBEE) method-
ology developed by the Pacific Earthquake Engineering Research Center 
(PEER) [54]. Lastly, the risk assessment module sends information about 
the damage state of the components to the database module. 

One of the strengths of the ResQ-IOS framework is that the resilience 
assessment process is formulated and implemented based on the time- 
dependent damage state of the components. Hence, this framework is 
capable of evaluating the resilience of interdependent CISs under the 
impact of multiple natural hazards (e.g., floods or high winds) as well as 
triggered natural hazard cascades. 

2.2. Database module 

In the ResQ-IOS framework, the role of the database module is to 
store the output data from the risk assessment, simulation, and optimi-
zation modules and provide the required data to those modules during 

Fig. 3. The block diagram of the process used in the ResQ-IOS for modeling and quantifying the resilience of interdependent CISs.  

H. Hafeznia and B. Stojadinović                                                                                                                                                                                                            



Applied Energy 349 (2023) 121558

8

iterative resilience quantification (Fig. 2). In other words, the database 
module fulfills the module interface and data exchange roles. The 
database module consists of three layers. The first layer is allocated to 
store the output data sent by the risk assessment module. This data in-
cludes the damage state of the infrastructure networks’ components 
caused by the hazard. The simulation module uses the data in this layer 
to trace the performance evolution of the CISs after the occurrence of the 
hazard. 

The second layer of the database is dedicated to the output data of 
the simulation module, comprising the current functionality level of the 
CIS components and the current demand recovery of the consumers. The 
data of the second layer is fed to the optimization module. This data, 
which are the state variables of the community, is utilized to re- 
formulate the MILP optimization problem that is representative of the 
community’s mathematical model. As shown in Fig. 2, the optimal so-
lution discovered by the optimization module is populated to the third 
layer of the database. The data stored in the third layer is then trans-
ferred to the simulation module to reconfigure the infrastructure net-
works and update the supply and demand patterns in the CISs and the 
community. The exchange of data between the ResQ-IOS framework’s 
modules, as stated above, occurs until the controller module stops the 
time-stepping recovery OS process. The controller module takes the data 
from the second and third layers of the database to check whether the 
resilience quantification stopping criterion is satisfied. 

2.3. Controller module 

The tasks of the controller module are to monitor the functionality 
evolution of the CISs during the post-disruption recovery process, and to 
stop the time-stepping OS process once the stopping criteria are met. For 
these purposes, an integral resilience metric is defined to evaluate the 
joint recovery process of the interdependent CISs. The controller module 
computes this resilience metric in each the ResQ-IOS framework cycle. 
The module stops the resilience quantification framework when the 
resilience metric exceeds the pre-set threshold. 

2.3.1. Resilience metric for interdependent CISs 
There are a few candidates for a metric to quantify the joint 

disruption resilience of interdependent CISs. In some research studies 
[3,8,55–58], the resilience of an individual infrastructure system is 
calculated by the ratio of the area under the curve representing the time 
evolution of the actual performance of the infrastructure system with 
respect to the target performance of the system over the period starting 
from the occurrence of a disruptive event and ending when the recovery 
process is completed. Some researchers [59,60] quantified the resilience 
of an infrastructure system as the instantaneous difference between the 
actual and target system performance at certain time points during the 
recovery process. However, both groups of researchers use different 
indicators for infrastructure system performance. 

In this paper, a resilience metric was defined to measure the resil-
ience of an individual infrastructure system with respect to its pre-and 
post-disruption performance. The resilience of the infrastructure sys-
tem following a disruptive event is quantified by tracking the evolution 
path of system performance after the disruption through time. This 
resilience metric adopted in this study is based on the Loss of Resilience 
metric proposed by Didier et al. [61]. An infrastructure system en-
counters a loss of resilience when it is not able to supply the amount of 
demand for its service. The resilience metric Ri used in this study is: 

Ri =

∫ tR

tE

(
Pi

pre(t) − Pi
post(t)

)
dt (1)  

where Pi
pre and Pi

post denote the infrastructure system’s i pre and post- 
disruption performance, and tE and tR denote the times when the 
disruption occurs and the time when the recovery process ends, 
respectively. The instantaneous performance of the system Pi(t) is the 
ratio of the instantaneous total consumption of its service (e.g., electrical 
power, water, etc.) Ci

sys(t) and the instantaneous total demand for its 
service Di

sys(t) and measures its instantaneous Loss of Resilience (LR). By 
this definition, the performance of the system Pi(t) is normalized and 
unitless, following [62], and takes values between 0 and 1. The 

Fig. 4. Illustration of the CIS Accumulated Resilience Metric (ALR) Ri (Eq. (2)) used in this study.  
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resilience metric is then: 

Ri =

∫ tR

tE

(
Cpre,i

sys (t)
Dpre,i

sys (t)
−

Cpost,i
sys (t)

Dpost,i
sys (t)

)

dt (2) 

In this study, pre-disruption performance is assumed to have no Loss 
of Resilience, thus Pi

pre = 1, and the target post-disruption performance 
is assumed to be equal to the pre-disruption performance. Fig. 4 
graphically demonstrates that the resilience metric Ri is equal to the area 
between the target and the actual performance curves of the infra-
structure system, computed by integrating the consumption/demand 
ratio difference in each time step. Thus, the resilience metric Ri for a CIS 
is the called the Accumulated Loss of Resilience (ALR). 

Due to connections, dependencies, and interactions between 
different infrastructure networks in a community, interdependent CISs 
are modeled as a “system-of-systems” [63]. As explained in the next 
section, a resilient behavior of interdependent system of CISs relies on 
the functioning of all individual infrastructure networks in the com-
munity. Conversely, non-resilient behavior of the system of CISs may be 
induced by interdependencies and cascading failures, where non- 
performance of one CIS disables otherwise undamaged components of 
other CISs. To capture this system-of-CIS behavior in a single resilience 
metric, according to [66], a linear combination (i.e., weighted sum) of 
the performance of each infrastructure system, measured using the joint 
Accumulated Loss of Resilience (SoCIS-ALR) metric, is proposed as: 

RSoCIS =
∑

i∈CIS
ωiRi =

∑

i∈CIS
ωi.

∫ tR

tE

(
Cpre,i

sys (t)
Dpre,i

sys (t)
−

Cpost,i
sys (t)

Dpost,i
sys (t)

)

dt (3)  

s.t.
∑

i∈CIS
ωi = 1 (4)  

where ωi denotes the predetermined weights assigned to individual CISs, 
for example, according to the relative importance of each network in the 
community. In this paper, the relative importance of infrastructure 
networks in the community is considered equal for power, natural gas, 
and water networks. Since the SoCIS-ALR metric RSoCIS is normalized 
and unitless, it can evaluate the performance of interdependent CISs 
joinly regardless of the type of service provided by the infrastructure 
system. Moreover, using RSoCIS facilitates computing the community 
resilience performance goals proposed in NIST SP-1190 [64]. 

2.4. Simulation module 

The function of this module is to simulate the post-disruption per-
formance of the interdependent CIS system-of-systems during the re-
covery process. To capture the interdependency, this module models the 
interactions between different infrastructure networks during the post- 
disaster recovery process by tracking the initial damage and function 
recovery of CIS components. The following sections describe the simu-
lation module. 

2.4.1. Modeling of interdependent CISs 
Different types of interdependencies exist between the infrastructure 

systems, such as physical, cyber, geographical, and logical [6]. Ac-
cording to the relevant studies on resilience quantification, a multi-layer 
network model can be used to represent interdependent CISs [8,62,65]. 
In this model, different CISs can operate and interact through the 
interdependency links connecting nodes from different CISs. An illus-
trative example of a multi-layer network with interdependency links is 
provided in Fig. 5. As depicted in this figure, the service inputs necessary 
for continuing the functionality of an infrastructure network are trans-
ferred from other infrastructure networks through such 

Fig. 5. An illustrative example of a multilayer network with interdependency links.  
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interdependency links. These interdependency links represent the 
physical interdependencies between various infrastructure networks. 
The principal interdependencies between power, natural gas, and water 
networks are physical [27,62]. In addition to physical, the simulation 
module in the Res-IOS framework considers the geographical in-
terdependencies between the infrastructure networks. Geographical 
interdependencies between CISs occur when their components are 
located in proximity to one another so that those components may be 
simultaneously affected by the same natural hazard [8]. The cyber and 
the logical interdependencies are not modeled in this study. 

2.4.2. Network flow-based model of an infrastructure system 
There are different CIS operation models for analyzing the perfor-

mance of infrastructure systems and its evaluation through the post- 
disaster recovery process [66–69]. Considering the characteristics of 
the CISs addressed in this paper, power, natural gas, and water, a 
network flow-based operation model is selected to capture the evolution 
of infrastructure systems’ performance according to [8,25,70–72]. In 
this operation model, the function of each infrastructure system is to 
generate and convey a specific type of service throughout its network. 

To represent an infrastructure system as a network, it is crucial to 
map the physical facilities in the infrastructure system to the set of nodes 
and links describing the actual functional role of those facilities. The 
network flow-based model has three types of nodes to differentiate the 
physical facilities in the infrastructure system by their function type: 
supply, demand, and transmission. The supply nodes are the facilities in 
the infrastructure network that generate a service. The demand nodes 
are the locations in the infrastructure network where the services are 
delivered to the end users. The transmission nodes are the facilities in 
the infrastructure network that facilitate service transfer between supply 
and demand nodes. Another flow-based network component is the links, 
which connect two nodes to transfer services. 

2.4.3. Modeling the recovery process 
The recovery process in the simulation module is modeled for three 

types of interdependent infrastructure systems: electrical power, water, 
and natural gas. Since the risk assessment module estimates the impact 
of the disaster on the components of both the demand and supply sides, 
not only the restoration of infrastructure networks’ components but also 
the demand evolution of consumers is considered in the modeling of the 
recovery process. In addition to considering time-dependent demands 
for resources and services during the recovery process, the recovery 
model of the ResQ-IOS framework can deal with temporary demands for 
services in the course of the restoration of the damaged components. 

According to the components’ damage level data, which is stored in 
the first layer of the ResQ-IOS database, the simulation modules appraise 
the functionality level of the infrastructure networks. The operational 
state of the components is evaluated by fuzzy membership functions. 
Therefore, the operating state of a component after a disaster can be 
rated as fully functional, partially functional, or completely failed. The 
amount of time needed to restore a damaged component is a function of 
its immediate post-disaster damage state, thus a function of the intensity 
of the hazard at the location of a component and its vulnerability. 

The recovery model developed for the ResQ-IOS framework can 
apply different recovery functions to the damaged CIS components. 
Besides binary and linear recovery functions, the recovery model im-
plements nonlinear recovery functions. A nonlinear recovery model 
considers different repair rates throughout the recovery process, made 
possible and used by the optimization solver in the Iterative 
Optimization-based Simulation framework. 

Due to budget constraints and the limited number of crew teams and 
resources, it is only feasible for a few failed components to be restored 
simultaneously. Hence, the availability of resources and maintenance 
crew teams influences the component repair start time. There are 
different strategies for sequencing the repairs of the damaged compo-
nents. The ResQ-IOS framework recovery model can adopt various 

restoration sequence strategies for repairing the damaged components 
in the network. In this paper, the ResQ-IOS framework utilizes a 
criticality-based strategy applying performance-based (i.e., supply ca-
pacity and demand-based) importance approach to specify the restora-
tion sequence of damaged components located at nodes in the 
interdependent CISs (i.e., nodes with the largest demand are repaired 
first), and a capacity-based method to determine the sequence of links 
(e.g., pipelines) to be repaired (i.e., links with the largest capacity are 
repaired first). 

2.5. Optimization module 

An optimization solver is embedded into the ResQ-IOS framework to 
determine the optimal flow of resources and services from and to each 
node in the considered infrastructure networks to minimize the loss of 
resilience of interdependent CISs at each step of the recovery process. 
Thus, the optimization solver is called in each iteration of the ResQ-IOS 
framework. The optimization module calls for information about the 
current infrastructure network status stored in the second layer of the 
ResQ-IOS database. Then, the optimization module updates the mathe-
matical model of the interdependent CISs according to the networks’ 
status parameters. The main parts of the mathematical model, including 
the objective function and the constraints, stay unchanged; however, the 
model parameters and some decision variable coefficients may change 
in an optimization cycle. 

2.5.1. Mathematical formulation of the optimization model 
In the optimization module, the performance of interdependent 

infrastructure systems is formulated as a Mixed-Integer Linear Pro-
gramming (MILP) problem. The resilience of these interdependent 
infrastructure systems is then quantified by solving the optimization 
problem. To construct the optimization model for resilience assessment, 
it is necessary to develop the constraints according to the network flow- 
based model of infrastructure systems. The constraints of the MILP 
problem for the power, natural gas, and water CISs used for the opti-
mization module of this paper are presented in Appendix A. The IBM 
CPLEX solver [73] is utilized to solve the MILP problem. 

In this study, the resilience of an infrastructure system is quantified 
using the resilience metric defined by Eq. (3). Measuring the best per-
formance that considered interdependent CISs in each step of the re-
covery process is essential. An infrastructure system with optimal 
service distribution throughout its network may cope with the after-
maths of a natural disaster better than an infrastructure system with 
random service dispatching. The optimal service dispatch within a 
network usually reduces the unmet demand and results in a higher 
resilience value for that network. The objective of the optimization 
module is to minimize the SoCIS-ALR metric, which measures the loss of 
resilience for interdependent critical infrastructure systems after a 
disruption, and it is expressible as follows: 

min
DV

RSoCIS
t = min

DV

∑

i∈CIS
ωiRi

t = min
DV

∑

i∈CIS
ωi.

(
Cpre,i

sys (t)
Dpre,i

sys (t)
−

Cpost,i
sys (t)

Dpost,i
sys (t)

)

(5)  

where RSoCIS
t is the instantaneous accumulated loss of resilience for 

interdependent infrastructure systems and ωi and Ri
t denote the pre-

determined weights assigned to individual CISs and the instantaneous 
accumulated loss of resilience for an individual CIS, respectively. In the 
objective function (Eq. (5)), Ri

t , the accumulated loss of resilience for an 
individual CIS, is the difference between the instantaneous target (i.e., 
pre-disruption) and the instantaneous actual (i.e., post-disruption) per-
formance of the concerned CIS. The instantaneous performance of the 
concerned CIS is the ratio of the instantaneous total consumption of its 
service Ci

sys(t) and the instantaneous total demand for its service Di
sys(t). 

(
Cpre,i

sys (t)
Dpre,i

sys (t)

)

and 
(

Cpost,i
sys (t)

Dpost,i
sys (t)

)

denote the ratios for the pre-disruption and post- 
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disruption performance of the concerned CIS i at time step t. 
Then, to minimize the loss of resilience at each time step of the 

resilience assessment period, the optimal post-disruption performance 
of the interdependent infrastructure systems is calculated by considering 
the constraints related to the network topology, the operating state of 
facilities, and interdependency between the infrastructure systems (Eqs. 
(A.1)-(A.86)). The optimization model for the SoCIS-ALR metric for the 
three considered interdependent CISs (power, natural gas, and water) is 
formulated as follows: 

min
DV

RSoCIS
t = min

DV

∑

i∈CIS
ωi.

(
Cpre,i

sys (t)
Dpre,i

sys (t)
−

Cpost,i
sys (t)

Dpost,i
sys (t)

)

= min
DV

∑

i∈CIS
ωi.

⎛

⎜
⎝

∑

s∈SNi

∑

f∈SFi
Cpre,i

f ,s,t

∑

s∈SNi

∑

f∈SFi
Dpre,i

f ,s,t
−

∑

s∈SNi

∑

f∈SFi
Cpost,i

f ,s,t

∑

s∈SNi

∑

f∈SFi
Dpost,i

f ,s,t

⎞

⎟
⎠

= min
DV

⎡

⎢
⎢
⎣ ωE.

⎛

⎜
⎝

∑

m∈NE

∑

fe∈FE
Efe ,m,pre

C,t

∑

m∈NE

∑

fe∈FE
Dfe ,m,pre

E,t
−

∑

m∈NE

∑

fe∈FE
Efe ,m,post

C,t

∑

m∈NE

∑

fe∈FE
Dfe ,m,post

E,t

⎞

⎟
⎠

+ ωG.

⎛

⎜
⎜
⎝

∑

n∈NG

∑

fg∈FG
Gfg ,n,pre

C,t

∑

n∈NG

∑

fg∈FG
Dfg ,n,pre

G,t

−

∑

n∈NG

∑

fg∈FG
Gfg ,n,post

C,t

∑

n∈NG

∑

fg∈FG
Dfg ,n,post

G,t

⎞

⎟
⎟
⎠

+ ωW .

⎛

⎜
⎝

∑

j∈NW

∑

fw∈FW
Wfw ,j,pre

C,t

∑

j∈NW

∑

fw∈FW
Dfw ,j,pre

W,t
−

∑

j∈NW

∑

fw∈FW
Wfw ,j,post

C,t

∑

j∈NW

∑

fw∈FW
Dfw ,j,post

W,t

⎞

⎟
⎠

⎤

⎥
⎥
⎦ (6)  

s.t. sets of constraints [Eqs.(A.1) − (A.86) ]

where RSoCIS
t denotes the instantaneous joint accumulated loss of resil-

ience for interdependent CISs. ωi is assigned weights to each infra-
structure system. ωE, ωG, and ωW represent the predetermined weights 
of the power, natural gas, and water networks. As explained earlier for 
Eq. (5), Ci

sys(t) and Di
sys(t) are the instantaneous total consumption and 

demand for the service provided by the concerned CIS i. The variable 
Cpost,i

f ,s,t denotes that the instantaneous total consumption of the service in 
the CIS i after the disruption equals the total service consumption by 
facilities f belonging to the CIS i (SFi) and located at the node s in the 
network of the CIS i (SNi). The variable Dpost,i

f ,s,t denotes that the instan-
taneous total demand for the service provided by the CIS i equals the 

total post-disruption demands for the service requested by facilities f 
belonging to the CIS i (SFi) and located at the node s in the network of 
the CIS i (SNi). The same definitions apply to pre-disruption situations. 
Symbols EC,t , GC,t , and WC,t denote the instantaneous consumption of 
electric power, natural gas, and water, respectively. DE,t , DG,t, and DW,t 

are the instantaneous demand for electric power, natural gas, and water, 
respectively. The information about other indices and variables in Eq. 
(6) is given in the nomenclature of this paper. 

3. Case study 

Shelby County, located in Tennessee (TN), USA, is selected to 
demonstrate the capabilities of the ResQ-IOS framework proposed in 
this paper. The power, natural gas, and water networks of Shelby County 
can be considered realistic examples for the resilience assessment of 
interdependent infrastructure networks. The data on Shelby County’s 
power, natural gas, and water networks, including the topology, de-
mand, supply capacity, and interdependencies between the infrastruc-
ture networks, is obtained from [74,75]. However, the authors 
reasonably assumed some missing data, particularly for the natural gas 
network. For better understanding, the nodal demands are normalized 
to the total demand of the respective infrastructure network. This 
normalization applies to the nodal supply capacities as well. 

The authors employ a slightly modified version of Shelby County’s 
infrastructure networks to demonstrate the capabilities of the ResQ-IOS 
framework for quantifying the resilience of interdependent CISs. For 
instance, there is no power plant in Shelby County. To resolve such a 
problem, a node in the power network containing a PGS is replaced with 
a CCPP such that the power generation capacity of the CCPP is equal to 
the amount of electrical power imported into Shelby County by the PGS. 
This assumption is made to avoid changing the actual flow pattern in the 
network. Subsequently, this modification creates more interdependency 
relations between the gas, power, and water networks. The interde-
pendency relations between infrastructure networks in Shelby County 
are illustrated in Fig. 6. This figure demonstrates how different sectors of 
the power, gas, and water networks are interconnected. Two bi- 
directional interdependency relations exist: one between the power 
generation and natural gas production sectors and another between the 
power generation and water supply sectors. Also, this figure shows that 
the operability of the water and natural gas transmission sectors relies 
on the proper functioning of the power transmission grid. For instance, 
the production capacity of the natural gas network can be affected 

Fig. 6. The interdependency relations between infrastructure networks in the case study.  
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adversely by natural hazards like an earthquake. This reduction in 
natural gas supply capacity can curtail the electricity generation ca-
pacity and, subsequently, influence the power supply to the transmission 
and supply components of the water network. Thus, a disruption in the 
natural gas network can reduce water service delivery to consumers, 
whereas there is no direct interdependency relation between the natural 
gas and water networks, according to Fig. 6. 

Fig. 7 displays the topologies of Shelby County’s infrastructure net-
works at the transmission level. The power, natural gas, and water 
networks are depicted in red, green, and blue colors, respectively. The 
modified power network comprises 73 powerlines and 59 electric nodes: 
one CCPP, two GTPPs, 5 PGSs, seventeen 23-kV ESSs, twenty 12-kV 
ESSs, and 14 power intersections. The modified natural gas network 
contains 17 pipelines and 16 gas nodes: one LNGT, one NGPP, two 
NGCSs, one NGGS, and 11 regular distribution stations. The modified 
water infrastructure network consists of 49 water nodes and 71 pipe-
lines. There are 6 WSTs, 4 WPSs, and 5 WSFs. The remaining nodes are 
water intersections that deliver water to the end users. In this study, it is 
assumed that all nodes and links within Shelby County’s infrastructure 
networks are subject to the destructive impacts of the considered natural 
hazard. 

4. Results and discussion 

To demonstrate the capabilities of the ResQ-IOS framework to model 
the interdependency between the infrastructure systems and evaluate 
the resilience of those interdependent systems against disasters, the 
seismic resilience of the interdependent CISs located in Shelby County 
(TN), USA is quantified. The data relating to damage functions, func-
tionality levels, and the details of the recovery process for the CISs’ 
components (e.g., the required time for restoring a component) is ob-
tained from the HAZUS Earthquake Model Technical Manual (HAZUS 
5.1) published by Federal Emergency Management Agency (FEMA) in 
July 2022 [53]. To show the performance evolution of infrastructure 
networks (power, natural gas, and water) after a disaster, a hazard 
scenario is defined similarly to the realistic earthquake scenario in 
Shelby County provided by [76]. The hazard scenario simulates an 
earthquake with a magnitude of Mw = 7.7 and an epicenter located at 
35.3 N and 90.3 W (situated in the northwest of Shelby County). The 
performance evolution of the Shelby County infrastructure networks 
after this earthquake scenario is shown in Fig. 8. This figure displays the 
changes in the actual performance of power, natural gas, and water 
networks considering the hazard occurs on day 0, and the recovery 
process starts on day 1. To calculate the resilience metric defined by Eq. 
(2). (i.e., accumulated loss of resilience), the area between the target and 
the actual performance of each network is computed according to Fig. 4. 
The Accumulated Loss of Resilience (ALR) metrics for the power, natural 
gas, and water CISs are 9.47, 12.32, and 15.37 days, respectively. For a 
better understanding of ALR, we can interpret the ALR of an infra-
structure network as the equivalent number of days that the infra-
structure network of interest is completely shut down (i.e., the met 
demand is zero). For instance, the ALR of the power network is 9.47 
days, meaning total unmet demand during the recovery process that 
takes 54 days to complete equals 9.47 days with zero power supply. The 
minimum instantaneous performance of the power system Pi(t) (the 
consumption/demand LR) was 17.3% of the daily demand in this 
earthquake scenario. 

It is noteworthy that the ALR determines the amount of unmet de-
mand during the recovery process of an infrastructure network after the 
disaster. Still, this ALR resilience metric does not specify the speed of the 
recovery process. In other words, an infrastructure network with a lower 
ALR value may have a more extended recovery period; for example, the 
case study (Fig. 8) reveals that the ALR for the natural gas network 
(12.32) is higher than power network (9.47), while the function re-
covery of the natural gas network is completed in 18 days, 36 days 

Fig. 7. Topologies of the (A) power, (B) natural gas, (C) water infrastructure 
networks in Shelby County (TN), USA (Map tiles by CARTO, under CC-BY 4.0). 
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sooner than the power network’s recovery period (54 days). Although 
the natural gas network holds the fastest rate in the recovery process, 
this network is the only infrastructure network in the case study that 
totally failed for a short period (one day), as shown in Fig. 8. 

According to the results of resilience quantification, the water 
network has the highest ALR among the three Shelby County CISs; 
however, the water network is not the last infrastructure system 
recovered from earthquake-induced failures. Fig. 9 indicates the daily 
percentage of partially and fully damaged nodes in the CISs’ networks in 
Shelby County during the recovery process after the earthquake. Ac-
cording to Fig. 9, the restoration of the water network’s components has 
been completed in 12 days, almost 4.5 times faster than that of the 
power network. Despite the relatively fast restoration of the damaged 

components in the water network, the resilience indicator for the water 
network cannot approach value of one earlier than the 54th day of the 
recovery process. The main reason for such post-disaster recovery of the 

Fig. 8. The performance evolution of the Shelby County CISs in the investigated earthquake scenario (The earthquake occurs on day 0, and the recovery process 
starts on day 1). 

Fig. 9. The daily percentage of partially and fully damaged nodes in the Shelby County CISs during the recovery process after the investigated earthquake scenario 
(Mw = 7.7). 

Table 1 
The required time to restore the different percentages of the Shelby County 
interdependent CISs’ services.  

Required time (days) Percentage of service recovery 

30% 60% 90% 100% 

Network 
Power 7 13 19 54 

Natural gas 13 13 18 18 
Water 7 16 54 54  
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water network is the interdependency between the power and water 
networks. Due to the slower recovery rate of the power network, the 
operability of some components in the water network, such as water 
pump stations, is conditioned on the functionality level of the power 
network’s elements, like substations and power lines. Namely, the 
constant part of the water network’s resilience curve between the 23rd 
day and 52nd day of the recovery process in Fig. 8 (the recovery process 
starts on day 1) is due to the water pump station located at node 11 being 
out of service during the period mentioned above even though its 
earthquake-induced damage is fully restored and the water pipelines 
connected to the pump station are ready to operate. The reason for the 
inoperability of this water pump station is the lack of power supply 
delivered by the connected 12-kV electric substation due to ongoing 
components’ restoration in the power network. 

It is important to note that the damage recovery of the natural gas 
network (i.e., the restoration of direct earthquake-induced damage to 
the natural gas network) is completed in 12 days, according to Fig. 9, 
whereas the function recovery of the natural gas network is completed in 
18 days according to Fig. 8. The main reason for this 6-day delay in the 
function recovery of the gas network is the interdependency between the 
power and natural gas networks. In other words, the natural gas network 
cannot reach full production capacity after the 12th day because of 
insufficient power supply by the electricity grid. Fig. 9 also provides 
some information concerning the robustness of the individual CISs in the 
case study. According to this figure, the power network has the lowest 
robustness to the earthquake scenario since 96.6% of its nodes are 
partially or fully damaged on the first day after the occurrence of the 
earthquake. In contrast, the water network is the most robust infra-
structure network in Shelby County after the earthquake. In Fig. 9, the 
slope of the curve indicates the instantaneous (daily) rate of damage 
recovery (i.e., the restoration of direct earthquake-induced damage) for 
the concerned infrastructure network in Shelby County. The ResQ-IOS 
framework enables the evaluation of the functional recovery metrics 
proposed in the NIST SP-1190 report [64] to quantify the function 
restoration time aspect of the recovery process. Table 1 shows the 
required time to restore the different percentages of interdependent 
CISs’ services in the case study. 

To evaluate the resilience of an urban community against natural 
hazards, it is essential to jointly quantify the resilience of the com-
munity’s interdependent CISs. The SoCIS-ALR metric for the system-of- 
CISs in this Shelby Count case study is calculated using Eq. (3). Fig. 10 
depicts the evolution of the joint accumulated loss of resilience (SoCIS- 

ALR metric) for three earthquake scenarios with magnitudes 6.8, 7.7, 
and 8.2 and the same epicenter. The computed SoCIS-ALR values for the 
three earthquakes are 4.40, 12.36, and 18.53, while the recovery period 
for the community, starting from day 1, lasts 20, 54, and 62 days, 
respectively, as shown in Fig. 10. This figure demonstrates the capability 
of the ResQ-IOS to consider all components of interdependent CISs for 
community resilience assessment that reflects one of the contributions of 
this study. 

The seismic resilience of the interdependent CISs in the ResQ-IOS 
framework is quantified by considering constraints on the resources 
for the recovery process, such as limits on the number of Repair and 
Maintenance (R&M) teams for each type of component within the 
infrastructure networks. For this purpose, the ResQ-IOS framework can 
import the number of available R&M teams for 13 types of components 
belonging to three interdependent CISs in the Shelby County case study, 
and then simulate restoring the failed components based on the resto-
ration sequence that is determined according to the limits on the number 
of R&M teams and the strategy adopted for the recovery process of the 
Shelby County infrastructure networks. To illustrate the effect of the 
number of available R&M teams on the recovery process, the seismic 
resilience of the interdependent CISs for two cases is assessed. In addi-
tion to the case with the initial number of R&M teams, a modified case 
evaluates the resilience of Shelby County CISs considering a 50% in-
crease in the number of the power network’s R&M teams and a simul-
taneous 50% decrease in the number of the water network’s R&M teams. 

Fig. 11 displays the evolution of joint accumulated loss of resilience 
(SoCIS-ALR metric) to compare the initial and rebalanced R&M team 
assignment. The results of this figure point out that rebalancing the 
assignment of R&M teams improves the SoCIS-ALR measure by 30.8%. 
Also, the rebalancing of R&M team assignments leads to the recovery of 
the Shelby County CISs in 36 days, 18 days sooner than with the initial 
R&M team assignment. As discussed earlier, the reason for this resilience 
improvement is that the power network is the controlling infrastructure 
in the recovery of the Shelby County CISs after the case study earth-
quake. It means the power-dependent infrastructure systems like the 
water network and, accordingly, the community cannot return to their 
normal conditions before the power network’s recovery process is 
completed. 

To investigate the effect of R&M team configuration on the post- 
earthquake resilience of the Shelby County interdependent CISs, the 
R&M teams for repairing the water pipelines are reconfigured. The 
default configuration of the water pipeline R&M teams is four persons 

Fig. 10. The SoCIS-ALR joint resilience assessment of the Shelby County CISs for three earthquake scenarios (The earthquake occurs on day 0, and the recovery 
process starts on day 1). 
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with a 16-h workday. The water pipeline R&M teams’ configuration is 
changed to three people with an 8-h workday, while keeping the number 
for water pipeline R&M teams the same. Fig. 12 illustrates that different 
R&M team configurations change the required time for repairing the 
damaged water pipelines. In the default case, all damaged pipelines are 
repaired at an almost constant repair rate after 11 days. However, 
repairing the damaged pipelines with smaller R&M teams who work 
shorter shifts takes 19 days, as shown in Fig. 12. Also, this figure in-
dicates another contribution of this paper: the required time for 
restoring the damaged components can take several time steps in the 
resilience assessment period. Although the recovery process of damaged 
water pipelines is affected by changing the R&M teams’ configuration, 
the effect on the Shelby County SoCIS-ALR is negligible. As discussed 
earlier, due to the interdependency between water and power infra-
structure systems, the full recovery of the water network is conditioned 
on the rate of the power network’s recovery process. 

One strategy to enhance the Shelby County interdependent CIS 
resilience is to improve the robustness of the individual CIS by providing 

Fig. 11. The joint resilience assessment of the Shelby County interdependent CISs comparing the initial and the re-balanced R&M team assignment (The earthquake 
occurs on day 0, and the recovery process starts on day 1). 

Fig. 12. The daily number of damaged water pipelines during the recovery of the Shelby County water network after the earthquake with a magnitude of 8.5 for two 
configurations of R&M teams. 

Table 2 
The fully functional recovery duration and SoCIS-ALR metric values for the 
Shelby County interdependent CISs after the earthquake with Mw = 7.7 with 
varying supply margins.  

Scenario SoCIS- 
ALR 

% Changes 
wrt. The 
initial case 

Recovery 
duration 

% Changes 
wrt. The 
initial case 

Initial case 12.36 – 54 – 
+10% in the supply 

capacity of the 
power network 

12.22 1.133% 54 0% 

+10% in the supply 
capacity of the 
natural gas 
network 

12.20 1.295% 54 0% 

+10% in the supply 
capacity of the 
water network 

10.92 11.65% 24 55.5%  
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extra supply capacity margins. Three scenarios are devised to determine 
whether adding extra supply capacity to the infrastructure networks 
significantly impacts the seismic resilience of the Shelby County system- 
of-CISs. Those three scenarios consider a 10% increment in the supply 
capacity of each of the power, natural gas, and water networks, 
respectively, while keeping the supply capacity of the other two net-
works unchanged. The results of the resilience analyses for these sce-
narios are given in Table 2. 

While the 10% increase in the supply capacity of the power grid and 
natural gas network improves the Shelby County SoCIS-ALR metric 
slightly, a 10% percent increment in the water network’s supply ca-
pacity significantly shortens the time to fully recover the function of all 
three Shelby County CISs. It is important to note that after the com-
munity returns to normal conditions on the 24th day of the recovery 
process, restoring the failed components in the power network will 
continue until the 54th day. Also, the water pump station at node 11 is 
still out of service after the 24th day due to the lack of power supply. 
Nevertheless, the water network provides water to meet the nodal de-
mands previously supplied by the water pump station located at node 11 
because of the increased capacity of other water supply facilities that can 
compensate for the inoperability of the pump station at node 11. The 
network distributes the water flow by optimally mapping new routes 
from the supply nodes to the demand nodes, dependent on the pump 
station at node 11. This optimal distribution of water service results 
from the contribution of this study that the ResQ-IOS is capable of 
determining the optimal flow of resources and services throughout 
infrastructure networks. 

Concerning the performance of the power network, since the power 
supply of the pump station at node 11 is no longer a top priority demand, 
the ResQ-IOS optimization module re-dispatches the power supply to 
other nodes with higher priority. On the 24th day, the power network 
can supply the total demand, except for the pump station at node 11. 
This reflects other contributions of this paper that the ResQ-IOS can 
consider the components’ time-dependent demands and temporary 
loads that may be imposed on infrastructure networks during the re-
covery process. Hence, all infrastructure networks in the case study can 
meet the daily demands after the day 24th, which means the Shelby 
County CIS function is fully restored after the case study earthquake 
scenario. On the 54th day, the power network’s recovery is completed, 
and the aforementioned water pump station can start supplying water to 
the connected nodes. Notably, after the 54th day, the water network 
utilizes about 91% of its supply capacity. 

In order to gain an insight into the relation between the seismic 
hazard and the seismic resilience of the Shelby County interdependent 
CISs, case study resilience analyses were done for earthquakes with the 
magnitude varying between Mw = 6 and Mw = 9 and the same epicenter. 
In addition to SoCIS-ALR, the required time for a full recovery of all 
Shelby County CISs is calculated. Fig. 13 demonstrates the relation be-
tween the magnitude of the seismic hazard and the seismic resilience of 
the interdependent CISs in Shelby County. As shown in Fig. 13, the 
SoCIS-ALR metric values increase monotonically from 0.279 for the Mw 
= 6 earthquake to 23.22 for the Mw = 9 earthquake, an increase of 83- 
fold, but not at the same rate. Furthermore, the SoCIS-ALR metric sat-
urates at earthquake Mw = 8.5. The time to fully recover the joint 
function of the Shelby County interdependent CISs varies from six to 62 
days. Notably, the full functional recovery time saturates at Mw = 8.0. 
The cause of such saturation is that the power network that controls the 
community’s recovery duration reaches the maximum level of function 
degradation during the Mw = 8.0 earthquake scenario, with the number 
of damaged nodes (including both total and partial damage) is 57 and 58 
(out of 59 nodes) after the Mw = 8.0 and Mw = 8.2 earthquakes, 
respectively. The SoCIS-ALR metric is still sensitive to the number of 
damaged power CIS nodes, saturating after the Mw = 8.5 earthquake. 

5. Conclusions 

Critical Infrastructure Systems (CISs), providing services and essen-
tial resources to modern societies, are currently highly complex, inter-
connected, and interdependent. On the one hand, growing 
interdependency and complexity between infrastructure networks and, 
on the other hand, frequent exposure to extreme events such as natural 
hazards have increased the probability of cascading failures and, 
consequently, the prolonged lack of serviceability in urban commu-
nities. Hence, the resilience analysis of interdependent CISs to natural 
hazards is quickly coming into the stakeholders’ focus. To this end, this 
paper presents the ResQ-IOS framework, an efficient Iterative 
Optimization-based Simulation (IOS) framework to model interdepen-
dent critical infrastructure systems, simulate their post-disaster perfor-
mance considering interdependencies, and quantify their individual and 
joint resilience using integral and instantaneous resilience metrics. The 
ResQ-IOS framework takes advantage of both simulation-based and 
optimization-based approaches to evaluate the natural hazard resilience 
of the interdependent CISs and thus addresses existing research gaps. 

The ResQ-IOS framework comprises five modules, namely, the risk 

Fig. 13. The time to full (100%) function recovery and the SoCIS-ALR metric values for the Shelby County interdependent CISs as a function of the case study 
earthquake magnitude. 
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assessment, simulation, optimization, database, and controller modules. 
The risk assessment module simulates the hazard and evaluates the 
vulnerability of the infrastructure networks’ components. The data 
concerning the post-disaster status of the infrastructure networks is 
populated in the database module. Then, the simulation module utilizes 
this data to simulate the performance evolution of infrastructure net-
works. The simulated data is conveyed to the database and is later used 
by the optimization module to maximize the post-disruption perfor-
mance of interdependent CISs by determining the optimal flow of ser-
vices and resources in these infrastructure networks. The simulation 
module reconfigures the supply and demand patterns to optimize 
infrastructure systems’ performance in one step of the recovery process. 
It then simulates the evolution of infrastructure networks’ performance 
in the next step of the recovery process. This time-stepping procedure is 
repeated between the simulation, database, and optimization modules. 
Meanwhile, the controller module calculates the loss of resilience for 
interdependent CISs at each time step and ends the time-stepping pro-
cess once the prescribed stopping criteria are satisfied. 

The resilience analysis presented in the case study demonstrates the 
capabilities of the ResQ-IOS framework to consider real-world condi-
tions of the infrastructure systems’ components after a disaster and the 
functioning of these systems in impaired states during the recovery 
process. The ResQ-IOS framework evaluates the post-disaster function-
ality level of the infrastructure networks’ components by using a fuzzy 
logic-based model. This framework considers a varying required time for 
restoring the damaged components as a function of the damage state of 
the component and the configuration of the respective repair and 
maintenance teams. Moreover, the damaged component repair start 
time depends on the number and configuration of the available repair 
and maintenance teams and the restoration sequence of the components 
according to the selected component recovery prioritization strategy 
defined at the CIS level. The ResQ-IOS framework is capable of following 
various strategies for specifying the restoration sequence of damaged 
components. Importantly, in addition to these factors confined to a CIS, 
the operability of a component highly relies on its demands being sup-
plied by its own CIS as well as by the other CIS in the system-of-CISs that 
support a community. The interdependencies among the CIS are 
modeled in this way. The ResQ-IOS framework is able to consider the 
time-dependent evolution of demands for resources and services during 
the resilience assessment period of interdependent CISs. During the re-
covery process, the ResQ-IOS framework can also take into account 
temporary loads (i.e., demands) that may be imposed on infrastructure 
networks due to the ongoing restoration process of the damaged 
components. 

The seismic resilience quantification of the Shelby County case study 
indicates the recovery of an urban community relies on the performance 
evolution of the interdependent CISs providing the essential resources 
and services to the community. The results of the case study seismic 
resilience assessment demonstrate that the recovery duration of the 
community may be controlled by the performance evolution of one 
infrastructure system among the interdependent CISs. For this case 
study, the controlling infrastructure is the power CIS, as the community 
cannot return to pre-disaster status before the recovery of the power 
network is accomplished. The community’s recovery duration varies 
with several factors, such as the number of repair and maintenance 
teams and their configuration, as well as the CIS recovery strategy 
selected for specifying the restoration sequence of the damaged com-
ponents. As for applying resilience enhancement measures in the case 
study, the resilience assessment results point out that increasing the 
supply capacity of individual CIS is most effective for the water network, 
shortening the time to full functional recovery duration by 55% and 
improving the system-of-CIS resilience metric SoCIS-ALR by about 12%. 
This finding is not obvious, since the Shelby County case study power 
CIS controls the recovery process. Another resilience enhancing mea-
sure, focused on rebalancing and reconfiguring the repair and 

maintenance teams, is however quite effective in terms of speeding up 
the recovery of the power CIS, and the overall Shelby County system of 
interdependent CISs. 

The ResQ-IOS has been developed to act as a powerful and versatile 
computational tool for quantifying and analyzing the resilience of 
interdependent CISs. This computational tool can be used to plan 
resilience-oriented sustainable development of urban communities by, 
for example, specifying Renewable Energy (RE)-based strategies. The 
ResQ-IOS framework, with its focus on energy systems, can identify the 
beneficial effects of RE-based strategies. For instance, ResQ-IOS estab-
lished that a water pump station’s inoperability might benefit from 
deploying a local RE-based power system as a backup to remarkably 
shorten the time to full recovery of the case study system-of-CISs. 
Considering backup systems for important nodes in infrastructure net-
works, such as equipping water supply facilities with emergency on-site 
power systems, may enhance the resilience of interdependent CISs for a 
period during the recovery process. An interesting topic for future 
studies is to investigate the durability of such backup systems to supply 
the required demands in case of the prolonged recovery of the 
community. 

Enhancing the resilience of interdependent CISs to natural hazards 
by specifying the optimal recovery strategy and pre- and post-disaster 
resilience-enhancing measures, such as decreasing component vulnera-
bility or increasing the amount of recovery resources, while introducing 
RE-based systems and backup systems into the networks is the topic for 
future research enabled by the ResQ-IOS framework presented in this 
framework. Hence, the authors suggest conducting a comprehensive 
study on the inter-coupling of energy sectors, including the utilization of 
renewable energy systems and energy storage technologies. Integrating 
economic models into the ResQ-IOS framework could further enable 
stakeholders to investigate and adopt the most cost-effective recovery 
strategies, considering simultaneously pre- and post-disaster resilience- 
enhancing measures and renewable energy sources, to improve the 
disaster resilience of their communities. 
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Appendix A 

A.1. Power network operating constraints 

In the network flow-based model of the power system, the supply nodes are the electrical power generation sites and the gate stations for electricity 
import. This paper considers two types of power plants: Gas Turbine Power Plants (GTPPs) and Combined-Cycle Power Plants (CCPPs). A Power Gate 
Station (PGS) used for electricity import is considered a supply node in this paper. The transmission nodes are the electric substations. The demand 
nodes are the locations where the power is delivered to the end users, such as building stock units, water pump stations, etc. The links represent power 
transmission lines installed between various parts of the power network. 

The constraints of the power network are represented by Eqs. (A.1)-(A.6). Eq. (A.1) guarantees the flow conservation at each power network node. 
Eq. (A.2) states that the power flow injected to each node at each time step comprises the electricity imported by the PGSs and the electrical power 
output of GTPP and CCPP units. Eq. (A.3) describes that the power flow out of each node at each time step is equal to the accumulated electrical power 
consumed by the GTPP, CCPP, and ESS units in the power network, NGPP, LNG terminals, and NGCS units from the natural gas network, WSF, and 
WPS units in the water network and building stock units including different types of buildings. Eq. (A.4) ensures that the power flow through each 
power transmission line at each time step cannot exceed the power line’s capacity if the power line is operational. The logical relationships between 
the operating state of the power line and the operating state of its start and terminal nodes are represented by Eqs. (A.5)-(A.6). 
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A.2. Natural gas network operating constraints 

Regarding the natural gas system’s network flow-based model, the supply nodes represent the facilities where natural gas is prepared for sending 
out into the transmission grid, such as LNG terminals, Natural Gas Processing Plants (NGPP), and Natural Gas Gate Stations (NGGS) employed for 
natural gas imports. Transmission nodes are representative of the natural gas compressor stations. The demand nodes provide natural gas to con-
sumers, such as power plants, building stock units, etc. The links are the natural gas pipelines connecting the gas network nodes. 

Eqs. (A.7)-(A.12) represent the constraints of the natural gas network. The conservation of flow at each node of the natural gas network is rep-
resented by Eq. (A.7). Eq. (A.8) states that the inflow of natural gas at each node at each time step includes the natural gas imported by NGGS and the 
natural gas processed by the NGPP unit and LNG terminal. Eq. (A.9) describes that the natural gas outflow at each node at each time step is the 
accumulated natural gas consumed by the GTPP and CCPP units in the power network, NGPP unit, LNG terminal, and NGCS units in the natural gas 
network, and building stock units. Eq. (A.10) ensures that the natural gas flow through each pipeline at each time step does not exceed the pipeline’s 
capacity, provided that the pipeline is operational. Eqs. (A.11)-(A.12) describes the logical relationships between the operating state of the pipeline 
and the nodes connected to the pipeline. 
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A.3. Water network operating constraints 

The supply and transmission nodes represent the water supply facilities, water storage tanks, and pump stations in the water system’s network 
flow-based model. Demand nodes are where water is provided to the consumers, like building stock units. Links are representative of the water 
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pipelines located between different parts of the water network. 
Eqs. (A.13)-(A.22) constitute the constraints of the water network. Eq. (A.13) displays the water flow balance equation at each water network node 

at each time step. Eq. (A.14) declares that the inflow of water at each node at each time step equals the amount of water supplied by the WSF and WST 
units. Eq. (A.15) states that the water flow out of each node at each time step consists of the water consumed by the CCPP and building stock units. Eq. 
(A.16) demonstrates that if the pipeline is operational, the water flow at each time step does not exceed the pipeline’s capacity. A water pipeline’s 
operating state relies on the nodes’ operating state at the end of that pipeline, as shown in Eqs. (A.17)-(A.18). 
∑

(l∈LW | T(l)=j)

wl
t −

∑

(l∈LW |S(l)=j)

wl
t + Wj

G,t − Wj
C,t = 0 ∀j ∈ NW, ∀t ∈ T (A.13)  

Wj
G,t = WWSF,j

G,t + WWST,j
G,t ∀j ∈ NW, ∀t ∈ T (A.14)  

Wj
C,t = WCCPP,j

C,t +
∑

(H∈BSU|loc(H)=j )

WH
C,t ∀j ∈ NW,∀t ∈ T (A.15)  

0 ≤ wl
t ≤ zl

W,t.w
l
cap ∀l ∈ LW,∀t ∈ T (A.16)  

zl
W,t ≤ xS(l)

W,t ∀l ∈ LW,∀t ∈ T (A.17)  

zl
W,t ≤ xT(l)

W,t ∀l ∈ LW, ∀t ∈ T (A.18)  

A.4. Modeling the interdependencies between the infrastructure systems 

In this research, interdependency between two infrastructure systems refers to two aspects of the relationship between the infrastructure systems. 
The first aspect is the reliance of an infrastructure system’s performance on the service delivery of another infrastructure system. Taking a water pump 
station as an example, the functionality of the pump station is dependent on the electric power supplied by the power network. This aspect is modeled 
by interdependency links coupling two nodes from two infrastructure networks interacting with one another. This interdependency link transfers the 
service from a node in the supplier infrastructure network to another node in the consumer infrastructure network. In the case of a pump station, the 
electric power needed for the pump station’s functionality is transferred by the interdependency link from the supplier node in the power network to 
the consumer node in the water network. The supplier node, which delivers service to consumer nodes in other infrastructure networks, often acts as a 
demand node in its network [62,70]. The operating state of the interdependency link is considered a binary (0–1) variable [71,77]. If the supplier node 
meets the required demand of the consumer node in another network, then the interdependency link will be operational. Otherwise, the service 
transfer between supplier and consumer nodes through the interdependency link will cease. The inoperability of the interdependency link may lead to 
the loss of operation in the consumer node’s network. 

The second aspect of interdependency considered in this paper is that the recovery process of an infrastructure system may adversely affect the 
restoration of the facilities in another infrastructure network. For instance, the structural damages to the pump station may be fully restored after an 
earthquake, but the station is still not functional due to the lack of power supply. Hence, the power network’s recovery process can delay the 
restoration of the pump station. The constraints described in the following section represent both aspects of the considered interdependency. 

A.5. Interdependency constraints 

This section presents the interdependency constraints of facilities belonging to three types of infrastructure networks: power, natural gas, and 
water. As for the power network, the interdependency constraints of GTPP, CCPP, PGS, ESS, and BSU are provided. Interdependency constraints are 
developed for LNGT, NGPP, NGGS, NGCS, and BSU in the natural gas network. Regarding the water network, WSF, WPS, WST, and BSU are considered 
for interdependency constraints. Eqs. (A.19)-(A.21) represent the time delay in starting the recovery process at each node, including the response time 
needed for the decision-making on the recovery of damaged nodes. For instance, if a node in the power network faces a 5-day delay in providing the 
prerequisites of the recovery process because of the road closure, this delay may postpone the beginning of the restoration of facilities located at the 
respective node. 

Eqs. (A.22)-(A.28) state that the performance of a GTPP depends on the availability of the coupled gas node with the electric node where the 
facility is located, as well as the operation state of the interdependency link between those nodes. Eqs. (A.29)-(A.39) declare that the operation of a 
CCPP is dependent on the availability of the coupled gas and water nodes with the electric node where the CCPP is located and the functionality of two 
interdependency links originating from the connected gas and water nodes. Eqs. (A.40) and (A.41) represent the constraints concerning the restoration 
of a PGS. Eqs. (A.42)-(A.44) represent the interdependency constraints regarding the restoration of an ESS. Eq. (A.45) describes that electric power 
consumed by BSUs located in the service area of an electric node will not exceed their time-dependent demand if the respective electric node is 
operational. 

xm
E,t ≤ τm

E,t ∀m ∈ NE,∀t ∈ T (A.19)  

xn
G,t ≤ τn

G,t ∀n ∈ NG, ∀t ∈ T (A.20)  

xj
W,t ≤ τj

W,t ∀j ∈ NW,∀t ∈ T (A.21)  

0 ≤ EGTPP,m
G,t ≤ φGTPP,m

E,t .SGTPP,m
E,t ∀m ∈ NE, ∀t ∈ T (A.22)  

0 ≤ EGTPP,m
C,t ≤ φGTPP,m

E,t .DGTPP,m
E,t ∀m ∈ NE,∀t ∈ T (A.23) 
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0 ≤ GGTPP,n
C,t ≤ δGTPP,n

t .DGTPP,n
G,t ∀n ∈ NG,∀t ∈ T (A.24)  

φGTPP,m
E,t ≤ xm

E,t ∀m ∈ NE,∀t ∈ T (A.25)  

δGTPP,n
t ≤ xn

G,t ∀n ∈ NG, ∀t ∈ T (A.26)  

GGTPP,n
C,t − θGTPP,n

t .DGTPP,n
G,t ≥ 0 ∀n ∈ NG,∀t ∈ T (A.27)  

φGTPP,m
E,t ≤ θGTPP,n

t ∀(n,m) ∈ IGtE, ∀t ∈ T (A.28)  

0 ≤ ECCPP,m
G,t ≤ φCCPP,m

E,t .SCCPP,m
E,t ∀m ∈ NE,∀t ∈ T (A.29)  

0 ≤ ECCPP,m
C,t ≤ φCCPP,m

E,t .DCCPP,m
E,t ∀m ∈ NE,∀t ∈ T (A.30)  

0 ≤ GCCPP,n
C,t ≤ δCCPP,n

t .DCCPP,n
G,t ∀n ∈ NG, ∀t ∈ T (A.31)  

φCCPP,m
E,t ≤ xm

E,t ∀m ∈ NE,∀t ∈ T (A.32)  

δCCPP,n
t ≤ xn

G,t ∀n ∈ NG, ∀t ∈ T (A.33)  

GCCPP,n
C,t − θCCPP,n

t .DCCPP,n
G,t ≥ 0 ∀n ∈ NG, ∀t ∈ T (A.34)  

φCCPP,m
E,t ≤ θCCPP,n

t ∀(n,m) ∈ IGtE,∀t ∈ T (A.35)  

0 ≤ WCCPP,j
C,t ≤ γCCPP,j

t .DCCPP,j
W,t ∀j ∈ NW, ∀t ∈ T (A.36)  

γCCPP,j
t ≤ xj

W,t ∀j ∈ NW,∀t ∈ T (A.37)  

WCCPP,j
C,t − σCCPP,j

t .DCCPP,j
W,t ≥ 0 ∀j ∈ NW,∀t ∈ T (A.38)  

φCCPP,m
E,t ≤ σCCPP,j

t ∀(j,m) ∈ IWtE,∀t ∈ T (A.39)  

0 ≤ EPGS,m
G,t ≤ φPGS,m

E,t .SPGS,m
E,t ∀m ∈ NE,∀t ∈ T (A.40)  

φPGS,m
E,t ≤ xm

E,t ∀m ∈ NE,∀t ∈ T (A.41)  

0 ≤ EESS,m
C,t ≤ φESS,m

E,t .DESS,m
E,t ∀m ∈ NE,∀t ∈ T (A.42)  

φESS,m
E,t ≤ xm

E,t ∀m ∈ NE, ∀t ∈ T (A.43)  

EESS,m
C,t − xm

E,t .D
ESS,m
E,t ≥ 0 ∀m ∈ NE, ∀t ∈ T (A.44)  

0 ≤
∑

(H∈BSU|loc(H)=m )

EH
C,t ≤ xm

E,t.
∑

(H∈BSU|loc(H)=m )

DH
E,t ∀m ∈ NE,∀t ∈ T (A.45) 

Eqs. (A.46)-(A.52) describe that the operating state of a LNGT relies on the availability of the coupled electric node with the gas node where the 
LNGT is located and the functionality of the interdependency link between those gas and electric nodes. Eqs. (A.53)-(A.59) mean that a NGPP’s 
performance is dependent on the availability of the coupled electric node with the gas node where the NGPP is located and the operation state of the 
interdependency link between those nodes. Eqs. (A.60) and (A.61) represent the constraints regarding the restoration of a NGGS. The interdependency 
constraints related to the NGCS are constituted by Eqs. (A.62)-(A.68). Eq. (A.69) ensures that the amount of natural gas consumed by BSUs located in 
the service area of a gas node cannot exceed their demand if the respective gas node is operational. 

0 ≤ GLNGT ,n
G,t ≤ φLNGT,n

G,t .SLNGT ,n
G,t ∀n ∈ NG, ∀t ∈ T (A.46)  

0 ≤ GLNGT ,n
C,t ≤ φLNGT,n

G,t .DLNGT,n
G,t ∀n ∈ NG,∀t ∈ T (A.47)  

0 ≤ ELNGT,m
C,t ≤ πLNGT,m

t .DLNGT ,m
E,t ∀m ∈ NE, ∀t ∈ T (A.48)  

φLNGT,n
G,t ≤ xn

G,t ∀n ∈ NG, ∀t ∈ T (A.49)  

πLNGT,m
t ≤ xm

E,t ∀m ∈ NE,∀t ∈ T (A.50)  

ELNGT ,m
C,t − αLNGT ,m

t .DLNGT,m
E,t ≥ 0 ∀m ∈ NE, ∀t ∈ T (A.51)  

φLNGT,n
G,t ≤ αLNGT ,m

t ∀(m, n) ∈ IEtG, ∀t ∈ T (A.52)  

0 ≤ GNGPP,n
G,t ≤ φNGPP,n

G,t .SNGPP,n
G,t ∀n ∈ NG,∀t ∈ T (A.53) 
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0 ≤ GNGPP,n
C,t ≤ φNGPP,n

G,t .DNGPP,n
G,t ∀n ∈ NG, ∀t ∈ T (A.54)  

0 ≤ ENGPP,m
C,t ≤ πNGPP,m

t .DNGPP,m
E,t ∀m ∈ NE,∀t ∈ T (A.55)  

φNGPP,n
G,t ≤ xn

G,t ∀n ∈ NG, ∀t ∈ T (A.56)  

πNGPP,m
t ≤ xm

E,t ∀m ∈ NE,∀t ∈ T (A.57)  

ENGPP,m
C,t − αNGPP,m

t .DNGPP,m
E,t ≥ 0 ∀m ∈ NE,∀t ∈ T (A.58)  

φNGPP,n
G,t ≤ αNGPP,m

t ∀(m, n) ∈ IEtG,∀t ∈ T (A.59)  

0 ≤ GNGGS,n
G,t ≤ φNGGS,n

G,t .SNGGS,n
G,t ∀n ∈ NG,∀t ∈ T (A.60)  

φNGGS,n
G,t ≤ xn

G,t ∀n ∈ NG,∀t ∈ T (A.61)  

0 ≤ GNGCS,n
C,t ≤ φNGCS,n

G,t .DNGCS,n
G,t ∀n ∈ NG, ∀t ∈ T (A.62)  

φNGCS,n
G,t ≤ xn

G,t ∀n ∈ NG,∀t ∈ T (A.63)  

GNGCS,n
C,t − xn

G,t.D
NGCS,n
G,t ≥ 0 ∀n ∈ NG, ∀t ∈ T (A.64)  

0 ≤ ENGCS,m
C,t ≤ πNGCS,m

t .DNGCS,m
E,t ∀m ∈ NE,∀t ∈ T (A.65)  

πNGCS,m
t ≤ xm

E,t ∀m ∈ NE, ∀t ∈ T (A.66)  

ENGCS,m
C,t − αNGCS,m

t .DNGCS,m
E,t ≥ 0 ∀m ∈ NE,∀t ∈ T (A.67)  

φNGCS,n
G,t ≤ αNGCS,m

t ∀(m, n) ∈ IEtG, ∀t ∈ T (A.68)  

0 ≤
∑

(H∈BSU|loc(H)=n )

GH
C,t ≤ xn

G,t.
∑

(H∈BSU|loc(H)=n )

DH
G,t ∀n ∈ NG, ∀t ∈ T (A.69) 

Eqs. (A.70)-(A.75) represent that the restoration of a WSF depends on the availability of the coupled electric node with the water node where the 
facility is located and the operating state of the interdependency link between those water and electric nodes. Eqs. (A.76)-(A.80) display that the 
recovery of a WPS relies on the availability of the coupled electric node with the water node where the WPS is located and the operation state of the 
interdependency link between those nodes. Eqs. (A.81) and (A.82) represent the constraints concerning the restoration of a WST. Eq. (A.83) reveals 
that if a water node is operational, the amount of water consumed by BSUs in that water node’s service area cannot exceed their demand. 

0 ≤ WWSF,j
G,t ≤ φWSF,j

W,t .SWSF,j
W,t ∀j ∈ NW,∀t ∈ T (A.70)  

0 ≤ EWSF,m
C,t ≤ πWSF,m

t .DWSF,m
E,t ∀m ∈ NE,∀t ∈ T (A.71)  

φWSF,j
W,t ≤ xj

W,t ∀j ∈ NW,∀t ∈ T (A.72)  

πWSF,m
t ≤ xm

E,t ∀m ∈ NE,∀t ∈ T (A.73)  

EWSF,m
C,t − βWSF,m

t .DWSF,m
E,t ≥ 0 ∀m ∈ NE, ∀t ∈ T (A.74)  

φWSF,j
W,t ≤ βWSF,m

t ∀(m, j) ∈ IEtW,∀t ∈ T (A.75)  

φWPS,j
W,t ≤ xj

W,t ∀j ∈ NW,∀t ∈ T (A.76)  

0 ≤ EWPS,m
C,t ≤ πWPS,m

t .DWPS,m
E,t ∀m ∈ NE,∀t ∈ T (A.77)  

πWPS,m
t ≤ xm

E,t ∀m ∈ NE, ∀t ∈ T (A.78)  

EWPS,m
C,t − βWPS,m

t .DWPS,m
E,t ≥ 0 ∀m ∈ NE, ∀t ∈ T (A.79)  

φWPS,j
W,t ≤ βWPS,m

t ∀(m, j) ∈ IEtW,∀t ∈ T (A.80)  

0 ≤ WWST,j
G,t ≤ φWST,j

W,t .SWST,j
W,t ∀j ∈ NW,∀t ∈ T (A.81)  

φWST,j
W,t ≤ xj

W,t ∀j ∈ NW,∀t ∈ T (A.82)  

0 ≤
∑

(H∈BSU|loc(H)=j )

WH
C,t ≤ xj

W,t.
∑

(H∈BSU|loc(H)=j )

DH
W,t ∀j ∈ NW,∀t ∈ T (A.83) 
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Eqs. (A.84)-(A.86) state that the links in different infrastructure networks (i.e., power lines, pipelines) can convey flow if they are not damaged. In 
other words, full recovery is a necessary condition for links to be operational in the network. 

zp
E,t ≤ μp

E,t ∀p ∈ LE,∀t ∈ T (A.84)  

zq
G,t ≤ μq

G,t ∀q ∈ LG, ∀t ∈ T (A.85)  

zl
W,t ≤ μl

W,t ∀l ∈ LW,∀t ∈ T (A.86)  
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H. Hafeznia and B. Stojadinović                                                                                                                                                                                                            

https://doi.org/10.1177/0037549716687044
https://doi.org/10.1016/J.RCIM.2009.04.012
https://doi.org/10.1016/J.RCIM.2009.04.012
https://doi.org/10.1016/J.ARCONTROL.2014.03.005
https://doi.org/10.1016/J.ARCONTROL.2014.03.005
https://doi.org/10.1016/J.SIMPAT.2014.03.007
https://doi.org/10.1016/J.SIMPAT.2014.03.007
https://doi.org/10.1016/J.OMEGA.2012.11.003
https://doi.org/10.1016/J.SIMPAT.2014.10.008
https://doi.org/10.1016/J.EJOR.2022.06.028
https://doi.org/10.1016/J.EJOR.2022.06.028
https://doi.org/10.1016/J.CIE.2022.108760
https://doi.org/10.1016/J.ORHC.2022.100366
https://doi.org/10.1016/J.EJOR.2008.10.025
https://doi.org/10.1016/J.EJOR.2008.10.025
http://refhub.elsevier.com/S0306-2619(23)00922-4/rf0265
http://refhub.elsevier.com/S0306-2619(23)00922-4/rf0265
http://refhub.elsevier.com/S0306-2619(23)00922-4/rf0270
http://refhub.elsevier.com/S0306-2619(23)00922-4/rf0270
http://refhub.elsevier.com/S0306-2619(23)00922-4/rf0270
https://doi.org/10.1061/(asce)is.1943-555x.0000380
https://doi.org/10.1016/j.strusafe.2014.01.001
https://doi.org/10.1016/j.strusafe.2014.01.001
https://doi.org/10.1002/qre.2634
https://doi.org/10.1063/1.4737204
https://doi.org/10.1193/1.1623497
https://doi.org/10.1080/15732479.2022.2052912
https://doi.org/10.1080/23789689.2017.1364560
https://doi.org/10.1080/23789689.2017.1364560
https://doi.org/10.1016/j.ejor.2019.01.052
https://doi.org/10.1016/j.ress.2018.11.029
https://doi.org/10.6028/NIST.SP.1190v1
https://doi.org/10.6028/NIST.SP.1190v1
https://doi.org/10.1111/risa.13222
https://doi.org/10.1109/TSMCC.2007.905859
https://doi.org/10.1109/TSMCC.2007.905859
https://doi.org/10.1061/ASCE1076-0342200511:267
https://doi.org/10.1061/ASCE1076-0342200511:267
https://doi.org/10.1063/1.1505810
https://doi.org/10.1140/epjb/e2005-00237-9
https://doi.org/10.1140/epjb/e2005-00237-9
https://doi.org/10.1016/j.ejor.2017.04.022
https://doi.org/10.1016/j.ejor.2012.07.010
https://doi.org/10.1016/j.ejor.2012.07.010
https://doi.org/10.1111/mice.12252
http://refhub.elsevier.com/S0306-2619(23)00922-4/rf0365
https://doi.org/10.1111/mice.12171
https://doi.org/10.1061/(asce)st.1943-541x.0001984
https://doi.org/10.1061/(asce)st.1943-541x.0001984
https://doi.org/10.1111/j.1467-8667.2008.00583.x
https://doi.org/10.1111/mice.12171

