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Abstract
In financial engineering, prices of financial products are
computed approximately many times each trading day
with (slightly) different parameters in each calculation.
In many financial models such prices can be approxi-
mated by means of Monte Carlo (MC) simulations. To
obtain a good approximation the MC sample size usu-
ally needs to be considerably large resulting in a long
computing time to obtain a single approximation. A
natural deep learning approach to reduce the compu-
tation time when new prices need to be calculated as
quickly as possible would be to train an artificial neu-
ral network (ANN) to learn the function which maps
parameters of the model and of the financial product to
the price of the financial product. However, empirically
it turns out that this approach leads to approximations
with unacceptably high errors, in particular when the
error is measured in the 𝐿∞-norm, and it seems that
ANNs are not capable to closely approximate prices of
financial products in dependence on the model and
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product parameters in real life applications. This is not
entirely surprising given the high-dimensional nature
of the problem and the fact that it has recently been
proved for a large class of algorithms, including the
deep learning approach outlined above, that such meth-
ods are in general not capable to overcome the curse of
dimensionality for such approximation problems in the
𝐿∞-norm. In this article we introduce a new numerical
approximation strategy for parametric approximation
problems including the parametric financial pricing
problems described above and we illustrate by means
of several numerical experiments that the introduced
approximation strategy achieves a very high accuracy for
a variety of high-dimensional parametric approximation
problems, even in the 𝐿∞-norm. A central aspect of the
approximation strategy proposed in this article is to com-
bine MC algorithms with machine learning techniques
to, roughly speaking, learn the random variables (LRV)
in MC simulations. In other words, we employ stochas-
tic gradient descent (SGD) optimization methods not to
train parameters of standard ANNs but instead to learn
random variables appearing in MC approximations. In
that sense, the proposed LRV strategy has strong links
to Quasi-Monte Carlo (QMC) methods as well as to the
field of algorithm learning. Our numerical simulations
strongly indicate that the LRV strategy might indeed
be capable to overcome the curse of dimensionality in
the 𝐿∞-norm in several cases where the standard deep
learning approach has been proven not to be able to do
so. This is not a contradiction to the established lower
bounds mentioned above because this new LRV strat-
egy is outside of the class of algorithms for which lower
bounds have been established in the scientific literature.
The proposed LRV strategy is of general nature and not
only restricted to the parametric financial pricing prob-
lems described above, but applicable to a large class
of approximation problems. In this article we numer-
ically test the LRV strategy in the case of the pricing
of European call options in the Black-Scholes model
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92 BECKER et al.

with one underlying asset, in the case of the pricing
of European worst-of basket put options in the Black-
Scholes model with three underlying assets, in the case
of the pricing of European average put options in the
Black-Scholes model with three underlying assets and
knock-in barriers, as well as in the case of stochastic
Lorentz equations. For these examples the LRV strat-
egy produces highly convincing numerical results when
compared with standard MC simulations, QMC sim-
ulations using Sobol sequences, SGD-trained shallow
ANNs, and SGD-trained deep ANNs.

1 INTRODUCTION

Many computational problems from engineering and science can be cast as certain parametric
approximation problems (cf., e.g., Berner et al., 2020; Bhattacharya et al., 2021; Chkifa et al., 2015;
Cohen & DeVore, 2015; Flandoli et al., 2021; Heinrich & Sindambiwe, 1999; Khoo et al., 2021;
Kutyniok et al., 2021; O’Leary-Roseberry et al., 2022; Vidales et al., 2018 and references mentioned
therein). In particular, parametric PDEs are of fundamental importance in various applications,
where one is not only interested in an approximation of the solution of the approximation problem
at one fixed (space-time) point but where one is interested to evaluate the approximative solu-
tion again and again as, for instance, in financial engineering where prices of financial products
are computed approximately many times each trading day with (slightly) different parameters in
each calculation. Moreover, the problems appearing in such financial applications are often high-
dimensional, as the dimension usually corresponds to the number of assets/financial contracts in
the considered trading portfolio.
It is a widespread issue that the majority of algorithms for such parametric approximation

problems suffer from the curse of dimensionality (cf., e.g., Bellman, 2010 and Novak & Woź-
niakowski, 2008b, Chapter 1) in the sense that the computational effort of the approximation
methods grows exponentially in the dimension of the approximation problem or in the required
approximation accuracy, making them useless for high-dimensional problems. In the informa-
tion based complexity literature there are fundamental lower bounds which generally reveal
the impossibility to approximate the solutions of certain classes of high-dimensional approxi-
mation problems without the curse of dimensionality among general classes of approximation
algorithms; see, for example, Grohs and Voigtlaender (2021), Heinrich (2006), Heinrich and
Sindambiwe (1999), and Novak and Woźniakowski (2008a). Developing methods which pro-
duce good approximations for high-dimensional problems is thus an exceedingly hard task and,
among the general classes of algorithms considered in the above named references, essentially
impossible.
In this article we present a new method to tackle high-dimensional parametric approxima-

tion problems. Roughly speaking, our strategy is based on the idea to combine Monte Carlo (MC)
algorithms (e.g., standard MC methods, multilevel Monte Carlo (MLMC) methods, or multilevel
Picard (MLP) methods) with stochastic gradient descent (SGD) optimization methods by viewing
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BECKER et al. 93

the employed realizations of randomvariables in theMCapproximation as training parameters for
the SGD optimization method. In other words, in this approach we intend to employ SGD opti-
mization methods not to train standard artificial neural networks (ANNs) but to learn random
variables appearing in MC approximations.
To make this idea more concrete, we now sketch this learning the random variables (LRV)

approximation strategy in the context of a basic example of a parametric approximation prob-
lem. Let 𝔭 ∈ ℕ, suppose that we intend to approximate a target function 𝑢 ∶ [0, 1]𝔭 → ℝ, let 𝜙 ∶
[0, 1]𝔭 × ℝ → ℝ be measurable and bounded, let (Ω, , ℙ) be a probability space, let ∶ Ω → ℝ

be a random variable, and suppose that 𝑢 ∶ [0, 1]𝔭 → ℝ admits the probabilistic representation
that for all 𝑝 ∈ [0, 1]𝔭 we have that

𝑢(𝑝) = 𝔼 [𝜙(𝑝,)] (1)

(parametric integration problem; cf., e.g., Cohen & DeVore, 2015 and Heinrich & Sindambiwe,
1999). We note that we only chose the random variable to be 1-dimensional for simplicity and
refer to Section 2 for the case when is a possibly high-dimensional random variable. Our first
step to derive the proposed approximation algorithm is to recall standard MC approximations for
the parametric expectation in (1). Let 𝔐 ∈ ℕ, let 𝑊𝑚,𝔪 ∶ Ω → ℝ, 𝑚,𝔪 ∈ ℕ0, be i.i.d. random
variables which satisfy for all 𝐴 ∈ (ℝ) that ℙ(𝑊0,0 ∈ 𝐴) = ℙ( ∈ 𝐴), and observe for all 𝑝 ∈
[0, 1]𝔭 that

𝑢(𝑝) = 𝔼 [𝜙(𝑝,)] = 𝔼
[
𝜙(𝑝,𝑊0,1)

]
≈

1

𝔐

[∑𝔐
𝔪=1

𝜙(𝑝,𝑊0,𝔪)
]
. (2)

In the next step we introduce a parametric function on [0, 1]𝔭 with parameter set ℝ𝔐 to refor-
mulate the standard MC approximation in (2) in such a way that the random variables 𝑊0,𝑚 ∶

Ω → ℝ, 𝑚 ∈ {1, 2, … ,𝔐}, correspond to the parameters of the parametric function. More pre-
cisely, let𝒩 ∶ [0, 1]𝔭 × ℝ𝔐 → ℝ satisfy for all 𝑝 ∈ [0, 1]𝔭, 𝜃 = (𝜃1, … , 𝜃𝔐) ∈ ℝ𝔐 that𝒩(𝑝, 𝜃) =
1

𝔐
[
∑𝔐
𝔪=1

𝜙(𝑝, 𝜃𝔪)] and note that (2) suggests for all 𝑝 ∈ [0, 1]𝔭 that

𝑢(𝑝) ≈
1

𝔐

[∑𝔐
𝔪=1

𝜙(𝑝,𝑊0,𝔪)
]
= 𝒩
(
𝑝, (𝑊0,1,𝑊0,2, … ,𝑊0,𝔐)

)
. (3)

Next we employ the SGD optimization method to train the right hand side of (3) in search
of “better random realizations” to approximate the target function 𝑢 than those provided
by the random variables 𝑊0,𝑚 ∶ Ω → ℝ, 𝑚 ∈ {1, 2, … ,𝔐}, in the standard MC approxima-
tion in (3). The random variables 𝑊0,𝑚 ∶ Ω → ℝ, 𝑚 ∈ {1, 2, … ,𝔐}, on the right hand side of
(3) then only supply the initial guess in the SGD training procedure. More specifically, let
𝑃𝑚,𝐦 ∶ Ω → [0, 1]𝔭, 𝑚,𝐦 ∈ ℕ, be i.i.d. random variables with continuous uniform distribu-
tion, let 𝐌 ∈ ℕ, for every 𝑚 ∈ ℕ let 𝐹𝑚 ∶ ℝ𝔐 × Ω → ℝ satisfy for all 𝜃 = (𝜃1, … , 𝜃𝔐) ∈ ℝ𝔐

that

𝐹𝑚(𝜃) =
1

𝐌

[∑𝐌
𝐦=1
|||𝜙 (𝑃𝑚,𝐦,𝑊𝑚,𝐦

)
−𝒩(𝑃𝑚,𝐦, 𝜃)

|||2
]
, (4)

assume for all 𝑝 ∈ [0, 1]𝔭 that (ℝ ∋ 𝑤 ↦ 𝜙(𝑝,𝑤) ∈ ℝ) ∈ 𝐶1(ℝ,ℝ), for every 𝑚 ∈ ℕ let 𝐺𝑚 ∶

ℝ𝔐 × Ω → ℝ𝔐 satisfy for all 𝜃 ∈ ℝ𝔐, 𝜔 ∈ Ω that 𝐺𝑚(𝜃, 𝜔) = (∇𝜃𝐹𝑚)(𝜃, 𝜔), let (𝛾𝑚)𝑚∈ℕ ⊆
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94 BECKER et al.

(0,∞), and let Θ ∶ ℕ0 × Ω → ℝ𝔐 satisfy for all𝑚 ∈ ℕ that

Θ0 = (𝑊0,1,𝑊0,2, … ,𝑊0,𝔐) and Θ𝑚 = Θ𝑚−1 − 𝛾𝑚𝐺𝑚(Θ𝑚−1). (5)

Note that the recursion in (5) describes nothing else but the standard SGD optimization method
with the learning rate schedule ℕ ∋ 𝑚 ↦ 𝛾𝑚 ∈ ℝ. For every sufficiently large 𝑚 ∈ ℕ we then
propose to employ the random function

[0, 1]𝔭 × Ω ∋ (𝑝, 𝜔) ↦ 𝒩(𝑝,Θ𝑚(𝜔)) ∈ ℝ (6)

as an approximation for the target function [0, 1]𝔭 ∋ 𝑝 ↦ 𝑢(𝑝) ∈ ℝ. Note that the set [0, 1]𝔭 ∋
𝑝 ↦ 𝒩(𝑝, 𝜃) ∈ ℝ, 𝜃 ∈ ℝ𝔐, of potential approximating functions for 𝑢 ∶ [0, 1]𝔭 → ℝ does not
consist of standard fully-connected feedforward ANNs but is a very problem specific class of
approximating functions determined by the MC method in (2). In light of this and of the fact
that the expression in (3) resembles the definition of single layer fully-connected feedforward
ANNs we refer to this class of approximating functions asMCneural networks. Moreover, observe
that through (3) the MC method also naturally specifies a favorable initializing law for the SGD
training procedure in (5).
In the special case of the LRV strategy illustrated in (2)–(6) above, the standard MC approxi-

mation method serves as a proposal algorithm for the SGD training procedure. More generally,
the LRV strategy can, in principle, be used on any high-dimensional approximation problem as
soon as there is a reasonable stochastic proposal algorithm for the considered approximation prob-
lem available. The LRV strategy thereby naturally specifies the compositional architecture of the
involved approximating functions and also naturally specifies the initializing law in the SGD train-
ing procedure for each specific approximation problem. In particular, the LRV strategy can be used
with the standardMCmethod (see Section 2), theMC-Euler-Maruyamamethod (see Section 3), or
theMLMCmethod (see Section 4) as the proposal algorithms to approximate solutions of stochas-
tic differential equations (SDEs) and Kolmogorov PDEs, respectively, and the LRV strategy can be
used with the MLP method (see Section 5) as the proposal algorithm to approximate solutions of
semilinear PDEs.
We now illustrate the effectiveness of the LRV strategy on a simple but famous numerical exam-

ple, where the LRV strategy leads to impressively precise approximations. In Table 1 we present
results for the approximative computation of prices of European call options in the Black-Scholes
model by means of the deep learning method induced by Beck, Becker, Grohs et al. (2021) with
140000 Adam (see Kingma & Ba, 2014) training steps (rows 2–5 in Table 1), by means of the stan-
dardMCmethodwith 32768MC samples (row 6 in Table 1), bymeans of the antitheticMCmethod
with 32768 MC samples (row 7 in Table 1), by means of the Quasi-Monte Carlo (QMC) method
using Sobol sequences with 32768 QMC samples (row 8 in Table 1), and by means of the antithetic
QMCmethod using Sobol sequences with 32768 QMC samples (row 9 in Table 1), by means of the
LRV strategy with the standardMCmethod as the proposal algorithmwith 140000 Adam training
steps (row 10 in Table 1), and by means of the LRV strategy with the antithetic MCmethod as the
proposal algorithm with 140000 Adam training steps (row 11 in Table 1). In Table 1 the 𝐿2-error
and the 𝐿∞-error have been computed approximately on the region

(𝜉, 𝑇, 𝑟, 𝜎, 𝐾) ∈ [90, 110] ×
[
1

100
, 1
]
×
[
−

1

10
,
1

10

]
×
[
1

100
,
1

2

]
× [90, 100] (7)
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96 BECKER et al.

TABLE 2 Numerical simulations for the LRV strategy in case of the Black-Scholes model for European call
options on one underlying described in Subsection 7.2 (5-dimensional approximation problem) trained with
batch size𝐌 = 8192 and approximate reference solutions (𝑒 = 0) based onℳ = 4096 antithetic MC samples (cf.
yellow dots and lines in Figures 1 and 2).

𝕸 𝒂

Number of
trainable
parameters

𝑳𝟏-approx.
error

𝑳𝟐-approx.
error

𝑳∞-approx.
error

Training
time in
seconds

Evaluation
time for
𝟖 𝟏𝟗𝟐 𝟎𝟎𝟎

evaluations
in seconds

32 0 32 0.003183 0.005893 0.068957 728.00 0.60
32 1 32 0.001504 0.003016 0.029396 731.45 0.62
64 0 64 0.001200 0.002350 0.024142 726.46 0.62
64 1 64 0.000639 0.001268 0.012222 735.63 0.68
128 0 128 0.000494 0.000977 0.009113 739.05 0.57
128 1 128 0.000281 0.000555 0.005386 749.49 0.62
256 0 256 0.000228 0.000436 0.004850 742.17 0.61
256 1 256 0.000147 0.000270 0.002682 774.72 0.60
512 0 512 0.000122 0.000239 0.006127 768.41 0.59
512 1 512 0.000085 0.000153 0.001942 818.77 0.65
1024 0 1024 0.000099 0.000208 0.007090 811.28 0.66
1024 1 1024 0.000068 0.000127 0.002126 950.48 0.89
2048 0 2048 0.000080 0.000146 0.002312 944.56 0.87
2048 1 2048 0.000060 0.000120 0.001818 1241.45 2.32
4096 0 4096 0.000061 0.000123 0.002020 1237.02 2.32
4096 1 4096 0.000068 0.000136 0.001901 1782.10 4.20
8192 0 8192 0.000065 0.000134 0.002138 1773.54 4.17
8192 1 8192 0.000064 0.000132 0.002210 2799.30 7.73

using 8 192 000 evaluations of the considered approximation method. In (7) we have that 𝜉 stands
for the initial price, that 𝑇 stands for the time of maturity, that 𝑟 stands for the drift rate, that
𝜎 stands for the volatility, and that 𝐾 stands for the strike price; see, for example, Becker et al.
(2021, Lemma 4.4) (with c = 0 in the notation of Becker et al., 2021, Lemma 4.4). The reference
solution values to compute the errors in Table 1 have been computed with the famous Black-
Scholes formula (see, e.g., Becker et al., 2021, Lemma 4.4 or (116) in Subsection 7.2). The evaluation
time corresponds to the time required to compute 8 192 000 evaluations. We note that the training
and evaluation times1 of the LRV strategy are significantly longer when compared to the deep
learningmethod induced byBeck, Becker, Grohs et al. (2021) evenwhen the consideredMCneural
networks involve less arithmetic operations than the considered ANNs. This is likely attributed
to the efficient implementation and parallelization of standard feedforward ANNs in Tensorflow
and our own implementation ofMC neural networks, whichmay be slightly less computationally
efficient. The numbers in Table 1 are taken from Tables 2, 3, 4, and 5 in Subsection 7.2. We refer
to Subsection 7.2 for more details on the results in Table 1.

1 The numerical experiments have been performed in TensorFlow 2.12 running on a system equipped with an NVIDIA
GeForce RTX 4090 GPU with 24 GB Graphics RAM.
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98 BECKER et al.

TABLE 4 Numerical simulations for the standard and the antithetic MC method in case of the
Black-Scholes model for European call options on one underlying described in Subsection 7.2 (5-dimensional
approximation problem).

Number of
MC samples

MCMethod
0: standard 1:
antithetic

𝑳𝟏-approx.
error

𝑳𝟐-approx.
error

𝑳∞-approx.
error

Evaluation
time for
𝟖 𝟏𝟗𝟐 𝟎𝟎𝟎

evaluations
in seconds

32 0 1.631470 2.620134 41.858883 1.69
32 1 0.857496 1.443121 21.981831 0.65
64 0 1.154554 1.851235 28.730389 0.62
64 1 0.607091 1.019940 13.166348 0.60
128 0 0.816507 1.308833 17.123699 0.59
128 1 0.429601 0.721680 8.736799 0.66
256 0 0.578006 0.925793 12.759777 0.63
256 1 0.303619 0.510076 6.837311 0.66
512 0 0.408652 0.654518 8.377937 0.63
512 1 0.214879 0.360810 5.057564 0.67
1024 0 0.289187 0.463213 6.491411 0.63
1024 1 0.151856 0.254823 3.114460 1.09
2048 0 0.204313 0.327113 3.708378 0.94
2048 1 0.107378 0.180250 2.206034 2.57
4096 0 0.144438 0.231285 2.808947 2.56
4096 1 0.075998 0.127575 1.839296 4.87
8192 0 0.102109 0.163498 1.972134 4.67
8192 1 0.053718 0.090149 1.181227 9.20
16384 0 0.072263 0.115714 1.562056 8.89
16384 1 0.037983 0.063745 0.771879 17.78
32768 0 0.051127 0.081914 1.079885 17.12
32768 1 0.026839 0.045043 0.593046 35.07

Note that Table 1 indicates that the algorithm obtained by the LRV strategy not only produces
very accurate prices in the 𝐿2-norm, but even has a very high accuracy in the uniform 𝐿∞-norm.
Concretely, for this 5-dimensional approximation problem, this strongly suggests that for any
choice of parameters in the region considered in (7), the LRV strategy offers an approximation
with an error smaller than 2

1000
. Based on this, on the other numerical results presented in this

article, as well as on preliminary analytic investigations (cf., e.g., Gonon et al., 2021, Lemma 2.16)
we conjecture that the LRV strategy can overcome the curse of dimensionality for certain classes
of parametric PDE problems in the 𝐿∞-norm. We would like to emphasize that large classes of
algorithms for such approximation problems have been shown not to be able to overcome the
curse of dimensionality, see, for example, Heinrich and Sindambiwe (1999, Theorem 2.4), Hein-
rich (2006, Theorem 1), and Grohs and Voigtlaender (2021). However, our conjecture does not
contradict the general lower bounds established in the above mentioned references, due to the
fact that the LRV strategy does not belong to the class of algorithms considered in the above men-
tioned references: roughly speaking, in the LRV strategy there are two stages of computational
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BECKER et al. 99

TABLE 5 Numerical simulations for the standard and the antithetic QMC method with Sobol sequences in
case of the Black-Scholes model for European call options on one underlying described in Subsection 7.2
(5-dimensional approximation problem).

Number of
MC samples

QMCMethod
0: standard 1:
antithetic

𝑳𝟏-approx.
error

𝑳𝟐-approx.
error

𝑳∞-approx.
error

Evaluation
time for
𝟖 𝟏𝟗𝟐 𝟎𝟎𝟎

evaluations
in seconds

32 0 0.857061 1.117799 4.344944 0.85
32 1 0.237763 0.366264 1.820515 0.64
64 0 0.493400 0.642453 2.530792 0.64
64 1 0.122386 0.188951 0.944592 0.64
128 0 0.276729 0.360582 1.431679 0.69
128 1 0.062681 0.097161 0.494709 0.64
256 0 0.152859 0.199531 0.797966 0.66
256 1 0.032036 0.049889 0.257656 0.75
512 0 0.083264 0.109023 0.448029 0.71
512 1 0.016332 0.025576 0.135283 0.78
1024 0 0.044996 0.059125 0.249985 0.75
1024 1 0.008340 0.013135 0.070560 1.08
2048 0 0.024177 0.031904 0.137550 0.93
2048 1 0.004245 0.006730 0.037239 2.55
4096 0 0.012906 0.017105 0.074234 2.35
4096 1 0.002163 0.003453 0.019505 4.70
8192 0 0.006863 0.009143 0.040550 4.23
8192 1 0.001101 0.001769 0.010147 8.65
16384 0 0.003636 0.004868 0.022209 7.70
16384 1 0.000561 0.000908 0.005302 16.68
32768 0 0.001920 0.002585 0.011879 15.48
32768 1 0.000286 0.000466 0.002769 33.65

procedures, themain computational procedure in which the “best random variables” are learned
through SGD (corresponding to the 6th column in Table 1) and the evaluation procedure where
the computed approximation of the target function is evaluated (corresponding to the 7th column
in Table 1). In the LRV strategy we consider the situation where it is allowed to perform function
evaluations both during the main computational procedure and the evaluation procedure while
the lower bounds in Heinrich and Sindambiwe (1999), Heinrich (2006), Grohs and Voigtlaender
(2021) consider the situation where function evaluations are only allowed during the main com-
putational procedure but not during the evaluation procedure. The LRV strategy being outside of
the classes of algorithms considered in the above named references is thus not constrained by the
established lower bounds and hence holds the potential to overcome the curse of dimensional-
ity, even in the 𝐿∞-norm. We note that in practically relevant situations, just as in the considered
derivative pricing problem, it is often possible to perform function evaluations also in the eval-
uation procedure, thus making the LRV strategy an applicable method for practically relevant
approximation problems.
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100 BECKER et al.

We now compare the proposed LRV strategy to existing algorithms and computational meth-
ods in the scientific literature. As the LRV strategy employs SGD-type methods to “learn”
parametric functions it is related to deep learning methods, where instead of random variables,
optimal weights of ANNs are “learned”. From this point of view, the LRV strategy can be seen
as a machine learning approach where instead of employing generic ANNs, very problem spe-
cific parametric functions are used, which contain a lot of human insight about the problem at
hand. There is a plethora of deep learning methods for the approximation of PDEs, which have
been developed recently, and seem to be very effective for the approximation of high-dimensional
PDEs: cf., for example, E et al. (2017), Han et al. (2018), Sirignano and Spiliopoulos (2018), E and
Yu (2018), Fujii et al. (2019), Dissanayake and Phan-Thien (1994), Lagaris et al. (1998), Jianyu
et al. (2003), Chen, Huang et al. (2020), Chan-Wai-Nam et al. (2019), Germain et al. (2020), Han
and Long (2020), Han, Lu et al. (2020), Henry-Labordere (2017), Huré et al. (2020), Jacquier and
Oumgari (2019), Ji et al. (2020), Kremsner et al. (2020), Pereira et al. (2019), Pham et al. (2019),
Raissi (2018), Beck, Becker, Cheridito et al. (2021), Beck, Becker, Grohs et al. (2021), Berner et al.
(2020), Han, Nica et al. (2020), Nüsken and Richter (2021a), Samaniego et al. (2020), Becker et al.
(2019), Becker et al. (2021), Chen and Wan (2019), Goudenège et al. (2019), Lyu et al. (2020), Lu
et al. (2019), Zang et al. (2020), Han and Hu (2020), Lye et al. (2020), Zhu et al. (2019), Longo
et al. (2020), Nüsken and Richter (2021b), Martin et al. (2020). We refer to the survey articles
Beck et al. (2023), Blechschmidt and Ernst (2021), Germain et al. (2021), E et al. (2022) for a
more detailed overview. For methods which are specifically designed for parametric PDEs we
refer to, for example, Vidales et al. (2018), Khoo et al. (2021), Bhattacharya et al. (2021), Berner
et al. (2020), O’Leary-Roseberry et al. (2022). In addition, we want to highlight a connection
between the LRV strategy and the deep learningmethod for Kolmogorov PDEs developed in Beck,
Becker, Grohs et al. (2021) and further specialized to parametric Kolmogorov PDEs in Berner
et al. (2020). Very roughly speaking, the work Berner et al. (2020) is concerned with approxi-
mating a function 𝑢 ∶ Γ → ℝ given for all 𝛾 ∈ Γ by 𝑢(𝛾) = 𝔼[𝜑𝛾(𝑆𝛾)] where Γ is a parameter set,
where 𝑑 ∈ ℕ, where (Ω, , ℙ) is a probability space, where 𝜑𝛾 ∶ ℝ𝑑 → ℝ, 𝛾 ∈ Γ, are paramet-
ric functions, and where for every 𝛾 ∈ Γ the random variable 𝑆𝛾 ∶ Ω → ℝ𝑑 is the solution of an
SDE parameterized by the parameter 𝛾. In Berner et al. (2020), they propose to approximate 𝑢
by looking for a function 𝑓 ∶ Γ → ℝ within a certain class of ANNs which aims to minimize
𝔼[(𝑓(Λ) − 𝜑Λ(𝑌Λ))

2] where Λ ∶ Ω → Γ is a random variable and for every 𝛾 ∈ Γ we have that
𝑌𝛾 ∶ Ω → ℝ𝑑 is an approximation of 𝑆𝛾 (e.g., an Euler-Maruyama approximation). If the class of
ANNs in which an optimal function 𝑓 is looked for is replaced by parametric functions induced
by a proposal algorithm this becomes a special case of the LRV framework presented in this
article.
Furthermore, the LRV strategy can be associated with a broad subcategory of machine learning

called algorithm learning (cf., e.g., Borgerding et al., 2016; Chen, Li et al., 2020; Chen et al., 2018;
Chen, Zhang et al., 2020; Gregor & LeCun, 2010; Mensch & Blondel, 2018; Towell & Shavlik, 1994;
Wilder et al., 2019; Yoon et al., 2013). Roughly speaking, algorithm learning refers to the idea to
employ existing algorithms with known empirical or theoretical qualities as a basis to construct
or extend ANNs or more general parametric function families. In many cases the employed algo-
rithm relies on certain hyper-parameters (e.g., the learning rates in case of SGD-type methods:
cf., e.g., Chen, Zhang et al., 2020) which typically are added to the set of trainable parameters of
the ANN. It is in this point that the LRV strategy differs from existing algorithm learning meth-
ods since the LRV strategy considers the random variables and not the hyper-parameters of the
proposal algorithm as learnable parameters. It thereby has the advantage that the initialization
of all trainable parameters is implicitly given through the proposal algorithm. However, the LRV
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BECKER et al. 101

strategy could very well be combined with ideas of algorithm learning. We leave this task open for
future research.
Another tranche of literature connected to the LRV strategy are QMC methods (cf., e.g.,

Caflisch, 1998; Drovandi & Tran, 2018; Morokoff & Caflisch, 1995). Roughly speaking, the idea
of QMC methods is to replace uniformly distributed random variables of the MC method by a
more suitable sequence of deterministic points to obtain a higher rate of convergence. The idea
to improve the choice of random variables in MCmethods is a common feature of QMCmethods
with the LRV strategy. A key difference between the two methods is that QMC methods con-
struct new integration points which have good properties for a wide class of integrands while
the LRV strategy aims to “learn” new integration points which are specific to each considered
integrand.
Next we illustrate a link between the LRV strategy and quantization methods (cf., e.g., Alt-

mayer et al., 2014; Dereich et al., 2013; Frikha & Sagna, 2012; Müller-Gronbach & Ritter, 2013;
Pagès, 1998; Pagès, 2015; Pagès et al., 2004; Pagès & Printems, 2003, 2005; Pham et al., 2005; Rudd
et al., 2017). Quantization methods are concerned with approximating a continuously distributed
random variable by a random variable with a finite image. Quantization was first introduced for
signal processing and information theory (cf., e.g., Graf & Luschgy, 2000; Pagès & Printems, 2003)
but can also be used for the numerical approximation of expectations involving the original ran-
dom variable (cf., e.g., Pagès, 1998; Pagès & Printems, 2003). For the latter, the original random
variable in the expectation is replaced by its quantization, resulting in an expected value which
can easily be computed by a finite sum of weighted function evaluations. A good quantization
is typically found with optimization methods such as, the Newton method in low dimensions or
SGD-type optimizationmethods in high-dimensions (cf., e.g., Pagès, 2015; Pagès et al., 2004; Pagès
& Printems, 2003; Pham et al., 2005). Tomake thismore concrete we now roughly illustrate this in
the context of the setting described above. For all 𝜃 = (𝜃1, … , 𝜃𝔐) ∈ ℝ𝔐, 𝐶1, 𝐶2, … , 𝐶𝔐 ∈ (ℝ)
with ∀𝑚, 𝑛 ∈ {1, 2, … ,𝔐},𝑚 ≠ 𝑛 ∶ 𝐶𝑚 ∩ 𝐶𝑛 = {} and ∪𝔐𝑚=1𝐶𝑚 = ℝ we consider a quantization
𝑄𝜃,𝐶1,𝐶2,…,𝐶𝔐 ∶ Ω → ℝ𝔐 of  given by 𝑄𝜃,𝐶1,𝐶2,…,𝐶𝔐 =

∑𝔐
𝔪=1

𝜃𝔪1𝐶𝔪(). A good quantization
is found by minimizing an error between the quantization and the original random variable,
for example, the squared 𝐿2-error given for all 𝜃 = (𝜃1, … , 𝜃𝔐) ∈ ℝ𝔐, 𝐶1, 𝐶2, … , 𝐶𝔐 ∈ (ℝ)
by

𝔼
[‖ − 𝑄𝜃,𝐶1,𝐶2,…,𝐶𝔐‖2], (8)

with an SGD-type optimization method. Once appropriate 𝜃 = (𝜃1, … , 𝜃𝔐) ∈ ℝ𝔐, 𝐶1, 𝐶2, … ,
𝐶𝔐 ∈ (ℝ)with ∀𝑚, 𝑛 ∈ {1, 2, … ,𝔐},𝑚 ≠ 𝑛 ∶ 𝐶𝑚 ∩ 𝐶𝑛 = {} and∪𝔐𝑚=1𝐶𝑚 = ℝ have been found,
they can be employed to approximate the expectation in (1) for every 𝑝 ∈ 𝔓 by

𝑢(𝑝) = 𝔼[𝜙(𝑝,)] ≈ 𝔼
[
𝜙(𝑝, 𝑄𝜃,𝐶1,𝐶2,…,𝐶𝔐)

]
=
∑𝔐
𝔪=1

𝜙(𝑝, 𝜃𝔪)ℙ( ∈ 𝐶𝔪). (9)

Note that this approximation has a similar form as the proposed LRV approximation in (6) and
in both cases the points at which 𝜙 is evaluated are found through an SGD-type optimization
method. The main difference is that the optimization problem in (8), which is used to determine
the evaluation points in (9), only depends on the random variable  whereas the optimization
problem (see (4)) to determine the evaluation points in (6) in the LRV strategy depends on the
random variable and the function 𝜙.
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102 BECKER et al.

The concept of optimizing random MC samples, a central aspect of the LRV strategy, also
appears in the Bayesian statistics literature in the context of inducing points in Bayesian learning
(cf., e.g., Betancourt, 2017; Dellaportas & Titsias, 2019; Ranganath et al., 2014; Snelson & Ghahra-
mani, 2005). Such inducing points are employed to find sparse representation for large data sets.
One way to find good inducing points is to first sample them randomly and then optimize them
for example with gradient based methods (cf., e.g., Snelson & Ghahramani, 2005), which bears
some resemblance to the LRV strategy.
The reminder of this article is structured as follows. In Sections 2, 3, 4, and 5 we present the

LRV strategy for increasingly complex approximation problems and proposal algorithms. As pro-
posal algorithms we consider the standard MC method in Section 2, the MC-Euler method in
Section 3, the MLMC method in Section 4, and the MLP method in Section 5. In Section 6 we
present the most general case of a generic proposal algorithm, which includes all previous sec-
tions as special cases. The results of numerical experiments for the LRV approximation strategy
are presented in Section 7. Specifically, we consider 1-dimensional Black-Scholes equations for
European call options (resulting in a 5-dimensional parametric approximation problem) in Sub-
section 7.2, we consider 3-dimensional Black-Scholes equations for worst-of basket put options
(resulting in a 15-dimensional parametric approximation problem) in Subsection 7.3, we consider
3-dimensional Black-Scholes equations for average basket put options with knock-in barriers
(resulting in a 16-dimensional parametric approximation problem) in Subsection 7.4, and we
consider stochastic Lorentz equations (resulting in a 10-dimensional parametric approximation
problem) in Subsection 7.5.

2 LEARNING THE RANDOMVARIABLES (LRV) STRATEGY IN
THE CASE OFMONTE CARLO APPROXIMATIONS

In this section we employ the LRV strategy for the approximation of parametric expectations
(see (10) in Subsection 2.1). This includes as a special case the approximative pricing of Euro-
pean options in the Black-Scholes model, as illustrated in Subsection 2.2. The LRV strategy based
on standard MC averages as proposal algorithms for the general parametric approximation prob-
lem of Subsection 2.1 is elaborated in Subsections 2.3, 2.4, 2.5, and 2.6. The resulting method is
summarized in a single framework in Subsection 2.7.

2.1 Parametric expectations involving vector valued random
variables

Let 𝔭, 𝐝 ∈ ℕ, let𝔓 ⊆ ℝ𝔭 bemeasurable, let 𝑢 ∶ 𝔓 → ℝ be a function, let (Ω, , ℙ) be a probability
space, let ∶ Ω → ℝ𝐝 be a random variable, let 𝜙 ∶ 𝔓 × ℝ𝐝 → ℝ be measurable, assume for all
𝑝 ∈ 𝔓 that ℝ𝐝 ∋ 𝑤 ↦ 𝜙(𝑝,𝑤) ∈ ℝ is continuously differentiable, and assume for all 𝑝 ∈ 𝔓 that
𝔼[|𝜙(𝑝,)|] < ∞ and

𝑢(𝑝) = 𝔼[𝜙(𝑝,)]. (10)

The goal of this section is to derive an algorithm to approximately compute the function 𝑢 ∶ 𝔓 →

ℝ given through the parametric expectation in (10).
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BECKER et al. 103

2.2 Approximative pricing of European options in the Black-Scholes
model

Lemma 2.1. Let 𝜉, 𝑇, 𝜎 ∈ (0,∞), 𝑟 ∈ ℝ, let 𝔑 ∶ ℝ → ℝ satisfy for all 𝑥 ∈ ℝ that 𝔑(𝑥) =
∫ 𝑥

−∞

1√
2𝜋

exp(−
𝑦2

2
) d𝑦, let (Ω, , (𝔽𝑡)𝑡∈[0,𝑇], ℙ) be a filtered probability space which satisfies the

usual conditions, let 𝑊 ∶ [0, 𝑇] × Ω → ℝ be a standard (𝔽𝑡)𝑡∈[0,𝑇]-Brownian motion with contin-
uous sample paths, and let 𝑋 ∶ [0, 𝑇] × Ω → ℝ be an (𝔽𝑡)𝑡∈[0,𝑇]-adapted stochastic process with
continuous sample paths which satisfies that for all 𝑡 ∈ [0, 𝑇] it holds ℙ-a.s. that

𝑋𝑡 = 𝜉 + 𝑟 ∫
𝑡

0

𝑋𝑠 d𝑠 + 𝜎 ∫
𝑡

0

𝑋𝑠 d𝑊𝑠. (11)

Then

(i) it holds for all 𝑡 ∈ [0, 𝑇] that ℙ(𝑋𝑡 = exp([𝑟 −
𝜎2

2
]𝑡 + 𝜎𝑊𝑡)𝜉) = 1 and

(ii) it holds for all 𝐾 ∈ ℝ that

𝔼[exp(−𝑟𝑇)max{𝑋𝑇 − 𝐾, 0}]

=

⎧⎪⎪⎨⎪⎪⎩
𝜉 𝔑
⎛⎜⎜⎝
(
𝑟+

𝜎2

2

)
𝑇+ln(𝜉∕𝐾)

𝜎
√
𝑇

⎞⎟⎟⎠ − 𝐾 exp(−𝑟 𝑇)𝔑
⎛⎜⎜⎝
(
𝑟−

𝜎2

2

)
𝑇+ln(𝜉∕𝐾)

𝜎
√
𝑇

⎞⎟⎟⎠ ∶ 𝐾 > 0

𝜉 − 𝐾 exp(−𝑟 𝑇) ∶ 𝐾 ≤ 0.

(12)

Proof of Lemma 2.1. Observe that, for example, Becker et al. (2021, item (i) in Proposition 4.3)
implies that for all 𝑡 ∈ [0, 𝑇] it holds ℙ-a.s. that

𝑋𝑡 = exp
([
𝑟 −

𝜎2

2

]
𝑡 + 𝜎𝑊𝑡

)
𝜉 = exp

((
𝑟 −

𝜎2

2

)
𝑡 + ln(𝜉) + 𝜎𝑊𝑡

)
. (13)

This establishes item (i). Moreover, note that, for example, Becker et al. (2021, Lemma 4.4) and
(13) show for all 𝐾 ∈ ℝ that

𝔼[exp(−𝑟𝑇)max{𝑋𝑇 − 𝐾, 0}] = exp(−𝑟𝑇) 𝔼
[
max
{
exp
((
𝑟 −

𝜎2

2

)
𝑇 + ln(𝜉) + 𝜎𝑊𝑇

)
− 𝐾, 0

}]

=

⎧⎪⎪⎨⎪⎪⎩
𝜉 𝔑
⎛⎜⎜⎝
(
𝑟+

𝜎2

2

)
𝑇+ln(𝜉∕𝐾)

𝜎
√
𝑇

⎞⎟⎟⎠ − 𝐾 exp(−𝑟 𝑇)𝔑
⎛⎜⎜⎝
(
𝑟−

𝜎2

2

)
𝑇+ln(𝜉∕𝐾)

𝜎
√
𝑇

⎞⎟⎟⎠ ∶ 𝐾 > 0

𝜉 − 𝐾 exp(−𝑟 𝑇) ∶ 𝐾 ≤ 0

. (14)

The proof of Lemma 2.1 is thus complete. □

In the case where 𝔭 = 5, 𝐝 = 1, and 𝔓 = [90, 110] × [0.01, 1] × [−0.1, 0.1] × [0.01, 0.5] ×

[90, 110], where for all 𝑝 = (𝜉, 𝑇, 𝑟, 𝜎, 𝐾) ∈ 𝔓, 𝑤 ∈ ℝ it holds that 𝜙(𝑝,𝑤) = exp(−𝑟𝑇)

max{exp([𝑟 −
𝜎2

2
]𝑇 + 𝑇1∕2𝜎𝑤)𝜉 − 𝐾, 0}, where  is a standard normal random variable,

and where𝔑 ∶ ℝ → ℝ satisfies for all 𝑥 ∈ ℝ that𝔑(𝑥) = ∫ 𝑥

−∞

1√
2𝜋

exp(−
𝑦2

2
) d𝑦 observe that
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104 BECKER et al.

(i) it holds for all 𝑝 = (𝜉, 𝑇, 𝑟, 𝜎, 𝐾) ∈ 𝔓 that

𝑢(𝑝) = 𝔼
[
exp(−𝑟𝑇)max

{
exp
([
𝑟 −

𝜎2

2

]
𝑇 + 𝑇1∕2𝜎)𝜉 − 𝐾, 0}]

= 𝜉𝔑
⎛⎜⎜⎝
(
𝑟+

𝜎2

2

)
𝑇+ln(𝜉∕𝐾)

𝜎
√
𝑇

⎞⎟⎟⎠ − 𝐾 exp(−𝑟 𝑇)𝔑
⎛⎜⎜⎝
(
𝑟−

𝜎2

2

)
𝑇+ln(𝜉∕𝐾)

𝜎
√
𝑇

⎞⎟⎟⎠
(15)

(cf. (10) and Lemma 2.1) and
(ii) it holds for all𝑝 = (𝜉, 𝑇, 𝑟, 𝜎, 𝐾) ∈ 𝔓 that 𝑢(𝑝) ∈ [0,∞) is the price of an European call option

in the Black-Scholes model with initial underlying price 𝜉, time of maturity 𝑇, drift rate 𝑟,
volatility 𝜎, and strike price 𝐾.

2.3 Monte Carlo approximations

Let𝔐 ∈ ℕ and let𝑊𝑚,𝔪 ∶ Ω → ℝ𝐝, 𝑚,𝔪 ∈ ℕ0, be i.i.d. random variables which satisfy for all
𝐴 ∈ (ℝ𝐝) that ℙ(𝑊0,0 ∈ 𝐴) = ℙ( ∈ 𝐴). Observe that (10) suggests that for all 𝑝 ∈ 𝔓 it holds
that

𝑢(𝑝) = 𝔼[𝜙(𝑝,)] = 𝔼
[
𝜙(𝑝,𝑊0,1)

]
≈

1

𝔐

[
𝔐∑
𝔪=1

𝜙(𝑝,𝑊0,𝔪)

]
. (16)

2.4 Replacing the random variables in Monte Carlo approximations

Let𝒩 ∶ 𝔓 × ℝ𝔐𝐝 → ℝ satisfy for all 𝑝 ∈ 𝔓, 𝜃 = (𝜃1, … , 𝜃𝔐𝐝) ∈ ℝ𝔐𝐝 that

𝒩(𝑝, 𝜃) =
1

𝔐

[
𝔐∑
𝔪=1

𝜙
(
𝑝, (𝜃(𝔪−1)𝐝+𝑘)𝑘∈{1,2,…,𝐝}

)]
. (17)

Note that (16) and (17) suggest that for all 𝑝 ∈ 𝔓 it holds that

𝑢(𝑝) ≈
1

𝔐

[
𝔐∑
𝔪=1

𝜙
(
𝑝,𝑊0,𝔪

)]
= 𝒩
(
𝑝, (𝑊0,1,𝑊0,2, … ,𝑊0,𝔐)

)
. (18)

2.5 Random loss functions for fixed random variables in Monte Carlo
approximations

Let 𝐌 ∈ ℕ, let 𝑃𝑚,𝐦 ∶ Ω → 𝔓, 𝑚,𝐦 ∈ ℕ, be i.i.d. random variables, for every 𝑚 ∈ ℕ let 𝐹𝑚 ∶

ℝ𝔐𝐝 × Ω → ℝ satisfy for all 𝜃 = (𝜃1, … , 𝜃𝔐𝐝) ∈ ℝ𝔐𝐝 that

𝐹𝑚(𝜃) =
1

𝐌

[
𝐌∑
𝐦=1

|||𝜙 (𝑃𝑚,𝐦,𝑊𝑚,𝐦
)
−𝒩(𝑃𝑚,𝐦, 𝜃)

|||2
]

=
1

𝐌

⎡⎢⎢⎣
𝐌∑
𝐦=1

||||||𝜙
(
𝑃𝑚,𝐦,𝑊

𝑚,𝐦
)
−

1

𝔐

[
𝔐∑
𝔪=1

𝜙
(
𝑃𝑚,𝐦, (𝜃(𝔪−1)𝐝+𝑘)𝑘∈{1,2,…,𝐝}

)]||||||
2⎤⎥⎥⎦,

(19)
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BECKER et al. 105

and for every𝑚 ∈ ℕ let 𝐺𝑚 ∶ ℝ𝔐𝐝 × Ω → ℝ𝔐𝐝 satisfy for all 𝜃 ∈ ℝ𝔐𝐝, 𝜔 ∈ Ω that

𝐺𝑚(𝜃, 𝜔) = (∇𝜃𝐹𝑚)(𝜃, 𝜔). (20)

2.6 Learning the random variables with stochastic gradient descent

Let (𝛾𝑚)𝑚∈ℕ ⊆ (0,∞) and let Θ ∶ ℕ0 × Ω → ℝ𝔐𝐝 satisfy for all 𝑚 ∈ ℕ that Θ0 = (𝑊0,1,

𝑊0,2, … ,𝑊0,𝔐) and

Θ𝑚 = Θ𝑚−1 − 𝛾𝑚𝐺𝑚(Θ𝑚−1). (21)

For every sufficiently large𝑚 ∈ ℕ we propose to employ the random function𝔓×Ω ∋ (𝑝, 𝜔) ↦

𝒩(𝑝,Θ𝑚(𝜔)) ∈ ℝ as an approximation for the target function𝔓 ∋ 𝑝 ↦ 𝑢(𝑝) ∈ ℝ in (10).

2.7 Description of the proposed approximation algorithm

Framework 2.2. Let 𝔭, 𝐝,𝔐,𝐌 ∈ ℕ, (𝛾𝑚)𝑚∈ℕ ⊆ (0,∞), let𝔓 ⊆ ℝ𝔭 bemeasurable, let𝜙 ∈ 𝐶(𝔓 ×

ℝ𝐝,ℝ), let (Ω, , ℙ) be a probability space, let 𝑃𝑚,𝐦 ∶ Ω → 𝔓, 𝑚,𝐦 ∈ ℕ, be i.i.d. random vari-
ables, let𝑊𝑚,𝔪 ∶ Ω → ℝ𝐝,𝑚,𝔪 ∈ ℕ0, be i.i.d. random variables, assume that (𝑃𝑚,𝐦)(𝑚,𝐦)∈ℕ2 and
(𝑊𝑚,𝔪)(𝑚,𝔪)∈ℕ2 are independent, assume for all 𝑝 ∈ 𝔓 that ℝ𝐝 ∋ 𝑤 ↦ 𝜙(𝑝,𝑤) ∈ ℝ is continu-
ously differentiable, for every𝑚 ∈ ℕ let 𝐹𝑚 ∶ ℝ𝔐𝐝 × Ω → ℝ satisfy for all 𝜃 = (𝜃1, … , 𝜃𝔐𝐝) ∈ ℝ𝔐𝐝

that

𝐹𝑚(𝜃) =
1

𝐌

⎡⎢⎢⎣
𝐌∑
𝐦=1

||||||𝜙
(
𝑃𝑚,𝐦,𝑊

𝑚,𝐦
)
−

1

𝔐

[
𝔐∑
𝔪=1

𝜙
(
𝑃𝑚,𝐦,
(
𝜃(𝔪−1)𝐝+𝑘

)
𝑘∈{1,2,…,𝐝}

)]||||||
2⎤⎥⎥⎦, (22)

for every 𝑚 ∈ ℕ let 𝐺𝑚 ∶ ℝ𝔐𝐝 × Ω → ℝ𝔐𝐝 satisfy for all 𝜃 ∈ ℝ𝔐𝐝, 𝜔 ∈ Ω that 𝐺𝑚(𝜃, 𝜔) =
(∇𝜃𝐹𝑚)(𝜃, 𝜔), and let Θ ∶ ℕ0 × Ω → ℝ𝔐𝐝 satisfy for all 𝑚 ∈ ℕ that Θ0 = (𝑊0,1,𝑊0,2, … ,𝑊0,𝔐)

and

Θ𝑚 = Θ𝑚−1 − 𝛾𝑚𝐺𝑚(Θ𝑚−1). (23)

3 LRV STRATEGY IN THE CASE OFMONTE
CARLO-EULER-MARUYAMA APPROXIMATIONS

In the previous section we derived the LRV strategy for the approximation of parametric
expectations involving finite-dimensional random variables. In this section we consider para-
metric expectations involving standard Brownian motions as random variables (see (24) in
Subsection 3.1). To derive an LRV algorithm for these approximation problems we first dis-
cretize the Brownian motions in Subsection 3.2 to obtain parametric expectations involving only
finite-dimensional random variables. In Subsections 3.4, 3.5, 3.6, and 3.7 the LRV strategy is
then subsequently applied to these discretized parametric expectations as in Section 2 above
(cf. Subsections 2.3, 2.4, 2.5, and 2.6). In Subsection 3.3 we illustrate a special instance of the
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106 BECKER et al.

parametric expectations in (24) and of associated discretizations in the situation where the para-
metric expectations in (24) involve solutions of SDEs. Finally, in Subsection 3.8 we summarize the
algorithm derived in this section in one single framework.

3.1 Parametric expectations involving vector valued stochastic
processes

Let 𝔭, 𝑑 ∈ ℕ, 𝑇 ∈ (0,∞), let 𝔓 ⊆ ℝ𝔭 be measurable, let 𝑢 ∶ 𝔓 → ℝ be a function, let (Ω, , ℙ)
be a probability space, let  ∶ [0, 𝑇] × Ω → ℝ𝑑 be a standard Brownian motion with continu-
ous sample paths, let 𝜙 ∶ 𝔓 × 𝐶([0, 𝑇], ℝ𝑑) → ℝ be measurable, and assume for all 𝑝 ∈ 𝔓 that
𝔼[|𝜙(𝑝,)|] < ∞ and

𝑢(𝑝) = 𝔼[𝜙(𝑝,)]. (24)

The goal of this section is to derive an algorithm to approximately compute the function 𝑢 ∶ 𝔓 →

ℝ given through the parametric expectation in (24).

3.2 Temporal discretizations of the Brownian motion

Let 𝑁 ∈ ℕ, let 𝔚 ∶ Ω → ℝ𝑁𝑑 satisfy 𝔚 =
√
𝑁∕𝑇 (𝑇∕𝑁 −0,2𝑇∕𝑁 −𝑇∕𝑁, … ,𝑇 −(𝑁−1)𝑇∕𝑁), let Φ ∶ 𝔓 × ℝ𝑁𝑑 → ℝ satisfy for all 𝑝 ∈ 𝔓 that ℝ𝑁𝑑 ∋ 𝑤 ↦ Φ(𝑝,𝑤) ∈ ℝ is

continuously differentiable, and assume for all 𝑝 ∈ 𝔓 that 𝔼[|Φ(𝑝,𝔚)|] < ∞. We think of
Φ ∶ 𝔓 × ℝ𝑁𝑑 → ℝ as a suitable approximation of 𝜙 ∶ 𝔓 × 𝐶([0, 𝑇], ℝ𝑑) → ℝ in the sense that
for all 𝑝 ∈ 𝔓 it holds that

𝜙(𝑝,) ≈ Φ
(
𝑝,
√
𝑁∕𝑇 (𝑇∕𝑁 −0,2𝑇∕𝑁 −𝑇∕𝑁, … ,𝑇 −(𝑁−1)𝑇∕𝑁)

)
= Φ(𝑝,𝔚). (25)

3.3 Euler-Maruyama approximations for parametric stochastic
differential equations

In the case where 𝔭 = 1 + 𝑑, where 𝐵 ∈ (0,∞), where 𝔓 = [0, 𝑇] × [−𝐵, 𝐵]𝑑, where 𝜇 ∶

ℝ𝑑 → ℝ𝑑 is globally Lipschitz continuous, where 𝑋 = (𝑋
𝜉,𝑤
𝑡 )(𝑡,𝜉,𝑤)∈[0,𝑇]×ℝ𝑑×𝐶([0,𝑇],ℝ𝑑) ∶ [0, 𝑇] ×

ℝ𝑑 × 𝐶([0, 𝑇], ℝ𝑑) → ℝ𝑑 satisfies for all 𝑡 ∈ [0, 𝑇], 𝜉 ∈ ℝ𝑑, 𝑤 = (𝑤𝑠)𝑠∈[0,𝑇] ∈ 𝐶([0, 𝑇], ℝ𝑑)

that

𝑋
𝜉,𝑤
𝑡 = 𝜉 + ∫

𝑡

0

𝜇
(
𝑋
𝜉,𝑤
𝑠

)
d𝑠 + 𝑤𝑡, (26)

where 𝑔 ∶ [0, 𝑇] × ℝ𝑑 → ℝ satisfies for all 𝑡 ∈ [0, 𝑇] that ℝ𝑑 ∋ 𝑥 ↦ 𝑔(𝑡, 𝑥) ∈ ℝ is continuously
differentiable, where it holds for all 𝑝 = (𝑡, 𝜉) ∈ 𝔓, 𝑤 ∈ 𝐶([0, 𝑇], ℝ𝑑) that 𝜙(𝑝,𝑤) = 𝑔(𝑡, 𝑋

𝜉,𝑤
𝑡 ),

where 𝜉,𝜃 = (𝜉,𝜃
𝑡 )𝑡∈[0,𝑇] ∶ [0, 𝑇] → ℝ𝑑, 𝜃 ∈ ℝ𝑁𝑑, 𝜉 ∈ ℝ𝑑, satisfy for all 𝜃 ∈ ℝ𝑁𝑑, 𝜉 ∈ ℝ𝑑, 𝑛 ∈
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BECKER et al. 107

{1, 2, …𝑁}, 𝑡 ∈ [
(𝑛−1)𝑇

𝑁
,
𝑛𝑇

𝑁
] that 𝜉,𝜃

0 = 𝜉 and

𝜉,𝜃
𝑡 = 𝜉,𝜃

(𝑛−1)𝑇∕𝑁
+
(
𝑡𝑁

𝑇
− 𝑛 + 1

)(
𝑇

𝑁
𝜇
(𝜉,𝜃

(𝑛−1)𝑇∕𝑁

)
+

√
𝑇√
𝑁
(𝜃(𝑛−1)𝑑+𝑘)𝑘∈{1,2,…,𝑑}

)
, (27)

and where it holds for all 𝑝 ∈ 𝔓, 𝜃 ∈ ℝ𝑁𝑑 that Φ(𝑝, 𝜃) = 𝑔(𝑡,𝜉,𝜃
𝑡 ) observe that

(i) it holds for all 𝑝 = (𝑡, 𝜉) ∈ 𝔓 that

𝑢(𝑝) = 𝑢(𝑡, 𝜉) = 𝔼
[
𝑔
(
𝑡, 𝑋

𝜉,
𝑡

)]
(28)

is the expectation of the test functionℝ𝑑 ∋ 𝑥 ↦ 𝑔(𝑡, 𝑥) ∈ ℝ evaluated at time 𝑡 of the solution
process (𝑋𝜉,𝑠 )𝑠∈[0,𝑇] of the additive noise driven SDE in (26) and

(ii) it holds for all 𝑝 = (𝑡, 𝜉) ∈ 𝔓 that Φ(𝑝,𝔚) is an approximation

Φ(𝑝,𝔚) = 𝑔
(
𝑡,𝜉,𝔚

𝑡

)
≈ 𝑔
(
𝑡, 𝑋

𝜉,
𝑡

)
= 𝜙(𝑝,) (29)

of𝜙(𝑝,) based on linearly interpolatedEuler-Maruyama approximations (𝜉,𝔚
𝑠 )𝑠∈[0,𝑇]with

𝑁 timesteps of the solution (𝑋𝜉,𝑠 )𝑠∈[0,𝑇] of the SDE in (26).

3.4 Monte Carlo approximations

Let 𝔐 ∈ ℕ and let 𝑊𝑚,𝔪 ∶ Ω → ℝ𝑁𝑑, 𝑚,𝔪 ∈ ℕ0, be i.i.d. standard normal random vectors.
Observe that (24) and (25) suggest that for all 𝑝 ∈ 𝔓 it holds that

𝑢(𝑝) = 𝔼[𝜙(𝑝,)] ≈ 𝔼[Φ(𝑝,𝔚)] = 𝔼[Φ(𝑝,𝑊0,1)] ≈
1

𝔐

[
𝔐∑
𝔪=1

Φ
(
𝑝,𝑊0,𝔪

)]
. (30)

3.5 Replacing the random variables in Monte Carlo approximations

Let𝒩 ∶ 𝔓 × ℝ𝔐𝑁𝑑 → ℝ satisfy for all 𝑝 ∈ 𝔓, 𝜃 = (𝜃1, … , 𝜃𝔐𝑁𝑑) ∈ ℝ𝔐𝑁𝑑 that

𝒩(𝑝, 𝜃) =
1

𝔐

[
𝔐∑
𝔪=1

Φ
(
𝑝, (𝜃(𝔪−1)𝑁𝑑+𝑘)𝑘∈{1,2,…,𝑁𝑑}

)]
. (31)

Note that (30) and (31) suggest that for all 𝑝 ∈ 𝔓 it holds that

𝑢(𝑝) ≈
1

𝔐

[
𝔐∑
𝔪=1

Φ
(
𝑝,𝑊0,𝔪

)]
= 𝒩
(
𝑝, (𝑊0,1,𝑊0,2, … ,𝑊0,𝔐)

)
. (32)
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108 BECKER et al.

3.6 Random loss functions for fixed random variables inMonte Carlo
approximations

Let 𝐌 ∈ ℕ, let 𝑃𝑚,𝐦 ∶ Ω → 𝔓, 𝑚,𝐦 ∈ ℕ, be i.i.d. random variables, for every 𝑚 ∈ ℕ let 𝐹𝑚 ∶

ℝ𝔐𝑁𝑑 × Ω → ℝ satisfy for all 𝜃 = (𝜃1, … , 𝜃𝔐𝑁𝑑) ∈ ℝ𝔐𝑁𝑑 that

𝐹𝑚(𝜃) =
1

𝐌

[
𝐌∑
𝐦=1

|||Φ (𝑃𝑚,𝐦,𝑊𝑚,𝐦
)
−𝒩(𝑃𝑚,𝐦, 𝜃)

|||2
]

=
1

𝐌

⎡⎢⎢⎣
𝐌∑
𝐦=1

||||||Φ
(
𝑃𝑚,𝐦,𝑊

𝑚,𝐦
)
−

1

𝔐

[
𝔐∑
𝔪=1

Φ
(
𝑃𝑚,𝐦, (𝜃(𝔪−1)𝑁𝑑+𝑘)𝑘∈{1,2,…,𝑁𝑑}

)]||||||
2⎤⎥⎥⎦,

(33)

and for every𝑚 ∈ ℕ let 𝐺𝑚 ∶ ℝ𝔐𝑁𝑑 × Ω → ℝ𝔐𝑁𝑑 satisfy for all 𝜃 ∈ ℝ𝔐𝑁𝑑, 𝜔 ∈ Ω that

𝐺𝑚(𝜃, 𝜔) = (∇𝜃𝐹𝑚)(𝜃, 𝜔). (34)

3.7 Learning the random variables with stochastic gradient descent

Let (𝛾𝑚)𝑚∈ℕ ⊆ (0,∞) and let Θ ∶ ℕ0 × Ω → ℝ𝔐𝑁𝑑 satisfy for all 𝑚 ∈ ℕ that Θ0 =

(𝑊0,1,𝑊0,2, … ,𝑊0,𝔐) and

Θ𝑚 = Θ𝑚−1 − 𝛾𝑚𝐺𝑚(Θ𝑚−1). (35)

For every sufficiently large 𝑚 ∈ ℕ we propose to employ the random function 𝔓×Ω ∋

(𝑝, 𝜔) ↦ 𝒩(𝑝,Θ𝑚(𝜔)) ∈ ℝ as an approximation for the target function 𝔓 ∋ 𝑝 ↦ 𝑢(𝑝) ∈ ℝ in
(24).

3.8 Description of the proposed approximation algorithm

Framework 3.1. Let 𝔭, 𝑑,𝑁,𝔐,𝐌 ∈ ℕ, (𝛾𝑚)𝑚∈ℕ ⊆ (0,∞), let 𝔓 ⊆ ℝ𝔭 be measurable, let
(Ω, , ℙ) be a probability space, let𝑃𝑚,𝐦 ∶ Ω → 𝔓,𝑚,𝐦 ∈ ℕ, be i.i.d. randomvariables, let𝑊𝑚,𝔪 ∶

[0, 𝑇] × Ω → ℝ𝑑, 𝑚,𝔪 ∈ ℕ0, be i.i.d. standard Brownian motions, assume that (𝑃𝑚,𝐦)(𝑚,𝐦)∈ℕ2
and (𝑊𝑚,𝔪)(𝑚,𝔪)∈ℕ2 are independent, letΦ ∶ 𝔓 × ℝ𝑁𝑑 → ℝ satisfy for all 𝑝 ∈ 𝔓 thatℝ𝑁𝑑 ∋ 𝑤 ↦

Φ(𝑝,𝑤) ∈ ℝ is continuously differentiable, for every𝑚 ∈ ℕ let 𝐹𝑚 ∶ ℝ𝔐𝑁𝑑 × Ω → ℝ satisfy for all
𝜃 = (𝜃1, … , 𝜃𝔐𝑁𝑑) ∈ ℝ𝔐𝑁𝑑 that

𝐹𝑚(𝜃) =
1

𝐌

⎡⎢⎢⎣
𝐌∑
𝐦=1

||||||Φ
(
𝑃𝑚,𝐦,
√
𝑁∕𝑇
(
𝑊𝑚,𝐦

𝑇∕𝑁
−𝑊𝑚,𝐦

0 ,𝑊𝑚,𝐦

2𝑇∕𝑁
−𝑊𝑚,𝐦

𝑇∕𝑁
, … ,𝑊𝑚,𝐦

𝑇 −𝑊𝑚,𝐦

(𝑁−1)𝑇∕𝑁

))

−
1

𝔐

[
𝔐∑
𝔪=1

Φ
(
𝑃𝑚,𝐦, (𝜃(𝔪−1)𝑁𝑑+𝑘)𝑘∈{1,2,…,𝑁𝑑}

)]||||||
2⎤⎥⎥⎦, (36)
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BECKER et al. 109

for every 𝑚 ∈ ℕ let 𝐺𝑚 ∶ ℝ𝔐𝑁𝑑 × Ω → ℝ𝔐𝑁𝑑 satisfy for all 𝜃 ∈ ℝ𝔐𝑁𝑑, 𝜔 ∈ Ω that 𝐺𝑚(𝜃, 𝜔) =
(∇𝜃𝐹𝑚)(𝜃, 𝜔), and let Θ = (Θ(1), … ,Θ(𝔐𝑁𝑑)) ∶ ℕ0 × Ω → ℝ𝔐𝑁𝑑 satisfy for all 𝑚 ∈ ℕ, 𝑘 ∈
{1, 2, … ,𝔐}, 𝑛 ∈ {1, 2, … ,𝑁} that (Θ([(𝑘−1)𝑁+𝑛−1]𝑑+1)0 , Θ

([(𝑘−1)𝑁+𝑛−1]𝑑+2)
0 , … ,Θ

([(𝑘−1)𝑁+𝑛−1]𝑑+𝑑)
0 ) =√

𝑁∕𝑇(𝑊0,𝑘

𝑛𝑇∕𝑁
−𝑊0,𝑘

(𝑛−1)𝑇∕𝑁
) and Θ𝑚 = Θ𝑚−1 − 𝛾𝑚𝐺𝑚(Θ𝑚−1).

4 LRV STRATEGY IN THE CASE OFMULTILEVELMONTE CARLO
APPROXIMATIONS

In this section we consider the problem of approximating a parametric expectation involving
a general measure space-valued random variable for which a sequence of finite-dimensional
approximations is available (see Subsections 4.1 and 4.2). We illustrate such a situation in Sub-
section 4.4 in which the original random variable is a Brownian motion driving an SDE and
the finite-dimensional approximations consist of Euler discretizations of the SDE with decreas-
ing step sizes. The employed proposal algorithm for the LRV strategy in this section is a form
of MLMC method (cf. Heinrich, 1998 and Giles, 2008 and cf., e.g., Creutzig et al., 2009; Giles,
2015; Heinrich, 2001; Heinrich & Sindambiwe, 1999) as described in Subsection 4.3. Based on
this proposal algorithm, the LRV strategy is applied to the considered approximation prob-
lem in Subsections 4.5, 4.6, and 4.7 and, thereafter, summarized in one single framework in
Subsection 4.8.

4.1 Parametric expectations involving measure space valued random
variables

Let 𝔭 ∈ ℕ, let 𝔓 ⊆ ℝ𝔭 be measurable, let (𝑉,) be a measurable space, let 𝜙 ∶ 𝔓 × 𝑉 → ℝ be
continuous, let 𝑢 ∶ 𝔓 → ℝ be a function, let (Ω, , ℙ) be a probability space, let ∶ Ω → 𝑉 be a
random variable, and assume for all 𝑝 ∈ 𝔓 that 𝔼[|𝜙(𝑝,)|] < ∞ and

𝑢(𝑝) = 𝔼[𝜙(𝑝,)]. (37)

The goal of this section is to derive an algorithm to approximately compute the function 𝑢 ∶ 𝔓 →

ℝ given through the parametric expectation in (37).

4.2 Finite-dimensional approximations

Let 𝐝 = (𝐝𝑙)𝑙∈ℕ0 ∶ ℕ0 → ℕ be non-decreasing, let𝑙 ∶ ℝ𝐝𝑙 → ℝ𝐝𝑙−1 , 𝑙 ∈ ℕ, be continuously differ-
entiable, let𝔚𝑙 ∶ Ω → ℝ𝐝𝑙 , 𝑙 ∈ ℕ0, be random variables which satisfy for all 𝑙 ∈ ℕ that 𝑙(𝔚𝑙) =

𝔚𝑙−1, let Φ𝑙 ∶ 𝔓 × ℝ𝐝𝑙 → ℝ, 𝑙 ∈ ℕ0, satisfy for all 𝑙 ∈ ℕ0, 𝑝 ∈ 𝔓 thatℝ𝐝𝑙 ∋ 𝑤 ↦ Φ𝑙(𝑝, 𝑤) ∈ ℝ is
continuously differentiable, and assume for all 𝑝 ∈ 𝔓, 𝑙 ∈ ℕ0 that 𝔼[|Φ𝑙(𝑝,𝔚𝑙)|] < ∞. We think
of𝔚𝑙, 𝑙 ∈ ℕ0, andΦ𝑙, 𝑙 ∈ ℕ0, as suitable approximations of and𝜙 in the sense that for all𝑝 ∈ 𝔓

and all sufficiently large 𝑙 ∈ ℕ0 it holds that

𝜙(𝑝,) ≈ Φ𝑙(𝑝,𝔚𝑙). (38)
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110 BECKER et al.

4.3 Multilevel Monte Carlo approximations

Let 𝐿 ∈ ℕ0, 𝔐0,𝔐1,… ,𝔐𝐿 ∈ ℕ satisfy 𝔐0 ≥𝔐1 ≥ … ≥𝔐𝐿, let 𝑊
𝑚,𝔪
𝑙

∶ Ω → ℝ𝐝𝑙 , 𝑙, 𝑚,𝔪 ∈

ℕ0, be independent random variables, and assume for all 𝑙, 𝑚,𝔪 ∈ ℕ0, 𝐴 ∈ (ℝ𝐝𝑙 ) that
ℙ(𝑊𝑚,𝔪

𝑙
∈ 𝐴) = ℙ(𝔚𝑙 ∈ 𝐴). Observe that (37) and (38) suggest that for all 𝑝 ∈ 𝔓 it holds that

𝑢(𝑝) = 𝔼[𝜙(𝑝,)] ≈ 𝔼[Φ𝐿(𝑝,𝔚𝐿)] = 𝔼[Φ0(𝑝,𝔚0)] +

𝐿∑
𝑙=1

𝔼[Φ𝑙(𝑝,𝔚𝑙) − Φ𝑙−1(𝑝,𝑙(𝔚𝑙))]

≈
1

𝔐0

[
𝔐0∑
𝑚=1

Φ0

(
𝑝,𝑊0,𝑚

0

)]
+

𝐿∑
𝑙=1

1

𝔐𝑙

[
𝔐𝑙∑
𝑚=1

Φ𝑙

(
𝑝,𝑊0,𝑚

𝑙

)
− Φ𝑙−1

(
𝑝,𝑙

(
𝑊0,𝑚

𝑙

))]
.

(39)

4.4 Multilevel Monte Carlo approximations for parametric
stochastic differential equations

In the case where 𝑑 ∈ ℕ, 𝑇, 𝐵 ∈ (0,∞), where 𝔭 = 1 + 𝑑, 𝔓 = [0, 𝑇] × [−𝐵, 𝐵]𝑑, and (𝑉,) =
(𝐶([0, 𝑇], ℝ𝑑),(𝐶([0, 𝑇], ℝ𝑑))), where 𝜇 ∶ ℝ𝑑 → ℝ𝑑 is globally Lipschitz continuous, where
𝑋 = (𝑋

𝜉,𝑤
𝑡 )(𝑡,𝜉,𝑤)∈[0,𝑇]×ℝ𝑑×𝐶([0,𝑇],ℝ𝑑) ∶ [0, 𝑇] × ℝ

𝑑 × 𝐶([0, 𝑇], ℝ𝑑) → ℝ𝑑 satisfies for all 𝑡 ∈ [0, 𝑇],
𝜉 ∈ ℝ𝑑, 𝑤 = (𝑤𝑠)𝑠∈[0,𝑇] ∈ 𝐶([0, 𝑇], ℝ𝑑) that

𝑋
𝜉,𝑤
𝑡 = 𝜉 + ∫

𝑡

0

𝜇
(
𝑋
𝜉,𝑤
𝑠

)
d𝑠 + 𝑤𝑡, (40)

where 𝑔 ∶ [0, 𝑇] × ℝ𝑑 → ℝ satisfies for all 𝑡 ∈ [0, 𝑇] that ℝ𝑑 ∋ 𝑥 ↦ 𝑔(𝑡, 𝑥) ∈ ℝ is continuously
differentiable, where it holds for all 𝑝 = (𝑡, 𝜉) ∈ 𝔓, 𝑤 ∈ 𝐶([0, 𝑇], ℝ𝑑) that 𝜙(𝑝,𝑤) = 𝑔(𝑡, 𝑋

𝜉,𝑤
𝑡 ),

where  ∶ Ω → 𝐶([0, 𝑇], ℝ𝑑) is a standard Brownian motion, where for all 𝑙 ∈ ℕ0 it holds that
𝐝𝑙 = 2𝑙𝑑, where for all 𝑙 ∈ ℕ0 it holds that

𝔚𝑙 =

√
2𝑙∕𝑇
(𝑇∕2𝑙 −0,2𝑇∕2𝑙 −𝑇∕2𝑙 , … ,𝑇 −(2𝑙−1)𝑇∕2𝑙

)
, (41)

where 𝜉,𝜃,𝑁 = (𝜉,𝜃,𝑁
𝑡 )𝑡∈[0,𝑇] ∶ [0, 𝑇] → ℝ𝑑, 𝑁 ∈ ℕ, 𝜃 ∈ ℝ𝑁𝑑, 𝜉 ∈ ℝ𝑑, satisfy for all 𝑁 ∈ ℕ, 𝜃 ∈

ℝ𝑁𝑑, 𝜉 ∈ ℝ𝑑, 𝑛 ∈ {1, 2, …𝑁}, 𝑡 ∈ [
(𝑛−1)𝑇

𝑁
,
𝑛𝑇

𝑁
] that 𝜉,𝜃,𝑁

0 = 𝜉 and

𝜉,𝜃,𝑁
𝑡 = 𝜉,𝜃,𝑁

(𝑛−1)𝑇∕𝑁
+
(
𝑡𝑁

𝑇
− 𝑛 + 1

)(
𝑇

𝑁
𝜇
(𝜉,𝜃,𝑁

(𝑛−1)𝑇∕𝑁

)
+

√
𝑇√
𝑁
(𝜃(𝑛−1)𝑑+𝑘)𝑘∈{1,2,…,𝑑}

)
, (42)

where for all 𝑙 ∈ ℕ0, 𝑝 = (𝑡, 𝜉) ∈ 𝔓, 𝜃 ∈ ℝ2
𝑙𝑑 it holds that Φ𝑙(𝑝, 𝜃) = 𝑔(𝑡,𝜉,𝜃,2𝑙

𝑡 ), and where for
all 𝑙 ∈ {0, 1, … , 𝐿} it holds that𝔐𝑙 = 2𝐿−𝑙 observe that

(i) it holds for all 𝑙 ∈ ℕ, 𝜃1, 𝜃2 … , 𝜃2𝑙 , 𝜗1, 𝜗2 … , 𝜗2𝑙−1 ∈ ℝ𝑑 with ∀𝑛 ∈ {1, 2, … , 2𝑙−1} ∶ 𝜗𝑛 =
1√
2
(𝜃2𝑛 + 𝜃2𝑛−1) that

𝑙(𝜃1, 𝜃2 … , 𝜃2𝑙 ) = (𝜗1, 𝜗2 … , 𝜗2𝑙−1), (43)
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BECKER et al. 111

(ii) it holds for all 𝑝 = (𝑡, 𝜉) ∈ 𝔓 that

𝑢(𝑝) = 𝑢(𝑡, 𝜉) = 𝔼
[
𝑔
(
𝑡, 𝑋

𝜉,
𝑡

)]
(44)

is the expectation of the test functionℝ𝑑 ∋ 𝑥 ↦ 𝑔(𝑡, 𝑥) ∈ ℝ evaluated at time 𝑡 of the solution
process (𝑋𝜉,𝑠 )𝑠∈[0,𝑇] of the additive noise driven SDE in (41),

(iii) it holds for all 𝑙 ∈ ℕ0, 𝑝 = (𝑡, 𝜉) ∈ 𝔓 that Φ𝑙(𝑝,𝔚𝑙) is an approximation

Φ𝑙(𝑝,𝔚𝑙) = 𝑔
(
𝑡,𝜉,𝔚𝑙,2

𝑙

𝑡

)
≈ 𝑔
(
𝑡, 𝑋

𝜉,
𝑡

)
= 𝜙(𝑝,) (45)

of 𝜙(𝑝,) based on linearly interpolated Euler-Maruyama approximations (𝜉,𝔚𝑙,2
𝑙

𝑠 )𝑠∈[0,𝑇]

with 2𝑙 timesteps of the solution (𝑋𝜉,𝑠 )𝑠∈[0,𝑇] of the SDE in (41), and
(iv) it holds for all 𝑝 = (𝑡, 𝜉) ∈ 𝔓 that

1

𝔐0

[
𝔐0∑
𝑚=1

Φ0

(
𝑝,𝑊0,𝑚

0

)]
+

𝐿∑
𝑙=1

1

𝔐𝑙

[
𝔐𝑙∑
𝑚=1

Φ𝑙

(
𝑝,𝑊0,𝑚

𝑙

)
− Φ𝑙−1

(
𝑝,𝑙

(
𝑊0,𝑚

𝑙

))]

=
1

2𝐿

⎡⎢⎢⎣
2𝐿∑
𝑚=1

𝑔

(
𝑡,𝜉,𝑊

0,𝑚
0

,1

𝑡

)⎤⎥⎥⎦ +
𝐿∑
𝑙=1

1

2𝐿−𝑙

⎡⎢⎢⎣
2𝐿−𝑙∑
𝑚=1

𝑔

(
𝑡,𝜉,𝑊

0,𝑚
𝑙

,2𝑙

𝑡

)
− 𝑔

(
𝑡,𝜉,𝑙

(
𝑊
0,𝑚
𝑙

)
,2𝑙−1

𝑡

)⎤⎥⎥⎦
(46)

is a MLMC approximation of 𝑢(𝑡, 𝜉) as proposed in Giles (2008).

4.5 Replacing the random variables in multilevel Monte Carlo
approximations

Let 𝒩 ∶ 𝔓 × ℝ𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝐿𝐝𝐿 → ℝ satisfy for all 𝑝 ∈ 𝔓, 𝜃 = (𝜃1, … ,

𝜃𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝐿𝐝𝐿) ∈ ℝ𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝐿𝐝𝐿 that

𝒩(𝑝, 𝜃) =
1

𝔐0

[
𝔐0∑
𝑚=1

Φ0

(
𝑝, (𝜃(𝑚−1)𝐝0+𝑘)𝑘∈{1,2,…,𝐝0}

)]

+

𝐿∑
𝑙=1

1

𝔐𝑙

[
𝔐𝑙∑
𝑚=1

Φ𝑙

(
𝑝, (𝜃𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝑙−1𝐝𝑙−1+(𝑚−1)𝐝𝑙+𝑘

)𝑘∈{1,2,…,𝐝𝑙 }
)

−Φ𝑙−1

(
𝑝,𝑙((𝜃𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝑙−1𝐝𝑙−1+(𝑚−1)𝐝𝑙+𝑘

)𝑘∈{1,2,…,𝐝𝑙 })
)]
. (47)

Note that (39) and (47) suggest that for all 𝑝 ∈ 𝔓 it holds that

𝑢(𝑝) ≈
1

𝔐0

[
𝔐0∑
𝑚=1

Φ0

(
𝑝,𝑊0,𝑚

0

)]
+

𝐿∑
𝑙=1

1

𝔐𝑙

[
𝔐𝑙∑
𝑚=1

Φ𝑙

(
𝑝,𝑊0,𝑚

𝑙

)
− Φ𝑙−1

(
𝑝,𝑙

(
𝑊0,𝑚

𝑙

))]

= 𝒩
(
𝑝,
(
𝑊0,1

0 ,𝑊0,2
0 , … ,𝑊

0,𝔐1

0 ,𝑊0,1
1 ,𝑊0,2

1 , … ,𝑊
0,𝔐2

1 , … ,𝑊0,1
𝐿 ,𝑊0,2

𝐿 , … ,𝑊
0,𝔐𝐿

𝐿

))
.

(48)
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112 BECKER et al.

4.6 Random loss functions for fixed random variables in multilevel
Monte Carlo approximations

Let 𝐌 ∈ ℕ,  ∈ ℕ0, let 𝑃𝑚,𝐦 ∶ Ω → 𝔓, 𝑚,𝐦 ∈ ℕ, be i.i.d. random variables, assume
that (𝑃𝑚,𝐦)(𝑚,𝐦)∈ℕ2 and (𝑊𝑚,𝔪

𝑙
)(𝑙,𝑚,𝔪)∈(ℕ0)3 are independent, for every 𝑚 ∈ ℕ let

𝐹𝑚 ∶ ℝ𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝐿𝐝𝐿 × Ω → ℝ satisfy for all 𝜃 = (𝜃1, … , 𝜃𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝐿𝐝𝐿) ∈

ℝ𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝐿𝐝𝐿 that

𝐹𝑚(𝜃) =
1

𝐌

[
𝐌∑
𝐦=1

|||Φ
(
𝑃𝑚,𝐦,𝑊

𝑚,𝐦

)
−𝒩(𝑃𝑚,𝐦, 𝜃)

|||2
]
, (49)

and for every 𝑚 ∈ ℕ let 𝐺𝑚 ∶ ℝ𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝐿𝐝𝐿 × Ω → ℝ𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝐿𝐝𝐿 satisfy for all
𝜃 ∈ ℝ𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝐿𝐝𝐿 , 𝜔 ∈ Ω that

𝐺𝑚(𝜃, 𝜔) = (∇𝜃𝐹𝑚)(𝜃, 𝜔). (50)

4.7 Learning the random variables with stochastic gradient descent

Let (𝛾𝑚)𝑚∈ℕ ⊆ (0,∞) and letΘ ∶ ℕ0 × Ω → ℝ𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝐿𝐝𝐿 satisfy for all𝑚 ∈ ℕ thatΘ0 =
(𝑊0,1

0 ,𝑊0,2
0 , … ,𝑊

0,𝔐1

0 ,𝑊0,1
1 ,𝑊0,2

1 , … ,𝑊
0,𝔐2

1 , … ,𝑊0,1
𝐿 ,𝑊0,2

𝐿 , … ,𝑊
0,𝔐𝐿

𝐿 ) and

Θ𝑚 = Θ𝑚−1 − 𝛾𝑚𝐺𝑚(Θ𝑚−1). (51)

For every sufficiently large𝑚 ∈ ℕ we propose to employ the random function𝔓×Ω ∋ (𝑝, 𝜔) ↦

𝒩(𝑝,Θ𝑚(𝜔)) ∈ ℝ as an approximation for the target function𝔓 ∋ 𝑝 ↦ 𝑢(𝑝) ∈ ℝ in (37).

4.8 Description of the proposed approximation algorithm

Framework 4.1. Let 𝔭,𝐌 ∈ ℕ, 𝐿, ∈ ℕ0,𝔐0,𝔐1,… ,𝔐𝐿 ∈ ℕ, (𝐝𝑙)𝑙∈ℕ0 ⊆ ℕ, (𝛾𝑚)𝑚∈ℕ ⊆ (0,∞),
let 𝔓 ⊆ ℝ𝔭 be measurable, let Φ𝑙 ∶ 𝔓 × ℝ𝐝𝑙 → ℝ, 𝑙 ∈ ℕ0, satisfy for all 𝑙 ∈ ℕ0, 𝑝 ∈ 𝔓 that
ℝ𝐝𝑙 ∋ 𝑤 ↦ Φ𝑙(𝑝, 𝑤) ∈ ℝ is continuously differentiable, let 𝑙 ∶ ℝ𝐝𝑙 → ℝ𝐝𝑙−1 , 𝑙 ∈ {1, 2, … , 𝐿}, be
continuously differentiable, let 𝒩 ∶ 𝔓 × ℝ𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝐿𝐝𝐿 → ℝ satisfy for all 𝑝 ∈ 𝔓, 𝜃 =
(𝜃1, … , 𝜃𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝐿𝐝𝐿) ∈ ℝ𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝐿𝐝𝐿 that

𝒩(𝑝, 𝜃) =
1

𝔐0

[
𝔐0∑
𝑚=1

Φ0
(
𝑝, (𝜃(𝑚−1)𝐝0+𝑘)𝑘∈{1,2,…,𝐝0}

)]

+

𝐿∑
𝑙=1

1

𝔐𝑙

[
𝔐𝑙∑
𝑚=1

Φ𝑙
(
𝑝, (𝜃𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝑙−1𝐝𝑙−1+(𝑚−1)𝐝𝑙+𝑘)𝑘∈{1,2,…,𝐝𝑙}

)
−Φ𝑙−1

(
𝑝,𝑙((𝜃𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝑙−1𝐝𝑙−1+(𝑚−1)𝐝𝑙+𝑘)𝑘∈{1,2,…,𝐝𝑙})

)]
, (52)
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BECKER et al. 113

let (Ω, , ℙ) be a probability space, let𝑊𝑚,𝔪
𝑙

∶ Ω → ℝ𝑑, 𝑙, 𝑚,𝔪 ∈ ℕ0, be independent random vari-
ables which satisfy for all 𝑙, 𝑚,𝔪 ∈ ℕ0,𝐴 ∈ (ℝ𝐝𝑙 ) that ℙ(𝑊𝑚,𝔪

𝑙
∈ 𝐴) = ℙ(𝑊0,0

𝑙
∈ 𝐴), let 𝑃𝑚,𝐦 ∶

Ω → 𝔓,𝑚,𝐦 ∈ ℕ, be i.i.d. random variables, assume that (𝑃𝑚,𝐦)(𝑚,𝐦)∈ℕ2 and (𝑊
𝑚,𝔪
𝑙

)(𝑙,𝑚,𝔪)∈(ℕ0)3

are independent, for every 𝑚 ∈ ℕ let 𝐹𝑚 ∶ ℝ𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝐿𝐝𝐿 × Ω → ℝ satisfy for all 𝜃 ∈
ℝ𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝐿𝐝𝐿 that

𝐹𝑚(𝜃) =
1

𝐌

[
𝐌∑
𝐦=1

|||Φ
(
𝑃𝑚,𝐦,𝑊

𝑚,𝐦

)
−𝒩(𝑃𝑚,𝐦, 𝜃)

|||2
]
, (53)

for every 𝑚 ∈ ℕ let 𝐺𝑚 ∶ ℝ𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝐿𝐝𝐿 × Ω → ℝ𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝐿𝐝𝐿 satisfy for all
𝜃 ∈ ℝ𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝐿𝐝𝐿 , 𝜔 ∈ Ω that 𝐺𝑚(𝜃, 𝜔) = (∇𝜃𝐹𝑚)(𝜃, 𝜔), and let Θ ∶ ℕ0 × Ω →

ℝ𝔐0𝐝0+𝔐1𝐝1+⋯+𝔐𝐿𝐝𝐿 satisfy for all 𝑚 ∈ ℕ that Θ0 = (𝑊0,1
0 ,𝑊0,2

0 , … ,𝑊
0,𝔐1

0 ,𝑊0,1
1 ,𝑊0,2

1 , … ,

𝑊
0,𝔐2

1 , … ,𝑊0,1
𝐿 ,𝑊0,2

𝐿 , … ,𝑊
0,𝔐𝐿

𝐿 ) and

Θ𝑚 = Θ𝑚−1 − 𝛾𝑚𝐺𝑚(Θ𝑚−1). (54)

5 LRV STRATEGY IN THE CASE OFMULTILEVEL PICARD
APPROXIMATIONS

In this section we consider the case where the target function to be approximated with the LRV
strategy is given as the solution of a suitable stochastic fixed point equation (SFPE); see (55) in
Subsection 5.1. The setup in Subsection 5.1 includes, as important special cases, the solutions of
several semilinear parabolic PDEs. Two examples of such semilinear parabolic PDEs (heat PDEs
withLipschitz nonlinearities andBlack-Scholes PDEswithLipschitz nonlinearities) are presented
in Subsection 5.2. As proposal algorithms for the LRV strategy we present in Subsection 5.3 a
slight generalization of the MLP algorithm for semilinear PDEs in Hutzenthaler, Jentzen, Kruse
et al. (2020) (cf. also E et al., 2019, 2021). In analogy to the previous sections, in Subsections 5.4,
5.5, and 5.6 an algorithm for the considered approximation problem is derived based on the LRV
strategy with this MLP algorithm as proposal algorithm. Finally, the problem and the algorithm
are summarized in one single framework in Subsection 5.7.

5.1 Parametric solutions of stochastic fixed point equations

Let𝔭, 𝐝 ∈ ℕ, let𝔓 ⊆ ℝ𝔭 bemeasurable, let𝜙 ∶ 𝔓 × ℝ𝐝 × ℝ → ℝ, ∶ 𝔓 × ℝ𝐝 → 𝔓, and𝑢 ∶ 𝔓 →

ℝ be measurable, let (Ω, , ℙ) be a probability space, let ∶ Ω → ℝ𝐝 be a random variable, and
assume for all 𝑝 ∈ 𝔓 that 𝔼[|𝜙(𝑝, , 𝑢((𝑝,)))|] < ∞ and

𝑢(𝑝) = 𝔼[𝜙(𝑝, , 𝑢((𝑝,)))]. (55)

The goal of this section is to derive an algorithm to approximately compute the function 𝑢 ∶ 𝔓 →

ℝ given through the SFPE in (55).
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114 BECKER et al.

5.2 Approximations for parametric semilinear partial differential
equations

5.2.1 Heat partial differential equations with Lipschitz nonlinearities

In the case where 𝑇 ∈ (0,∞), 𝑑 ∈ ℕ, where 𝔭 = 𝐝 = 1 + 𝑑 and 𝔓 = [0, 𝑇] × ℝ𝑑,
where 𝑢 ∈ 𝐶([0, 𝑇] × ℝ𝑑,ℝ) is at most polynomially growing, where 𝑓, 𝑔 ∈ 𝐶(ℝ𝑑,ℝ)

are at most polynomially growing, where for all 𝑝 = (𝑡, 𝑥) ∈ 𝔓, 𝑤 = (𝑤1, 𝑤2) ∈

ℝ𝑑 × [0, 1], 𝑣 ∈ ℝ it holds that 𝜙(𝑝,𝑤, 𝑣) = 𝑔(𝑥 + (𝑇 − 𝑡)1∕2𝑤1) + (𝑇 − 𝑡)𝑓(𝑣) and
(𝑝, 𝑤) = (𝑡 + 𝑤2(𝑇 − 𝑡), 𝑥 + (𝑤2(𝑇 − 𝑡))

1∕2𝑤1), where 𝑁 ∶ Ω → ℝ𝑑 is a standard normal
random vector, where 𝑅 ∶ Ω → [0, 1] is a continuous uniformly distributed random variable
on [0,1] (is a [0,1]-distributed random variable), where 𝑁 and 𝑅 are independent, and where
 = (𝑁, 𝑅) observe that

(i) it holds for all 𝑝 = (𝑡, 𝑥) ∈ 𝔓 that

𝑢(𝑝) = 𝑢(𝑡, 𝑥) = 𝔼
[
𝑔(𝑥 + (𝑇 − 𝑡)1∕2𝑁) + (𝑇 − 𝑡)𝑓

(
𝑢(𝑡 + 𝑅(𝑇 − 𝑡), 𝑥 + (𝑅(𝑇 − 𝑡))1∕2𝑁)

)]
= 𝔼

[
𝑔(𝑥 + (𝑇 − 𝑡)1∕2𝑁) + ∫

𝑇

𝑡

𝑓
(
𝑢(𝑠, 𝑥 + (𝑠 − 𝑡)1∕2𝑁)

)
d𝑠

]
(56)

and
(ii) it holds that 𝑢 is a viscosity solution of(

𝜕𝑢

𝜕𝑡

)
(𝑡, 𝑥) +

1

2
(Δ𝑥𝑢)(𝑡, 𝑥) + 𝑓(𝑢(𝑡, 𝑥)) = 0 (57)

with 𝑢(𝑇, 𝑥) = 𝑔(𝑥) for (𝑡, 𝑥) ∈ (0, 𝑇) × ℝ𝑑 (cf. Beck, Hutzenthaler, Jentzen et al., 2021,
Theorem 1.1).

5.2.2 Black-Scholes partial differential equations with Lipschitz
nonlinearities

In the case where 𝑇 ∈ (0,∞), 𝑑 ∈ ℕ, where 𝔭 = 𝐝 = 1 + 3𝑑 and 𝔓 = [0, 𝑇] × ℝ𝑑 × ℝ𝑑 × ℝ𝑑,
where for all 𝛼, 𝛽 ∈ ℝ𝑑 it holds that [0, 𝑇] × ℝ𝑑 ∋ (𝑡, 𝑥) ↦ 𝑢(𝑡, 𝑥, 𝛼, 𝛽) ∈ ℝ is continuous
and at most polynomially growing, where 𝑋 = (𝑋(𝑖))𝑖∈{1,2,…,𝑑} ∶ [0, 𝑇] × ℝ

𝑑 × ℝ𝑑 × ℝ𝑑 × ℝ𝑑 →

ℝ𝑑 satisfies for all 𝑖 ∈ {1, 2, … , 𝑑}𝑡 ∈ [0, 𝑇], 𝑥 = (𝑥1, … , 𝑥𝑑), 𝛼 = (𝛼1, … , 𝛼𝑑), 𝛽 = (𝛽1, … , 𝛽𝑑), 𝑛 =

(𝑛1, … , 𝑛𝑑) ∈ ℝ𝑑 that

𝑋(𝑖)(𝑡, 𝑥, 𝛼, 𝛽, 𝑛) = 𝑥𝑖 exp
((
𝛼𝑖 −

|𝛽𝑖|2
2

)
𝑡 + 𝑡1∕2𝛽𝑖𝑛𝑖

)
, (58)
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BECKER et al. 115

where 𝑓, 𝑔 ∈ 𝐶(ℝ𝑑,ℝ) are at most polynomially growing, where for all 𝑝 = (𝑡, 𝑥, 𝛼, 𝛽) ∈ 𝔓, 𝑤 =

(𝑤1, 𝑤2) ∈ ℝ𝑑 × [0, 1], 𝑣 ∈ ℝ it holds that 𝜙(𝑝,𝑤, 𝑣) = 𝑔(𝑋(𝑇 − 𝑡, 𝑥, 𝛼, 𝛽, 𝑤1)) + (𝑇 − 𝑡)𝑓(𝑣) and(𝑝, 𝑤) = (𝑡 + 𝑤2(𝑇 − 𝑡), 𝑋(𝑤2(𝑇 − 𝑡), 𝑥, 𝛼, 𝛽, 𝑤1)), where𝑁 ∶ Ω → ℝ𝑑 is a standard normal ran-
dom vector, where 𝑅 ∶ Ω → [0, 1] is an [0,1]-distributed random variable, where 𝑁 and 𝑅 are
independent, and where = (𝑁, 𝑅) observe that

(i) it holds for all 𝑝 = (𝑡, 𝑥, 𝛼, 𝛽) ∈ 𝔓 that

𝑢(𝑝) = 𝑢(𝑡, 𝑥, 𝛼, 𝛽)

= 𝔼[𝑔(𝑋(𝑇 − 𝑡, 𝑥, 𝛼, 𝛽,𝑁)) + (𝑇 − 𝑡)𝑓(𝑢(𝑡 + 𝑅(𝑇 − 𝑡), 𝑋(𝑅(𝑇 − 𝑡), 𝑥, 𝛼, 𝛽,𝑁)))]

= 𝔼

[
𝑔(𝑋(𝑇 − 𝑡, 𝑥, 𝛼, 𝛽,𝑁)) + ∫

𝑇

𝑡

𝑓(𝑢(𝑠, 𝑋(𝑠 − 𝑡, 𝑥, 𝛼, 𝛽,𝑁))) d𝑠

] (59)

and
(ii) it holds for all 𝛼 = (𝛼1, … , 𝛼𝑑), 𝛽 = (𝛽1, … , 𝛽𝑑) ∈ ℝ𝑑 that [0, 𝑇] × ℝ𝑑 ∋ (𝑡, 𝑥) ↦ 𝑢(𝑡, 𝑥, 𝛼, 𝛽) ∈

ℝ is a viscosity solution of

(
𝜕𝑢

𝜕𝑡

)
(𝑡, 𝑥, 𝛼, 𝛽) +

[
𝑑∑
𝑖=1

|𝛽𝑖|2|𝑥𝑖|2
2

(
𝜕2𝑢

𝜕(𝑥𝑖)2

)
(𝑡, 𝑥, 𝛼, 𝛽)

]

+

[
𝑑∑
𝑖=1

𝛼𝑖𝑥𝑖

(
𝜕𝑢

𝜕𝑥𝑖

)
(𝑡, 𝑥, 𝛼, 𝛽)

]
+ 𝑓(𝑢(𝑡, 𝑥, 𝛼, 𝛽)) = 0 (60)

with 𝑢(𝑇, 𝑥) = 𝑔(𝑥) for (𝑡, 𝑥) = (𝑡, 𝑥1, 𝑥2, … , 𝑥𝑑) ∈ (0, 𝑇) × ℝ𝑑 (cf., e.g., Beck, Hutzenthaler,
Jentzen et al., 2021, Theorem 1.1).

5.3 Multilevel Picard approximations

Let𝔐 ∈ ℕ, 𝐈 = ∪∞𝑛=1ℤ
𝑛, let𝑊𝐢 ∶ Ω → ℝ𝐝, 𝐢 ∈ 𝐈, be i.i.d. random variables which satisfy for all

𝐴 ∈ (ℝ𝐝) that ℙ(𝑊0 ∈ 𝐴) = ℙ( ∈ 𝐴), and let 𝑉𝐢𝑛 ∶ 𝔓 × Ω → ℝ, 𝑛 ∈ ℤ, 𝐢 ∈ 𝐈, satisfy2 for all
𝑛 ∈ ℤ, 𝐢 ∈ 𝐈, 𝑝 ∈ 𝔓 that

𝑉𝐢𝑛(𝑝) =

𝑛−1∑
𝑘=0

1

𝔐𝑛−𝑘

𝔐𝑛−𝑘∑
𝔪=1

[
𝜙
(
𝑝,𝑊(𝐢,𝑘,𝔪), 𝑉

(𝐢,𝑘,𝔪)
𝑘

((𝑝,𝑊(𝐢,𝑘,𝔪)
)))

− 1ℕ(𝑘)𝜙
(
𝑝,𝑊(𝐢,𝑘,𝔪), 𝑉

(𝐢,𝑘−1,−𝔪)
𝑘−1

((𝑝,𝑊(𝐢,𝑘,𝔪)
)))]

. (61)

2 Note that for all 𝑛 ∈ ℕ, 𝐢 = (𝐢1, … , 𝐢𝑛) ∈ ℤ𝑛 , 𝑘,𝑚 ∈ ℤ we denote by (𝐢, 𝑘,𝑚) ∈ ℤ𝑛+2 the vector given by (𝐢, 𝑘,𝑚) =
(𝐢1, 𝐢2, … , 𝐢𝑛, 𝑘,𝑚).
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116 BECKER et al.

Note that under suitable integrability conditions (61) implies for all 𝑛 ∈ ℕ, 𝑝 ∈ 𝔓, 𝐢 ∈ 𝐈 that
𝑉𝐢0(𝑝) = 0 and

𝔼
[
𝑉𝐢𝑛(𝑝)
]
=

𝑛−1∑
𝑘=0

1

𝔐𝑛−𝑘

𝔐𝑛−𝑘∑
𝔪=1

[
𝔼
[
𝜙
(
𝑝,𝑊(𝐢,𝑘,𝔪), 𝑉

(𝐢,𝑘,𝔪)
𝑘

((𝑝,𝑊(𝐢,𝑘,𝔪)
)))]

−1ℕ(𝑘)𝔼
[
𝜙
(
𝑝,𝑊(𝐢,𝑘,𝔪), 𝑉

(𝐢,𝑘−1,−𝔪)
𝑘−1

((𝑝,𝑊(𝐢,𝑘,𝔪)
)))]]

=

𝑛−1∑
𝑘=0

[
𝔼
[
𝜙
(
𝑝,𝑊0, 𝑉0

𝑘

((𝑝,𝑊0)
))]

− 1ℕ(𝑘)𝔼
[
𝜙
(
𝑝,𝑊0, 𝑉0

𝑘−1

((𝑝,𝑊0)
))]]

= 𝔼
[
𝜙
(
𝑝,𝑊0, 𝑉0𝑛−1

((𝑝,𝑊0)
))]

.

(62)

Induction thus shows that for every 𝑛 ∈ ℕ the identically distributed random functions𝑉𝐢𝑛 ∶ 𝔓 ×

Ω → ℝ, 𝐢 ∈ 𝐈, correspond in expectation to the𝑛-th fixed point iterate of the fixed point equation in
(55). For every 𝑛 ∈ ℕ the recursive definition of (𝑉𝐢𝑛)𝐢∈𝐈 in (61) thus represents an approximated
fixed point iteration step in which the expectation of the fixed point iteration is approximated by
a MLMC sum over previously computed approximated fixed point iterates (𝑉𝐢

𝑘
)(𝐢,𝑘)∈𝐈×{0,1,…,𝑛−1}.

Under suitable assumptions (see, e.g., Hutzenthaler, Jentzen, vonWurstemberger, 2020 for precise
assumptions and a more detailed derivation of MLP algorithms in the case of semilinear PDEs)
we expect for sufficiently large 𝑛 ∈ ℕ that

𝑢(𝑝) ≈ 𝑉0𝑛(𝑝). (63)

5.4 Replacing the random variables in multilevel Picard
approximations

Let (𝐶𝑛)𝑛∈ℤ ⊆ ℕ0 satisfy for all 𝑛 ∈ ℤ that

𝐶𝑛 =

𝑛−1∑
𝑘=0

𝔐𝑛−𝑘(1 + 𝐶𝑘 + 𝐶𝑘−1), (64)

for every 𝑛,𝔪 ∈ ℕ, 𝑙 ∈ {1, 2, … , 𝑛} let 𝑐𝑛,𝑙,𝔪 ∈ ℕ satisfy

𝑐𝑛,𝑙,𝔪 =

[
𝑙−1∑
𝑘=0

𝔐𝑛−𝑘(1 + 𝐶𝑘 + 𝐶𝑘−1)

]
+ (𝔪 − 1)(1 + 𝐶𝑙 + 𝐶𝑙−1) + 1, (65)

let𝒩𝑛 ∶ 𝔓 × ℝ𝐶𝑛𝐝, 𝑛 ∈ ℕ0, satisfy for all 𝑛 ∈ ℕ, 𝑝 ∈ 𝔓, 𝜃1, 𝜃2, … , 𝜃𝐶𝑛 ∈ ℝ𝐝 that𝒩0(𝑝) = 0 and

𝒩𝑛(𝑝, (𝜃𝑟)𝑟∈{1,2,…,𝐶𝑛}) =

[
1

𝔐𝑛

𝔐𝑛∑
𝔪=1

𝜙(𝑝, 𝜃𝔪, 0)

]
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BECKER et al. 117

+

𝑛−1∑
𝑘=1

1

𝔐𝑛−𝑘

𝔐𝑛−𝑘∑
𝔪=1

[
𝜙
(
𝑝, 𝜃𝑐𝑛,𝑘,𝔪 ,𝒩𝑘

((𝑝, 𝜃𝑐𝑛,𝑘,𝔪), (𝜃𝑐𝑛,𝑘,𝔪+𝑟)𝑟∈{1,2,…,𝐶𝑘}))
−𝜙
(
𝑝, 𝜃𝑐𝑛,𝑘,𝔪 ,𝒩𝑘−1

((𝑝, 𝜃𝑐𝑛,𝑘,𝔪), (𝜃𝑐𝑛,𝑘,𝔪+𝐶𝑘+𝑟)𝑟∈{1,2,…,𝐶𝑘−1}))], (66)

let𝑁 ∈ ℕ, assume for all 𝑝 ∈ 𝔓 thatℝ𝐶𝑁𝐝 ∋ 𝜃 ↦ 𝒩(𝑝, 𝜃) ∈ ℝ is continuously differentiable, and
let 𝔚𝑘 ∶ Ω → ℝ𝐝, 𝑘 ∈ {1, 2, … , 𝐶𝑁}, be i.i.d. random variables which satisfy for all 𝐵 ∈ (ℝ𝐝)
that ℙ(𝔚1 ∈ 𝐵) = ℙ( ∈ 𝐵). Observe that induction shows that for all 𝑛 ∈ ℕ0, 𝑝 ∈ 𝔓, 𝐢 ∈ 𝐈 the
number 𝐶𝑛 ∈ ℕ corresponds, roughly speaking, to the number of realizations of 𝐝-dimensional
random variables required to compute one random realization of 𝑉𝐢𝑛(𝑝). Moreover, note that (61),
(64), (65), and (66) assure that for all 𝑝 ∈ 𝔓, 𝐵 ∈ (ℝ) it holds that

ℙ
(
𝒩𝑁

(
𝑝, (𝔚1,𝔚2,… ,𝔚𝐶𝑁)

)
∈ 𝐵
)
= ℙ(𝑉0𝑁(𝑝) ∈ 𝐵). (67)

Combining this and (63) suggests that for all 𝑝 ∈ 𝔓 it holds that

𝒩𝑁(𝑝,𝔚) ≈ 𝑢(𝑝). (68)

5.5 Random loss functions for fixed random variables in multilevel
Picard approximations

Let 𝐌, ∈ ℕ, let 𝑃𝑚,𝐦 ∶ Ω → 𝔓, 𝑚,𝐦 ∈ ℕ, be i.i.d. random variables, assume that
(𝑃𝑚,𝐦)(𝑚,𝐦)∈ℕ2 , (𝑊𝐢)𝐢∈𝐈, and (𝔚𝑘)𝑘∈{1,2,…,𝐶𝑁} are independent, for every𝑚 ∈ ℕ let 𝐹𝑚 ∶ ℝ𝐶𝑁𝐝 ×

Ω → ℝ satisfy for all 𝜃 ∈ ℝ𝐶𝑁𝐝 that

𝐹𝑚(𝜃) =
1

𝐌

[
𝐌∑
𝐦=1

|||𝑉(𝑚,𝐦) (𝑃𝑚,𝐦) − 𝒩𝑁(𝑃𝑚,𝐦, 𝜃)
|||2
]
, (69)

and for every𝑚 ∈ ℕ let 𝐺𝑚 ∶ ℝ𝐶𝑁𝐝 × Ω → ℝ𝐶𝑁𝐝 satisfy for all 𝜃 ∈ ℝ𝐶𝑁𝐝, 𝜔 ∈ Ω that

𝐺𝑚(𝜃, 𝜔) = (∇𝜃𝐹𝑚)(𝜃, 𝜔). (70)

5.6 Learning the random variables with stochastic gradient descent

Let (𝛾𝑚)𝑚∈ℕ ⊆ (0,∞) and let Θ ∶ ℕ0 × Ω → ℝ𝐶𝑁𝐝 satisfy for all 𝑚 ∈ ℕ that Θ0 =

(𝔚1,𝔚2,… ,𝔚𝐶𝑁) and

Θ𝑚 = Θ𝑚−1 − 𝛾𝑚𝐺𝑚(Θ𝑚−1). (71)

For every sufficiently large𝑚 ∈ ℕ we propose to employ the random function𝔓×Ω ∋ (𝑝, 𝜔) ↦

𝒩𝑁(𝑝,Θ𝑚(𝜔)) ∈ ℝ as an approximation for the target function𝔓 ∋ 𝑝 ↦ 𝑢(𝑝) ∈ ℝ in (55).
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118 BECKER et al.

5.7 Description of the proposed approximation algorithm

Framework 5.1. Let 𝔭, 𝐝,𝔐,𝑁, ,𝐌 ∈ ℕ, (𝛾𝑚)𝑚∈ℕ ⊆ (0,∞), let𝔓 ⊆ ℝ𝔭 be measurable, let 𝜙 ∶
𝔓 × ℝ𝐝 × ℝ → ℝ and  ∶ 𝔓 × ℝ𝐝 → 𝔓 be measurable, let (𝐶𝑛)𝑛∈ℤ ⊆ ℕ0 satisfy for all 𝑛 ∈ ℤ that

𝐶𝑛 =

𝑛−1∑
𝑘=0

𝔐𝑛−𝑘(1 + 𝐶𝑘 + 𝐶𝑘−1), (72)

for every 𝑛,𝔪 ∈ ℕ, 𝑙 ∈ {1, 2, … , 𝑛} let 𝑐𝑛,𝑙,𝔪 ∈ ℕ satisfy

𝑐𝑛,𝑙,𝔪 =

[
𝑙−1∑
𝑘=0

𝔐𝑛−𝑘(1 + 𝐶𝑘 + 𝐶𝑘−1)

]
+ (𝔪 − 1)(1 + 𝐶𝑙 + 𝐶𝑙−1) + 1, (73)

let𝒩𝑛 ∶ 𝔓 × ℝ𝐶𝑛𝐝, 𝑛 ∈ ℕ0, satisfy for all 𝑛 ∈ ℕ, 𝑝 ∈ 𝔓, 𝜃1, 𝜃2, … , 𝜃𝐶𝑛 ∈ ℝ𝐝 that𝒩0(𝑝) = 0 and

𝒩𝑛(𝑝, (𝜃1, 𝜃2, … , 𝜃𝐶𝑛)) =

[
1

𝔐𝑛

𝔐𝑛∑
𝔪=1

𝜙(𝑝, 𝜃𝔪, 0)

]
(74)

+

𝑛−1∑
𝑘=1

1

𝔐𝑛−𝑘

𝔐𝑛−𝑘∑
𝔪=1

[
𝜙
(
𝑝, 𝜃𝑐𝑛,𝑘,𝔪 ,𝒩𝑘

((𝑝, 𝜃𝑐𝑛,𝑘,𝔪), (𝜃𝑐𝑛,𝑘,𝔪+𝑟)𝑟∈{1,2,…,𝐶𝑘})
−𝜙
(
𝑝, 𝜃𝑐𝑛,𝑘,𝔪 ,𝒩𝑘−1

((𝑝, 𝜃𝑐𝑛,𝑘,𝔪), (𝜃𝑐𝑛,𝑘,𝔪+𝐶𝑘+𝑟)𝑟∈{1,2,…,𝐶𝑘−1}))], (74)

assume for all 𝑝 ∈ 𝔓 that ℝ𝐶𝑁𝐝 ∋ 𝜃 ↦ 𝒩(𝑝, 𝜃) ∈ ℝ is continuously differentiable, let (Ω, , ℙ) be
a probability space, let  ∶ Ω → ℝ𝐝 be a random variable, let 𝔚𝑘 ∶ Ω → ℝ𝐝, 𝑘 ∈ {1, 2, … , 𝐶𝑁},
be i.i.d. random variables, let𝑊𝑚,𝐦

𝑘
∶ Ω → ℝ𝐝,𝑚,𝐦 ∈ ℕ, 𝑘 ∈ {1, 2, … , 𝐶 }, be i.i.d. random vari-

ables, assume for all 𝐵 ∈ (ℝ𝐝) that ℙ(𝔚1 ∈ 𝐵) = ℙ( ∈ 𝐵) = ℙ(𝑊1,1
1 ∈ 𝐵), let 𝑃𝑚,𝐦 ∶ Ω → 𝔓,

𝑚,𝐦 ∈ ℕ, be i.i.d. randomvariables, assume that (𝑃𝑚,𝐦)(𝑚,𝐦)∈ℕ2 , (𝑊
𝑚,𝐦
𝑘

)(𝑚,𝐦,𝑘)∈ℕ2×{1,2,…,𝐶 }, and
(𝔚𝑘)𝑘∈{1,2,…,𝐶𝑁} are independent, for every𝑚 ∈ ℕ let 𝐹𝑚 ∶ ℝ𝐶𝑁𝐝 × Ω → ℝ satisfy for all 𝜃 ∈ ℝ𝐶𝑁𝐝

that

𝐹𝑚(𝜃) =
1

𝐌

[
𝐌∑
𝐦=1

||||𝒩
(
𝑃𝑚,𝐦,
(
𝑊𝑚,𝐦
1 ,𝑊𝑚,𝐦

2 , … ,𝑊𝑚,𝐦
𝐶
))

−𝒩𝑁

(
𝑃𝑚,𝐦, 𝜃

)||||
2
]
, (75)

for every 𝑚 ∈ ℕ let 𝐺𝑚 ∶ ℝ𝐶𝑁𝐝 × Ω → ℝ𝐶𝑁𝐝 satisfy for all 𝜃 ∈ ℝ𝐶𝑁𝐝, 𝜔 ∈ Ω that 𝐺𝑚(𝜃, 𝜔) =
(∇𝜃𝐹𝑚)(𝜃, 𝜔), and letΘ ∶ ℕ0 × Ω → ℝ𝐶𝑁𝐝 satisfy for all𝑚 ∈ ℕ thatΘ0 = (𝔚1,𝔚2,… ,𝔚𝐶𝑁) and
Θ𝑚 = Θ𝑚−1 − 𝛾𝑚𝐺𝑚(Θ𝑚−1).

6 LRV STRATEGY IN THE CASE OF A GENERAL PROPOSAL
ALGORITHM

In this section we derive and formulate the LRV strategy in its most general form, which contains
all the algorithms derived in the previous sections as special cases. Roughly speaking, we want
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BECKER et al. 119

to approximate a target function (cf. 𝑢 ∶ 𝔓 → ℝ𝑘 in Subsection 6.1) for which we already have
a generic stochastic approximation algorithm (cf. Ψ ∶ 𝔓 × ℝ𝔡 → ℝ𝑘 and𝔚 ∶ Ω → ℝ𝔡 in (76) in
Subsection 6.1). We refer to this algorithm as proposal algorithm. Moreover, we assume that we
are able to generate random reference solutions which approximate the target function at every
point in expectation (cf.𝔓×Ω ∋ (𝑝, 𝜔) ↦ Ξ(𝑝,𝐖(𝜔)) ∈ ℝ𝑘 in (77) in Subsection 6.1).
In the next few sentences we briefly sketch in words the LRV strategy in this general case.

The first step of the LRV strategy is to consider the random variables in the stochastic approx-
imation algorithm as parameters for a parametric family of functions (corresponding to 𝔓 ∋

𝑝 ↦ Ψ(𝑝, 𝜃) ∈ ℝ𝑘, 𝜃 ∈ ℝ𝔡, in Subsection 6.1); see Subsection 6.2. The goal of the LRV strategy
is then to “learn” parameters whose corresponding function yields a good approximation of the
target function 𝑢 ∶ 𝔓 → ℝ𝑘. Taking this into account, the second step of the LRV strategy is to
minimize a loss function (cf. (78) in Subsection 6.2) measuring the distance between the approxi-
mating function and the approximate reference solutionswith an SGD-type optimizationmethod;
see Subsection 6.3. As initial guess for the SGD-type learning procedure we suggest to randomly
choose the parameters according to the distribution of the random variables appearing in the
proposal algorithm, since we know that this already results in a passable approximation. This
feature of the LRV strategy is an important advantage when compared to standard deep learn-
ing methods in the sense that the LRV strategy has already in the beginning of the training
procedure a relatively small loss function. The entire approach is presented in one single
framework in Subsection 6.4.
One of the differences between this section and the previous sections is that in the previous

sections we only used, for simplicity, the plain vanilla SGD method, however in this section we
allow for various more sophisticated SGD-type optimization methods (cf. (80) in Subsection 6.3).
Some of these more sophisticated SGD-type methods are presented in Subsection 6.5 as special
cases of the framework in Subsection 6.4.

6.1 Stochastic approximations for general target functions related to
parametric expectations

Let 𝔭, 𝔡, 𝑘, 𝐝 ∈ ℕ, let 𝔓 ⊆ ℝ𝔭 be measurable, let Ψ ∶ 𝔓 × ℝ𝔡 → ℝ𝑘, Ξ ∶ 𝔓 × ℝ𝐝 → ℝ𝑘, and 𝑢 ∶
𝔓 → ℝ𝑘 be measurable, assume for all 𝑝 ∈ 𝔓 that ℝ𝔡 ∋ 𝑤 ↦ Ψ(𝑝,𝑤) ∈ ℝ𝑘 is continuously dif-
ferentiable, let (Ω, , ℙ) be a probability space, let𝔚 ∶ Ω → ℝ𝔡 and𝐖 ∶ Ω → ℝ𝐝 be independent
random variables, and assume for all 𝑝 ∈ 𝔓 that 𝔼[‖Ξ(𝑝,𝐖)‖] < ∞. We think of (Ψ,𝔚) as
a stochastic approximation algorithm for 𝑢 ∶ 𝔓 → ℝ𝑘 in the sense that for all 𝑝 ∈ 𝔓 it holds
that

𝑢(𝑝) ≈ Ψ(𝑝,𝔚) (76)

and for every 𝑝 ∈ 𝔓 we think of 𝔼[Ξ(𝑝,𝐖)] as a suitable approximation

𝑢(𝑝) ≈ 𝔼[Ξ(𝑝,𝐖)] (77)

of 𝑢(𝑝). The goal of this section is to derive an algorithm to approximately compute the function
𝑢 ∶ 𝔓 → ℝ.
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120 BECKER et al.

6.2 Random loss functions for fixed random variables in stochastic
approximations

Let 𝐌 ∈ ℕ, let ℭ ∶ ℝ𝑘 × ℝ𝑘 → [0,∞) continuously differentiable, let 𝑃𝑚,𝐦 ∶ Ω → 𝔓, 𝑚,𝐦 ∈

ℕ, be i.i.d. random variables, let 𝑊𝑚,𝔪 ∶ Ω → ℝ𝐝, 𝑚,𝔪 ∈ ℕ, be i.i.d. random variables which
satisfy for all 𝐴 ∈ (ℝ𝑑) that ℙ(𝑊0,0 ∈ 𝐴) = ℙ(𝐖 ∈ 𝐴), assume that (𝑃𝑚,𝐦)(𝑚,𝐦)∈ℕ2 and
(𝑊𝑚,𝔪)(𝑚,𝔪)∈ℕ2 are independent, and for every𝑚 ∈ ℕ let𝐹𝑚 ∶ ℝ𝔡 × Ω → ℝ satisfy for all 𝜃 ∈ ℝ𝔡

that

𝐹𝑚(𝜃) =
1

𝐌

[
𝐌∑
𝐦=1

ℭ
(
Ξ
(
𝑃𝑚,𝐦,𝑊

𝑚,𝐦
)
, Ψ(𝑃𝑚,𝐦, 𝜃)

)]
, (78)

and for every𝑚 ∈ ℕ let 𝐺𝑚 ∶ ℝ𝔡 × Ω → ℝ𝔡 satisfy for all 𝜃 ∈ ℝ𝔡, 𝜔 ∈ Ω that

𝐺𝑚(𝜃, 𝜔) = (∇𝜃𝐹𝑚)(𝜃, 𝜔). (79)

6.3 Learning the random variables with stochastic gradient
descent-type methods

Let𝜓𝑚 ∶ ℝ𝑚𝔡 → ℝ𝔡,𝑚 ∈ ℕ, be functions and letΘ ∶ ℕ0 × Ω → ℝ𝔡 satisfy for all𝑚 ∈ ℕ thatΘ0 =
𝔚 and

Θ𝑚 = Θ𝑚−1 − 𝜓𝑚((𝐺1(Θ0), 𝐺2(Θ1), … , 𝐺𝑚(Θ𝑚−1))). (80)

For every sufficiently large𝑚 ∈ ℕ we propose to employ the random function𝔓×Ω ∋ (𝑝, 𝜔) ↦

Ψ(𝑝,Θ𝑚(𝜔)) ∈ ℝ as an approximation for the target function𝔓 ∋ 𝑝 ↦ 𝑢(𝑝) ∈ ℝ.

6.4 Description of the proposed approximation algorithm

Framework 6.1. Let 𝔭, 𝔡, 𝐝, 𝑘,𝐌 ∈ ℕ, let𝔓 ⊆ ℝ𝔭 be measurable, let Ψ ∶ 𝔓 × ℝ𝔡 → ℝ𝑘 , Ξ ∶ 𝔓 ×

ℝ𝐝 → ℝ𝑘 , and ℭ ∶ ℝ𝑘 × ℝ𝑘 → [0,∞) be functions, let 𝜓𝑚 = (𝜓
(1)
𝑚 , … , 𝜓

(𝔡)
𝑚 ) ∶ ℝ𝑚𝔡 → ℝ𝔡, 𝑚 ∈ ℕ,

be functions, let (Ω, , ℙ) be a probability space, let𝔚 ∶ Ω → ℝ𝔡 be a random variable, let 𝑃𝑚,𝐦 ∶

Ω → 𝔓,𝑚,𝐦 ∈ ℕ, be i.i.d. random variables, let𝑊𝑚,𝔪 ∶ Ω → ℝ𝐝,𝑚,𝔪 ∈ ℕ, be i.i.d. random vari-
ables, assume that𝔚, (𝑃𝑚,𝐦)(𝑚,𝐦)∈ℕ2 , and (𝑊𝑚,𝔪)(𝑚,𝔪)∈ℕ2 are independent, for every 𝑚 ∈ ℕ let
𝐹𝑚 ∶ ℝ𝔡 × Ω → ℝ satisfy for all 𝜃 ∈ ℝ𝔡 that

𝐹𝑚(𝜃) =
1

𝐌

[
𝐌∑
𝐦=1

ℭ
(
Ξ
(
𝑃𝑚,𝐦,𝑊

𝑚,𝐦
)
, Ψ(𝑃𝑚,𝐦, 𝜃)

)]
, (81)

for every 𝑚 ∈ ℕ let 𝐺𝑚 = (𝐺
(1)
𝑚 , … , 𝐺

(𝔡)
𝑚 ) ∶ ℝ𝔡 × Ω → ℝ𝔡 satisfy for all 𝜔 ∈ Ω, 𝜃 ∈ {𝑣 ∈ ℝ𝔡 ∶

𝐹𝑚(⋅, 𝜔) is differentiable at 𝑣} that 𝐺𝑚(𝜃, 𝜔) = (∇𝜃𝐹𝑚)(𝜃, 𝜔), and let Θ = (Θ(1), … ,Θ(𝔡)) ∶ ℕ0 ×

Ω → ℝ𝔡 be a stochastic process which satisfies for all𝑚 ∈ ℕ that Θ0 = 𝔚 and

Θ𝑚 = Θ𝑚−1 − 𝜓𝑚(𝐺1(Θ0), 𝐺2(Θ1), … , 𝐺𝑚(Θ𝑚−1)). (82)
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BECKER et al. 121

6.5 Explicit descriptions of some popular stochastic gradient
descent-type methods

6.5.1 Standard stochastic gradient descent (SGD)

Lemma 6.2. Assume Framework 6.1, let (𝛾𝑚)𝑚∈ℕ ⊆ (0,∞), and assume for all 𝑚 ∈ ℕ,
𝑔1, 𝑔2, … , 𝑔𝑚 ∈ ℝ𝔡 that 𝜓𝑚(𝑔1, 𝑔2, … , 𝑔𝑚) = 𝛾𝑚𝑔𝑚. Then it holds for all𝑚 ∈ ℕ that

Θ𝑚 = Θ𝑚−1 − 𝛾𝑚𝐺𝑚(Θ𝑚−1). (83)

6.5.2 Stochastic gradient descent with momentum (SGD with momentum)

Lemma 6.3. Assume Framework 6.1, let (𝛾𝑚)𝑚∈ℕ ⊆ (0,∞), 𝛼 ∈ (0, 1), and assume for all 𝑚 ∈

ℕ, 𝑔1, 𝑔2, … , 𝑔𝑚 ∈ ℝ𝔡 that𝜓𝑚(𝑔1, 𝑔2, … , 𝑔𝑚) = 𝛾𝑚
∑𝑚
𝑘=1

𝛼𝑚−𝑘(1 − 𝛼)𝑔𝑘 . Then there exists𝐦 ∶ ℕ0 ×

Ω → ℝ𝑑 such that for all𝑚 ∈ ℕ it holds that

𝐦0 = 0, 𝐦𝑚 = 𝛼𝐦𝑚−1 + (1 − 𝛼)𝐺𝑚(Θ𝑚−1), and Θ𝑛 = Θ𝑛−1 − 𝛾𝑛𝐦𝑛. (84)

6.5.3 Adaptive stochastic gradient descent (Adagrad)

Lemma 6.4. Assume Framework 6.1, let (𝛾𝑚)𝑚∈ℕ ⊆ (0,∞), 𝜀 ∈ (0,∞), and assume for all
𝑚 ∈ ℕ, 𝑖 ∈ {1, 2, … , 𝔡}, 𝑔1 = (𝑔

(1)
1 , … , 𝑔

(𝔡)
1 ), 𝑔2 = (𝑔

(1)
2 , … , 𝑔

(𝔡)
2 ), … , 𝑔𝑚 = (𝑔

(1)
𝑚 , … , 𝑔

(𝔡)
𝑚 ) ∈ ℝ𝔡

that

𝜓
(𝑖)
𝑚 (𝑔1, 𝑔2, … , 𝑔𝑚) =

⎡⎢⎢⎢⎣
𝛾𝑚(

𝜀 +
∑𝑚
𝑘=1
|𝑔(𝑖)
𝑘
|2)1∕2

⎤⎥⎥⎥⎦𝑔
(𝑖)
𝑚 . (85)

Then it holds for all𝑚 ∈ ℕ, 𝑖 ∈ {1, 2, … , 𝔡} that

Θ
(𝑖)
𝑚 = Θ

(𝑖)
𝑚−1 −

⎡⎢⎢⎢⎣
𝛾𝑚(

𝜀 +
∑𝑚
𝑘=1
|𝐺(𝑖)

𝑘
(Θ𝑘−1)|2)1∕2

⎤⎥⎥⎥⎦𝐺
(𝑖)
𝑚 (Θ𝑚−1). (86)

6.5.4 Root mean square error propagation stochastic gradient descent
(RMSprop)

Lemma 6.5. Assume Framework 6.1, let (𝛾𝑚)𝑚∈ℕ ⊆ (0,∞), 𝜀 ∈ (0,∞), 𝛽 ∈ (0, 1), and assume for
all𝑚 ∈ ℕ, 𝑖 ∈ {1, 2, … , 𝔡}, 𝑔1 = (𝑔

(1)
1 , … , 𝑔

(𝔡)
1 ), 𝑔2 = (𝑔

(1)
2 , … , 𝑔

(𝔡)
2 ), … , 𝑔𝑚 = (𝑔

(1)
𝑚 , … , 𝑔

(𝔡)
𝑚 ) ∈ ℝ𝔡 that

𝜓
(𝑖)
𝑚 (𝑔1, 𝑔2, … , 𝑔𝑚) =

⎡⎢⎢⎢⎣
𝛾𝑚(

𝜀 +
∑𝑚
𝑘=1

𝛽𝑚−𝑘(1 − 𝛽)|𝑔(𝑖)
𝑘
|2)1∕2

⎤⎥⎥⎥⎦𝑔
(𝑖)
𝑚 . (87)
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122 BECKER et al.

Then there exists 𝕄 = (𝕄(1), … ,𝕄(𝔡)) ∶ ℕ0 × Ω → ℝ𝔡 such that for all 𝑚 ∈ ℕ, 𝑖 ∈ {1, 2, … , 𝔡} it
holds that

𝕄0 = 0, 𝕄
(𝑖)
𝑚 = 𝛽𝕄

(𝑖)
𝑚−1 + (1 − 𝛽)|𝐺(𝑖)𝑚 (Θ𝑚−1)|2, (88)

and Θ
(𝑖)
𝑚 = Θ

(𝑖)
𝑚−1 −

[
𝛾𝑚

(𝜀 + 𝕄
(𝑖)
𝑚 )

1∕2

]
𝐺
(𝑖)
𝑚 (Θ𝑚−1). (89)

6.5.5 Adadelta stochastic gradient descent (Adadelta)

Lemma 6.6. Assume Framework 6.1, let 𝜀 ∈ (0,∞), 𝛽, 𝛿 ∈ (0, 1), and assume for all 𝑚 ∈ ℕ, 𝑖 ∈
{1, 2, … , 𝔡}, 𝑔1 = (𝑔

(1)
1 , … , 𝑔

(𝔡)
1 ), 𝑔2 = (𝑔

(1)
2 , … , 𝑔

(𝔡)
2 ), … , 𝑔𝑚 = (𝑔

(1)
𝑚 , … , 𝑔

(𝔡)
𝑚 ) ∈ ℝ𝔡 that

𝜓
(𝑖)
𝑚 (𝑔1, 𝑔2, … , 𝑔𝑚) =

⎡⎢⎢⎣
𝜀 +
∑𝑚−1
𝑘=1

𝛿𝑚−1−𝑘(1 − 𝛿)|𝜓(𝑖)
𝑘
(𝑔1, 𝑔2, … , 𝑔𝑘)|2

𝜀 +
∑𝑚
𝑘=1

𝛽𝑚−𝑘(1 − 𝛽)|𝑔(𝑖)
𝑘
|2

⎤⎥⎥⎦
1∕2

𝑔
(𝑖)
𝑚 . (90)

Then there exist𝕄 = (𝕄(1), … ,𝕄(𝑑)) and Δ = (Δ(1), … , Δ(𝑑)) ∶ ℕ0 × Ω → ℝ𝑑 such that for all𝑚 ∈

ℕ, 𝑖 ∈ {1, 2, … , 𝑑} it holds that

𝕄0 = 0, Δ0 = 0, 𝕄
(𝑖)
𝑚 = 𝛽𝕄

(𝑖)
𝑚−1 + (1 − 𝛽)

|||𝐺(𝑖)𝑚 (Θ𝑚−1)|||2 , (91)

Θ
(𝑖)
𝑚 = Θ

(𝑖)
𝑚−1 −

[
𝜀 + Δ

(𝑖)
𝑚−1

𝜀 + 𝕄
(𝑖)
𝑚

]1∕2
𝐺
(𝑖)
𝑚 (Θ𝑚−1), and Δ

(𝑖)
𝑚 = 𝛿Δ

(𝑖)
𝑚−1 + (1 − 𝛿)

|||Θ(𝑖)𝑚 − Θ
(𝑖)
𝑚−1
|||2 .
(92)

6.5.6 Adamax stochastic gradient descent (Adamax)

Lemma 6.7. Assume Framework 6.1, let 𝜀 ∈ (0,∞), 𝛼, 𝛽 ∈ (0, 1), and assume for all 𝑚 ∈ ℕ, 𝑖 ∈
{1, 2, … , 𝔡}, 𝑔1 = (𝑔

(1)
1 , … , 𝑔

(𝔡)
1 ), 𝑔2 = (𝑔

(1)
2 , … , 𝑔

(𝔡)
2 ), … , 𝑔𝑚 = (𝑔

(1)
𝑚 , … , 𝑔

(𝔡)
𝑚 ) ∈ ℝ𝔡 that

𝜓
(𝑖)
𝑚 (𝑔1, 𝑔2, … , 𝑔𝑚) = 𝛾𝑚

⎡⎢⎢⎣
∑𝑚
𝑘=1

𝛼𝑚−𝑘(1 − 𝛼)𝑔
(𝑖)
𝑘

1 − 𝛼𝑚

⎤⎥⎥⎦
[
𝜀 + max

{|||𝑔(𝑖)𝑚 ||| , 𝛽 |||𝑔(𝑖)𝑚−1||| , … , 𝛽𝑚−1 |||𝑔(𝑖)1 |||}]−1.
(93)

Then there exist𝐦 = (𝐦(1), … ,𝐦(𝑑)) and𝕄 = (𝕄(1), … ,𝕄(𝑑)) ∶ ℕ0 × Ω → ℝ𝑑 such that for all𝑚 ∈

ℕ, 𝑖 ∈ {1, 2, … , 𝑑} it holds that

𝐦0 = 0, 𝐦𝑚 = 𝛼𝐦𝑚−1 + (1 − 𝛼)𝐺𝑚(Θ𝑚−1), (94)

𝕄0 = 0, 𝕄
(𝑖)
𝑚 = max

{
𝛽𝕄

(𝑖)
𝑚−1,
|||𝐺(𝑖)𝑚 (Θ𝑚−1)|||2

}
, (95)

and Θ
(𝑖)
𝑚 = Θ

(𝑖)
𝑚−1 − 𝛾𝑚

[
𝐦
(𝑖)
𝑚

1−𝛼𝑚

][
𝜀 + 𝕄

(𝑖)
𝑚

]−1
. (96)
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BECKER et al. 123

6.5.7 Adaptive moment estimation stochastic gradient descent (Adam)

Lemma 6.8. Assume Framework 6.1, let 𝜀 ∈ (0,∞), 𝛼, 𝛽 ∈ (0, 1), and assume for all 𝑚 ∈ ℕ, 𝑖 ∈
{1, 2, … , 𝔡}, 𝑔1 = (𝑔

(1)
1 , … , 𝑔

(𝔡)
1 ), 𝑔2 = (𝑔

(1)
2 , … , 𝑔

(𝔡)
2 ), … , 𝑔𝑚 = (𝑔

(1)
𝑚 , … , 𝑔

(𝔡)
𝑚 ) ∈ ℝ𝔡 that

𝜓
(𝑖)
𝑚 (𝑔1, 𝑔2, … , 𝑔𝑚) = 𝛾𝑚

⎡⎢⎢⎣
∑𝑚
𝑘=1

𝛼𝑚−𝑘(1 − 𝛼)𝑔
(𝑖)
𝑘

1 − 𝛼𝑚

⎤⎥⎥⎦
⎡⎢⎢⎢⎣𝜀 +
⎡⎢⎢⎣
∑𝑚
𝑘=1

𝛽𝑚−𝑘(1 − 𝛽)|𝑔(𝑖)
𝑘
|2

1 − 𝛽𝑚

⎤⎥⎥⎦
1∕2⎤⎥⎥⎥⎦

−1

. (97)

Then there exist 𝐦 = (𝐦(1), … ,𝐦(𝔡)) ∶ ℕ0 × Ω → ℝ𝔡 and 𝕄 = (𝕄(1), … ,𝕄(𝔡)) ∶ ℕ0 × Ω → ℝ𝔡

such that for all𝑚 ∈ ℕ, 𝑖 ∈ {1, 2, … , 𝔡} it holds that

𝐦0 = 0, 𝐦𝑚 = 𝛼𝐦𝑚−1 + (1 − 𝛼)𝐺𝑚(Θ𝑚−1), (98)

𝕄0 = 0, 𝕄
(𝑖)
𝑚 = 𝛽𝕄

(𝑖)
𝑚−1 + (1 − 𝛽)|𝐺(𝑖)𝑚 (Θ𝑚−1)|2, (99)

and Θ
(𝑖)
𝑚 = Θ

(𝑖)
𝑚−1 − 𝛾𝑚

[
𝐦
(𝑖)
𝑚

1−𝛼𝑚

][
𝜀 +

(
𝕄
(𝑖)
𝑚

1−𝛽𝑚

)1∕2]−1
. (100)

7 NUMERICAL EXAMPLES

In this sectionwe apply the LRV strategy to different parametric approximation problems from the
literature. Specifically, we consider the classical parametric Black-Scholes model for the pricing
of European call options in Subsection 7.2, we consider a parametric Black-Scholes model for the
pricing of worst-of basket put options on three underlying assets in Subsection 7.3, we consider a
parametric Black-Scholes model for the pricing of average basket put options on three underlying
assets with knock-in barriers in Subsection 7.4, and we consider a parametric stochastic Lorentz
equation in Subsection 7.5. In the literature there are already a number of simulation results for
SGD-based deep learning methods regarding the high-dimensional pricing of financial derivative
contracts. In particular we refer to, for example, Berner et al. (2020), Beck, Becker, Grohs et al.
(2021), Lokeshwar et al. (2022), Ferguson and Green (2018), Germain et al. (2021), Biagini et al.
(2021) for parametric pricing results for European options, we refer to, for example, Andersson
and Oosterlee (2021), Salvador et al. (2020), Becker et al. (2019), Becker et al. (2020), Lind (2022),
Chen andWan (2021), Lapeyre andLelong (2021), Gaspar et al. (2020), Ye andZhang (2019), Becker
et al. (2021) for the pricing of American options, andwe refer, for example, to Ruf andWang (2020)
for further references.
In Subsection 7.1 we briefly recall the antithetic MC method (cf., e.g., Glasserman, 2004) and

some well-known properties of it. This is a variance reduction technique for MC methods which
wewill employ in someof the proposal algorithms for the LRV strategy in case of some of the above
mentioned approximation problems. In each of the considered numerical examples we also com-
pare the LRV strategy with existing approximation techniques from the literature such as the deep
learning method induced by Beck, Becker, Grohs et al. (2021), MC methods, and QMCmethods.
All the simulations in this section were run in Python using TensorFlow 2.12 on

remote machines from https://vast.ai equipped with a single NVIDIA GeForce RTX 4090
GPU with 24 GB Graphics RAM. The Python source codes which were employed to pro-
duce all the results in this section can be downloaded as part of the sources of the arXiv
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124 BECKER et al.

version of this article at https://arxiv.org/e-print/2202.02717. Specifically the codes in the folder
1_BS1 were employed to produce all the results in Subsection 7.2, the codes in the folder
2_BS_eur_put_basketwere employed to produce all the results in Subsection 7.3, the codes in the
folder 3_BS_barrier_put_basket_avg were employed to produce all the results in Subsection 7.4,
and the codes in the folder 4_Lorentz were employed to produce all the results in Subsection 7.5.

7.1 Antithetic Monte Carlo approximations

In this section we recall a special case of antithetic variates for MCmethods (cf., e.g., Glasserman,
2004, Section 4.2) when the distribution of the sampled random variables is symmetric around
the origin. The following result, Lemma 7.1 below, shows that the resulting antithetic MCmethod
achieves a higher or equal 𝐿2-accuracy than the standard MC method when the same number of
MC samples are used for bothmethods. The subsequent result, Corollary 7.2 below, then provides
a sufficient condition for the antithetic MC method to achieve a strictly higher 𝐿2-accuracy than
the standard MC method when the same number of MC samples are used for both methods.

Lemma 7.1. Let 𝑑,𝔐 ∈ ℕ, let (Ω, , ℙ) be a probability space, let𝑋𝑚 ∶ Ω → ℝ𝑑,𝑚 ∈ {1, 2, … ,𝔐},
be i.i.d. randomvariables, assume for all𝐵 ∈ (ℝ𝑑) thatℙ(𝑋1 ∈ 𝐵) = ℙ(−𝑋1 ∈ 𝐵), let𝑓 ∶ ℝ𝑑 → ℝ

be measurable, assume 𝔼[|𝑓(𝑋1)|2] < ∞, and let𝑀 ∶ Ω → ℝ and 𝐴 ∶ Ω → ℝ satisfy

𝑀 =

[
1

𝔐

𝔐∑
𝑚=1

𝑓(𝑋𝑚)

]
and 𝐴 =

1

2𝔐

[
𝔐∑
𝑚=1

(𝑓(𝑋𝑚) + 𝑓(−𝑋𝑚))

]
. (101)

Then

(i) it holds that 𝔼[|𝑀 − 𝔼[𝑓(𝑋1)]|2] = Var(𝑓(𝑋1))

𝔐
and

(ii) it holds that 𝔼[|𝐴 − 𝔼[𝑓(𝑋1)]|2] = Var(𝑓(𝑋1))+Cov(𝑓(𝑋1),𝑓(−𝑋1))

2𝔐
≤ Var(𝑓(𝑋1))

𝔐
.

Proof of Lemma 7.1. First, note that the fact that 𝑋𝑚, 𝑚 ∈ {1, 2, … ,𝔐}, are i.i.d. implies that for
all𝑚, 𝑛 ∈ {1, 2, … ,𝔐} with𝑚 ≠ 𝑛 it holds that

Cov (𝑓(𝑋𝑚), 𝑓(𝑋𝑛)) = 0 and Cov (𝑓(𝑋𝑚) + 𝑓(−𝑋𝑚), 𝑓(𝑋𝑛) + 𝑓(−𝑋𝑛)) = 0 (102)

(cf., e.g., Klenke, 2014, Theorem 5.4). This, the fact that 𝔼[𝑀] = 𝔼[𝑓(𝑋1)], and the Bienaymé
formula (cf., e.g., Klenke, 2014, Theorem 5.7) assure that

𝔼
[|𝑀 − 𝔼[𝑓(𝑋1)]|2] = Var (𝑀) =

1

𝔐2
Var
(∑𝔐

𝑚=1
𝑓(𝑋𝑚)

)
=

1

𝔐2

([∑𝔐
𝑚=1

Var (𝑓(𝑋𝑚))
]
+
∑
𝑚,𝑛∈{1,2,…,𝔐},𝑚≠𝑛 Cov (𝑓(𝑋𝑚), 𝑓(𝑋𝑛))

)
=

1

𝔐2

∑𝔐
𝑚=1

Var (𝑓(𝑋1)) =
Var (𝑓(𝑋1))

𝔐
.

(103)
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BECKER et al. 125

This proves item (i). Next observe that the fact that 𝑋1, 𝑋2, … , 𝑋𝔐,−𝑋1, −𝑋2, … ,−𝑋𝔐 are
identically distributed implies that

𝔼[𝐴] =
1

2𝔐

𝔐∑
𝑚=1

(𝔼[𝑓(𝑋𝑚)] + 𝔼[𝑓(−𝑋𝑚)]) =
1

2𝔐

𝔐∑
𝑚=1

2𝔼[𝑓(𝑋1)] = 𝔼[𝑓(𝑋1)]. (104)

This, (102), the fact that 𝑋1, 𝑋2, … , 𝑋𝔐,−𝑋1, −𝑋2, … ,−𝑋𝔐 are identically distributed, and the
Bienaymé formula (cf., e.g., Klenke, 2014, Theorem 5.7) assure that

𝔼
[|𝐴 − 𝔼[𝑓(𝑋1)]|2] = Var (𝐴) =

1

(2𝔐)2
Var
(∑𝔐

𝑚=1
𝑓(𝑋𝑚) + 𝑓(−𝑋𝑚)

)
=

1

4𝔐2

([∑𝔐
𝑚=1

Var (𝑓(𝑋𝑚) + 𝑓(−𝑋𝑚))
]

+
[∑

𝑚,𝑛∈{1,2,…,𝔐},𝑚≠𝑛 Cov (𝑓(𝑋𝑚) + 𝑓(−𝑋𝑚), 𝑓(𝑋𝑛) + 𝑓(−𝑋𝑛))
])

=
1

4𝔐2

∑𝔐
𝑚=1

Var (𝑓(𝑋1) + 𝑓(−𝑋1))

=
Var (𝑓(𝑋1) + 𝑓(−𝑋1))

4𝔐

=
Var (𝑓(𝑋1)) + 2Cov (𝑓(𝑋1), 𝑓(−𝑋1)) + Var (𝑓(−𝑋1))

4𝔐

=
Var (𝑓(𝑋1)) + Cov (𝑓(𝑋1), 𝑓(−𝑋1))

2𝔐
.

(105)

Moreover, note that the fact that 𝑋1 and −𝑋1 are identically distributed and the Cauchy-Schwarz
inequality (cf., e.g., Klenke, 2014, Theorem 5.8) assure that

(Cov (𝑓(𝑋1), 𝑓(−𝑋1)))
2 ≤ Var (𝑓(𝑋1)) Var (𝑓(−𝑋1)) = (Var (𝑓(𝑋1)))

2. (106)

Combining this with (105) demonstrates that

𝔼
[|𝐴 − 𝔼[𝑓(𝑋1)]|2] = Var (𝑓(𝑋1)) + Cov (𝑓(𝑋1), 𝑓(−𝑋1))

2𝔐

≤ Var (𝑓(𝑋1)) + Var (𝑓(𝑋1))

2𝔐
=
Var (𝑓(𝑋1))

𝔐
.

(107)

This establishes item (ii). The proof of Lemma 7.1 is thus complete. □

Corollary 7.2. Let 𝑑,𝔐 ∈ ℕ, let (Ω, , ℙ) be a probability space, let 𝑋𝑚 ∶ Ω → ℝ𝑑, 𝑚 ∈

{1, 2, … ,𝔐}, be i.i.d. random variables, assume for all 𝐵 ∈ (ℝ𝑑) that ℙ(𝑋1 ∈ 𝐵) = ℙ(−𝑋1 ∈ 𝐵),
let 𝑓 ∶ ℝ𝑑 → ℝ be measurable, assume for all 𝑎, 𝑏, 𝑐 ∈ ℝ that 𝔼[|𝑓(𝑋1)|2] < ∞ and ℙ(𝑎𝑓(𝑋1) +
𝑏𝑓(−𝑋1) + 𝑐 = 0) < 1, and let𝑀 ∶ Ω → ℝ and 𝐴 ∶ Ω → ℝ satisfy

𝑀 =

[
1

𝔐

𝔐∑
𝑚=1

𝑓(𝑋𝑚)

]
and 𝐴 =

1

2𝔐

[
𝔐∑
𝑚=1

(𝑓(𝑋𝑚) + 𝑓(−𝑋𝑚))

]
. (108)
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126 BECKER et al.

Then

(i) it holds that 𝔼[|𝑀 − 𝔼[𝑓(𝑋1)]|2] = Var(𝑓(𝑋1))

𝔐
and

(ii) it holds that 𝔼[|𝐴 − 𝔼[𝑓(𝑋1)]|2] = Var(𝑓(𝑋1))+Cov(𝑓(𝑋1),𝑓(−𝑋1))

2𝔐
<

Var(𝑓(𝑋1))

𝔐
.

Proof of Corollary 7.2. First, note item (i) in Lemma 7.1 establishes item (i). Moreover, observe
that the assumption that for all 𝑎, 𝑏, 𝑐 ∈ ℝ it holds that ℙ(𝑎𝑓(𝑋1) + 𝑏𝑓(−𝑋1) + 𝑐 = 0) < 1, the
fact that 𝑋1 and −𝑋1 are identically distributed, and the strict Cauchy-Schwarz inequality (cf.,
e.g., Klenke Klenke, 2014, Theorem 5.8) assure that

(Cov (𝑓(𝑋1), 𝑓(−𝑋1)))
2 < Var (𝑓(𝑋1)) Var (𝑓(−𝑋1)) = (Var (𝑓(𝑋1)))

2. (109)

Combining this with item (ii) in Lemma 7.1 demonstrates that

𝔼
[|𝐴 − 𝔼[𝑓(𝑋1)]|2] = Var (𝑓(𝑋1)) + Cov (𝑓(𝑋1), 𝑓(−𝑋1))

2𝔐

<
Var (𝑓(𝑋1)) + Var (𝑓(𝑋1))

2𝔐
=
Var (𝑓(𝑋1))

𝔐
.

(110)

This establishes item (ii). The proof of Corollary 7.2 is thus complete. □

7.2 Parametric Black-Scholes partial differential equations for
European call options

In this section we apply the LRV strategy to the problem of approximating the fair price of an
European call option in the classical Black-Scholes model (cf. Black & Scholes, 1973 and Merton,
1973). A brief summary of the numerical results of this subsection can be found in Table 1 in the
introduction. We start by introducing the Black-Scholes model in the context of Framework 6.1.
Assume Framework 6.1, assume 𝔭 = 5 and

𝔓 = [90, 110] × [0.01, 1] × [−0.1, 0.1] × [0.01, 0.5] × [90, 110], (111)

let𝔑 ∶ ℝ → ℝ satisfy for all 𝑧 ∈ ℝ that𝔑(𝑧) = 1√
2𝜋

∫ 𝑧

−∞
exp(−

𝑦2

2
) d𝑦, and let 𝑢 ∶ 𝔓 → ℝ satisfy

for all 𝑝 = (𝜉, 𝑇, 𝑟, 𝜎, 𝐾) ∈ 𝔓 that

𝑢(𝑝) = 𝜉 𝔑
⎛⎜⎜⎝
(
𝑟+

𝜎2

2

)
𝑇+ln(𝜉∕𝐾)

𝜎
√
𝑇

⎞⎟⎟⎠ − exp(−𝑟𝑇)𝐾𝔑
⎛⎜⎜⎝
(
𝑟−

𝜎2

2

)
𝑇+ln(𝜉∕𝐾)

𝜎
√
𝑇

⎞⎟⎟⎠. (112)

Note that (112) corresponds to the famous Black-Scholes formula for European call options. In the
economic interpretation of the Black-Scholes model, for every 𝑝 = (𝜉, 𝑇, 𝑟, 𝜎, 𝐾) ∈ 𝔓 the number
𝑢(𝑝) ∈ ℝ thus corresponds to the fair price of a European call option with initial price 𝜉, time of
maturity 𝑇, drift rate 𝑟, volatility 𝜎, and strike price 𝐾.
We now specify the mathematical objects in the LRV strategy appearing in Framework 6.1

to approximately calculate the target function 𝑢 ∶ 𝔓 → ℝ in (112). Specifically, in addition to
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BECKER et al. 127

the assumptions above, let 𝔐,ℳ ∈ ℕ, 𝑎, 𝑒 ∈ {0, 1}, assume 𝔡 = 𝔐, 𝐝 = ℳ, 𝑘 = 1, for every
𝜉, 𝑟, 𝜎, 𝑤 ∈ ℝ, 𝑇 ∈ [0,∞) let 𝑋𝑟,𝜎,𝜉,𝑤𝑇 ∈ ℝ satisfy

𝑋
𝑟,𝜎,𝜉,𝑤
𝑇 = 𝜉 exp

((
𝑟 −

𝜎2

2

)
𝑇 + 𝜎
√
𝑇𝑤
)
, (113)

let 𝜙𝔞 ∶ 𝔓 × ℝ𝐝 → ℝ, 𝔞 ∈ {0, 1}, satisfy for all 𝑝 = (𝜉, 𝑇, 𝑟, 𝜎, 𝐾) ∈ 𝔓, 𝑤 ∈ ℝ that

𝜙0(𝑝, 𝑤) = exp(−𝑟𝑇)max
{
𝑋
𝑟,𝜎,𝜉,𝑤
𝑇 − 𝐾, 0

}
and (114)

𝜙1(𝑝, 𝑤) =
𝜙0(𝑝,𝑤)+𝜙0(𝑝,−𝑤)

2
=

exp(−𝑟𝑇)

2

(
max
{
𝑋
𝑟,𝜎,𝜉,𝑤
𝑇 − 𝐾, 0

}
+max

{
𝑋
𝑟,𝜎,𝜉,−𝑤
𝑇 − 𝐾, 0

})
,

(115)

assume for all 𝑝 = (𝜉, 𝑇, 𝑟, 𝜎, 𝐾) ∈ 𝔓, 𝑤 = (𝑤1, 𝑤2, … ,𝑤ℳ) ∈ ℝℳ , 𝜃 = (𝜃1, … , 𝜃𝔐) ∈ ℝ𝔐 that

Ψ(𝑝, 𝜃) =
1

𝔐

[
𝔐∑
𝔪=1

𝜙𝑎(𝑝, 𝜃𝔪)

]
and Ξ(𝑝,𝑤) =

1{0}(𝑒)

ℳ

[
ℳ∑
𝔪=1

𝜙1(𝑝, 𝑤𝔪)

]
+ 1{1}(𝑒)𝑢(𝑝),

(116)

assume for all 𝑥, 𝑦 ∈ ℝ that ℭ(𝑥, 𝑦) = |𝑥 − 𝑦|2, let 𝐚 = 9

10
, 𝐛 = 999

1000
, 𝜀 ∈ (0,∞), let (𝛾𝑚)𝑚∈ℕ ⊆

(0,∞) satisfy for all 𝑗 ∈ {1, 2, … , 7}, 𝑚 ∈ ℕ ∩ (20000(𝑗 − 1), 20000𝑗] that 𝛾𝑚 = 10−𝑗 , assume for
all𝑚 ∈ ℕ, 𝑖 ∈ {1, 2, … , 𝔡}, 𝑔1 = (𝑔

(1)
1 , … , 𝑔

(𝔡)
1 ), 𝑔2 = (𝑔

(1)
2 , … , 𝑔

(𝔡)
2 ),… , 𝑔𝑚 = (𝑔

(1)
𝑚 , … , 𝑔

(𝔡)
𝑚 ) ∈ ℝ𝔡 that

𝜓
(𝑖)
𝑚 (𝑔1, 𝑔2, … , 𝑔𝑚) = 𝛾𝑚

⎡⎢⎢⎣
∑𝑚
𝑘=1

𝐚𝑚−𝑘(1 − 𝐚)𝑔
(𝑖)
𝑘

1 − 𝐚𝑚

⎤⎥⎥⎦
⎡⎢⎢⎢⎣𝜀 +
⎡⎢⎢⎣
∑𝑚
𝑘=1

𝐛𝑚−𝑘(1 − 𝐛)|𝑔(𝑖)
𝑘
|2

1 − 𝐛𝑚

⎤⎥⎥⎦
1∕2⎤⎥⎥⎥⎦

−1

, (117)

assume that 𝔚 is a standard normal random vector, assume that 𝑃1,1 is 𝔓-distributed, and
assume that𝑊1,1 is a standard normal random variable.
Let us add some comments regarding the setup introduced above. Observe that (112), (114), (115),

and Lemma 2.1 assure that for all 𝑝 = (𝜉, 𝑇, 𝑟, 𝜎, 𝐾) ∈ 𝔓 it holds that

𝑢(𝑝) = 𝔼
[
exp(−𝑟𝑇)max

{
𝑋
𝑟,𝜎,𝜉,𝑊1,1

𝑇 − 𝐾, 0
}]

= 𝔼
[
𝜙0
(
𝑝,𝑊1,1

)]
= 𝔼
[
𝜙1
(
𝑝,𝑊1,1

)]
. (118)

Moreover, note that in the case 𝑎 = 0 the proposal algorithm on the left hand side of (116) cor-
responds to the standard MC method with𝔐 samples and that in the case 𝑎 = 1 the proposal
algorithm on the left hand side of (116) corresponds to the antithetic MCmethod with𝔐 samples
(cf. Subsection 7.1). In addition, observe that in the case 𝑒 = 0 the reference solutions on the right
hand side of (116) correspond to antithetic MC approximations withℳ samples and that in the
case 𝑒 = 1 the reference solutions on the right hand side of (116) are given by the exact solution.
Furthermore, observe that (117) describes the Adam optimizer in the setup of Framework 6.1 (cf.
Kingma & Ba, 2014 and Subsection 6.5.7).
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128 BECKER et al.

F IGURE 1 Numerical simulations for the LRV strategy in case of the Black-Scholes model for European call
options on one underlying described in Subsection 7.2 (5-dimensional approximation problem). See Figure 2
below for the legend. [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 2 Smallest estimated 𝐿2(𝜆𝔓;ℝ)-errors over𝔐 for different choices of training parameters. Each
dot corresponds to the minimum of a line of the same color in Figure 1. The convergence rate 1/2 is inspired by
the convergence rate 1/2 of the MC method which is strongly related to SGD. [Color figure can be viewed at
wileyonlinelibrary.com]

In Figures 1 and 2 and Tables 2 and 6 we approximately present for different choices of
𝔐 ∈ {25, 26, … , 213}, ℳ ∈ {210, 211, 212}, 𝐌 ∈ {211, 212, 213}, 𝑎, 𝑒 ∈ {0, 1} random realizations of
the 𝐿1(𝜆𝔓;ℝ)-approximation error

∫
𝔓
|𝑢(𝑝) − Ψ(𝑝,Θ140000)| d𝑝 (119)

(3rd column in Tables 2 and 6), random realizations of the 𝐿2(𝜆𝔓;ℝ)-approximation error

[
∫
𝔓

|𝑢(𝑝) − Ψ(𝑝,Θ140000)|2 d𝑝]1∕2 (120)
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BECKER et al. 129

TABLE 6 Numerical simulations for the LRV strategy in case of the Black-Scholes model for European call
options on one underlying described in Subsection 7.2 (5-dimensional approximation problem) trained with
batch size𝐌 = 8192 and exact (𝑒 = 1) reference solutions (cf. bright blue lines in Figures 1 and 2).

𝕸 𝒂

Number of
trainable
parameters

𝑳𝟏-approx.
error

𝑳𝟐-approx.
error

𝑳∞-approx.
error

Training
time in
seconds

Evaluation
time for
𝟖 𝟏𝟗𝟐 𝟎𝟎𝟎

evaluations
in seconds

32 0 32 0.003186 0.005893 0.065741 149.13 0.58
32 1 32 0.001502 0.003013 0.028984 153.95 0.62
64 0 64 0.001211 0.002352 0.023104 148.42 0.64
64 1 64 0.000635 0.001262 0.012718 156.98 0.61
128 0 128 0.000482 0.000971 0.009106 152.34 0.60
128 1 128 0.000273 0.000541 0.005257 152.41 0.60
256 0 256 0.000206 0.000441 0.007746 154.84 0.61
256 1 256 0.000118 0.000235 0.002228 170.88 0.68
512 0 512 0.000089 0.000192 0.003382 163.79 0.66
512 1 512 0.000052 0.000104 0.000969 179.32 0.67
1024 0 1024 0.000049 0.000119 0.003899 184.64 0.71
1024 1 1024 0.000024 0.000048 0.000420 305.44 0.91
2048 0 2048 0.000027 0.000061 0.002447 304.91 0.87
2048 1 2048 0.000012 0.000023 0.000206 656.63 2.36
4096 0 4096 0.000015 0.000035 0.001529 652.68 2.34
4096 1 4096 0.000008 0.000014 0.000122 1199.47 4.20
8192 0 8192 0.000010 0.000019 0.000862 1187.81 4.18
8192 1 8192 0.000007 0.000012 0.000145 2201.75 7.84

(Figures 1 and 2 and 4th column in Tables 2 and 6), random realizations of the 𝐿∞(𝜆𝔓;ℝ)-
approximation error

sup𝑝∈𝔓 |𝑢(𝑝) − Ψ(𝑝,Θ140000)|, (121)

(5th column in Tables 2 and 6), the time to computeΘ140000 (6th column in Tables 2 and 6), and the
time to compute 8 192 000 evaluations of the function𝔓 ∋ 𝑝 ↦ Ψ(𝑝,Θ140000) ∈ ℝ (7th column in
Tables 2 and 6). We approximated the integrals in (119) and (120) with the MC method based on
8 192 000 samples and we approximated the suprema in (121) based on 8 192 000 random samples
(cf., e.g., Beck, Becker, Grohs et al., 2021, Lemma 3.5 and Beck et al., 2022, Section 3.3).
To compare the LRV strategy with existing approximation techniques from the literature, we

also employ several other methods to approximate the function 𝑢 ∶ 𝔓 → ℝ in (112). Specifically,
in Table 3 we present numerical simulations for the deep learning method induced by Beck,
Becker, Grohs et al. (2021) (with training values given by the exact solution, Adam 140000 training
steps, batch size 8192, learning rate schedule ℕ ∋ 𝑗 ↦ 1(0,20000](𝑚)10

−2 + 1(20000,50000](𝑚)10
−3 +

1(50000,80000](𝑚)10
−4 + 1(80000,100000](𝑚)10

−5 + 1(100000,120000](𝑚)10
−6 + 1(120000,140000](𝑚)10

−7,
and GELU activation function), in Table 4 we present numerical simulations for the standard and
the antithetic MCmethod, and in Table 5 we present numerical simulations for the standard and
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130 BECKER et al.

F IGURE 3 Histograms and sample moments of realizations of learned random variables
Θ
(1)
140000, Θ

(2)
140000, … ,Θ

(𝔐)
140000 in the LRV strategy in case of the Black-Scholes model for European call options on one

underlying described in Subsection 7.2. See Figure 4 for the moments of the standard normal distribution. [Color
figure can be viewed at wileyonlinelibrary.com]

the antithetic QMCmethod with Sobol sequences. In Tables 3, 4, and 5 we have approximated the
𝐿1(𝜆𝔓;ℝ)-approximation errors of the respective approximation methods with the MC method
based on 8 192 000 samples, we have approximated the 𝐿2(𝜆𝔓;ℝ)-approximation errors of the
respective approximationmethods with theMCmethod based on 8 192 000 samples, and we have
approximated the 𝐿∞(𝜆𝔓;ℝ)-approximation errors of the respective approximation methods
based on 8 192 000 random samples (cf., e.g., Beck, Becker, Grohs et al., 2021, Lemma 3.5 and
Beck et al., 2022, Section 3.3).
Next we discuss the empirical distributions of the random variables learned by the LRV

methodology and compare them to empirical distributions of MC and QMC samples. Specifi-
cally, in Figure 3we visualize for𝔐 ∈ {29, 210, 211}, 𝑎 = 0 realizations of empirical distributions of
learned random variablesΘ(1)140000, Θ

(2)
140000, … ,Θ

(𝔐)
140000 in the case of three different kinds of training
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BECKER et al. 131

procedures and in Figure 4 we visualize realizations of empirical distributions of random vari-
ables in the MC method and in QMC method based on Sobol sequences. Very roughly speaking,
it seems that with increasingly precise reference solutions and thereby smaller 𝐿2-errors, the LRV
method produces learned random variables whose histograms approximate the density of the nor-
mal distribution more closely, in particular more closely than the realizations of the standard MC
samples with which the LRVmethod is initialized. This suggests that the LRV strategy is learning
random variables which in some sense try to approximate the normal distribution. On the other
hand, we note that the QMC samples seem to have the most regular histograms, but still have
much worse 𝐿2-errors when compared to the learned random variables. One explanation for this
could be that even though the histograms of the QMC method seem to approximate the normal
density very accurately, the empirical moments of the QMC samples are a worse approximation
of the moments of the normal distribution than the empirical moments of the learned random
variables, and so the QMC samples effectively do not approximate the normal distribution as well
as the learned random variables.

7.3 Parametric Black-Scholes partial differential equations for
multi-asset worst-of basket put options

In this section we apply the LRV strategy for the approximation of the price of European worst-
of basket put options in the Black-Scholes option pricing model (cf. Black & Scholes, 1973 and
Merton, 1973). We start by introducing the Black-Scholes model for this pricing problem in the
context of Framework 6.1.
Assume Framework 6.1, let 𝑑 = 3, 𝑒1 = (1, 0, 0), 𝑒2 = (0, 1, 0), 𝑒3 = (0, 0, 1), let 𝑄 ∶ ℝ𝑑 → ℝ𝑑×𝑑

satisfy for all 𝜌 = (𝜌1, 𝜌2, 𝜌3) ∈ ℝ𝑑 that

𝑄(𝜌) =
⎛⎜⎜⎝
1 𝜌1 𝜌2
𝜌1 1 𝜌3
𝜌2 𝜌3 1

⎞⎟⎟⎠ , (122)

let 𝑅 ⊆ ℝ𝑑 satisfy 𝑅 = {𝜌 = (𝜌1, 𝜌2, 𝜌3) ∈ [−
95

100
,
95

100
]𝑑 ∶ 1 − |𝜌2|2 − (𝜌3−𝜌1𝜌2)

2

(1−|𝜌1|2)1∕2 ≥ 0}, assume 𝔭 =
15 and

𝔓 = [90, 110]
3
×
[
1

100
, 1
]
×
[
−

1

20
,
1

20

]
×
[
0,

1

10

]3
×
[
1

100
,
1

2

]3
× 𝑅 × [90, 110], (123)

let 𝐿 ∶ 𝑅 → ℝ𝑑×𝑑 satisfy for all 𝜌 = (𝜌1, 𝜌2, 𝜌3) ∈ 𝑅 that

𝐿(𝜌) =

⎛⎜⎜⎜⎝
1 0 0

𝜌1 (1 − |𝜌1|2)1∕2 0

𝜌2
𝜌3−𝜌1𝜌2

(1−|𝜌1|2)1∕2
(
1 − |𝜌2|2 − (𝜌3−𝜌1𝜌2)

2

1−|𝜌1|2
)1∕2
⎞⎟⎟⎟⎠ , (124)

for every 𝜉 = (𝜉1, 𝜉2, 𝜉3) ∈ ℝ𝑑,𝑇 ∈ [0,∞), 𝑟 ∈ ℝ, 𝛿 = (𝛿1, 𝛿2, 𝛿3) ∈ ℝ𝑑,𝜎 = (𝜎1, 𝜎2, 𝜎3) ∈ ℝ𝑑,𝜌 ∈
𝑅,𝑤 ∈ ℝ𝑑 let𝑋𝜉,𝑟,𝛿,𝜎,𝜌,𝑤𝑇 = (𝑋

𝑟,𝜉,𝛿,𝜎,𝜌,𝑤,1
𝑇 , 𝑋

𝑟,𝜉,𝛿,𝜎,𝜌,𝑤,2
𝑇 , 𝑋

𝑟,𝜉,𝛿,𝜎,𝜌,𝑤,3
𝑇 ) ∈ ℝ𝑑 satisfy3 for all 𝑖 ∈ {1, 2, 3}

3 Note that for all 𝑛 ∈ ℕ, 𝑣 = (𝑣1, … , 𝑣𝑛), 𝑤 = (𝑤1, … ,𝑤𝑛) ∈ ℝ𝑛 it holds that ⟨𝑣, 𝑤⟩ = ∑𝑛
𝑖=1

𝑣𝑖𝑤𝑖 .
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BECKER et al. 133

that

𝑋
𝜉,𝑟,𝛿,𝜎,𝜌,𝑤,𝑖
𝑇 = 𝜉𝑖 exp

([
𝑟 − 𝛿𝑖 −

|𝜎𝑖|2
2

]
𝑇 +
√
𝑇𝜎𝑖⟨𝐿(𝜌)𝑤, 𝑒𝑖⟩), (125)

let 𝐥 ∶ ℝ𝑑 → ℝ satisfy for all 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ ℝ𝑑 that 𝐥(𝑥) = min{𝑥1, 𝑥2, 𝑥3}, let𝜙 ∶ 𝔓 × ℝ𝑑 → ℝ

satisfy for all 𝑝 = (𝜉, 𝑇, 𝑟, 𝛿, 𝜎, 𝜌, 𝐾) ∈ 𝔓, 𝑤 ∈ ℝ𝑑 that

𝜙(𝑝,𝑤) = exp(−𝑟𝑇)max
{
𝐾 − 𝐥
(
𝑋
𝜉,𝑟,𝛿,𝜎,𝜌,𝑤
𝑇

)
, 0
}
, (126)

let ∶ Ω → ℝ𝑑 be a standard normal random vector, and let 𝑢 ∶ 𝔓 → ℝ satisfy for all 𝑝 ∈ 𝔓 that

𝑢(𝑝) = 𝔼[𝜙(𝑝,)]. (127)

In the economic interpretation of the Black-Scholes model for every 𝑝 = (𝜉, 𝑇, 𝑟, 𝛿, 𝜎, 𝜌, 𝐾) ∈ 𝔓

the number 𝑢(𝑝) ∈ ℝ corresponds to the fair price of a worst-of basekt put option on three under-
lying assetswith initial prices 𝜉, time ofmaturity𝑇, risk free rate 𝑟, dividend yields of the respective
underlying assets 𝛿, volatilities of the respective underlying assets 𝜎, covariance matrix of the
Brownian motions 𝑄(𝜌), and strike price 𝐾.
We now specify the mathematical objects in the LRV strategy appearing in Framework 6.1 to

approximately calculate the target function 𝑢 ∶ 𝔓 → ℝ in (127). Specifically, in addition to the
assumptions above, let𝔐 ∈ ℕ,ℳ = 8192, assume 𝔡 = 𝔐𝑑, 𝐝 = ℳ𝑑, 𝑘 = 1,𝐌 = 4096, assume
for all 𝑝 = (𝜉, 𝑇, 𝑟, 𝛿, 𝜎, 𝜌, 𝐾) ∈ 𝔓, 𝑤 = (𝑤1, … ,𝑤ℳ𝑑) ∈ ℝℳ𝑑, 𝜃 = (𝜃1, … , 𝜃𝔐𝑑) ∈ ℝ𝔐𝑑 that

Ξ(𝑝,𝑤) =
1

ℳ

[
ℳ∑
𝔪=1

𝜙
(
𝑝, (𝑤(𝔪−1)𝑑+𝑘)𝑘∈{1,2,3}

)]
and Ψ(𝑝, 𝜃) =

1

𝔐

[
𝔐∑
𝔪=1

𝜙
(
𝑝, (𝜃(𝔪−1)𝑑+𝑘)𝑘∈{1,2,3}

)]
, (128)

assume for all 𝑥, 𝑦 ∈ ℝ that ℭ(𝑥, 𝑦) = |𝑥 − 𝑦|2, let 𝐚 = 9

10
, 𝐛 = 999

1000
, 𝜀 ∈ (0,∞), let (𝛾𝑚)𝑚∈ℕ ⊆

(0,∞) satisfy for all 𝑚 ∈ {1, 2, … , 30000} that 𝛾𝑚 = 1(0,15000](𝑚)10
−3 + 1(15000,25000](𝑚)10

−4 +

1(25000,30000](𝑚)10
−5, assume for all𝑚 ∈ ℕ, 𝑖 ∈ {1, 2, … , 𝔡}, 𝑔1 = (𝑔

(1)
1 , … , 𝑔

(𝔡)
1 ), 𝑔2 = (𝑔

(1)
2 , … , 𝑔

(𝔡)
2 ),

… , 𝑔𝑚 = (𝑔
(1)
𝑚 , … , 𝑔

(𝔡)
𝑚 ) ∈ ℝ𝔡 that

𝜓
(𝑖)
𝑚 (𝑔1, 𝑔2, … , 𝑔𝑚) = 𝛾𝑚

⎡⎢⎢⎣
∑𝑚
𝑘=1

𝐚𝑚−𝑘(1 − 𝐚)𝑔
(𝑖)
𝑘

1 − 𝐚𝑚

⎤⎥⎥⎦
⎡⎢⎢⎢⎣𝜀 +
⎡⎢⎢⎣
∑𝑚
𝑘=1

𝐛𝑚−𝑘(1 − 𝐛)|𝑔(𝑖)
𝑘
|2

1 − 𝐛𝑚

⎤⎥⎥⎦
1∕2⎤⎥⎥⎥⎦

−1

, (129)

assume that 𝔚 is a standard normal random vector, assume that 𝑃1,1 is 𝔓-distributed, and
assume that𝑊1,1 is a standard normal random vector.
Let us add some comments regarding the setup introduced above. Note that the proposal algo-

rithm in (127) corresponds to theMCmethod. Furthermore, observe that (129) describes theAdam
optimizer in the setup of Framework 6.1 (cf. Kingma & Ba, 2014 and Subsection 6.5.7).
In Table 7 we approximately present for 𝔐 ∈ {25, 26, … , 213} one random realization of the

𝐿1(𝜆𝔓;ℝ)-approximation error

∫
𝔓
|𝑢(𝑝) − Ψ(𝑝,Θ30000)| d𝑝 (130)
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134 BECKER et al.

TABLE 7 Numerical simulations for the LRV strategy in case of the Black-Scholes model for European
worst-of basket put options on three underlyings described in Subsection 7.3 (15-dimensional approximation
problem).

𝕸

Number of
trainable
parameters

𝑳𝟏-approx.
error

𝑳𝟐-approx.
error

𝑳∞-approx.
error

Training
time in
seconds

32 96 0.072564 0.097067 0.693916 311.69
64 192 0.035654 0.047869 0.335918 313.22
128 384 0.018049 0.024193 0.169165 314.48
256 768 0.009603 0.012866 0.089918 318.79
512 1536 0.005317 0.007125 0.064743 337.47
1024 3072 0.003129 0.004171 0.029337 369.79
2048 6144 0.002132 0.002827 0.021137 443.43
4096 12288 0.001594 0.002108 0.014027 594.14
8192 24576 0.001242 0.001642 0.011484 900.10

(3rd column in Table 7), one random realization of the 𝐿2(𝜆𝔓;ℝ)-approximation error

[
∫
𝔓

|𝑢(𝑝) − Ψ(𝑝,Θ30000)|2 d𝑝]1∕2 (131)

(4th column in Table 7), one random realization of the 𝐿∞(𝜆𝔓;ℝ)-approximation error

sup𝑝∈𝔓 |𝑢(𝑝) − Ψ(𝑝,Θ30000)|, (132)

(5th column in Table 7), and the time to compute Θ30000 (6th column in Table 7). For every𝔐 ∈

{25, 26, … , 213} we approximated the integrals in (130) and (131) with the MC method based on
128000 samples and we approximated the supremum in (132) based on 128000 random samples
(cf., e.g., Beck, Becker, Grohs et al., 2021, Lemma 3.5 and Beck et al., 2022, Section 3.3). In our
approximations of (130), (131), and (132) we have approximately computed for all required sample
points 𝑝 ∈ 𝔓 the value 𝑢(𝑝) of the unknown exact solution by means of an MC approximation
with 209715200MC samples.
Besides the LRV strategy we also employed the standard MCmethod to approximate the func-

tion 𝑢 ∶ 𝔓 → ℝ in (127). In Table 8 we present the corresponding numerical simulation results. In
Table 8 we have approximated the 𝐿1(𝜆𝔓;ℝ)-approximation error of theMCmethod with theMC
method based on 128000 samples, we have approximated the 𝐿2(𝜆𝔓;ℝ)-approximation errors of
the MC method with the MC method based on 128000 samples, and we have approximated the
𝐿∞(𝜆𝔓;ℝ)-approximation errors of the MC method based on 128000 random samples (cf., e.g.,
Beck, Becker, Grohs et al., 2021, Lemma 3.5 and Beck et al., 2022, Section 3.3). In our approxi-
mations of the above mentioned approximation errors we have approximately computed for all
required sample points 𝑝 ∈ 𝔓 the value 𝑢(𝑝) of the unknown exact solution by means of an MC
approximation with 209715200MC samples.
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BECKER et al. 135

TABLE 8 Numerical simulations for the standard MC method in case of the Black-Scholes model for
European worst-of basket put options on three underlyings described in Subsection 7.3 (15-dimensional
approximation problem).

Number of
MC
samples

Number of scalar
random variables per
evaluation

𝑳𝟏-approx.
error

𝑳𝟐-approx.
error

𝑳∞-approx.
error

32 96 1.543287 2.080271 12.685066
64 192 1.091341 1.470045 9.742924
128 384 0.770266 1.038834 6.845669
256 768 0.544692 0.736095 4.272978
512 1536 0.386441 0.521668 2.919704
1024 3072 0.272983 0.369065 2.299841
2048 6144 0.192779 0.260462 1.656979
4096 12288 0.136122 0.183617 1.268164
8192 24576 0.096641 0.130191 0.825016
16384 49152 0.068338 0.092281 0.577732
32768 98304 0.048270 0.065142 0.452351

7.4 Parametric Black-Scholes partial differential equations for
multi-asset average put options with knock-in barriers

In this section we apply the LRV strategy to a more complicated and practically relevant Black-
Scholes option pricing problem. Specifically, we approximate the fair price of a European average
basket put option on three underlyings with a knock-in barrier in the Black-Scholes model (cf.
Black & Scholes, 1973 andMerton, 1973). We start by introducing the Black-Scholes model for this
pricing problem in the context of Framework 6.1.
Assume Framework 6.1, let 𝑑 = 3, 𝑒1 = (1, 0, 0), 𝑒2 = (0, 1, 0), 𝑒3 = (0, 0, 1), let 𝑄 ∶ ℝ𝑑 → ℝ𝑑×𝑑

satisfy for all 𝜌 = (𝜌1, 𝜌2, 𝜌3) ∈ ℝ𝑑 that

𝑄(𝜌) =
⎛⎜⎜⎝
1 𝜌1 𝜌2
𝜌1 1 𝜌3
𝜌2 𝜌3 1

⎞⎟⎟⎠ , (133)

let 𝑅 ⊆ ℝ𝑑 satisfy 𝑅 = {𝜌 = (𝜌1, 𝜌2, 𝜌3) ∈ [−
95

100
,
95

100
]𝑑 ∶ 1 − |𝜌2|2 − (𝜌3−𝜌1𝜌2)

2

(1−|𝜌1|2)1∕2 ≥ 0}, assume 𝔭 =
16 and

𝔓 = [90, 110]
3
×
[
1

2
, 1
]
×
[
−

1

20
,
1

20

]
×
[
0,

1

10

]3
×
[
1

100
,
1

2

]3
× 𝑅 × [90, 110] × [70, 80], (134)

let 𝐿 ∶ 𝑅 → ℝ𝑑×𝑑 satisfy for all 𝜌 = (𝜌1, 𝜌2, 𝜌3) ∈ 𝑅 that

𝐿(𝜌) =

⎛⎜⎜⎜⎝
1 0 0

𝜌1 (1 − |𝜌1|2)1∕2 0

𝜌2
𝜌3−𝜌1𝜌2

(1−|𝜌1|2)1∕2
(
1 − |𝜌2|2 − (𝜌3−𝜌1𝜌2)

2

1−|𝜌1|2
)1∕2
⎞⎟⎟⎟⎠ , (135)
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136 BECKER et al.

let  ∶ Ω → 𝐶([0,∞),ℝ𝑑) be a standard Brownian motion with continuous sample paths,
for every 𝜉 = (𝜉1, 𝜉2, 𝜉3) ∈ ℝ𝑑, 𝑟 ∈ ℝ, 𝛿 = (𝛿1, 𝛿2, 𝛿3) ∈ ℝ𝑑, 𝜎 = (𝜎1, 𝜎2, 𝜎3) ∈ ℝ𝑑, 𝜌 ∈ ℝ𝑑 let
𝑋𝜉,𝑟,𝛿,𝜎,𝜌 = (𝑋𝑟,𝜉,𝛿,𝜎,𝜌,1, 𝑋𝑟,𝜉,𝛿,𝜎,𝜌,2, 𝑋𝑟,𝜉,𝛿,𝜎,𝜌,3) ∶ 𝐶([0,∞),ℝ𝑑) → 𝐶([0,∞),ℝ𝑑) satisfy for all 𝑤 ∈

𝐶([0,∞),ℝ𝑑), 𝑡 ∈ [0,∞), 𝑖 ∈ {1, 2, 3} that

𝑋
𝜉,𝑟,𝛿,𝜎,𝜌,𝑖
𝑡 (𝑤) = 𝜉𝑖 exp

([
𝑟 − 𝛿𝑖 −

|𝜎𝑖|2
2

]
𝑡 + 𝜎𝑖⟨𝐿(𝜌)𝑤𝑡, 𝑒𝑖⟩), (136)

let 𝐥 ∶ ℝ𝑑 → ℝ and 𝐦 ∶ ℝ𝑑 → ℝ satisfy for all 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ ℝ𝑑 that 𝐥(𝑥) = min{𝑥1, 𝑥2, 𝑥3}

and𝐦(𝑥) = 𝑥1+𝑥2+𝑥3

3
, for every 𝑇 ∈ [0,∞), 𝐵 ∈ ℝ let𝔅𝑇,𝐵 ⊆ 𝐶([0,∞),ℝ𝑑) satisfy

𝔅𝑇,𝐵 =
{
𝑤 ∈ 𝐶([0,∞),ℝ𝑑) ∶ (∃ 𝑡 ∈ [0, 𝑇] ∶ 𝐥(𝑤𝑡) < 𝐵)

}
, (137)

let 𝜙 ∶ 𝔓 × 𝐶([0,∞),ℝ𝑑) → ℝ satisfy for all 𝑝 = (𝜉, 𝑇, 𝑟, 𝛿, 𝜎, 𝜌, 𝐾, 𝐵) ∈ 𝔓, 𝑤 ∈ 𝐶([0,∞),ℝ𝑑)

that

𝜙(𝑝,𝑤) = 1𝔅𝑇,𝐵
(𝑋𝜉,𝑟,𝛿,𝜎,𝜌(𝑤)) exp(−𝑟𝑇)max

{
𝐾 −𝐦(𝑋

𝜉,𝑟,𝛿,𝜎,𝜌
𝑇 (𝑤)), 0

}
, (138)

and let 𝑢 ∶ 𝔓 → ℝ satisfy for all 𝑝 ∈ 𝔓 that

𝑢(𝑝) = 𝔼[𝜙(𝑝,)]. (139)

In the economic interpretation of the Black-Scholes model for every 𝑝 = (𝜉, 𝑇, 𝑟, 𝛿, 𝜎, 𝜌, 𝐾, 𝐵) ∈

𝔓 the number 𝑢(𝑝) ∈ ℝ corresponds to the fair price of a average basekt put option on three
underlying assets with initial prices 𝜉, time of maturity 𝑇, risk free rate 𝑟, dividend yields of the
respective underlying assets 𝛿, volatilities of the respective underlying assets 𝜎, covariance matrix
of the Brownian motions 𝑄(𝜌), strike price 𝐾, and knock-in barrier 𝐵.
We now specify the mathematical objects in the LRV strategy appearing in Framework 6.1

to approximately calculate the target function 𝑢 ∶ 𝔓 → ℝ in (139). Specifically, in addition
to the assumptions above, let 𝑁 = 10, ℳ = 1024, 𝔐 ∈ ℕ, assume 𝔡 = 𝔐𝑁𝑑, 𝐝 = ℳ𝑁𝑑,
𝑘 = 1, 𝐌 = 1024, for every 𝑝 = (𝜉, 𝑇, 𝑟, 𝛿, 𝜎, 𝜌, 𝐾, 𝐵) ∈ 𝔓, 𝑤 = (𝑤1, … ,𝑤𝑁) ∈ ℝ𝑁𝑑 let 𝑝,𝑤 =

(𝑝,𝑤,1,𝑝,𝑤,2,𝑝,𝑤,3) ∶ {0, 1, … ,𝑁} → ℝ𝑑 satisfy for all 𝑛 ∈ {1, 2, … ,𝑁}, 𝑖 ∈ {1, 2, 3} that 𝑝,𝑤
0 =

𝜉 and

𝑝,𝑤,𝑖
𝑛 = 𝑝,𝑤,𝑖

𝑛−1 exp

(
𝑇

𝑁

[
𝑟 − 𝛿𝑖 −

|𝜎𝑖|2
2

]
+
[
𝑇

𝑁

]1∕2
𝜎𝑖⟨𝐿(𝜌)𝑤𝑛, 𝑒𝑖⟩), (140)

for every 𝑝 = (𝜉, 𝑇, 𝑟, 𝛿, 𝜎1, 𝜎2, 𝜎3, 𝜌, 𝐾, 𝐵) ∈ 𝔓 let𝒯𝑝 = (𝒯𝑝,1,𝒯𝑝,2,𝒯𝑝,3) ∶ (0,∞)
𝑑 × (0,∞)𝑑 →

ℝ𝑑, 𝒰𝑝 ∶ (0,∞)
𝑑 × (0,∞)𝑑 → [0, 1], ℒ𝑝 ∶ (0,∞)

𝑑 × (0,∞)𝑑 → [0, 1], and 𝒫𝑝 ∶ ((0,∞)
𝑑)𝑁+1 →

[0, 1] satisfy for all 𝑥 = (𝑥1, 𝑥2, 𝑥3), 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ (0,∞)𝑑, 𝐱0, 𝐱1, … , 𝐱𝑁 ∈ (0,∞)𝑑, 𝑖 ∈ {1, 2, 3}

that

𝒯𝑝,𝑖(𝑥, 𝑦) =

⎧⎪⎨⎪⎩
1 ∶ min{𝑥, 𝑦} < 𝐵

exp
(
−
2 ln(𝑥𝑖∕𝐵) ln(𝑦𝑖∕𝐵)

(𝜎𝑖)2𝑇∕𝑁

)
∶ min{𝑥, 𝑦} ≥ 𝐵,

(141)
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BECKER et al. 137

𝒰𝑝(𝑥, 𝑦) = 1 − max
(
∪𝑗∈{1,2,3}{𝒯𝑝,𝑗(𝑥, 𝑦)}

)
, ℒ𝑝(𝑥, 𝑦) = max

{
1 −
∑3
𝑗=1

𝒯𝑝,𝑗(𝑥, 𝑦), 0
}
,

(142)

and 𝒫𝑝(𝐱0, 𝐱1, … , 𝐱𝑁) =
1

2

(
2 −

[
𝑁∏
𝑛=1

𝒰𝑝(𝐱𝑛−1, 𝐱𝑛)

]
−

[
𝑁∏
𝑛=1

ℒ𝑝(𝐱𝑛−1, 𝐱𝑛)

])
, (143)

let Φ ∶ 𝔓 × ℝ𝑁𝑑 → ℝ satisfy for all 𝑝 = (𝜉, 𝑇, 𝑟, 𝛿, 𝜎, 𝜌, 𝐾, 𝐵) ∈ 𝔓, 𝑤 ∈ ℝ𝑁𝑑 that

Φ(𝑝,𝑤) = 𝒫𝑝

(𝑝,𝑤
0 ,𝑝,𝑤

1 , … ,𝑝,𝑤
𝑁

)
exp(−𝑟𝑇)max

{
𝐾 −𝐦

(𝑝,𝑤
𝑁

)
, 0
}
, (144)

assume for all 𝑝 = (𝜉, 𝑇, 𝑟, 𝛿, 𝜎, 𝜌, 𝐾, 𝐵) ∈ 𝔓, 𝑤 = (𝑤1, … ,𝑤ℳ𝑁𝑑) ∈ ℝℳ𝑁𝑑, 𝜃 = (𝜃1, … , 𝜃𝔐𝑁𝑑) ∈

ℝ𝔐𝑁𝑑 that

Ξ(𝑝,𝑤) =
1

ℳ

[
ℳ∑
𝔪=1

Φ
(
𝑝, (𝑤(𝔪−1)𝑁𝑑+𝑘)𝑘∈{1,2,…,𝑁𝑑}

)]
(145)

and Ψ(𝑝, 𝜃) =
1

𝔐

[
𝔐∑
𝔪=1

Φ
(
𝑝, (𝜃(𝔪−1)𝑁𝑑+𝑘)𝑘∈{1,2,…,𝑁𝑑}

)]
, (146)

assume for all 𝑥, 𝑦 ∈ ℝ that ℭ(𝑥, 𝑦) = |𝑥 − 𝑦|2, let 𝐚 = 9

10
, 𝐛 = 999

1000
, 𝜀 ∈ (0,∞), let (𝛾𝑚)𝑚∈ℕ ⊆

(0,∞) satisfy for all 𝑚 ∈ {1, 2, … , 40000} that 𝛾𝑚 = 1(0,20000](𝑚)10
−3 + 1(20000,30000](𝑚)10

−4 +

1(30000,40000](𝑚)10
−5, assume for all𝑚 ∈ ℕ, 𝑖 ∈ {1, 2, … , 𝔡}, 𝑔1 = (𝑔

(1)
1 , … , 𝑔

(𝔡)
1 ), 𝑔2 = (𝑔

(1)
2 , … , 𝑔

(𝔡)
2 ),

… , 𝑔𝑚 = (𝑔
(1)
𝑚 , … , 𝑔

(𝔡)
𝑚 ) ∈ ℝ𝔡 that

𝜓
(𝑖)
𝑚 (𝑔1, 𝑔2, … , 𝑔𝑚) = 𝛾𝑚

⎡⎢⎢⎣
∑𝑚
𝑘=1

𝐚𝑚−𝑘(1 − 𝐚)𝑔
(𝑖)
𝑘

1 − 𝐚𝑚

⎤⎥⎥⎦
⎡⎢⎢⎢⎣𝜀 +
⎡⎢⎢⎣
∑𝑚
𝑘=1

𝐛𝑚−𝑘(1 − 𝐛)|𝑔(𝑖)
𝑘
|2

1 − 𝐛𝑚

⎤⎥⎥⎦
1∕2⎤⎥⎥⎥⎦

−1

, (147)

assume that 𝔚 is a standard normal random vector, assume that 𝑃1,1 is 𝔓-distributed, and
assume that𝑊1,1 is a standard normal random vector.
Let us add some comments regarding the setup introduced above. The functions 𝒫𝑝 ∶

((0,∞)𝑑)𝑁+1 → [0, 1], 𝑝 ∈ 𝔓, in (140) are employed to estimate crossing probabilities of Brow-
nian bridges as proposed in Shevchenko (2003) (see also, e.g., Gobet, 2009). Specifically, note that
(Gobet, 2009, Displays (12), (13)) suggests that for all 𝑝 = (𝜉, 𝑇, 𝑟, 𝛿, 𝜎, 𝜌, 𝐾, 𝐵) ∈ 𝔓we have ℙ-a.s.
that

𝒫𝑝

(
𝑋
𝜉,𝑟,𝛿,𝜎,𝜌
0 (), 𝑋

𝜉,𝑟,𝛿,𝜎,𝜌

𝑇∕𝑁
(), … , 𝑋

𝜉,𝑟,𝛿,𝜎,𝜌
𝑇 ()

)
≈ ℙ
(
∃ 𝑡 ∈ [0, 𝑇] ∶ 𝐥

(
𝑋
𝜉,𝑟,𝛿,𝜎,𝜌
𝑡 ()

)
< 𝐵 || (0,𝑇∕𝑁, … ,𝑇)

)
.

(148)
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138 BECKER et al.

TABLE 9 Numerical simulations for the LRV strategy in case of the Black-Scholes model for European
average put options with knock-in barriers described in Subsection 7.4 (16-dimensional approximation problem).

𝕸

Number of
trainable
parameters

𝑳𝟏-approx.
error

𝑳𝟐-approx.
error

𝑳∞-approx.
error

Training time
in seconds

32 960 0.102353 0.144240 0.989026 1092.81
64 1920 0.059373 0.082772 0.600640 1092.24
128 3840 0.034955 0.049141 0.410478 1101.67
256 7680 0.020976 0.029907 0.222575 1123.90
512 15360 0.013157 0.018535 0.139017 1102.52
1024 30720 0.008828 0.012484 0.095372 1428.70
2048 61440 0.006280 0.008905 0.057179 2289.94
4096 122880 0.004984 0.007025 0.054062 4380.77
8192 245760 0.004056 0.005799 0.050417 8742.66

Combining this with (136), (140), (144), the tower property for conditional expectations,
and the fact that Brownian motions have independent increments suggests for all 𝑝 =
(𝜉, 𝑇, 𝑟, 𝛿, 𝜎, 𝜌, 𝐾, 𝐵) ∈ 𝔓 that

𝔼[Φ(𝑝,𝔚)] = 𝔼
[
Φ
(
𝑝,
√
𝑁∕𝑇 (𝑇∕𝑁 −0,2𝑇∕𝑁 −𝑇∕𝑁, … ,𝑇 −(𝑁−1)𝑇∕𝑁)

)]
= 𝔼
[
𝒫𝑝

(
𝑋
𝜉,𝑟,𝛿,𝜎,𝜌
0 (), 𝑋

𝜉,𝑟,𝛿,𝜎,𝜌

𝑇∕𝑁
(), … , 𝑋

𝜉,𝑟,𝛿,𝜎,𝜌
𝑇 ()

)
exp(−𝑟𝑇)max

{
𝐾 −𝐦

(
𝑋
𝜉,𝑟,𝛿,𝜎,𝜌
𝑇 ()

)
, 0
}]

≈ 𝔼
[
ℙ
(
∃ 𝑡 ∈ [0, 𝑇] ∶ 𝐥

(
𝑋
𝜉,𝑟,𝛿,𝜎,𝜌
𝑡 ()

)
< 𝐵 || (0,𝑇∕𝑁, … ,𝑇)

)
exp(−𝑟𝑇)max

{
𝐾 −𝐦

(
𝑋
𝜉,𝑟,𝛿,𝜎,𝜌
𝑇 ()

)
, 0
}]

= 𝔼
[
ℙ
(
𝑋𝜉,𝑟,𝛿,𝜎,𝜌() ∈ 𝔅𝑇,𝐵

||) exp(−𝑟𝑇)max {𝐾 −𝐦(𝑋𝜉,𝑟,𝛿,𝜎,𝜌𝑇 ()
)
, 0
}]

= 𝔼
[
1𝔅𝑇,𝐵

() exp(−𝑟𝑇)max
{
𝐾 −𝐦

(
𝑋
𝜉,𝑟,𝛿,𝜎,𝜌
𝑇 ()

)
, 0
}]

= 𝔼[𝜙(𝑝,)] = 𝑢(𝑝).

(149)

The proposal algorithm in (139) thus corresponds to the MC method based on approximated
MC samples. Furthermore, observe that (147) describes the Adam optimizer in the setup of
Framework 6.1 (cf. Kingma & Ba, 2014 and Subsection 6.5.7).
In Table 9 we approximately present for 𝔐 ∈ {25, 26, … , 213} one random realization of the

𝐿1(𝜆𝔓;ℝ)-approximation error

∫
𝔓
|𝑢(𝑝) − Ψ(𝑝,Θ40000)| d𝑝 (150)
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BECKER et al. 139

TABLE 10 Numerical simulations for the standard MC method in case of the Black-Scholes model for
European average put options with knock-in barriers described in Subsection 7.4 (16-dimensional approximation
problem).

Number of
MC samples

Number of scalar
random variables per
evaluation

𝑳𝟏-approx.
error

𝑳𝟐-approx.
error

𝑳∞-approx.
error

32 960 1.131512 1.550692 8.077627
64 1920 0.780559 1.080267 6.354096
128 3840 0.555417 0.762485 4.352852
256 7680 0.392276 0.540796 3.551247
512 15360 0.280314 0.385225 2.428810
1024 30720 0.197006 0.270320 1.669893
2048 61440 0.139361 0.192542 1.172441
4096 122880 0.098571 0.135519 0.899519
8192 245760 0.070336 0.097068 0.597193
16384 491520 0.049755 0.068624 0.537441

(3rd column in Table 9), one random realization of the 𝐿2(𝜆𝔓;ℝ)-approximation error

[
∫
𝔓

|𝑢(𝑝) − Ψ(𝑝,Θ40000)|2 d𝑝]1∕2 (151)

(4th column in Table 9), one random realization of the 𝐿∞(𝜆𝔓;ℝ)-approximation error

sup𝑝∈𝔓 |𝑢(𝑝) − Ψ(𝑝,Θ40000)|, (152)

(5th column in Table 9), and the time to compute Θ40000 (6th column in Table 9). For every𝔐 ∈

{25, 26, … , 213} we approximated the integrals in (150) and (151) with the MC method based on
12800 samples and we approximated the supremum in (152) based on 12800 random samples
(cf., e.g., Beck, Becker, Grohs et al., 2021, Lemma 3.5 and Beck et al., 2022, Section 3.3). In our
approximations of (150), (151), and (152) we have approximately computed for all required sample
points 𝑝 ∈ 𝔓 the value 𝑢(𝑝) of the unknown exact solution by means of an MC approximation
with 52428800MC samples.
Besides the LRV strategy we also employed the standard MCmethod to approximate the func-

tion 𝑢 ∶ 𝔓 → ℝ in (139). In Table 10 we present the corresponding numerical simulation results.
In Table 10 we have approximated the 𝐿1(𝜆𝔓;ℝ)-approximation error of the MCmethod with the
MC method based on 12800 samples, we have approximated the 𝐿2(𝜆𝔓;ℝ)-approximation errors
of the MC method with the MC method based on 12800 samples, and we have approximated the
𝐿∞(𝜆𝔓;ℝ)-approximation errors of the MC method based on 12800 random samples (cf., e.g.,
Beck, Becker, Grohs et al., 2021, Lemma 3.5 and Beck et al., 2022, Section 3.3). In our approxi-
mations of the above mentioned approximation errors we have approximately computed for all
required sample points 𝑝 ∈ 𝔓 the value 𝑢(𝑝) of the unknown exact solution by means of an MC
approximation with 52428800MC samples.
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140 BECKER et al.

7.5 Parametric stochastic Lorentz equations

In this section we apply the LRV strategy to the parametric stochastic Lorentz equation (cf., e.g,
Schmallfuß, 1997 and Hutzenthaler & Jentzen, 2015, Section 4.4). A brief summary of the numer-
ical results of this subsection can be found in Table 11 below. We first introduce the parametric
stochastic Lorentz equation in the context of Framework 6.1.
Assume Framework 6.1, let 𝑑 = 3, let 𝑔 ∶ ℝ𝑑 → ℝ satisfy for all 𝑥 ∈ ℝ𝑑 that 𝑔(𝑥) = ‖𝑥‖2, for

every let 𝛼 = (𝛼1, 𝛼2, 𝛼3) ∈ ℝ𝑑 let 𝜇𝛼 ∶ ℝ𝑑 → ℝ𝑑 satisfy for all 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ ℝ𝑑 that

𝜇𝛼(𝑥) = (𝛼1(𝑥2 − 𝑥1), 𝛼2𝑥1 − 𝑥2 − 𝑥1𝑥3, 𝑥1𝑥2 − 𝛼3𝑥3), (153)

and for every 𝛼 = (𝛼1, 𝛼2, 𝛼3), 𝛽 = (𝛽1, 𝛽2, 𝛽3) ∈ ℝ𝑑 let 𝑢𝛼,𝛽 = (𝑢𝛼,𝛽(𝑡, 𝑥))(𝑡,𝑥)∈[0,∞)×ℝ𝑑 ∈

𝐶1,2([0,∞) × ℝ𝑑,ℝ) be an at most polynomially growing function which satisfies for all
𝑡 ∈ [0,∞), 𝑥 ∈ ℝ𝑑 that(

𝜕𝑢𝛼,𝛽

𝜕𝑡

)
(𝑡, 𝑥) = 𝛼1(𝑥2 − 𝑥1)

(
𝜕𝑢𝛼,𝛽

𝜕𝑥1

)
(𝑡, 𝑥) + (𝛼2𝑥1 − 𝑥2 − 𝑥1𝑥3)

(
𝜕𝑢𝛼,𝛽

𝜕𝑥2

)
(𝑡, 𝑥)

+ (𝑥1𝑥2 − 𝛼3𝑥3)
(
𝜕𝑢𝛼,𝛽

𝜕𝑥3

)
(𝑡, 𝑥) +

𝑑∑
𝑖=1

(𝛽𝑖)
2

2

(
𝜕2𝑢𝛼,𝛽

𝜕(𝑥𝑖)2

)
(𝑡, 𝑥) (154)

and 𝑢𝛼,𝛽(0, 𝑥) = 𝑔(𝑥).
We now specify the mathematical objects in the LRV strategy appearing in Framework 6.1 to

approximately calculate (𝑢𝛼,𝛽)(𝛼,𝛽)∈ℝ𝑑×ℝ𝑑 . Specifically, in addition to the assumptions above, let
⊙ ∶ ℝ𝑑 × ℝ𝑑 → ℝ𝑑 satisfy for all 𝑥 = (𝑥1, 𝑥2, 𝑥3), 𝑦 = (𝑦1, 𝑦2, 𝑦3) that 𝑥 ⊙ 𝑦 = (𝑥1𝑦1, 𝑥2𝑦2, 𝑥3𝑦3),
let 𝑁 = 25,ℳ = 512,𝔐 ∈ ℕ, 𝑎 ∈ {0, 1}, assume 𝔭 = 10, 𝔡 = 𝔐𝑁𝑑, 𝐝 = ℳ𝑁𝑑, 𝑘 = 1,𝐌 = 512,
and

𝔓 = [0.01, 1] × ([9, 11] × [13, 15] × [1, 2]) × [0.05, 0.25]3 × ([0.5, 2.5] × [8, 10] × [10, 12]), (155)

for every 𝑝 = (𝑇, 𝛼, 𝛽, 𝑥) ∈ 𝔓, 𝑤 = (𝑤1, … ,𝑤𝑁) ∈ ℝ𝑁𝑑 let 𝑝,𝑤 ∶ {0, 1, … ,𝑁} → ℝ𝑑 satisfy for all
𝑛 ∈ {1, 2, … ,𝑁} that 𝑝,𝑤

0 = 𝑥 and

𝑝,𝑤
𝑛 = 𝑝,𝑤

𝑛−1 +
√
𝑇∕𝑁(𝛽 ⊙ 𝑤𝑛) +

𝑇

2𝑁

(
𝜇𝛼
(𝑝,𝑤

𝑛−1

)
+ 𝜇𝛼

(𝑝,𝑤
𝑛−1 +

𝑇

𝑁
𝜇𝛼
(𝑝,𝑤

𝑛−1

)
+
√
𝑇∕𝑁(𝛽 ⊙ 𝑤𝑛)

))
,

(156)

let Φ𝑘 ∶ 𝔓 × ℝ𝑁𝑑 → ℝ, 𝑘 ∈ {0, 1}, satisfy for all 𝑝 ∈ 𝔓, 𝑤 ∈ ℝ𝑁𝑑 that

Φ0(𝑝,𝑤) = 𝑔
(𝑝,𝑤

𝑁

)
and Φ1(𝑝,𝑤) =

1

2

[
𝑔
(𝑝,𝑤

𝑁

)
+ 𝑔
(𝑝,−𝑤

𝑁

)]
, (157)

assume for all 𝑝 ∈ 𝔓, 𝑤 = (𝑤1, … ,𝑤ℳ𝑁𝑑) ∈ ℝℳ𝑁𝑑, 𝜃 = (𝜃1, … , 𝜃𝔐𝑁𝑑) ∈ ℝ𝔐𝑁𝑑 that

Ξ(𝑝,𝑤) =
1

ℳ

[
ℳ∑
𝔪=1

Φ𝑎
(
𝑝, (𝑤(𝔪−1)𝑁𝑑+𝑘)𝑘∈{1,2,…,𝑁𝑑}

)]
(158)

and Ψ(𝑝, 𝜃) =
1

𝔐

[
𝔐∑
𝔪=1

Φ𝑎
(
𝑝, (𝜃(𝔪−1)𝑁𝑑+𝑘)𝑘∈{1,2,…,𝑁𝑑}

)]
, (159)
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142 BECKER et al.

assume for all 𝑥, 𝑦 ∈ ℝ that ℭ(𝑥, 𝑦) = |𝑥 − 𝑦|2, let 𝐚 = 9

10
, 𝐛 = 999

1000
, 𝜀 ∈ (0,∞), let (𝛾𝑚)𝑚∈ℕ ⊆

(0,∞) satisfy for all 𝑚 ∈ {1, 2, … , 10000} that 𝛾𝑚 = 1(0,5000](𝑚)10
−3 + 1(5000,8000](𝑚)10

−4 +

1(8000,10000](𝑚)10
−5, assume for all𝑚 ∈ ℕ, 𝑖 ∈ {1, 2, … , 𝔡}, 𝑔1 = (𝑔

(1)
1 , … , 𝑔

(𝔡)
1 ), 𝑔2 = (𝑔

(1)
2 , … , 𝑔

(𝔡)
2 ),

… , 𝑔𝑚 = (𝑔
(1)
𝑚 , … , 𝑔

(𝔡)
𝑚 ) ∈ ℝ𝔡 that

𝜓
(𝑖)
𝑚 (𝑔1, 𝑔2, … , 𝑔𝑚) = 𝛾𝑚

⎡⎢⎢⎣
∑𝑚
𝑘=1

𝐚𝑚−𝑘(1 − 𝐚)𝑔
(𝑖)
𝑘

1 − 𝐚𝑚

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝜀 +

⎡⎢⎢⎢⎣
∑𝑚
𝑘=1

𝐛𝑚−𝑘(1 − 𝐛)
|||𝑔(𝑖)𝑘 |||2

1 − 𝐛𝑚

⎤⎥⎥⎥⎦
1∕2⎤⎥⎥⎥⎥⎦

−1

, (160)

assume that 𝔚 is a standard normal random vector, assume that 𝑃1,1 is 𝔓-distributed, and
assume that𝑊1,1 is a standard normal random vector.
Let us add some comments regarding the setup introduced above. Observe that (156) corre-

sponds to a Heun discretization (cf., e.g., Kloeden & Platen, 1992, (1.4) in Section 15) of the
SDE associated to the Kolmogorov PDE in (154). In the case 𝑎 = 0 the proposal algorithm in
(159) thus corresponds to the MC-Heun method and in the case 𝑎 = 1 the proposal algorithm
in (159) thus corresponds to the antithetic MC-Heunmethod. In particular, we remark that for all
𝑝 = (𝑇, 𝛼, 𝛽, 𝑥) ∈ 𝔓 we have that

1

𝔐

[
𝔐∑
𝔪=1

Φ0
(
𝑝,𝑊0,𝔪

)]
≈ 𝑢𝛼,𝛽(𝑇, 𝑥) ≈

1

𝔐

[
𝔐∑
𝔪=1

Φ1
(
𝑝,𝑊0,𝔪

)]
. (161)

Furthermore, observe that (160) describes the Adam optimizer in the setup of Framework 6.1 (cf.
Kingma & Ba, 2014 and Subsection 6.5.7).
In Table 12 we approximately present for𝔐 ∈ {25, 26, … , 213}, 𝑎 ∈ {0, 1} one random realization

of the 𝐿1(𝜆𝔓;ℝ)-approximation error

∫
𝔓
|𝑢𝛼,𝛽(𝑇, 𝑥) − Ψ((𝑇, 𝛼, 𝛽, 𝑥), Θ10000)| d (𝑇, 𝛼, 𝛽, 𝑥) (162)

(3rd column in Table 12), one random realization of the 𝐿2(𝜆𝔓;ℝ)-approximation error[
∫
𝔓

|𝑢𝛼,𝛽(𝑇, 𝑥) − Ψ((𝑇, 𝛼, 𝛽, 𝑥), Θ10000)|2 d (𝑇, 𝛼, 𝛽, 𝑥)]1∕2 (163)

(4th column in Table 12), one random realization of the 𝐿∞(𝜆𝔓;ℝ)-approximation error

sup
(𝑇,𝛼,𝛽,𝑥)∈𝔓

|𝑢𝛼,𝛽(𝑇, 𝑥) − Ψ((𝑇, 𝛼, 𝛽, 𝑥), Θ10000)| (164)

(5th column in Table 12), and the time to computeΘ10000 (6th column in Table 12). For every𝔐 ∈

{25, 26, … , 213}, 𝑎 ∈ {0, 1} we approximated the integrals in (162) and (163) with the MC method
based on 12800 samples and we approximated the supremum in (164) based on 12800 random
samples (cf., e.g., Beck, Becker, Grohs et al., 2021, Lemma 3.5 and Beck et al., 2022, Section 3.3).
In our approximations of (162), (163), and (164) we have approximately computed for all required
sample points (𝑇, 𝛼, 𝛽, 𝑥) ∈ 𝔓 the value 𝑢𝛼,𝛽(𝑇, 𝑥) of the unknown exact solution by means of an
antithetic MC approximation with 8 196 000MC samples.
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BECKER et al. 143

TABLE 1 2 Numerical simulations for the LRV strategy in case of the parametric stochastic Lorentz
equation described in Subsection 7.5 (10-dimensional approximation problem).

𝕸 𝒂

Number of
trainable
parameters

𝑳𝟏-approx.
error

𝑳𝟐-approx.
error

𝑳∞-approx.
error

Training
time in
seconds

32 0 2400 0.001903 0.003234 0.042107 321.32
32 1 2400 0.000376 0.000714 0.011292 481.52
64 0 4800 0.001706 0.003016 0.042892 323.65
64 1 4800 0.000296 0.000587 0.010147 481.12
128 0 9600 0.001648 0.003062 0.062836 322.32
128 1 9600 0.000276 0.000589 0.011658 480.80
256 0 19200 0.000801 0.001198 0.015732 320.24
256 1 19200 0.000166 0.000328 0.009003 480.83
512 0 38400 0.000732 0.001265 0.020386 322.96
512 1 38400 0.000173 0.000376 0.008942 482.99
1024 0 76800 0.000537 0.000958 0.015106 327.63
1024 1 76800 0.000112 0.000223 0.004013 518.68
2048 0 153600 0.000721 0.001086 0.014084 399.33
2048 1 153600 0.000069 0.000118 0.001572 968.62
4096 0 307200 0.000627 0.000844 0.007401 836.97
4096 1 307200 0.000090 0.000155 0.001984 2174.38
8192 0 614400 0.000177 0.000282 0.004089 1924.66
8192 1 614400 0.000085 0.000144 0.001419 4571.75

TABLE 13 Numerical simulations for the deep learning method induced by Beck, Becker, Grohs et al. (2021)
in case of the parametric stochastic Lorentz equation described in Subsection 7.5 (10-dimensional approximation
problem).

Number of
hidden
layers

Number of
neurons on each
hidden layer

Number of
trainable
parameters

𝑳𝟏-approx.
error

𝑳𝟐-approx.
error

𝑳∞-approx.
error

Training
time in
seconds

2 32 1441 2.299140 5.982908 104.470703 1876.86
2 64 4929 4.730990 16.753924 199.115005 1863.79
2 128 18049 4.884268 13.618965 377.537964 1869.14
2 256 68865 3.218077 9.487827 106.434830 1882.02
3 32 2497 3.712238 11.086662 693.645264 1880.95
3 64 9089 28.689849 161.865602 3000.016357 1881.48
3 128 34561 5.824964 15.087503 200.595459 1903.12
3 256 134657 93.630541 110.419151 313.946106 1891.98

To compare the LRV strategy with existing approximation techniques from the litera-
ture, we also employ several other methods to approximate the function 𝔓 ∋ (𝑇, 𝛼, 𝛽, 𝑥) ↦

𝑢𝛼,𝛽(𝑇, 𝑥) ∈ ℝ in (154). Specifically, in Table 13 we present numerical simulations for the deep
learning method induced by Beck, Becker, Grohs et al. (2021) (with Adam 160000 training
steps, batch size 256, learning rate schedule ℕ ∋ 𝑗 ↦ 1(0,50000](𝑚)10

−1 + 1(50000,100000](𝑚)10
−2 +

1(100000,120000](𝑚)10
−3 + 1(120000,140000](𝑚)10

−4 + 1(140000,160000](𝑚)10
−5, and GELU activation
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144 BECKER et al.

TABLE 14 Numerical simulations for the standard and the antithetic MC method in case of the parametric
stochastic Lorentz equation described in Subsection 7.5 (10-dimensional approximation problem).

Number of
MC
samples

MCMethod 0:
standard 1:
antithetic

Number of
scalar random
variables per
evaluation

𝑳𝟏-approx.
error

𝑳𝟐-approx.
error

𝑳∞-approx.
error

32 0 2400 0.383773 0.534779 4.735626
32 1 2400 0.008103 0.016280 0.210976
64 0 4800 0.275408 0.375781 3.149811
64 1 4800 0.005694 0.011187 0.183968
128 0 9600 0.204422 0.281741 2.723969
128 1 9600 0.003942 0.007754 0.103683
256 0 19200 0.145995 0.200546 1.234207
256 1 19200 0.002641 0.005119 0.073952
512 0 38400 0.093797 0.127197 1.015808
512 1 38400 0.001872 0.003753 0.071739
1024 0 76800 0.073213 0.101349 0.916580
1024 1 76800 0.001386 0.002828 0.041504
2048 0 153600 0.048225 0.067596 0.737793
2048 1 153600 0.000961 0.001928 0.030483
4096 0 307200 0.034988 0.048361 0.357437
4096 1 307200 0.000664 0.001317 0.020393
8192 0 614400 0.025400 0.034397 0.242668
8192 1 614400 0.000449 0.000922 0.016327
16384 0 1228800 0.018963 0.026513 0.256882
16384 1 1228800 0.000357 0.000715 0.010361
32768 0 2457600 0.010552 0.014373 0.114243
32768 1 2457600 0.000241 0.000457 0.006233

function), and in Table 14 we present numerical simulations for the standard and the antithetic
MCmethod. In Tables 13 and 14 we have approximated the 𝐿1(𝜆𝔓;ℝ)-approximation errors of the
respective approximationmethodswith theMCmethod based on 12800 samples, we have approx-
imated the 𝐿2(𝜆𝔓;ℝ)-approximation errors of the respective approximationmethodswith theMC
method based on 12800 samples, and we have approximated the 𝐿∞(𝜆𝔓;ℝ)-approximation errors
of the respective approximation methods based on 12800 random samples (cf., e.g., Beck, Becker,
Grohs et al., 2021, Lemma 3.5 andBeck et al., 2022, Section 3.3). In our approximations of the above
mentioned approximation errors we have approximately computed for all required sample points
(𝑇, 𝛼, 𝛽, 𝑥) ∈ 𝔓 the value 𝑢𝛼,𝛽(𝑇, 𝑥) of the unknown exact solution by means of an antithetic MC
approximation with 8 196 000MC samples
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