
ETH Library

Testing Graph Database Engines
via Query Partitioning

Conference Paper

Author(s):
Kamm, Matteo; Rigger, Manuel; Zhang, Chengyu ; Su, Zhendong

Publication date:
2023-07

Permanent link:
https://doi.org/10.3929/ethz-b-000627386

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
https://doi.org/10.1145/3597926.3598044

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-7285-289X
https://doi.org/10.3929/ethz-b-000627386
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3597926.3598044
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Testing Graph Database Engines via �ery Partitioning

Matteo Kamm
ETH Zurich
Switzerland

matteo.kamm@student.ethz.ch

Manuel Rigger
National University of Singapore

Singapore
rigger@nus.edu.sg

Chengyu Zhang
ETH Zurich
Switzerland

chengyu.zhang@inf.ethz.ch

Zhendong Su
ETH Zurich
Switzerland

zhendong.su@inf.ethz.ch

ABSTRACT

Graph Database Management Systems (GDBMSs) store data as
graphs and allow the efficient querying of nodes and their rela-
tionships. Logic bugs are bugs that cause a GDBMS to return an
incorrect result for a given query (e.g., by returning incorrect nodes
or relationships). The impact of such bugs can be severe, as they
often go unnoticed. The core insight of this paper is that Query
Partitioning, a test oracle that has been proposed to test Relational
Database Systems, is applicable to testing GDBMSs as well. The core
idea of Query Partitioning is that, given a query, multiple queries
are derived whose results can be combined to reconstruct the given
query’s result. Any discrepancy in the result indicates a logic bug.
We have implemented this approach as a practical tool named GDB-
Meter and evaluated GDBMeter on three popular GDBMSs and
found a total of 40 unique, previously unknown bugs. We consider
14 of them to be logic bugs, the others being error or crash bugs.
Overall, 27 of the bugs have been fixed, and 35 confirmed. We
compared our approach to the state-of-the-art approach to testing
GDBMS, which relies on differential testing; we found that it results
in a high number of false alarms, while Query Partitioning reported
actual logic bugs without any false alarms. Furthermore, despite
the previous efforts in testing Neo4j and JanusGraph, we found 18
additional bugs. The developers appreciate our work and plan to
integrate GDBMeter into their testing process. We expect that this
simple, yet effective approach and the practical tool will be used to
test other GDBMSs.

CCS CONCEPTS

• Information systems→ Database query processing; • Soft-
ware and its engineering→ Software verification and valida-

tion.

KEYWORDS

database testing, graph databases, test oracle, automatic testing

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598044

ACM Reference Format:

Matteo Kamm, Manuel Rigger, Chengyu Zhang, and Zhendong Su. 2023.

Testing Graph Database Engines via Query Partitioning. In Proceedings of

the 32nd ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA ’23), July 17–21, 2023, Seattle, WA, USA. ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/3597926.3598044

1 INTRODUCTION

Graph Database Management Systems (GDBMS) [21, 29, 32] allow
storing and querying data as graphs. In recent years, the popularity
of such systems has increased drastically due to their applicabil-
ity in social networks, knowledge graphs [16], and fraud detec-
tion [36]. Examples of the most popular GDBMSs are Neo4j [10],
JanusGraph [6], RedisGraph [12], and Memgraph [9].

As with any other software, GDBMSs can be affected by various
kinds of bugs. A notorious category of bugs are logic bugs, which
are bugs that cause the GDBMS to compute an incorrect result.
For example, for a given query, a GDBMS might mistakenly omit a
vertex from the result set or include an edge that should not be part
of the result. Such bugs are difficult to detect by users and might
go unnoticed, especially considering the complexity of modern
GDBMSs (e.g., Neo4j has 468k LOC).

The state-of-the-art approach to testing GDBMSs, Grand [39],
is based on differential testing [28]. It generates a test case that is
sent to multiple GDBMSs; if the outputs disagree, at least one of
the systems is assumed to be affected by a bug. Grand found 21
previously unknown bugs in six GDBMSs, of which 18 bugs were
confirmed, 7 were fixed, and 2 were logic bugs. Despite its success
in finding bugs, differential testing has major drawbacks in this
context. GDBMSs support various query languages that differ in
syntax and semantics. Grand was realized for Gremlin, which many,
but not all GDBMSs support; for example, RedisGraph is a popular
GDBMS that lacks support for Gremlin.1 Even for Gremlin, there
are many differences between different GDBMS implementations;
When evaluating Grand, we found that it is prone to false alarms, re-
quiring significant manual effort to analyze potential bug-inducing
test cases. As investigated in Section 5.2, for 1,000 randomly gen-
erated queries, 615 were considered as potential bugs by Grand;
we analyzed a random sample of 30 test cases and found that all
of them were false alarms. In the evaluation of the original paper,
the authors carefully analyzed 709 test cases exposing differences
between GDBMSs, among which they identified only 21 bugs.

1See https://github.com/RedisGraph/RedisGraph/issues/274.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

140

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3597926.3598044
https://doi.org/10.1145/3597926.3598044
https://github.com/RedisGraph/RedisGraph/issues/274
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597926.3598044&domain=pdf&date_stamp=2023-07-13

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Ma�eo Kamm, Manuel Rigger, Chengyu Zhang, and Zhendong Su

Various approaches have been proposed to test Relational Data-
base Management Systems (RDBMS), which can also be affected by
logic bugs. The state-of-the-art test oracle for detecting logic bugs
is Query Partitioning [31], which is based on the idea that from a
given query, multiple so-called partitioning queries can be derived,
each of which computes a part of the original query’s result. By
combining the partitioning queries’ results and comparing the com-
bined result with the original query’s result, discrepancies can be
located that indicate a bug in the DBMS. As a concrete instantia-
tion of this general idea, Ternary Logic Partitioning (TLP) [31] was
proposed. The key insight of TLP is that given an original query,
three partitioning queries can be derived, each of which contains an
additional filtering constraint based on a predicate q . Based on the
insight that this predicateq evaluates to either TRUE, FALSE, or NULL
for a given context, three filter predicates q,¬q , and q IS NULL

are applied, one of which should evaluate to TRUE for a given row.
TLP has been shown to be effective in testing RDBMS. However,
current TLP implementations are not applicable to GDBMS due to
the significant difference between RDBMS and GDBMS. Therefore,
it is not yet clear whether TLP is still effective in testing GDBMS.

Listing 1: An illustrative example of a logic bug found using

Ternary Logic Partitioning in Neo4j.

1 CREATE (:L {p:"test"})

2 CREATE INDEX FOR (n:L) ON (n.p)

3

4 MATCH (n:L)

5 RETURN COUNT(n) // c1 = 1

6

7 MATCH (n:L) WHERE n.p STARTS WITH lTrim(n.p)

8 RETURN COUNT(n) // c2 = 0

9

10 MATCH (n:L) WHERE NOT (n.p STARTS WITH lTrim(n.p))

11 RETURN COUNT(n) // c3 = 0

12

13 MATCH (n:L) WHERE (n.p STARTS WITH lTrim(n.p)) IS NULL

14 RETURN COUNT(n) // c4 = 0

15

16 // TLP validates that c1 = c2 + c3 + c4

The key insight of this paper is that the high-level idea of Query
Partitioning, and specifically TLP, is applicable and effective in
finding logic bugs in GDBMSs and addresses the aforementioned
challenges. As a metamorphic testing approach, TLP checks for
inconsistencies within a single system. Thus, TLP can be applied to
various GDBMSs that might differ in syntax and semantics. Unlike
Grand, TLP does not raise any false alarms. For a fully automated
testing approach, TLP must be combined with a test case generation
approach. To this end, we propose a simple rule-based generator.
The core of the approach is a metamodel generator, which accounts
for the lack of schemas in some of the GDBMSs by creating and
using an internal schema.

Listing 1 shows an example of a bug that we found in Neo4j 4.6
using TLP. The first two CREATE statements in lines 1 and 2 set up
the database state. The first statement creates a new node with label
L and property p with value test. The statement in line 2 creates

an index on the newly created label-property combination. Lines 4
to 14 contain queries, each of which uses a MATCH clause that counts
the number of nodes. The first query in lines 4 to 5 is the original
query, which does not use a filter constraint. The three queries in
lines 7 to 14 are the partitioning queries. The first partitioning query
calculates the number of nodes with label L where the predicate
q evaluates to TRUE, the second where the predicate q evaluates
FALSE and the last where the predicate q evaluates to NULL. Since
the original query outputs 1 and the subsets are disjoint subsets
that partition the initial result, we would expect one of the other
three counts to be exactly one as well. In this case, however, all
other counts were zero, which indicates a logic bug.

We implemented the approach as a tool called GDBMeter. To
evaluate the effectiveness and generality of GDBMeter, we tested
the three well-established GDBMSs Neo4j, RedisGraph, and Janus-
Graph. We found 40 previously unknown bugs, of which 27 have
already been fixed and 14 are logic bugs. By logic bug, we mean
the GDBMS gives incorrect results without errors and warnings.
Note that Grand cannot be applied to test RedisGraph, as it lacks
support for Gremlin. Neo4j and JanusGraph were extensively tested
by Grand, which found 3 bugs in each of these GDBMSs, none of
which was a logic bug. Despite these efforts, we found and reported
18 additional bugs, 5 of which are logic bugs. In addition, the devel-
opers provided positive feedback on our work and plan to integrate
GDBMeter into their testing process. We compared GDBMeter to
Grand and found that Grand reports a large number of potential
bugs, the majority of which are false alarms, while the potential
bugs reported by GDBMeter do not have false alarms.

Overall, this paper makes the following contributions:

• It demonstrates how the Query Partitioning test oracle [31],
in particular, Ternary Logic Partitioning, can be applied on
GDBMSs to find logic bugs.
• It provides a comprehensive evaluation of the oracle on three
widely-adopted GDBMS, in which the technique found 40
new bugs.

2 BACKGROUND

Graph Database Management Systems. GDBMSs store and ma-
nipulate data as graphs. A directed graph� consists of vertices +
and edges �, which we denote as� = (+ , �). The set � is a subset of
+ ×+ and we can think of an edge (E1, E2) = 4 ∈ � as a connection
that starts at E1 and ends at E2. Note that (E1, E2) ≠ (E2, E1) because
these are directed edges for which the order matters. GDBMSs are
often schema-less, meaning that data does not have to adhere to a
fixed structure. This allows software systems to evolve over time
without requiring schema changes and data migrations.

Labeled property graph model. The labeled property graph model
is one of two commonly used models in modern GDBMSs [37].
Neo4j, JanusGraph, and RedisGraph are examples of GDBMSs that
use the labeled property graph model. This model is a refinement of
the pure mathematical model described above. In the labeled prop-
erty graph model, vertices are commonly referred to as nodes and
edges as relationships. Nodes and relationships can have key-value
pairs attached. These pairs are named properties and are usually
specified using JavaScript Object Notation (JSON). Lastly, labels
can be used to mark nodes (relationships). Nodes (relationships) of

141

Testing Graph Database Engines via �ery Partitioning ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

the same label belong together and form a subset of all the nodes
(relationships). Queries typically operate on these label sets for
performance reasons. Labels on relationships are also referred to
as relationship types. Contrary to RDBMSs, where data related to
the connection of two entities is modeled as an intermediate table,
GDBMSs treat edges as first-class citizens, meaning that data can
be directly stored as part of an edge itself.

Person

name: Michael

Company

name: Neo4j

Technology

type: Graphs

Person

name: Jennifer

IS_FRIENDS_WITH

since: 2018

WORKS_FOR
LIKES

WORKS_FOR

until: 2022

Figure 1: An example of a labeled property graph.

Figure 1 shows an example of a labeled property graph. The graph
consists of four nodes and four relationships. The Person node with
property name set to “Jennifer” has a relationship IS_FRIENDS_WITH
with the Person node named “Michael”. This relationship has a
property since that specifies since when this relationship exists.

Graph Database Query Languages. Unlike RDBMSs, which
commonly support the standardized Structured Query Language

(SQL), various common query languages for GDBMSs exist [14, 17].
Some GDBMSs also support multiple languages. The two most
prominent ones [37] are Gremlin [33], which is the graph traversal
language of Apache TinkerPop [3], and Cypher [22] which was
developed for Neo4j [10]. There has been an effort in making
Cypher an open standard called openCypher [11]. Neither of those
two languages is formally specified and they are therefore subject
to change [15].

Cypher. Cypher is a declarative query language that provides a
visual way of matching nodes and their relationships. The ASCII-
art syntax uses round brackets to represent nodes and arrows for
relationships. Listing 2 depicts an example of a Cypher query. It
selects all the movies that were directed by the person named “Tom
Hanks”. The fact that a person directed a movie is represented by a
label on the respective relationship.

Gremlin. Gremlin is a functional graph traversal language that
composes so-called Gremlin steps. The steps are the primitives of
the Gremlin graph traversal machine, which ultimately executes the
supplied queries. In total, there are approximately 30 such steps [4].
Listing 3 shows an example of a query written in Gremlin. First, we
select all the vertices that have the label “Person” and the property

name set to “Tom Hanks”. Then we follow all outgoing edges with
label “DIRECTED” and finally return all the vertices that we can
reach like this which have label “Movie”. The traversal-style is
noticeable in this example, since we specify a path through the
graph by calling a functional API.

Listing 2: An example of a Cypher query.

1 MATCH (:Person {name: "Tom

Hanks"})-[:DIRECTED]->(movie:Movie)↩→

2 RETURN movie

Listing 3: An example of a Gremlin query.

1 g.V()

2 .has("Person", "name", "Tom Hanks")

3 .outE("DIRECTED")

4 .inV()

5 .hasLabel("Movie");

Automated Testing. In this paper, we present a new and auto-
mated way of testing GDBMSs. Automated testing of GDBMSs
consists of two steps. First, an appropriate test case must be gen-
erated. For GDBMSs, this refers to statements creating a database
as well as a query that is subsequently validated. Various genera-
tion approaches have been proposed to test RDBMSs [18, 20, 23].
Importantly, a test oracle is required, which is the mechanism that
validates the result of a test case. In this work, we demonstrate how
TLP, an oracle originally proposed to test RDBMSs, is applicable to
testing GDBMSs.

3 APPROACH

In this paper, we propose an automated testing approach for
GDBMSs that we implemented as GDBMeter, a tool that automati-
cally detects bugs in GDBMS. The core of the approach is its test
oracle, called Ternary Logic Partitioning (TLP), which was previ-
ously proposed to test RDBMSs.

GDBMeter operates in three phases, as shown in Figure 2. In

step 1 , GDBMeter generates a metamodel that describes available

labels for nodes and edges as well as property names and their
respective types. Not every GDBMS provides support for schemas,
so the metamodel aims at generating coherent data by creating

and using an internal schema. Step 2 generates a random graph

based on the metamodel. Additionally, create, read, update, and
delete (CRUD) statements are randomly generated to create diverse
database states, some of which might enable triggering bugs. In

step 3 , a random query is generated and TLP is applied to validate

its result. If a logic bug is detected, GDBMeter reports the bug-
inducing test case to the user. Every logic bug reported by TLP is a
real bug, that is, no false alarms are reported.

3.1 Metamodel Generation

First, GDBMeter generates a so-called metamodel. The metamodel
encodes the available graph labels, properties, as well as their types.

142

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Ma�eo Kamm, Manuel Rigger, Chengyu Zhang, and Zhendong Su

Metamodel
Generator

Graph
Generator

Ternary Logic
Partitioning

State Gen-
erator

1

2

3

GDBMS

uses

Create database

Execute queries

Result set

Figure 2: GDBMeter first uses themetamodel generator to cre-

ate a metamodel, which is then used by the graph generator

and the test oracle. The graph generator uses the state gen-

erator to generate the actual graph using CRUD operations.

Finally, a query is generated and the test oracle is applied.

Any bugs that are identified during this step are reported to

the user.

This model addresses the challenge that some GDBMSs lack support
for schemas. Not using a schema would result in a large number of
meaningless queries as, for example, queries matching for random
labels would likely result in empty results.

Let ! be the set of valid identifiers for labels and properties for the
GDBMS under test. Let) be the types supported by the GDBMS,
such as, strings, booleans, integers and points. The structure of
our metamodel " is a 4-tuple (!+ , !� , %+ , %�), where !+ , !� ⊆

describe the available labels for nodes and edges respectively,
and %+ , %� describe the available properties for nodes and edges
respectively. !+ , !� are sets that contain valid, randomly generated,
strings. %+ (%�) is a function of type !+ ↦→ P(! ×)) (!� ↦→
P(! ×))) where P denotes the power set. This mapping describes
which properties (i.e., string-type combinations) can be found on
which label.

Consider the graph of Figure 1. It has the metamodel " =

(!+ , !� , %+ , %�) with the following components:

!+ = {Person, Company, Technology}

!� = {LIKES, WORKS_FOR, IS_FRIENDS_WITH}

%+ = {(Person, {(name, String)}),

(Company, {(name, String)}),

(Technology, {(type, String)})}

%� = {(WORKS_FOR, {(until, Date)}),

(IS_FRIENDS_WITH, {(since, Date)}),

(LIKES, {})}

(1)

Note that, since the edge label LIKES lacks properties, we use
an empty set to denote its properties. With this information, the
schema of a graph is completely described. GDBMeter can, based
on this information, generate random graphs or, as is used in some
cases, generate a GDBMS-specific schema.

Listing 4: We describe the metamodel using two abstract

classes. One class represents the schema, and the other is an

entity that can be either a node or an edge. For each entity, we

store its associated name as well as the corresponding prop-

erties and types. The actual implementation is more complex

since we have to support different data types depending on

the GDBMS.

1 class Schema {

2 Map<String, Entity> nodeSchema;

3 Map<String, Entity> relationshipSchema;

4 }

5

6 class Entity {

7 Map<String, Type> availableProperties;

8 }

Listing 4 shows the conceptual components of the meta-
model. !+ and !� are the key sets of the maps in the Schema

class. The mappings %+ and %� are represented by the field
availableProperties in the Entity class. To generate a new
metamodel " , GDBMeter first generates !+ and !� . It generates
random, valid, names for the labels. Then, %+ and %� are created by
generating random name-type combinations. For some GDBMSs,
the property names have to be unique and this has to be taken into
consideration during the metamodel generation.

3.2 Graph Generation

Based on the metamodel" , the graph � is generated. To this end,
GDBMeter generates a set of vertices + that adhere to the meta-
model" by following the label-property mapping. For each of the
|+ ×+ | potential directed edges, we generate an edge with a fixed
probability. The edges also adhere to the metamodel " by only
generating valid labels and respective properties.

Algorithm 1 describes the graph generation algorithm. Lines 1–9
describe how we generate a set of properties. To do so, we iterate
over all elements (name-type combinations) of the schema. For each
entry, we generate a random boolean value, if it is true, we include
the current property in our subset. The returned value % consists of
name-value pairs, where the first component is the property name
and the second one is its value.

Lines 10–20 describe how we generate nodes and edges. In both
functions, we first sample a random label. Then, based on the se-
lected label, we select the available properties and generate a subset
of all the available properties. This is done using the algorithm
described above. Finally, the node (edge) is constructed and re-
turned. For the edge construction, D and E describe the outgoing
and incoming nodes respectively.

Finally, lines 30–34 describe how the graph can be generated
based on the metamodel " . First, = nodes are created using the

143

Testing Graph Database Engines via �ery Partitioning ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Algorithm 1 The graph generation algorithm which consists of
four different functions.

1: function makeProperties(()
2: % ← ∅

3: for all (=, C) ∈ (do

4: if RandomBoolean() then
5: % ← % ∪ {(=, generateValue(C))}
6: end if

7: end for

8: return %

9: end function

10: function makeNode(!+ , %+)

11: ;
'
← !+

12: ? ← makeProperties(%+ (;))
13: return Node(;, ?)
14: end function

15: function makeEdge(!� , %� , D, E)

16: ;
'
← !�

17: ? ← makeProperties(%� (;))
18: return Edge(;, ?,D, E)
19: end function

20: function makeGraph(")
21: (!+ , !� , %+ , %�) ← "

22: + , � ← ∅

23: loop = times
24: + ← + ∪ {makeNode(!+ , %+)}
25: end loop

26: for all D ∈ + do

27: for all E ∈ + do

28: if RandomBoolean() then
29: � ← � ∪ {makeEdge(!� , %� , D, E)}
30: end if

31: end for

32: end for

33: return Graph(+ , �)
34: end function

function described before. The number of nodes= can be configured;
in our implementation, it is set to a random value between 1 and
6, which we found to work well empirically. Once all the nodes
are generated, we loop over all possible edges (i.e., every possible
combination of start and end nodes). Then, based on a random
variable with a binomial distribution with ? = 0.5, we generate the
edges. Finally, the graph is constructed and returned.

3.3 Database Generation

The database generator is used to generate random statements that
manipulate the database state. For each statement kind, we define
an empirically-determined interval that describes the number of
statements to be generated. GDBMeter iterates over all available
kinds of statements and generates a random integer = in the spec-
ified interval. This integer = is then used to generate exactly =

queries of this kind using a statement generator implementation.
The generated statements are executed in a random order in be-
tween the create statements of the actual graph. The result of this

random process is a graph database in a deterministic state which
is ready to be tested by our test oracles. Since the query languages
vary between GDBMS, this component must be GDBMS-specific.
Table 1 shows the possible statement kinds for Neo4j.

Many statements require one or multiple expressions. Thus,
we use an expression generator. This generator randomly selects
applicable operators, functions, and leaf nodes (i.e., variables and
constants). Once a maximum depth is reached, only leaf nodes are
considered. This ensures that the expressions generated are not
excessively large. Constants are generated using a random data
generator which is biased to generate boundary values, such as
minimum and maximum integers.

3.4 Ternary Logic Partitioning

Ternary Logic Partitioning is an instance of the general partition
strategy idea proposed by Rigger and Su [31]. The high-level idea of
their approach is that a predicate (i.e., an expression of type boolean
used as a filter) on a node or edge must evaluate to TRUE, FALSE or
NULL. A given query can therefore be partitioned into three new
queries that return disjoint subsets of the original result set. One
query selects all nodes and edges where the predicate ? holds, one
query where ? does not hold, and one for which ? evaluates to NULL.
To implement these three queries, we generate three predicates:
? , NOT ? , and ? IS NULL. Each predicate is then used once in a
filter clause to partition the original result set. These predicates are
randomly generated.

Some GDBMSs lack support for NULL values. For these, the par-
titioning involves only two disjoint subsets. Algorithm 2 shows our
adapted version of TLP. First, we generate a predicate % and a query
& . Then, the partitioning queries (', (,)) are generated based on
the three predicate variants of % . Finally, we select the nodes using
& as well as ', (,) and validate that these two sets are the same. If
they are not, we have detected a bug.

Algorithm 2 The Query Partitioning oracle.

1: function�eryPartitioning(")
2: % ← generateExpression(" , boolean) ⊲ % is a predicate
3: & ← generateSelectionQuery(")
4: ' ← modifyFilterClause(& , %)
5: (← modifyFilterClause(& , ¬%)
6: ⊲) is only generated if the GDBMS supports NULL values
7:) ← modifyFilterClause(& , % IS NULL)

8: return SelectNodes(', (,))
!
= SelectNodes(&)

9: end function

4 IMPLEMENTATION

We implemented our approach as a tool called GDBMeter. Cur-
rently, it supports testing Neo4j, RedisGraph, and Janusgraph.
We implemented it in about 6,000 lines of code (LOC). An
implementation of the TLP oracle requires only about 150
LOC. The project is open-source and publicly available at
https://github.com/gdbmeter/gdbmeter.

The random statement and query generation of GDBMeter pro-
duces syntactically valid statements, which, however, can result

144

https://github.com/gdbmeter/gdbmeter

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Ma�eo Kamm, Manuel Rigger, Chengyu Zhang, and Zhendong Su

Table 1: The different query kinds of Neo4j supported by GDBMeter and simplified example queries.

Kind (Keyword) Example

CREATE CREATE (:LABEL {property: true})

CREATE (TEXT) INDEX CREATE INDEX name FOR (n:LABEL) ON (n.property)

DELETE MATCH (n:LABEL) DELETE n

DROP INDEX DROP INDEX name IF EXISTS

REMOVE MATCH (n:LABEL) REMOVE n.property

SET MATCH (n:LABEL) SET n.property = false

Table 2: We tested the most popular GDBMSs. All numbers

are the latest as of September 2022.

GDBMS DB-Engines2 GitHub LOC3 First Release

Neo4j 1 10.1k 468k 2007
RedisGraph - 1.6k 44k 2018
JanusGraph 7 4.6k 93k 2017

in semantic errors when being executed. For instance, a division
by zero can result in an error. Such semantic errors are difficult to
avoid statically. Thus, we annotated each statement kind with a
list of so-called expected errors (i.e., errors that happen at run time
and are not classified as bugs). If a GDBMS encounters such an ex-
pected error during execution, GDBMeter would not report the test
case as bug-inducing. Determining whether an error is expected
requires domain knowledge. Unlike TLP, which only reports real
bugs, omitting an expected error might raise a false alarm.

5 EVALUATION

In our evaluation, we aimed to evaluate the effectiveness of GDB-
Meter in finding new bugs in GDBMSs as well as compare it with
the state-of-the-art approach Grand [39].

Tested GDBMSs. We considered three GDBMSs, Neo4j, Redis-
graph, and JanusGraph. Table 2 demonstrates their popularity and
importance based on a widely-used ranking as well as the number
of GitHub stars. Neo4j is the most popular, widely-used GDBMS,
and the largest GDBMS of the three GDBMSs that we considered.
It can be queried using the Cypher query language. Similarly, Re-
disGraph, an extension of the well-known NoSQL database Redis,
uses the Cypher query language. While the RedisGraph developers
aim to adhere to the openCypher standard [11], RedisGraph only
supports a subset of Cypher features. JanusGraph uses the Tinker-
Pop graph computing framework [3] and the underlying graph
traversal language Gremlin. Moreover, JanusGraph supports differ-
ent index backends such as Apache Lucene [2] and Elasticsearch
[5]. We tested the latest available versions of these GDBMSs. For
Neo4j, we tested versions 4.4.8 and 4.4.9. We tested the develop-
ment versions of RedisGraph (up to commit 166a643f3), which is
included in version 2.8.19. For JanusGraph, we tested version 0.6.2.

2A database ranking based on various factors: https://db-
engines.com/en/ranking/graph+dbms
3These numbers are best-effort estimates. We calculated them using cloc while exclud-
ing tests.

Test environment. We used a 4-core Intel i7-4790K CPU and
16 GB of memory running Arch Linux 5.19 for our bug finding
effort. To run GDBMeter, we used Java 11 with the JVM flag
OmitStackTraceInFastThrow.4

5.1 Effectiveness

Study methodology and challenges. We tested the GDBMSs over a
period of roughly three months aiming to report unique, previously
unknown bugs. Once we identified a potential bug, we reduced the
bug-inducing test case to a minimal version [38]. Next, we searched
the bug tracker of these GDBMSs to prevent reporting the issue
that had already been reported. Finally, if we believed that the bug
was likely unknown, we reported it to the issue tracker. To avoid
duplicate reports, after reporting a bug, we modified GDBMeter to
avoid generating the problematic pattern until the bug was fixed.

Found bugs. Table 3 shows an overview of the bugs and their
statuses. Overall, we reported 43 bugs. Of these, we consider 40 bugs
as real, previously unknown, unique bugs, 35 of which have been
confirmed by the developers. Of the confirmed bugs, 27 bugs have
been fixed by the developers. This demonstrates that the majority
of our bugs were deemed important by the developers. We reported
2 duplicate bugs; one of these was due to GDBMeter generating
two seemingly unrelated test cases, which had the same root cause.

Table 4 shows the types of the bugs that we found. Overall, 14
were logic bugs that we aimed to find. GDBMeter also found a total
of 10 crash bugs, which are bugs that caused the server to exit
while executing a query. All but one of these bugs were found in
RedisGraph. Although Neo4J is written in Java, we considered a
bug that causes the application to exit with a stack overflow error as
a crash. Some of the crashes were due to illegal memory accesses—
RedisGraph is implemented in the C language, which is known to
be vulnerable to such bugs. We reported 16 error bugs, that is, bugs
that caused an unexpected internal error. Such bugs allowed the
GDBMSs to continue processing subsequent queries. Finally, 1 bug
that we found caused the GDBMS to hang indefinitely. GDBMeter
also found a bug in the Java client for Redis, called Jedis [8], which
did not handle the double values for infinity and Not a Number
(NaN) correctly.

Developer Feedback. We received highly encouraging feedback
on our work. The developers of RedisGraph informed us that they

4Exception classes that are thrown multiple times are optimized by the JIT com-
piler in such a way that the stacktrace is removed. This flag prevents this
behaviour and ensures proper traceability. For more information on this see:
https://github.com/neo4j/neo4j/issues/12874

145

https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://github.com/neo4j/neo4j/issues/12874

Testing Graph Database Engines via �ery Partitioning ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Table 3: We found 40 previously unknown bugs, 27 of which

have been fixed. One bug has been found in Jedis which is

not a GDBMS and therefore not listed here.

Closed

GDBMS Fixed Verified Intended Duplicate

Neo4j 10 13 3 2
RedisGraph 15 20 0 0
JanusGraph 1 1 0 0

Total 26 34 3 2

Table 4: Types of the bugs that we found in Neo4J, Redis-

Graph, and JanusGraph. The client bug was in Jedis, a Java

client for Redis.

GDBMS Logic Crash Error Hang Client

Neo4J 5 1 12 0 -
RedisGraph 9 9 2 1 -
JanusGraph 1 0 2 0 -

Total 15 10 16 1 1

are planning to integrate GDBMeter into their testing process to
extensively test their database. They stressed the usefulness of
GDBMeter with respect to finding clear logic bugs: “We’ve seen

several academic teams developing tools for finding bugs in graph

databases, butmost of the time, the queries are generated using fuzzing

techniques and seem synthetic. This is not a problem by any means,

but we found that researchers couldn’t identify the root cause of the

issues detected. If I understand correctly, your method has the potential

to make this task easier.”
The developer of Jedis appreciated that we provided a helpful

test case that made reproducing the bug easier for them. Most bugs
that we reported for RedisGraph were fixed within a few days,
which could be an indicator of the importance of the bugs.

5.2 Comparison with Grand

We wanted to compare our approach with Grand [39], the state-of-
the-art approach to finding bugs in GDBMSs, which is based on
differential testing. Grand has found a total of 21 bugs, 7 of which
have been fixed. However, in our initial trial runs, we found that
Grand reported many false alarms. This is a severe limitation, as
analyzing the potential bug-inducing test cases requires manual
effort. We did not find this limitation explicitly mentioned in the
paper, which also lacks an evaluation of the false alarm rate.5 Since
TLP only reports real bugs, our main goal was to evaluate the
false alarm rate in Grand. As the false alarm rate was prohibitively
high, we could not conduct a thorough comparison between the
effectiveness of GDBMeter and Grand.

5The paper hints that not all issues reported indicate real bugs: “Each reported discrep-
ancy is logged as a potential logic bug. For each bug reported by Grand, we manually
reproduce and analyze it, to verify whether it is a real logic bug." Furthermore, the paper
mentions that “After carefully analyzing 709 discrepancies, we obtain 21 logic bugs in
the six tested Gremlin-based GDBs." without clarifying whether the remaining 688 test
cases were false alarms or duplicate bug-inducing test cases.

Table 5: A sample of 30 potential bugs that Grand found in

10,000 queries grouped by exception type.

Type Number

ClassCastException (to Comparable) 11
IllegalArgumentException 8
Parsing Error 6
NumberFormatException 3
IllegalStateException 1
NoIndexException 3

Analysis and results. We executed Grand for 10 iterations, each
of which generated 1,000 queries. Grand reported 615 of the 10,000
queries to be potential bugs. We randomly selected 30 potentially
bug-inducing test cases, and analyzed them. Differential testing
reports only the difference in the output, not the issue or root cause
of the issue. Based on our judgment, we classified all of these 30
issues as false alarms. The discrepancies were due to differences in
exception handling, as shown in Table 5. For instance, 11 of those 30
reported bugs were due to ClassCastException being thrown for
HugeGraph and TinkerGraph but not for JanusGraph. In one case,
HugeGraph threw an IllegalStateException, while the other
two GDBMSs simply returned null. 6 of the potential bugs were
due to illegal symbols triggering different parsing errors.

We reported this issue illustrated on three examples on the
project’s issue tracker on GitHub in September 2022.6 The authors
responded in the issue that some of these false alarms were due to
bugs in their tool, and others are cases that Grand considers as bugs
due to the difference in their outputs: “Some of exceptions are caused

by bugs in our tool. For example, we should compare the detailed ex-

ecption messages Not a legal range: [0, -7248751818768758783] instead

of the exception, or maybe we should avoid to generate an odd string

value. We will fix them. The third exception is expected in Grand. We

think they are bugs due to the different outputs. Actually, they are

caused by lack of logic implementation."
We further inspected the 21 bugs reported by the Grand authors,

which they all classified as logic bugs. Different from previous
work [30, 31], which defined logic bugs as bugs that cause an in-
correct result to be computed, the Grand authors considered also
unexpected errors as logic bugs.7 We found that 16 bugs were due
to internal errors, and 2 issue links referred to pull requests created
by Neo4J developers in 2014. We believe that most such internal
errors can be found with an implicit test oracle, such as for the
error bugs that we found. Only 3 issues were due to differences in
the query’s result,8 which we considered as logic bugs in this work.
None of these 3 issues has been addressed by code changes; one
bug was counted as fixed by the Grand authors due to an update to
the documentation.9

6The issue can be found at https://github.com/choeoe/Grand/issues/1
7The paper mentions the following: “Similar to relational database systems, GDBs also
suffer from logic bugs, in which a query returns an unexpected result without crashing
the GDBs. The unexpected results could be incorrect query results (e.g., omitting a vertex
in a graph), or unexpected errors."
8See https://github.com/apache/incubator-hugegraph/issues/1586, https://github.com/
apache/incubator-hugegraph/issues/1734, and https://issues.apache.org/jira/browse/
TINKERPOP-2603
9See https://issues.apache.org/jira/browse/TINKERPOP-2603.

146

https://github.com/choeoe/Grand/issues/1
https://github.com/apache/incubator-hugegraph/issues/1586
https://github.com/apache/incubator-hugegraph/issues/1734
https://github.com/apache/incubator-hugegraph/issues/1734
https://issues.apache.org/jira/browse/TINKERPOP-2603
https://issues.apache.org/jira/browse/TINKERPOP-2603
https://issues.apache.org/jira/browse/TINKERPOP-2603

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Ma�eo Kamm, Manuel Rigger, Chengyu Zhang, and Zhendong Su

6 SELECTED BUGS

This section gives an overview of the interesting bugs we found.
Note that this selection is necessarily biased. For brevity, we show
only reduced test cases that demonstrate the underlying core prob-
lem, rather than the original test cases that found the bugs. The
original queries were typically significantly more complex and
contained statements irrelevant to reproduce the bugs.

NaN value optimization bug in Neo4j. Listing 5 shows a query
that produces the result NaN, false, false. The first value is Not
a Number (NaN) [1]. A comparison with NaN produces the value
false which works as expected in the second expression. The last
expression is where the bug occurs. Neo4j incorrectly assumes that
it can change NOT(0.0 < (0.0/0.0)) into 0.0 >= (0.0/0.0)

which then evaluates to false as any comparison with NaN should.
This assumption is incorrect, because NOT(false) is true and,
therefore, this is a case of an incorrect optimization. This exam-
ple shows that handling NaN values correctly can be challenging,
especially when combined with query optimizations.

Listing 5: Neo4j incorrectly replaces the logical not operation

when an operand is not a number (NaN).

1 RETURN (0.0/0.0), 0.0 < (0.0/0.0), NOT(0.0 < (0.0/0.0))

Neo4j string comparison bug. Listing 6 shows a set of queries
that demonstrate a logic bug. First, a node is created with the prop-
erty p set to "test". Then we ask for all nodes where property p

starts with its lTrim value. lTrim removes leading white spaces
from an expression. In our case, it leaves the value unchanged, and
"test" STARTS WITH "test" evaluates to true. That is why line 2
returns a count of 1. We then create a normal index on the property
p. Finally, we query for the same nodes again, but this time the
count is 0. This test case demonstrates incorrect behavior related
to indices and the function lTrim.

Listing 6: Neo4j does not return a node that is intended to be

part of the result set when an index is present.

1 CREATE (:L {p:"test"})

2 MATCH (n:L) WHERE n.p STARTS WITH lTrim(n.p) RETURN

COUNT(n)↩→

3 CREATE INDEX FOR (n:L) ON (n.p)

4 MATCH (n:L) WHERE n.p STARTS WITH lTrim(n.p) RETURN

COUNT(n)↩→

RedisGraph NaN value comparison bugs. Listing 7 shows a col-
lection of comparison queries written for RedisGraph that return
incorrect results. Each of them returns the exact negation of the
truth value it is supposed to return according to the IEEE Standard
for Floating-Point Arithmetic [1]. This example shows that even
simple comparisons involving NaN values can be implemented
incorrectly. These incorrect results could occur in more complex
queries and result in incorrect result sets.

Listing 7: RedisGraph handles comparisons with NaN values

incorrectly.

1 RETURN 0.0/0.0 = 1

2 RETURN 0.0/0.0 <> 1

3 RETURN 0.0/0.0 <= 1

4 RETURN 0.0/0.0 >= 1

RedisGraph distance query results in an infinite loop. Listing 8
shows a bug that is not considered a logic bug but shows that GDB-
Meter is also able to detect other interesting bugs. RedisGraph uses
RedisSearch [13] as its index backend. To answer certain queries
that involve indices, it asks RedisSearch for an answer. In this case,
the second query involves the distance, a function which calcu-
lates the distance between two points, and since an index is present
RedisSearch is consulted. However, since the comparison involves
a negative value on one side, RedisSearch runs into an endless
loop and never returns. This bug also occurs even when no node
is present. This example shows that the bugs found using GDB-
Meter have an impact on other projects too (e.g., the ones that use
RedisSearch as an index backend).

Listing 8: RedisGraph runs into an infinite loop when com-

paring a distance to a negative value.

1 CREATE INDEX FOR (n:L) ON (n.p)

2

3 MATCH (n:L)

4 WHERE distance(point({ longitude: 1, latitude: 1 }),

n.p) <= -1↩→

5 RETURN n

RedisGraph null value in WHERE clause bug. Listing 9 shows a
logic bug related to null values in WHERE clauses. The expression
(null <> false) XOR true evaluates to null because the left side
of the XOR is already null. When the WHERE clause is not true, then
COUNT(n) should evaluate to zero. However, in this example, Redis-
Graph returns a COUNT(n) of one because it incorrectly assumes
that the expression is true.

Listing 9: RedisGraph returns a node although the WHERE

clause evaluates to null.

1 CREATE (:L)

2 MATCH (n:L) WHERE (null <> false) XOR true RETURN

COUNT(n)↩→

JanusGraph mixed index where one property is not present bug.

Listing 10 shows a logic bug related to mixed indices of multiple
properties. A mixed index can be used for lookups on any combina-
tion of indexed keys and supports multiple condition predicates [7].
Lines 1-3 create an appropriate schema consisting of two properties
p and q. We then index those two properties on label L through a

147

Testing Graph Database Engines via �ery Partitioning ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

mixed index backend. After creating a node with label L and prop-
erty p set to 1, we would expect the query of line 10 to return a
count of 0 since there is no node with label q. Instead, JanusGraph
returns a count of 1 which is incorrect.

Listing 10: JanusGraph returns a node when a mixed index

is present, although the condition does not match said node.

1 l = makeVertexLabel("L").make()

2 p = makePropertyKey("p").dataType(Integer.class).make()

3 q = makePropertyKey("q").dataType(Integer.class).make()

4

5 buildIndex().addKey(p).addKey(q).indexOnly(l)

6 .buildMixedIndex();

7

8 g.addV("L").property("p", 1)

9

10 g.V().hasLabel("L").has("q").count() // 0

11 g.V().hasLabel("L").has("q", not(eq(2))).count() // 1

7 DISCUSSION

Challenges. One challenge that we faced during the testing of
GDBMS, RedisGraph in particular, was that we were unable to re-
produce a class of bugs. The bugs appeared to happen sporadically
during the execution of seemingly unrelated queries. We then re-
ported the bug by providing the stack trace as well as any other
relevant information. Eventually, the developers of RedisGraph
were able to find that one bug occurred due to internal locks not
being held and a respective invariant being violated.

Limitations. Our testing could use more complex features of the
query languages that we support (i.e., Cypher and Gremlin). We
have focused on the most important features such as Create, Read,
Update and Delete (CRUD) operations as well as indexing features.
We found that RedisGraph has some peculiarities when printing
floating-point numbers10 which made it difficult to compare them
exactly to our expected result. Because of this, we used an epsilon
when comparing floating-point numbers during the execution of
our oracle.

8 RELATED WORK

Differential testing of DBMS. Differential testing [28] is a widely-
used testing technique that is applicable when multiple systems
implement the same behavior for a set of inputs. Its core idea is to
pass a common input and if the systems’ outputs disagree, a bug
in at least one of the systems has been detected. In the context of
data-centric systems, this technique was first proposed for testing
RDBMSs and implemented as a system called RAGS [34]. Other
examples include CYNTHIA [35] for testing Object-Relational Map-
ping (ORM) systems, DiffStream [25] for testing distributed stream
processing systems, and APOLLO [24] for testing for performance
regressions of database systems.

Grand [39] realized differential testing for GDBMSs based on
the insight that many GDBMSs support the Gremlin language. For

10For more information see: https://github.com/RedisGraph/RedisGraph/issues/2417

test case generation, Grand uses a model-based approach to gener-
ate valid Gremlin queries. Besides Grand, GDsmith [27] has been
described as an approach to test GDBMSs in a technical report.
GDsmith applies differential testing for systems that support the
Cypher query language, which is another popular query language.
For test case generation, GDsmith uses skeleton generation and
completion to generate semantically valid Cypher queries. GDsmith
is not publicly available, which is why we could not compare with
it. The major drawback of differential testing in this context is
that various graph query languages exist, so Grand and GDsmith
can only be applied to systems that support Gremlin and Cypher,
respectively. Furthermore, even minor differences between the im-
plementation of such query languages cause false alarms, as shown
in Section 5.2. TLP addresses these limitations and is applicable to
testing a single GDBMSs without reporting false alarms.

Metamorphic testing. Metamorphic testing [19] addresses the
test oracle problem by, based on an input and output of a system,
deriving a new input and a test oracle that validates the new output
by comparing it with the initial output. The approach relies on
finding an effectivemetamorphic relation, which infers the expected
results. Ternary Logic Partitioning [31], first proposed for testing
RDBMSs, is a metamorphic testing approach. The authors used is
to find 175 bugs in widely used RDBMSs. The tool in which they
implemented the approach, SQLancer, is highly popular on GitHub
and widely used by companies. In this work, we have demonstrated
that this technique is also applicable in the context of GDBMSs.
TLP’s key advantage is that, unlike differential testing, it raises no
false alarms. To the best of our knowledge, no other metamorphic
testing approaches have been proposed for testing GDBMS.

9 CONCLUSION

This paper has demonstrated that Ternary Logic Partitioning
(TLP), a testing approach that was previously proposed for testing
RDBMSs, can also be applied to testing GDBMSs. In our evaluation
on three widely-used GDBMSs, we have found and reported a total
of 43 bugs, 14 of which are logic bugs. Despite Neo4j and Janus-
Graph having been tested extensively by the state of the art, we
found and reported 18 additional bugs in these GDBMSs. Unlike
differential testing, TLP avoids false alarms, enabling running it
as a fully automated approach. In future work, we expect that this
simple, yet effective approach and the practical tool will be used to
test other GDBMSs and be integrated into their testing processes.

10 DATA AVAILABILITY STATEMENT

GDBMeter, a SQLite database containing the bugs that we found
and a detailed description on how to reproduce the numbers in this
paper are available on GitHub11 and archived in Zenodo [26].

ACKNOWLEDGMENTS

We want to thank the developers of the GDBMSs for verifying
and addressing our bug reports. We are grateful for the feedback
received by the members of the AST Lab at ETH Zürich. Manuel
Rigger was supported by a Ministry of Education (MOE) Academic
Research Fund (AcRF) Tier 1 grant.

11https://github.com/gdbmeter/gdbmeter

148

https://github.com/RedisGraph/RedisGraph/issues/2417
https://github.com/gdbmeter/gdbmeter

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Ma�eo Kamm, Manuel Rigger, Chengyu Zhang, and Zhendong Su

REFERENCES
[1] 2019. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision

of IEEE 754-2008) (2019), 1–84. https://doi.org/10.1109/IEEESTD.2019.8766229
[2] 2022. Apache Lucene. https://lucene.apache.org/. Accessed: September 20, 2022.
[3] 2022. Apache TinkerPop. https://tinkerpop.apache.org/. Accessed: August 10,

2022.
[4] 2022. Apache TinkerPop Documentation. https://tinkerpop.apache.org/docs/

current/reference/. Accessed: September 20, 2022.
[5] 2022. ElasticSearch. https://www.elastic.co/elasticsearch/. Accessed: September

20, 2022.
[6] 2022. JanusGraph. https://janusgraph.org/. Accessed: August 2, 2022.
[7] 2022. JanusGraph, Index Management. https://docs.janusgraph.org/schema/

index-management/index-performance/. Accessed: September 20, 2022.
[8] 2022. Jedis. https://github.com/redis/jedis. Accessed: September 11, 2022.
[9] 2022. Memgraph. https://memgraph.com/. Accessed: August 2, 2022.
[10] 2022. Neo4J. https://neo4j.com/. Accessed: August 2, 2022.
[11] 2022. openCypher. https://opencypher.org/. Accessed: August 10, 2022.
[12] 2022. RedisGraph. https://redis.io/docs/stack/graph/. Accessed: August 2, 2022.
[13] 2022. RedisSearch. https://github.com/RediSearch/RediSearch. Accessed: Sep-

tember 6, 2022.
[14] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and

Domagoj Vrgoč. 2017. Foundations of Modern Query Languages for Graph
Databases. ACM Comput. Surv. 50, 5, Article 68 (sep 2017), 40 pages. https:
//doi.org/10.1145/3104031

[15] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and
Domagoj Vrgoč. 2017. Foundations of Modern Query Languages for Graph
Databases. ACM Comput. Surv. 50, 5, Article 68 (sep 2017), 40 pages. https:
//doi.org/10.1145/3104031

[16] Marcelo Arenas, Claudio Gutierrez, and Juan F. Sequeda. 2021. Querying in
the Age of Graph Databases and Knowledge Graphs. In Proceedings of the 2021
International Conference on Management of Data (Virtual Event, China) (SIGMOD
’21). Association for Computing Machinery, 2821–2828.

[17] Maciej Besta, Emanuel Peter, Robert Gerstenberger, Marc Fischer, Michal Pod-
stawski, Claude Barthels, Gustavo Alonso, and Torsten Hoefler. 2019. Demysti-
fying Graph Databases: Analysis and Taxonomy of Data Organization, System
Designs, and Graph Queries. CoRR abs/1910.09017 (2019). arXiv:1910.09017
http://arxiv.org/abs/1910.09017

[18] Carsten Binnig, Donald Kossmann, Eric Lo, and M. Tamer Özsu. 2007. QAGen:
Generating Query-Aware Test Databases. In Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data (Beijing, China) (SIGMOD ’07).
Association for Computing Machinery, New York, NY, USA, 341–352. https:
//doi.org/10.1145/1247480.1247520

[19] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. 2020. Metamorphic testing:
a new approach for generating next test cases. arXiv preprint arXiv:2002.12543
(2020).

[20] Claudio de la Riva, María José Suárez-Cabal, and Javier Tuya. 2010. Constraint-
Based Test Database Generation for SQL Queries. In Proceedings of the 5th
Workshop on Automation of Software Test (Cape Town, South Africa) (AST ’10).
Association for Computing Machinery, New York, NY, USA, 67–74. https:
//doi.org/10.1145/1808266.1808276

[21] Facebook, Inc. 2021. GraphQL. Working Draft, May. 2021. Online at https:
//spec.graphql.org/.

[22] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs.
In Proceedings of the 2018 International Conference on Management of Data (Hous-
ton, TX, USA) (SIGMOD ’18). Association for Computing Machinery, New York,
NY, USA, 1433–1445. https://doi.org/10.1145/3183713.3190657

[23] Kenneth Houkjær, Kristian Torp, and Rico Wind. 2006. Simple and realistic data
generation. In Proceedings of the 32nd international conference on Very large data
bases. 1243–1246.

[24] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woonhak Kang. 2019.
APOLLO: Automatic Detection and Diagnosis of Performance Regressions
in Database Systems. Proc. VLDB Endow. 13, 1 (sep 2019), 57–70. https:
//doi.org/10.14778/3357377.3357382

[25] Konstantinos Kallas, Filip Niksic, Caleb Stanford, and Rajeev Alur. 2020. Diff-
Stream: Differential Output Testing for Stream Processing Programs. Proc.
ACM Program. Lang. 4, OOPSLA, Article 153 (nov 2020), 29 pages. https:
//doi.org/10.1145/3428221

[26] Matteo Kamm, Manuel Rigger, Chengyu Zhang, and Zhendong Su. 2023. Testing
Graph Database Engines via Query Partitioning. (May 2023). https://doi.org/10.
5281/zenodo.7976809

[27] Wei Lin, Ziyue Hua, Luyao Ren, Zongyang Li, Lu Zhang, and Tao Xie. 2022.
GDsmith: Detecting Bugs in Graph Database Engines. https://doi.org/10.48550/
ARXIV.2206.08530

[28] William M McKeeman. 1998. Differential testing for software. Digital Technical
Journal 10, 1 (1998), 100–107.

[29] Rob Reagan. 2018. Cosmos DB. InWeb Applications on Azure. Springer, 187–255.
[30] Manuel Rigger and Zhendong Su. 2020. Detecting optimization bugs in database

engines via non-optimizing reference engine construction. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1140–1152.

[31] Manuel Rigger and Zhendong Su. 2020. Finding bugs in database systems via
query partitioning. Proceedings of the ACM on Programming Languages 4, OOPSLA
(2020), 1–30.

[32] Ian Robinson, Jim Webber, and Emil Eifrem. 2015. Graph databases: new opportu-
nities for connected data. " O’Reilly Media, Inc.".

[33] Marko A. Rodriguez. 2015. The Gremlin graph traversal machine and language
(invited talk). In Proceedings of the 15th Symposium on Database Programming
Languages. ACM. https://doi.org/10.1145/2815072.2815073

[34] Donald R. Slutz. 1998. Massive Stochastic Testing of SQL. In Proceedings of
the 24rd International Conference on Very Large Data Bases (VLDB ’98). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 618–622.

[35] Thodoris Sotiropoulos, Stefanos Chaliasos, Vaggelis Atlidakis, Dimitris Mitropou-
los, and Diomidis Spinellis. 2021. Data-Oriented Differential Testing of Object-
Relational Mapping Systems. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). 1535–1547. https://doi.org/10.1109/ICSE43902.2021.
00137

[36] Sakshi Srivastava and Anil Kumar Singh. 2022. Fraud detection in the distributed
graph database. Cluster Computing (2022). https://doi.org/10.1007/s10586-022-
03540-3

[37] Ran Wang, Zhengyi Yang, Wenjie Zhang, and Xuemin Lin. 2020. An Empirical
Study on Recent Graph Database Systems. Springer International Publishing,
328–340.

[38] Andreas Zeller. 1999. Yesterday, My Program Worked. Today, It Does Not. Why?
SIGSOFT Softw. Eng. Notes 24, 6 (oct 1999), 253–267. https://doi.org/10.1145/
318774.318946

[39] Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng Qin, Lei Tang, Yu Gao,
Dong Wang, Wei Wang, and Jun Wei. 2022. Finding Bugs in Gremlin-Based
Graph Database Systems via Randomized Differential Testing. In Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis
(Virtual, South Korea) (ISSTA 2022). Association for Computing Machinery, New
York, NY, USA, 302–313. https://doi.org/10.1145/3533767.3534409

Received 2023-02-16; accepted 2023-05-03

149

https://doi.org/10.1109/IEEESTD.2019.8766229
https://lucene.apache.org/
https://tinkerpop.apache.org/
https://tinkerpop.apache.org/docs/current/reference/
https://tinkerpop.apache.org/docs/current/reference/
https://www.elastic.co/elasticsearch/
https://janusgraph.org/
https://docs.janusgraph.org/schema/index-management/index-performance/
https://docs.janusgraph.org/schema/index-management/index-performance/
https://github.com/redis/jedis
https://memgraph.com/
https://neo4j.com/
https://opencypher.org/
https://redis.io/docs/stack/graph/
https://github.com/RediSearch/RediSearch
https://doi.org/10.1145/3104031
https://doi.org/10.1145/3104031
https://doi.org/10.1145/3104031
https://doi.org/10.1145/3104031
https://arxiv.org/abs/1910.09017
http://arxiv.org/abs/1910.09017
https://doi.org/10.1145/1247480.1247520
https://doi.org/10.1145/1247480.1247520
https://doi.org/10.1145/1808266.1808276
https://doi.org/10.1145/1808266.1808276
https://spec.graphql.org/
https://spec.graphql.org/
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.14778/3357377.3357382
https://doi.org/10.14778/3357377.3357382
https://doi.org/10.1145/3428221
https://doi.org/10.1145/3428221
https://doi.org/10.5281/zenodo.7976809
https://doi.org/10.5281/zenodo.7976809
https://doi.org/10.48550/ARXIV.2206.08530
https://doi.org/10.48550/ARXIV.2206.08530
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1109/ICSE43902.2021.00137
https://doi.org/10.1109/ICSE43902.2021.00137
https://doi.org/10.1007/s10586-022-03540-3
https://doi.org/10.1007/s10586-022-03540-3
https://doi.org/10.1145/318774.318946
https://doi.org/10.1145/318774.318946
https://doi.org/10.1145/3533767.3534409

