
ETH Library

Deep learning techniques for
energy clustering in the CMS
ECAL

Conference Paper

Author(s):
Valsecchi, Davide

Publication date:
2023

Permanent link:
https://doi.org/10.3929/ethz-b-000627332

Rights / license:
Creative Commons Attribution 3.0 Unported

Originally published in:
Journal of Physics: Conference Series 2438, https://doi.org/10.1088/1742-6596/2438/1/012077

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000627332
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1088/1742-6596/2438/1/012077
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012077

IOP Publishing
doi:10.1088/1742-6596/2438/1/012077

1

Deep learning techniques for energy clustering in the

CMS ECAL

Davide Valsecchi1,2 for the CMS Collaboration
1 ETH Zurich, 2 INFN and Università degli studi di Milano-Bicocca
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Abstract. The reconstruction of electrons and photons in CMS depends on topological
clustering of the energy deposited by an incident particle in different crystals of the
electromagnetic calorimeter (ECAL). These clusters are formed by aggregating neighbouring
crystals according to the expected topology of an electromagnetic shower in the ECAL. The
presence of upstream material (beampipe, tracker and support structures) causes electrons and
photons to start showering before reaching the calorimeter. This effect, combined with the 3.8T
CMS magnetic field, leads to energy being spread in several clusters around the primary one.
It is essential to recover the energy contained in these satellite clusters in order to achieve the
best possible energy resolution for physics analyses. Historically satellite clusters have been
associated to the primary cluster using a purely topological algorithm which does not attempt
to remove spurious energy deposits from additional pileup interactions (PU). The performance
of this algorithm is expected to degrade during LHC Run 3 (2022+) because of the larger
average PU levels and the increasing levels of noise due to the ageing of the ECAL detector.
New methods are being investigated that exploit state-of-the-art deep learning architectures like
Graph Neural Networks (GNN) and self-attention algorithms. These more sophisticated models
improve the energy collection and are more resilient to PU and noise, helping to preserve the
electron and photon energy resolution achieved during LHC Runs 1 and 2. This work will cover
the challenges of training the models as well the opportunity that this new approach offers to
unify the ECAL energy measurement with the particle identification steps used in the global
CMS photon and electron reconstruction.

1. Introduction
The CMS [1] electromagnetic calorimeter (ECAL) [2] is a homogeneous calorimeter made of
75848 lead tungstate (PbWO4) scintillating crystals, located inside the CMS superconducting
solenoid magnet. It is made of a barrel part (EB) covering the region of pseudorapidity |η| < 1.48
with 61200 crystals and two endcaps (EE), which extend the coverage up to |η| < 3.0 with 7324
crystals each. Scintillation light is detected with avalanche photodiodes (APD) in the barrel
and vacuum phototriodes (VPT) in the endcaps. The ECAL is crucial for the identification and
reconstruction of photons and electrons, and the measurement of jets and of missing transverse
momentum. The electrons and photons are typically reconstructed up to |η| < 2.5, the region
covered by the tracker, while jets are reconstructed up to |η| < 3.0.

Several algorithms are stacked on top of each other to reconstruct electrons and photons
candidates from the measurement of scintillation light in each single crystal in the ECAL
detector [3]. The first step builds the ECAL Rechits, the measurement of the amount of energy
deposited in each crystal at each LHC bunch crossing (BX). The second step, called PFClustering
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(Particle Flow Clustering), builds the simplest form of energy clusters, looking for crystals with
local maxima of energy (seeds) and associating the neighbor crystals to them.

A single electron or photon usually leaves more than one cluster of energy in the ECAL
detector. The electron, bending in the strong magnetic field of the CMS solenoid (3.8 T) while
passing through the Pixel and Tracker detectors, emits bremsstrahlung photons that will leave
a trace of small energy clusters in the ECAL detector near the main impact point, mostly
extended in the transverse R − ϕ plane. The photon, instead, is converted to electron-positron
pairs interacting with the several layers of the inner detectors of CMS, thus also depositing
multiple clusters of energy in ECAL. An additional clustering algorithm, called SuperClustering
is therefore needed for the electron and photon reconstruction in order to improve the energy
resolution by taking into account the energy of the secondary clusters.

The SuperCluster (SC) candidate is built using only ECAL local information, therefore it is
the object used for the calibration of the ECAL detector response. The SuperCluster is also
one of the inputs of the Particle Flow (PF) CMS global event reconstruction [4] which combines
optimally the information from all the sub-detectors. Electrons are identified as a primary
charged-particle track linked to ECAL SuperClusters, whereas photons are identified as ECAL
deposits not linked to any extrapolated track. A comprehensive description of electron and
photon reconstruction during Run II can be found in Ref. [3].

2. SuperClustering algorithms
The SuperClustering algorithm in place during the LHC Run II (in Run I other algos were used)
is based on purely geometrical criteria and called Mustache: in fact the magnetic field causes
the low pT constituents of electromagnetic showers to slightly bend in η as they follow a helical
path, giving the showers a characteristic mustache shape in the ∆η −∆ϕ plane (see Fig. 1). A
nearby cluster is associated to the seed if it falls inside the ∆η − ∆ϕ region delimited by two
parabolas parametrized by the η position of the seed and the energy of the cluster, and by a
dynamic ∆ϕ interval which depends instead only on the transverse energy of the cluster. The
parameters of this spatial selection are optimized to contain 98% of the electromagnetic (EM)
energy of the shower in several bins of energy of the seed and position along the detector. Fig. 1
shows an example of the Mustache shape.

Figure 1. Shape of the SuperCluster as selected by the Mustache algorithm, obtained by
accumulating many events in the bin η ∈ [0.5, 0.8], ET ∈ [1.0, 1.6] GeV of the seed. 98% of the
electromagnetic energy is contained in the Mustache area.

Being the Mustache SuperClustering a purely geometrical algorithm, it has a high signal
efficiency, but it does not attempt to identify and remove clusters generated from electronics
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noise or from additional low energy p-p interactions overlapping in the event (pileup or PU).
The increase of the pileup level and the expected increase of noise contamination during Run
III of LHC due to the ECAL detector ageing, makes the development of a more performant
SuperClustering algorithm based on supervised machine learning (ML) methods desirable.

The ML model architecture chosen to tackle the SuperClustering problem involves Graph
Convolutional Networks (GCN) [5, 6, 7, 8] and Self-Attention (SA) layers [9, 10]. This class of
models permits working on a set of related objects inferring properties about the single elements,
or the overall set. One of the advantages over other architectures is that the number of objects
to analyze can be different for each event. This type of architecture have also been recently
explored successfully for developing a ML approximation of the full CMS PF algorithm[11].

The novel DeepSuperCluster (DeepSC) model is designed to perform three tasks at the same
time: (i) SuperClustering: identify which cluster should be associated to the seed cluster to
build the optimal SuperCluster; (ii) Energy regression: extract the correction factor needed to
restore the generator-level particle energy. Currently this regression is trained separately on
the Mustache SuperClusters to obtain the final energy estimation for ECAL calibration; (iii)
Identification: classify the different types of energy deposits to discriminate between isolated
electron/photon, or particles from jets. This note describes the performance of a model optimized
to perform the clustering task, while the energy regression and object identification ones will be
optimized in a second step.

3. DeepSC training sample and model architecture
3.1. Training sample
The model is trained on a sample of 2 · 106 photons and electrons, generated uniformly in η and
pT = [1, 100] GeV, with the full Geant4-based CMS Monte-Carlo simulation at 14 TeV. Energy
deposits from noise and pileup interactions are superimposed on the signal. A pileup scenario
with the number of true interactions uniformly distributed between [55,75] is used.

An optimal true association between the seeds and the clusters in the event is built by
tracking the EM shower produced by original generator-level electron or photon in the Geant4
simulation, and storing the information about the amount of energy deposited in each ECAL
crystal. This information allows to apply a precise matching of each cluster to the generator-
level particle with energy thresholds optimized to obtain the best possible SuperCluster energy
resolution, and taking fully into account effects from the energy deposition and reconstruction
in the calorimeter.

The model is applied on regions of the ECAL detector around each energetic cluster
(ET > 1 GeV), called seed, using the following information: (i) Energy, position and number of
crystals of each cluster ; (ii) Information relative to the seed for each cluster: ∆η(cl, seed),
∆ϕ(cl, seed), ∆ET (cl, seed), ∆En(cl, seed); (ii) List of N rechit information for each i-th
cluster [(iη, iϕ, iz, En)0, · · · , (iη, iϕ, iz, En)N ]i; (iiii) Summary information for each region of
the detector: maximum, minimum, and average of the cluster related features.

3.2. Model architecture
Fig. 2 represents the architecture of the model and the dimensions of tensors processed with it.
The model is conceptually organized in four steps: encoding, graph building, graph elaboration,
decoding (for each output). The model has been fully implemented in TensorFlow library version
2.3 [12].

Encoding A GNN layer is applied on the rechits of each cluster to obtain a single fixed-size
vector representing summary rechit information for each cluster. Then, a simple feature-
extracting DNN is applied on the input vector of each cluster and rechit latent vector to
obtain a 64 features vector for each cluster.
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Figure 2. Schema of the DeepSC model depicting the models inputs, layers and tensors flowing
through.

Graph building The adjacency matrix Aij defining the distance between each cluster is defined
dynamically [5] assigning to each cluster a 3D-space coordinates vector with a SA layer and
computing the Euclidean distance. Therefore, the relative importance of the interaction
between the clusters, i.e. their distance in the graph, is learned automatically during the
training.

Graph elaboration A graph convolutional layer called Graph Highway Network [8] is applied
on the clusters graph and then a SA layer is a applied to extract a features vector for each
cluster. The application of the graph network implies a passage of information between the
clusters.

Decoding Output information is extracted from the latent space. First, a simple DNN network
is applied on each cluster latent vector to get the classification output. Then, all the clusters
latent vectors are combined with a different SA layer and then aggregated in a single vector
to obtain the detector region classification. An energy regression layer can be applied in
the same fashion.

4. Performance comparison
The performance of the DeepSC and Mustache algorithms is compared [13] in terms of the
resolution of the uncorrected reconstructed SuperCluster energy ERaw divided by the true
simulated energy deposits in ECAL ESim. The resolution is analyzed for electrons and photons
versus the generator-level particle ET (Fig. 3), position |η| in the detector (Fig. 4), and for
different number of simulated PU vertices in the event (Fig. 5). The resolution is computed
as half of the difference between the 84% quantile and the 16% quantile of the ERaw/ESim
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Figure 3. Comparison between the DeepSC
and Mustache energy resolution in bins of
generator-level particle EGen
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Figure 4. Comparison between the DeepSC
and Mustache energy resolution in bins of
generator-level particle position |η|.
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Figure 5. Comparison between the DeepSC
and Mustache energy resolution in bins of
number of simulated PU vertices.

The DeepSC algorithms keeps the signal efficiency similar to the Mustache one, but largely
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reduces the noise and PU contamination. The DeepSC largely improves the energy resolution
at low energy and in the |η| ∈ [1, 2] region, where there are more secondary emissions at lower
energy from electrons and photons, due to the higher material budget in front of ECAL. The
DeepSC algorithm also makes the dependence on the energy resolution versus the number of
PU vertices flatter, without using any explicit input information related to PU.

5. Conclusions
The DeepSC algorithm is a promising ML based alternative to the CMS ECAL Mustache
algorithm. It is more robust against pileup and it outperforms the Mustache in terms of
energy purity and capability of removing spurious energy deposits from noise and pileup, hence
improving the uncorrected energy resolution of the ECAL detector.
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