
IMPROVING
INTERNET

PATH PROPERTY
INFERENCE

DISS. ETH NO. 29163

TOBIAS MICHAEL BÜHLER

diss . eth no. 29163

I M P R O V I N G I N T E R N E T
PAT H P R O P E RT Y I N F E R E N C E

A thesis submitted to attain the degree of

D O C T O R O F S C I E N C E S
(Dr. sc. ETH Zurich)

presented by

T O B I A S M I C H A E L B Ü H L E R
MSc ETH EEIT

ETH Zurich

born on May 15th, 1990

accepted on the recommendation of

Prof. Dr. Laurent Vanbever (Advisor)
Prof. Dr. Marco Chiesa

Prof. Dr. Anja Feldmann

2023

Tobias Michael Bühler: Improving Internet Path Property Inference, © 2023

Diss. ETH No. 29163

TIK-Schriftenreihe-Nr. 204

A B S T R A C T

The Internet has become an inseparable part of our daily life and work
activities. Due to its distributed nature, performant packet forwarding
along a given Internet path only works if each individual network operates
properly. This leads to an inherent challenge for network operators. They
must provide high performance and select appropriate paths towards
external destinations while limited to internal signals and traffic observations.

This dissertation focuses on one key solution, namely the inference of path
properties, which supports network operators in monitoring, debugging,
and threat detection tasks. To this end, we present two systems that focus
on internal and external path properties, respectively.

First, we present Magnifier, a system that enhances existing sampled mon-
itoring data with packet mirroring to produce validated network ingress
and egress observations. One of Magnifier’s key insights is to mirror traffic
where we do not expect to observe matching packets. This way, we profit
from the advantages of mirroring (precise and fast feedback) without the
typical drawbacks (significantly increased traffic amounts).

Second, we present Oscilloscope, a system that detects malicious hijacks
of network traffic by analyzing changes in locally collected Round-Trip
Time signals. Intuitively, a path change leads to an observable difference
in a packet’s travel time. Oscilloscope combines hijack-typical patterns with
statistical tests to increase its confidence that detected Round-Trip Time
changes belong to hijack events.

Both systems use inferred path properties reactively. However, to prevent
problems proactively, operators need to adapt their forwarding decisions
based on inferred path properties.

Third, we explore how adding simple path properties to the existing
path selection process improves routing decisions. For example, we prevent
unnecessary packet losses by testing the reachability of a new path before
blindly trusting it to carry all matching traffic. We advocate slowing down
the traffic shift towards the new path to achieve that. Although that allows
for more control, it poses new convergence and communication challenges.

iii

Z U S A M M E N FA S S U N G

Das Internet ist ein untrennbarer Bestandteil unseres täglichen Lebens
und unserer Arbeit geworden. Da es aus vielen individuellen Netzwerken
besteht, kann die effiziente Weiterleitung von Datenpaketen über einen
bestimmten Internetpfad nur gelingen, wenn jedes einzelne Netzwerk ord-
nungsgemäss funktioniert. Dies führt zu einer grundlegenden Herausfor-
derung für Netzwerkbetreiber. Sie müssen gute Leistungen bieten und
geeignete Pfade zu externen Zielen auswählen, während sie nur interne
Signale und Paketbeobachtungen zur Verfügung haben.

Diese Dissertation konzentriert sich auf einen zentralen Lösungsansatz,
nämlich die Ableitung von Pfadeigenschaften, die Netzbetreiber bei der
Überwachung, Fehlersuche und Erkennung von Bedrohungen unterstützt.
Zu diesem Zweck stellen wir zwei Systeme vor, die sich auf interne bzw.
externe Pfadeigenschaften konzentrieren.

Zunächst stellen wir Magnifier vor, ein System, das vorhandene Überwa-
chungsdaten mit Paketspiegelung erweitert, um validierte Beobachtungen
des Netzwerkeingangs und -ausgangs zu erhalten. Eine der wichtigsten Er-
kenntnisse von Magnifier ist die Spiegelung von Datenverkehr an Orten, bei
welchen wir keine passenden Pakete erwarten. Auf diese Weise profitieren
wir von den Vorteilen der Paketspiegelung (präzises und schnelles Feed-
back) ohne deren typischen Nachteile (deutlich erhöhte Verkehrsmengen).

Zweitens stellen wir Oscilloscope vor, ein System, das böswillige Umlei-
tungen des Netzwerkverkehrs (sogenannte “Hijacks”) durch die Analyse
von Änderungen in lokal gemessenen Paketumlaufzeiten erkennt. Intuitiv
führt eine Pfadänderung zu einem beobachtbaren Unterschied in der Paket-
umlaufzeit. Oscilloscope kombiniert Hijack-typische Muster mit statistischen
Tests, um die Wahrscheinlichkeit zu erhöhen, dass erkannte Änderungen in
der Paketumlaufzeit zu Hijack Ereignissen gehören.

Beide Systeme verwenden abgeleitete Pfadeigenschaften reaktiv. Um je-
doch Probleme proaktiv zu verhindern, müssen die Netzwerkbetreiber ihre
Entscheidungen zur Paketweiterleitung auf der Grundlage der abgeleiteten
Pfadeigenschaften anpassen.

v

Drittens untersuchen wir, wie das Hinzufügen einfacher Pfadeigenschaf-
ten zum bestehenden Pfadauswahlprozess die Paketweiterleitung verbes-
sern kann. Zum Beispiel verhindern wir unnötige Paketverluste, indem wir
die Erreichbarkeit eines neuen Pfades testen, bevor wir ihm blind vertrauen,
dass er alle entsprechenden Pakete befördern kann. Um dies zu erreichen,
schlagen wir vor, die Verlagerung von Paketen auf einen neuen Pfad zu
verlangsamen. Dadurch erhalten wir mehr Kontrolle, sind aber auch mit
neuen Konvergenz- und Kommunikationsproblemen konfrontiert.

vi

P U B L I C AT I O N S

This dissertation is based on several papers published in conference pro-
ceedings presented hereafter.

Sentinels: Guarding ISP Networks from Forwarding Anomalies

Tobias Bühler, Ingmar Poese, Laurent Vanbever.

ACM CoNEXT Student Workshop, Irvine, CA, USA, 2016.

Enhancing encrypted transport protocols
with passive measurement capabilities

Tobias Bühler, Mirja Kühlewind, Brian Trammell.

ACM IMC Poster, London, UK, 2017.

Generating representative, live network traffic
out of millions of code repositories

Tobias Bühler, Roland Schmid, Sandro Lutz, Laurent Vanbever.

ACM HotNets, Austin, TX, USA, 2022.

Oscilloscope: Detecting BGP Hijacks in the Data Plane

Tobias Bühler, Alexandros Milolidakis, Romain Jacob,
Marco Chiesa, Stefano Vissicchio, Laurent Vanbever.

arXiv, arxiv:2301.12843, 2023.

Enhancing Global Network Monitoring with Magnifier

Tobias Bühler, Romain Jacob, Ingmar Poese, Laurent Vanbever.

USENIX NSDI, Boston, MA, USA, 2023.

vii

The following publications were part of my PhD research and are referenced
in this dissertation, but they were led by other researchers.

A Path Layer for the Internet:
Enabling Network Operations on Encrypted Protocols
Mirja Kühlewind, Tobias Bühler, Brian Trammell,
Stephan Neuhaus, Roman Müntener, Gorry Fairhurst.
IEEE CNSM, Tokyo, Japan, 2017.

Stroboscope: Declarative Network Monitoring on a Budget
Olivier Tilmans, Tobias Bühler, Ingmar Poese,
Stefano Vissicchio, Laurent Vanbever.
USENIX NSDI, Renton, WA, USA, 2018.

Three Bits Suffice: Explicit Support for Passive Measurement
of Internet Latency in QUIC and TCP
Piet De Vaere, Tobias Bühler, Mirja Kühlewind, Brian Trammell.
ACM IMC, Boston, MA, USA, 2018.

Challenges in Network Management of Encrypted Traffic
Mirja Kühlewind, Brian Trammell, Tobias Bühler,
Gorry Fairhurst, Vijay Gurbani.
arXiv, arXiv:1810.09272, 2018.

An Open Platform to Teach How the Internet Practically Works
Thomas Holterbach, Tobias Bühler, Tino Rellstab, Laurent Vanbever.
ACM SIGCOMM CCR, New York, NY, USA, 2020.

Smart BGP hijacks that Evade Public Route Collectors
Alexandros Milolidakis, Tobias Bühler, Marco Chiesa,
Laurent Vanbever, Stefano Vissicchio.
ACM IMC Poster, Virtual Event, 2021.

On the Effectiveness of BGP Hijackers
That Evade Public Route Collectors
Alexandros Milolidakis, Tobias Bühler, Kunyu Wang,
Marco Chiesa, Laurent Vanbever, Stefano Vissicchio.
IEEE Access, Volume 11, 2023.

viii

The following publications were part of my PhD research, but they are not
covered in this dissertation.

Mille-Feuille: Putting ISP Traffic under the Scalpel

Olivier Tilmans, Tobias Bühler, Stefano Vissicchio, Laurent Vanbever.

ACM HotNets, Atlanta, GA, USA, 2016.

pForest: In-Network Inference with Random Forests

Coralie Busse-Grawitz, Roland Meier, Alexander Dietmüller,
Tobias Bühler, Laurent Vanbever.

arXiv preprint, arXiv:1909.05680, 2019.

ix

A C K N O W L E D G M E N T S

This dissertation was only possible due to the help of many people who
made my doctorate journey very interesting and enjoyable. In the following
paragraphs, I mention some that deserve a special thank you.

First and foremost, I would like to thank Prof. Laurent Vanbever for his
relentless support and guidance. Starting with my Master’s thesis up to
discussions about plans after my doctorate, I always received great feedback.
Laurent did not only teach me a lot about how to perform good research,
but I could also significantly improve my writing and presentation skills.
Last but not least, I learned good teaching practices. I especially appreciate
the enormous trust and freedom I received as a teaching assistant.

I am also incredibly thankful to my second advisor, Dr. Romain Jacob.
His inputs and ideas during our weekly meetings were always on point
and helped me immensely.

I thank Prof. Anja Feldmann and Prof. Marco Chiesa for being part of
my dissertation committee and reading a draft of this dissertation.

I especially thank Dr. Mirja Kühlewind, Brian Trammell, and all the other
EU Horizon 2020 MAMI project members. They gave me a great perspective
during the start of my doctorate and allowed me to visit many exciting
places and universities in Europe.

I would also like to thank all the other members of the Networked
Systems Group for all their support, great time, and fun moments we
had together: Maria Apostolaki, Ahmed El-Hassany, Thomas Holterbach,
Rüdiger Birkner, Roland Meier, Rui Yang, Albert Gran Alcoz, Alexander
Dietmüller, Coralie Busse-Grawitz, Edgar Costa Molero, Ege Cem Kirci,
Roland Schmid, Theo von Arx, Tibor Schneider, Yu Chen, Georgia Fragkouli
and Muoi Tran. A special thank goes to Ahmed, Rüdiger, Edgar, and Roland
Schmid, with whom I had the pleasure of handling our server infrastructure.
Although stressful at times, we also learned a lot of new skills. Then, Roland
Meier, who was an extremely pleasant and helpful office mate during many
years of my doctorate. Finally, Rüdiger for his enormous help with teaching
activities and invaluable discussions during my doctorate.

xi

xii

Furthermore, I thank all my co-authors and collaborators. Especially
Olivier Tilmans, with whom I had the pleasure to work at the beginning of
my doctorate. I learned a lot from his coding skills. Then Prof. Marco Chiesa
and Alexandros Milolidakis for all the interesting discussions and calls
we had together. Thomas Holterbach and Roland Schmid even managed
to make the stressful paper deadlines a pleasant time. Finally, Dr. Stefano
Vissicchio for his helpful ideas and discussions.

I am also grateful to those who supported my doctorate through other
means. Namely, Dr. Bernhard Ager and Dr. Ingmar Poese gave me access
to monitoring data from real networks, bridging the gap between research
and production networks. Derk-Jan Valenkamp and Paul Stark provided
me with various hardware routers and switches. Finally, Beat Futterknecht
found solutions to every administrative and organizational problem.

During my doctorate, I had the great opportunity to supervise various
students with their Bachelor’s, semester, and Master’s thesis. A special
thank goes to Piet De Vaere, Alexander Dietmüller, Coralie Busse-Grawitz,
Hendrik Züllig, Tino Rellstab, and Sandro Lutz. Additionally, I truly enjoyed
my years as (head) teaching assistant in the Communication Networks
lecture. Only due to the relentless questions from motivated students was I
truly able to understand complicated network topics.

Finally, I would like to thank my family and friends who supported me
throughout my academic journey. I was always sure to find someone to talk
to, especially during stressful times. A special thank goes to my parents.

Tobias Bühler
July 2023

C O N T E N T S

1 Introduction 1

2 Background 5

2.1 Internet Protocol and prefixes 5

2.2 Internet structure . 8

2.3 Border Gateway Protocol and inter-domain routing 10

2.4 Transmission Control Protocol and Round-Trip Time 16

3 Magnifier 19

3.1 Overview . 22

3.2 Ingress & egress identification 25

3.3 Mirroring-based validation . 28

3.4 Magnifier’s controller . 30

3.5 Evaluation . 32

3.6 Related work . 52

3.7 Conclusion and further use cases 55

4 Oscilloscope 57

4.1 BGP hijacks and RTT changes 58

4.2 RTT extraction in encrypted protocols 66

4.3 Oscilloscope system . 68

4.4 Signal aggregation and change detection 73

4.5 Statistical tests . 77

4.6 Performance . 81

4.7 Related work . 91

4.8 Discussion and conclusion . 92

5 Path-property-driven routing decisions 97

5.1 Introduction . 98

5.2 Design . 100

xiii

xiv contents

5.3 Path-property-aware BGP decision algorithm 108

5.4 Advanced challenges . 112

5.5 Comparison with default BGP’s behavior 117

5.6 Related work . 121

5.7 Conclusion and future work . 124

6 Conclusion and outlook 127

6.1 Open problems and future solutions 127

Bibliography 133

Own publications . 133

References . 134

1
I N T R O D U C T I O N

Today, the Internet is essential to nearly every aspect of our life. The econ-
omy depends on it; we use the Internet for our work and even during our
free time: for entertainment, as news sources, and to socialize. The increased
usage inherently leads to higher demands on availability, performance, se-
curity, and privacy. Luckily, the Internet keeps delivering as the transition
to remote work during the Covid-19 pandemic impressively showed.

The Internet consists of numerous interconnected individual networks,
so-called Autonomous Systems (ASes), which forward packets between
each other. Every network on the forwarding path must work properly
for a packet to reach its destination. As the name suggests, an AS builds
an isolated entity. Network operators configure the AS according to the
network dimension, provided services, and custom policies. Most of the
fine-grained configuration details are kept secret and thus unknown to
operators of other ASes. The lack of insights paired with the necessity of
working Internet-wide forwarding paths leads to an inherent challenge for
operators: they must provide good user performance and make forwarding
decisions towards external destinations while being limited to local, internal
traffic observations and signals from their own network.

To overcome this challenge, operators must infer – rather than precisely
extract – Internet-wide path properties and take appropriate actions. As a
first step, operators infer properties of their internal network paths, which
is essential to (i) answer questions from customers who quickly blame [15]
operators for Internet problems, even if the corresponding network is not at
fault [16]; and (ii) detect network outages that can have drastic consequences
such as unreachable emergency services [17].

As a second step, operators infer properties of external network paths
based on locally-collected signals. Besides performance-related properties,
such as path latency and current throughput, path inference also allows
for detecting malicious attacks, e.g., traffic hijacks [18], which is an increas-
ingly important consideration for network operators [19]. As a final step,
operators consider the inferred path properties when deciding between
multiple path options. To do so, they must adequately configure the routing

1

2 introduction

protocols running on local devices. In today’s Internet, inter-domain routing
is primarily controlled by the Border Gateway Protocol (BGP) [20].

More fundamentally, operators encounter two common difficulties when
performing path inference – first, different noise sources. Inside a single
network, the ever-increasing Internet traffic [21] often requires systems that
consider sampled data only. For external path property inference, based
on locally-collected signals, operators face a different noise source. An
available signal does not directly represent one path property: Multiple
properties, and other Internet traffic, commonly affect the same signal.

And second, path property inference is only possible with live production
traffic. In other words, without corresponding user traffic, operators are
“blind” and cannot infer all necessary properties. Naive solutions, such as
generating probe packets, either do not scale or are not representative [22].

This dissertation presents new systems and ideas to improve Internet
path property inference to help operators with network monitoring, threat
detection, and active routing decisions. We first focus on two systems,
Magnifier and Oscilloscope, which infer internal and external path properties,
respectively. In both cases, we find solutions to cope with different noise
sources resulting in imperfect property inference.

Magnifier [5] combines existing, sparsely sampled flow data to create so-
called sentinels. A sentinel uniquely maps an IP prefix either to a network
ingress or egress – the main path property we focus on. However, given
that sampled data is incomplete, some of the inferred sentinels are wrong.
Magnifier validates them by deploying mirroring rules on all other ingress
or egress points, i.e., locations where no sentinel-related traffic should enter
or exit the network. Thus, a lack of mirrored traffic validates the sentinel
inference, while mirrored packets quickly inform Magnifier about wrong
insights. In conclusion, Magnifier provides network operators with validated
traffic ingress and egress observations.

Oscilloscope [4] focuses on the detection of so-called BGP hijacks. During a
hijack, malicious entities intercept traffic that normally does not cross their
network. Oscilloscope follows a simple yet powerful intuition: once a hijack
for an IP prefix starts, some packets towards the prefix suddenly follow a
different path, resulting in an increase (or decrease) of the observed Round-
Trip Times (RTTs). Therefore, Oscilloscope continuously collects RTT samples
and detects changes using a moving window. However, not every RTT
change originates due to a malicious hijack. For example, regular forward-
ing adjustments build another source of RTT variations but do not represent

introduction 3

the path property we are looking for. To boost its certainty, Oscilloscope uses
statistical tests in combination with domain-specific insights. It compares
the distribution of RTT samples from a potentially hijacked prefix with
samples belonging to close IP space routed equally in the absence of a hijack.
If the test indicates different distributions, the RTT change likely stems
from a BGP hijack. In conclusion, Oscilloscope provides network operators
with another solution to detect BGP hijacks using locally collected signals.

Although Magnifier and Oscilloscope improve network monitoring and
reveal external threats, they only inform operators reactively. For a more
proactive approach, network operators must adapt their routing decisions
based on inferred Internet path properties. In an exploratory study, we
discuss how adding path properties in today’s primary inter-domain rout-
ing protocol (BGP) prevents unnecessary packet losses due to avoiding
paths that do not provide reachability. Compared to the immediate and
irrevocable traffic shift BGP performs upon selecting a new best path, we
advocate for a slower, more spread-out movement. This way, network oper-
ators can infer properties of the new path and revert the choice should they
detect suboptimal properties, such as unreachable destinations. However,
our study shows that a naive integration of path properties quickly leads to
wrong inferences or slow routing convergence. We reveal pitfalls, compare
design principles, and provide best practices.

Looking back at the overall challenge, this dissertation improves internal
path property inference with selected packet mirroring and external path
property inference with statistical tests. Finally, we present new ideas to
integrate path properties in routing decisions. However, the two fundamen-
tal difficulties remain: (i) blindness without matching traffic and (ii) wrong
inferences due to different noise sources. We conclude the dissertation with
a high-level discussion of how our vision of an operator-defined, represen-
tative traffic generator called Dynamo [3] could tackle (i). Dynamo uses the
abundance of “orchestrable” open-source projects to generate live network
traffic, which follows operator-defined properties and reacts to network
events. Our idea of an additional packet header that purely focuses on the
Internet path [6] could solve (ii). Using this header, endpoints precisely
define which signals they provide to on-path devices and what they expect
from them in return.

4 introduction

New signals
 Spin Bit (§4)End-to-end path

 Path Layer (§6)
Ingress & egress
 Magnifier (§3)

To external destinations
 Active decisions (§5) Towards our AS

 Oscilloscope (§4)

Inside our AS
 Stroboscope (§3)

Generated traffic
 Dynamo (§6)

Figure 1.1: This dissertation mainly focuses on property inference of paths inside
our AS (Magnifier; Chapter 3), towards our AS (Oscilloscope; Chapter 4),
and to external destinations (Active Routing Decisions; Chapter 5).

Dissertation structure Figure 1.1 puts all our contributions into perspective.
We focus on one AS that deploys our systems and highlights the path prop-
erty connected to each contribution. Adding different inferences together,
we cover path properties related to the entire end-to-end path between two
traffic endpoints.

After a brief background overview (Chapter 2), we first show how Mag-
nifier [5] produces validated packet ingress and egress points inside an AS
(Chapter 3). That allows for precise packet tracing, e.g., using systems such
as Stroboscope [7]. Second, we explain how Oscilloscope [4] combines locally
collected RTT signals with statistical tests to detect BGP hijacks (Chapter 4).
This chapter also explores new RTT extraction methods for privacy-aware
transport protocols (Spin Bit [8]). Third, we combine path properties with
control-plane signals to detect suboptimal forwarding paths (Chapter 5).
Finally, we conclude the dissertation and discuss how more fundamental
changes, for example, the introduction of a new Path Layer [6] in each
packet header or representative traffic generation (Dynamo [3]), could lead
to a more straightforward path property inference in the future (Chapter 6).

2
B A C K G R O U N D

This chapter introduces the fundamental concepts used throughout the
dissertation. We first look at the Internet Protocol (IP) and IP prefixes which
identify where a packet is coming from and heading to (Section 2.1). Then
we focus on the different entities that form today’s Internet and how they
are connected (Section 2.2). Afterwards, we introduce the Border Gateway
Protocol (BGP), an inter-domain routing protocol that enables Internet-wide
packet forwarding (Section 2.3). Finally, we look at the Transmission Control
Protocol (TCP), a reliable transport protocol, as well as TCP-based Round-
Trip Time (RTT) measurements, which operators often use to monitor and
debug networks (Section 2.4).

2.1 internet protocol and prefixes

A parcel, which transports physical goods, typically contains an address
(e.g., name, street, house number, city, country) and the actual content.
Digital information transfer in today’s Internet is very similar. Endpoints
split the digital data into packets containing multiple headers and a payload.
One of these headers is the so-called Internet Protocol (IP) header, which
includes IP addresses that identify the packet’s source and destination.

2.1.1 IP addresses

A packet in the Internet contains two IP addresses – a source and a destina-
tion IP – and devices, such as routers, use these IPs to figure out where to
forward the packet to. We can distinguish between IPv4 and IPv6 addresses.

IPv4 [23] addresses are 32-bit long. That means we can have 232 ≈ 4.3
billion different IPv4 addresses. We express an IPv4 address as four 8-bit
decimal numbers separated by a dot. For example, 1.2.3.4 or 52.77.201.34
are two valid IPv4 addresses.

5

6 background

Besides the two IPv4 addresses, the IPv4 header contains additional
fields, e.g., a checksum field revealing corrupted packet headers or the
so-called Time-To-Live (TTL) field. Each IP-speaking device (for example
an IP router) on the path towards the destination decreases the TTL value
by one. If the TTL reaches zero, the packet is dropped/destroyed. This
mechanism prevents ever-lasting packets in forwarding loops.

Compared to IPv4 addresses, IPv6 [24] addresses consist of 128 bits
resulting in 2128 ≈ 3.4 ∗ 1038 unique addresses – an enormous number
and one main reason for the introduction of IPv6. As more and more
devices use the Internet, the available IPv4 address space runs out. In fact,
already in 2014, the Internet Corporation for Assigned Names and Numbers
(ICANN) announced that they distributed the final remaining blocks of
IPv4 addresses [25].

This dissertation primarily focuses on IPv4 addresses. However, all our
systems and ideas apply to IPv6 addresses as well. Dedicated paragraphs
will highlight possible challenges.

2.1.2 IP prefixes

Considering the parcel analogy once more, a post office will initially only
look at the city indicated in the address field and then make sure that
the parcel reaches this city. The local post office will finally inspect the
street name and house number to deliver the parcel to the correct desti-
nation. A similar mechanism is used with IP packets. If every forwarding
device needed to know how to reach all 4.3 billion IPv4 addresses, we
would quickly encounter scalability and memory problems. Therefore, IPv4

(and IPv6) addresses that “belong together” are grouped into so-called IP
prefixes.

An IPv4 prefix divides the 32 bits of an IPv4 address into two parts. The
first several bits define the prefix or network part. The remaining bits then
define the host part [26]. Often, we write the number of bits belonging
to the prefix just after the IP address, using a slash to separate them. For
example, 1.2.3.0/24 indicates a prefix size of 24: 1.2.3.0. To write the prefix
itself, we put all host bits to 0, as in the previous example. The following
notation shows the same prefix but addresses a specific host inside the
prefix 1.2.3.4/24.

2.1 internet protocol and prefixes 7

1 0

1 0 01

3.25.213.7

3.25.213.7 00000011 00011001 11010101 00000111

3.25.212.0/22

Example IP

/22 prefix

3.25.212.0/23/23 prefix

3.25.213.0/24/24 prefix

Bitwise notation

1

0

3.25.215.132

1

Figure 2.1: The IP address 3.25.213.7 belongs to prefixes with different sizes. The
figure shows the matching /22, /23 and /24 prefixes and illustrates
their relation when considering a bitwise notation (on the right).

Figure 2.1 illustrates three matching IP prefixes for the IPv4 address
3.25.213.7 and how they connect. In our example, the /22 prefix 3.25.212.0/22
contains (besides many more IPs) our example IP 3.25.213.7 as well as the
IP 3.25.215.132. However, if we consider, e.g., the /24 prefix 3.25.213.0/24,
only 3.25.213.7 belongs to it. We can also consider two extreme cases (not
shown in the figure): the prefix 0.0.0.0/0 contains all 232 IPv4 addresses; a
/32 prefix only contains a single IPv4 address. The hierarchical structure of
the IP space is especially relevant for our Magnifier system introduced in
Chapter 3.

2.1.3 IP routers

In a network, IP routers play the role of post offices. A router is a (physi-
cal) device that contains interfaces connecting to other network devices. A
router (and other network devices) contain three “planes” [27]: the data,
control and management plane. The data plane forwards incoming packets
to the correct outgoing interface and executes simple but highly optimized
operations. It manages the data-plane traffic, i.e., packets containing appli-
cation traffic such as video or website data. The control plane often runs
in general-purpose hardware and can therefore perform more complex
algorithms. It mainly updates the data-plane behavior according to incom-

8 background

ing control-plane traffic, e.g., from routing protocols (compare Section 2.3).
Finally, the management plane allows network operators to configure and
monitor the behavior of the control plane.

A fundamental data-plane component of a router is its forwarding table, a
long list of IP prefixes together with their corresponding next hop. The next
hop indicates where to forward matching packets such that they eventually
reach the intended destination. A router performs longest-prefix matching
to find the best entry for an incoming packet. In other words, whenever
the router receives an IP packet, it searches through the forwarding table
and selects the most specific prefix to which the packet’s destination IP
belongs. Finally, it forwards the packet to the corresponding next hop. The
next router on the path repeats this process with its own forwarding table.

We again look at the example in Figure 2.1 and assume that a router
has two entries in its forwarding table: one for prefix 3.25.212.0/22 and
one for prefix 3.25.213.0/24. If the router now receives a packet with desti-
nation IP 3.25.213.7, it will forward it to the next hop belonging to prefix
3.25.213.0/24. Note that the IP would also match the /22 prefix, but the
/24 prefix is longer or more specific. If we receive a packet with destination
IP 100.5.5.5, for which the router does not have any matching entry, it will
drop the packet.

2.2 internet structure

The Internet is often called a network of networks. It connects globally
distributed entities consisting of various network devices (e.g., routers and
switches) and end hosts (e.g., computers, smartphones, or sensors).

2.2.1 Autonomous Systems and Internet Service Providers

An important entity in today’s Internet is a so-called Autonomous System
(AS). An AS owns at least one IP prefix, is operated by a group of network
operators, and, importantly, should implement a single routing policy that
applies to the entire AS [28]. To identify an AS, each one has a unique num-
ber. For example, the SWITCH [29] network, which connects multiple Swiss
universities (including ETH Zürich), has AS number 559 [30]. Currently,
there are around 74k ASes in the Internet [30] which together advertise
nearly one million IPv4 prefixes [31].

2.2 internet structure 9

A

B D

E

AS C - with internal view

Core/backbone router

Edge/border router

(network ingress/egress)

Peer-to-peer relationship

Provider customer relationship

Figure 2.2: A simple Internet with five ASes. AS C shows an internal view and
distinguishes between core and edge routers.

Figure 2.2 shows a simplified Internet consisting of five ASes (A, B, C,
D, E). AS C illustrates how the internal structure of an AS could look like.
We distinguish between core (or backbone) routers that forward traffic
internally and edge (or border) routers that connect to at least one other
AS. Edge routers also build the ingress and egress points for traffic transiting
through the AS.

Some ASes actively provide services and Internet connection to other
ASes and customers. We call these ASes Internet Service Providers (ISPs).
For example, a well-known ISP in Switzerland is Swisscom [32] which has
AS number 3303. Customers pay ISPs with the intention that their traffic can
reach any destination in the Internet. ISPs are sometimes classified based on
a 3-tier model [33]. Important for us are Tier-1 ISPs (Chapter 3) representing
the largest ISPs with global presence and infrastructure. However, a single
ISP (or AS) can only reach some Internet destinations directly and relies on
other ASes for global connectivity.

10 background

2.2.2 Peering connections

To reach external destinations, an AS interconnects with other ASes; it peers
with them. Not every connection is equal, though, and we can distinguish
different peering types [34]. In this dissertation, we are mostly interested
in the two main types: peer-to-peer and customer-to-provider connections.
Many more exist in the Internet and a categorization to one type is not
always obvious.

Peer-to-peer connections In a peer-to-peer connection, both ASes treat
each other as equal and agree to forward specific traffic for free over the
peer-to-peer connection. In Figure 2.2, we indicate such connections with
double-headed arrows. For example, AS C has a peer-to-peer connection
with AS D.

Customer-to-provider connections In a customer-to-provider connection,
one AS, usually the bigger one (i.e., the AS reaching more destinations), acts
as a provider and provides connection to its customer (the smaller AS). In
exchange for the increased number of ASes the customer can reach, it pays
the provider according to the amount of forwarded traffic. In Figure 2.2, we
indicate customer-to-provider connections with single-headed arrows. The
arrow points from the provider to the customer. For example, AS C is the
provider of AS A.

2.3 border gateway protocol and inter-domain routing

As we saw in the previous section, each AS owns at least one prefix and
distributes the corresponding IPs to its endpoints and network devices. In
a first step, network operators must achieve internal connectivity between
the different endpoints in one AS. For that, they use intra-domain routing.
One commonly used intra-domain protocol (more exist) is Open Shortest
Path First (OSPF) [35]. This dissertation mainly focuses on global Internet
paths. As such, we will not discuss intra-domain routing in detail.

In a second step, operators of one network need to ensure that they (i) can
reach prefixes in other ASes; and (ii) that other ASes can reach their own
prefixes. For that, we need an inter-domain routing protocol. In today’s
Internet, the only inter-domain routing protocol is the Border Gateway
Protocol (BGP).

2.3 border gateway protocol and inter-domain routing 11

2.3.1 General functionality

The Border Gateway Protocol (BGP) [20] is a distributed routing proto-
col that exchanges advertisements about IP prefixes between ASes (inter-
domain). It also distributes the received advertisements inside an AS. BGP
is a so-called path-vector protocol and performs its decisions taking the IP
prefix, its current AS path, and custom policies into account. Network oper-
ators define the routing policies. They filter incoming BGP advertisements
and define which advertisements a router propagates to a neighbor.

Before two routers advertise prefixes between each other, they must
establish a session. Network operators configure their devices accordingly.
Two routers in the same AS build an internal BGP (iBGP) session. If the
routers belong to different ASes instead, they establish an external BGP
(eBGP) session. Once the session is established, two BGP routers advertise
prefixes via BGP update messages.

BGP update message An update message [20] is part of the control-plane
traffic and interacts with a router’s control plane. It either advertises or
withdraws one or multiple IP prefixes. Besides the IP prefix(es) and other
features, an update message contains: (i) the AS path; (ii) a next hop; and
(iii) several BGP attributes.

The AS path (i) provides information about the current AS path towards
the origin of the advertised IP prefix. A BGP router uses the AS path as
part of its decision process (discussed in the following subsection) and to
detect forwarding loops [20]. Whenever a router receives a BGP update
from a neighboring AS, it first inspects the AS path and looks for its own
AS number. If present, the router drops the update message and does
not consider the advertised prefix. Otherwise, the router adds its own AS
number to the path before advertising the route to a neighboring AS.

The next hop (ii) defines the IP address belonging to the next router
on the path to eventually reach the origin of the advertised IP prefix(es).
Routers store the next hop in their forwarding table together with the
matching IP prefix.

Finally, the various BGP attributes (iii) interact with the configured poli-
cies and influence BGP’s decision process (discussed next).

12 background

criteria prefer route . . .

1 local preference with higher local preference

2 AS path length with shorter AS path length

3 MED with lower Multi-Exit Discriminator (MED)

4 eBGP vs. iBGP received via eBGP over iBGP

5 IGP metric with lower IGP metric towards next hop

6 tie break with lower egress IP address

Table 2.1: BGP considers multiple criteria when deciding between two routes for
the same prefix. The table orders them from highest to lowest priority.
An actual implementation may contain additional or vendor-specific
criteria.

2.3.2 BGP’s decision process

Let us assume a router receives a BGP update for prefix P while it already
knows a route towards P, for example, over a different AS. In such a case,
BGP always selects a single best route which is then stored in the forwarding
table and advertised to other BGP neighbors (if the configured policies allow
it). To select the best route, BGP uses a “decision algorithm” [20, 36].

Table 2.1 highlights the most critical steps in the decision process. The
most important decision feature is the local preference value, configured
by network operators inside one AS. If both routes have the same local
preference value, BGP will pick the one with the shorter AS path instead. A
shorter AS path could (but does not have to) indicate a shorter travel time
towards the destination. In case of a tie, the lower MED value is preferred,
should both routes come from the same neighboring AS. Afterwards, BGP
prefers routes learned via eBGP. As a result, the corresponding traffic
will exit the local AS faster, as it does not need to travel internally to
another router (i.e., a route learned via iBGP). Similarly, the next step, the
lower Interior Gateway Protocol (IGP) metric, will prefer the route over
the “shortest” internal path. If both routes still have the same priority at
this point, BGP decides based on the lower egress IP address (a random
tie-breaking mechanism).

2.3 border gateway protocol and inter-domain routing 13

2.3.3 Common inter-domain routing policies

Network operators influence BGP’s best route selection process in at least
two ways. Either they configure filters that allow or prevent specific routes
from entering or exiting the network, or a router modifies route attributes
(for example, by prepending ASes to the AS path) such that other routers
in the same or another AS handle them differently. Note that the filtering
approach leads to deterministic results but only works locally, while some
attribute changes could also influence other networks’ decisions.

In Section 2.2.2, we introduced the most common peering relationships.
Let us look at them from a money perspective. An AS earns money if it
receives traffic from a customer, does neither earn nor lose money when
receiving traffic from a peer (but still has to forward the traffic in the
network), and loses money if it receives traffic from a provider. At the
same time, customers pay to ensure their traffic reaches all the advertised
destinations, so their traffic should be handled carefully.

ASes usually maximize their earnings while minimizing the amount of
forwarded traffic. To this end, operators define filters and rules to achieve
specific traffic flows between their customers, providers, and peers [34].
Routes they receive from their customers are advertised to all neighbors,
no matter their peering relationships. This way, everyone can reach the
customer’s prefixes. Similarly, the operators will also advertise their own
prefixes to everyone. However, routes coming from peers or providers are
only advertised to their customers. As a result, customers can forward
traffic to all destinations while, e.g., a peer only knows some of the routes.
Finally, the operators also configure different priorities (e.g., by using local
preferences): customer routes > peer routes > provider routes. That means,
should the AS receive a route for the same prefix from multiple neighbors,
it will prefer (BGP decision process) the cheapest one.

Figure 2.3 shows two examples. AS E receives a BGP route for a prefix
of AS A over C and D. It prefers the route over AS D as it has a peering
relationship with D (“cheaper” than the provider relationship with AS C). In
the reverse direction, AS A receives a BGP route for a prefix of AS E also over
two neighbors, B and C; both are providers. The BGP decision process now
prefers the shorter route. The AS path over C [C E] is shorter than the AS
path over B [B D E]. It is important to note that: (i) the BGP updates/routes
and the forwarded traffic flow in opposite directions. For example, AS A
receives a route from C and therefore forwards matching traffic to C (next

14 background

A

B D

E

Normal forwarding paths

Partial forwarding path

during interception hijack

Peer-to-peer relationship

Provider customer relationship

C

A*

Hijacker

E

dst AS path NH

[C E] C

E

dst AS path NH

[B D E] B

A

dst AS path NH

[C A] C

A

dst AS path NH

[D B A] D

A* [D A* B A] D

dst AS path NH BGP routes

prefix

attribute

next hop

Figure 2.3: The green arrows show the forwarding path for traffic between AS
A and E according to the selected BGP routes. AS A∗, a malicious
entity, starts an interception hijack for a sub-prefix belonging to AS A
resulting in a forwarding path change.

hop); (ii) the traffic from sources in AS A towards destinations in E does
not follow the same path as the traffic from AS E to A. Asymmetric traffic
forwarding is also commonly observed in the real Internet [37].

2.3.4 BGP hijacks (malicious attacks)

As we saw in Section 2.2, each AS owns at least one IP prefix, which it
might advertise over BGP. However, the BGP protocol itself does not care
about prefix ownership. Any AS can advertise any prefix, even if they
do not own it or know how to reach the advertised destination. This can
lead to large-scale connectivity issues [38] and, even more problematic, be
abused by malicious entities to perform so-called BGP hijacks [39]. Hijacks
are especially relevant for our Oscilloscope system discussed in Chapter 4

and constitute only one of many attacks on BGP, given that BGP was not
designed with security in mind [40].

2.3 border gateway protocol and inter-domain routing 15

In a BGP hijack, a malicious AS starts to advertise a prefix that it does not
own to attract specific traffic that normally does not reach the malicious AS.
Consequently, services using the hijacked destination might be disrupted, or
the malicious AS can inspect sensitive data (e.g., traffic towards a financial
institute). We identify multiple main components in a BGP hijack: (i) a
benign AS which rightfully owns and advertises a specific prefix; (ii) a
malicious AS which starts to hijack this prefix (with the same or a different
prefix size); and (iii) at least one (often many more) ASes that change their
forwarding decisions towards the advertisement of the hijacker (the victims
of the hijack).

We distinguish different hijack types. A hijack either blackholes or inter-
cepts traffic:

Blackhole attack In a blackhole attack, the malicious AS drops all the
hijacked traffic. This is “easy” to perform but makes the hijack very visible
as all corresponding flows start to terminate.

Interception attack A more involved BGP hijack is a so-called interception
attack. The goal is that the malicious AS knows at least one path not
affected by the hijack. It will forward the hijacked traffic over this path
back towards the benign AS/destination. As a result, hijack detection is
much more complex, as users might not even realize that their traffic is
being intercepted. Figure 2.3 shows a simple example. AS A∗ performs an
interception hijack for a sub-prefix belonging to AS A. However, it crafts
the malicious BGP hijacks to only affect AS D and E (the victims). AS A∗

can now use the path over AS B to forward the intercepted traffic to its
benign destination, AS A.

Similarly, the hijacker can advertise the same or a more-specific prefix to
attract traffic from hijacked victims.

Same-prefix attack In a same-prefix attack, the hijacker advertises the same
prefix (i.e., same IP and prefix length) compared to what the benign owner
advertises. In such a scenario, some ASes will receive both advertisements
and use the BGP decision process to select one. As a result, the hijack affects
only a part of the Internet.

More-specific prefix attack In a more-specific prefix attack, the hijacker
starts to advertise one or multiple prefixes that are more specific (i.e.,
have a longer prefix size) than what the benign AS currently advertises.
Given that this is a new prefix, it should propagate throughout the Internet.
Additionally, as introduced in Section 2.1.3, routers perform a longest-

16 background

prefix match to select the best-matching route. As such, the hijacked prefix
is preferred over the benign one. Note that a less-specific prefix attack,
although possible, will typically not result in any hijacked traffic, at least as
long as the benign (more-specific) prefix(es) are still advertised.

2.4 transmission control protocol and round-trip time

In this section, we will briefly introduce the Transmission Control Protocol
(TCP) and then mainly focus on Round-Trip Time (RTT) measurements
on top of TCP. RTT measurements are essential for our Oscilloscope system
(Chapter 4).

2.4.1 Transmission Control Protocol

The Transmission Control Protocol (TCP) [41, 42] is a reliable transport
protocol. TCP provides reliable end-to-end delivery over the Internet, which,
by design, only provides best-effort delivery. That means packets might be
lost, reordered, or duplicated. TCP’s logic runs on the two end hosts, which
communicate with each other. They exchange related information over the
TCP transport header, which follows the IP header discussed in Section 2.1.

SEQ and ACK numbers TCP endpoints send and receive a stream of bytes
and exchange data in both directions simultaneously. The SEQuence number
(SEQ) keeps track of the currently transmitted byte number and is part of
the TCP header. To achieve TCP’s reliability guarantees, received data is
eventually acknowledged with an ACKnowledgment number (ACK), again
part of the TCP header. The receiver sends the ACK back to the sender. TCP
transmits the entire header in clear text. As a result, an on-path observer,
which sees a data packet and the corresponding ACK, can match SEQ and
ACK numbers.

2.4.2 General RTT introduction

Compared to one-way delay measurements (how long does it take from
point A to B), the Round-Trip Time (RTT) indicates how long it takes for
a packet to travel from one endpoint to another and back. Given that RTT
measurements are closely related to the distance between the two endpoints

2.4 transmission control protocol and round-trip time 17

and the current path occupancy, they reveal many path-related properties,
as discussed in detail in Chapter 4.

Many end users perform RTT measurements when they use the well-
known ping [43] tool, for example, to estimate their current latency or to
determine if a given IP address is reachable. Ping actively sends a new
packet towards the indicated destination and triggers a reply, assuming
no device on the path blocks the ping packets [44]. We can then compute
the time difference between the two packets to estimate the RTT. Note that
most ping implementations do not use TCP, but rather the Internet Control
Message Protocol (ICMP) [45].

TCP endpoints use RTT estimations to compute their retransmission
timers [46], i.e., the time to wait before retransmitting a potentially lost
packet.

2.4.3 On-path TCP-based RTT estimations

Besides active approaches, e.g., the previously mentioned ping tool, network
operators perform passive, on-path RTT estimations. The key idea is to
compare the observation time of a packet going in one direction with the
observation time of a matching reply in the reverse direction. Note that
this necessitates the observation of both traffic directions and the ability to
identify matching packets. One approach uses the visible SEQ and ACK
numbers in TCP headers. We can subtract the two observation times and
estimate the RTT by finding a matching ACK for a given data packet. Highly
optimized approaches [47] run directly in the data plane at line rate.

Another approach focuses on the TCP timestamp options [48], an optional
field in the TCP header. Similarly to the method based on SEQ and ACK
fields, it allows on-path observers to find matching packets between the
two visible traffic directions, as explained in detail in [49]. Note that these
two approaches will not always result in the same RTT estimate for the
same TCP flows, for example if a packet is lost.

3
VA L I D AT E D T R A F F I C I N G R E S S A N D E G R E S S
I N F E R E N C E S W I T H M A G N I F I E R

In this chapter, we introduce Magnifier [5], a system that helps network
operators to infer and validate internal path properties, namely the ingress
and egress points of traffic in their network. This knowledge is a funda-
mental first step to reasoning about the full, internal forwarding path and,
more complex, external path property inferences. Our poster [1] shows early
ideas going in the same direction.

Monitoring transit traffic, for example, in Internet Service Provider (ISP)
networks, is difficult: most operators do not know precisely where traf-
fic enters or leaves their infrastructure. This inability to correlate traffic
network-wide makes it hard – if not downright impossible – to detect
network-wide problems. As a consequence, operators occasionally learn
about routing issues in their own network only via customers calling or
opening up support tickets.

Operators could use control-plane data to identify where traffic enters
and leaves an ISP network; however, that is insufficient. Traffic towards the
same destination is often load-balanced between multiple egresses; and
traffic from the same source prefix often enters via multiple ingresses. More
importantly, in case of failures or attacks, traffic may not follow the control
plane. Data-plane measurements are thus necessary for accurate flow-level
information. Unfortunately, such measurements are hard to scale with the
Tbps of traffic crossing ISP networks nowadays. Deutsche Telekom’s IP
network, for example, reports a transit capacity exceeding 30 Tbps and IP
throughput of over 3500 PB per month [50].

Two common techniques to collect data-plane measurements are packet
sampling and traffic mirroring. Both have advantages and disadvantages,
making them suboptimal for inferring traffic ingresses and egresses.

Sampling-based approaches such as NetFlow [51] or sFlow [52] provide
good coverage at the expense of precision and correctness. Often only a
few flows are sampled, and even fewer are sampled at both the ingress
and egress. We confirmed this by analyzing a 5-minute slice of NetFlow

19

20 magnifier

data (1/1024 sampling rate) extracted from all border routers of a Tier-1
ISP in Europe. The slice contains around 40 million flows, where a flow
corresponds to packets sharing the same source and destination subnet
as well as the same source and destination port. After discarding flows
from/to the ISP-owned prefixes, we found that over all sampled transit
flows, only 22% are sampled at both their ingress and egress, while 41%
(resp. 37%) of flows are sampled only at the network ingress (resp. egress).
Hence, a traffic matrix such as shown in Figure 3.1a locates only 22% of
sampled flows; we waste the information from all other sampled flows.

Mirroring-based approaches [7, 53] provide high precision and correctness
at the expense of scalability. Suppose we would mirror all traffic at network
border routers. In that case, we could easily enhance packets sharing the
same source and destination subnet with their ingresses and egresses,
but that would double the network’s traffic. Besides packet mirroring,
techniques based on sketches [54] or in-band telemetry [55, 56] also excel at
gathering precise information but can only do so for a specific traffic share.

We ask ourselves whether we can combine the benefits of sampling and
mirroring to mitigate their respective drawbacks and infer internal path
properties. We answer this question positively and present Magnifier, a
system that enhances the global network view obtained via sampling using
a two-step approach. First, we infer the ingress and egress of flows using a
heuristic: packets that are “close” in the IP space tend to be routed similarly.
This intuition has already been used successfully in other contexts, e.g.,
to scale heavy-hitter detection using counters [56]. Assuming this holds,
we search for the largest IP subnets for which packets appear to enter the
network via the same ingress (resp. exit via the same egress) according
to the sampling data available. We call these subnets sentinels. Figure 3.1b
shows the sentinel heuristic applied to our Tier-1 NetFlow data, which
immediately magnifies the view: not only do we observe more flows for
certain ingress–egress pairs (red to green), but we also reveal pairs which
were not visible at all in the NetFlow-based matrix (Figure 3.1a).

Naturally, this heuristic is not perfect; as sampling is sparse, we may
lack important information to correctly identify ingress or egress points
or traffic may simply be rerouted over time. Thus, in a second step, we
use mirroring to validate the inferred ingresses and egresses. To avoid
mirroring a lot of traffic, the key idea is to install mirroring rules where we
do not expect traffic; i.e., if we infer that subnet s always enters via router R,
we install a mirroring rule for s in all ingress routers, except R. In practice,
this leads to little mirrored traffic as sentinels are most often correct. Thanks

magnifier 21

(a) NetFlow-based matrix. (b) Magnifier’s matrix.

Figure 3.1: By inferring ingress or egress points of sampled flows, Magnifier signif-
icantly improves the network-wide coverage (Figure 3.1b) compared
to using sampling only (Figure 3.1a). These inferences are guaranteed
correct by (the absence of) mirrored packets. Dots represent the number
of flows observed from an ingress router (x-axis) to an egress router (y-axis).
Grey indicates no flow, red one flow, orange up to 4 flows, and green 5 or
more flows. Data source: NetFlow samples from a large Tier-1 ISP.

to mirroring, Magnifier’s ingress/egress inferences are guaranteed correct; a
key feature of our design and an essential difference from other monitoring
and path inference tools. Mirrored traffic reveals inference errors or traffic
shifts in sub-seconds, allowing Magnifier to maintain a correct network view.

The main limitation of Magnifier is the number of mirroring rules to
install, which, naively, is about one mirroring rule per sentinel on all border
routers. For networks forwarding traffic which covers most of the IP space,
this vastly exceeds the mirroring capabilities of today’s routers. We thus
investigate different strategies to cap the number of rules installed while
harnessing most of Magnifier’s benefits.

Contributions:

• We design Magnifier, a network monitoring system that combines
sampling with mirroring to enhance the global view on traffic ingress-
es/egresses (e.g., Figure 3.1) while providing correctness guarantees.

• We implement Magnifier [57], run it on Cisco Nexus 9300 switches,
and demonstrate that Magnifier increases the network view coverage
with only limited traffic overhead and inference errors using real
traffic traces (Section 3.5).

22 magnifier

• We discuss (Section 3.3.2) and evaluate (Section 3.5.2) different strate-
gies to scale Magnifier to large ISP networks by capping the number of
mirroring rules required to e.g., the top 1k sentinels while maintaining
most of Magnifier’s benefits.

• We observe that, even without mirroring, changes in the number of
found sentinels create an interesting signal for other monitoring appli-
cations, such as failure detection or DDoS protection (Section 3.5.4).

3.1 overview

This section introduces the problem statement (Section 3.1.1) and Magni-
fier’s main building blocks (Section 3.1.2). Finally, we illustrate Magnifier’s
behavior on a simple example (Section 3.1.3).

3.1.1 Problem statement

Can we combine the benefits of sampling and mirroring to design an
easy-to-deploy system that infers accurate, complete and timely ingress/egress
observations in ISP networks, where an “observation” consists of an IP
subnet for which we know the correct ingress and egress points?

ease of deployment The system should be usable in today’s networks
with no need for new or specialized hardware.

accuracy The system should correctly infer subnets’ ingress and egress
points.

completeness The system should generate observations for the largest
possible portion of the IP space.

timeliness The system should update observations in real-time based on
newly-collected information; that is, information is processed quicker
than it is collected.

3.1.2 Building blocks

Magnifier extends the coverage of ingress/egress observations using a two-
step approach (Figure 3.2): based on sampled data, it first infers the missing
traffic ingress and egress points, then it validates them using mirroring.

3.1 overview 23

Inference

Sampling
observations

Mirroring

Sentinels

Magnifier

Failure
monitoring

Attack
detection

Visualizations

Applications

API

Figure 3.2: Magnifier uses sampled data to infer sentinels that predict IP subnets’
ingress or egress points. Magnifier then validates sentinels at runtime
using packet mirroring. This way, we can greatly extend the coverage
of traffic ingress/egress observations usable by many applications.

Inference Magnifier cross-correlates the sampled flows to identify IP subnets
that are consistently routed via the same ingress or egress routers. For
example, suppose we observe that all sampled flows for a source prefix
p enter via ingress router A. Magnifier learns that p is an implicit tag for
“ingress A”, which enables to map any sampled flow sourced by p as
entering via A – even if observed on a different router.

In addition, Magnifier leverages the hierarchical nature of the IP space:
packets that are “close” in the IP space tend to be routed similarly. Thus,
Magnifier searches for the largest IP subnets that share the same tags and
postulates that all the IPs in these subnets are routed via the same ingresses
or egresses. We call these largest subnets sentinels. Sentinels significantly
extend the coverage of ingress/egress observations (compare Figure 3.1).
However, these sentinels may be incorrect; sampling may have missed im-
portant information, or traffic may simply be re-routed over time. Therefore,
Magnifier uses mirroring to validate them at runtime.

Validation The key idea behind Magnifier is to validate the sentinel infer-
ences using negative mirroring; i.e., to deploy mirroring rules where we
expect traffic not to go. Negative mirroring is efficient because sentinels are
often correct in practice; therefore, we mirror only a little traffic. Funda-
mentally, this guarantees that Magnifier’s outputs are correct. All prefixes
covered by sentinels either have correctly identified an ingress or an egress,
or carry no traffic at all. Otherwise, traffic is mirrored, which provides

24 magnifier

p0 p4 p7

Sampling only Ë − − − − − − −

Sentinels Ë ? ? ? é ? ? ?

Mirroring Ë (Ë) (Ë) (Ë) Ë (Ë) (Ë) (Ë)

CorrectË Probably correct(Ë) Uncertain?

Wrongé No information−

Figure 3.3: Sampling provides information about the sampled prefixes only. The
sentinel inference extends the coverage, but it is uncertain and can
make wrong assumptions without any means to detect them. With
mirroring, these inferences can be validated, leading to either correct
or probable inferences.

additional observations and allows Magnifier to maintain and improve its
accuracy over time.

Optimization The main limitation of Magnifier lies in the number of mirror-
ing rules that can be activated simultaneously on one router. By aggregating
subnets together, sentinels effectively limit the number of mirroring rules
that must be deployed, but this remains a constraint for large ISP networks.
Magnifier supports multiple rule deployment strategies to respect a given
rule budget per router while optimizing for different properties (e.g., IP
space coverage).

3.1.3 Illustrative example

While mirroring rules generate additional traffic, they are essential to
Magnifier, illustrated with an example (Figure 3.3): p0 to p7 are eight /24
prefixes belonging to the same /21; most of the traffic comes from p0, with
sporadic traffic from other prefixes. Let’s assume that we only sample traffic
from p0, which enters at ingress A. One can hypothesize that all p0 traffic
enters via A, but nothing can be said about p1 to p7.

Since no sampled packet contradicts this hypothesis, we infer that all
eight /24 enter via A; the whole /21 is a sentinel for ingress A. This
inference is, however, uncertain for seven /24 prefixes without any data.
Some traffic from p4 enters via another ingress, but as long as we do not
sample p4 traffic, we will not detect the wrong inference.

3.2 ingress & egress identification 25

We now use mirroring to validate the sentinel: all routers except A mirror
packets for the /21. At first, no packet is mirrored: this indicates either that
the sentinel is indeed correct or that there is no traffic at all on prefixes
that would enter via another ingress. Thus, for the seven prefixes without
sampling data, Magnifier concludes that the ingress is “probably A”.

Finally, ingress router B mirrors packets coming from p4. Magnifier now
learns that the /21 sentinel was incorrect. We recompute sentinels, which
leads to two /22 sentinels, one for A and one for B. Once the corresponding
mirroring rules are installed, Magnifier confirms that p0 and p4 enter via A
and B respectively, and that p1 to p3 (p5 to p7) probably enter via A (resp.
B) as we would otherwise observe mirrored packets.

Conclusion The mirroring rules are essential to validate the sampling-based
inferences. Once active, Magnifier guarantees that the inferences are either
correct or that prefixes for which they are wrong do not carry any traffic.

3.2 ingress & egress identification

In this section, we define the notion of “sentinels” and present an efficient
algorithm to find them (Section 3.2.1). We then discuss sentinel subnet
size tradeoffs (Section 3.2.2) and finally show how Magnifier uses these
sentinels to match ingress and egress observations in sparsely sampled data
(Section 3.2.3).

3.2.1 Sentinel search and definition

Definition A sentinel is an IP subnet which always enters or leaves the
network via one network device. Therefore, a sentinel identifies this device
whenever a flow from/towards the IP subnet is observed somewhere in the
network. As an example, if flows towards 1.2.3.0/24 only leave the network
via egress router R, we say that 1.2.3.0/24 is an egress sentinel for R. Note
that a single sentinel can cover numerous flows.

Types We can distinguish four types of sentinels depending on which IP
address we look at (source or destination) and which traffic direction is
identified by them (ingress or egress). For example, we can speak about
ingress source sentinels. However, unlike specified differently, the remain-
ing sections will only focus on two types of sentinels (i) ingress source

26 magnifier

Algorithm 1 Sentinel search algorithm
start← starting subnet size
end← ending subnet size
table[IP, device]← search IPs and network devices
sentinels← {}
for start ⩽ S ⩽ end do

table[IPnew]← ((IP >> (32− S)) << (32− S))
aggregated← table.groupby(IPnew)[device]
result[n]← nunique(aggregated[device])
sentinels += (result[n] == 1)
table −= sentinels

end for
return sentinels

sentinels (abbreviated as ingress sentinels); and (ii) egress destination sen-
tinels (abbreviated as egress sentinels). Currently, Magnifier only considers
IPv4 sentinels, but Magnifier can be applied to the IPv6 address space as
well. Current IPv6 allocation strategies, for example explained in [58], are
favorable for Magnifier. The same AS tends to be allocated large IP blocks
that we can use as sentinels.

Search algorithm Magnifier’s sentinel search algorithm takes flow samples
as input. They contain, among others, the identifier of their origin router
and the packet source and destination IP addresses. In addition, we define
a start and end subnet size over which the algorithm searches for unique
subnets to reveal sentinels. Algorithm 1 highlights the main sentinel search
steps. The for loop iterates from the start to the end subnet size. In each
iteration, we extract the corresponding subnets from the IP addresses of
the collected flow samples. All flows belonging to the same subnet are
aggregated. If one aggregate only contains samples from the same device,
Magnifier has found a sentinel, removes the samples from further search
iterations, and eventually returns the sentinels.

3.2.2 Sentinel subnet sizes

Algorithm 1 returns a subnet as a sentinel as soon as it only contains flow
samples from one device. However, it is also possible that a smaller subnet
would cover all these samples. Figure 3.4 shows a simple example. The net-

3.2 ingress & egress identification 27

/24

/23

/22Sampled flows
from router X

Not-sampled flow
from router Y

Two /24 sentinels (valid)

One /23 sentinel (valid)

One /22 sentinel (invalid)

Figure 3.4: The sentinel amount and coverage depend on the subnet size. The
“largest” /22 sentinel is invalid, whereas one /23 sentinel or two /24
sentinels are valid.

work forwards traffic from three different /24 subnets. We collect samples
from the two green /24 subnets (ingress router X). Unfortunately, we do not
sample a packet from the orange /24 subnet (ingress router Y). Algorithm 1

would return the corresponding /22 subnet as an ingress sentinel. After
installing corresponding mirroring rules (Section 3.3.1), Magnifier will detect
that this sentinel is invalid as it contains flows from two different ingress
routers (X and Y). If we would search for smaller subnets, we could either
return one valid /23 sentinel or two valid /24 sentinels.

This simple example shows a fundamental tradeoff between the subnet
size of found sentinels, the number of sentinels, and their validity. In general,
sentinels based on smaller subnets are more likely to be valid but require
more mirroring rules to be validated. Experimentally, we find that starting
at /16 and ending at /24 yields good performance; starting at bigger sizes
does not help as we rarely see such big prefixes in BGP, and it is unlikely
that they are unique to a single ingress/egress, while /24 is the smallest
globally routed prefix size [59]. As a consequence, the search sizes also
influence the number of required validation mirroring rules (Section 3.3.1)
and, therefore, the required router resources.

3.2.3 Sentinel-based ingress & egress detection

Magnifier uses the found sentinels in two ways. First, for each sentinel type, it
tracks the number of sentinels found per device in the network. Section 3.5.4
shows that the number of sentinels is rather stable and changes can reveal
unexpected network behavior. The second use case exploits the uniqueness
property of sentinels. Let’s assume we have found a (valid) egress sentinel
for router X. For each flow towards the sentinel’s subnet – no matter if

28 magnifier

we observe a corresponding packet on an ingress or another device – we
instantaneously know that it will leave the network over X. Similarly, we
can identify flow ingresses based on ingress sentinels. Magnifier uses this
information as input for its ingress/egress observations.

3.3 mirroring-based validation

In this section, we explain how Magnifier uses traffic mirroring to validate
the ingress and egress sentinels produced by the sentinel search algorithm
(Section 3.3.1). To ensure that Magnifier can adhere to an operator-given
budget of mirroring rules, we introduce two different rule deployment
strategies and discuss additional optimization possibilities (Section 3.3.2).

3.3.1 Validating found sentinels with mirroring

Magnifier uses negative rules to validate the sentinels it finds. Negative rules
are placed on devices that are not expected to see matching traffic. For
instance, to validate that an ingress sentinel belongs to ingress I, Magnifier
places negative rules mirroring traffic for the sentinel’s source subnet at all
ingress routers except I. The negative mirroring rules will never generate
any packets if the sentinel is valid. For invalid sentinels or sentinels which
become invalid over time (e.g., a forwarding change), the mirrored packets
inform Magnifier immediately, and we can update our inferred ingress or
egress observations. Magnifier then includes the mirrored data in the next
sentinel search to find better sentinels.

ACL-based mirroring Magnifier relies on existing features (for example
ERSPAN [60]) to mirror traffic from a router. Depending on the router
model and capabilities, there are different ways to define the mirrored
traffic. We can temporarily mark packets (i.e., [7]) or directly assign a list
of subnets to the mirroring session. We use so-called Access Control Lists
(ACLs) in all these cases. An ACL is a list of subnets that matches on the
forwarded traffic and defines the mirrored traffic. Our “mirroring rules”
are entries in an ACL.

Deployment and activation of mirroring rules To deploy its mirroring rules,
Magnifier interacts with a Python script that runs directly on the router CPU.
Via its arguments, Magnifier tells the script the mirroring rules to add to the
ACL. The script uses e.g., Cisco’s Python API [61] to perform the changes.

3.3 mirroring-based validation 29

However, naively adding entries to an ACL that is already connected with
an active ERSPAN session can result in unexpected mirroring behavior for
at least two reasons: (i) adding new entries takes some time and Magnifier
cannot predict at which point in time a new mirroring rule is active; (ii)
the Ternary Content Addressable Memory (TCAM) region which handles
the ACLs/mirroring rules is limited. Magnifier handles (i) by pre-deploying
inactive mirroring rules and (ii) with techniques explained in Section 3.3.2.

To pre-deploy mirroring rules, Magnifier first adds entries to an ACL
that is not yet active, i.e., connected with an ERSPAN session. The ACL
entries do not yet take space in the TCAM. Once the ACL contains all
mirroring rules, another script activates the entire ACL, simultaneously
enabling all mirroring rules. In practice, Magnifier always iterates between
two ACLs. One is currently actively mirroring traffic while the other one
is populated. Once the second ACL is ready, we switch between them.
Due to this deployment strategy, Magnifier is not negatively influenced
by frequently changing mirroring rules/sentinels (see Section 3.5.2) as we
always activate a new pre-deployed ACL. Furthermore, this only affects the
mirrored traffic; Magnifier does not impact the production traffic.

Magnifier can also add a parameter to the scripts which defines how long
an ACL should be active. The script will then automatically, i.e., without
any external interaction, deactivate the mirroring rules once the defined
timeout expires.

3.3.2 Limiting the amount of mirroring rules

The amount of mirroring rules which a single router can support is limited.
Not only is the entire TCAM limited, other features (e.g., traffic engineering)
use the same memory space and compete with Magnifier’s mirroring rules.
For this reason, Magnifier supports multiple deployment strategies to adhere
to an operator-given budget of mirroring rules. In the following paragraphs,
we describe two strategies, but network operators can easily define their
own sorting algorithm to control which mirroring rules they deploy first.

Deployment based on sentinel size The first strategy maximizes the sen-
tinel IP space covered by mirroring rules. As each mirroring rule is con-
nected to a sentinel with a specific subnet size, Magnifier first orders all
sentinels of an ingress or egress based on their subnet size. Magnifier then
iterates through all network border routers in a round-robin fashion and

30 magnifier

deploys mirroring rules for the sentinel with the biggest subnet (i.e., the
subnet which covers the most IP space). This process ends if either the
mirroring rule budget is reached or every mirroring rule is deployed.

Deployment based on sentinel activity The second strategy prioritizes the
most active (amount of sampled packets) subnets/sentinels. In other words,
we make sure that the inferred ingress or egress points for the most active
subnets are validated by mirroring. To this end, Magnifier iterates through
all border routers in a round-robin fashion and first deploys mirroring rules
for the sentinels that are based on the largest number of sampled packets.
Random packet sampling – by design – favors large, active flows. Therefore
Magnifier indirectly deploys mirroring rules for the most active subnets. We
evaluate both deployment strategies in Section 3.5.2.

Network-specific optimizations Magnifier further reduces the amount of
mirroring rules using network-specific knowledge. For example, some ISP
border routers only connect to customers, and the operator knows exactly
which IP addresses belong to them. That limits the possible source addresses
entering the ISP over these ingresses (assuming no IP spoofing). On these
devices, Magnifier does not need to install mirroring rules which belong to
IP subnets outside of the customer’s prefixes as we should never receive
contradicting traffic.

3.4 magnifier’s controller

Magnifier’s controller collects and combines the sampled and mirrored
packets, finds new sentinels, deploys and activates the corresponding mir-
roring rules, and uses the newest data to generate accurate and up-to-date
ingress/egress observations. This section first explains how the different
pieces work together before introducing Magnifier’s API and discussing
details about Magnifier’s controller placement.

Controller design Magnifier’s control flow works in iterations that align
to the system component with the longest runtime. As various tests on
real hardware show, this is usually the time it takes to deploy mirroring
rules on the routers. Figure 3.5 shows the entire process. Magnifier uses
the collected sampled and mirrored data in iteration N-2 (and optionally
N-3 or older iterations) to compute sentinels and their mirroring rules.
Based on the operator given rule budget, Magnifier sorts the sentinels
according to the deployment strategies in Section 3.3.2. While iteration N-1

3.4 magnifier’s controller 31

Sampling
data

Iteration N-2 N-1 N

Mirrored
packets

Rule
deployment

Sentinel
computation

Figure 3.5: Magnifier’s control flow works in iterations based on the mirroring
rule deployment time. Rules for sentinels based on N-2 are deployed
in N-1 and active in iteration N.

is running, Magnifier pre-deploys the newly computed mirroring rules on
the routers. As soon as Magnifier deploys the last rule (or once we reach
the defined iteration time), it switches to iteration N and activates the pre-
deployed mirroring rules after deactivating the old ones. Finally, Magnifier
uses the collected sampled and mirrored data and the inferred ingress and
egress points from the newest sentinels to compute accurate and up-to-date
ingress/egress observations.

Magnifier’s API Magnifier’s API supports four distinct primitives. First,
enhance_subnet(S) returns the available ingress and/or egress data related
to subnet S. Second get_interfaces() returns the relationship between sen-
tinels and their interfaces. Magnifier can infer the corresponding interfaces
based on sampling data and/or the observed MAC addresses in mirrored
packets. Third, get_matrix() generates the most up-to-date ingress/egress
matrix. Each cell contains the number of observed packets and bytes (re-
ported by sampled packets) for an ingress/egress observation. In addition,
a validity bit indicates inferences that are currently validated with mirror-
ing rules. Finally, get_counts() outputs the number of found sentinels per
device grouped by sentinel type. In Section 3.5.4 we use this API call to
detect network problems based on data from a real Tier-1 ISP.

Magnifier’s controller placement Magnifier needs a central controller to
build its network-wide ingress/egress view. As we heavily depend on
sampled flow observations, it makes sense to co-locate Magnifier with the
e.g., already existing, central collector of the sampling data. In large ISP
networks, with routers around the globe, we can deploy additional sub-
controllers that start and stop the mirroring rules and collect mirrored

32 magnifier

packets. More precisely, the main controller is needed to compute new
sentinels and to build the final ingress/egress observations. It delegates mir-
roring to the sub-controllers which autonomously handle the deployment,
activation and deactivation of rules while reporting back any mirroring-
based observations.

3.5 evaluation

This section evaluates Magnifier in detail. After introducing the evaluation
setup (Section 3.5.1), we first focus on Magnifier’s performance in simulation
and on real hardware devices in our lab (Section 3.5.2). Afterward, we
perform a detailed comparison with the Everflow system (Section 3.5.3)
before we highlight that Magnifier also works with data from a real ISP
(Section 3.5.4).

3.5.1 Evaluation setups, datasets, and metrics

Setups We evaluate Magnifier in a simulation setup without any resource
constraints and a lab setup on real hardware with its corresponding limita-
tions. Our lab setup contains two Cisco Nexus 9300 switches (C93108TC-
FX) [62], and a larger Nexus 7009 switch (N7K-C7009) [63]: an older (re-
leased in 2011 and no longer sold) but more resourceful model that we use
for benchmark experiments.

In our labe setup (compare Figure 3.6), we establish four parallel con-
nections between the two Nexus 9300 switches, each emulating a network
ingress. The first switch receives and samples the traffic using sFlow with a
sampling rate of 1/4096, the highest configurable rate on this model, i.e., we
get the most samples. It then forwards to the second switch, which mirrors
the traffic according to the configured rules. Magnifier’s controller runs on
a server and collects sampling and mirroring data. As these switches are
limited to 512 mirroring rules, we used a fixed budget of 500 rules per
emulated ingress point. However, the four emulated ingresses share the
budget of 500 rules, which does not reflect a deployment on four individual
devices. Therefore, we use TCAM carving [64] to increase the space for
our mirroring rules to 2048 (by taking it from other features), to enable
the original budget (512) per ingress. Unless otherwise specified, Magnifier
prioritizes sentinels according to the activity ordering (Section 3.3.2).

3.5 evaluation 33

Nexus 9300 - 1

Nexus 9300 - 2

Server

Sampling data

Mirroring data

Magnifier Replayed CAIDA traffic

Control traffic

1 2 3 4

N 4 emulated
ingress points

Figure 3.6: Two Nexus 9300 switches emulate four network ingress points. The
traffic is replayed and sampled on the first switch, then forwarded to
the second, which mirrors packets.

Our simulation setup is an idealized version of the lab setup. It instan-
taneously starts mirroring for any prefixes, has unlimited memory space
for mirroring rules, and removes rules after their first mirrored packet. The
simulator is written in Python and publicly available [57]. Unless specified
differently, we always consider Magnifier’s iterations to be 60 s long. For
the N-th sentinel computations, we take sampling and mirroring data from
iterations N-1 and N-2 (compare Figure 3.5 in Section 3.4).

We focus on ingress sentinels in the evaluation, i.e., source IP prefixes
unique to one ingress. However, the results also apply to egress sentinels.
For example, BGP selects the best route for each prefix that is assigned
to a single egress. Magnifier identifies (part of) these prefixes as egress
sentinels (Section 3.5.4). As a result, one major problem is how to split
traffic over different ingress points: Magnifier’s performance depends on the
assumption that prefixes close in the IP space get routed similarly. We study
this dependency using three IP space to ingress mappings: random (least
favorable for Magnifier), static, and permuted (most favorable). The random

approach splits the destination IP space into n equal slices and assigns one
destination IP slice to each ingress point; as a result, source IPs are randomly
assigned to one ingress, and this assignment changes frequently. In our lab
setup, we use the following four slices: 1st 0.0.0.0/2; 2nd 64.0.0.0/2; 3rd
128.0.0.0/2; and 4th 192.0.0.0/2. The static approach assigns each source
/24 prefix statically to one random ingress point; however, close IP space is
still distributed over different ingresses. Finally, permuted splits the source

34 magnifier

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fraction of /24 src prefixes

fr
ac

ti
on

of
pa

ck
et

s

Figure 3.7: A CDF plot of the amount of packets observed per source /24 prefix
in 60 s (one iteration at real speed) in our CAIDA trace.

IP space into n equal slices and permanently assigns each slice to one of
the n ingresses. Then we permute a fixed percentage of /24 source prefixes
by moving them to different ingresses. This way, we preserve most of
the existing IP structure. A permuted 0% assignment results in a perfect
mapping for Magnifier.

Datasets We use two datasets: one actual packet trace based on CAIDA
data and NetFlow samples from a Tier-1 ISP.

The packet trace is based on a 2018 CAIDA trace [65] (1.5 billion packets;
one hour long), adjusted to be used in both our setups: (i) We modified
the packet MAC addresses to match the lab setup. (ii) We added random
payload bytes (removed from CAIDA traces) to match the specified packet
sizes. (iii) We moved all destination IPs from 224.0.0.0/4 to a different /4
prefix as this prefix is reserved for IP multicast and led to unexpected packet
forwarding on the switches. Replaying the trace at normal speed using
tcpreplay [66] exhibited anomalies (packet loss and delays). Therefore, we
slowed the replay by 10x, resulting in an average of 45k packets per second.
Our simulations also use normal and faster speeds to emulate increasing
traffic load.

Figure 3.7 shows a CDF of the amount of packets observed per source
/24 in 60 s of our CAIDA trace used in the evaluation. 60 s represent one
iteration at real-time replay speed. As we can see we have a very small
number of heavy hitters which carry most traffic as well as a huge number

3.5 evaluation 35

of /24 prefixes which only contain a few packets. Roughly 10% of all /24
prefixes contain more than 90% of all the packets.

A lot of the /24 prefixes with very low packet counts are most likely
DDoS attack traffic (e.g., TCP SYN packets). We decided to keep these
packets in the trace as a real ISP network could also observe similar packet
distributions in their transit traffic.

The second dataset contains sampled (rate 1/1024) NetFlow data from
all border routers (more than 100) belonging to a large Tier-1 ISP in Europe.
The dataset spans over one hour of peak time in the evening of a weekday
in 2018. The IP addresses are anonymized by replacing source and des-
tination IPs with the best matching prefix from the full BGP table or the
corresponding /24 prefix, whichever is more specific.

Metrics We use the following performance metrics and report the mean
over 60 iterations (30 for 2× replay speed).

coverage Quantifies the amount of traffic for which the ingress point is
correctly identified. We consider both per-prefix coverage – i.e., the
number of /24 covered – and per-packet coverage – i.e., the percentage
of covered packets from the input trace.

mirrored traffic volume Quantifies the overhead in terms of mir-
rored traffic, as a percentage of the total traffic.

mirroring rule space Quantifies the number of mirroring rules (ACL
entries).

deployment speed Quantifies how long it takes to either add new mir-
roring rules or deactivate an installed rule.

3.5.2 Magnifier’s performance

This section details Magnifier’s performance. We first show that Magnifier
greatly enhances the prefix coverage compared to sampling only (up to
80×) and that the ingress points are validated with mirroring rules. This is
achieved while mirroring less than 0.3% of traffic. We then analyze methods
to limit the number of mirroring rules required. Finally, we confirm that
Magnifier runs and performs well on real hardware.

36 magnifier

6.4 k
Sampling 3.18% 201 k

Active prefixes

Magnifier – random 4.28% 315 k
Magnifier – static 11.9% 373 k

Magnifier – permuted 20% 14.6% 519 k

Magnifier – permuted 5% 21.8%

Figure 3.8: Amount of covered /24 source prefixes by Magnifier and sampled
data assuming unlimited mirroring resources. 32 border routers, 1/1024
sampling rate, and real replay speed.

Coverage and mirrored traffic volume

We first use our simulation setup to evaluate Magnifier’s coverage in different
scenarios.

Setup We use our simulation setup and the CAIDA dataset. We vary the
trace replay speed (traffic load) and compare the coverage achieved by
Magnifier by using sampling only. We compute sentinels, install mirroring
rules at the start of each iteration, and compute their coverage values at the
end unless mirrored traffic invalidated them. Only valid ones count to the
shown coverage values (mean over all iterations).

Per-prefix results Figure 3.8 shows the per-prefix coverage with 32 bor-
der routers, 1/1024 sampling rate, and real-time replay speed. Sampling
covers ≈6.4k of the active /24 prefixes in the trace, for which we could
consider the corresponding ingress point as identified, although without
any confirmation that it is valid for all packets belonging to the /24 prefix.

By contrast, we immediately see that Magnifier enhances these infer-
ences for all different prefix-to-ingress mappings in at least two ways. First
the number of covered /24 prefixes increases to ≈200k (random), ≈315k
(static), ≈370k (permuted 20%) and ≈520k (permuted 5%) respectively. Sec-
ond, Magnifier covers prefixes that are currently active in the CAIDA traces
(dashed boxes). The active prefixes increase from ≈4% (random) up to ≈20%
(permuted 5%).

These observations highlight two principles of Magnifier: (i) our sentinel
heuristic greatly enhances the prefix coverage around sampled data; and (ii)
Magnifier remains a data-driven system. It has difficulties covering active

3.5 evaluation 37

0.1x 0.5x 1x 2x
0

0.2
0.4
0.6
0.8

1

traffic load

pk
t

co
ve

ra
ge

naive inference samples only
random static

permuted 20% permuted 5%

0.1x 0.5x 1x 2x
0.01

0.1

0.2

0.3

traffic load

m
ir

ro
re

d
pk

ts
(%

)

Sampling (not validated)
Magnifier (validated)

Figure 3.9: Amount of covered packets and mirrored traffic for different assign-
ment strategies and inferences based on sampled packets only. 32
border routers and 1/1024 sampling rate.

prefix space that is not sampled using sentinels of reasonable sizes – hence
the small % of active prefix coverage (Figure 3.8, stripes).

Even more important, for every sentinel validated by mirroring rules,
Magnifier immediately reports if an ingress inference is no longer valid or
enhances new flows (which get active over time) with ingress information.
These results are more visible in the per-packet coverage analysis.

Per-packet results Figure 3.9 shows the per-packet coverage (left) and mir-
rored traffic volume (right) with 32 border routers and a 1/1024 sampling
rate for varying replay speeds and traffic-to-ingress assignment strategies.

The left plot shows that Magnifier achieves an increasing per-packet cover-
age from ≈20% (random) up to ≈80% (permuted 5%) which can be surprising
given the lower active prefix coverage (Figure 3.8). This is explained by the
nature of the CAIDA trace, which contains a small number of heavy-hitters
and a lot of /24 source prefixes that only carry a few packets. 10% of source
/24 IP prefixes account for more than 90% of the packets in 60 s trace data
(Figure 3.7). Hence, Magnifier often samples and covers these prefixes with
sentinels.

These results nicely show the different trade-offs of our assignment strate-
gies. For random, the ingress of packets is constantly moving, which makes
it difficult to find valid sentinels, while at permuted 5%, the assignments
are static and Magnifier can often find large sentinels which cover a lot of
packets. The “real” coverage value is somewhere in between.

38 magnifier

To compare, Figure 3.9 also contains two sampling-based inferences
(without Magnifier’s enhancements). The violet line near zero represents
a lower bound. We only infer the ingress for the sampled packets. As
an upper bound, we consider all the sampled packets in the permuted 5%
assignment and naively assume that a single sampled packet immediately
reveals the ingress point for all other packets belonging to the same source
/24 prefix. Note that we can only plot these values because we have the
full ground truth data from the CAIDA trace. An operator would not know
if these inferences are correct. For bigger traffic loads, the upper bound
is better than Magnifier’s per-packet coverage. This is due to invalidated
sentinels: Magnifier searches for large sentinels based on sampled packets,
likely to come from heavy-hitter flows. Suppose a non-sampled /24 prefix
covered by that sentinel is mapped to a different ingress and carries even
only one packet. In that case, it triggers a mirroring rule and invalidates
the entire sentinel, and Magnifier loses all its coverage.

The right plot in Figure 3.9 shows a low percentage of mirrored traffic for
all assignment strategies (between 0.3% and 0.01%). As expected, a random

assignment often leads to invalid sentinels and thus more mirrored packets.

Finally, we observe that larger traffic loads yield better performance. With
more traffic, Magnifier collects more samples per iteration, computes more
accurate sentinels, and achieves better coverage and less mirrored traffic.

Conclusion Magnifier greatly increases the per-prefix coverage compared
to sampling (up to 80×) while validating all ingress points with mirroring
rules. Magnifier achieves this while mirroring less than 0.3% of traffic and
translates into a per-packet coverage of up to 80%.

Additional plots For completeness, we also show additional plots which
further evaluate Magnifier in terms of packet coverage and mirrored traffic.

Figure 3.10 shows the performance results if we consider an increasing
number of border routers (from 4 to 64). For random and static traffic
assignment we notice that the coverage slightly drops while we see an
increased amount of mirrored traffic. However, this is not true for the
permuted assignment strategies. random and static distribute the packets to
their ingress points based on equal slices of the destination IP space. If we
have more border routers, we also have additional slices and close IP space
is distributed over multiple ingresses which leads to the observed drop in
coverage. This is not true for the permuted cases, where we always permute
a fixed number of source /24 prefixes to different ingresses.

3.5 evaluation 39

4 8 16 32 64
0

0.2
0.4
0.6
0.8

1

border routers

pk
t

co
ve

ra
ge

naive inference samples only
random static

permuted 20% permuted 5%

4 8 16 32 64
0.01

0.1

0.2

border routers

m
ir

ro
re

d
pk

ts
(%

)

Sampling (not validated)
Magnifier (validated)

Figure 3.10: Simulation results for coverage and mirrored traffic when Magni-
fier runs with different amounts of border routers. CAIDA traces
replayed at real speed, sampling rate 1/1024.

256 512 1024 2048 4096
0

0.2
0.4
0.6
0.8

1

sampling rate (1/X)

pk
t

co
ve

ra
ge

naive inference samples only
random static

permuted 20% permuted 5%

256 512 1024 2048 4096
0.01

0.1

0.2

sampling rate (1/X)

m
ir

ro
re

d
pk

ts
(%

)

Sampling (not validated)
Magnifier (validated)

Figure 3.11: Simulation results for coverage and mirrored traffic when Magnifier
runs with different sampling rates. CAIDA trace replayed at real
speed, 32 border routers.

Figure 3.11 considers different sampling rates. As expected, if we have
fewer samples as input Magnifier can cover fewer packets and also produces
fewer mirrored packets as it finds fewer sentinels to begin with. We observe
this behavior for all traffic assignments.

40 magnifier

0.1x 0.5x 1x 2x
0

0.2
0.4
0.6
0.8

1
pk

t
co

ve
ra

ge

unlimited top 5k top 1k top 500

activity size

0.1x 0.5x 1x 2x
0

0.2
0.4
0.6
0.8

1

0.1x 0.5x 1x 2x

0.001

0.01

0.1

1

traffic load

m
ir

ro
re

d
pk

ts
(%

)

0.1x 0.5x 1x 2x

0.001

0.01

0.1

1

traffic load

permuted 5% static

Figure 3.12: Coverage and mirrored traffic amount for different top sentinels
ordered by activity or size.

Impact of limited mirroring budget

We now show that Magnifier also performs well when limiting the number
of mirroring rules installed per router.

Setup We use the same setup as before and compare the coverage achieved
by Magnifier with different bounds on the number of validated sentinels
for two sentinel selection strategies (Section 3.3.2): activity (covering most
sampled packets) and size (largest subnet sizes). The number of validated
sentinels is an upper bound for the number of mirroring rules required per
router; in the worst case, all sentinels belong to one router, resulting in one
rule per sentinel on all the other routers.

Results Figure 3.12 compares Magnifier’s per-packet coverage achieved with
different numbers of validated sentinels: 500, 1k, 5k and unlimited; using
the same settings as in Figure 3.9. We show results for the permuted 5%
(left) and static (right) assignment strategy, additional plots can be found
towards the end of this subsection.

More validated sentinels achieve a higher coverage and generate more
mirrored traffic. The top size sentinels have the highest chance of being

3.5 evaluation 41

Technique Covered /24 prefixes

Sampling 6.4k

[activity] top 500 static 4.1k

[activity] top 500 permuted 5% 29.4k

[size] top 500 static 9k

[size] top 500 permuted 5% 47.3k

Table 3.1: Covered /24 source prefixes by Magnifier and sampling only consid-
ering the top 500 sentinels (activity and size ordering) in the static

and permuted 5% assignments.

invalidated by un-sampled prefixes and generate more traffic than their
activity counterparts.

The activity selection achieves much better per-packet coverage than
size, which is expected since activity prioritizes sentinels covering the
most active prefixes. As the trace contains many heavy-hitters, even as few
as 500 sentinels are enough to yield good packet coverage. Note that for
0.1× traffic load in the top left plot, the number of sentinels is smaller than
5000, resulting in the same coverage values for activity and size. We also
see that the activity coverage values remain more or less constant even if
the traffic load increases which is not the case for size.

The size selection favors sentinels centered around sparse samples in
a relatively empty prefix space; this results in a low per-packet coverage
(Figure 3.12), but in a large per-prefix coverage (Table 3.1). As we can see,
activity really prioritizes sentinels around a few selected prefixes resulting
in fewer covered prefixes than sampling (static assignment). However, a
size ordering can easily exceed the number of covered prefixes by up to
seven times, even if we only take the top 500 sentinels.

Conclusion Magnifier’s performance is maintained when limiting the de-
ployed mirroring rules. The top 1k activity sentinels are sufficient to
achieve up to ≈50% packet coverage while mirroring less than 0.05% of
traffic (static case).

Additional plots Figure 3.13 shows the missing assignment strategies
(random and permuted 20%) if we consider different amounts of top sentinels
(activity and size ordering). Following the results in Figure 3.12, the

42 magnifier

0.1x 0.5x 1x 2x
0

0.2
0.4
0.6
0.8

1
pk

t
co

ve
ra

ge

unlimited top 5k top 1k top 500
activity size

0.1x 0.5x 1x 2x
0

0.2
0.4
0.6
0.8

1

0.1x 0.5x 1x 2x

0.001
0.01
0.1

1

traffic load

m
ir

ro
re

d
pk

ts
(%

)

0.1x 0.5x 1x 2x

0.001
0.01
0.1

1

traffic load

permuted 20% random

Figure 3.13: Simulation results for coverage and mirrored using different amount
of top sentinels according to a activity and size ordering. We show
the random and permuted 20% traffic assignment strategies (compare
with Figure 3.12). The plots show values for different traffic replay
speeds of the CAIDA trace with 32 border routers and sampling rate
of 1/1024.

activity strategy provides better coverage than size and a lower amount
of mirrored traffic.

Stability of sentinels

Following, we evaluate how many sentinels change between simulation
iterations.

Setup We use the results from our simulations with 32 border routers,
real traffic speed and various traffic-to-ingress assignments (sampling rate
1/1024). The results show mean values over 60 iterations.

Results Table 3.2 shows the number of changed sentinels for different
amounts of deployed sentinels (based on activity and size ordering) for
random, static and permuted 5% traffic assignment. We first observe that we
have to change fewer sentinels if we base the ordering on sentinel activity.
More active sentinels are often also stable over longer periods of time which

3.5 evaluation 43

ordering # sentinels random static permuted 5%

activity

Top 100 84 50 35

Top 500 406 292 220

Top 1000 836 610 466

Top 5000 4487 3662 2769

size

Top 100 94 87 45

Top 500 472 453 224

Top 1000 950 918 461

Top 5000 4817 4698 2776

Table 3.2: Number of changed sentinels between iterations for different assign-
ment and sentinel ordering strategies.

means that we find them consistently. We see a different behavior for the
ordering based on size. Here nearly all sentinels change between iterations.
The largest sentinels are often based on sparse samples located in empty
prefix space. That means, we might not be able to find the same big sentinel
between multiple iterations if the covered flows are no longer visible (e.g.,
in the sampled data).

As expected, the number of changed sentinels also depends on the
difficulty of the traffic assignment. In the random case, ingress assignment
changes frequently even during a single iteration. That means we often find
new sentinels in the following iteration. For permuted 5%, the assignment
is much more stable and we can always keep around 50% of all sentinels
between iterations.

Conclusion The top sentinels often change between iterations, however
Magnifier is not really impacted by that. As we describe in Section 3.3.1,
Magnifier works with two ACLs and switches between them. While one is
active, the other one gets populated. The frequent sentinel changes between
iterations are therefore not a big problem as we anyway need to build a
completely new ACL.

Comparison with the lab setup

We now show that our hardware-based results match the simulation ones,
validating Magnifier’s performance in practice.

44 magnifier

297Sim Sampling

268Hw Sampling

10.4 kSim Top 500 – activity

8.7 kHw Top 500 – activity

Figure 3.14: Covered /24 source prefixes by Magnifier and sampled data in sim-
ulations and on Nexus 9300 switches. random assignment, 1/4096
sampling rate, and 0.1× replay speed.

Setup We use our lab setup (Nexus 9300 switches), which has two main
differences from the simulation: we only have 500 mirroring rules per router,
and there are delays to install and delete rules. We use the random assign-
ment strategy and fill the 500 mirroring rules with the top 500 activity

sentinels. For a fair comparison with the simulation, we consider iteration
times of 60 s. Magnifier needs ≈20 s to install all mirroring rules and then
activate them. Afterward, we start to delete the rules which mirror packets.
We compare this with the corresponding simulation results i.e., 4 border
routers, 1/4096 sampling rate, and 0.1× replay speed.

Results Figure 3.14 shows the amount of covered /24 prefixes for sampled
data only and the validated sentinels. We first notice that the coverage
for sampled packets in our simulation (297) is slightly higher than on the
switches (268). This can be explained by the different setups. All four ingress
routers run on one Nexus 9300 (Section 3.5.1), which is not transparent to the
sFlow-based sampling unit. Therefore, we get random packet sampling over
all the traffic while the simulation performs packet sampling for each ingress
device independently. This also shows in the achieved coverage values
using the top 500 activity sentinels: ≈10.4k prefixes in the simulation,
≈8.7k prefixes on the hardware. We also have to consider that we need
additional time to deploy the mirroring rules on the switch. Thus, a few
more sentinels get invalidated compared to the simulations; and no longer
count to the coverage values. The packet coverage values (not shown) are
also comparable between the simulation (17.0%) and the hardware (16.1%).

Finally, we evaluate the percentage of mirrored traffic. We notice that the
deactivation of active mirroring rules works well. In the worst case (active
rules mirror for the entire 60 s), Magnifier would mirror 2.3% of the overall
traffic. This value is reduced to 1.4% if we start to deactivate rules. However,
we are still above the optimal simulation results (less than 0.1%), where we
can deactivate mirroring instantaneously.

3.5 evaluation 45

Number of rules 100 500 1000 2000 5000

Nexus 9300 3.5s 5.5s 8.4s 17.8s 112s

Nexus 7009 2.6s 7.5s 21.7s 74.9s 475s

Table 3.3: Mirroring rule deployment times.

Conclusion The hardware results closely follow our simulations regarding
achieved coverage. However, Magnifier needs more time to install and
deactivate mirroring rules, resulting in additional mirrored packets. To
reduce the amount of mirrored traffic, operators can use existing hardware
features to rate-limit the mirrored traffic on the switch [67].

Micro-benchmarks

In the following subsection, we perform micro-benchmarks on the hardware
switches to assess (i) how many mirroring rules each device supports, how
long it takes to (ii) deploy them, and (iii) deactivate them.

Results–Mirroring rule space With the default configuration of the Nexus
9300 switch, we can deploy 512 rules and up to 2048 in the current lab
setup (TCAM carving [64]). On the Nexus 7009, we can deploy ≈32k rules
using one TCAM bank and ≈128k rules if we chain all four TCAM banks
together.

Results–Rule deployment time We measure how long it takes to deploy
a set of mirroring rules on our two devices. During our tests, we realized
that deploying the rules over multiple parallel sessions between Magnifier
and the switches is beneficial. Four parallel sessions worked well for us.
Table 3.3 shows the mean deployment times over ten measurements each.
They include the session setup and round-trip time between Magnifier and
switch. We see that the deployment time is not strictly linear in the number
of rules. We conjecture that caches and buffers allow deploying a small
number of rules quickly, but this no longer works for larger number of
rules. We also see that the (newer) Nexus 9300 switch needs less time than
the Nexus 7009. We can deploy 2000 rules in ≈18 s, which matches our
observations in Section 3.5.2 (500 rules for 4 ingresses on one device). We
expect that the rule deployment time will continue to decrease with more
powerful/newer devices.

46 magnifier

Note that even if we cannot activate 5k+ rules on the Nexus 9300 switch
with the current TCAM carving (Section 3.5.1), we can still deploy them.
Overall, these results confirm Magnifier’s design (Figure 3.5) which aligns
the iterations to the rule deployment time. Especially as the sentinel com-
putation time is negligible (≈1 s on the CAIDA trace).

Results–Rule deactivation time We finally measure the rule deactivation
time on the Nexus 9300 switch. We generate 100 ping probes per second and
deactivate a matching mirroring rule as soon as we receive the first mirrored
probe. The deactivation time is the difference between the timestamp of the
first and last mirrored probe, including the round-trip (≈0.5 ms) and session
setup time between switch and controller. This setup is representative of
an ISP deployment where close, dedicated control servers could quickly
deactivate rules (Section 3.4). We repeated the experiment ten times. The
mean deactivation time is 1.65 s (min: 1.62 s, max: 1.73 s). In the worst case,
we would receive a burst of traffic for ≈1.7 s. The amount of mirrored
packets can be further reduced by rate-limiting the mirrored traffic directly
on the switch; we expect this would not affect Magnifier’s performance, as a
single mirrored packet is enough to invalidate a given sentinel.

Conclusion Our tests show that hardware switches can contain thousands
to tens of thousands of mirroring rules, which is more than sufficient for
Magnifier. Mirroring rules can be deactivated quickly (≈1.7 s), which limits
the risk of bursts of mirrored traffic. The rule deployment is the most
time-consuming operation (≈20 s for 2k rules). As a result, we can adjust
the number of deployable mirroring rules (number of validated sentinels)
by changing Magnifier’s iteration time.

3.5.3 Comparison with Everflow

We compare Magnifier with Everflow [68] which is a monitoring tool de-
signed for debugging datacenter networks. Like Magnifier, Everflow ran-
domly samples packets (using mirroring rules). In addition, it also mirrors
all TCP SYN, FIN, and RST packets. As far as we know, the Everflow code
is not available. Therefore, we reimplemented the relevant features and
integrated them into our simulation framework.

Implementation details Everflow uses packet mirroring to produce its
random packet samples. The paper [68] explains that Everflow mirrors
based on a fixed number of bits in the IP identification header field (IPID).

3.5 evaluation 47

As an example, selecting 10 random bits in the IPID field will result in
random packet sampling of 1 out of 210 = 1024 packets. However, this
assumption is only true if the values in the IPID fields are more-or-less
uniformly distributed. Taking our CAIDA trace as an example, we see that
we have a huge number of packets which set the IPID field to zero. De-
pending on how we select the bits in the IPID field, we might get way more
or fewer sampled packets than expected. For this reason, we implemented
the random packet sampling aspect of Everflow in our simulation code by
taking every n-th packet observed on a device, e.g., every 1024th packet in
the previous example.

Additional to the implemented mirroring techniques (random packet
sampling and TCP flag packets), Everflow also supports mirroring of pack-
ets with a special debug bit. As this was not relevant for a comparison with
Magnifier, we did not implement this feature in our simulation code. The
same holds for Everflow’s controller, storage and reshuffler components.

Setup We use our simulation setup and the CAIDA dataset, 32 border
routers, a sampling rate of 1/1024 (for both systems), and we vary the trace
replay speed. We compare the performance of Magnifier and Everflow on
the static and permuted 5% traffic-to-ingress mappings. Additional plots
can be found towards the end of this subsection.

Results Figure 3.15 shows the per-packet coverage and mirrored traffic
of both systems. We consider three different approaches: (i) “Everflow
sampling only”, where we rely only on Everflow’s sampled packets to
compute the ingress points; (ii) “Everflow sentinel”, where we use the
sentinel idea on top of Everflow’s sampled packets; and (iii) “Magnifier
unlimited” and “top 1k activity”, where we report Magnifier’s coverage
for all and the 1k most active sentinels.

We first look at the coverage values (top plots in Figure 3.15). Everflow’s
sentinel approach shows the best – although not validated – coverage values
with up to 88% in the permuted 5% case. This is due to Everflow’s sampled
TCP flag packets. We do not reach 100% as traffic in some /24 prefixes
is neither randomly sampled nor does it contain any TCP flags. These
prefixes can invalidate found sentinels. Note again that the ground-truth
data from the CAIDA trace allows us to compute these values. Everflow
does not deploy any validation mirroring rules and does not know about
the sentinel’s validity. Magnifier follows closely with ≈80% (unlimited) and
≈60% (top 1k) coverage as we only have randomly sampled packets as
input. Despite that, Magnifier manages to reach good coverage values, with

48 magnifier

0.1x 0.5x 1x 2x
0

0.2
0.4
0.6
0.8

1
pk

t
co

ve
ra

ge

sentinel sampling only
unlimited top 1k activity

0.1x 0.5x 1x 2x
0

0.2
0.4
0.6
0.8

1

0.1x 0.5x 1x 2x
0.001
0.01
0.1

1
10

traffic load

m
ir

ro
re

d
pk

ts
(%

)

0.1x 0.5x 1x 2x
0.001
0.01
0.1

1
10

traffic load

permuted 5% static

Everflow (not validated)
Magnifier (validated)

Figure 3.15: Comparison of coverage and mirrored traffic for Magnifier and Ever-
flow under different traffic loads.

validation from mirroring. Both systems’ coverage values decrease in the
more difficult static approach. For completeness, we also show Everflow’s
coverage if we only consider the sampled packets. This results in a poor
packet coverage, although on a higher level than the “sampling only” line
in Figure 3.9 given that Everflow additionally also samples all TCP packets
with SYN, FIN, and RST flags. These coverage values are constant between
both assignment strategies as we observe the same TCP flag packets and
roughly the same random samples.

Everflow’s increased coverage has a high cost in the amount of mirrored
traffic (lower plots in Figure 3.15). Everflow generates the randomly sampled
and TCP flag packets as mirrored traffic by design. Magnifier however, only
generates targeted mirrored packets to validate found sentinels. If a sentinel
is valid, it does not mirror any traffic. This is visible in the corresponding
fraction of mirrored traffic.

Everflow constantly mirrors ≈5% of all traffic while Magnifier is more
than one magnitude lower (≈0.1% of all traffic at real-time replay speed in
the static case). This value decreases even further if we only consider the
most active sentinels. We again observe that Everflow mirrors roughly the
same amount of packets for both assignment strategies.

3.5 evaluation 49

4 8 16 32 64
0

0.2
0.4
0.6
0.8

1
pk

t
co

ve
ra

ge

sentinel sampling only
unlimited top 1k activity

4 8 16 32 64
0

0.2
0.4
0.6
0.8

1

4 8 16 32 64
0.001
0.01
0.1

1
10

border routers

m
ir

ro
re

d
pk

ts
(%

)

4 8 16 32 64
0.001
0.01
0.1

1
10

border routers

permuted 5% static

Everflow (not validated)
Magnifier (validated)

Figure 3.16: Comparison of coverage and mirrored traffic for Magnifier and Ev-
erflow for different amounts of border routers. We show the static

and permuted 5% traffic assignment. We replay the CAIDA trace at
real speed and use a sampling rate of 1/1024.

Conclusion Everflow yields better coverage but generates more mirrored
traffic, which is more than one order of magnitude higher than Magnifier.
Unlike Everflow, Magnifier validates the inferred ingress points, informing
the controller as soon as a sentinel is no longer valid. In contrast, Everflow
might need to wait a long time before receiving a mirrored packet indicative
of an ingress point change, especially for long-running flows that do not
often have corresponding TCP flags. In terms of mirroring rules, Everflow
only needs around 20 of them [68]. Magnifier needs more mirroring rules
but also uses them for validation – something that Everflow cannot achieve.

Additional plots In this section we show additional comparison plots
between Magnifier and Everflow. Figure 3.16 shows different number of
ingress routers while Figure 3.17 considers varying sampling rates. For both
figures we show the results for permuted 5% and static traffic assignments.
Everflow’s packet coverage and amount of mirrored packets show only small
reactions to the different ingress routers and/or sampling rates. Everflow’s
mirrored packets mainly contain packets due to TCP SYN, FIN or RST flags.
The randomly sampled ones contribute only in a small amount. As a result,
changes in the sampling rate (Figure 3.17) have more impact on Magnifier

50 magnifier

256 512 1024 2048 4096
0

0.2
0.4
0.6
0.8

1
pk

t
co

ve
ra

ge

sentinel sampling only
unlimited top 1k activity

256 512 1024 2048 4096
0

0.2
0.4
0.6
0.8

1

256 512 1024 2048 4096
0.001
0.01
0.1

1
10

sampling rate (1/X)

m
ir

ro
re

d
pk

ts
(%

)

256 512 1024 2048 4096
0.001
0.01
0.1

1
10

sampling rate (1/X)

permuted 5% static

Everflow (not validated)
Magnifier (validated)

Figure 3.17: Comparison of coverage and mirrored traffic for Magnifier and Ever-
flow for different sampling rates. We show the static and permuted

5% traffic assignment. We replay the CAIDA trace at real speed and
distribute traffic over 32 simulated ingresses.

than on Everflow. Magnifier’s performance is tightly related to the amount
and distribution of the randomly sampled packets.

3.5.4 Sentinels in Tier-1 dataset

We now validate the practicality and benefits of sentinel-based monitoring
by evaluating Magnifier on Tier-1 ISP data.

Existence of sentinels

Setup We divide our Tier-1 dataset into 30 s slices over which we compute
sentinels and report the number of found ingress and egress sentinels.
We only have sampling data available. Thus, we can only approximate the
number of sentinels that would be found if Magnifier was deployed with
mirroring.

3.5 evaluation 51

0 3 6 9 12 15 18
0

200
400
600

time [min]

fo
un

d
se

nt
in

el
s

ingress sentinels
egress sentinels

0 3 6 9 12 15 18
0

500
870

1420

time [min]

fo
un

d
se

nt
in

el
s

affected router
evasion router

Figure 3.18: A temporary router outage (gray block) decreases the number of
found sentinels (left) while we see similar increases on a close router
(right).

Results We find a median of 145k egress sentinels and a median of 174k
ingress sentinels. The lower and upper quartiles are within 1.4k around the
median values in both cases.

We observe that we find more ingress than egress sentinels. This results
from the typical forwarding behavior observed in an ISP: traffic from each
of the ISP’s customers, which own specific prefixes, tends to enter via a
single ingress point, which leads to a high number of ingress sentinels. At
the same time, most ingress traffic goes to few popular destinations, which
leads to few egress sentinels. We also see that the number of (ingress and
egress) sentinels is stable over time, as shown by the small quartile ranges.

Conclusion We confirm that we find sentinels based on real sampling data
from a Tier-1 ISP network. Furthermore, the number of sentinels is stable
over time; this suggests that large changes in sentinel numbers can be used
as a signal to detect various network events, which we discuss next.

Per-device sentinel changes

Setup We divide our Tier-1 dataset into 30 s slices over which we compute
sentinels using Magnifier, focus on the number of sentinels found per
border router, and search for large changes in the number of sentinels over
consecutive slices.

Results Figure 3.18 shows the number of sentinels found following a single
border router outage. As expected, Magnifier finds no more sentinels for the
affected router. More interestingly, Magnifier also detects where the affected
traffic was re-routed during the outage, as shown on the right: the number

52 magnifier

0 10 20 30 40

11k

12k

13k

14k

time [min]

eg
re

ss
so

ur
ce

se
nt

in
el

s Normal

prefix flows

P1 70

P2 63

P3 56

P4 55

P5 49

DDoS-like

prefix flows

DDoS1 3700

DDoS2 3560

P1 72

P2 65

P4 47

Figure 3.19: A sudden burst of egress source sentinels (left, gray blocks) is likely
to result from a DDoS-like event (right).

of egress sentinels of a geographically-close router increases shortly after
and closely matches the number of lost sentinels.

Figure 3.19 (left) shows a router with a burst of egress source sentinels
(traffic from a given subnet exiting via a unique egress point) while no
other router shows a matching decrease. Thus, we observe a sudden burst
of packets from “new” source IPs towards a few destinations (table, right),
indicating a possible Distributed Denial of Service (DDoS) attack. During
this event, the egress traffic volume increased by less than 8%, which is less
pronounced than the clear increase in sentinels. Magnifier also identifies the
ingress of more than 75% of the “attack” flows via their ingress sentinels.
Existing volumetric DDoS detection systems could use this information to
block the DDoS traffic at the network ingress.

Conclusion Changes in the number of found sentinels reveal interesting
network events. Operators could analyze the collected sampling data this
way, even if they do not have the resources to deploy mirroring. With mir-
roring, Magnifier detects such changes in sub-seconds, long before similar
events are visible in sampled flow data or SNMP counters.

3.6 related work

Sampling-based network monitoring Many systems use NetFlow [51],
J-Flow [69], sFlow [52] or related flow extraction tools for network measure-
ments. Sampling suffers from a fundamental trade-off between coverage
and accuracy. For example, Teixeira et al. [70] use NetFlow data to detect
egress changes due to BGP hot-potato routing but are limited by the col-

3.6 related work 53

lected ten-minute bins. In addition, Cunha et al. [71] uncover measurement
artifacts in two J-Flow implementations.

Consequently, several works aim to improve sampling by optimizing
the collection process. Estan et al. [72] propose router software updates to
dynamically adapt the NetFlow sampling rate depending on the available
traffic and memory amount. FlowRadar [73] uses flow sets to count flow
observations in multiple array cells, then combines and decodes these coun-
ters centrally. Similarly, Flowyager [74] introduces Flowtrees, an efficient
data structure to store flow information. These approaches are all limited
by the sampling information. A key difference of Magnifier is to further
improve the network visibility by leveraging mirrored traffic.

Mirroring-based systems Several monitoring systems use mirroring, which
provides accurate visibility over a subset of the traffic, flows, or devices.
Stroboscope [7] supports query-based monitoring under a strict budget
of mirrored traffic. Everflow [68] provides the possibility to mirror some
packets of every flow, e.g., by mirroring packets with special TCP flags
or debug header bits. Planck [53] takes a radical approach and mirrors
all traffic over a single router port, which provides detailed insights but
can also overload the network devices. Mirroring has also been used for
troubleshooting [75], SDN monitoring [76], on in-network analysis [77, 78].

Mirroring suffers from three problems: (i) the flows of interest must be
known in advance; (ii) it is limited by the routers’ mirroring capacity, and
(iii) it generates a potentially high volume of traffic. Magnifier mitigates
these problems by leveraging sampling to derive the mirroring rules to
deploy and uses negative mirroring to limit the traffic overhead.

In-network monitoring There has been many recent proposals for perform-
ing in-network monitoring based on in-band telemetry (e.g., [55, 56, 79–81])
or sketches (e.g., [54, 82–85]). Both approaches boil down to implementing
highly efficient data structures to gather traffic statistics, e.g., packet counts.
The main limitation is that these approaches depend on software-defined
or P4-programmable hardware, which is not commonly deployed in ISP
networks nowadays. Moreover, these approaches provide precise informa-
tion, but over specific queries only; setting and collecting counters to track
ingress and egress points of an arbitrarily large number of IP prefixes is
hard to scale. Negative mirroring addresses this: while Magnifier’s infer-
ences are correct, there is no traffic nor compute overhead – only TCAM
usage. Packets that do get mirrored provide exact information – i.e., source
and destination IP – which allows for quick and precise reactions.

54 magnifier

Detection of ingress/egress Magnifier is designed to detect traffic ingress
and egress points, which has been previously studied: Feldmann et al. [86]
provide foundation work for detecting different flow types in ISP networks
as well as the ingress and egress of observed flows. To achieve good results,
they need per-flow measurements on the ingress and up-to-date router
forwarding tables, which are both costly to obtain. Mahajan et al. [87] use
algorithms similar to our sentinel idea to build so-called “aggregates”,
a collection of packets with a common property, to free congested links.
However, it is unclear how they extract the traffic to build the aggregates
or validate their assumptions. Peng et al. [88] run a change point detection
algorithm to detect changes in the number of new IP addresses, which is a
good metric to detect (the ingress) of DDoS attacks. Most of these systems
lack the global ingress/egress view that Magnifier provides.

Traffic matrix estimation Soule et al. [89] compare different techniques
based on bias and variance properties. They show that direct measurements
are required to reduce bias, which is an expensive process. Papagiannaki
et al. [90] observe that the node fanout, e.g., how traffic from an ingress is
distributed towards different egresses, is stable over time. Magnifier con-
firms and leverages this behavior: sentinels are stable over time, which
creates a valuable monitoring signal (Section 3.5.4). With mirroring, Magni-
fier also quickly detects changes and updates its traffic matrix estimation.
OpenTM [91] uses a different approach, based on active polling of every
source-destination pair, which is very precise but does not scale to large
networks. Malboubi et al. [92] addresses the special case of SDN networks,
which limits the system’s applicability. Pingmesh [93] frequently generates
pings to compute latency matrices. By contrast, Magnifier does not require
active measurements and runs on traditional routers, which makes it easy
to deploy in various networks.

Monitoring frameworks Several monitoring frameworks support rich sets
of queries, e.g., [78, 94, 95]. In particular, Flowyager [74] is similar to Magni-
fier as it builds primarily on sampling. The downside of these frameworks
is their complexity and extensive storage and computational resource re-
quirements. By contrast, Magnifier focuses on performing ingress/egress
monitoring with little overhead.

3.7 conclusion and further use cases 55

3.7 conclusion and further use cases

Precise observations of traffic ingress and egress points are difficult to infer
in large networks. This dissertation chapter showed how Magnifier combines
the global view of sparsely-sampled flow observations with precise, targeted
information from mirrored traffic. Magnifier enhances observed flows with
validated ingress and egress points and scales to the largest networks while
only generating a small amount of mirrored traffic. The inferred ingress
and egress observations are one example of internal path properties.

In Section 3.5.4, we already showed two direct use cases of Magnifier.
Based on sampled NetFlow data from a tier 1 ISP, Magnifier detects device
outages and possible DDoS attacks. However, Magnifier’s precise and vali-
dated ingress and egress inferences also constitute valuable inputs to other
systems, which either use them as input parameters or perform further
analysis on top of them, as we highlight in the following paragraphs.

Magnifier’s visual output allows for fast network health checks. Operators
can easily visualize Magnifier’s output in a matrix form (e.g., Figure 3.1b) or
by filtering the output for specific IPs or prefixes. Discussions with operators
and related work (e.g., [93]) show that visual representations are essential to
quickly assess a network’s health. For example, in a matrix view, Magnifier’s
focus on ingress/egress observations shows clear patterns should a specific
border router fail (i.e., rows or columns with missing/fewer observations).
Additionally, we believe a visual representation helps to communicate with
customers who might not be network experts. Outputs which purely focus
on numbers or convoluted log messages are more difficult to understand.

Stroboscope can use Magnifier’s output to answer user queries. Magnifier’s
ingress and egress observations build a valuable input to our Stroboscope
system [7]. Similarly to Magnifier, Stroboscope uses short slices of mirrored
traffic to answer user queries while adhering to a defined mirroring budget.
However, unlike Magnifier, Stroboscope infers properties of the entire inter-
nal packet path. This flexibility, though, comes at the cost of mandatory
user queries. As a result, operators face the following challenge: Writing
precise queries which adhere to Stroboscope’s mirroring budget necessitates
existing pre-knowledge about where we should observe which traffic.

For this task, Magnifier’s observations are beneficial as they allow an oper-
ator to identify ingress and egress points in order to formulate Stroboscope
input queries. One specific use case would be the following: After receiving
a ticket from a customer who observes suboptimal network performance,

56 magnifier

the operator first looks at Magnifier’s output to identify where the customers’
packets enter or exit the network. With this knowledge, the operator then
formulates an input query to Stroboscope, asking for detailed information
about the full internal network path and potential packet drops.

We envision at least two different deployment strategies which allow
both systems to share the mirroring resources: (i) they operate in turns,
i.e., Magnifier first builds an updated ingress/egress matrix during time
slot N and Stroboscope then answers specific user queries during time slot
N + 1; or (ii) Magnifier permanently runs on all border routers providing
up-to-date ingress/egress observations while Stroboscope runs on top of
the internal (so-called backbone or core) routers inferring query-specific
insights related to internal paths.

More generally, Magnifier’s output reveals where to collect data-plane
signals. Generalizing the previous example, we observe that Magnifier’s
ingress and egress observations reveal where to collect additional data-
plane signals using other systems. This is especially important to infer
external path properties, i.e., related to paths outside the network Magnifier is
deployed in. Even better, Magnifier’s focus on the network border implicitly
filters out unwanted noise due to paths inside our network. The following
chapter shows how we use Round-Trip Time (RTT) signals collected at the
network border to detect certain BGP hijacks.

4
PAT H - P R O P E RT Y- B A S E D H I J A C K D E T E C T I O N W I T H
O S C I L L O S C O P E

In Chapter 3, we saw how Magnifier infers and validates ingress and egress
points of packets inside a single network or AS. That dramatically simplifies
the process of assessing where operators must collect signals to gather
insights about external path properties. Additionally, Magnifier’s detection
of ingress or egress movements (i.e., invalid sentinels) already constitutes
an interesting signal in itself. This chapter explores some relevant signals
and methods to infer external path properties such as BGP hijacks.

More precisely, we first introduce the high-level idea of how BGP hijacks
influence external packet paths and, therefore, one specific signal that
operators collect locally, namely the Round-Trip Time (RTT) (Section 4.1).
Intuitively, the observable RTT will increase if a packet needs to wait or
make a detour before it reaches the intended destination. BGP hijacks might
result in packet losses (i.e., lack of RTT signals) in case of a blackhole
attack or an increased (decreased) RTT in case of an interception attack.
We then extend the well-known RTT extraction methods in TCP flows
(compare Section 2.4) with new ideas to extract RTT signals in encrypted,
privacy-aware transport protocols.

Finally, we introduce our system called Oscilloscope (Section 4.3), which
detects BGP hijacks based on changes in the RTT signal. Given that RTT
signals are often noisy and a direct mapping from path properties (i.e.,
a BGP hijack) to an observable signal reaction is not always possible or
conclusive, we show two key concepts to reduce the uncertainty: (i) sig-
nal aggregations based on domain-specific knowledge to strengthen the
intended observations (Section 4.4); and (ii) statistical tests to validate some
of the observations by comparing samples from different signal aggregation
sets (Section 4.5). Oscilloscope uses both concepts. Afterwards, we evaluate
Oscilloscope’s performance in various emulated networks (Section 4.6) as
experiments in the real Internet are difficult and raise ethical questions.
We conclude the chapter with a related work discussion (Section 4.7) and
highlight remaining challenges and future work (Section 4.8).

57

58 oscilloscope

Personal contributions The latter parts of this chapter mainly focus on the
Oscilloscope system [4]. Two PhD students were working on this project: my-
self (Tobias Bühler), leading the project, and Alexandros Milolidakis (PhD
student at KTH Royal Institute of Technology). This chapter of my disserta-
tion is only based on paper sections that directly reflect my contributions,
namely:

• 1. Introduction;

• 3. Overview;

• 4. Large-Scale Data-Plane Change Detection;

• 5. Validation and Analysis of Changes;

• 6.2. Hijack dataset;

• 7.1. Oscilloscope’s accuracy;

• 7.2. Classification delay;

• 7.3. Computational overhead;

• and 8. Discussion.

Alexandros Milolidakis was mainly contributing to the following paper
sections:

• 2. Background, Related Work, and Motivation;

• 6.1. Mini-Internet emulation;

• 7.4. Availability of buddies;

• and Appendix A. The Stealthy Hijacker.

Results from these parts will only be cited (if needed) and are not directly
used in the remaining parts of this chapter (except for the related work
subsection). Our IMC poster [11] and journal paper [12] give additional
information to Alexandros Milolidakis’ main work.

4.1 bgp hijacks and rtt changes

This section highlights the general problem and motivates our BGP hijack
detection approach with a simple experiment in a cloud-based setup. We
conclude with a discussion of other interesting path signals.

4.1 bgp hijacks and rtt changes 59

4.1.1 BGP hijacks are an ongoing problem

BGP hijacks have plagued the Internet over the last decade, targeting crit-
ical societal services (e.g., finance services) [18], the core of the Internet
infrastructure (e.g., the DNS system) [96], and citizens (e.g., for surveillance
purposes) [97]. Even worse, several BGP hijacks have gone unnoticed for a
long time [98]. The core problem is the lack of in-built security mechanisms
in the inter-domain routing protocol, i.e., the Border Gateway Protocol
(BGP), which makes launching a BGP hijack attack a simple task. Any
network can falsely announce itself in BGP as the legitimate owner of any
IP prefix, and all other networks will trust such an announcement. So,
when the attacker’s BGP announcement propagates in the Internet, some
networks will reroute their traffic towards the attacker’s network.

Defenses to BGP hijacks aim to prevent them entirely or detect them
reliably. Existing solutions to prevent hijacks incorporate cryptographic
operations into BGP to verify the exchanged messages. However, complete
prevention is tough to achieve. For example, BGPSec [99] faces insurmount-
able deployability barriers, while RPKI [100] only protects against limited
hijack types. Proposals to detect hijacks, in contrast, are often easy to deploy
but have other shortcomings. Control-plane-based solutions are inherently
limited by the visibility of their vantage points and cannot detect all attacks
(as we show in related work [4, 11]). Data-plane-based systems (e.g., [101])
often require a large number of active probes, which leads to scalability
problems, or they can only detect specific hijack types (e.g., blackholes).
Instead, we envision a system that uses passively collected Round-Trip
Time (RTT) samples, a signal which (i) is easy to extract (e.g., shown in [47]),
and (ii) inherently connects to BGP hijacks, as the following experiment
illustrates.

4.1.2 Motivational experiment

Performing experiments with BGP hijacks in the real Internet is challenging
and quickly raises ethical questions, even if the “hijacked” prefix space is
under our control. We, therefore, found the following compromise, which
exposes some of the experiment traffic to the real Internet (important as
our ideas focus on data-plane signals) while avoiding ethical problems.

60 oscilloscope

DigitalOcean

AWS

ETH (collection)

Traffic end point

Hijacked path

Normal path

Return path

Ohio

Sydney

Mumbai

Stockholm

London

Figure 4.1: Multiple VMs in two different cloud providers build a global network
to motivate our ideas. The VMs in Mumbai and Stockholm perform
BGP interception hijacks.

Setup We deploy nine cloud VMs of two different providers (Digital-
Ocean [102] and Amazon AWS [103]) around the globe. Figure 4.1 shows the
setup in detail. Between the different VMs, we establish so-called Generic
Routing Encapsulation (GRE) [104] tunnels which encapsulate all the ex-
changed IP packets in another IP header. That has two advantages: (i) we
can select arbitrary IP addresses and prefixes for the applications running
inside the VMs. Their traffic is then encapsulated with the IPs given to us
by the cloud providers. And (ii) the encapsulated packets cross the “real”
Internet when they travel between VMs and might be influenced by other
Internet traffic or network events.

Each VM represents a different AS, and we assign unique IP prefixes.
In addition, we also have a local VM deployed on one of our servers at
ETH (yellow dot in Figure 4.1). Each VM runs a FRRouting [105] software
router and establishes BGP sessions with other ASes/VMs. This way, we can
simulate hijack events. Our ETH VM advertises two /23 prefixes (5.6.0.0/23
and 5.6.2.0/23). Over two “malicious” ASes, in Mumbai and Stockholm,
we perform interception hijack attacks for (sub-)prefixes of the IP space
belonging to our VM at ETH. We artificially limit the hijacked routes’ spread

4.1 bgp hijacks and rtt changes 61

so that we precisely target traffic from certain VMs (i.e., the “victims” of the
hijack). Note that the tunnel-based setup prevents ethical problems. From
the outside, it looks like two cloud VMs exchanging packets.

Three different VMs (in Sydney, Ohio, and London) generate application
traffic with different patterns (rate-limited streaming, http request/response,
telnet sessions, . . .) using the flowgrind [106] measurement tool. Each VM
communicates with our VM at ETH (running flowgrind as well). On the
ETH VM, we extract the observed RTTs with techniques from Section 2.4.

RTT results Figure 4.2 shows the extracted Round-Trip Time (RTT) mea-
surements (in seconds) over roughly half a minute. Each colored RTT line
represents RTT samples from different applications exchanging traffic with
the specified prefix belonging to the ETH VM. As expected, we see similar
RTTs for all the flows initiated by a single traffic source (labeled on the right
side). London, which is (geographically) closest to our server in Zürich
(Switzerland), has the lowest RTT.

In some cases (for example, the RTT peak around 27 seconds, indicated
with a gray background), we observe RTT patterns visible in all the RTT
samples. Most likely, they originate due to problems close to or at our
local VM (a clear bottleneck in our setup). However, we also see interesting
patterns that only affect selected sources or specific flows from one source.
These relate to our simulated interception hijack attacks, as discussed in the
following paragraphs.

Key observations During the shown time period in Figure 4.2, we per-
formed two BGP hijacks (annotated in the figure). First (“Hijack 1”), the
VM in Mumbai performs a same-prefix attack towards 5.6.2.0/23 to attract
traffic from Sydney towards our ETH VM. Later (“Hijack 2”), the hijacker
in Stockholm performs a more-specific hijack attack for 5.6.1.0/24 (i.e., a
sub-prefix of 5.6.0.0/23) to attract some of the traffic from the Ohio and
London VMs.

6
2

o
s

c
i
l

l
o

s
c

o
p

e

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

time [s]

RT
T

[s]

5.6.0.0/24 5.6.1.0/24 5.6.2.0/23

Sydney

Ohio

London

Hijack 1 Hijack 2

Figure 4.2: The figure highlights the RTT reaction to two hijack events and other interesting RTT patterns (gray rectangles).
During the first hijack, a VM in Mumbai hijacks traffic towards 5.6.2.0/23 from Sydney. Given that Mumbai is
geographically close to the “normal” forwarding path (compare Figure 4.1) the hijack-induced RTT change is
smaller than during the second hijack (where traffic makes a detour over Stockholm).

4.1 bgp hijacks and rtt changes 63

We observe multiple main characteristics which guide our hijack detection
approach described in the following sections:

• As expected, different hijacks will result in different RTT magnitude
changes. For example, the hijack affecting traffic from Sydney is less
pronounced than the hijack affecting traffic from Ohio and London.

• A more-specific prefix attack that only affects a sub-prefix results
in distinct RTT patterns. For example, during the second hijack, we
see an RTT difference between Ohio flows towards 5.6.0.0/24 and
5.6.1.0/24, i.e., inside the prefix 5.6.0.0/23 advertised by the ETH VM.

• Similar to the previous point, also same-prefix attacks result in a
pattern. However, this time we observe the RTT change between
different prefixes advertised by our VM, i.e., 5.6.0.0/23 and 5.6.2.0/23.

• A single hijack might affect traffic from multiple ASes (from which
we receive traffic/RTT samples), but that does not have to be the case.

• Other network events also lead to RTT changes. The figure highlights
two interesting events, first (around 4 seconds) a lack of RTT samples
unique to the Sydney traffic. Most likely due to a problem with the
local VM. Second (around 27 seconds), an RTT peak common to all
RTT samples, indicating a problem close or at our ETH VM.

Limitations of the cloud-based setup Overall, the RTT samples in Fig-
ure 4.2 look very “clean” and stable. Detecting the hijack-induced patterns
seems trivial with such input data. There are at least three reasons our
motivational example behaves this way: (i) the amount of generated traffic
is relatively low and does not lead to congestion or other problems; (ii) we
have a single location (our VM at ETH) that receives all samples and can
easily estimate the corresponding RTTs; and (iii) large cloud providers (such
as DigitalOcean and AWS) are well interconnected (e.g., shown in [107]).
As a result, our traffic mostly flows through over-provisioned cloud net-
works and is rarely “competing” with other Internet traffic for bandwidth,
resulting in a low chance for congestion and/or packet loss.

More precisely, one possibility is an interconnection over so-called Inter-
net Exchange Points (IXPs) [108]. Simplified, an IXP looks like an enormous
router or switch connecting with many ASes. These ASes can directly peer
over the IXP, even if they usually do not have a direct peering session with
each other. As a result, our traffic, e.g., from a DigitalOcean VM to an AWS
VM, will first travel inside the DigitalOcean network, then briefly cross the
IXP, and afterwards travel inside the AWS network.

64 oscilloscope

That being said, the cloud-based setup also has advantages. For example,
we observe realistic delays between the geographically-distributed locations,
resulting in hijack-induced RTT changes, which we could expect in a real
attack scenario. In conclusion, we design our system following the main
observations of the VM-based experiment, but we do not expect to observe
such clean and stable RTT signals.

4.1.3 Comparison with other data-plane signals

The motivational experiment heavily focuses on RTT signals. However,
other data-plane signals might also reveal interesting insights and potential
hijacks. In this subsection, we summarize properties of RTT signals and
then briefly compare other signal candidates.

RTT As we just saw, the RTT signal closely reflects path changes as it is di-
rectly connected with the packet travel time. By definition, an (interception)
hijack leads to a path change; otherwise, the traffic flowed over the mali-
cious AS to begin with. Hence, we expect an RTT change. Additionally, the
RTT is theoretically (Section 2.4) and practically easy to compute (Section
2.4). For example, [47] extracts RTT samples at line rate using programable
data-plane devices. As discussed in Section 4.8, it is challenging for a hi-
jacker to modify the observable RTT signal to hide the hijack artificially.
Finally, even a few flows can produce enough samples to detect a change.

Besides these advantages, though, RTT signals also come with some dis-
advantages. First, the observable RTT varies depending on the application
behavior. For example, if one endpoint does not immediately acknowledge
a received data packet, we might observe an artificially inflated RTT (as an
on-path observer). This problem is less pronounced if we combine samples
from many different flows. Second, the RTT also changes due to other
network events. For example, a congested link will initially lead to an
increased RTT (packets have to wait in queues) before some packets are
dropped (lack/reduced number of RTT samples). However, long-lasting
congestion events, for example, because a link between two ASes is highly
under-provisioned, once again result in stable RTT patterns (although on
a higher level), as e.g., [109] indicates. And third, RTT extraction is chal-
lenging in non-TCP flows, especially if the packet header is encrypted. We
present some solutions in Section 4.2.

4.1 bgp hijacks and rtt changes 65

Throughput Another data-plane signal would be the current throughput
from one or multiple ASes towards some of our (sub-)prefixes. A big
advantage is the simple assessment of the current value. A counter is already
enough. Although an interception hijack might lead to a throughput change,
after all, some of the traffic is moved to a new path, a direct connection
between the hijack and an expected throughput change is challenging for
at least two reasons: (i) a hijack rarely changes the entire path. Especially
the path segments close to the victim AS or close to the benign owner of
the hijacked prefix might still be shared by hijacked and normal traffic
(compare to our simple example in Section 2.3.4). Therefore, it is unclear if
a hijack leads to a significant throughput change. And (ii) the throughput
also heavily depends on the current application/endpoint behavior and the
traffic volume of cross traffic which shares some of the path segments. Note
the clear difference compared to the RTT signal. Even if we only observe
a few flows, the (minimum) RTT still heavily correlates with the physical
travel time of packets between the two endpoints.

For these reasons, throughput signals are unsuitable for detecting in-
terception attacks. However, a blackhole attack should lead to an abrupt
throughput decline towards zero.

Packet loss Similarly, the number of lost packets provides another data-
plane signal. Unlike RTT and throughput, packet loss is more challenging
to measure at scale. For example, duplicated acknowledgments can, but do
not have to, indicate a packet loss. We need additional state to keep track
of per-flow packet loss.

Even with precise packet loss signals, it is unclear how they correlate
with an interception hijack. Related work, such as [110], shows that routing
updates can lead to packet losses. However, the patterns are not uniform,
making a clear correlation between packet loss with BGP hijacks difficult.
After all, we will also observe similar loss patterns due to “normal” routing
updates. More generally, packet loss, together with corresponding patterns
of TCP’s retransmission mechanism, is a helpful signal to detect complete,
remote outages, as e.g., [111] shows. To this end, the loss signal would be
useful for blackhole attack detection.

One-way delay Finally, instead of the Round-Trip Time, the one-way delay,
i.e., the delay from the external AS towards our AS, shows interesting
properties. As shown in Figure 4.1, our RTT measurements also contain the
return paths (i.e., from our VM back to the other traffic endpoint), which
are another source of noise or unrelated RTT changes. However, precisely

66 oscilloscope

extracting or estimating the one-way delay from a single observation point
is challenging or nearly impossible without additional endpoint or protocol
support.

4.2 rtt extraction in encrypted protocols

Section 2.4 introduced two techniques for on-path RTT extraction on top
of TCP flows. Both approaches use the fact that TCP is a so-called clear-
text protocol. Most (all) of the header information is readable by any
on-path device. Although this allows network operators to perform helpful
monitoring operations, it also limits user privacy and enables possible
attacks. One example relates to the TCP timestamp options that the RTT
estimation described in Section 2.4 uses. If the timestamp option values
are based on the actual uptime of the server initiating the TCP flow, on-
path observers can roughly estimate how long a given server is running.
This information reveals which security patches might yet not be installed,
allowing for targeted attacks [112].

For these reasons, newer transport protocol headers are fully or partially
encrypted, preventing some of the privacy problems and attack vectors.
One prominent example is the recently standardized QUIC [113] protocol
which encrypts the entire transport header (as well as the actual payload).
Unfortunately, operators lose the possibility to extract RTT samples as they
can no longer match packets with each other. In this section, we discuss
research ideas on allowing RTT estimations while keeping the privacy
benefits of encrypted protocols.

MAMI White Paper During the Management and Measurement Sum-
mit – as part of the EU Horizon 2020 Measurement and Architecture for
a Middleboxed Internet (MAMI) project [114] – we formulated a white
paper [9] that discusses challenges in network management with the in-
creased deployment of fully encrypted protocols. One of the outcomes of
the discussion with industry partners was that on-path monitoring devices
(sometimes also called middleboxes) should no longer be transparent (i.e.,
invisible) to the endpoints. Instead, the endpoints should have control over
which information they share with such devices, for example, by sending it
unencrypted. The following Spin Bit idea follows this principle.

Spin Bit Our IMC poster [2] illustrates the general problem once more. From
a user perspective, we hope for privacy and good performance. Operators

4.2 rtt extraction in encrypted protocols 67

need to extract accurate and simple measurements using easy-to-deploy
techniques. These goals often contradict each other. As previously described,
clear-text transport protocols, such as TCP, can be used to overcome some
of these challenges. However, encrypted protocols, such as QUIC, prevent
simple matching of data and corresponding acknowledgment packets. RTT
measurements are no longer possible. We then sketch an idea involving a
single spinning bit: the “Spin Bit”.

We explain the Spin Bit idea in detail in [8]. A single unencrypted bit
already provides enough information for reasonable RTT estimations. The
idea is simple. One endpoint always reflects the current value of the Spin
Bit back in the matching packet replies (i.e., acknowledgments). The other
endpoint initially sets the Spin Bit to zero and adds this value to all packets it
sends. As soon as it receives the first acknowledgment, which also contains
a Spin Bit with value zero, it “spins” the bit and now always adds the value
one to its packets. Eventually, the first acknowledgment with Spin Bit one is
received, at which point the endpoint spins back to adding Spin Bits with
value zero, and the process repeats.

On-path observers can measure the time difference between the first
packet with bit value zero and the first packet with bit value one to estimate
full (or partial) RTTs. We argue that one unencrypted bit alone does not
compromise the user’s privacy, mainly as the endpoints can prevent RTT
estimation at any point, i.e., by always setting the Spin Bit to zero. This
opt-out approach does not work with TCP. Sending no or wrong SEQ and
ACK numbers would disrupt reliable data transport.

Spin Bit’s future Newer work proposes slightly adapted Spin-Bit-related
techniques which have their own strengths and weaknesses and provide
different measurement capabilities [115]. Performant prototype implemen-
tations [116] track the Spin Bit in programmable network devices [117] at
line rate. Finally, the current QUIC specification [113] includes the Spin
Bit idea as “Latency Spin Bit”. It defines the usage of a spinning bit in
specific QUIC packet types that are exchanged after version negotiation
and connection establishment. The specification makes it very clear that the
Latency Spin Bit is an optional feature; endpoints or network administrators
can disable the Spin Bit.

68 oscilloscope

4.3 oscilloscope system

With a better understanding of how BGP hijacks influence RTT signals
(Section 4.1) and the availability of RTT measurements on top of TCP
and QUIC traffic (Section 4.2), we now focus on the Oscilloscope itself.
This section introduces Oscilloscope’s main components and describes the
detectable hijacks.

4.3.1 High-level overview

Oscilloscope detects BGP hijacks by observing and comparing hijack-specific
characteristics in passively collected data-plane traffic. Oscilloscope is de-
signed to run standalone, analyzing the existing traffic crossing the network
it is deployed in. Oscilloscope’s design leverages two simple yet powerful ob-
servations: (i) existing data-plane data already carries “signals” which can
be linked to an ongoing hijack attack as motivated in Section 4.1 (also shown
in [47, 118]); and (ii) the often-used per-neighbor routing policies [119] re-
sult in forwarding paths that are similar (or equal) for traffic flows between
any pair of networks (i.e., ASes) in the Internet. The second observation
implies that “normal” forwarding changes (e.g., due to a link failure) will
equally affect all the traffic flows from Oscilloscope’s network and a specific
external AS. In contrast, a hijack targeting a small set of our prefixes will
break this similarity and build an exploitable comparison point.

Oscilloscope detects hijacks in three steps, illustrated in the example
in Figure 4.3. In the example, AS Z intercepts traffic towards the prefix
212.0.3.0/24, which is announced by our AS where Oscilloscope is deployed.

First, Oscilloscope combines collected RTT samples to build so-called
“combined signals,” which contain all the RTT samples from flows that
share the same local /24 prefix and target destinations belonging to one
external AS (the figure shows three examples). Aggregating measurements
this way improves the practicality and scalability of Oscilloscope, in terms
of both data to maintain and comparisons to perform. We do not lose any
information, given that /24 is the smallest prefix size globally advertised by
BGP [59], and hence hijacks cannot target prefixes more specific than /24s.

Second, according to observation (i), Oscilloscope detects changes in the
combined signals. It compares the long-term minimum RTT value against
RTT values in consecutive short-term windows and flags changes bigger

4.3 oscilloscope system 69

hijack start

212.0.3.0/24 - AS 739

212.0.2.0/24 - AS 739

212.1.0.0/24 - AS 739

our
AS

D

Z

A

B

AS
739

Intercepts:

212.0.3.0/24

Hijack target

Announces:

212.0.2.0/23

212.1.0.0/24Oscilloscope

Figure 4.3: As Z intercepts traffic from AS 739 towards our prefix 212.0.3.0/24
which leads to an observable RTT change in the corresponding “com-
bined signal”. Note that traffic between other prefixes and AS 739

does not show the change which Oscilloscope uses as comparison
points to increase its confidence.

than a given threshold (see middle plot in Figure 4.3). Comparing the RTT
across consecutive short-term values filters out noise. Since the minimum
RTT can be computed efficiently, changes for all combined signals are
detected in near real-time.

Finally, Oscilloscope performs two-sample statistical tests between RTT
samples from the combined signal which observes the change and its
“buddy” prefixes (i.e., the combined signals not affected by the hijack in
Figure 4.3) – where buddy prefixes are defined based on our observation (ii).
In the case of a hijack-induced, prefix-specific change, the test will indicate
that the samples come from different distributions increasing Oscilloscope’s
hijack evidence.

70 oscilloscope

RTT

samples

Change
detection

Threshold

Statistical
validation

Same distribution? 0.4%

(p1, AS1, ts5): hijack; 5% of traffic; RTT diff: 9ms

Signal com-
bination

Prefix to AS

mapping p1 -> AS1 p2 -> AS1 p3 -> AS1

samples

Confidence

buddies

vs.

Oscilloscope

(p4, AS3, ts7): blackhole; 3% of traffic

Detected

events

RTT

time

Figure 4.4: Oscilloscope contains three major functional blocks. It combines RTT
samples, then detects changes in the combined signals and performs
statistical tests to validate the detected events.

4.3.2 Oscilloscope’s main components

The Oscilloscope pipeline comprises three main functional blocks (Figure 4.4):
the combination of RTT signals, the detection of changes in the signals, and
the hijack validation.

Input: RTT sample extraction The main input to Oscilloscope is a set of RTT
samples extracted from the flows that traverse the network Oscilloscope op-
erates in. There exist multiple methods to extract RTT signals from network
traffic. For example, Google’s Espresso [120] provides such RTT samples
from their servers, and recent work has shown how to extract RTT samples
from programmable data-plane devices [47, 121]. Therefore, we assume
that the RTT signals have already been extracted. In order to know where to
collect the RTT samples in the network, our previously introduced Magnifier
system provides verified ingress and egress observations. A deployment

4.3 oscilloscope system 71

at the network border is beneficial as the resulting RTT estimations do not
contain potential noise from internal paths inside our own network.

Extracting and gathering RTT signals from all the flows in a large network
may become a scalability problem. In such cases, we can feed the RTT signals
of only the largest flows to Oscilloscope. As we show later, Oscilloscope does
not need to monitor all the flows from/to an IP prefix to detect a hijack.

Stage 1: Signal combination The first step of Oscilloscope is to build a
“combined” RTT signal that captures changes at the level of entire IP prefixes
and/or ASes. This level of granularity allows us to detect a hijack attack
that affects even a single external AS, provided that we have ongoing traffic
flows from/to that AS. The challenge is to combine flows (i) efficiently
while (ii) preserving the necessary information to detect potential hijacks.

Oscilloscope takes as input a given set of internal IP prefixes to be mon-
itored and groups the RTT samples at the granularity of /24 IP prefixes.
For instance, a /23 IP prefix will result in two combined RTT signals corre-
sponding to the two /24 subnets, allowing us to detect both same-prefix
and more-specific attacks. In fact, common BGP filters [59] would block
hijacks of a /25 IP prefix or more specific ones. We note that aggregating
the RTT signals of all the flows from/to a monitored /24 is, however, still
too coarse-grained, as same-prefix attacks or hijacks with artificially-limited
spread, only affect certain Internet regions. Thus, we combine RTT signals
per (i) /24 prefix and (ii) per external AS with which a flow is communi-
cating. In other words, each combined signal contains RTT samples from
traffic exchanged between one of our /24 IP prefixes and all the prefixes
belonging to a single external AS.

To figure out which IP prefixes belong to which AS, Oscilloscope relies
on the AS path of the BGP routes received at the local routers. For each IP
prefix, the corresponding AS path usually indicates which AS originated
the route

Stage 2: Change detection In the second block, Oscilloscope analyzes each
combined signal to detect sudden RTT changes (increase or decrease). Fol-
lowing, we present a simple overview and give more details in Section 4.4.
We perform the change detection by comparing long- and short-term mini-
mum RTT values. Suppose the difference exceeds a user-defined threshold
(input parameter) and is ongoing for the entire duration of a user-defined
time window. In this case, Oscilloscope detects an event and triggers the last
operation of the pipeline: It validates whether this event is a BGP hijack
or a genuine change in the Internet state. In addition, we also forward

72 oscilloscope

combined signals to the validation stage if they suddenly terminate, which
could indicate a blackhole attack.

Stage 3: Hijack validation Several Internet routing events may lead to
changes in the RTT of specific flows, e.g., reconfiguration, policy updates,
load balancing, or fiber cuts. The last block in Oscilloscope’s pipeline is
therefore responsible for distinguishing “true” hijacks from normal routing
events. We only want to report the hijacks.

Oscilloscope validates hijacks using the concept of “buddy” prefixes which
translates insights from [122] into the data plane. We say that a set of
IP prefixes originated by the same AS are buddies if their flows towards
the same external AS destination follow the same path. In the absence of
malicious hijack attacks, IP prefixes originated by the same AS propagate
through BGP along the same paths, as most ASes do not apply per-prefix
policies [123]. Hence, buddies offer comparison points that can identify
hijacks: a hijack of one of our prefixes does not affect its buddies, whereas
normal routing events affect all buddy prefixes similarly as they traverse
the same AS path. When the change detection block reports an event for a
particular IP prefix, Oscilloscope collects RTT samples from the prefix and
one of its buddies. Using a two-sample statistical test, Oscilloscope checks
whether the two RTT samples appear to come from the same distribution;
if not, we take this as evidence that the flows started to follow different
paths, which indicates a potential hijack. If possible, Oscilloscope repeats this
validation step with additional buddy prefixes to increase its confidence.

4.3.3 Detectable hijacks and attacker model

Oscilloscope detects hijacks based on changes in the observed data-plane
signals, which reveal blackhole and interception BGP hijacks (as introduced
in Section 2.3.4). In a blackhole attack, traffic from one or multiple external
ASes targeted to some of our internal prefixes is terminated/reaches a
blackhole in an unwanted AS. An interception attack is more refined.
Instead of terminating the ongoing flows, an attacker intercepts the traffic
and forwards packets over different/additional ASes before they reach
their original destination, i.e., our AS. Both hijack types emit data-plane
signals, which we can detect by analyzing RTT samples collected in our
AS. A blockhole hijack leads to a (one-directional) traffic loss, resulting in
an abrupt termination of any observable RTTs. In contrast, an interception
hijack leads to a potential change in the RTTs.

4.4 signal aggregation and change detection 73

We assume that an attacker either performs a same-prefix or a more-
specific prefix attack (compare Section 2.3.4). Both lead to data-plane
changes and are covered by Oscilloscope’s combined signals that focus on a
/24 prefix level. However, Oscilloscope’s purely data-driven approach fails if
hijacks do not generate a representative data-plane signal (no flows or too
small of an RTT change), as we show in Section 4.6. Similarly, Oscilloscope
does not detect misconfigurations which do not lead to any newly hijacked
traffic. For example, a configuration mistake could lead to an advertise-
ment of a prefix which does not belong to an AS. However, its provider
automatically filters out wrong advertisements and stops the spread of the
“hijacked” route. The lack of data-plane signals prevents Oscilloscope from
detecting the misconfiguration. A control-based detection system (compare
Section 4.7) might cover these cases.

4.4 signal aggregation and change detection

This section explains how Oscilloscope detects changes in the combined
RTT signals, filters noise, and reacts to events where no RTT samples
are available. We conclude with practical insights gathered while testing
existing, well-defined change point detection algorithms with our combined
RTT signals.

4.4.1 Change detection

Figure 4.5 shows Oscilloscope’s workflow to detect changes in a combined
RTT signal using simplified examples. As explained in Section 4.3.2, a
“combined signal” contains all RTT traffic samples exchanged between one
of our /24 prefixes and all the prefixes belonging to a single external AS.
The change detection process runs on each combined signal separately once
every second. That also means that the number of RTT samples considered
each second depends on the amount of traffic in a specific combined signal.

Using a threshold to detect large enough RTT changes. RTT signals are
often noisy due to network congestion and end-host processing delays.
This noise may even be exacerbated when combining RTT samples from
different flows, which is the case when Oscilloscope builds combined signals.
Therefore, Oscilloscope uses a threshold (indicated in Figure 4.5 with the
red vertical bars) to dismiss changes in the RTT signal that are too small

74 oscilloscope

One combined

RTT signal

Short-living

changes are ignored

Interesting

change detected
RTT

threshold

Small changes

are ignored

time

Sent to

validation

Figure 4.5: Oscilloscope uses long- and short-term windows to detect minimum
RTT changes larger than a given threshold.

(example on the left). The network operator defines the threshold directly
impacting the number of detectable hijack events (as empirically validated
in Section 4.6).

Using the minimum RTT over time windows to track the RTT. However,
we do not apply the threshold for every two consecutive RTT samples but
rather use it to detect changes in the minimum RTT observed in a long-term
and short-term window. Oscilloscope uses the minimum RTT for two reasons.
First, the minimum is practical when considering RTT measurements, as
there is an explicit lower bound on how fast packets can traverse over a
given path [124]. As such, a change in the observed long-term minimum
RTT indicates a potential path change. Second, Oscilloscope can update the
current minimum value whenever it receives a new RTT sample and does
not need to store all the samples belonging to one combined signal. That
improves efficiency and saves storage resources which is essential as the
number of combined signals is large depending on the network size.

Example Figure 4.5 shows how Oscilloscope uses short- and long-term
windows. In the example in the middle, Oscilloscope realizes that the short-
and long-term RTT difference exceeds the given threshold for a few RTT
samples (indicated with the green tick below the short-term window).
If Oscilloscope would now immediately report the change and continue
with the validation step, we would be very susceptible to short-living RTT
spikes (e.g., due to queues filling up). For this reason, Oscilloscope saves
the long-term RTT minimum and repeats the comparison in the next short-
term windows. In the example, the RTT difference no longer exceeds the
threshold (red cross), and we dismiss the change. Oscilloscope only deems a
change as significant if the RTT difference exceeds the threshold in as many
consecutive short-term windows as the long-term window is wide. In our

4.4 signal aggregation and change detection 75

implementation, we use a four-second long-term window and a short-term
window of one second. For that reason Oscilloscope needs to detect the
change in four consecutive short-term windows before acknowledging the
RTT change (as shown on the right in Figure 4.5). We found out that a
long-term window of four seconds is long enough to filter out short delay
spikes (due to congestion) while being short enough to allow Oscilloscope to
operate reactively and detect potential hijacks in a timely manner.

Detecting positive and negative RTT changes. To detect potential hijack
events that would decrease the observed minimum RTT (i.e., a hijacker
that can provide better connectivity than the original path), Oscilloscope
compares the absolute value of the minimum difference with the threshold.
Also, it checks that the sign of the difference is consistent in the four
consecutive short-term windows. If all these conditions hold, Oscilloscope
continues with the validation stage described in Section 4.5.

4.4.2 Dealing with a lack of RTT samples

It is important to note that Oscilloscope handles short-term windows without
any RTT samples in a unique way. We observe short-term windows without
samples if, for example, the combined signal consists of flows with low
activity or an event that causes packet loss (which results in the loss of
RTT samples). In such a case Oscilloscope performs two operations. First, it
extends the long-term window by one unit (i.e., keeps track of the existing
long-term RTT minimum) rather than decreasing the amount of RTT sam-
ples in the long-term window with every empty short-term one. Without
that, Oscilloscope would eventually lose the long-term minimum RTT value,
which an attacker could abuse to evade detection. More precisely, an at-
tacker could drop the initial hijacked packets before starting an interception
attack, and Oscilloscope would no longer be able to detect the introduced
RTT change. Second, Oscilloscope starts a blackhole detection process. Oscil-
loscope once again uses a similar approach to track the minimum RTT, but
this time it searches for four consecutive short-term windows without any
RTT samples. However, to accommodate combined signals containing flows
with infrequent RTT samples (i.e., some short-term windows without any
samples), the number of required consecutive short-term windows without
any samples (4) is multiplied by n + 1 where n corresponds to the num-
ber of empty short-term windows in the currently considered long-term
window. With this design choice, we combine the well-working long-term

76 oscilloscope

One combined

RTT signal

RTT

Short-term window

without samples temporarily

increases the long-term window

Sent to

validation

A long-term window with missing samples

increases the number of short-term windows

required to detect a potential blackhole

time

Figure 4.6: Short-term windows without any RTT samples increase the corre-
sponding long-term windows and influence the detection process of
potential blackholes.

window size of four with an adaptive component (multiplication by n + 1)
based on the current behavior of the combined signal. If enough consecutive
short-term windows contain no samples, Oscilloscope forwards the potential
blackhole to the validation stage.

Example Figure 4.6 illustrates these two operations. In the example on the
left, the current long-term window now contains five instead of four short-
term windows, as one does not contain any RTT samples. The same holds
for the example on the right, where Oscilloscope requires 4× (1 + 1) = 8
consecutive short-term windows before the potential blackhole observation
is forwarded to the validation stage.

4.4.3 Challenges with existing change point detection algorithms

Change point detection in time series data is a well-studied field. For exam-
ple, [125] gives an overview of different techniques. We applied combined
RTT signals collected in our emulated setup (compare Section 4.6) to various
algorithms. We made the following practical observations which eventually
led to the development of Oscilloscope’s window-based approach.

Online approaches are sensitive to RTT spikes. Oscilloscope tries to detect
BGP hijacks as fast as possible. Therefore, we first explored so-called online
change point detection algorithms that report changes in (near) real-time.
Unfortunately, frequent RTT spikes, unrelated to BGP hijacks, lead to false
positives. Our motivational experiment (Figure 4.2) shows one example of
an RTT spike towards the end of the measurement.

4.5 statistical tests 77

Statistical methods require knowledge of signal or noise distributions.
Multiple statistical methods need input parameters related to signal or
noise distributions. In most cases, network operators do not know which
distributions RTT samples follow. On top of that, we apply the change
detection to a combined RTT signal containing samples from various flows.
We make similar observations with Oscilloscope’s verification step, leading
us to non-parametric statistical tests (Section 4.5.3).

“Simpler” approaches make assumptions on the number of change points.
Another set of change point detection algorithms takes the number of
expected change points in the given time series as input. Obviously, we do
not know a priori if a combined RTT signal covers an expected change, i.e.,
a possible BGP hijack. As a result, these algorithms did not apply to our
use case.

In conclusion, we decided to develop a custom change detection ap-
proach for Oscilloscope. Our window-based technique is fine-tuned towards
the detection of hijack-induced RTT patterns. Additionally, the required
parameters, e.g., duration of the short- and long-term windows, are easier
to configure for network operators than complicated RTT distributions.

4.5 statistical tests

We now introduce the concept of buddy prefixes and explain how we use
statistical tests to validate our hijack assumptions.

4.5.1 Buddy concept

Oscilloscope’s primary validation strategy is built around the intuition that
successful interception (or blackhole) hijacks will introduce a forwarding
change reflected in the collected RTT signals. To have a baseline reference for
detecting hijack attacks, Oscilloscope uses the concept of so-called “buddy”
prefixes. In the absence of any hijacks, traffic from two buddy prefixes
should follow the same paths when communicating with identical external
ASes. The concept of buddy prefixes is not new. Buddyguard [122] first
introduced the term to describe prefixes that behave similarly (in the absence
of hijacks) when looking at them in the control plane. Oscilloscope translates
this concept to the data plane.

78 oscilloscope

Forwarding

change due to

link failure

RTT

time

Blackhole attack

affecting P2

Hijack inter-

cepting P1

Hijack

intercepting

traffic of AS X

Load

balancing

inside an AS

RTT RTT

RTT RTT

time time

time time

RTT samples P1 <-> AS X RTT samples P2 <-> AS X

Figure 4.7: RTT samples of two buddy prefixes (P1, P2) exchanging traffic with
AS X. We only observe an asymmetric behavior between buddy RTT
samples if a hijack affects P1 or P2.

To build buddy prefixes, we split the IP space advertised by our own
AS into /24 prefixes, the smallest prefix size advertised by BGP Internet-
wide [59]. As a result, a potential hijacker must create fake advertisements
for at least one of these /24 prefixes to influence our traffic. Consequently,
the hijack will equally affect traffic inside one buddy prefix. Note that this
approach allows to precisely detect more-specific prefix attacks, that affect
one or multiple /24 prefixes inside a larger announced BGP prefix. We
leave the problem of identifying buddy prefixes in real-time as future work.
In [4, § 7.4] an analysis with real BGP data shows that most IP prefixes have
multiple buddies.

Figure 4.7 shows simplified RTT distributions for various network events.
Most of these examples are based on traces used in our evaluation. We
made similar observations in our motivational experiment with cloud
VMs (Section 4.1). Buddy prefixes (P1 and P2) exchange traffic with AS
X. The first two examples (forwarding change due to link failure and

4.5 statistical tests 79

load balancing) show that RTT samples from both buddies are equally
affected. That means, eventually, flows from both buddies will use the new
forwarding path after the link failure or use the same set of physical paths
when load balanced, respectively. The same observation holds in the third
case (an interception hijack targeting prefixes of AS X), where traffic from
P1 and P2 will be affected. Note that Oscilloscope does not try to detect
such hijacks as the hijack does not target one of our prefixes. Finally, the
interception attack of P1 and the blackhole attack targeting P2 (lower two
examples) are the only two events leading to observable asymmetries in
the RTT distributions of the two buddy prefixes. Oscilloscope is precisely
looking for such changes and compares samples between multiple buddy
prefixes to validate its hijack assumptions in these cases.

4.5.2 Sample collection

As soon as Oscilloscope detects a change in traffic belonging to a combined
signal (Section 4.4), it collects RTT samples from this combined signal. In
addition, we also look for comparison samples from valid buddy prefixes.
Initially, Oscilloscope assumes that all our /24 prefixes are buddies (Sec-
tion 4.8). However, Oscilloscope cannot blindly collect comparison samples
from these buddy prefixes. The problem is that Oscilloscope neither knows
a priori how many /24 prefixes are affected by the potential hijack (i.e., a
hijack targeting a /23 prefix affects two /24 buddies) nor do we want to
make any assumptions. Suppose Oscilloscope would pick validation sam-
ples from a buddy which is also targeted by the hijack. In that case, the
validation step might report wrong results because we do not have a valid
comparison point.

For this reason, Oscilloscope ignores buddies that (i) were recently de-
clared as hijacked towards the currently observed external AS (an operator
can clear these buddies after investigating the event); or (ii) are currently
also in the process of being validated as we detected a change in their corre-
sponding combined signal towards the same external AS (remember that we
perform the change detection for each combined signal individually). The
second criterion includes buddies for which the change is nearly confirmed,
i.e., we already found the change in three of the required four consecutive
short-term windows (see Section 4.4), to prevent strict time synchronization
requirements between the change detection processes. From the remaining
buddy prefixes, Oscilloscope follows a “first come, first served” principle

80 oscilloscope

to pick the required amount of comparison samples from the specified
number of buddy prefixes (two operator-defined parameters).

Note that all buddy prefixes are ignored for apparent events (e.g., a
forwarding change introducing a significant RTT change). In this case,
Oscilloscope correctly terminates the validation process and does not report
any hijacks. In the more likely cases (e.g., changes detected due to noise,
hijacks targeting specific prefixes, . . .) Oscilloscope applies the statistical
test described in the following subsection. It compares the distributions of
samples collected from the combined signal that observed the change and
its buddy prefixes.

If Oscilloscope tries to validate a potential blackhole, it expects to find no
samples from the corresponding combined signal. We will immediately
discard the blackhole assumption if we still observe a sample. Suppose, in
addition, the buddy prefix(es) also do not provide any RTT samples (i.e.,
no more traffic towards this external AS). In this case, we cannot confirm
the blackhole idea. It looks like a total traffic loss, e.g., due to a link failure,
and Oscilloscope will not report anything.

4.5.3 Statistical tests

After collecting samples from the combined signal, which observes a change
and at least one buddy prefix, Oscilloscope uses the Wilcoxon-Mann-Whitney
test (e.g., [126, p. 128+]) to compare the two sample sets. The Wilcoxon-
Mann-Whitney test is a non-parametric statistical test that only assumes
that the samples from both sets are independent (given as they come from
different /24 prefixes) and that we can order them (i.e., one RTT sample
is bigger than another one). We selected this test for at least two reasons.
First, given that it belongs to the class of non-parametric tests, we do not
require that the collected RTT samples follow additional assumptions, e.g.,
that they belong to a specific distribution. Second, we can also apply the
test if the number of found RTT samples is small (compare [126, Appendix
Table J]), which is often problematic for comparable parametric tests.

As null hypothesis H0, we assume that the distributions of both sample
sets are equal. In contrast, the alternative hypothesis H1 states that one
sample distribution is stochastically larger (or smaller) than the other.
As mentioned before, an interception hijack will most likely increase the
observed RTT but could also decrease it. For this reason, we perform a
two-sided test.

4.6 performance 81

The test first sorts all collected RTT samples in increasing order and then
sums up the ranks of samples belonging to the same set (i.e., ranks of all
samples coming from the buddy prefix). If both sample sets belong to the
same distribution (H0), the rank sum should roughly be equal.

The network operator defines a confidence level as an input parameter
to Oscilloscope’s validation step. Whenever the test result falls within the
confidence level, we assume that the null hypothesis holds and the two
sample sets come from the same distribution, i.e., they follow the same
forwarding path. Otherwise, we assume they come from two different
distributions, strengthening our confidence that we observe an ongoing
hijack. If available, Oscilloscope repeats the same test with samples from
additional buddy prefixes.

If the validation test indicates that the null hypothesis holds, Oscilloscope
immediately discards the event and will not report anything. However, if
the tests suggest that the RTT samples come from different distributions,
we can optionally repeat the validation step once (or multiple times). That
means Oscilloscope will collect another batch of RTT samples from the
combined signal observing the change and its buddy prefixes. Not only
will that strengthen our hijack assumption, but it also allows us to compare
against other buddy prefixes, diversifying the collected samples. As we
show in Section 4.6.3, repeating the validation step once greatly reduces the
number of false positives/increases Oscilloscope’s precision.

4.6 performance

This section explains our evaluation setup (Section 4.6.1) and the used Hi-
jack dataset (Section 4.6.2). Afterwards, we evaluate Oscilloscope’s accuracy
(Section 4.6.3), its classification delay (Section 4.6.4), and the introduced
computational overhead (Section 4.6.5). The paper [4, § 7.4] also evaluates
our buddy concept with the help of control-plane data from the real Internet.
As we show there, most observed prefixes have at least three buddies.

4.6.1 Mini-Internet emulations

We use the mini-Internet [10] for our evaluation setup. Our group developed
the mini-Internet to perform practical projects during our lectures, but it
can also help with research. It emulates arbitrary networks consisting of

82 oscilloscope

routers, switches, and hosts. Each device runs in its own Docker [127]
container. We then connect the different containers together in order to
build various topologies. The routers use the FRRouting [105] protocol suite.
As such, they run the most common routing protocols, e.g., BGP or OSPF.
Additionally, each link can have custom delays and loss rates configured
with tc-netem [128].

As explained in [4, § 6.1], we emulate an Internet topology with more than
600 ASes based on CAIDA data [129] and RIPE Atlas [130] measurements
for “realistic” inter-domain link delays. “If we do not have enough data to
estimate a link delay, we default to a delay of 5 ms and 2 ms jitter” [4, § 6.1].

4.6.2 Hijack dataset

We leverage our emulated mini-Internet topology (Section 4.6.1) to generate
a synthetic dataset of packet traces containing hijacks. First, we identify a
set of possible hijack events for our topology. Then we collect packet traces
for simulated traffic from multiple runs with and without the hijack events.

Initially, we select one well interconnected AS as “our AS”; it advertises
twelve different /24 prefixes in the entire mini-Internet topology. We then
choose 70 other ASes to perform an interception attack towards our prefix
space. For each of these ASes, we generate one hijack event where the
AS hijacks one or two of our /24 prefixes from one or two of its directly
connected neighbors. The hijacking AS uses path poisoning [131]. Therefore,
the fake advertisement propagates in a localized part of the mini-Internet,
potentially hijacking traffic from additional ASes. Similarly, we generate
more than a hundred blackhole events by simply dropping the attracted
traffic rather than forwarding it back to our AS. Finally, we also generate
normal forwarding events, such as link failures, by dropping all the traffic on
a given link. The routers run Bidirectional Forwarding Detection (BFD) [132]
to detect link failures and trigger corresponding actions. As a result, a link
failure either leads to a complete loss of traffic or a benign forwarding
change with corresponding increases or decreases in the observed RTT.

For the evaluation, knowing how a specific event influences the observ-
able data-plane signals (i.e., ground-truth behavior) is essential. Therefore,
we compare traceroute outputs before and after each event to extract all
pairs of /24 prefixes and external ASes that observe a forwarding path
change. Additionally, we quantify the induced RTT change. Obviously,

4.6 performance 83

Oscilloscope does not have access to this information. We only used it to
label and group the events for the following evaluation.

Finally, we collect packet traces containing hijacks or normal network
events. We use Flowgrind [106] to generate traffic mimicking real applica-
tions, e.g., video streaming or HTTP-style request-response patterns. For
each emulated event, we generate an average of 100 flows resulting in
about 200 MBps or 70k packets per second between our /24 prefixes and
ASes, that are potentially affected by the event. During the entire run,
tcpdump [133] records the packets observed on all interfaces connected
to the hosts in our AS. Each experiment runs for two minutes, with the
event starting after one minute and staying active until the end of the run.
We perform one run for each event in our dataset and 30 runs without
any specific events, which results in more than six hours of traces. For
each trace, we extract the RTTs of all TCP flows by matching sequence and
acknowledgment numbers (similar to the method in [121]).

Equipped with this set of RTT traces, we evaluate the hijack detection
performance of Oscilloscope offline for different parameter choices, as shown
in the following subsections.

4.6.3 Oscilloscope’s accuracy

The core function of Oscilloscope is its ability to detect hijacks and differ-
entiate them from normal network events. Performance is mainly affected
by two system parameters: the detection threshold (Section 4.4.1) and the
number of repetitions of the validation step (Section 4.5). In the following
experiments, we quantify how these affect Oscilloscope’s precision (i.e., the
rate of true positives among the detected events) and recall (i.e., the rate of
true events correctly detected).

Recall vs. magnitude of the RTT change

Setting the change detection threshold defines the detectable events (i.e.,
achievable recall). Intuitively, hijacks that induce RTT changes smaller than
the threshold are hard to detect.

Setup For each interception event in our dataset (Section 4.6.2), we run
Oscilloscope with change detection threshold values of {1, 3, 5, 10}ms and
compute the ratio of true events detected by Oscilloscope (i.e., the recall).

84 oscilloscope

RTT change
by hijack Recall

> 20 ms
0.99

1.0

10 - 20ms 1.0

0.75

5 - 10ms
1.0

0.94
0.83

0.0

1 - 5ms
0.57

0.19
0.0

Used change detection thresholds:
1ms 3ms 5ms 10ms

Figure 4.8: Oscilloscope’ recall for different change detection threshold values,
binned by the RTT change induced by the interception event. Oscillo-
scope reliably detects hijack events with RTT changes larger than the
change detection threshold.

Results Figure 4.8 shows the recall for the different threshold values, binned
to the magnitude of the hijack-induced RTT change. As expected, the recall
drops when the RTT change gets close to the threshold. The detection
becomes unreliable for the smallest changes (1-5 ms) (57% detected with a
threshold value of 1 ms). This is expected as the RTT change is smaller than
the average RTT signal noise, and Oscilloscope cannot detect these hijacks.

Interestingly, in some cases, a threshold of 1 ms fails to detect hijacks
inducing more than 20 ms RTT changes. Closer inspection reveals that these
cases have only one buddy prefix available. At the same time, this buddy is
blacklisted for buddy comparisons due to a wrongly detected hijack event
at a previous point in the trace (compare Section 4.5.2). Thus when the
actual hijack occurs, Oscilloscope does not find any buddy prefix for the
validation and hence does not report the hijack.

Conclusion Oscilloscope reliably detects hijack events when they induce
RTT changes larger than the detection threshold. However, setting a thresh-
old lower than the typical RTT noise is not useful (it does not help to
detect events inducing very low RTT changes) and can even be harmful
(Oscilloscope fails to detect events that can be caught with a larger threshold).

4.6 performance 85

10 9 8 7 6 5 4 3 2 1
0.85

0.9

0.95

1

R
ec

al
l

one two three

10 9 8 7 6 5 4 3 2 1
0.7

0.8

0.9

1

Threshold value [ms]

P
re

ci
si

on

Number of validations:

Figure 4.9: Precision and recall values for different change detection thresholds
and different numbers of validation steps. Performing the validation
twice largely improves the precision without hurting the recall much.
The third validation has little effect. The best performance is obtained
for a threshold of 3 ms, i.e., small but larger than the RTT signal noise.

Precision and recall vs. number of validations

Detecting RTT changes is relatively easy, but differentiating hijacks from
normal network events is more challenging. For this purpose, Oscilloscope
relies on buddy prefixes to validate that an event is a true hijack (Section 4.5).
One can perform the validation step multiple times; Oscilloscope will report
a hijack only if all validations agree that the event is indeed a hijack.
Thus, performing more validations will tend to decrease the recall while
improving the precision.

Setup We run Oscilloscope for all events in our dataset with different change
detection threshold values (1 to 10 ms) and one, two, or three validation
steps; we compute the resulting precision and recall values.

Results Figure 4.9 shows precision and recall values for the different set-
tings. Looking first at the precision, we observe a significant improvement
from one to two validations (up to 20%), then a smaller gain with a third

86 oscilloscope

one. This matches our expectations: since multiple validations must agree
to identify an event as a hijack, more validations reduce the number of
false positives (i.e., improve precision). Conversely, the recall degrades with
more validations. This is also expected since true events have more chances
of being wrongly discarded as “non-hijack.” Yet, the recall loss is small (less
than 2%).

Let us now look at the performance when varying the detection threshold.
Generally, smaller threshold values detect more events that either result
in true or false positives during the validation step. As a result, smaller
thresholds degrade precision and improve recall. However, as discussed in
Section 4.6.3, threshold values smaller than the noise level (1-2 ms) yield
more false positives and limit the buddy prefixes available for validation,
thus hurting the recall as well.

One may notice a tipping point around 5 ms. We explain this by the
design of our emulation setup, where we use a link delay of 5 ms as a
default value (Section 4.6.1). Our dataset is thus biased towards events
inducing a 5 ms RTT change.

Conclusion Overall on our dataset, the best performance is obtained with
a threshold of 3 ms and two validations. This results in a 94% recall and
93% precision. A third validation trades slightly better precision for slightly
worse recall.

Precision and recall vs. number of buddies

When an event is detected, Oscilloscope looks for three buddies to validate
whether the event is indeed a hijack. However, we do not always have three
buddies available. Thus, we now look at the impact of using fewer buddies
on the precision and recall of Oscilloscope. Validating with more buddies is
expected to decrease the recall while improving the precision.

Setup We run Oscilloscope for all events in our dataset with a 3 ms change
detection threshold and two validation steps; we compute the resulting
precision and recall values depending on the number of buddies used for
the validation.

Results Table 4.1 summarizes the precision and recall values depending on
how many buddies are used for the validation.

Similarly, as in Figure 4.9, the recall is only marginally affected by the
number of available buddies. If the event is indeed a hijack, buddies often

4.6 performance 87

Validation stage Precision Recall

With 3 buddies 93.77% 94.26%
With 2 buddies 92.19% 94.18%
With 1 buddy 88.31% 94.24%

No validation 6.11% 96.44%

Table 4.1: Precision and recall values for a different number of buddies that have
to agree to report a hijack.

validate this correctly (i.e., they do not wrongly discard the event). Inter-
estingly, the recall is only slightly better without validation at all and does
not reach 100%. This is because some hijack events induce RTT changes
that are too small to be detected, given our detection threshold. Conversely,
more buddies logically yield better precision (i.e., fewer false positives).

Conclusion Oscilloscope achieves good precision and recall (around 90%)
even with only one buddy for the validation. Using more buddies results
in a slight increase in precision (a few %) for a negligible decrease in recall.

4.6.4 Classification delay

Oscilloscope is meant to detect hijacks at runtime. Thus, it is important to
quantify how fast potential hijacks are detected, validated, and reported
to the operator. The time required for a hijack to propagate through the
network is beyond our control and independent of Oscilloscope. The delay
from detecting an event in the combined RTT signal until the event is
reported (or not) by Oscilloscope is more relevant. The delay is affected by
the type of the observed event and the number of buddies and validation
steps that Oscilloscope takes into account. Intuitively, it increases with a
higher number of performed validation steps.

Setup We run Oscilloscope for all events in our dataset with a 3 ms change
detection threshold and one, two, or three validation repetitions; we mea-
sure the time delay from detecting a change in the RTT signal until the final
event classification by Oscilloscope.

88 oscilloscope

0
20
40
60
80

100

1 5 10 30 50 70

Classification delay [s]

C
la

ss
ifi

ed
ev

en
ts

[%
]

1 validation 2 validations 3 validations
blackholes non hijacks

Interception:

Figure 4.10: Delay between the detected change in the RTT signal and the classi-
fication of the event by Oscilloscope. Most events are classified within
the best possible delay (around 5 s). The remaining ones are delayed
by the lack of RTT samples from active buddies to perform the
validation step(s).

Results Figure 4.10 shows the CDF of the classification delays for different
events and validation repetitions. These delays are in the scale of seconds
since Oscilloscope performs the change detection process once per second.
The first observation is that the detection delay is at least 5 s, which comes
from Oscilloscope’s design decision of waiting for four consecutive change
detections before starting the validation (Section 4.4.1).

The blackhole events are the easiest to detect, with more than 80% classi-
fication completed after five seconds. Since no validation step is performed
for these events, the number of validation repetitions naturally has no
effect. For the interception events, around 50% are classified after 5 s; that
corresponds to cases where Oscilloscope could quickly find buddy prefixes
carrying enough traffic for the validation step(s). Cases with higher delays
are unavoidable given the data-driven nature of Oscilloscope: when there
is no traffic, there is no data to work with; one must wait for the data.
With two or three validation steps, around 80% of interception events are
classified within 20 s. The “non hijacks” represent cases where Oscilloscope
initially triggers, initiates the validation, and classifies the events as normal
routing changes.

Finally, the expected trend when varying the number of validations is
most sensible for the tail: for about 70% of events, the classification delay
varies by less than 1 s.

4.6 performance 89

Conclusion By design, the classification and reporting of an event by
Oscilloscope takes at least 5 s. This choice limits the validation step from
excessive triggering due to random noise in the RTT signals. Most events
are classified within 5 s and 80% to 100% of them within 20 s (depending
on the event type and the number of validation repetitions). We argue that
this is a reasonable delay for detecting hijacks that would otherwise remain
unnoticed for a long time.

If faster detection is desired, an operator can adapt Oscilloscope’s design
by (i) reducing the size of Oscilloscope’s long-term window and/or (ii)
increasing the detection frequency (limited by the computational load –
Section 4.6.5). However, this will only help in cases where active buddy
prefixes are available for validation. As discussed before around 50% of
interception event classifications are delayed by the lack of available RTT
samples from buddies in our dataset.

4.6.5 Computational overhead

Running Oscilloscope requires performing three types of computations: (i)
extract the minimum RTT values from the combined signals, (ii) compare
the short- and long-term minimum RTT values to detect changes, and (iii)
perform the statistical tests to compare the RTT samples between buddies.
These computations must be sufficiently fast to run online; in particular,
they must scale to the amount of traffic that Oscilloscope would have to
monitor in a large AS.

Setup Our implementation of Oscilloscope is written in Python, similar to
common software of programmable control-plane devices. We time our
implementation execution for three classes of traffic load, quantified as the
average number of RTT samples to process per second.

• low – 600 RTT sample/s
• medium – 3000 RTT sample/s
• high – 5000 RTT sample/s

We measure the timing of the operations mentioned above, labeled as
minimum, change, and validation, respectively.

Results Table 4.2 summarizes the results for each operation and traffic load.
All times are in µs.

90 oscilloscope

operation load min median max

high 0.71 44.1 244.37
minimum medium 0.71 26.7 304.69

low 0.71 2.62 111.10

high 0.23 0.71 16.45
change medium 0.235 0.95 16.68

low 0.23 0.95 26.22

high 1044.98 1152.75 3357.64
validation medium 382.18 1146.07 2597.33

low 347.85 459.19 2586.60

Table 4.2: Only the time to find the short- and long-term minimum is highly
influenced by the load (median values). The validation operation takes
the longest. All values in µs.

As expected, the minimum operation is the one most affected by the
increasing traffic load, as there are more signals to track, thus, more oper-
ations to perform. However, even under high load, this always took less
than 250 µs in our experiments. The computation is efficient as Oscilloscope
can compute the minimum RTT values without storing all the samples,
which is an asset of its design. Storing a small number of sample values is
only required when the validation step(s) triggers. The change operation
compares two minimum values; as expected, this operation is independent
of the traffic load. Finally, the validation operation performs the statistical
tests comparing RTT samples among buddies. We observe that higher loads
lead to higher computation times (two to three times more between low
and high loads). This is explained by the number of statistical tests that
are effectively performed: Oscilloscope always looks for three buddies in
the validation step. However, with low traffic, there are not always enough
active buddies available, thus resulting in fewer tests being performed and
lower computation times.

Conclusion As expected, the traffic load severely impacts only the mini-
mum operation. However, it takes less than 250 µs even for a (high) load of
about 5000 RTT samples per second. The validation step is the most compu-
tationally expensive, reaching up to 3 ms. Altogether, the total computation
time is in the order of ms; in comparison, Oscilloscope runs every second,
three orders of magnitude higher. Thus, we conclude that the computational

4.7 related work 91

overhead of Oscilloscope is limited and, in particular, it is not a limitation
for running the system online, even under high traffic loads.

4.7 related work

This section introduces related work which focuses on BGP hijack detec-
tion. Note that some of the following paragraphs are contributions by the
second PhD student (Alexandros Milolidakis) who is also an author of the
Oscilloscope [4] paper.

Secure routing protocols are either undeployable or have limited effective-
ness. Over the years, multiple techniques and modifications to BGP have
been proposed to proactively secure the Internet against BGP hijacking [40,
134]. However, the lack of global consensus, the ever-increasing size of the
BGP tables [135], as well as the extra overhead required to authenticate
each entry have led to complex cryptographic signing techniques [136–138],
such as BGPSec [99], to be far from deployable in production [134, 139]. As
such, simpler forms of crypto-based mitigations have been proposed. For
instance, RPKI [100] only stores a digitally-signed mapping between an IP
prefix and the AS number allowed to originate a route for it. Unfortunately,
previous results have shown that by picking a victim and malicious ASes at
random over the Internet, the probability of attracting at least 10% of the
traffic, even with RPKI fully deployed, was above 60% [140].

Monitor-based countermeasures have limited visibility. To overcome the
limited deployment and effectiveness of crypto-based solutions, today’s
networks rely on reactive approaches that monitor the BGP announcements
propagated through the Internet from various vantage points [122, 141, 142].
These systems typically provide real-time detection within 5 s by analyz-
ing BGP announcements through the publicly available BGP monitoring
infrastructure, i.e., RIPE RIS [143], BGPStream [144]. An inherent limitation
of such solutions is that same-prefix BGP hijacks are only detectable if
any monitor receives the announcements. Our paper [4, § 2.3] shows that
carefully crafted BGP announcements do not propagate to the monitors.

Probing-based data-plane countermeasures can be evaded. Data-plane
approaches rely on active probing measurements (e.g., pings, traceroutes,
nmap, ...) often performed between external probe locations and the victim’s
network. Since traffic is forwarded to the attacker during the hijack period,
we may discover hijacks by probes that fail to reach their destinations. The

92 oscilloscope

success of these approaches heavily relies on their ability to distinguish
hijack signals from common traceroute problems. As the hijacker can attack
any sub-prefix of the victim’s prefix, detecting all possible attack scenarios
with low false positive rates (or false positives in case of interceptions) is
time-consuming and computationally expensive.

For example, iSPY [101] offers a lightweight approach with low false
positives that detect hijacks by observing unusual changes to usually stable
traceroute paths. However, it protects only against blackholing and same-
prefix attacks. Zheng et al. [145] discover interception attacks by observing
AS hop count changes in traceroutes. However, an interception hijacker
can easily manipulate this information by replying with false IPs. Hu et
al. [146] extract “fingerprints” from the devices of the correct origin and
compare them with the fingerprints of the potential hijacker. Since the
hijacker cannot completely mimic and lie about a network, blackholes
become distinguishable, yet interceptions easily evade detection as the
traffic reaches the correct origin. As such, systems operating in the data
plane have been challenging to commercialize.

Naive RTT-based solutions generate false positives or are challenging to
deploy. There exists other work which uses RTT measurements to detect
certain BGP hijacks. The RTT-based detection method in [47, 147] uses a
simple, threshold-based change-detection algorithm to observe possible
attacks. [148] focuses on a crowd-based detection approach which highlights
possible routing anomalies. Both methods have difficulties in distinguishing
hijacks from other events. Oscilloscope can validate some of its observations
using statistical tests and buddy prefixes. DARSHANA [149] also uses
changes in the RTT to detect hijacks but actively generates RTT samples
with a new “cryptographic” ping protocol which requires the exchange of
public keys with the destination. In comparison, Oscilloscope does not need
support from other networks to detect possible hijacks.

4.8 discussion and conclusion

This section discusses advanced aspects of Oscilloscope regarding deploya-
bility and performance under special cases and highlights future work.

Does Oscilloscope replace existing systems? No, we aim not to replace
existing RPKI and monitor-based solutions but to complement them. For in-
stance, Oscilloscope cannot detect attacks where the RTT remains unchanged

4.8 discussion and conclusion 93

or the hijacker intercepts all the IP prefixes in the same buddy group. In
these cases, one has to resort to monitor-based solutions. Note however,
that such attacks come with a cost for the hijacker. Intercepting all pre-
fixes belonging to the same buddy group greatly increases the additional
traffic that the hijacker needs to handle. Oscilloscope also does not prevent
hijacks, making solutions based on cryptographic functions still beneficial
(yet challenging to deploy).

Can Oscilloscope detect pre-existing hijacks? If an operator suspects that a
specific IP prefix might be hijacked (e.g., based on insights from the control
plane), we can manually trigger the validation step, which will compare
samples between buddy prefixes and verify the hijack.

Can a hijacker hide from Oscilloscope? A hijacker may try to evade de-
tection by tweaking the RTT signal or generating short-time hijacks. RTT
modifications: It is hard (or impossible in some cases) to evade detection by
merely tweaking the RTT signal. First, if the hijacking path has a higher
RTT than the legitimate one, there is no way a hijacker can beat the speed
of light to pretend the RTT is unchanged. Second, a hijacker that induces a
lower RTT may hold packets back but guessing the legitimate RTT distri-
bution would be out of reach since the hijacker has no visibility into those
distributions. More precisely, usually, the attacker does not know what the
RTT before the hijack was, as the malicious AS is (by definition) not on the
legitimate path. Short-time hijacks: The attack should last long enough to
propagate the announcement to the victim ASes. In the meantime, the RTT
signal of the intermediate ASes would be affected and could be detected by
Oscilloscope. High-frequency short-time attacks may be filtered by BGP Flap
Damping [20].

Can Oscilloscope detect a hijack towards one of its prefixes for which we
currently do not observe any RTT samples? In its current form, Oscilloscope
is entirely data-driven and cannot detect hijacks for which we do not collect
corresponding data-plane signals, i.e., RTTs. However, that also means that
the hijack is less severe as it does not affect any actual traffic. In Chapter 6

we show a possible solution based on our Dynamo [3] system.

Can Oscilloscope detect hijacks on IPv6 prefixes? Yes, Oscilloscope’s main
ideas also translate to IPv6 prefixes. However, operators might need to
revisit how they define combined RTT signals given the huge IPv6 address
space that is assigned to a single AS [58]. To prevent scalability issues,
we can extract combined signals based on the IPv6 address space that is
actively distributed to our customers. At least this space might produce user

94 oscilloscope

traffic and corresponding RTT samples. IPv6 also leads to interesting future
research questions. For example, can we observe data-plane buddiness
between IPv4 and IPv6 prefixes belonging to the same AS?

How can an operator regulate the number of alerts that Oscilloscope pro-
duces? As we show in Section 4.6, the operator could, for example, increase
the change detection threshold, improving the precision and removing
some of the noise/false positives, i.e., reported events often indicate a real
hijack. Another promising approach extends one of the previous discussion
points. An operator could combine Oscilloscope’s reports with observations
from a control-plane-based detection system. For both systems, we can
filter out reports with low confidence unless both systems raise them. For
example, we could remove Oscilloscope’s reports which are validated with a
single buddy prefix only.

Does Oscilloscope need to be deployed in multiple ASes to work prop-
erly? No, it is enough to deploy Oscilloscope in a single AS. It is only
designed to report hijacks that affect prefixes originated by this AS. Os-
cilloscope extracts all the required information locally. For example, RTT
samples from flows that start/end in the local AS or BGP data from local
routers (i.e., to build combined signals). However, aggregating reports from
multiple Oscilloscope instances deployed in different ASes could help reduce
false positives or detect large-scale hijacks that might affect prefixes from
multiple ASes at once.

The paper [4, § 7.4 & 8] also explains that Oscilloscope could overcome (i)
potentially falsely-classified buddy prefixes by basing its validation step on
a majority vote instead; and (ii) cope with intra-domain traffic engineering
techniques (e.g., hash-based load balancing) which influence single flows
but not all flows in a combined signal.

4.8.1 Conclusion

This chapter introduced Oscilloscope, which builds on top of Magnifier’s
inferred ingress and egress points (Chapter 3) to figure out where to collect
RTT samples from specific flows passively. Oscilloscope leverages the insight
that BGP hijacks introduce a forwarding path change which results in an
increased or decreased RTT. Oscilloscope first detects abrupt changes in the
minimum RTT using a window-based approach. Afterwards, it increases
the detection confidence using statistical tests.

4.8 discussion and conclusion 95

Oscilloscope highlights that locally-collected signals (here RTTs) reveal
properties of external Internet path segments (i.e., a hijacked path). Similarly
to Magnifier, Oscilloscope only informs network operators about potential
hijacks but does not actively prevent them. Network operators need to adapt
their forwarding decisions based on inferred path properties to achieve
more proactive systems. We explore the potential of this idea in Chapter 5

and introduce design principles and challenges of active routing decisions
based on inferred path properties.

5
PAT H - P R O P E RT Y- D R I V E N R O U T I N G D E C I S I O N S

So far, we have seen how Magnifier helps operators identify traffic ingress
and egress points in their networks (Chapter 3), enabling precise network
monitoring. Magnifier’s observations also guide operators on where to collect
signals to infer external path properties.

In Chapter 4, Oscilloscope detects BGP hijacks based on changes in the
observed RTT. Given that we use locally-collected RTT samples to infer
properties of external path segments, we also observe more noise and
encounter false positives.

Due to their passive nature, both systems only inform network operators
reactively about unexpected path properties. For example, once Oscilloscope
detects a hijack, the network’s user traffic already crosses the malicious
AS. A more proactive system necessitates a connection with available tools
that operators use to influence path selection. More precisely, inter-domain
routing protocols such as the Border Gateway Protocol (BGP) [20].

This chapter explores the opportunity to actively adapt routing decisions
based on inferred Internet path properties. Our experience with the Oscillo-
scope system guides us towards a path property that emits a strong signal
that we can collect locally, namely the reachability property of a path. In
other words, we explore the following research question: Whenever BGP
announces a new path for an existing destination, can we confirm that the
new path provides reachability before forwarding all our traffic over it?

Our exploratory study answers the question positively and reveals that
BGP’s “all-or-nothing” approach hinders a complete path reachability in-
ference. That means if BGP selects a new best route upon receiving a
corresponding update message, it immediately and irrevocably forwards
all matching traffic over the advertised path. As a result, network operators
lack time to infer any path properties of the newly announced path. We
advocate spreading the traffic shift over time to (i) collect signals for path
reachability inference; and (ii) allow for reconsideration should the new
path reveal unreachable destinations.

97

98 path-property-driven routing decisions

We highlight three main insights when assessing, controlling, and inte-
grating path-property-based routing decisions. First, we must decide which
IPs we use to test for reachability. Closely connected is the question of which
locally-collected signal reveals the external reachability path property. Naive
approaches, e.g., ping probes, neither provide the required coverage nor the
expected precision [22]. Instead, we leverage insights from the Oscilloscope
system and directly infer reachability based on slowly moved user traffic.

Second, we explore which devices should steer the entire process. We
observe a fundamental discrepancy between the network device forwarding
traffic to the existing, old path; the device that receives a BGP update
announcing a potential new path; and the network ingress points that carry
most of the traffic forwarded to the announced destination. We look at
different control flow designs, all of which have strengths and weaknesses.

Third, we explore different integration possibilities of our ideas with the
existing BGP decision process. We show that network operators can pre-
cisely define the importance of path-property-based decisions by deciding
where to place our operations in the existing decision process, i.e., as a new
step. A tight integration also allows for the inclusion of performance-related
path properties in the future.

Following, we first introduce the problem in detail (Section 5.1). Then
we explain why naive solutions are not good enough to infer path reach-
ability and gradually improve them (Section 5.2). Afterwards, we explore
different possibilities to include our path-property-based inference into the
existing BGP decision algorithm (Section 5.3), followed by open challenges
(Section 5.4) and a comparison with BGP’s default behavior (Section 5.5).
Finally, we look at related (Section 5.6) and future (Section 5.7) work.

5.1 introduction

The Border Gateway Protocol (BGP) [20] is today’s only option to perform
inter-domain routing between ASes in the Internet. Whenever BGP has to
select a new best route towards a destination, it goes through a multi-step
decision process taking all available (i.e., according to the router configu-
ration) paths into account. As we saw in Section 2.3, the algorithm only
considers control-plane information. It mainly bases its decision on eco-
nomic reasons, for example, to prefer “cheaper” routes: a route over a peer
with higher local preference is better than a route over a provider. Other
metrics, such as the AS path length, only loosely represent the physical

5.1 introduction 99

distance towards the destination. For example, AS path prepending is a
standard tool to deprioritize routes. It leads to artificially inflated AS paths
and potential route vulnerabilities [150]. Prepending is commonly observed;
origin ASes prepend more than 25% of all IPv4 prefixes [151].

It is striking that simple path properties, for example, if the path provides
reachability towards the advertised destination, do not play a role in the
decision process. Even more concerning, BGP does not provide any feedback
loop to validate its path selection. Assuming a newly selected path does not
provide data-plane reachability, we mainly have two slow and unreliable
options to trigger a new decision process: (i) some devices close to the
problem eventually detect it and withdraw the faulty route; or (ii) operators
take actions after receiving complaints from customers whose traffic no
longer reaches certain destinations. While waiting for a new BGP update,
BGP is stuck with a path that does not provide data-plane reachability, and
all corresponding traffic is lost. Unfortunately, not only do device or link
failures lead to unreachable paths, but also misconfigurations are a problem.
Route leaks, for example, are common and can lead to unreachable paths
or completely overloaded networks in the worst case [152].

We ask ourselves if we can enhance BGP’s decision process with simple
data-plane metrics, i.e., external path properties. More precisely, we envision
a new entry in the existing BGP decision process that selects paths according
to inferred path properties. In doing so, we can provide “working” and
performant paths whenever possible, even if they would not match the best
path selected by today’s BGP algorithm.

Working paths We expect that the eventually selected path provides reach-
ability towards the advertised prefixes – something that today’s BGP al-
gorithm cannot infer. However, determining reachability is not as easy as
just sending a few probes, as we illustrate in Section 5.2 with the help
of Figure 5.1. Some reachability problems only surface once a network
forwards enough traffic over a new path.

To include these scenarios, we define a working path as a path that (i)
provides reachability towards the advertised prefix(es); and (ii), if possible,
can provide the required throughput to carry all our traffic. It is important
to note that we only infer these properties when selecting a new path due to
an incoming BGP update that reaches our block in the decision process. We
do not constantly monitor paths and dynamically shift our traffic towards
the best option, which could have undesired drawbacks such as frequent

100 path-property-driven routing decisions

route flapping increasing router load [153] or impacting performance for
end users [154].

In the following section, we explore different design ideas how we could
infer path reachability properties and which network device should steer
the entire process.

5.2 design

This section tackles the seemingly effortless problem of detecting whether
a path provides reachability towards the advertised prefix. Starting with
the most straightforward approach, we iteratively increase the complexity
while discussing advantages and drawbacks. We first focus on techniques
to assess reachability and then consider how we can deploy our ideas in
existing networks, i.e., how the control flow looks.

5.2.1 Path reachability inference

We first explore techniques to infer path reachability, focusing on which IPs
and signals to select.

Example scenario and terminology Let us assume we are in the following
scenario (we discuss other scenarios in Section 5.4). A border router of
an AS already knows a best route towards a prefix P, for example, over
another local router learned via iBGP. It currently forwards traffic along
this route, which we call the old route or path. At some point, one of the
eBGP neighbors advertises a new route for prefix P to the border router,
i.e., over an eBGP session. We call this route the new route or path. BGP’s
decision algorithm needs to decide which one is better. From a data-plane
perspective, we want to ensure that the selection of the new route provides
reachability towards the advertised prefix P; resulting in a working path.

A successful reachability inference necessitates solving two problems:
(i) which IP addresses can we use to test for reachability, and (ii) which
technique or path signal do we use to infer the reachability?

IP selection It might be tempting to assume that an operator could ran-
domly pick any IP belonging to prefix P to explore path reachability. How-
ever, this approach does not work for multiple reasons. First, we must
determine if the random IP belongs to an active end host. If not, nobody

5.2 design 101

will answer a probe, or we will not observe any corresponding traffic.
Therefore, we cannot make a conclusive decision regarding the current
reachability towards prefix P. A second problem relates to the coverage
of our reachability inference. A random IP will only cover a small part of
the overall IP space belonging to P. More precisely, P could, for example,
represent a /16 prefix. To reason about the overall reachability of the /16
prefix based on insights from a single IP is a big stretch.

Similarly to the insights we got with our Oscilloscope system (Chapter 4),
we argue to follow a data-driven approach. To select IPs for reachability
tests, we use matching destination IPs of ongoing flows that traverse the old
path to reach P. That solves the activity problem. Given that we observe
ongoing flows, the corresponding end hosts are active. It also (partially)
solves the coverage issues. The active flows will cover all the relevant
destinations inside P.

As a side note, observe that the old path could exhibit unreachable sub-
prefixes belonging to P, which is the reason for a lack of ongoing flows.
However, even in such a scenario, TCP [42] will periodically retransmit lost
packets providing us with new candidate IPs to infer the reachability of the
new path.

Signals to use The reachability of an Internet-wide path is an external
property that network operators infer based on locally collected signals.
However, unlike Magnifier and Oscilloscope, two systems that do not know
a priori when we should expect a change in the inferred path properties,
our active combination of routing decisions based on path properties has
a significant advantage: We know precisely when to expect a potential
property change as we actively control the forwarding process.

As such, we can select from various locally-collected signals to infer
reachability properties. Similar to Oscilloscope when detecting blackholes,
a sharp drop in RTT samples reveals reachability problems. Even simpler
approaches give us insights into transit traffic, for which we might only
observe one traffic direction in our network. For example, we can infer if the
traffic “makes progress”, i.e., we see increasing TCP SEQ or ACK numbers
(Section 2.4). Alternatively, in case of an unreachable path, common TCP
retransmission patterns reveal problems (successfully used in [111]). As a
result, the main challenge comes from populating the newly announced
path with traffic, producing representative signals for reachability inference.
The following paragraphs discuss different techniques and ideas.

102 path-property-driven routing decisions

Different signal generation techniques Akin to common debugging work-
flows used by network operators and end users alike, we could ping (e.g.,
with the ping tool [43]) one of the IPs we observe over the old path while
directing the ping probe to the new path. Unfortunately, the generated
signal does not correctly reflect the reachability property of the new path,
as the probe or its reply could be lost.

A better approach sends multiple pings; but how many are enough? More
problematic, end hosts or on-path devices could actively block ping probes
in an attempt to increase security [44]. Under these circumstances, a ping-
based reachability inference would lead to erroneous results, even though
the new path works without problems. Clearly, more than ping-based
probes are required.

To circumvent the ping-related problems, operators could instead move a
single user flow (which currently traverses over the old path) to the new
path. Real application traffic should not be dropped by on-path devices,
thus, resulting in a precise signal for path reachability inference. Assuming
the flow continues over the new path (i.e., ongoing traffic), we receive a
strong signal that the new path provides reachability.

Unfortunately, the extracted signal still fails to fully reflect path reacha-
bility: (i) we can only infer the reachability of the IP address belonging to
the single, moved flow, and (ii) the generated signal heavily depends on
the endpoint behavior. What if the application terminates the shifted flow
soon after/while we infer reachability? Does that mean the path provides
no reachability? Clearly not. In summary, using a single user flow improves
the precision of the observable signal. However, it still needs to provide the
required coverage to assess a path’s reachability property fully.

The logical next step would be to move a few user flows to the new path;
once again raising many questions. How many flows are enough? How do
we select the flows, and at which point are we sure that the destination
provides reachability? We first have to broaden the collection of network
events that lead to reachability problems to find a technique that answers
these questions. More precisely, we must go beyond straightforward out-
ages, such as a link or device failures, that lead to an unreachable path.
What if the reachability problems are related to the amount of traffic we
forward over the new path? Figure 5.1 introduces two scenarios for which
we could observe such behavior.

We first focus on the scenario on the left. The new path (in green) provides
connectivity towards the dst AS. Probes, e.g., a simple ping [43] probe or

5.2 design 103

dst

our AS

AS 2AS 1

AS 3

AS 4

old path new path cross traffic

dst

our AS

AS 2

AS 1

AS 3

problem

Figure 5.1: Two scenarios under which reachability problems are only visible
with sufficient enough traffic. Arrows point from providers to cus-
tomers. On the left, the new path shares a segment with a large
amount of cross-traffic. On the right, AS 1 (our customer) leaks a
route from another provider (AS 3) to us, i.e., due to a configuration
mistake. AS 1 cannot handle all our traffic towards the dst AS.

a moved user flow, confirm that. However, AS 1 sends a large amount of
cross traffic (in orange) towards AS 4, partially sharing a path segment
with the newly advertised path. Once our AS starts to shift all traffic to the
new path, we will immediately encounter congestion events resulting in
packet losses for the flows towards the dst AS. The provided throughput is
insufficient for our current traffic demand towards the dst AS.

The scenario on the right in Figure 5.1 shows another problem. Our
customer (AS 1) leaks a route towards the dst AS from its other provider
(AS 3). Usually, an AS does not advertise routes between different providers
(compare Section 2.3.3). One reason for such a route leak could be a configu-
ration mistake. Assuming our AS does not filter out the wrongly advertised
route, BGP will immediately prefer the new path. After all, the new path
over our customer (we earn money) is more lucrative than the old path
over our provider AS 2 (we have to pay). Similar to the previous example,
a simple ping probe or a moved user flow will reach the dst AS over our
customer (AS 1). So the new path seems to work. Unfortunately, our cus-
tomer’s network is not provisioned to handle the large traffic amount we
send towards the dst AS and might drop most or all of it once we fully
commit to the new path. In the worst case, our customer is overloaded and

104 path-property-driven routing decisions

loses traffic unrelated to the dst AS. Route leaks are common and happen
in small and large ASes [152].

In conclusion, moving user flows seems promising, but we cannot limit
ourselves to an arbitrary number of flows.

Proposed solution We envision solving the problem by eventually moving
all the flows from the old path to the new one. Unlike today’s BGP algorithm,
though, which moves all flows at once as soon as it selects a new best route,
we gradually spread the movement over time. The network operator defines
the maximal time budget for the traffic shift, which directly impacts how
fine-grained we can assess the path reachability. A slow traffic shift enables
us to (i) significantly reduce the number of lost packets in case the new path
does not work; (ii) abort the process, i.e., immediately move back to the
old path should we infer any reachability problems; and (iii) perform the
reverse action, i.e., move everything to the new path, in case the old path
starts to fail or gets withdrawn by a BGP neighbor during our movement
process. Additionally, we cover all the active IP space in P, addressing the
initially encountered coverage problem.

Reachability assessment on top of ongoing user traffic requires careful
handling. Our actions should not result in reduced customer performance.
However, note that our vision does not perform a different operation than
what today’s BGP algorithm would do. We just distribute the process over
time. In fact, given that we can detect reachability problems before all traffic
is moved to the new path and stop the process accordingly, our approach
leads to fewer lost packets should the new path not reach P. Additionally, a
single flow is only moved once (i.e., from the old to the new path) unless
we later detect that the new path does not provide reachability.

5.2.2 Control flow

To assess reachability properties in an existing network, we have to over-
come a fundamental control and communication challenge: We observe an
inherent discrepancy between (i) the network device which currently con-
nects to the old path and advertises the corresponding route internally, i.e.,
the egress connected to the old path; (ii) the border router which receives
the BGP update advertising the new path; and (iii) network ingress points
which forward most of the traffic to the advertised destination. In other
words, who is driving and controlling the entire process of slow traffic

5.2 design 105

shifts for reachability inference? We explore different design ideas after
stating our assumptions and introducing a sample network.

Assumptions Fine-grained traffic shifts necessitate an easy way for border
routers to control where specific traffic is forwarded to. Chapter 2 intro-
duced BGP-based forwarding, where every router maintains a forwarding
table containing an entry (IP prefix and corresponding next hop) for each
advertised destination. In such a setup, individual traffic shifts are difficult
to achieve as routers forward packets based on their destination IP address
and according to the best matching prefix. As soon as the BGP update for
the new path propagates network-wide, routers will immediately move all
corresponding traffic, preventing the slow traffic shift we envision.

To this end, we assume that the network either contains programmable
hardware devices (e.g., Tofino [117] switches) which allow for flexible
per-packet forwarding; or (more likely) uses label-based forwarding in its
core. One typical example is Multiprotocol Label Switching (MPLS) [155].
Instead of BGP routes, core routers in an MPLS-based network forward
packets according to a label in the packet header, resulting in a more flexible
forwarding behavior with less overhead. The edge/border routers define
the labels when packets enter the network and remove them at the egress.
Therefore, a label change results in individual and targeted traffic shifts.
Even newer technologies, such as Segment Routing over IPv6 (SRv6) [156],
give network operators precise control over how individual packets flow
through their network. We discuss possible deployment concepts without
these assumptions in Section 5.4.

Sample topology We use Figure 5.2 as a simple example to discuss different
system design options and their advantages and disadvantages. Routers R3
and R4 send different traffic amounts towards the dst AS currently using
the old path via R1. Router R2 receives a BGP update announcing a new
route towards the dst AS. R2 prefers this route (i.e., higher local preference)
and would like to infer the reachability of the new path towards the dst AS.
Note that R2 does not forward matching traffic to test with.

Our scenario includes the case where the border router for the old and
new paths overlap. More precisely, R1 could also receive the BGP update,
for example, over a different eBGP session. Note that this case is more
straightforward to handle as R1 already observes the traffic, which might
be shifted to the new path.

The following paragraphs explore three different design principles for
reachability inferences of the new path by slowly moving traffic: the egress

106 path-property-driven routing decisions

dst

old path

new path

R2R1

R4R3

our AS

BGP update

Figure 5.2: Two ingress routers (R3 and R4) send different amounts of traffic
towards the dst AS over the old path via R1. The egress router R2
receives a BGP update advertising a new path towards the dst AS.

connected to the old path controls the process; the egress connected to the
new path controls the process; or the ingresses control the process.

The old egress controls the process The first idea heavily focuses on the
current egress connected to the old path (R1). R1 seems like the most
logical place as it already carries a lot of matching traffic that flows over
the old path. Once R2 receives the BGP update message, it forwards it to
R1 over their iBGP session. After that, R1 steers the process of validating
reachability over the new path by shifting traffic to it, for example, by
changing MPLS labels of incoming packets. However, such a control flow
drastically affects the overall forwarding behavior of the AS. First, a single
egress router (R1) decides over all the traffic in the network towards the dst
AS, which currently uses the old path. And second, the internal forwarding
paths during the reachability check are suboptimal. R3 and R4 forward the
traffic to R1, the current best route. At the same time, R1 gradually moves
some of the traffic to R2 to validate the reachability of the new path. As a
result, the network performs unnecessary traffic redirections.

The new egress controls the process The second idea gives R2 complete
control over the process. R2 is the first border router receiving the BGP
update for the new path, which is a strong argument to coordinate the
entire process. However, this opens the question of how R2 receives traffic
to validate the reachability of the new path. Currently, most/all traffic is
forwarded over R1 (compare Figure 5.2). So R2 initially has no or only very
little traffic to test with. We see two different solutions which build on top
of each other:

5.2 design 107

R2 can use the existing iBGP sessions in order to receive traffic to test
with. More precisely, R2 sequentially sends a BGP update for the new
path via iBGP to each other ingress, simulating a traffic shift over time.
Note that the existing BGP algorithm would send all updates at once. As a
result, we slowly receive more traffic at R2, which validates the new path’s
reachability property. If R2 discovers that the new path does not provide
reachability, it will immediately withdraw the route, and the other ingresses
will use the existing old path again.

On top of that, we no longer face the problem of the previous idea, i.e.,
that a single egress dictates the forwarding behavior for all corresponding
traffic. Every ingress could decide on its own to ignore the new path and
continue with the current, old path. Section 5.3 explores the integration
with the BGP decision process in more detail.

Although the idea seems to work in theory, we still face two problems: (i)
if we apply such a design to our example in Figure 5.2, R2 will receive a
massive amount of traffic once R3 gets the update and nearly no traffic from
R4. This does not result in the expected slow traffic shift we had in mind. In
an extreme case, one ingress carries all the traffic, resulting in a traffic shift
that resembles today’s BGP behavior. And (ii) after R2 sends the update
to one neighbor via iBGP, it cannot decide between an ingress router that
ignored the new path and an ingress router that currently does not forward
matching traffic. As a result, R2 encounters difficulties in scheduling the
movement process.

A better solution would allow R2 to request a specific amount of traffic
from each ingress router. R2 then periodically increases the amount until,
eventually, all traffic uses the new path. This results in a smoother traffic
shift. However, this approach requires new communication capabilities be-
tween R2 and the other routers. Additionally, we increase the computation
load on all ingress routers as they need to forward specific amounts of
traffic and keep the corresponding state. We are unsure if these drawbacks
justify the benefits we get. As a result, we explore a third and final control
flow design.

The ingresses control the process Finally, the third idea gives the different
ingress routers control over the process; in our example, that would be
R3 and R4. They receive the incoming traffic, which should either go
to the old or new path. As soon as R2 receives the BGP update for the
new path, it announces it to R3 and R4, respectively. Both routers then
individually move their traffic from the old to the new path and eventually

108 path-property-driven routing decisions

make a decision based on the inferred reachability property. That avoids
new communication techniques but adds uncertainty to the two egress
points (R1 and R2). Without further notifications, they do not know at
which point in time the ingresses made their decisions. Both egresses need
to continuously provide the corresponding routes in their forwarding table.
Over time, that can lead to a greatly increased number of forwarding entries.
Note the difference to today’s BGP algorithm. For example, if R1 decides
that the new path over R2 is better, it will replace its forwarding table entry
accordingly and send a BGP update to all other routers in the network.

Conclusion Deciding which entity should steer the process is difficult to
answer. Our exploration of three different design ideas highlights that we
need to find a tradeoff between: (i) additional on-device state for ongoing
traffic shifts; (ii) additional forwarding state to provide the old and new
route while we test them; (iii) additional communication overhead between
the routers; and (iv) the achieved smoothness in the performed traffic shift.

5.3 path-property-aware bgp decision algorithm

Now that we better understand which devices could steer a path-property-
based inference step, we explore how to integrate such operations into the
existing BGP decision algorithm. We envision three deployment strategies:
(i) Verify the reachability properties whenever the existing BGP decision
process (compare Table 2.1 in Section 2.3) decides to select a new best path.
(ii) The network operator gets control over how critical path-property-driven
decisions are by freely placing our operations as a new block in the decision
process. However, due to the binary outcome (reachability or not), our
block will always terminate the decision process should we reach it. Or (iii)
we define additional criteria which express path-property-based equality,
leading to a tighter integration while raising new challenges. The following
subsections discuss all approaches in detail.

5.3.1 Mandatory reachability checks upon the selection of a new path

The most straightforward integration adds our reachability check when
three conditions hold: (i) BGP decides that a newly received update provides
a better path, i.e., the existing decision process prefers the new path; (ii)
one of our BGP neighbors continues to advertise the old path; and (iii) the

5.3 path-property-aware bgp decision algorithm 109

next hop of the new path differs compared to the old one, i.e., at least the
beginning of the new path is different to what we currently use.

(i) Ensures that our property inference step activates only when BGP
moves all traffic to the new path (Section 5.4.4 discusses different BGP
scenarios). Currently, the traffic shift happens at once; in our vision, we will
prolong the shift over time. Due to (ii), we provide the additional benefit
that we can abort and reverse the traffic shift should the new path lack
the expected reachability properties, i.e., the old path still exists. Finally,
without (iii), the old and new paths share the next hop, meaning we cannot
actively choose between them. Even if the two paths start to diverge later
(e.g., different AS paths), BGP lacks a control mechanism to decide which
path our packets follow (in remote ASes).

Advantages The tight correlation of the property-based inference step
with scenarios that unavoidable lead to a traffic shift (with today’s BGP
algorithm) strengthens our cause. More precisely, if the new path works
well, we only add some delay to the process. However, if the new path lacks
reachability, our approach actively prevents the complete packet loss we
would observe with the existing implementation.

Disadvantages The first condition (i) neglects scenarios in which the old
path exhibits problems that might be detectable with path-property-based
decisions, making the new path the better choice. In other words, given that
our decision step is only considered if default BGP prefers the new path,
insights based on inferred path properties can never overturn the existing
control-plane decisions.

5.3.2 A deciding step in the existing decision process

A completely different approach gives network operators full control, given
that they might have different preferences on how important path properties
are for their network. They decide where we consider path attributes in the
existing decision process as an additional, new step.

Every existing BGP decision step (with the exception of the last one) has
three different outcomes if we compare an old and a new route. First, end
the decision process and prefer the old route. Second, end the decision
process and prefer the new route. Or third, both routes are equal according
to the current criteria and proceed with the next decision step.

110 path-property-driven routing decisions

Our inference only has two outcomes, either the new path provides
reachability or not. Let us assume we place our traffic shift as a new step
in the existing decision process. If our inference indicates that the new
path provides reachability, we have already moved most/all traffic to it.
Although possible, continuing with the following decision step would raise
new questions. What happens if a following decision step concludes that the
old path is indeed better? Do we move all traffic back? For this reason, our
second design idea assumes that our decision step always terminates the
process, either preferring the new path if reachability exists or continuing
to use the old path instead.

Network operators control where the property-based decision happens
by placing our step between any of the six existing ones introduced in
Table 2.1. We could even place it at position zero, i.e., before all remaining
steps. For example, assume an operator places our inference after step
three, which means if the BGP decision algorithm finds a unique best
route in steps one to three, our reachability inference will not happen.
However, if the process reaches step four, we will get active. Consequently,
the placement of our system in the decision algorithm directly translates to
how important path-property-based considerations are for an operator. The
following paragraphs describe the characteristics of different placements:

Before step 1 If we place our block before the first step of the original BGP
decision process, we skip any existing metrics and always decide based on
the reachability of the new path.

Although such a placement has advantages from a data-plane perspective,
it ignores any decisions based on the local preference value or other BGP
attributes. That means the main monetary-based decision criteria related
to customer, peer, or provider peering sessions no longer play a role – a
fundamental break with the existing behavior.

We envision two ways to give operators more fine-grained control: (i) an
operator limits the execution of our block to specific prefixes, for example,
destinations with critical customer traffic. Or (ii) the operator provides one
or multiple local preference ranges. Our decision block is only active if
the old and new routes belong to the same range. One range could, for
example, contain all local preference values which belong to customers.
As a result, we only perform a path-property-based decision as long as
we have to decide between and old and new route belonging to the same
peering category.

5.3 path-property-aware bgp decision algorithm 111

Between steps 1 and 2 If we place our block after the first step, we will
only consider a new path with the same local preference value as the old
one. The most critical BGP decision is already made. For these paths, our
system would then perform the reachability inference. We argue that this is
a suitable placement if an operator thinks the following step, i.e., AS path
length comparison, does not reflect data-plane behavior. Indeed, this is often
the case when operators use techniques such as AS path prepending [150]
for traffic engineering.

Between steps 2 and 3 Placing our system before step 3 (MED comparison)
is interesting as it would allow us to make a more informed decision rather
than following the lower MED value, which is set by a neighboring AS, i.e.,
an external entity.

Between steps 3 and 4 A placement at this point allows us to select an
iBGP path even if we have an eBGP one available. That means we would
send more traffic through our AS (to reach another exit point) rather than
directly sending it to the neighbor over the given eBGP connection. A small
price to pay for reaching a path whose reachability is inferred.

Between steps 4 and 5 Similar to the previous point, a placement here
would allow us to forward the traffic over a non-shortest internal path to
reach the new path.

Between steps 5 and 6 At this point in the decision process, BGP already
decided that the two paths are equal from a control-plane perspective
and only a tie-breaking step is left. We argue that a path-property-based
inference should always occur if the BGP decision process reaches this step.
The tie-breaking mechanism based on the smaller IP address is entirely
random and does not consider any network or path signals.

After step 6 A placement after the final step does not provide any benefits,
given that BGP already made a final decision and selected a single path.

5.3.3 Path-property-based equality

The final design idea builds on top of the previous one. Once again, we give
network operators free control over where they place our path-property-
based decision step in the existing process. Additionally, we define equality
criteria for path-property-based decisions between the two paths. We ex-
plore two options:

112 path-property-driven routing decisions

Intelligent traffic shifts With this approach, we define a reachable new
path as the equality outcome and continue the decision process normally,
i.e., the existing, following control-plane-based steps will decide which
path is better. If the decision process eventually prefers the new path, we
are done. All traffic already follows the new path (as we moved it to infer
reachability). However, if BGP instead prefers the old path, we intelligently
move the traffic back. More precisely, we keep ongoing flows over the new
path while we forward new flows over the old one. Eventually, all flows
once again use the old path.

Note that this approach leads to additional: (i) state on the devices
responsible for the traffic shift; (ii) discrepancy between the advertised
control-plane behavior and the data-plane forwarding actions; and (iii)
routing table entries while we still have ongoing flows to forward over the
new path. Section 5.4 discusses these problems more generally.

Performance-based path properties A more radical approach extends the
inferred path properties. Instead of purely focusing on the reachability
aspect, we infer additional path properties related to performance criteria,
for example, the minimum RTT or the current throughput. While moving
the traffic, we can perform these inferences for the old and the new path.
As a result, we compare the two paths, which naturally leads to the three
expected outcomes of a BGP decision step: prefer the old path, the new
path, or both are equal. In case of equality, we continue with the next step
in the decision process and eventually move all traffic to the selected, better
path. Unlike other performance-based routing systems, which continuously
monitor and update their path selections (e.g., [157]), our approach only
decides after receiving a BGP update. That limits the number of path
changes and events, such as frequent route flapping.

5.4 advanced challenges

This section introduces advanced challenges and BGP scenarios which we
did not address so far.

5.4.1 Deployment in a network with a full BGP core

Without programmable devices or label-based forwarding (compare as-
sumptions in Section 5.2.2), we face additional challenges when deploying

5.4 advanced challenges 113

our ideas in a physical network: (i) moving specific traffic to a dedicated
path contradicts the prefix-based forwarding behavior in the network; and
(ii) each router needs to decide between the two path options, leading to un-
expected traffic deflections. For example, the ingress decides to use the new
path. However, a router on the internal forwarding path towards the egress
point prefers the old path. As a result, the ingress traffic gets deflected
to the old path. Note that this can happen as our path-property-related
decision block breaks with the currently used decision process and needs
additional time to validate the new paths’ reachability.

A possible solution to (i) involves the internal announcement of new,
more-specific prefixes that temporarily move some traffic using the normal
BGP forwarding behavior. In an extreme case, temporary /32 prefixes could
move traffic on an individual IP basis. However, that increases the size of
the local forwarding tables and does not allow for fine-grained traffic shifts.

(ii) heavily depends on which control flow we follow (compare Sec-
tion 5.2.2). If, for example, the egress router connected to the new path
steers the entire process, we can carefully control in which order the new
path is announced to other routers via iBGP, preventing some deflection
problems. Note that route deflections can happen in networks, even if we
do not use our property inferences [158]. The following subsection explores
the problem more generally.

5.4.2 Synchronized data and control planes

In the absence of configuration mistakes and outages, the control and
data plane are usually synchronized once BGP converges. That means data
packets follow the path specified in the control plane. The recommendations
in [159] define different benchmarking methodologies to evaluate data-plane
convergence upon control-plane changes and lead the way for a detailed
analysis of our idea in future work. In this initial, exploratory study, we
only locate the main challenges with our ideas.

The previous subsection introduced problems inside our network. How-
ever, the proposed slow traffic shift to infer reachability also impacts consis-
tency between ASes. More precisely, while we infer the path reachability,
the currently advertised path via eBGP, e.g., to one of our customers, does
not always match the forwarding path their packets take. We distinguish
three stages: (i) before we start to move any traffic; (ii) while we move the
traffic to infer reachability; and (iii) after we make our decision.

114 path-property-driven routing decisions

(i) The planes still match before we start to move any traffic. More
precisely, we did not yet advertise the new path to our neighbors, and all
traffic still follows the old one.

(ii) The planes start to diverge during the traffic shift to infer reachability:
We still advertise the old path to our neighbors while we move the traffic.
As a result, some of their flows (towards the same destination) might take
the old path while other flows already follow the new path.

BGP does not provide a method to express such a traffic shift unless
we move the traffic in sub-prefixes (e.g., each /24 individually [59]) and
temporarily advertise these prefixes to our neighbors. However, this idea
is suboptimal for two reasons. First, temporarily announcing new /24
prefixes, especially if we do not own the prefix space they belong to, quickly
looks suspicious (could be seen as a BGP hijack) and leads to additional
forwarding entries. And second, if one /24 sub-prefix contains most of the
traffic, we will not end up with a smooth traffic shift. Note that we cannot
simultaneously announce both routes (old and new) to a neighbor. The
BGP update for the second route will implicitly withdraw the first route as
they belong to the same prefix [20].

For these reasons, and given that we could move back to the old path
should we discover reachability problems with the new one, we believe it is
best to keep the existing announcements until our reachability inference is
complete. If we prefer the new path, our routers immediately advertise the
new route to their neighbors, as described in (iii).

(iii) After we move all traffic to the new path and make our decision,
the corresponding routers will immediately announce it to their eBGP
peers (assuming we prefer a new path). Once a neighbor processes the
announcement, the planes match once more. This process does not differ
from today’s approach after BGP selects a new best route.

In conclusion, during the traffic shift, the planes temporarily misalign
for our neighbors (and internally). Section 5.6 lists related work that could
solve some of the described problems.

5.4.3 Lack of traffic

Similar to our observations with the Oscilloscope system, we cannot assess
path reachability properties if our network does not carry any user traffic
towards the destination for which we receive a BGP update. This is an

5.4 advanced challenges 115

inherent problem of data-driven approaches. Interestingly enough, the
current lack of traffic could stem from a reachability problem over the
existing, old path. We advocate for the following approach: if the BGP
update reaches our block in the decision algorithm (gives control to the
network operator via its placement), and we realize that we do not carry
any matching traffic, we should prefer the new path. Most likely, nothing
changes, as we do not forward any traffic. If the old path was not reachable,
we ended up with a better path by selecting the new one.

5.4.4 More involved BGP events

So far, our examples always considered one current path (old) and a single
incoming new path. In larger networks with multiple peers, we often have
more than two possible path options available to reach a specific destination.
Furthermore, BGP updates can withdraw routes or modify existing ones.
Let us consider the following scenario: a router knows one current best
route and multiple non-best routes. We assume that our system would infer
reachability whenever BGP selects a new best path (compare Section 5.3.1).
This scenario leads to the following more involved cases:

• The router receives a BGP update which modifies a non-best route,
but the currently best route is still preferred. In this case, we will not
apply any reachability inference as we do not select a new path.

• The router receives a BGP update which modifies a non-best route,
making it better than the current best route (the old path). Eventually,
the BGP decision process selects this route as best, and we can infer
reachability, moving traffic from the existing path to the new one.

• The router receives a BGP update for the currently best route, making
it worse than one or multiple non-best routes. One reason could be
that the BGP update announces the same prefix but with a longer
AS path. This case is interesting as the incoming update does not
represent the new path. It rather modifies the old one. Following
BGP’s existing decision process, one of the other paths will be selected
as the new best route. As a result, we can easily apply our reachability
inference. We still have a currently used path and a new option.

• The router receives a BGP update which withdraws one of the non-
best routes. Given that the router does not use the withdrawn route,
we ignore this event and do not perform any path inferences.

116 path-property-driven routing decisions

• The router receives a BGP update which withdraws the current best
route (i.e., the old path). A withdraw message is a strong signal that
the existing, old path either no longer works or will soon be disrupted
(for example, to perform maintenance work on a router or link). We
should react immediately and not perform time-intensive reachability
checks resulting in slow traffic shifts. In such a case, we follow the
existing BGP algorithm to select the new best path, e.g., by skipping
our reachability inferences entirely. All traffic moves to the newly
selected path at once. Optionally, we start a reachability inference
once all traffic follows the new path (e.g., a check if traffic keeps
making progress over the new path). But the priority should be to
move traffic away from the withdrawn path as soon as possible.

In conclusion, we can also apply our ideas to more involved BGP sce-
narios. An essential requirement is that we have an existing path and a
new one. However, we need to handle withdrawn routes carefully and not
artificially prolong the traffic shift. As part of future work (Section 5.7),
we also formulate an additional challenge. We consider that we deploy
the reachability inference as part of a new step in the decision process
(Section 5.3.2) while facing the previously discussed scenarios: More than
two paths might reach our decision step. How do we perform reachability
inference in this case?

5.4.5 Communication between devices

We need additional communication methods between the different routers
to realize our ideas. For example, in order to signal how much traffic needs
to be shifted to which egress/path. In the best case, we use existing iBGP
methods, for example, by advertising a new route only over selected iBGP
sessions. However, that limits us to prefix-based per-router traffic shifts,
which are not fine-grained enough. Even more problematic, if we go be-
yond our assumptions of programmable devices or label-based forwarding
(Section 5.2.2), messing with the iBGP update order can lead to route de-
flections and forwarding loops – problems which we observe even without
our changes to BGP [158].

Better solutions include programmable switches, such as the Tofino [117],
which communicate over and react to packets with custom headers. Addi-
tionally, research work such as [160] introduces new ways for faster routing

5.5 comparison with default bgp’s behavior 117

protocol innovations and could enable some of the required communication
channels with limited overhead.

5.4.6 Bursts of BGP update messages

Another challenge comes with BGP update messages which either announce
multiple prefixes at once or arrive in entire bursts. As an example, a failure
of a link or important router might lead to a burst of BGP withdrawals
in a short amount of time. Swift [161] studies such events and uses corre-
sponding BGP update message patterns to predict remote outages. For our
reachability inference, many new paths could lead to scalability issues. Af-
ter all, we suddenly have to perform slow traffic shifts for all corresponding
destinations.

We envision two solutions: First, in case of bursts of withdrawn routes,
our reachability inference does not operate as we follow BGP’s default
behavior to move affected traffic to a new path as soon as possible (compare
Section 5.4.4). And second, in case of multiple announcements of new routes,
we can leverage insights from the Oscilloscope system and combine pre-
fixes that originate from the same remote AS (i.e., similar to Oscilloscope’s
combined signals in Section 4.4). As a result, we can scale the reachability
inference by only performing a slow traffic shift for one prefix per remote
AS. Once we confirm reachability for an AS, we move all traffic belonging to
related prefixes at once. Note that such an approach could miss reachability
problems located very close to the origin of a prefix, for which we did not
perform a slow traffic shift.

5.5 comparison with default bgp’s behavior

This section compares our vision with the default BGP algorithm along
four metrics: performance gain, traffic impact, routing table size, and con-
vergence time.

Performance gain We first explore the performance gain of our ideas
compared to default BGP operations. We consider multiple cases:

• Both old and new paths provide the expected reachability towards the
advertised destinations. In this case, we provide equal performance
compared to the default BGP operations; we just spread the traffic
shift over time.

118 path-property-driven routing decisions

• The old path works well, but the new (better) one does not provide
reachability. The default BGP algorithm has no insight into path-
property signals and will immediately forward all traffic over the
broken path. With our approach, though, we will only lose a fraction
of the traffic, i.e., the shifted flows, until we detect a lack of reachability.
Afterwards, we will immediately move back to the old path. In this
case, our approach provides an apparent performance gain.

• The old path lacks reachability, but the new (better) one provides full
reachability. If we do not observe any traffic over the old path (e.g.,
retransmissions due to lost packets), we will immediately fall back
to BGP’s default behavior, as discussed in Section 5.4. As a result,
we perform equally compared to today’s BGP algorithm. Should we
still observe some traffic, we will gradually shift it to the new path,
confirming its reachability property. In this case, we might prolong
the traffic shift compared to BGP’s default operation. However, note
that we will eventually select the working path.

• Both paths lack reachability, for example, due to a problem close
to the destination. In this case, neither default BGP nor our system
finds an adequate solution. In the future, we envision two interesting
extensions to our approach. First, our system detects outage-related
traffic patterns, e.g., increasing TCP retransmission times (successfully
used in [111]), to identify the lack of reachability over both paths. As
a result, we can automatically notify the network operator, which is
impossible to achieve with today’s BGP algorithm. Second, building
on the previous idea, we could instead try a potentially available
backup path. That means neither the old, currently used path nor the
newly advertised one, but instead, one of the other (non-best) paths
that the router might know (compare Section 5.4.4).

In conclusion, with our vision, we (eventually) always select the better
path while significantly reducing the number of lost packets should a new
best path not provide reachability.

Traffic impact Another metric is our impact on the traffic towards the
destination of the incoming BGP update. More precisely, how often do
we switch a flow between different paths. As we saw in our Oscilloscope
work, forwarding paths exhibit varying properties, such as different delays.
Changes in the forwarding delay or packet loss rate impact application
traffic, for example, video streaming [154].

5.5 comparison with default bgp’s behavior 119

The following statement describes the behavior of BGP and our vision:
Every flow towards a destination P is moved between paths at most as
often as our network receives BGP updates for P during the flow’s lifetime.

It is easy to see for default BGP. In the worst case, every BGP update
results in a better path, moving the traffic accordingly. With our vision, we
have to consider two additional aspects. First, given that we spread the
traffic shift over time, a flow might start after we receive a corresponding
BGP update. However, the matching portion of the prefix space still needs
to be moved to the new path, resulting in an additional movement for this
specific flow. That being said, the same holds when a flow terminates. More
precisely, the flow could terminate after we receive a BGP update, but we
did not yet move this flow to the new path. Second, should the new path
lack reachability, we might move flows two times, i.e., once more than with
default BGP operations. However, thanks to our path property inference,
we eventually select the working (old) path, which BGP cannot achieve.
Path reachability negates potential drawbacks of the additional traffic shift.

The following traffic impact is more challenging to assess theoretically
and leads to interesting future measurement studies: Default BGP moves
all flows at once to the new path. Compared to the currently used path,
the new one might exhibit different throughput properties, either due to
different physical capabilities or ongoing cross-traffic using the same path.
As a result, all moved flows compete (with each other and the cross traffic)
for a fair throughput share. Mechanisms such as TCP’s congestion con-
trol algorithm [162] actively increase or decrease the congestion windows,
impacting the amount of traffic a single flow exchanges at once.

In our vision, the underlying scenario is the same. However, we slowly
move the traffic to the new path. Consequently, not all flows start to adapt
their congestion windows at the same time. The slower movement could
result in better (or worse) user performance, calling for a detailed practical
measurement study.

Routing table size Our reachability inference step leads to increased routing
table sizes depending on the selected implementation strategy (compare
Section 5.2.2). The reasons are twofold: (i) while performing the traffic
shift, the corresponding router needs to know both routes; and (ii) the
egresses that connect to the old or new path cannot immediately remove
the corresponding routing table entry as other nodes in the network might
still perform reachability inference. Problem (i) is only temporary and local

120 path-property-driven routing decisions

to a single router. Once the traffic shift is done and a decision is made, the
router removes the second table entry.

To solve (ii), we envision two potential solutions: Either the border routers
actively communicate once they complete their inference steps, for example,
using ideas discussed in Section 5.4.5. Consequently, the egress router
can remove no longer used entries eventually. Or alternatively, the egress
routers initiate a “cleaning process” once they no longer receive matching
packets for a given destination (according to an operator-defined timeout
period). We assess the forwarded traffic amount via custom counters in
programmable devices or via existing monitoring solutions on classical
routers (e.g., [51]). Once the router removes/cleans a corresponding route,
it will send a BGP update via iBGP to actively withdraw the route.

Convergence time Finally, our vision also impacts the convergence speed
of BGP. We consider two aspects: convergence time inside a single network
and Internet-wide BGP convergence, assuming multiple (all) ASes use our
ideas. Generally, we must remember that our inference is only active if we
already know a currently used old path. In critical scenarios, i.e., a route
withdrawal, we will immediately follow BGP’s default behavior and not
increase the current convergence time.

As discussed in Section 5.2.1, the network operator defines the maximum
time budget for the traffic shift. Consequently, the operator controls the
convergence time inside a network, and the routers distribute the traffic
shift accordingly. More time for the traffic shift, i.e., a longer convergence
time, allows for a quicker reaction in case of an unreachable path and, thus,
fewer lost packets.

The situation is more interesting in a global deployment scenario. At first,
we might think that a BGP update necessarily results in a path reachability
validation step in each network it passes through. However, that is often not
the case, as we show in Figure 5.3. After a temporary link failure between
AS 2 and AS 5, AS 5 once again receives AS 2’s prefix over the direct
connection. As a result, AS 5 performs a reachability inference operation
and eventually forwards the new route to AS 8. Similarly, AS 8 infers the
reachability of the new path and further announces it to AS 7 (and AS
6). However, even though AS 1, 3, 4, and 7 also receive a BGP update for
the new path (the AS path changes), they do not perform the reachability
inference as the old and new path share their next hops. Note that AS 6

does not perform the inference step as it places our decision step towards
the end of the decision process. The customer path (via AS 2) is preferred.

5.6 related work 121

old paths

new paths

AS 6AS 5

AS 2

AS 8AS 7

AS 3 AS 4

AS 1

peer-to-peer

provider-to-customer

AS with inference

AS without inference

temporarily failed link

Figure 5.3: After AS 8 infers the reachability of the new path via AS 5, all
following ASes (1, 3, 4, and 7) can no longer perform a reachability
inference of the new path, even though they receive a BGP update
with a new AS path (same next hop for old and new path). AS 6

places our inference step after the local preference comparison in the
decision algorithm, always preferring customer over provider routes.

More generally, once the old and new paths converge, the following ASes
no longer infer the path reachability. Another way to express this behavior
is to understand AS 8’s BGP update to AS 7 as an implicit withdrawal
of the old path. Following our intuition for these cases (Section 5.4.4),
we will immediately fall back to BGP’s default behavior and not perform
reachability inference.

Note, once again, that the number of traffic shifts would be the same
as with the default BGP behavior. AS 5 and AS 8 move all traffic once the
default BGP algorithm selects the new best path. In our use case, we just
perform a slower traffic movement.

Conclusion Our exploratory comparison with BGP’s default behavior
shows that our ideas lead to an apparent performance gain in case a
new path does not provide reachability. Other aspects, such as the impact
of the slow traffic shift on experienced user performance, require more
detailed studies in the future.

5.6 related work

Detecting BGP anomalies is well studied, and [163] summarizes different
anomalies and detection techniques. For reachability problems, work such
as [101, 145] mainly focuses on BGP hijack-induced reachability losses.
They use active probing tools, e.g., ping [43] and traceroute [164]. Our ideas

122 path-property-driven routing decisions

directly infer the reachability property based on user traffic, preventing the
generation of additional traffic and artifacts due to blocked probe packets.

Property-driven inter-domain routing decisions In early work, Savage et
al. [165] studied performance and reachability problems. They discussed
the idea of virtual routers tunneling packets around the detected problems,
i.e., the traffic makes a detour. Tunneling is another approach to performing
fine-grained traffic movements and could complement our ideas to slowly
shift traffic to a new path.

Bush et al. [166] explore the reachability of new address space, i.e., IP
prefixes announced for the first time. They use traceroute and ping packets
to infer the reachability of the new prefix space to and from different
probe locations. Such measurements complement our effort of reachability
inference for new paths, for example, when deciding to use a route for
a prefix that our network observes for the first time. However, they need
support from external probes to infer Internet-wide reachability precisely.

The Blink [111] and Swift [161] systems detect remote outages (resulting
in reachability problems) and quickly forward affected traffic to a backup
path. More generally, [167] summaries various data-plane fast recovery
mechanisms. Blink recognizes typical TCP retransmission patterns, while
Swift predicts the overall extent of the outage after receiving a few BGP
update messages. However, these systems are another example of a reactive
approach. All traffic is already lost for an extended time period before they
detect the outage. Our ideas take a more proactive approach, inferring the
reachability before we move all traffic to a new path. Additionally, we are
only active once a new path is advertised, reducing the state we must keep
for the reachability inference.

RouteScout [157] goes a step further and considers changes in path loss
and delay properties to actively move affected traffic to other available
paths. Programmable data-plane devices perform the traffic shifts once
operator-defined objectives are violated. Similarly, SDNMA [168] heavily
focuses on Software-Defined Networking (SDN) to monitor throughput,
loss, and delay based on existing monitoring solutions and crafted packets.
The SDN controller reroutes traffic to other eBGP peers if the performance
falls below a threshold. Our idea focuses on reachability and infers this
path property only when receiving new BGP routes. As a result, we can
scale better than always-on monitoring approaches and induce fewer route
changes for end-user’s traffic.

5.6 related work 123

[169] and [170] are two examples of systems that extend BGP with Quality
of Service (QoS) features. Both systems include QoS metrics in BGP update
messages, impacting the BGP decision process. Our vision goes another
way and does not require active additions of path attributes in the BGP
update messages. Instead, we infer path reachability properties based on
locally collected signals and include these in the BGP decision process. Our
approach mitigates problems of lying networks that could include wrong
performance metrics in their update messages.

Property-driven intra-domain routing decisions Other related work fo-
cuses on intra-domain, rather than inter-domain, performance-based rout-
ing. Contra [171] enforces operator-defined performance policies with pro-
grammable network devices and custom probe traffic. MATE [172] improves
resource utilization inside a network by moving traffic over multiple avail-
able paths between an ingress and egress. The strong focus on MPLS-based
networks is interesting for our idea, showing that our vision of MPLS-based
traffic shifts is feasible.

Network and endpoint coordination Birge-Lee et al. [173] show that collab-
oration between edge networks can lead to better measurements and more
diverse inter-domain paths. Our vision would greatly profit from some of
the collected signals and could combine them with incoming BGP updates.
However, their approach requires explicit collaboration from edge networks,
and how it scales to a large number of networks needs to be clarified. Our
ideas only look at locally collected signals.

Big players use their insights in both traffic endpoints, i.e., servers provid-
ing content and applications running on end-user’s devices, to infer path
properties and adapt their forwarding decisions accordingly. Two examples
are Google’s Espresso [120] and Facebook’s Edge Fabric [174] systems. In
comparison, our ideas do not require control of both endpoints and infer
all signals based on the locally observed traffic in a single network.

[175] highlights that sophisticated, performance-aware routing algorithms
of large content and cloud providers often only perform marginally better
than BGP when considering low latency. In other words, beating BGP is
challenging. These insights confirm our focus to only include simple yet
missing properties, such as path reachability, in BGP’s decision process.

Routing process coordination Other related work focuses on new ways
to coordinate and centralize the routing process allowing for more con-
trol. CIRCA [176] offloads inter-domain route computations to the cloud.

124 path-property-driven routing decisions

CIRCA’s global view prevents convergence problems and simplifies certain
routing decisions. RCP [177] is a logical, centralized platform that controls
the routing decisions of a network. It performs per-router decisions for
an entire network communicating via unmodified iBGP sessions with the
existing routers. Finally, John et al. [178] propose consensus routing, a
new routing technique that heavily focuses on consistency. For our vision,
these systems could better coordinate and activate the slow traffic shifts
upon receiving new BGP paths. That would simplify some of the discussed
control flows and communication challenges.

5.7 conclusion and future work

This chapter combined our insights from the previous two chapters and
explored how inferred Internet path properties can influence active routing
decisions. Instead of blindly trusting a new best path – BGP’s current
default behavior – we first infer the path’s reachability property while
slowly moving traffic to it. Although a reachability check seems simple, we
discussed several challenges and tradeoffs. On the one hand, slowly moving
traffic allows path property inference and allows the possibility to abort the
process upon encountering unexpected behavior. On the other hand, we
also further prolong the BGP convergence process. We additionally explored
the discontinuity between border routers observing incoming new routes
and routers carrying the matching traffic for reachability inference. This
leads to increased communication and synchronization overhead. Overall,
our exploratory study only scratches the surface and introduces the general
idea, leading to additional measurement and theoretical studies.

5.7.1 Future work

To fully embrace the possibility of routing decisions based on inferred path
properties, we envision three directions for future work.

Inclusion of additional path properties Continuing our ideas from Sec-
tion 5.3.3, the potential of path-property-based routing decisions does not
stop at reachability inference. Including additional properties could lead
to better user performance, reduced congestion, or higher security guaran-
tees. However, inherently pairing routing decisions with path performance

5.7 conclusion and future work 125

properties or frequently evaluating and changing routing decisions result
in new challenges and necessitate tight control and feedback loops.

Inter-AS signaling Figure 5.3 shows one example of how a routing decision
based on path properties could influence the overall global BGP convergence
speed. Future work needs to explore the impact in detail. However, we
also see the potential for additional inter-AS signaling to improve the
convergence speed. BGP communities, a BGP attribute distributed via
BGP update messages, could play a crucial role. On a high level, BGP
communities are custom tags that routers add or remove to advertised
BGP routes. Today, network operators use BGP communities to implement
internal policies or communicate with customers, providers, or IXPs [179].
In the future, we foresee an additional use case: Specific BGP communities
could indicate path-property-related features of the advertised route.

One example, although with the opposite goal than our reachability focus,
is studied in [180]: More and more ASes provide specific BGP community
values which, once set, indicate that traffic following the announced BGP
update should be dropped, i.e., go to a blackhole. Network operators use
such services to tackle malicious attack traffic, for example, during a Denial
of Service (DoS) attack.

Exploration of non-best path options The previously explored use cases
always consider a single old and new path, allowing for a direct comparison.
However, in larger networks, connected to multiple customers, providers,
and peers, routers know one best route and multiple non-best ones. We see
potential in inferring and comparing the properties of all available paths
towards a given destination. Including such an inference operation in the
existing decision process raises additional questions. For example, we need
to send traffic over the corresponding path for most property inferences.
How would we distribute the available traffic to all path options, and what
are the implications for the end users?

6
C O N C L U S I O N A N D O U T L O O K

In this dissertation, we looked at Internet packet paths and explored how
network operators can infer beneficial properties to perform various tasks.
Magnifier reveals packet ingress and egress points by combining existing
packet sampling techniques with targeted mirroring rules. One significant
advantage is Magnifier’s validation approach, which notifies operators as
soon as an ingress or egress observation is no longer valid.

The precise knowledge of where packets enter or exit their network
allows operators to collect matching signals, such as Round-Trip Time
(RTT) samples, which reveal properties of the path segments outside of the
local network. Oscilloscope continuously collects RTT samples and looks for
unexpected changes. By aggregating and validating the observations using
statistical tests, we can detect BGP hijacks due to their induced RTT change.
Additionally, we explored new TCP estimation techniques for transport
protocols with encrypted transport headers.

Finally, we built on top of the concepts of Magnifier and Oscilloscope
to connect the inferred path properties with active routing decisions. We
argue that BGP’s “all-or-nothing” approach, combined with the lack of
path-related insights, leads to suboptimal routing decisions. We advocate
adding simple path properties to BGP’s existing decision process. For
example, by slowly moving traffic towards a new path (assuming the
current path still works), we can prevent problems such as a complete
traffic loss due to a path that does not provide reachability. However, path-
property-based routing decisions also lead to new challenges related to
convergence, communication overhead and end user performance.

6.1 open problems and future solutions

This section highlights more fundamental, open problems for better Internet
path property inference. We also discuss research ideas and upcoming
fundamental design changes which could solve some of them.

127

128 conclusion and outlook

6.1.1 Noise leads to property inference rather than precise extraction

In a perfect networking world, operators could extract any needed path
properties with high precision. However, different noise sources and the
limited view of network operators instead lead to path property inference.
We envision at least two ways to solve the problem in the future.

Protocol improvements One idea focuses on improvements to the existing
Internet and transport protocols. Future development and standardization
efforts could include additional information for path property inference
directly in the packet headers. We highlight one possible design in our Path
Layer [6] work which is motivated by two observations:

First, the historical changes in Internet traffic types and usage patterns
show an ever-evolving system. A good example is the QUIC [113] transport
protocol which made on-path RTT estimation more difficult. Even if we
design systems to use path properties that we can easily extract today, it is
unclear if they will continue to be helpful in the future.

Second, in Chapter 2 we introduced two Internet packet headers. The
IP header represents the network layer, while the TCP header is one ex-
ample of a transport layer header. Most Internet packets contain headers
belonging to additional layers, such as the link or application layer [181].
All these layers either contain information to forward the packet or relate to
the endpoint/application logic. However, no layer focuses on information
exchange with on-path devices or path signals/property extraction.

A more radical approach would be to handle path monitoring and prop-
erty extraction as a first-class citizen, for example, by adding a dedicated
header/layer to each packet. A path layer allows for the extraction of new
path properties and enables adaptions and modifications over time.

Our envisioned path layer explicitly exposes specific data to on-path
observers, i.e., the devices on the packet path. More precisely, the endpoints
take control over the path layer and can either (i) add dedicated signals that
on-path devices can read for signal extraction, i.e., explicit sender-to-path
signaling; or (ii) reserve dedicated, modifiable header space for on-path
devices to add information, i.e., explicit path-to-receiver signaling. One use
case for (ii) would be that on-path devices add timestamps, allowing other
on-path devices or endpoints to estimate per-hop delays.

Consequently, we can completely encrypt transport headers and give
endpoints full control over which data they share with the network path. For

6.1 open problems and future solutions 129

example, we could deploy our spin bit idea [8] in the path layer. However,
note that for path-to-receiver signaling, we cannot guarantee that an on-
path device will participate. They could even add wrong information on
purpose to hide malicious activities.

Adding an entirely new layer to each Internet packet, though, is a mon-
umental task requiring fundamental changes to all on-path devices, e.g.,
routers and switches. Every device needs to be able to handle the new
layer. Consequently, it is unlikely that we will soon see an Internet-wide
deployment of our path layer. However, the benefits of path-to-endpoint
signaling are already observed in smaller, deployed ideas. For example,
the Explicit Congestion Notification (ECN) bits [182] allow routers (i.e.,
on-path devices) to set a mark that notifies endpoints of growing path
congestion, allowing them to reduce their sending rate. The current ECN
implementation re-uses existing bits in the IP or TCP header. Our path layer
idea would provide all mechanisms to support ECN immediately. Finally,
other research, e.g., the sidecar protocol [183], proposes similar ideas to our
path layer vision.

Hardware improvements Another idea focuses on hardware improvements
for network devices. The recent trend towards programmable data-plane
devices, such as the Tofino switch [117], enables network operators to
program the control-plane and the data-plane behavior. With more control
and packet operations at line rate, operators can extract additional and more
precise signals, resulting in reduced noise sources and, thus, improved path
property inference.

For example, Magnifier could run in a network whose border routers
consist of purely programmable devices. In such a deployment scenario,
the identification of ingress and egress points could be simplified, e.g., with
the help of identifiers in custom packet headers. Nonetheless, the sum-
marization functionality of sentinels (that means we need fewer sentinels
than observed unique IPs) continues to be useful as programmable devices
contain limited resources.

6.1.2 Missing traffic leads to unknown path properties

Another fundamental problem with current path property inference is the
inherent requirement of ongoing network traffic to infer interesting path
properties. Without matching traffic, network operators are blind and cannot

130 conclusion and outlook

infer up-to-date properties. For example, Oscilloscope cannot detect a hijack
if our network does not send any traffic towards a hijack victim. On the one
hand, we can argue that this is not a problem: currently, we do not forward
matching traffic, so the hijack does not influence customers. On the other
hand, the hijack continues to exist and might influence upcoming traffic
once we forward matching packets. The following paragraphs highlight
two future directions to solve the problem partially:

Representative traffic generation An apparent solution is to artificially gen-
erate the required traffic on demand. However, simple blasting strategies
(e.g., using tools like iperf [184]) do not represent realistic traffic distribu-
tions and might lead to skewed path properties. More involved approaches,
e.g., TRex [185], correctly replicate specific traffic features but heavily rely
on sound input configuration files. For many traffic features, it is unclear or
unknown what a realistic configuration would be. Finally, replaying traces,
e.g., CAIDA traces [65], produces traffic that does not react to network
events such as packet losses.

Recently, we presented our vision of Dynamo [3] (from DYNAmic Mass
Orchestration), which follows a different strategy. Dynamo combines the
“Big Data” available in open-source projects (e.g., on platforms such as
GitHub [186]) with automation frameworks such as Docker containers [127]
to generate representative, live network traffic.

More precisely, Dynamo first builds a database of traffic-generating open-
source projects. For that, we iteratively try to run millions of Docker orches-
tration files and look for network traffic on matching interfaces. In a prelim-
inary evaluation, we could already collect more than 74k traces. We then
classify the corresponding Docker container(s) based on the traffic types in
the collected traces. Second, network operators specify the traffic they want
to generate using a high-level language. Afterwards, Dynamo parses the
database of traffic-generating projects and selects the best-matching ones.
Finally, Dynamo re-runs the corresponding docker containers to produce
representative, live traffic according to the specifications.

One advantage of this approach is that real applications generate traffic.
Therefore, the packets will also correctly react to network events. For
example, a lost packet in a TCP flow will be retransmitted. As a result, we
can use the generated traffic to extract beneficial path properties should
we lack user traffic for specific applications. However, note that this does
not solve path property inference problems that require reacting endpoints

6.1 open problems and future solutions 131

in other networks. The following paragraphs outline possible solutions for
such inference problems.

Internet-wide, automated cooperation In Chapter 5, we showed that the
inference of simple path properties (e.g., reachability) still poses many
challenges. For example, crafted probes are insufficient as we need to know
which IP addresses might answer in a remote network.

In the future, we could imagine that every AS provides one network
device, e.g., a programmable switch, with a publicly-known IP address.
Network operators can use these devices as “beacons” and directly probe
them to extract various path properties on top of the generated traffic.
However, note that such ideas raise security concerns and might enable
malicious ASes to lie by messing with the answer of a beacon.

6.1.3 Current routing protocols prevent tight actions on inferred path properties

The system designs in our exploratory study (Chapter 5) highlight that
today’s inter-domain routing protocol (BGP) does not easily include inferred
path properties in its decision process. As a result, network operators –
and end users – struggle with tight and frequent path adaptions based on
inferred properties. Due to BGP’s fundamental integration in nearly all inter-
domain routing decisions and network devices, fast future improvements
seem unlikely. A new Internet architecture could solve this problem.

A SCION-based Internet SCION [187] is designed to be a completely new,
clean-slate Internet architecture that provides high flexibility, control, and
isolation while improving issues observed in today’s Internet. SCION’s
design gives endpoints and ASes/ISPs high control over which path their
traffic takes. For example, a host can specify certain ASes over which their
traffic should never flow, and SCION will guarantee the behavior.

An existing prototype implementation [188] shows how end users can
specify their preferred traffic paths (according to various criteria or proper-
ties) directly in an Internet browser. This flexible design simplifies actions
on top of inferred path properties.

O W N P U B L I C AT I O N S

[1] Tobias Bühler, Ingmar Poese, and Laurent Vanbever. “Sentinels:
Guarding ISP Networks from Forwarding Anomalies”. In: Proceed-
ings of the ACM International Conference on Emerging Networking EX-
periments and Technologies (CoNEXT, Student Workshop). 2016.

[2] Tobias Bühler, Mirja Kühlewind, and Brian Trammell. “Enhancing
encrypted transport protocols with passive measurement capabili-
ties”. In: Proceedings of the ACM Internet Measurement Conference (IMC,
poster). 2017.

[3] Tobias Bühler, Roland Schmid, Sandro Lutz, and Laurent Vanbever.
“Generating representative, live network traffic out of millions of
code repositories”. In: Proceedings of the ACM Workshop on Hot Topics
in Networks (HotNets). 2022.

[4] Tobias Bühler, Alexandros Milolidakis, Romain Jacob, Marco Chiesa,
Stefano Vissicchio, and Laurent Vanbever. Oscilloscope: Detecting BGP
Hijacks in the Data Plane. https://arxiv.org/abs/2301.12843. arXiv
preprint. 2023.

[5] Tobias Bühler, Romain Jacob, Ingmar Poese, and Laurent Vanbever.
“Enhancing Global Network Monitoring with Magnifier”. In: Pro-
ceedings of the USENIX Symposium on Networked Systems Design and
Implementation (NSDI). 2023.

[6] Mirja Kühlewind, Tobias Bühler, Brian Trammell, Stephan Neuhaus,
Roman Müntener, and Gorry Fairhurst. “A Path Layer for the In-
ternet: Enabling Network Operations on Encrypted Protocols”. In:
Proceedings of the IEEE International Conference on Network and Service
Management (CNSM). 2017.

[7] Olivier Tilmans, Tobias Bühler, Ingmar Poese, Stefano Vissicchio, and
Laurent Vanbever. “Stroboscope: Declarative Network Monitoring
on a Budget”. In: Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI). 2018.

133

https://arxiv.org/abs/2301.12843

134 bibliography

[8] Piet De Vaere, Tobias Bühler, Mirja Kühlewind, and Brian Trammell.
“Three Bits Suffice: Explicit Support for Passive Measurement of
Internet Latency in QUIC and TCP”. In: Proceedings of the ACM
Internet Measurement Conference (IMC). 2018.

[9] Mirja Kühlewind, Brian Trammell, Tobias Bühler, Gorry Fairhurst,
and Vijay Gurbani. Challenges in Network Management of Encrypted
Traffic. https://arxiv.org/abs/1810.09272. arXiv preprint. 2018.

[10] Thomas Holterbach, Tobias Bühler, Tino Rellstab, and Laurent Van-
bever. “An Open Platform to Teach How the Internet Practically
Works”. In: ACM SIGCOMM Computer Communication Review (CCR)
(2020).

[11] Alexandros Milolidakis, Tobias Bühler, Marco Chiesa, Laurent Van-
bever, and Stefano Vissicchio. “Smart BGP hijacks that Evade Public
Route Collectors”. In: Proceedings of the ACM Internet Measurement
Conference (IMC, poster). 2021.

[12] Alexandros Milolidakis, Tobias Bühler, Kunyu Wang, Marco Chiesa,
Laurent Vanbever, and Stefano Vissicchio. “On the Effectiveness of
BGP Hijackers That Evade Public Route Collectors”. In: IEEE Access
11 (2023).

[13] Olivier Tilmans, Tobias Bühler, Stefano Vissicchio, and Laurent
Vanbever. “Mille-Feuille: Putting ISP Traffic under the Scalpel”. In:
Proceedings of the ACM Workshop on Hot Topics in Networks (HotNets).
2016.

[14] Coralie Busse-Grawitz, Roland Meier, Alexander Dietmüller, Tobias
Bühler, and Laurent Vanbever. pForest: In-Network Inference with
Random Forests. https://arxiv.org/abs/1909.05680. arXiv preprint.
2019.

https://arxiv.org/abs/1810.09272
https://arxiv.org/abs/1909.05680

R E F E R E N C E S

[15] Eliot Miller. ISPs and Publishers get the blame for video streaming prob-
lems. https://www.mux.com/blog/isps-and-publishers-get-the-
blame-for-video-streaming-problems. (Accessed: 2023-07-28).

[16] Robert Grimmick. Slow Internet? (Maybe) Don’t Blame Your ISP. https:
//grimmicktechnology.com/slow-internet-maybe-dont-blame-your-

isp/. (Accessed: 2023-07-28).

[17] Reuters. Swisscom boss apologises for massive network outage. https:
/ / www . reuters . com / business / media - telecom / swisscom - boss -

apologises-massive-network-outage-newspaper-2021-07-14/. (Ac-
cessed: 2023-07-28).

[18] Dan Goodin. Russian-controlled telecom hijacks financial services’ Inter-
net traffic. https://arstechnica.com/information-technology/2017/
04 / russian - controlled - telecom - hijacks - financial - services -

internet-traffic/. (Accessed: 2023-07-28).

[19] Claudia Glover. Cybercrime is rampant. ISPs could do more to stop
it. https://techmonitor.ai/future- of- telecoms/cybercrime- is-
rampant-isps-could-do-more-to-stop-it. (Accessed: 2023-07-28).

[20] Yakov Rekhter, Susan Hares, and Tony Li. A Border Gateway Protocol
4 (BGP-4). RFC 4271. https://www.rfc-editor.org/info/rfc4271.
2006.

[21] Cisco Systems. Cisco Annual Internet Report (2018-2023) White Paper.
https://www.cisco.com/c/en/us/solutions/collateral/executive-

perspectives/annual- internet- report/white- paper- c11- 741490.

html. (Accessed: 2023-07-28).

[22] T.M. Chen and L. Hu. “Internet Performance Monitoring”. In: Pro-
ceedings of the IEEE (2002).

[23] Jon Postel. Internet Protocol. RFC 791. https://www.rfc-editor.org/
info/rfc791. 1981.

[24] Bob Hinden and Dr. Steve E. Deering. Internet Protocol, Version 6
(IPv6) Specification. RFC 2460. https://www.rfc-editor.org/info/
rfc2460. 1998.

135

https://www.mux.com/blog/isps-and-publishers-get-the-blame-for-video-streaming-problems
https://www.mux.com/blog/isps-and-publishers-get-the-blame-for-video-streaming-problems
https://grimmicktechnology.com/slow-internet-maybe-dont-blame-your-isp/
https://grimmicktechnology.com/slow-internet-maybe-dont-blame-your-isp/
https://grimmicktechnology.com/slow-internet-maybe-dont-blame-your-isp/
https://www.reuters.com/business/media-telecom/swisscom-boss-apologises-massive-network-outage-newspaper-2021-07-14/
https://www.reuters.com/business/media-telecom/swisscom-boss-apologises-massive-network-outage-newspaper-2021-07-14/
https://www.reuters.com/business/media-telecom/swisscom-boss-apologises-massive-network-outage-newspaper-2021-07-14/
https://arstechnica.com/information-technology/2017/04/russian-controlled-telecom-hijacks-financial-services-internet-traffic/
https://arstechnica.com/information-technology/2017/04/russian-controlled-telecom-hijacks-financial-services-internet-traffic/
https://arstechnica.com/information-technology/2017/04/russian-controlled-telecom-hijacks-financial-services-internet-traffic/
https://techmonitor.ai/future-of-telecoms/cybercrime-is-rampant-isps-could-do-more-to-stop-it
https://techmonitor.ai/future-of-telecoms/cybercrime-is-rampant-isps-could-do-more-to-stop-it
https://www.rfc-editor.org/info/rfc4271
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc2460
https://www.rfc-editor.org/info/rfc2460

136 bibliography

[25] ICANN. Remaining IPv4 Addresses to be Redistributed to Regional In-
ternet Registries. https://www.icann.org/en/announcements/details/
remaining - ipv4 - addresses - to - be - redistributed - to - regional -

internet - registries -- address - redistribution - signals - that -

ipv4 - is - nearing - total - exhaustion - 20 - 5 - 2014 - en. (Accessed:
2023-07-28).

[26] RIPE NCC. Understanding IP Addressing and CIDR Charts. https:

/ / www . ripe . net / about - us / press - centre / understanding - ip -

addressing. (Accessed: 2023-07-28).

[27] Hormuzd M. Khosravi and Todd A. Anderson. Requirements for
Separation of IP Control and Forwarding. RFC 3654. https://www.rfc-
editor.org/info/rfc3654. 2003.

[28] John A. Hawkinson and Tony J. Bates. Guidelines for creation, selection,
and registration of an Autonomous System (AS). RFC 1930. https://www.
rfc-editor.org/info/rfc1930. 1996.

[29] SWITCH. SWITCH. https://www.switch.ch/. (Accessed: 2023-07-28).

[30] CAIDA. CADIA AS Rank. https://asrank.caida.org/. (Accessed:
2023-07-28).

[31] Geoff Huston. BGP Routing Table Analysis Reports. https://bgp.

potaroo.net/. (Accessed: 2023-07-28).

[32] Swisscom Ltd. Swisscom. https://www.swisscom.ch/en/about.html.
(Accessed: 2023-07-28).

[33] ThousandEyes. ISP 3-Tier Model. https://www.thousandeyes.com/
learning/techtorials/isp-tiers. (Accessed: 2023-07-28).

[34] Lixin Gao and Jennifer Rexford. “Stable Internet routing without
global coordination”. In: IEEE/ACM Transactions on Networking (TON)
(2001).

[35] John Moy. OSPF Version 2. RFC 2328. https://www.rfc-editor.org/
info/rfc2328. 1998.

[36] Cisco Systems. BGP Best Path Algorithm. https://www.cisco.com/
c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-

25.html. (Accessed: 2023-07-28).

[37] V. Paxson. “End-to-end routing behavior in the Internet”. In:
IEEE/ACM Transactions on Networking (TON) (1997).

https://www.icann.org/en/announcements/details/remaining-ipv4-addresses-to-be-redistributed-to-regional-internet-registries--address-redistribution-signals-that-ipv4-is-nearing-total-exhaustion-20-5-2014-en
https://www.icann.org/en/announcements/details/remaining-ipv4-addresses-to-be-redistributed-to-regional-internet-registries--address-redistribution-signals-that-ipv4-is-nearing-total-exhaustion-20-5-2014-en
https://www.icann.org/en/announcements/details/remaining-ipv4-addresses-to-be-redistributed-to-regional-internet-registries--address-redistribution-signals-that-ipv4-is-nearing-total-exhaustion-20-5-2014-en
https://www.icann.org/en/announcements/details/remaining-ipv4-addresses-to-be-redistributed-to-regional-internet-registries--address-redistribution-signals-that-ipv4-is-nearing-total-exhaustion-20-5-2014-en
https://www.ripe.net/about-us/press-centre/understanding-ip-addressing
https://www.ripe.net/about-us/press-centre/understanding-ip-addressing
https://www.ripe.net/about-us/press-centre/understanding-ip-addressing
https://www.rfc-editor.org/info/rfc3654
https://www.rfc-editor.org/info/rfc3654
https://www.rfc-editor.org/info/rfc1930
https://www.rfc-editor.org/info/rfc1930
https://www.switch.ch/
https://asrank.caida.org/
https://bgp.potaroo.net/
https://bgp.potaroo.net/
https://www.swisscom.ch/en/about.html
https://www.thousandeyes.com/learning/techtorials/isp-tiers
https://www.thousandeyes.com/learning/techtorials/isp-tiers
https://www.rfc-editor.org/info/rfc2328
https://www.rfc-editor.org/info/rfc2328
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html

bibliography 137

[38] Andree Toonk. BGP leak causing Internet outages in Japan and beyond.
https : / / bgpmon . net / bgp - leak - causing - internet - outages - in -

japan-and-beyond/. (Accessed: 2023-07-28).

[39] ThousandEyes. BGP Route Hijacking. https://www.thousandeyes.com/
learning/glossary/bgp-route-hijacking. (Accessed: 2023-07-28).

[40] Kevin Butler, Toni R. Farley, Patrick McDaniel, and Jennifer Rexford.
“A survey of BGP security issues and solutions”. In: Proceedings of
the IEEE (2009).

[41] Jon Postel. Transmission Control Protocol. RFC 793. https://www.rfc-
editor.org/info/rfc793. 1981.

[42] Wesley Eddy. Transmission Control Protocol (TCP). RFC 9293. https:
//www.rfc-editor.org/info/rfc9293. 2022.

[43] FreeBSD Project. PING(8) FreeBSD System Manager’s Manual. https:
//www.freebsd.org/cgi/man.cgi?ping(8). (Accessed: 2023-07-28).

[44] Wayne Tolliver. Disabling ICMP and SNMP won’t increase security,
but will impact network monitoring. https://blog.paessler.com/

disabling - icmp - and - snmp - wont - increase - security - but - will -

impact-network-monitoring. (Accessed: 2023-07-28).

[45] Jon Postel. Internet Control Message Protocol. RFC 792. https://www.
rfc-editor.org/info/rfc792. 1981.

[46] Matt Sargent, Jerry Chu, Dr. Vern Paxson, and Mark Allman. Com-
puting TCP’s Retransmission Timer. RFC 6298. https : / / www . rfc -

editor.org/info/rfc6298. 2011.

[47] Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford. “Continuous
In-Network Round-Trip Time Monitoring”. In: Proceedings of the ACM
Special Interest Group on Data Communication (SIGCOMM). 2022.

[48] David Borman, Robert T. Braden, Van Jacobson, and Richard Schef-
fenegger. TCP Extensions for High Performance. RFC 7323. https :

//www.rfc-editor.org/info/rfc7323. 2014.

[49] Stephen D. Strowes. “Passively Measuring TCP Round-Trip Times”.
In: Communications of the ACM (2013).

[50] Deutsche Telekom AG. Internet & Content IP Transit. https : / /

globalcarrier.telekom.com/business-areas/internet-content/ip-

transit. (Accessed: 2023-07-28).

[51] Benoît Claise. Cisco Systems NetFlow Services Export Version 9. RFC
3954. https://www.rfc-editor.org/info/rfc3954. 2004.

https://bgpmon.net/bgp-leak-causing-internet-outages-in-japan-and-beyond/
https://bgpmon.net/bgp-leak-causing-internet-outages-in-japan-and-beyond/
https://www.thousandeyes.com/learning/glossary/bgp-route-hijacking
https://www.thousandeyes.com/learning/glossary/bgp-route-hijacking
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc9293
https://www.rfc-editor.org/info/rfc9293
https://www.freebsd.org/cgi/man.cgi?ping(8)
https://www.freebsd.org/cgi/man.cgi?ping(8)
https://blog.paessler.com/disabling-icmp-and-snmp-wont-increase-security-but-will-impact-network-monitoring
https://blog.paessler.com/disabling-icmp-and-snmp-wont-increase-security-but-will-impact-network-monitoring
https://blog.paessler.com/disabling-icmp-and-snmp-wont-increase-security-but-will-impact-network-monitoring
https://www.rfc-editor.org/info/rfc792
https://www.rfc-editor.org/info/rfc792
https://www.rfc-editor.org/info/rfc6298
https://www.rfc-editor.org/info/rfc6298
https://www.rfc-editor.org/info/rfc7323
https://www.rfc-editor.org/info/rfc7323
https://globalcarrier.telekom.com/business-areas/internet-content/ip-transit
https://globalcarrier.telekom.com/business-areas/internet-content/ip-transit
https://globalcarrier.telekom.com/business-areas/internet-content/ip-transit
https://www.rfc-editor.org/info/rfc3954

138 bibliography

[52] Sonia Panchen, Neil McKee, and Peter Phaal. InMon Corporation’s
sFlow: A Method for Monitoring Traffic in Switched and Routed Networks.
RFC 3176. https://www.rfc-editor.org/info/rfc3176. 2001.

[53] Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner, Wes Fel-
ter, Kanak Agarwal, John Carter, and Rodrigo Fonseca. “Planck:
Millisecond-scale Monitoring and Control for Commodity Net-
works”. In: Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM). 2014.

[54] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar,
and Vladimir Braverman. “One Sketch to Rule Them All: Rethinking
Network Flow Monitoring with UnivMon”. In: Proceedings of the
ACM Special Interest Group on Data Communication (SIGCOMM). 2016.

[55] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh
Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar,
and Changhoon Kim. “Language-Directed Hardware Design for
Network Performance Monitoring”. In: Proceedings of the ACM Special
Interest Group on Data Communication (SIGCOMM). 2017.

[56] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat.
“DREAM: Dynamic Resource Allocation for Software-Defined Mea-
surement”. In: Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM). 2014.

[57] Tobias Bühler. Magnifier GitHub repository. https://github.com/nsg-
ethz/Magnifier. (Accessed: 2023-07-28).

[58] RIPE NCC. IPv6 Address Allocation and Assignment Policy. https:

//www.ripe.net/publications/docs/ripe-738#5. (Accessed: 2023-07-
28).

[59] Philip Smith, Rob Evans, and Mike Hughes. RIPE Routing Working
Group Recommendations on Route Aggregation. https://www.ripe.net/
publications/docs/ripe-399. (Accessed: 2023-07-28).

[60] Cisco Systems. Configuring ERSPAN. https://www.cisco.com/c/en/
us/td/docs/switches/datacenter/nexus7000/sw/system-management/

guide / b _ Cisco _ Nexus _ 7000 _ Series _ NX - OS _ System _ Management _

Configuration_Guide/b_Cisco_Nexus_7000_Series_NX-OS_System_

Management_Configuration_Guide_chapter_010101.html. (Accessed:
2023-07-28).

https://www.rfc-editor.org/info/rfc3176
https://github.com/nsg-ethz/Magnifier
https://github.com/nsg-ethz/Magnifier
https://www.ripe.net/publications/docs/ripe-738#5
https://www.ripe.net/publications/docs/ripe-738#5
https://www.ripe.net/publications/docs/ripe-399
https://www.ripe.net/publications/docs/ripe-399
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus7000/sw/system-management/guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide_chapter_010101.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus7000/sw/system-management/guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide_chapter_010101.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus7000/sw/system-management/guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide_chapter_010101.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus7000/sw/system-management/guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide_chapter_010101.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus7000/sw/system-management/guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide/b_Cisco_Nexus_7000_Series_NX-OS_System_Management_Configuration_Guide_chapter_010101.html

bibliography 139

[61] Cisco Systems. Cisco Python API. https://www.cisco.com/c/en/us/
td/docs/switches/datacenter/nexus3600/sw/93x/programmability/

guide/b-cisco-nexus-3600-nx-os-programmability-guide-93x/m-

3600-python-api-93x.pdf. (Accessed: 2023-07-28).

[62] Cisco Systems. Cisco Nexus 9300-FX. https://www.cisco.com/c/en/
us/products/collateral/switches/nexus-9000-series-switches/

datasheet-c78-742284.html. (Accessed: 2023-07-28).

[63] Cisco Systems. Cisco Nexus 7000. https://www.cisco.com/c/en/us/
products/collateral/switches/nexus-7000-series-switches/Data_

Sheet_C78-437762.html. (Accessed: 2023-07-28).

[64] Cisco Systems. Nexus 9000 TCAM Carving. https://www.cisco.com/c/
en/us/support/docs/switches/nexus-9000-series-switches/119032-

nexus9k-tcam-00.html. (Accessed: 2023-07-28).

[65] CAIDA. The CAIDA UCSD Anonymized Internet Traces 2018. https:
//www.caida.org/catalog/datasets/passive_dataset. (Accessed:
2023-07-28).

[66] Fred Klassen. Tcpreplay - Pcap editing and replaying utilities. https:
//tcpreplay.appneta.com/. (Accessed: 2023-07-28).

[67] Cisco Systems. Configuring Rate Limits. https://www.cisco.com/

c/en/us/td/docs/switches/datacenter/nexus3000/sw/security/

92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-

92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-

92x_chapter_010000.html. (Accessed: 2023-07-28).

[68] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu,
Ratul Mahajan, Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y. Zhao,
and Haitao Zheng. “Packet-Level Telemetry in Large Datacenter
Networks”. In: Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM). 2015.

[69] Juniper Networks. Configure J-Flow. https://supportportal.juniper.
net/s/article/SRX-Getting-Started-Configure-J-Flow?language=

en_US. (Accessed: 2023-07-28).

[70] Renata Teixeira, Aman Shaikh, Timothy G Griffin, and Jennifer
Rexford. “Impact of Hot-Potato Routing Changes in IP Networks”.
In: IEEE/ACM Transactions on Networking (TON) (2008).

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3600/sw/93x/programmability/guide/b-cisco-nexus-3600-nx-os-programmability-guide-93x/m-3600-python-api-93x.pdf
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3600/sw/93x/programmability/guide/b-cisco-nexus-3600-nx-os-programmability-guide-93x/m-3600-python-api-93x.pdf
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3600/sw/93x/programmability/guide/b-cisco-nexus-3600-nx-os-programmability-guide-93x/m-3600-python-api-93x.pdf
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3600/sw/93x/programmability/guide/b-cisco-nexus-3600-nx-os-programmability-guide-93x/m-3600-python-api-93x.pdf
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/datasheet-c78-742284.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/datasheet-c78-742284.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/datasheet-c78-742284.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/Data_Sheet_C78-437762.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/Data_Sheet_C78-437762.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/Data_Sheet_C78-437762.html
https://www.cisco.com/c/en/us/support/docs/switches/nexus-9000-series-switches/119032-nexus9k-tcam-00.html
https://www.cisco.com/c/en/us/support/docs/switches/nexus-9000-series-switches/119032-nexus9k-tcam-00.html
https://www.cisco.com/c/en/us/support/docs/switches/nexus-9000-series-switches/119032-nexus9k-tcam-00.html
https://www.caida.org/catalog/datasets/passive_dataset
https://www.caida.org/catalog/datasets/passive_dataset
https://tcpreplay.appneta.com/
https://tcpreplay.appneta.com/
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/security/92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-92x_chapter_010000.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/security/92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-92x_chapter_010000.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/security/92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-92x_chapter_010000.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/security/92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-92x_chapter_010000.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/security/92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-92x/b-cisco-nexus-3000-nx-os-security-configuration-guide-92x_chapter_010000.html
https://supportportal.juniper.net/s/article/SRX-Getting-Started-Configure-J-Flow?language=en_US
https://supportportal.juniper.net/s/article/SRX-Getting-Started-Configure-J-Flow?language=en_US
https://supportportal.juniper.net/s/article/SRX-Getting-Started-Configure-J-Flow?language=en_US

140 bibliography

[71] Ítalo Cunha, Fernando Silveira, Ricardo Oliveira, Renata Teixeira,
and Christophe Diot. “Uncovering Artifacts of Flow Measurement
Tools”. In: Proceedings of the International Conference on Passive and
Active Network Measurement (PAM). 2009.

[72] Cristian Estan, Ken Keys, David Moore, and George Varghese.
“Building a Better NetFlow”. In: ACM SIGCOMM Computer Commu-
nication Review (CCR) (2004).

[73] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. “FlowRadar:
A Better NetFlow for Data Centers”. In: Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI).
2016.

[74] Said Jawad Saidi, Aniss Maghsoudlou, Damien Foucard, Geor-
gios Smaragdakis, Ingmar Poese, and Anja Feldmann. “Exploring
Network-Wide Flow Data With Flowyager”. In: IEEE Transactions on
Network and Service Management (TNSM) (2020).

[75] Andreas Wundsam, Dan Levin, Srini Seetharaman, and Anja Feld-
mann. “OFRewind: Enabling Record and Replay Troubleshooting for
Networks”. In: Proceedings of the USENIX Annual Technical Conference
(ATC). 2011.

[76] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich.
“Designing Heavy-Hitter Detection Algorithms for Programmable
Switches”. In: IEEE/ACM Transactions on Networking (TON) (2020).

[77] Ross Teixeira, Rob Harrison, Arpit Gupta, and Jennifer Rexford.
“PacketScope: Monitoring the Packet Lifecycle Inside a Switch”.
In: Proceedings of the ACM SIGCOMM Symposium on SDN Research
(SOSR). 2020.

[78] Da Yu, Yibo Zhu, Behnaz Arzani, Rodrigo Fonseca, Tianrong Zhang,
Karl Deng, and Lihua Yuan. “dShark: A General, Easy to Program
and Scalable Framework for Analyzing In-network Packet Traces”.
In: Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation (NSDI). 2019.

[79] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer
Rexford, and Walter Willinger. “Sonata: Query-Driven Streaming
Network Telemetry”. In: Proceedings of the ACM Special Interest Group
on Data Communication (SIGCOMM). 2018.

bibliography 141

[80] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola, Carmelo Cas-
cone, Marco Spaziani, Valerio Bruschi, Davide Sanvito, Giuseppe
Siracusano, Antonio Capone, Michio Honda, Felipe Huici, and
Giuseppe Siracusano. “FlowBlaze: Stateful Packet Processing in
Hardware”. In: Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI). 2019.

[81] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni
Antichi, Minian Yu, and Michael Mitzenmacher. “PINT: Probabilistic
In-band Network Telemetry”. In: Proceedings of the ACM Special
Interest Group on Data Communication (SIGCOMM). 2020.

[82] Qun Huang, Xin Jin, Patrick P. C. Lee, Runhui Li, Lu Tang, Yi-Chao
Chen, and Gong Zhang. “SketchVisor: Robust Network Measure-
ment for Software Packet Processing”. In: Proceedings of the ACM
Special Interest Group on Data Communication (SIGCOMM). 2017.

[83] Minlan Yu, Lavanya Jose, and Rui Miao. “Software Defined Traf-
fic Measurement with OpenSketch”. In: Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI).
2013.

[84] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, and Jennifer
Rexford. “BeauCoup: Answering Many Network Traffic Queries,
One Memory Update at a Time”. In: Proceedings of the ACM Special
Interest Group on Data Communication (SIGCOMM). 2020.

[85] Yikai Zhao, Kaicheng Yang, Zirui Liu, Tong Yang, Li Chen, Shiyi Liu,
Naiqian Zheng, Ruixin Wang, Hanbo Wu, Yi Wang, and Nicholas
Zhang. “LightGuardian: A Full-Visibility, Lightweight, In-band
Telemetry System Using Sketchlets”. In: Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI).
2021.

[86] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick Reingold,
Jennifer Rexford, and Fred True. “Deriving Traffic Demands for
Operational IP Networks: Methodology and Experience”. In: ACM
SIGCOMM Computer Communication Review (CCR) (2000).

[87] Ratul Mahajan, Steven M Bellovin, Sally Floyd, John Ioannidis, Vern
Paxson, and Scott Shenker. “Controlling High Bandwidth Aggre-
gates in the Network”. In: ACM SIGCOMM Computer Communication
Review (CCR) (2002).

142 bibliography

[88] Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao. “Proac-
tively Detecting Distributed Denial of Service Attacks Using Source
IP Address Monitoring”. In: Proceedings of the International Conference
on Research in Networking. Springer, 2004.

[89] Augustin Soule, Anukool Lakhina, Nina Taft, Konstantina Papa-
giannaki, Kave Salamatian, Antonio Nucci, Mark Crovella, and
Christophe Diot. “Traffic Matrices: Balancing Measurements, Infer-
ence and Modeling”. In: ACM SIGMETRICS Performance Evaluation
Review (2005).

[90] Konstantina Papagiannaki, Nina Taft, and Anukool Lakhina. “A
Distributed Approach to Measure IP Traffic Matrices”. In: Proceedings
of the ACM Internet Measurement Conference (IMC). 2004.

[91] Amin Tootoonchian, Monia Ghobadi, and Yashar Ganjali. “OpenTM:
Traffic Matrix Estimator for OpenFlow Networks”. In: Proceedings of
the International Conference on Passive and Active Network Measurement
(PAM). 2010.

[92] Mehdi Malboubi, Shu-Ming Peng, Puneet Sharma, and Chen-Nee
Chuah. “A Learning-Based Measurement Framework for Traffic
Matrix Inference in Software Defined Networks”. In: Computers and
Electrical Engineering (2018).

[93] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray
Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen,
Zhi-Wei Lin, and Varugis Kurien. “Pingmesh: A Large-Scale System
for Data Center Network Latency Measurement and Analysis”. In:
Proceedings of the ACM Special Interest Group on Data Communication
(SIGCOMM). 2015.

[94] Kentik. Network Observability, Performance and Security. https://www.
kentik.com/. (Accessed: 2023-07-28).

[95] The Zeek Project. The Zeek Network Security Monitor. https://zeek.
org/. (Accessed: 2023-07-28).

[96] Aftab Siddiqui. What Happened? The Amazon Route 53 BGP Hi-
jack to Take Over Ethereum Cryptocurrency Wallets. https : / / www .

internetsociety.org/blog/2018/04/amazons-route-53-bgp-hijack/.
(Accessed: 2023-07-28).

https://www.kentik.com/
https://www.kentik.com/
https://zeek.org/
https://zeek.org/
https://www.internetsociety.org/blog/2018/04/amazons-route-53-bgp-hijack/
https://www.internetsociety.org/blog/2018/04/amazons-route-53-bgp-hijack/

bibliography 143

[97] Andree Toonk. How Hacking Team Helped Italian Special Opera-
tions Group with Routing Hijack. https : / / www . bgpmon . net / how -

hacking- team- helped- italian- special- operations- group- with-

bgp-routing-hijack/. (Accessed: 2023-07-28).

[98] Dan Goodin. How 3ve’s BGP hijackers eluded the Internet–and made
$29M. https://arstechnica.com/information-technology/2018/12/
how- 3ves- bgp- hijackers- eluded- the- internet- and- made- 29m/.
(Accessed: 2023-07-28).

[99] Matt Lepinski and Kotikalapudi Sriram. BGPsec Protocol Specification.
RFC 8205. https://www.rfc-editor.org/info/rfc8205. 2017.

[100] Randy Bush and Rob Austein. The Resource Public Key Infrastructure
(RPKI) to Router Protocol, Version 1. RFC 8210. https://www.rfc-
editor.org/info/rfc8210. 2017.

[101] Zheng Zhang, Ying Zhang, Y Charlie Hu, Z Morley Mao, and Randy
Bush. “iSPY: Detecting IP Prefix Hijacking on My Own”. In: ACM
SIGCOMM Computer Communication Review (CCR) (2008).

[102] LLC DigitalOcean. DigitalOcean. https://www.digitalocean.com/.
(Accessed: 2023-07-28).

[103] Amazon Web Services, Inc. Amazon Web Services. https : / / aws .

amazon.com/. (Accessed: 2023-07-28).

[104] Tony Li, Dino Farinacci, Stanley P. Hanks, David Meyer, and Paul
S. Traina. Generic Routing Encapsulation (GRE). RFC 2784. https:

//www.rfc-editor.org/info/rfc2784. 2000.

[105] A Linux Foundation Collaborative Project. FRRouting Project. https:
//frrouting.org/. (Accessed: 2023-07-28).

[106] A. Zimmermann, A. Hannemann, and T. Kosse. “Flowgrind - A New
Performance Measurement Tool”. In: Proceedings of the IEEE Global
Telecommunications Conference (GLOBECOM). 2010.

[107] Alexander Marder, K. C. Claffy, and Alex C. Snoeren. “Inferring
Cloud Interconnections: Validation, Geolocation, and Routing Be-
havior”. In: Proceedings of the International Conference on Passive and
Active Network Measurement (PAM). 2021.

[108] Nikolaos Chatzis, Georgios Smaragdakis, Anja Feldmann, and Wal-
ter Willinger. “There is More to IXPs than Meets the Eye”. In: ACM
SIGCOMM Computer Communication Review (CCR) (2013).

https://www.bgpmon.net/how-hacking-team-helped-italian-special-operations-group-with-bgp-routing-hijack/
https://www.bgpmon.net/how-hacking-team-helped-italian-special-operations-group-with-bgp-routing-hijack/
https://www.bgpmon.net/how-hacking-team-helped-italian-special-operations-group-with-bgp-routing-hijack/
https://arstechnica.com/information-technology/2018/12/how-3ves-bgp-hijackers-eluded-the-internet-and-made-29m/
https://arstechnica.com/information-technology/2018/12/how-3ves-bgp-hijackers-eluded-the-internet-and-made-29m/
https://www.rfc-editor.org/info/rfc8205
https://www.rfc-editor.org/info/rfc8210
https://www.rfc-editor.org/info/rfc8210
https://www.digitalocean.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://www.rfc-editor.org/info/rfc2784
https://www.rfc-editor.org/info/rfc2784
https://frrouting.org/
https://frrouting.org/

144 bibliography

[109] David D. Clark, Steven Bauer, William Lehr, KC Claffy, Amogh D.
Dhamdhere, Bradley Huffaker, and Matthew Luckie. “Measurement
and Analysis of Internet Interconnection and Congestion”. In: Re-
search Conference on Communication, Information and Internet Policy
(TPRC). 2014.

[110] Feng Wang, Zhuoqing Morley Mao, Jia Wang, Lixin Gao, and Randy
Bush. “A Measurement Study on the Impact of Routing Events
on End-to-End Internet Path Performance”. In: ACM SIGCOMM
Computer Communication Review (CCR) (2006).

[111] Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto
Dainotti, Stefano Vissicchio, and Laurent Vanbever. “Blink: Fast Con-
nectivity Recovery Entirely in the Data Plane”. In: Proceedings of the
USENIX Symposium on Networked Systems Design and Implementation
(NSDI). 2019.

[112] Veit Hailperin. Misusing TCP Timestamps. https://www.scip.ch/en/
?labs.20150305. (Accessed: 2023-07-28).

[113] Jana Iyengar and Martin Thomson. QUIC: A UDP-Based Multiplexed
and Secure Transport. RFC 9000. https://www.rfc-editor.org/info/
rfc9000. 2021.

[114] MAMI contributors. Measurement and Architecture for a Middleboxed
Internet (MAMI). https://doi.org/10.3030/688421. (Accessed: 2023-
07-28). 2016.

[115] Ike Kunze, Klaus Wehrle, and Jan Rüth. “L, Q, R, and T: Which Spin
Bit Cousin is Here to Stay?” In: Proceedings of the Applied Networking
Research Workshop (ANRW). 2021.

[116] Ike Kunze, Constantin Sander, Klaus Wehrle, and Jan Rüth. “Track-
ing the QUIC Spin Bit on Tofino”. In: Proceedings of the Workshop on
Evolution, Performance and Interoperability of QUIC (EPIQ). 2021.

[117] Intel Corporation. Intel Tofino. https://www.intel.com/content/www/
us/en/products/network-io/programmable-ethernet-switch/tofino-

series.html. (Accessed: 2023-07-28).

[118] Töma Gavrichenkov and Artyom Gavrichenkov. “Breaking HTTPS
with BGP Hijacking”. In: Proceedings of the Black Hat Conference. 2015.

[119] Wolfgang Mühlbauer, Steve Uhlig, Bingjie Fu, Mickael Meulle, and
Olaf Maennel. “In Search for an Appropriate Granularity to Model
Routing Policies”. In: ACM SIGCOMM Computer Communication
Review (CCR) (2007).

https://www.scip.ch/en/?labs.20150305
https://www.scip.ch/en/?labs.20150305
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://doi.org/10.3030/688421
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html

bibliography 145

[120] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett,
Matthew Holliman, Gary Baldus, Marcus Hines, Taeeun Kim, Ashok
Narayanan, Ankur Jain, Victor Lin, Colin Rice, Brian Rogan, Arjun
Singh, Bert Tanaka, Manish Verma, Puneet Sood, Mukarram Tariq,
Matt Tierney, Dzevad Trumic, Vytautas Valancius, Calvin Ying, Ma-
hesh Kallahalla, Bikash Koley, and Amin Vahdat. “Taking the Edge
off with Espresso: Scale, Reliability and Programmability for Global
Internet Peering”. In: Proceedings of the ACM Special Interest Group on
Data Communication (SIGCOMM). 2017.

[121] Xiaoqi Chen, Hyojoon Kim, Javed M. Aman, Willie Chang, Mack Lee,
and Jennifer Rexford. “Measuring TCP Round-Trip Time in the Data
Plane”. In: Proceedings of the ACM SIGCOMM Workshop on Secure
Programmable Network Infrastructure (SPIN). 2020.

[122] J. Li, T. Ehrenkranz, and P. Elliott. “Buddyguard: A buddy system
for fast and reliable detection of IP prefix anomalies”. In: Proceedings
of the IEEE International Conference on Network Protocols (ICNP). 2012.

[123] Phillipa Gill, Michael Schapira, and Sharon Goldberg. “A Survey
of Interdomain Routing Policies”. In: ACM SIGCOMM Computer
Communication Review (CCR) (2014).

[124] Waleed Reda, Kirill Bogdanov, Alexandros Milolidakis, Hamid
Ghasemirahni, Marco Chiesa, Gerald Q. Maguire, and Dejan Kostić.
“Path Persistence in the Cloud: A Study of the Effects of Inter-Region
Traffic Engineering in a Large Cloud Provider’s Network”. In: ACM
SIGCOMM Computer Communication Review (CCR) (2020).

[125] Samaneh Aminikhanghahi and Diane J. Cook. “A survey of methods
for time series change point detection”. In: Knowledge and Information
Systems (2017).

[126] Sidney Siegel and N. John Castellan. Nonparametric Statistics for The
Behavioral Sciences. Second edition. McGraw-Hill, 1988.

[127] Docker Inc. Docker. https://www.docker.com/. (Accessed: 2023-07-
28).

[128] Stephen Hemminger. NetEm - Network Emulator. https://man7.org/
linux/man-pages/man8/tc-netem.8.html. (Accessed: 2023-07-28).

[129] CAIDA. The CAIDA AS Relationships Dataset, <2019-08-01>. http:
//www.caida.org/data/active/as-relationships/. (Accessed: 2023-
07-28).

https://www.docker.com/
https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://man7.org/linux/man-pages/man8/tc-netem.8.html
http://www.caida.org/data/active/as-relationships/
http://www.caida.org/data/active/as-relationships/

146 bibliography

[130] Ripe NCC. RIPE Atlas platform. https://atlas.ripe.net/. (Accessed:
2023-07-28).

[131] Ethan Katz-Bassett, Colin Scott, David R. Choffnes, Ítalo Cunha,
Vytautas Valancius, Nick Feamster, Harsha V. Madhyastha, Thomas
Anderson, and Arvind Krishnamurthy. “LIFEGUARD: Practical
Repair of Persistent Route Failures”. In: ACM SIGCOMM Computer
Communication Review (CCR) (2012).

[132] Dave Katz and David Ward. Bidirectional Forwarding Detection (BFD).
RFC 5880. https://www.rfc-editor.org/info/rfc5880. 2010.

[133] The Tcpdump Group. TCPDUMP. https://www.tcpdump.org/. (Ac-
cessed: 2023-07-28).

[134] Cecilia Testart. “Reviewing a Historical Internet Vulnerability: Why
Isn’t BGP More Secure and What Can We Do About it?” In: Pro-
ceedings of the Research Conference on Communication, Information and
Internet Policy (TPRC). 2018.

[135] Geoff Huston. BGP in 2019 - The BGP Table. https://blog.apnic.net/
2020/01/14/bgp-in-2019-the-bgp-table/. (Accessed: 2023-07-28).

[136] Stephen Kent, Charles Lynn, and Karen Seo. “Secure border gateway
protocol S-BGP”. In: IEEE Journal on Selected areas in Communications
(J-SAC) (2000).

[137] Paul C Van Oorschot, Tao Wan, and Evangelos Kranakis. “On inter-
domain routing security and pretty secure BGP (psBGP)”. In: ACM
Transactions on Information and System Security (TISSEC) (2007).

[138] Russ White. “Securing BGP through secure origin BGP (soBGP)”. In:
Business Communications Review (2003).

[139] Meiyuan Zhao, Sean W Smith, and David M Nicol. “The perfor-
mance impact of BGP security”. In: IEEE network (2005).

[140] Sharon Goldberg, Michael Schapira, Peter Hummon, and Jennifer
Rexford. “How Secure Are Secure Interdomain Routing Protocols”.
In: ACM SIGCOMM Computer Communication Review (CCR) (2010).

[141] Pavlos Sermpezis, Vasileios Kotronis, Petros Gigis, Xenofontas
Dimitropoulos, Danilo Cicalese, Alistair King, and Alberto Dain-
otti. “ARTEMIS: Neutralizing BGP hijacking within a minute”. In:
IEEE/ACM Transactions on Networking (TON) (2018).

[142] Xingang Shi, Yang Xiang, Zhiliang Wang, Xia Yin, and Jianping
Wu. “Detecting Prefix Hijackings in the Internet with Argus”. In:
Proceedings of the ACM Internet Measurement Conference (IMC). 2012.

https://atlas.ripe.net/
https://www.rfc-editor.org/info/rfc5880
https://www.tcpdump.org/
https://blog.apnic.net/2020/01/14/bgp-in-2019-the-bgp-table/
https://blog.apnic.net/2020/01/14/bgp-in-2019-the-bgp-table/

bibliography 147

[143] Chris Amin. RIS Live BGP Message Stream. https://labs.ripe.net/
Members/chris_amin/ris- live- bgp- message- stream/. (Accessed:
2023-07-28).

[144] Chiara Orsini, Alistair King, Danilo Giordano, Vasileios Giotsas, and
Alberto Dainotti. “BGPStream: a software framework for live and
historical BGP data analysis”. In: Proceedings of the ACM Internet
Measurement Conference (IMC). 2016.

[145] Changxi Zheng, Lusheng Ji, Dan Pei, Jia Wang, and Paul Francis.
“A light-weight distributed scheme for detecting IP prefix hijacks
in real-time”. In: ACM SIGCOMM Computer Communication Review
(CCR) (2007).

[146] Xin Hu and Z Morley Mao. “Accurate real-time identification of IP
prefix hijacking”. In: Proceedings of the IEEE Symposium on Security
and Privacy (S&P). 2007.

[147] Daniel Jubas. Detecting BGP Interception Attacks using RTT Measure-
ments. https://www.cs.princeton.edu/~jrex/papers/rtt-change-
point.pdf. Student thesis (Accessed: 2023-07-28).

[148] Rahul Hiran, Niklas Carlsson, and Nahid Shahmehri. “Crowd-based
Detection of Routing Anomalies on the Internet”. In: Proceedings of
the IEEE Conference on Communications and Network Security (CNS).
2015.

[149] Karan Balu, Miguel L. Pardal, and Miguel Correia. “DARSHANA:
Detecting route hijacking for communication confidentiality”. In:
Proceedings of the IEEE International Symposium on Network Computing
and Applications (NCA). 2016.

[150] Doug Madory. Excessive BGP AS-PATH prepending is a self-inflicted
vulnerability. https : / / blog . apnic . net / 2019 / 07 / 15 / excessive -

bgp- as- path- prepending- is- a- self- inflicted- vulnerability/.
(Accessed: 2023-07-28).

[151] Pedro Marcos, Lars Prehn, Lucas Leal, Alberto Dainotti, Anja Feld-
mann, and Marinho Barcellos. “AS-Path Prepending: There is No
Rose without a Thorn”. In: Proceedings of the ACM Internet Measure-
ment Conference (IMC). 2020.

[152] Alex Shapelez. BGP Route Leak prevention and detection with the help
of the RFC9234. https://habr.com/en/company/qrator/blog/710420/.
(Accessed: 2023-07-28).

https://labs.ripe.net/Members/chris_amin/ris-live-bgp-message-stream/
https://labs.ripe.net/Members/chris_amin/ris-live-bgp-message-stream/
https://www.cs.princeton.edu/~jrex/papers/rtt-change-point.pdf
https://www.cs.princeton.edu/~jrex/papers/rtt-change-point.pdf
https://blog.apnic.net/2019/07/15/excessive-bgp-as-path-prepending-is-a-self-inflicted-vulnerability/
https://blog.apnic.net/2019/07/15/excessive-bgp-as-path-prepending-is-a-self-inflicted-vulnerability/
https://habr.com/en/company/qrator/blog/710420/

148 bibliography

[153] Curtis Villamizar, Ravi Chandra, and Dr. Ramesh Govindan. BGP
Route Flap Damping. RFC 2439. https://www.rfc-editor.org/info/
rfc2439. 1998.

[154] Jaroslav Frnda, Miroslav Voznak, and Lukas Sevcik. “Impact of
packet loss and delay variation on the quality of real-time video
streaming”. In: Telecommunication Systems (2016).

[155] Arun Viswanathan, Eric C. Rosen, and Ross Callon. Multiprotocol
Label Switching Architecture. RFC 3031. https://www.rfc-editor.org/
info/rfc3031. 2001.

[156] Clarence Filsfils, Pablo Camarillo, John Leddy, Daniel Voyer, Satoru
Matsushima, and Zhenbin Li. Segment Routing over IPv6 (SRv6) Net-
work Programming. RFC 8986. https://www.rfc-editor.org/info/
rfc8986. 2021.

[157] Maria Apostolaki, Ankit Singla, and Laurent Vanbever. “Performance-
Driven Internet Path Selection”. In: Proceedings of the ACM SIG-
COMM Symposium on SDN Research (SOSR). 2021.

[158] Marc-Olivier Buob, Mickael Meulle, and Steve Uhlig. “Checking
for optimal egress points in iBGP routing”. In: Proceedings of the
International Workshop on Design and Reliable Communication Networks
(DRCN). 2007.

[159] Rajiv Papneja, Bhavani Parise, Susan Hares, Dean Lee, and Ilya
Varlashkin. Basic BGP Convergence Benchmarking Methodology for Data-
Plane Convergence. RFC 7747. https://www.rfc-editor.org/info/
rfc7747. 2016.

[160] Thomas Wirtgen, Tom Rousseaux, Quentin De Coninck, Nicolas
Rybowski, Randy Bush, Laurent Vanbever, Axel Legay, and Olivier
Bonaventure. “xBGP: Faster Innovation in Routing Protocols”. In:
Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation (NSDI). 2023.

[161] Thomas Holterbach, Stefano Vissicchio, Alberto Dainotti, and Lau-
rent Vanbever. “SWIFT: Predictive Fast Reroute”. In: Proceedings of
the ACM Special Interest Group on Data Communication (SIGCOMM).
2017.

[162] Ethan Blanton, Dr. Vern Paxson, and Mark Allman. TCP Congestion
Control. RFC 5681. https://www.rfc-editor.org/info/rfc5681. 2009.

https://www.rfc-editor.org/info/rfc2439
https://www.rfc-editor.org/info/rfc2439
https://www.rfc-editor.org/info/rfc3031
https://www.rfc-editor.org/info/rfc3031
https://www.rfc-editor.org/info/rfc8986
https://www.rfc-editor.org/info/rfc8986
https://www.rfc-editor.org/info/rfc7747
https://www.rfc-editor.org/info/rfc7747
https://www.rfc-editor.org/info/rfc5681

bibliography 149

[163] Bahaa Al-Musawi, Philip Branch, and Grenville Armitage. “BGP
Anomaly Detection Techniques: A Survey”. In: IEEE Communications
Surveys & Tutorials (2017).

[164] FreeBSD Project. traceroute – print the route packets take to network
host. https://man.freebsd.org/cgi/man.cgi?query=traceroute.
(Accessed: 2023-07-28).

[165] Stefan Savage, Thomas Anderson, Amit Aggarwal, David Becker,
Neal Cardwell, Andy Collins, Eric Hoffman, John Snell, Amin Vah-
dat, Geoff Voelker, and John Zahorjan. “Detour: Informed Internet
Routing and Transport”. In: IEEE Micro (1999).

[166] Randy Bush, James Hiebert, Olaf Maennel, Matthew Roughan, and
Steve Uhlig. “Testing the reachability of (new) address space”. In:
Proceedings of the SIGCOMM workshop on Internet network management.
2007.

[167] Marco Chiesa, Andrzej Kamisiński, Jacek Rak, Gabor Retvari, and
Stefan Schmid. “A Survey of Fast Recovery Mechanisms in the Data
Plane”. In: (2020). TechRxiv Preprint.

[168] Rahil Gandotra and Levi Perigo. “SDNMA: A Software-Defined,
Dynamic Network Manipulation Application to Enhance BGP Func-
tionality”. In: Proceedings of the IEEE International Conference on High
Performance Computing and Communications (HPCC). 2018.

[169] Li Xiao, King-Shan Lui, Jun Wang, and K. Nahrstedt. “QoS extension
to BGP”. In: Proceedings of the IEEE International Conference on Network
Protocols (ICNP). 2002.

[170] A. Beben. “EQ-BGP: an efficient inter-domain QoS routing protocol”.
In: Proceedings of the International Conference on Advanced Information
Networking and Applications (AINA). 2006.

[171] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rexford, Praveen
Tammana, and David Walker. “Contra: A Programmable System
for Performance-Aware Routing”. In: Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI).
2020.

[172] A. Elwalid, C. Jin, S. Low, and I. Widjaja. “MATE: MPLS Adaptive
Traffic Engineering”. In: Proceedings of the IEEE INFOCOM conference
on Computer Communications. 2001.

https://man.freebsd.org/cgi/man.cgi?query=traceroute

150 bibliography

[173] Henry Birge-Lee, Maria Apostolaki, and Jennifer Rexford. “It Takes
Two to Tango: Cooperative Edge-to-Edge Routing”. In: Proceedings of
the ACM Workshop on Hot Topics in Networks (HotNets). 2022.

[174] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett,
Harsha V. Madhyastha, Italo Cunha, James Quinn, Saif Hasan, Petr
Lapukhov, and Hongyi Zeng. “Engineering Egress with Edge Fabric:
Steering Oceans of Content to the World”. In: Proceedings of the ACM
Special Interest Group on Data Communication (SIGCOMM). 2017.

[175] Todd Arnold, Matt Calder, Italo Cunha, Arpit Gupta, Harsha V. Mad-
hyastha, Michael Schapira, and Ethan Katz-Bassett. “Beating BGP is
Harder than We Thought”. In: Proceedings of the ACM Workshop on
Hot Topics in Networks (HotNets). 2019.

[176] Shahrooz Pouryousef, Lixin Gao, and Arun Venkataramani. “To-
wards Logically Centralized Interdomain Routing”. In: Proceedings
of the USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI). 2020.

[177] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford,
Aman Shaikh, and Jacobus van der Merwe. “Design and Implemen-
tation of a Routing Control Platform”. In: Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI).
2005.

[178] John P. John, Ethan Katz-Bassett, Arvind Krishnamurthy, Thomas
Anderson, and Arun Venkataramani. “Consensus Routing: The In-
ternet as a Distributed System”. In: Proceedings of the USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI). 2008.

[179] Philip Smit and Barry Greene. Using BGP Communities. https://
nsrc.org/workshops/2021/riso-pern-apan51/networking/peering-

ixp/en/presentations/BGP-Communities.pdf. (Accessed: 2023-07-28).

[180] Vasileios Giotsas, Georgios Smaragdakis, Christoph Dietzel, Philipp
Richter, Anja Feldmann, and Arthur Berger. “Inferring BGP Black-
holing Activity in the Internet”. In: Proceedings of the ACM Internet
Measurement Conference (IMC). 2017.

[181] Robert T. Braden. Requirements for Internet Hosts - Communication
Layers. RFC 1122. https://www.rfc-editor.org/info/rfc1122. 1989.

[182] Sally Floyd, Dr. K. K. Ramakrishnan, and David L. Black. The Addition
of Explicit Congestion Notification (ECN) to IP. RFC 3168. https://www.
rfc-editor.org/info/rfc3168. 2001.

https://nsrc.org/workshops/2021/riso-pern-apan51/networking/peering-ixp/en/presentations/BGP-Communities.pdf
https://nsrc.org/workshops/2021/riso-pern-apan51/networking/peering-ixp/en/presentations/BGP-Communities.pdf
https://nsrc.org/workshops/2021/riso-pern-apan51/networking/peering-ixp/en/presentations/BGP-Communities.pdf
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc3168

bibliography 151

[183] Gina Yuan, David K. Zhang, Matthew Sotoudeh, Michael Welzl, and
Keith Winstein. “Sidecar: In-Network Performance Enhancements in
the Age of Paranoid Transport Protocols”. In: Proceedings of the ACM
Workshop on Hot Topics in Networks (HotNets). 2022.

[184] ESnet. iperf3: A TCP, UDP, and SCTP network bandwidth measurement
tool. https://github.com/esnet/iperf. (Accessed: 2023-07-28).

[185] Cisco Systems. TRex - Realistic Traffic Generator. https://trex-tgn.
cisco.com/. (Accessed: 2023-07-28).

[186] GitHub inc. GitHub - Let’s build from here. https://github.com/.
(Accessed: 2023-07-28).

[187] Laurent Chuat, Markus Legner, David Basin, David Hausheer,
Samuel Hitz, Peter Müller, and Adrian Perrig. The Complete Guide to
SCION. From Design Principles to Formal Verification. Springer, 2022.

[188] A. Davidson, M. Frei, M. Gartner, H. Haddadi, A. Perrig, J. Subirà
Nieto, P. Winter, and F. Wirz. “Tango or Square Dance? How Tightly
Should We Integrate Network Functionality in Browsers?” In: Pro-
ceedings of the ACM Workshop on Hot Topics in Networks (HotNets).
2022.

https://github.com/esnet/iperf
https://trex-tgn.cisco.com/
https://trex-tgn.cisco.com/
https://github.com/

	Abstract
	Zusammenfassung
	Publications
	Acknowledgements
	Contents
	1 Introduction
	2 Background
	2.1 Internet Protocol and prefixes
	2.2 Internet structure
	2.3 Border Gateway Protocol and inter-domain routing
	2.4 Transmission Control Protocol and Round-Trip Time

	3 Magnifier
	3.1 Overview
	3.2 Ingress & egress identification
	3.3 Mirroring-based validation
	3.4 Magnifier's controller
	3.5 Evaluation
	3.6 Related work
	3.7 Conclusion and further use cases

	4 Oscilloscope
	4.1 BGP hijacks and RTT changes
	4.2 RTT extraction in encrypted protocols
	4.3 Oscilloscope system
	4.4 Signal aggregation and change detection
	4.5 Statistical tests
	4.6 Performance
	4.7 Related work
	4.8 Discussion and conclusion

	5 Path-property-driven routing decisions
	5.1 Introduction
	5.2 Design
	5.3 Path-property-aware BGP decision algorithm
	5.4 Advanced challenges
	5.5 Comparison with default BGP's behavior
	5.6 Related work
	5.7 Conclusion and future work

	6 Conclusion and outlook
	6.1 Open problems and future solutions

	 Bibliography
	 Own publications
	 References

