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Abstract 
Reduced perfusion of cardiac tissue is indicative of coronary artery disease, which is the most prevalent 

cardiovascular disease. At its onset, pathological alterations in the coronary vessel walls occur. While the 

consequences of these pathological changes are initially masked by autoregulation and outward 

remodeling of the vascular wall, sufficient blood flow and oxygen supply may no longer be ensured at 

increased demand i.e. during physical exercise or stress. Ultimately, these changes can result in acute 

myocardial infarction, followed by irreversible myocardial tissue damage if left untreated. Therefore, 

accurate and cost-effective quantification of myocardial perfusion and tissue viability is pivotal for 

diagnosis, treatment planning and individual prognosis. 

Cardiovascular Magnetic Resonance (CMR) provides a powerful toolset to assess myocardial tissue 

perfusion and viability, without exposing the patient to ionizing radiation. Tissue perfusion can be 

quantified by dynamic contrast-enhanced perfusion imaging both under rest and stress. Late gadolinium 

enhancement (LGE) allows for tissue viability assessment and the identification of scars. However, in 

clinical practice, both perfusion and scar imaging have limitations in relation to anatomical coverage, 

patient compliance, accuracy and ease of use. 

Clinically, perfusion imaging is performed in three short-axis slices, covering only parts of the left-

ventricular myocardium. In the research setting, quantitative three-dimensional (3D) perfusion imaging 

methods require extended breathholds of the patient, which often limits their feasibility in practice. 

Improving patient comfort and compliance is therefore pivotal in translating quantitative 3D perfusion 

CMR into clinical routine. 

In the first project of this thesis, a framework for improved 3D perfusion imaging, not requiring breath-

holds of the patient, is presented. The framework comprises motion-informed locally low-rank image 

reconstruction for Cartesian pseudo-spiral undersampled data acquisitions to enable robust free-

breathing whole-heart quantitative perfusion imaging under rest and stress conditions. Using computer 

simulations, phantom and in-vivo data, it is shown that respiratory motion can be corrected under rest 

condition and under pharmacologically-induced stress. Furthermore, it is demonstrated that sector-wise 

quantitative perfusion maps can be derived reproducibly for varying heart rates and breathing patterns. 

In a second project, hypercapnia as an alternative to pharmacological stressors for perfusion imaging is 

explored. An experimental setup and protocols to study hypercapnia-induced vasodilation via a controlled 

increase of the partial pressure of CO2 in blood is presented. Hypercapnic stress is studied in a porcine 

model and changes of myocardial perfusion are assessed using free-breathing CMR perfusion methods. 
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While it is shown that reproducible control of partial pressure of CO2 in blood is possible, no apparent 

changes of myocardial perfusion were detected. The results point to various open questions regarding 

biological mechanisms of autoregulation of vasodilation in experimental models and warrant further 

investigation. 

Two-dimensional and three-dimensional LGE imaging methods are widespread in clinical practice, 

providing a large number of imaging slices and whole-heart coverage. The challenge with these methods 

lies with the labor-intensive and time-consuming processing of the data. Classical post-processing 

methods require manual annotation of healthy and/or scar tissue, which not only introduces observer-

dependent bias and uncertainty but also adds to cost. Therefore, neural networks have been proposed to 

automatize the analysis. 

The third contribution to this thesis is concerned with accuracy of neural network-based automatic scar 

assessment on LGE imaging data. While the use of neural networks allows for time-efficient processing of 

the data, variations in data acquisition and image reconstruction parameters may compromise network 

performance. To this end, network performance degradation due to mismatch of the point-spread 

functions in training and test data was investigated. High-resolution porcine model datasets with 

myocardial infarction were acquired ex-vivo and convolved with point-spread functions of increasing 

widths. It is shown that networks, which were trained on lower-resolution training data and deployed on 

higher-resolution test data, tend to be more robust against variation in test image resolution. On the 

contrary, networks trained at higher resolution lead to systematic overestimation of total and dense scar 

areas if deployed on low-resolution datasets. Accordingly, the study underlines the importance of taking 

the point-spread functions of data acquisition into account to ensure accurate scar detection. 

In summary, current challenges in 3D perfusion imaging and scar quantification have been addressed. 

Following the methods developments, clinical studies are warranted to demonstrate the robustness and 

diagnostic yield in larger patient cohorts.
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Kurzfassung 
Eine verminderte Durchblutung des Herzgewebes ist ein Hinweis auf eine Koronararterienerkrankung, der 

am weitesten verbreiteten kardiovaskulären Erkrankung. Zu Beginn der koronaren Herzerkrankung treten 

pathologische Veränderungen der Herzkranzgefässwände auf. Während die Folgen dieser pathologischen 

Veränderungen zunächst durch Autoregulation und Umbau der Gefässwand kompensiert werden, kann 

bei körperlicher Belastung oder Stress eine ausreichende Durchblutung und Sauerstoffversorgung unter 

Umständen nicht mehr gewährleistet sein. Letztendlich können diese Einschränkungen zu einem akuten 

Myokardinfarkt führen, gefolgt von irreversiblen Myokardgewebeschäden. Daher ist eine genaue und 

kosteneffiziente Quantifizierung der myokardialen Durchblutung und der Gewebevitalität von 

entscheidender Bedeutung für die Diagnose, Behandlungsplanung und individueller Prognose. 

Die kardiovaskuläre Magnetresonanztomographie (MRT) bietet ein leistungsfähiges Instrument zur 

Beurteilung der myokardialen Gewebedurchblutung und -vitalität, ohne den Patienten ionisierender 

Strahlung auszusetzen. Durch die dynamische kontrastmittelverstärkte Perfusionsbildgebung kann die 

Durchblutung des Gewebes sowohl im Ruhezustand als auch unter Stress quantifiziert werden. Die 

Methodik des Late-Gadolinium-Enhancements (LGE) erlaubt die Beurteilung der Vitalität des Gewebes 

sowie die Identifizierung von Narbengewebe. In der klinischen Praxis weisen jedoch sowohl die 

Perfusions- als auch die LGE-Bildgebung Limitationen in Bezug auf die anatomische Abdeckung, 

Genauigkeit, Zuverlässigkeit sowie Benutzerfreundlichkeit auf. 

In der klinischen Praxis ermöglicht die Perfusions-MRT die Aufnahme von drei Schichtbildern, die nur Teile 

der Anatomie der linken Herzkammer abdecken. In der Forschung finden bereits Verfahren zur 

quantitative dreidimensionale (3D) Perfusions-MRT Verwendung; jedoch benötigen diese längere 

Atemstopps des Patienten, was die Durchführbarkeit erschwert und Zuverlässigkeit vermindert. 

Im ersten Projekt dieser Arbeit wird eine Methodik für eine verbesserte 3D Perfusions-MRT, welche 

Aufnahmen ohne Atemstopp ermöglicht, vorgestellt. Unter Einbezug von Bewegungsinformation in der 

Bildrekonstruktion können unterabgetastete Daten, welche entlang einer pseudo-spiralförmigen, 

kartesischen Trajektorie aufgenommen werden, unter Ruhe- und Stressbedingung des Patienten robust 

rekonstruiert werden. Anhand von Computersimulationen, Phantom- und in-vivo-Daten wird gezeigt, 

dass die Atembewegung sowohl in Ruhe als auch unter pharmakologisch-induziertem Stress in der 

Bildgebung korrigiert werden kann. Darüber hinaus zeigt die quantitative Analyse der Perfusionsdaten, 

dass eine sektorbasierte Quantifizierung der Myokardperfusion, trotz unterschiedlicher Herzfrequenzen 

und Atemmuster, reproduzierbar berechnet werden kann. 
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In einem zweiten Projekt wird eine Alternative zu pharmakologischen Stressoren für die Perfusions-MRT 

erforscht. Hierzu werden ein Versuchsaufbau und Protokolle zur Untersuchung der hyperkapnie-

induzierten Vasodilatation durch eine kontrollierte Erhöhung des CO2-Partialdrucks im Blut vorgestellt. 

Der hyperkapnische Stress wird an einem Schweinemodell untersucht und die Veränderungen der 

Myokardperfusion mittels Perfusions-MRT evaluiert. Es wird gezeigt, dass zwar eine reproduzierbare 

Kontrolle des CO2-Partialdrucks im Blut möglich ist, eine davon abhängige Veränderung der 

Myokardperfusion jedoch nicht eindeutig nachgewiesen werden kann. Die experimentellen Ergebnisse 

lassen einige Fragen zur biologischen Wirkweise der Gefässautoregulation im experimentellen Tiermodell 

offen und bedürfen weiterer Untersuchungen. 

Zwei- und dreidimensionale LGE-Bildgebungsverfahren sind in der klinischen Praxis weit verbreitet und 

bieten eine hohe Anzahl von Schichtbildern mit Abdeckung des gesamten Herzens. Diese Methoden 

bringen eine arbeitsintensive und zeitaufwändige Nachbearbeitung der Bilddaten mit sich. Etablierte 

Nachbearbeitungsmethoden erfordern eine manuelle Identifikation von gesundem beziehungsweise 

narbigem Gewebe, was nicht nur eine benutzerabhängige Unsicherheit in sich birgt, sondern auch die 

Kosten erhöht. Um die Nachbearbeitung zu automatisieren bietet sich die Verwendung neuronaler 

Netzwerke an. 

Der dritte Beitrag dieser Arbeit befasst sich mit der Genauigkeit der automatischen Quantifizierung von 

LGE-Bildern mittels neuronaler Netzwerke. Die Verwendung neuronaler Netzwerke ermöglicht eine 

zeiteffiziente Verarbeitung der Bilddaten; jedoch können Unterschiede in der Bildaufnahme und in den 

verwendeten Bildrekonstruktionsparametern die Leistung der Netzwerke beeinträchtigen. Um diesen 

Aspekt genauer zu beleuchten, wurde die Genauigkeit netzwerkbasierter Segmentierung in Abhängigkeit 

von Unterschieden in der Punktausbreitungsfunktion in Trainings- und Testdaten systematisch 

untersucht. Hochaufgelöste LGE-Bilddaten von Schweinemodellen mit Myokardinfarkt kamen zur 

Anwendung, welche mit verschiedenen Punktausbreitungsfunktionen gefaltet wurden, um Kopien mit 

unterschiedlicher Auflösung zu erhalten. Dabei zeigt sich, dass Netzwerke, die auf Trainingsdaten mit 

geringerer Auflösung trainiert und auf Testdaten mit höherer Auflösung angewendet wurden, tendenziell 

robuster gegenüber Schwankungen in der Auflösung der Testbilder sind. Im Gegensatz dazu tendieren 

Netzwerke, die mit höherer Auflösung trainiert wurden und auf Daten mit geringer Auflösung angewendet 

werden, zu einer systematischen Überschätzung der Narbenfläche. Dementsprechend unterstreicht die 

Studie die Wichtigkeit, die der Bildaufnahme zugrundeliegende Punktausbreitungsfunktion zu 

berücksichtigen, um eine genaue Narbenerkennung zu gewährleisten. 
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Zusammenfassend ist festzuhalten, dass in der vorliegenden Arbeit Lösungen zu aktuellen 

Herausforderungen in der 3D Perfusion-MRT und der LGE-basierten Narbenquantifizierung entwickelt 

wurden. Im Anschluss an diese Methodenentwicklungen sind nun klinische Studien nötig, um die 

Robustheit und den diagnostischen Wert der Entwicklungen in grösseren Patientenkohorten unter Beweis 

zu stellen. 
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Chapter 1  

 

Introduction 
According to the World Health Organization, cardiovascular diseases (CVD) are the leading cause of death 

globally and approximately half of all CVDs are due to coronary artery disease (CAD) (1). In Switzerland, 

~18 600 people per year suffer from acute myocardial infarction (MI), i.e. 0.2% of the population (2). 

While advances in diagnosis and timely interventions have reduced the morbidity and mortality in the 

western world, the aging population, lifestyle changes as well as economical constraints continue to exert 

strain on healthcare systems. 

In the healthy human heart, a balance between oxygen demand and oxygenated blood, provided by the 

coronary arteries, is maintained. A decrease of the vascular lumen by a stenosis or alterations in 

microvascular structure can create an imbalance. Initially, the narrowing in the vascular lumen is 

compensated by arterial dilation. This is the onset of the ischemic cascade, which describes the progress 

of CAD and ischemic heart disease through build-up of atherosclerotic plaques to MI. Accumulation of 

atherosclerotic plaques progressively increases the degree of stenosis and deteriorates the vasodilator 

reserve to a point where autoregulation can no longer ensure sufficient oxygen supply under increased 

physical demand, i.e. physical stress. Impaired myocardial perfusion is then followed by abnormalities in 

contractility of the myocardium, changes in the electrocardiogram (ECG) and, eventually, chest pain 

occurs. If left untreated, irreversible myocardial tissue necrosis can be the result. To prevent fatal 

outcomes, an early diagnostic assessment of myocardial perfusion as well as the assessment of potential 

tissue necrosis or scar is pivotal for the optimal care and risk stratification of patients (3). 

Cardiovascular Magnetic Resonance (CMR) imaging provides a toolbox to assess both perfusion and scar 

in a non-invasive fashion (4). Contrast-enhanced myocardial perfusion CMR allows to monitor myocardial 

signal changes in response to the passage of a contrast agent bolus injected intravenously (5). Differences 

in perfusion data, acquired during pharmacologically-induced stress and under rest of the patient, 

subsequently enable the detection of stress-induced tissue perfusion deficits (6–9). Following a pause of 

a couple minutes after contrast agent injection, Late Gadolinium Enhancement (LGE) imaging (10,11) 

offers imaging of myocardial scar and is considered the reference for tissue viability assessment (12). 
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1.1 Motivation 
In clinical practice, CMR perfusion imaging is limited to the acquisition of three to four two-dimensional 

(2D) slices per heartbeat (13). So far, this has proven to be sufficient for diagnostic purposes. However, a 

continuous whole-heart coverage would ensure confidence that no defects of the myocardial tissue have 

been missed. Whole-heart imaging further allows to derive the myocardial ischemic burden, which 

provides a ratio of ischemic to total myocardial volume and can be linked to survival prognosis (14–16). 

Three-dimensional whole-heart perfusion imaging, however, requires substantial scan acceleration to 

accommodate data sampling into a sufficiently short acquisition window. In recent years, a variety of 3D 

whole-heart perfusion imaging and reconstruction approached have been proposed (17). 

A challenge with reconstruction from highly undersampled data is the requirement for sufficient spatio-

temporal data correlations. Therefore, data acquisition is typically conducted in a breathhold, which has 

been particularly limiting during adenosine-induced stress. To increase patient comfort and compliance, 

initial research has been directed towards free-breathing 3D approaches with additional motion 

compensation (18–20). However, conventional motion correction techniques, e.g. navigator gating 

(21,22), do not comply with the required image acquisition in every heart-beat and application of 

retrospective motion binning is limited by the high acceleration factors (23). Intensity- and feature-based 

image registration methods are an option (24) but can be susceptible to dynamic changes in image 

contrast (25,26). Hence, a more sophisticated alternative is to incorporate additional motion information 

from a navigator or initial image registration into the reconstruction algorithm. For 3D perfusion imaging, 

this has been proposed for a highly undersampled Cartesian acquisition but has only been tested in 

shallow breathing and in conjunction with semi-quantitative analysis (18). Employing latest advances in 

compressed sensing (CS) based low-rank reconstruction with patch-based decomposition (27) might allow 

to enhance the conditioning of iterative image reconstruction towards fully quantitative free-breathing 

perfusion imaging. 

Another limitation in clinical practice is that myocardial perfusion is mainly assessed visually. Hypo-

perfused regions are identified by delayed signal enhancement or its absence for several imaging time 

frames. Experienced observers are required to diagnose perfusion defects. To this end, semi- and fully-

quantitative evaluation of perfusion is desirable as it promotes objective diagnosis, simplifies analysis (e.g. 

helps to distinguish types of diseases (28,29)) and may advance diagnostics of microvascular diseases (30). 

However, as stated in current guidelines of the Society for Cardiovascular Magnetic Resonance (SCMR) 

(31), perfusion quantification is currently only considered a complementary diagnostic analysis tool. 

Missing standardization of perfusion models and their evaluation, as well as missing normal values, are 

still a barrier for more widespread use. 
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Conventional stressor agents, such as adenosine, can cause side effects such as chest pressure, pain and 

shortness of breath (4). In addition, the physiological response can vary among patients depending on age 

and sex, and can be modulated by substances such as caffeine (32,33). For some patients, pharmacological 

stressors can be generally contraindicated (4). Therefore, alternatives to pharmacological stressors should 

be explored. 

Myocardial scar mass is of prognostic value in patients with ischemic cardiomyopathies (34–37). In clinical 

practice, manual segmentation of the left ventricle (LV) is required. Manual user interaction is time-

consuming and observer dependent. Hence, it is an obstacle for the successful clinical integration of LGE 

imaging methods. Lately, automatic segmentation methods using convolutional neural networks (CNN) 

have been proposed as a promising alternative (38). However, available datasets often lack details on data 

acquisition and reconstruction as well as post-processing parameters. This can potentially produce biased 

results as it has been shown for CNN-based image reconstruction methods (39). The impact of similar 

effects in myocardial scar segmentation should thus be studied to elucidate the utility of these methods. 
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1.2 Outline 
In Chapter 2 the basic anatomy and function of the human heart is summarized. The physiology of 

myocardial perfusion and its response under stress is outlined. Coronary artery disease in context of the 

ischemic cascade from reduced perfusion to myocardial scar formation is introduced. Furthermore, an 

overview on other clinically relevant imaging methodologies is given. Cardiac and respiratory motion is 

explained.  

In Chapter 3 methods for myocardial perfusion CMR are reviewed. Background information on non-

contrast enhanced perfusion is provided. For contrast-enhanced perfusion, the use of contrast agents and 

imaging requirements in myocardial perfusion imaging are detailed. A closer look at acquisition strategies 

and accelerated image reconstruction for whole-heart coverage is provided. Relevant motion correction 

techniques, dedicated to free-breathing perfusion imaging, are also reviewed. Finally, the basics of semi- 

and fully-quantitative myocardial perfusion estimation are introduced. 

Chapter 4 deals with myocardial fibrosis and scar imaging. Basic imaging requirements and imaging 

strategies are reviewed. Moreover, standard clinical scar and fibrosis analysis is outlined before state-of-

the-art methods for myocardial scar quantification are introduced. Furthermore, network-based 

automatic scar quantification and their latest advancements are summarized. 

In Chapter 5 an implementation of motion-informed iterative reconstruction, combined with Cartesian 

pseudo-spiral undersampling for free-breathing three-dimensional quantitative perfusion CMR under rest 

and stress is given. 

In Chapter 6 an explorative study to assess the response of myocardial blood flow to controlled 

hypercapnic stress in a porcine model is provided. 

In Chapter 7 a systematic investigation of network performance due to mismatch of effective image 

resolution, i.e. the image point-spread function, in training and testing data for network-based myocardial 

scar quantification is presented. 

The findings of this thesis are summarized and complemented by an outlook for future research in Chapter 

8. 
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1.3 Contributions 
Improved patient compliance and optimization of post-processing methods are indispensable to translate 

advances in myocardial perfusion and quantitative scar imaging to a wider clinical community. 

Highly-accelerated dynamic 3D perfusion imaging relies on spatio-temporal data correlation, which is 

compromised for image acquisition in free-breathing in particular. It is shown that additional motion 

conditioning of the reconstruction problem can improve image reconstruction. Building up on improved 

data correlation characteristics from locally low-rank image reconstruction methods, data inconsistencies 

are addressed by incorporation of motion information from a transformation displacement field for each 

time frame. Using motion-informed locally low-rank reconstruction in conjunction with pseudo-spiral in-

out Cartesian data undersampling, improved quantitative 3D perfusion can be acquired in free-breathing 

under rest and stress. 

Hypercapnic stress induced by target end tidal PETC02 was explored as an alternative vasodilator. It is 

shown that by optimization of an automatic gas-blending setup to local requirements, hypercapnia can 

be initiated in mechanically ventilated porcine models. While it is shown that reproducible control of 

blood pCO2 is possible, conclusive changes of myocardial perfusion by means of the quantitative free-

breathing 3D framework are not detectable. 

To advance diagnostics of LGE based viability assessment after MI, a testing framework for current 

network-based automatic scar segmentation is implemented. Forty-five high-resolution 3D LGE datasets 

were acquired from post mortem porcine models. Semi-automatic scar segmentation in ~2500 slices 

allow systematical assessment of U-net based network segmentation degradation due to mismatch of 

effective resolution in training and testing data. It is shown that networks, which were trained on lower-

resolution training data and deployed on higher-resolution test data, tend to be more robust against 

variation in test image resolution. On the contrary, networks trained at higher resolution lead to 

systematic overestimation of total and dense scar areas. Accordingly, the work underlines the importance 

of taking the point-spread functions of data acquisition into account in order to ensure accurate scar 

detection. It is further shown that, within the clinically relevant spectrum of image resolutions, automatic 

network-based segmentation can provide robust segmentation with reduced temporal burden if it is 

properly trained and applied. 
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Chapter 2  

 

Physiological and Clinical 

Background 

2.1 Anatomy and Function 
The human heart (Figure 2.1) is the muscular organ responsible for the distribution of blood and oxygen 

throughout the human body. Located in the inferior mediastinum, it receives deoxygenated venous blood 

from the systemic circulation through the venae cavae. Blood from the lower extremities, the pelvis and 

the abdomen is pumped to the right atrium via the inferior vena cava. Concurrently, blood from the upper 

extremities and the head arrives via the superior vena cava to the right atrium. The blood is then pumped 

through the tricuspid valve into the right ventricle (RV). The function of the RV is to transfer the blood 

through the pulmonary valve and the pulmonary artery into the lungs for oxygenation. Oxygenated blood 

is then transported back through the pulmonary vein into the left atrium and passes the mitral valve to 

arrive at the left ventricle (LV). From there, it is finally pumped through the aortic valve into the aorta and 

distributed back into the circulatory system. Governed by the autonomous conduction system, this 

pumping process involves alternating contraction (i.e. systole) and relaxation of the heart muscle (i.e. 

diastole). The muscle tissue of RV and LV is called the myocardium. The interface at the inner border of 

the myocardial wall is called endocardium, while the myocardium at the outer border is called epicardium. 

The myocardium is supplied with oxygen via the coronary arteries (Figure 2.1 B). The coronary arteries 

include the right coronary artery and the left coronary artery, the latter consisting of the circumflex and 

the left anterior descending arteries. The coronary arteries are rooted in the aortic sinus just downstream 

of the aortic valve. 
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Figure 2.1: The human heart from the inside (A) and with the main coronary arteries from the outside 
(B). Figure adapted and recreated from (40). 

 

Redistribution of the deoxygenated blood from the myocardium is conducted by coronary veins, which 

drain into the so-called coronary sinus in the right atrium. The distinctive feature of myocardial perfusion 

is that the filling of the coronary arteries happens mostly during the diastolic phase of the heart cycle. 

During the contractile, systolic phase, myocardial tissue and its vessels are compressed with decreased 

perfusion. 

2.2 Physiology of Myocardial Perfusion and Stress 
The following review closely follows the textbook on Human Physiology by Pape et al. (41). Myocardial 

perfusion is pivotal to provide the heart muscle with oxygen (O2) and relevant metabolic substances, such 

as adenosine triphosphate (ATP), to provide energy to the myocardial muscle cells (i.e. myocytes). Vice 

versa, the removal of metabolic waste products and carbon dioxide (CO2) is required. An increase in 

physical activity requires more oxygen supply to the body and thus increased cardiac work. At the same 

time, the demand in oxygen in the myocardium rises. It can either be satisfied by increased oxygen uptake 

from the blood or by increasing the myocardial blood flow (MBF). The MBF is 0.7-0.8 ml/g tissue/min at 

resting state, which corresponds to 5% of the total cardiac output per minute (i.e. heart minute volume). 

The unique feature of the coronary system is its remarkably high oxygen extraction rate from blood of 10-

11 ml O2/min/100g tissue at resting state. Under exercise, MBF increases is 4-5 times the normal MBF. 

The ratio of coronary blood flow under stress and at rest is referred to as the coronary flow reserve (CFR). 

Under exercise, myocardial oxygen consumption increases 4-5 times. In theory, the higher demand can 

be met with an increase of blood flow or oxygen extraction. As the rate of oxygen extraction is already 
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quite high, adaptation to exercise is delivered almost exclusively through increased blood flow. MBF can 

be increased 4-5 times the resting rate at maximum. The ratio of coronary blood flow under stress to flow 

at rest is referred to as the coronary flow reserve (CFR). 

The MBF is regulated by complex physiological mechanisms which are governed by physical, neuro-

hormonal, metabolic and endothelial factors. Coronary flow is directly affected by physical factors like 

pressure in the aorta, the left ventricle and the right ventricle. Neuro-hormonal regulation is imposed by 

the vegetative nervous system with its main biochemical neurotransmitters epinephrine and 

norepinephrine (i.e. catecholamines). While norepinephrine mainly acts on alpha-1-adrenergic receptors 

with a systemic vasoconstrictive effect, it also acts on beta-1-adrenergic receptors in the heart (although 

less potent than epinephrine). Increased cardiac output is induced through the following effects of beta-

1-adrenergic receptor activation: increased contractility (i.e. positive inotropic effect), increased heart 

rate (i.e. positive chronotropic effect), increased electric conduction rate (i.e. positive dromotropic effect) 

and increased relaxation during the diastolic phase (i.e. positive lusitropic effect). This increases the 

oxygen demand, which in turn triggers a metabolic response for a net vasodilation of the coronary vessels, 

to combat the systemic vasoconstriction caused by catecholamines. The endothelial part of the vessel 

wall can be stimulated by norepinephrine, acetylcholine, histamine and ATP to produce nitric oxide (NO), 

which prompts the relaxation of the smooth muscle cells surrounding the vessel walls. Furthermore, 

endothelial cells can produce prostaglandins, adenosine and other factors which also act as vasodilators. 

Including vasoconstrictive endothelial factors, endothelial factors are crucial due to their direct proximity 

and close interaction with the myocytes. 

Diagnostic coronary vasodilation can be induced by physical exercise or by pharmacological stress. 

Pharmacological interventions target either adrenergic or adenosine receptors. Dobutamine primarily 

acts on beta-1-adrenergic receptors in the heart which leads to increased heart work and thus a demand-

meeting increase in myocardial perfusion. Its vasoconstrictive (alpha-1-adrenergic receptors) and 

vasodilating (beta-2-adrenergic receptors) effects mostly cancel each other out, making dobutamine an 

excellent emergency drug in cardiac shock (i.e. failure of adequate pumping function). 

Vasodilators such as adenosine, regadenoson and dipyridamole act on endothelial adenosine receptors 

(A2A) in the coronary vessels, forcing vascular smooth muscle cells to relax. Adenosine acts on all A1, A2A, 

A2B and A3 adenosine receptors. It has a very short half-life time of less than 10 seconds, which requires 

continuous administration to induce vasodilation on a minute timescale. In comparison, regadenoson acts 

selectively on A2A adenosine receptors and has a half-life time of 20 minutes. Dipyridamole indirectly 

increases the adenosine concentration in vascular cells by inhibiting the reuptake of endothelial-produced 

adenosine. 
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While being established drugs for diagnostic coronary vasodilation, adenosine, regadenoson and 

dipyridamole cause common side-effects such as chest pressure/pain, shortness of breath, headache, 

dizziness, nausea or flushing. Of note, adenosine prolongs and/or blocks the transmission of electrical 

signals between the atrium and the ventricle, especially when administered as a bolus. In rare cases, the 

continuous administration during stress examination can lead to an atrioventricular (AV) block i.e. a partial 

to complete interruption of the electrical transmission between atrium and ventricle (4). It is hence 

contraindicated in patients with higher degrees of AV blocks (2nd or 3rd) or “sick sinus syndrome”. 

2.3 Coronary Artery Disease 
In coronary heart disease (CAD) the lumen of coronary vessels is reduced as a result of the formation of 

atherosclerotic plaques in the arterial walls, leading to reduced coronary flow Q given reduced vessel r as 

given by the Hagen-Poiseuille’s law: 

 Q =
𝜋𝜋 ∙ 𝑟𝑟4 ∙ Δp

8 ∙ 𝑙𝑙 ∙ 𝜂𝜂
 (2.1) 

 with 𝜂𝜂 being the dynamic blood viscosity and Δp the pressure gradient over the length of the vessel 𝑙𝑙. 

Under stress, the narrowing of the vascular lumen can prevent an appropriate increase of blood flow, 

which results in a mismatch between oxygen demand and tissue supply, i.e. ischemia. In acute myocardial 

ischemia, symptoms such as chest pain and dyspnea can occur. If plaques rupture, thrombus formation 

may lead to a total occlusion of the affected vessel. If left untreated, this can result in acute damage of 

myocardial tissue and, consequently, in myocardial infarction (MI). Chronic undersupply of myocytes 

eventually leads to the formation of a scar, starting in the subendocardial tissue, where, due to the high 

myocardial wall stress, the highest amount of energy and thus oxygen is consumed. 

Viability is the ability of dysfunctional tissue to recover either after a short-term ischemia that only occurs 

during stress or after revascularization, i.e. the interventional opening of occluded coronary vessel 

segments. These two phenomena are referred to as stunning or hibernation, respectively. After an 

occlusion of more than 6 hours, however, tissue damage must be considered irreversible. 

Besides the macrovascular or epicardial coronary lesions, pathological changes of the microvasculature 

can occur, leading to microvascular disease (MVD). However, both entities may express themselves with 

similar symptoms and the measurement of the extent of stenosis does have no accurate implication for 

the treatment. Only perfusion assessment under stress can reveal the exact pathological implications (6). 

Relative to catheter-based fractional flow reserve (FFR) measurements (42), which serve as a reference 

method, CMR perfusion imaging has been shown to be adequate for detecting epicardial coronary disease 

(6) without using ionizing radiation.  
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2.4 Diagnostic Imaging 
Following the guidelines of the European Society of Cardiology (43), patients with suspected CAD are 

recommended to undergo stress testing (44). For a low pretest probability, an anatomical assessment of 

stenoses and calcium scoring using computed tomography (CT) can be sufficient to diagnose. To assess 

tissue perfusion, nuclear imaging techniques such as single-photon emission tomography (SPECT) and 

positron emission tomography (PET) can be utilized, which, however, provide limited spatial resolution, 

are not always available and involve radioactive tracer materials to be injected into the patient. Among 

the nuclear imaging techniques, diagnostic accuracy and image quality of PET have been shown to be 

superior as compared to SPECT (45). 

CMR is a non-ionizing technique that provides morphological anatomical information in addition to 

function, viability and perfusion assessment. Generally, CMR offers more detail on anatomical 

information. Its higher spatial resolution compared to nuclear imaging methods allows to resolve the 

transmural extent of perfusion gradients across the myocardium. Moreover, CMR perfusion showed 

higher sensitivity and superiority for the non-invasive detection of CAD than SPECT (46,47). Because of its 

high reproducibility, non-ionizing radiation and good image quality, CMR has emerged as equally rated 

with echocardiography and PET for the non-invasive assessment in patients with suspected CAD (48). 

While before PET has been the gold-standard for perfusion imaging, also allowing to measure viability and 

function, CMR offers significantly higher spatial resolution (45). Another disadvantage of PET is that stress 

perfusion and viability assessment require administration of two different contrast agents, i.e. 13N 

ammonia and 18F FDG, respectively (49) adding to the burden of ionizing contrast agent exposure and 

patient compliance. However, a disadvantage of CMR perfusion relative to PET is that image acquisition 

is distorted by respiratory motion. While PET imaging is conducted in shallow breathing, for CMR, breath 

holds are the clinically established motion compensation strategy for visual grading and quantification of 

the first-pass perfusion. 

More advanced quantification models meanwhile offer additional kinetic parameters, but require 

uncorrupted signal-time information beyond the first-pass, i.e. over more than 30 seconds, and thus 

require free-breathing acquisitions with additional motion compensation (50). Even more important than 

improved quantitative perfusion modelling, acquisition in breathhold has been limiting, in particular, 

during adenosine-induced stress. In order to increase patient comfort and compliance CMR perfusion 

ultimately aims for free-breathing acquisition. 
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2.5 Cardiac and Respiratory Motion 
Under physical or pharmacologically-induced stress, heart rates reach up to 100 bpm or higher. The 

duration of systole is mainly unaffected (~350 ms) while the duration of diastole shortens (51). In order 

to avoid organ motion induced blurring and motion artefacts, data acquisition needs to be restricted to a 

window where the heart is in relative stasis, i.e. in the end-systolic or mid-diastolic phase. In end-systole, 

the heart is contracted along its long and short axis, leading to a thickened myocardium. This state 

supports whole-heart coverage and the assessment of the transmurality of perfusion deficits, although 

systolic pressure compresses arteries and leads to relative cessation of flow (52). Of note, the contractile 

motion during systole is not solely radial. Due to the helical alignment of myocytes, a component of 

torsion is added over the LV myocardium from apex to base (51). The quiescent phase in end-systole is 

very short (~50 ms) as compared to mid-diastole (>250 ms). However, while the duration of the end-

systole is comparatively constant, the diastasis phase is highly heart rate dependent and varies between 

>250 ms and <50 ms for heart rates between rest and stress, respectively (53,54). In comparison, the 

maximal difference of end-systolic phase under stress is ~10% (55). At rest, 3D perfusion imaging with 

conventional acquisition windows of 190 ms to 250 ms (17) is advantageous in mid-diastole because of 

the long quiescent phase. Nevertheless, end-systolic and diastolic imaging have been shown to be 

comparable for a 3D acquisition window of 145 ms (56). The duration of one respiratory cycle is 4-5 

seconds at rest and may shorten under stress, as shown in Figure 2.2 A for one volunteer, but are generally 

highly subject specific (57). The main direction of respiratory-induced translation and deformation of 

cardiac structures caused by the diaphragm is in the superior-inferior direction, i.e. head-feet, while the 

chest wall moves in the anterior-posterior direction (58). The diaphragm movement can be regarded as a 

linearly translated motion of the heart with hysteresis (51,59). While this linearity suggests a mainly rigid-

deformation of the heart during breathing, 3D deformation studies showed residual non-rigid 

deformation with high inter-subject variability (60). While the diaphragm movement is often considered 

as rigid translational deformation of the heart during breathing (51,59), 3D deformation studies showed 

non-rigid deformation with high inter-subject variability (60). Respiratory organ motion modeling in the 

context of motion compensation further indicated that heart breathing motion can be highly intra- and 

inter-breathing-cycle variant (61). Exemplary displacement fields for non-rigid deformation due to 

respiratory motion are shown for one volunteer in Figure 2.2 B. 
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Figure 2.2: Breathing patterns in feet-head direction as determined by diaphragm navigator in feet-
head (FH) direction (A) in a volunteer under rest and pharmacological stress. Average heart rates at 
rest and stress were 72 bpm and 100 bpm, respectively. (B) Displacement fields obtained from non-
rigid registration at stress. The chest wall moves in the anterior-posterior (AP) direction. Relative 
timings are indicated by triangular markers in (A). 
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Chapter 3  

 

CMR Perfusion Imaging 

3.1 Non-contrast Enhanced Perfusion Imaging 
Arterial spin labeling (ASL) is an endogenous contrast technique to map the perfusion of water. In ASL, 

blood is magnetically labeled (62) and subsequently imaged with a delay to ensure that the labeled blood 

has extravasated into myocardial tissue. A ‘control’ experiment without the ‘label’ pulse is performed in 

addition. The resulting difference image is perfusion-weighted and can be quantified using dedicated 

perfusion labeling and modeling (63–65). A disadvantage of ASL is that the perfusion-weighted signal is 

comparatively low due to low concentration of labeled spins in the imaged tissue and T1 effects (66). 

Moreover, ASL is inherently sensitive to motion and physiological noise (67). 

Native T1 mapping (68,69) is another technique to indirectly probe perfusion differences between 

ischemic and normal tissue. In theory, coronary vasodilation is concomitant with an increasing amount of 

myocardial water and thus results in increased T1 values. This can be referred to as changes in myocardial 

blood volume during ischemia (70). In a proof-of-concept study T1 mapping under rest and adenosine 

stress was used to differentiate ischemic tissue (71), and further works have aimed at contextualizing 

these findings (72–76). It is yet to be seen whether clinical relevance can be established (77). 

Another alternative is to use oxygenation-sensitive CMR by exploiting blood oxygenation level dependent 

(BOLD) contrast. Using BOLD, differences between diamagnetic deoxygenated and paramagnetic 

oxygenated hemoglobin are imaged using T2*-sensitive sequences (78). Given the low contrast-to-noise 

ratio of BOLD CMR, long scan durations are required, which in turn prevent using pharmacological 

stressors. Instead, the mixture of the air inhaled by the patient has been modified to manipulate the 

partial CO2 pressure in the blood to induce vasodilation or vasoconstriction of the myocardial capillaries, 

respectively (79). Alternatively, hyperventilation may be used to reduce blood CO2, which induces 

vasoconstriction and thus reduces oxygen supply along with increased amount of deoxygenated blood 

(80,81). The technique has been shown to detect changes in oxygenation in patients with heart failure 
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and stenoses (82). However, the methodology requires further validation in larger cohort studies to 

elucidate its potential for diagnosis (83). 

3.2 Contrast-enhanced Perfusion Imaging 
Contrast-enhanced CMR perfusion imaging uses paramagnetic contrast agents, which alter T1 relaxation 

times. The apparent relaxation time T1(t) is dependent on the administered Gadolinium concentration 

𝑐𝑐(𝑡𝑡) for a specific relaxivity 𝑟𝑟1 according to (84): 

 
1

Ti(t)
=

1
Ti,0

+ 𝑟𝑟𝑖𝑖 ∙ 𝑐𝑐(𝑡𝑡) (3.1) 

where 𝑖𝑖 = 1,2 correspond to the longitudinal and transverse relaxation times, respectively. Ti,0 refers to 

the relaxation time before enhancement. In order to achieve high T1 contrast, saturation-recovery (SR) 

sequences are employed, where a 90° RF saturation pulse (i.e. adiabatic, single 90° or composite 90°) is 

applied as magnetization preparation according to (85) 

 SSR ∝ 1 − exp (−tSAT/T1). (3.2) 

The choice of saturation delay time (tSAT) is a trade-off between good SNR after long recovery of 

longitudinal magnetization (>400 ms) and acceptable contrast (~100 ms) (86). Figure 3.1 depicts 

exemplary CMR perfusion images and signal intensity curves in a patient with ischemia. Regions-of-

interest labeled as ischemic show reduced signal intensities as compared to healthy tissue. 

Contrast-enhanced CMR perfusion imaging has been widely adopted in the research and clinical settings 

(7,9,28,86–91). In the landmark CE-MARC study (7) the diagnostic performance of the technique has been 

documented relative to SPECT imaging. Following this trial, MR-INFORM provided the evidence that CMR 

imaging is a valid tool to stratify patients (90). The more recent GadaCAD studies established the 

sensitivity and specificity of Gadolinium for detection of CAD by assessing myocardial perfusion and LGE 

imaging and showed the diagnostic accuracy (9). While Gadolinium was previously only approved for off-

label use in the U.S., this study led to the FDA approval of Gadolinium enhanced CMR to assess myocardial 

perfusion and LGE for this indication (9). Investigation of long term prognostic value of stress perfusion 

CMR in a large patient cohort showed that stress CMR is well tolerable and inducible ischemia is a valid 

predictor for higher incidence of major adverse cardiovascular events (91). 
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Figure 3.1: First-pass perfusion image time series in a patient with ischemia (red circle). (A) Perfusion 
images from time frames at (left to right) contrast agent (CA) arrival in the RV, maximum left 
ventricular blood pool (grey circle) enhancement and at myocardial maximum. (B) Corresponding 
signal time curves for blood pool (i.e. arterial input function (AIF), healthy myocardium and ischemia 
in dotted grey, blue and red, respectively. 

 

Although DCE CMR can be categorized as being a non-invasive method as e.g. compared to cardiac 

catheterization, the administration of an extrinsic contrast agent is still necessary. Among paramagnetic 

contrast agents, Gadolinium (i.e. Gadobutrol) is effective due to its molecular structure (92). As free 

Gadolinium is highly toxic, it is shielded by either linear or macrocyclic chelates. However, Gadolinium 

might detach from the protecting chelate, especially in less stable linear chelates. In the past, two 

problematic side effects have been identified in the context of exposure with Gadolinium. Nephrogenic 

systemic fibrosis (NSF) has been reported and associated with the injection of Gadolinium in patients with 

severe renal impairment of dialysis (93,94). After investigation by several agencies, including EMA and 

FDA, the use of macrocyclic instead of linear Gadolinium chelates has been recommended. As reported 

by Ramalho et al. (95), no new cases of NSF have been reported since 2009, which the authors associate 

with the use of macrocyclic agents, smaller doses and restricted use in patients with renal failure. Another 

concern has been the dose-dependent retention of Gadolinium in several organs (i.e. primarily in the brain 

and bones) also in patients with normal renal function (96–98). This finding has been associated with 
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limited kinetic inertness of linear agents (99,100). While the EMA consequently suspended sales of four 

linear Gadolinium contrast agents (101), the FDA issued a safety announcement and recommended a 

consideration of the retention characteristics of each agent especially for patients with higher risk of 

Gadolinium deposition (102). Efforts are made to further investigate potential Gadolinium deposition as 

well as better characterization of symptoms associated with Gadolinium exposure (103,104). General 

considerations regarding the use of contrast material in cardiovascular imaging were reviewed by Paiman 

et al. (105). 

3.2.1 Strategies for Whole-heart Perfusion Imaging 
First-pass perfusion imaging has basic requirements (17,106) and protocol recommendations (4). A low 

temporal footprint is decisive to mitigate image artefacts due to intra-cardiac motion; a quiescent cardiac 

phase between mid- and end-diastole is commonly used, which, however, limits the duration of 

acquisition window. Spatial in-plane resolution is recommended to be <2.5 mm, allowing visual 

assessment of sub-endocardial ischemia and its transmural extent. Slice thickness should be <8 mm. The 

LV has to be covered with a minimum of three slices in short-axis orientation. This allows for left-

ventricular segmentation as proposed by the American Heart Association (AHA) (107). Ideally, a linear 

relationship between administered bolus concentration and signal intensity as indicated in Equation (3.1) 

is ensured, or correction methods need to be applied. Quantitative perfusion analysis (106,108) requires 

an accurate measurement of the arterial input function (AIF). 

For image readout, spoiled gradient echo (SPGRE) (109) sequences with low flip angles are used for 

repeated excitation of the slice volume. Every excitation is succeeded by the acquisition of a single line in 

k-space. In balanced steady state free precession (bSSFP) (110), dephased transverse magnetization is 

refocused to keep the gradient moment constant at zero phase in all gradient directions. The SNR thus 

tends to be higher as compared to SPGRE. Especially for static magnetic fields at 3 T, bSSFP imaging can 

result in high SAR values and sensitivity to off-resonances. While reduced SAR limits lead to imaging speed 

deceleration, frequency shifts due to off-resonances can cause band and ringing artefacts (106,111,112). 

In Figure 3.2 a summary of multiple strategies for perfusion imaging sequences aiming for full heart 

coverage is shown. In 2D, three to four slice readouts with individual SR magnetization preparation pulses 

can be covered per heart cycle. For absolute perfusion quantification the fourth slice may comprise the 

acquisition of the AIF at the root of the ascending aorta or in the LV base. Signal saturation of the AIF can 

be prevented by reduced tSAT < 20 ms. The AIF acquisition window can be reduced to ~50 ms and allows 

acquisition in end-diastole. Interleaving of imaging and quantification acquisition using one contrast agent 

administration is referred to as dual-sequence single-bolus acquisition scheme (113). The order of 
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perfusion imaging and AIF acquisition can be inverted. Total duration for 3 slices plus AIF of ~500 ms 

allows acquisition for heartrates of ~120 bpm.  

 

Figure 3.2: Summary of acquisition schemes. (A) Electrocardiogram (ECG) to estimate the relative 
temporal heart cycle dimensions. (B) Conventional clinical acquisition of an apical (apex), a 
midventricular (mid) and a basal (base) 2D slice as indicated in the inset of cine image in 4 chamber 
view. The 90° saturation pulse is followed by 2D readout after saturation delay (tSAT). Readout per 
slice is triggered to R wave by trigger delay time (ttrigger). For absolute perfusion quantification a 2D 
slice for the acquisition of the arterial input function (AIF) is interleaved. (C) Temporal positioning of 
3D first-pass perfusion sequence with acquisition in systole, acquisition window (tACQ) and AIF 
acquisition in diastole. (D) Simultaneous multi-slice (SMS) acquisition for whole-heart coverage in 
three slice groups. (E) SMS sequence for continuous acquisition without ECG gating. Times of 
acquisition from boxes are not to scale. 

 

Most 3D perfusion CMR is based on a similar acquisition scheme as shown in Figure 3.2 C. Following 

saturation recovery magnetization preparation, a 3D volume covering the LV from apex to base is 

acquired. Non-quantitative works using Cartesian acquisition schemes have been reported in the past for 
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CMR perfusion imaging (14–16,114–118) with an acquisition window ranging from 190 ms to 250 ms (17). 

Quantitative 3D Cartesian dual-sequence single-bolus acquisition has been reported by Wissmann et al. 

(119) with a 3D acquisition window of ~250 ms and tSAT = 150 ms. Temporal footprint of AIF acquisition 

was ~60 ms at tSAT = 30 ms. In similar fashion 3D perfusion has been reported for radial trajectories with 

an acquisition window of 310 ms (120). Fair et al. (19) leveraged stack-of-radials with variable density to 

achieve an acquisition window of 188 ms. Mendes et al. (20) further optimized radial SOS and minimized 

the acquisition window to 150 ms with an interleaved AIF acquisition for interleaved MBF quantification. 

Images were acquired in free-breathing and under stress. Shin et al. (121) reported 3D perfusion CMR 

based on a stack-of-spirals with an acquisition window of 230 ms. Wang et al. (122) reported centric and 

reversed centric 3D stack-of-spirals to be comparable in terms of image quality (250 ms acquisition 

window and tSAT = 150 ms). Both 3D radial works did not interleave AIF acquisition and required dual 

bolus administration for perfusion quantification. 

Another group of acquisition schemes that can achieve whole-heart coverage are 2D simultaneous multi-

slice acquisitions (SMS) (123). In SMS, also referred to as multiband imaging, multiple slice-selective RF 

pulses are used simultaneously and combined with phase modulation as well as parallel imaging allow the 

concurrent acquisition of multiple image slices (124–128). Compared to conventional sequential 2D CMR 

perfusion imaging, multiple slices are acquired in the same duration as a single slice without reduction in 

resolution. As shown in Figure 3.2 D, CMR perfusion using multiple slice groups for whole-heart coverage 

in three cardiac phases can be obtained as first proposed by Nazir et al. (129). The acquisition window per 

Cartesian slice was 175 ms. A similar, also non-quantitative approach, using spiral trajectories perfusion 

was proposed by Yang et al. with temporal footprints of ~50 ms (130). Tian et al. (131) used radial-based 

SMS with comparable image quality. Absolute perfusion quantification from SMS using a dual-bolus 

approach has been reported (132). Quantification using dual-sequence, single-bolus has been shown with 

alternating heart-cycle acquisition (133). 

For continuous acquisition, SR radial SMS ungated perfusion as shown in Figure 3.2 E (134) can be used. 

This has been extended towards motion resolved quantitative perfusion from dual sequence acquisition 

by Tian et al. (135). The continuous acquisition required a dual bolus approach for perfusion 

quantification. 
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However, for SMS imaging, banding artefacts especially at higher field strength as well as reduced SNR  

can be a problem (136). In that regard, 3D acquisitions are advantageous as relative SNR for 3D compares 

to 2D as (17,137): 

 SNR3D ∝ SNR2D ∙ �𝑁𝑁𝑍𝑍 (3.3) 

where 𝑁𝑁𝑍𝑍 is the number of partitions along the longitudinal direction of the heart. 

3.2.2 3D Cartesian k-Space Trajectories 
Regular undersampling along a sheared k-space can readily be applied to 3D volumes and has been 

successfully deployed for 3D FPP as k-t undersampling (114,138). 

 

Figure 3.3: 3D Cartesian k-space trajectories for a single time frame. (A) Outline of basic k-t sampling 
pattern with undersampling on a sheared grid. (B) Cartesian pseudo-spiral out-in golden-angle (GA) 
trajectory. (C) Pseudo radial out-in sampling trajectory. 

 

In Figure 3.3 A, a 3D Cartesian acquisition pattern often used for parallel imaging is shown. It consists of 

a regular undersampling sheared grid, which is shifted over adjacent temporal time frames. The k-space 

center (indicated in yellow) is acquired continuously. More samples can be omitted when Hermitian 

symmetry of k-space is assumed or approximated (139,140). This concept is called Partial Fourier (PF) 

(141). However, due to the occurrence of phase variations in MR images, Hermitian symmetry is not 

guaranteed and cannot always be recovered. 

In Figure 3.3 B, a pseudo-spiral profile ordering scheme is outlined. Consecutive k-space rotation steps 

are according to the golden angle (GA) (142), which was first deployed for temporal 3D CMR acquisitions 

as CASPR (143,144). Similarly, pseudo-radial spokes can be prescribed and rotated following the GA, which 

was introduced as VDRad (Figure 3.3 C) (144). 
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3.2.3 Non-Cartesian k-Space Trajectories 

 

Figure 3.4: Arbitrary k-space trajectories. (A) Stack of spirals. (B) Radial stack of stars. (C) Radial stack 
of stars with variable density along kz-dimension and tiny golden angle distribution ∆𝜙𝜙 = 23.6°. For 
all trajectories, partial Fourier acquisition along the kz-dimension is indicated by light grey trajectories. 

 

The spiral trajectory can cover the full k-space in a single shot with either continuous or variable density. 

If the temporal interval is limited, multiple successive interleaves (𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼), i.e. spiral arms, can be 

implemented. As well as for Cartesian EPI, spiral acquisition with long readout train suffers from off-

resonance effects (145). Hence, a saturation pulse followed by multiple interleaves is favorable. FPP 

imaging can benefit from variable density sampling (146). Spatial coverage can be achieved by either 3D 

spherical or elliptical trajectories. For 3D FPP, stack of spirals (see Figure 3.4 A) has been successfully 

applied (121,122,147). 

Radial sampling trajectories refer to a set of projections, i.e. spokes, which cross the k-space center in a 

star like pattern. In the simplest case, the angle between adjacent spokes 𝜙𝜙 is equiangular and varies 

between 0 < 𝜙𝜙 < 𝜋𝜋 for projections traversing the k-space center. The k-space center is subject to 

oversampling if the k-space at the end of the spokes is sampled in a Nyquist fashion. The Nyquist criterion 

is fulfilled at the edge of the spokes if the distance between spokes is limited by (85) 

 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 ∆𝜙𝜙 ≤
1

FOV
 . (3.4) 

For sampling as 𝜙𝜙𝜙𝜙[0,𝜋𝜋], the number of spokes 𝑁𝑁𝑆𝑆 that fulfill the Nyquist criterion at the outskirts of k-

space is:  

 𝑁𝑁𝑆𝑆 =
𝜋𝜋
∆𝜙𝜙

= 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝜋𝜋FOV . (3.5) 
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Due to the multiple k-space center sampling, a continuous motion-averaging operation is applied. 

Although radial trajectories are inherently slower than other techniques when the Nyquist criterion is 

fulfilled at the edges, the trajectories are versatile and flexible in terms of ordering. Similarly, as in 

Cartesian sampling, Partial Echo and Partial Fourier sampling can be implemented. Further undersampling 

can be achieved by omitting single spokes in the azimuthal direction. GA sampling is used for optimal 

profile distribution and tiny GA (TGA) sampling (148) keeps eddy-current artefacts caused by high gradient 

steps at bay. 3D cylindrical coverage is performed by a stack of 2D radials, depicted in Figure 3.4 B and C 

as stack of stars (SOS) and variable density SOS, respectively. SOS sampling has been successfully applied 

to 3D FPP as undersampled SOS (149) and using variable density SOS in free-breathing (19,20). 

3.2.4 Theoretical Acceleration Requirements 
For 3D FPP sequences reported in literature, the acquisition windows vary between 190 ms and 380 ms 

(17). Following the conservative approximation of Fair et al. (17), an acquisition window of 150 ms is 

considered herein and allows the estimation of acceleration needed for sequences based on standard, 

fully sampled Cartesian, spiral and radial acquisition schemes. Based on the assumption that for Cartesian 

sampling the Nyquist criterion is fulfilled for 

 𝑁𝑁𝑌𝑌 = 2𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚FOV. (3.6) 

Radial projections are Fourier sampled at the outskirts for a number of spokes 

 𝑁𝑁𝑆𝑆 =
𝜋𝜋
2
𝑁𝑁𝑌𝑌. (3.7) 

Potential scan acceleration can then be calculated based on the following imaging geometry: FOV: 300 x 

300 mm2, in-plane resolution: 2.5 x 2.5 mm2, number of phase encodes 𝑁𝑁𝑌𝑌 = 120 and number of partitions 

to cover 100 mm at a resolution of 10 mm is 𝑁𝑁𝑍𝑍 = 10. Total acquisition times tACQ, referring to the specific 

parameters obtained from a 1.5 T Philips Achieva MR system, are summarized in Table 3.1. In order to 

compare the relative readout time per profile, the readout durations are given as tprofile (Cartesian/radial) 

and tinterleave (spiral). Of note, for the fully sampled radial acquisition, the number of required profiles as 

calculated by the vendor software is not by a factor of 𝜋𝜋/2 higher as suggested by Equation (3.17). 

Arguably, this is a more realistic scenario since Nyquist sampling at the outskirts of radial profiles results 

in massive oversampling at the center of k-space. Although being only a rough estimation, it shows that, 

dependent on the employed trajectory, scan acceleration of R>10 is required. Image reconstruction 

methods for the highly undersampled data are introduced in the following sections. 
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 Cartesian Spiral Radial 

TR/TE [ms] 2.1/1.0 

(tprofile = 0.45 ms) 

7.7/0.62 

(tinterleave = 4.75 ms) 

2.5/1.72 

(tprofile = 0.45 ms) 

tACQ = TR ∙ 𝑁𝑁𝑌𝑌 ∙ 𝑁𝑁𝑍𝑍 TR ∙ 𝑁𝑁𝑍𝑍 ∙ 𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼  

(𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼 = 14) 

TR ∙ 𝑁𝑁𝑆𝑆 ∙ 𝑁𝑁𝑍𝑍  

 

tACQ  [ms] 2400 

(Ashutter/ AFOV = 1920) 

1079 2980 

R = tACQ / tACQ-WINDOW ~16 

(Shutter: ~13) 

~8 ~20 

Relative acquisition 

duration per profile 

[%] 

tprofile/TR =  

21.4 

tinterleave/TR=  

58.5 

tprofile/TR= 

18.0 

Total relative 

acquisition duration 

[ms] 

513 

(Shutter: 412) 

630 536 

Table 3.1: Timings of 3D FPP sequences and required undersampling factor R for acquisition window 
tACQ = 150 ms. For every trajectory, TR, number of profiles in plane (𝑁𝑁𝑌𝑌) and/or numbers of partitions 
along z-dimension (𝑁𝑁𝑍𝑍), number of interleaves 𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼 and acquisition duration per interleave 
𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖 (spiral) are from a 1.5 T Philips Achieva MR system. For Cartesian acquisition, reduction in 
number of profiles by an elliptical shutter is considered by a geometrical reduction factor Ashutter/ AFOV. 
The bottom rows refer to the relative acquisition duration per individual readout and its extrapolation 
to the acquisition duration of the 3D volume. 
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3.3 Accelerated Image Reconstruction 

3.3.1 Image Reconstruction Formalism 
The standard model for MR image encoding can be described as 

 𝐝𝐝(𝐤𝐤) = ∫ ρ(𝐱𝐱)𝑉𝑉 𝑒𝑒−𝑗𝑗𝐤𝐤𝐱𝐱d𝐱𝐱, (3.8) 

where 𝐝𝐝 is the data and ρ(𝐱𝐱) the continuous distribution of transverse magnetization in the excited 

imaging volume 𝑉𝑉. In the k-space formalism, the k-space vector 𝐤𝐤 is the time integral of the gradient 

vector 𝐆𝐆(t): 

 𝐤𝐤 = γ ∫ 𝐆𝐆(t)𝜏𝜏
0 dt, (3.9) 

where 𝜏𝜏 refers to the time during which the gradient is switched on. If the distribution of magnetization 

𝜌𝜌(𝐱𝐱) is assumed to be rasterized, the MR signal can be written as a discrete Fourier transform: 

 d(𝐤𝐤) = ∑ρ(𝐱𝐱)e−j𝐤𝐤𝐱𝐱. (3.10) 

In vector matrix notation, the acquired complex valued k-space data d(𝐤𝐤) is given as: 

 𝐝𝐝 = 𝐄𝐄𝐄𝐄 + 𝛈𝛈, (3.11) 

where 𝐄𝐄 is the discretized image object, 𝐄𝐄 is the corresponding encoding matrix and 𝛈𝛈 is the acquisition 

noise vector. For zero-mean Gaussian noise η~𝒩𝒩�0,𝜎𝜎d2Id. � the linear model can be solved in the least 

squares sense to obtain an estimate �̂�𝐢 of the object 𝐄𝐄 as: 

 �̂�𝐢 = argmin
                𝐢𝐢

‖𝐄𝐄𝐢𝐢 − 𝐝𝐝‖22. (3.12) 

The ℓ2-norm is given by ‖∙‖2 = (∑ |𝑥𝑥𝑖𝑖|2𝑖𝑖 )1/2 and enforces data consistency. Using the normal equation, 

one obtains: 

 �̂�𝐢 = �𝐄𝐄H𝐄𝐄�−1𝐄𝐄H𝐝𝐝 = 𝐄𝐄†𝐝𝐝, (3.13) 

where 𝐄𝐄† is the pseudo-inverse of 𝐄𝐄. 
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3.3.2 Parallel Imaging 
By utilizing the spatial information of multiple receiver coils, acceleration can be achieved using parallel 

imaging (PI) methods. In standard SENSE PI (150), uniform undersampling using sampling mask 𝛀𝛀 ∈

{0,1}NsNc×NsNc leads to equidistant fold-over artefacts, i.e. aliasing artefacts in the image domain. To 

resolve the artefact, the coil sensitivities of Nc coils need to be calculated for all voxels Nv to obtain 𝐂𝐂 ∈

ℂNcNv×Nv. The reconstructed image �̂�𝐢 ∈ ℂNv from k-space data 𝐝𝐝 ∈ ℂNsNc, containing Ns k-space samples 

each can be obtained as (151): 

 �̂�𝐢 = argmin
𝐢𝐢

 g(𝐢𝐢) + h(𝐢𝐢) = argmin
𝐢𝐢

 ‖𝐄𝐄𝐢𝐢 − 𝐝𝐝‖22 + λℛ(𝐢𝐢), (3.14) 

where g(𝐢𝐢) and h(i) are the data fidelity and the regularization term, respectively. The encoding operator 

is given as 𝐄𝐄 = 𝛀𝛀 𝓕𝓕𝐂𝐂, with the Fourier transform 𝓕𝓕 ∈ ℂNsNc×NvN𝑐𝑐. The regularizer ℛ(𝐢𝐢) together with 

regularization coefficient λ allows incorporating appropriate prior knowledge or assumptions about the 

image. If the reconstruction is applied to non-Cartesian k-space trajectories, the encoding matrix operator 

𝐄𝐄 additionally incorporates a gridding operator 𝐆𝐆† that resamples the acquired data onto a rectilinear 

grid.  

For all regularized imaging problems, the optimal regularization parameter λ has to be chosen. It can be 

selected by minimizing the mean reconstruction error between a fully sampled reference and the 

reconstruction in case a reference is available. Alternatively, the optimization problem can be constrained 

if the ideal noise level ε is known, i.e. by using a grid search, a λ can be found for which ‖𝐄𝐄𝐄𝐄 − 𝐝𝐝‖22 ≈ ε. 

Furthermore, using the L-curve method (152), λ can be chosen based on a trade-off between the data 

fidelity g(i) and the regularization term h(𝐢𝐢). 

3.3.3 Spatio-temporal Parallel Imaging 
The conventional frame-by-frame reconstruction problem can be extended by exploiting spatio-temporal 

redundancy present in dynamic data. In k-t SENSE (138), prior knowledge is incorporated as a set of low-

resolution dynamic training images. A weighted least-squares approach is used to solve for the dynamic 

image series �̂�𝐄k−t SENSE with T dynamic frames 𝐄𝐄 = [𝐢𝐢1, … , 𝐢𝐢T],where 𝐌𝐌𝑚𝑚−𝑓𝑓  denotes the training data in 

the spatial-temporal frequency domain: 

 �̂�𝐄k−t SENSE = argmin
𝐄𝐄

‖𝐄𝐄𝐄𝐄 − 𝐝𝐝‖22 + λ�� 𝐌𝐌x−f �
−1
𝐅𝐅𝑖𝑖→𝑓𝑓𝐄𝐄�

2

2
. (3.15) 

Operator 𝐅𝐅𝑖𝑖−𝑓𝑓 denotes the Fourier transform to convert from time 𝑡𝑡 to temporal frequency 𝑓𝑓. This 

reconstruction concept was deployed to CMR perfusion imaging (153,154). A limitation of the approach, 



Accelerated Image Reconstruction 

26 

however, is its sensitivity to breathing motion where 𝐅𝐅𝑖𝑖−𝑓𝑓 is the Fourier transform in the temporal domain. 

After the application of adaptive filtering in x-f space, this process allows for an artefact free repopulation 

of the k-t space.  

To improve the robustness of the approach low-rank properties of the spatio-temporal data were included 

using principal component analysis (PCA) leading to k-t PCA (155). In k-t PCA, temporal basis functions are 

derived from the training data by applying a PCA basis transformation 𝐁𝐁𝑓𝑓→𝑝𝑝𝑝𝑝. With the training data 

coefficients 𝐌𝐌𝑚𝑚−𝑝𝑝𝑝𝑝  the dynamic image series is reconstructed as: 

 �̂�𝐄kt−PCA = argmin
𝐄𝐄

‖𝐄𝐄𝐄𝐄 − 𝐝𝐝‖22 + λ�� 𝐌𝐌𝑚𝑚−𝑝𝑝𝑝𝑝 �−1𝐁𝐁𝑓𝑓→𝑝𝑝𝑝𝑝𝐅𝐅𝑖𝑖→𝑓𝑓𝐄𝐄�
2

2
. (3.16) 

k-t PCA has extensively been used for CMR perfusion imaging (14–16,114–118). Schmidt et al. (18) further 

extended the scheme to include non-rigid motion correction (see section 3.4). While primarily used in 

conjunction with undersampled Cartesian trajectories, all k-t approaches are applicable to non-Cartesian 

trajectories as well (156). 

3.3.4 Compressed Sensing 
The theory of Compressed Sensing (CS) was introduced by Candès and Donoho in 2004 (157,158). Its 

application to MRI can be considered as an extension of iterative PI methods and requires three conditions 

(158): 

i) Sparsity of signal or transforms thereof. 

ii) Incoherence of undersampling artefacts: Artefacts are of random nature to allow the distinction 

between undersampling, fold-over artefacts and unfolded signal. Undersampling masks have to 

be incoherent in time. 

iii) Non-linear image reconstruction (159): 

 �̂�𝐢CS = argmin
𝐢𝐢

‖𝐄𝐄𝐢𝐢 − 𝐝𝐝‖22 + λ�𝐅𝐅𝒔𝒔𝒔𝒔𝐢𝐢�1, (3.17) 

with 𝐅𝐅𝒔𝒔𝒔𝒔 the sparsifying, e.g. Daubechies-wavelet, transform. ‖∙‖1 the ℓ1-norm given by ‖∙‖1 = ∑ |𝐢𝐢𝑖𝑖|𝑖𝑖 . The 

balance between data consistency and the sparsity is controlled by the regularization weight λ. 
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Joint Temporal and Spatial Regularization 

3D FPP inherently entails sparsity mainly in the spatio-temporal domain and makes it an ideal candidate 

for the application of CS. The 4D dataset enables a higher compressibility of the dataset as the extra 

dimension allows for the application of several sparsifying transforms. In practice, the various CS CMR 

reconstruction methods differ in their application of the sparsified regularization term. 

Besides the discrete wavelet transform, total variation (TV) (160) can be employed, which penalizes 

variation of the signal, favoring piece-wise constant representations. TV can either be applied in the 

temporal or spatial domain for pixels 𝑝𝑝 in dimensions 𝑑𝑑 as TV(𝐄𝐄)t =  ‖𝛁𝛁𝑖𝑖𝐄𝐄‖1 and TV(𝐄𝐄)x =

∑ �∑ |𝛁𝛁𝑑𝑑𝐄𝐄|𝑝𝑝𝟐𝟐  𝑑𝑑 𝜖𝜖 𝑑𝑑𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑𝑝𝑝 𝜖𝜖 𝑝𝑝𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑑𝑑 , respectively. Application in both domains has been deployed as 

spatio-temporal constrained reconstruction (STCR) for 3D radial SOS FPP (149,161) as 

 �̂�𝐄STCR = argmin
                    𝐄𝐄

‖𝐄𝐄𝐄𝐄 − 𝐝𝐝‖22 + λ1 TV(𝐄𝐄)spatial + λ2 TV(𝐄𝐄)temporal. (3.18) 

By Fair et al. (162), this reconstruction was employed to explore free-breathing 3D FPP (see section 3.4). 

At this point it shall be mentioned that the spatio-temporal redundancies in dynamic data are also 

exploited for CS in k-t SPARSE (163) for only one coil, in k-t SPARSE-SENSE (164) for multiple coils, thereby 

reducing blurring, and in k-t FOCUSS (165). Wissmann et al. showed feasibility of kt-PCA, k-t Sparse and k-

t SPARSE-SENSE in work on spatio-temporal fidelity in highly-undersampled 3D FPP (166).  

A combination of low-rank and sparsity approaches has been proposed for dynamic CMR and perfusion 

by Lingala et al. as k-t SLR (167,168) for radially undersampled data in 2D. The image reconstruction is 

posed as a spectrally regularized matrix recovery problem. Temporal image time frames are sorted in a 

Casorati matrix representation of k-space data, where data per time frame form a column vector 𝐄𝐄 ∈

ℂN𝐱𝐱N𝐲𝐲×N𝐭𝐭, with NxN𝐲𝐲 k-space samples and Nt dynamics. Posed in the Casorati form, data can be 

represented as a combination of spatial (𝐔𝐔) and temporal (𝐕𝐕) basis functions and a diagonal weighting 

matrix 𝐁𝐁 as 𝐄𝐄 = 𝐔𝐔T𝐁𝐁𝐕𝐕. The rank of 𝐄𝐄 is defined by the number of non-zero elements in 𝐁𝐁. The spectral and 

sparsity penalized image reconstruction is then posed as (167,168): 

 �̂�𝐄kt−SLR = argmin
                            𝐄𝐄

‖𝐄𝐄𝐄𝐄 − 𝐝𝐝‖22 + λ1(‖𝐄𝐄‖℘)℘ +λ2(TV(𝐄𝐄)x−t), (3.19) 

where the Hessian-Schatten ℘-norm (169) is used as surrogate for the rank (‖𝐄𝐄‖℘)℘ = ∑ SV(𝐄𝐄)𝑝𝑝
℘

𝑝𝑝𝜖𝜖𝑝𝑝𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑑𝑑  

for ℘<1 and the singular values (SV) of 𝐄𝐄. TV regularization is imposed by TV(𝐄𝐄)x−t =

∑ �|(𝛁𝛁𝑚𝑚𝐄𝐄)|𝑝𝑝𝟐𝟐 + ��𝛁𝛁𝑦𝑦𝐄𝐄��𝑝𝑝
𝟐𝟐 + 𝛼𝛼|(𝛁𝛁𝑖𝑖𝐄𝐄)|𝑝𝑝𝟐𝟐𝑝𝑝𝜖𝜖𝑝𝑝𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑑𝑑 , where 𝛼𝛼 controls the relative weight of the temporal TV 

regularization. Accordingly, kt-SLR is similar to the previously mentioned STCR when λ1 = 0. Especially in 
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presence of motion, temporal TV is preferable over Tikhonov regularization as it maintains the non-

smoothness of motion. For DCE FPP, temporal TV regularization can introduce staircase artefacts in the 

signal-intensity time curves as TV promotes piecewise-constant signals. 

A related reconstruction concept to kt-SLR was deployed as Low-Rank PLUS Sparse (L+S) matrix 

decomposition reconstruction (170) based on work by Candès et al. (171). It was proposed as being 

specifically suitable for DCE CMR. While the relatively static background information can be modeled by 

a low-rank matrix component, the varying contrast enhancement in the myocardium is modeled by a 

sparse matrix component (172). The matrix decomposition is a PCA based technique which is able to 

recover contaminated data from undersampled CMR acquisitions. Accordingly, the low-rank (L) and 

sparse (S) component have to be found. Image reconstruction is posed as convex optimization with ‖∙‖∗ 

being the nuclear norm, i.e. the sum of singular values of 𝐋𝐋, and is identical to the Hessian Schatten ℘-

norm for ℘ = 1. For time-series data, 𝐝𝐝 is again reorganized into the Casorati matrix and the problem 

posed as: 

 
�̂�𝐢L+S = argmin

𝐄𝐄
‖𝐄𝐄𝐢𝐢 − 𝐝𝐝‖22 + λ𝐿𝐿‖𝐋𝐋‖∗ + λ𝑆𝑆‖𝐅𝐅t 𝐒𝐒‖1 

s. t. 𝐢𝐢 =  𝐋𝐋 + 𝐒𝐒 
(3.20) 

Among other examples for successful application to CMR purposes, L+S performed well in 8-fold FPP 

(170). Aliasing artefact reduction without degradation of temporal fidelity as compared to conventional 

CS has been reported with potential for free-breathing applications in abdominal perfusion. 

Optimization for Compressed-sense Reconstruction 

While linear reconstruction problems in PI can be solved iteratively using conjugate gradient descent (173) 

or gradient descent, non-linear CS require algorithms such as the proximal gradient descent (PGD) method 

(174) or the alternating direction method of multipliers (ADMM) (175,176). Following work by Boyd et al. 

(175) and Liu et al. (177), PGD can be used when the reconstruction problem is posed in the synthesis 

form: 

 �̂�𝐢 = argmin
𝐢𝐢

 ‖𝐄𝐄𝐢𝐢 − 𝐝𝐝‖22 + λ‖𝐏𝐏𝐢𝐢‖1, (3.21) 

where the operator 𝐏𝐏 is invertible. The problem can then be transformed into 

 �̂�𝐢 = argmin
𝐢𝐢

 �𝐄𝐄𝐏𝐏−𝟏𝟏𝐢𝐢 − 𝐝𝐝�2
2 + λ‖𝐢𝐢‖1, (3.22) 

with 𝑓𝑓(𝐢𝐢) =  �𝐄𝐄𝐏𝐏−𝟏𝟏𝐢𝐢 − 𝐝𝐝�2
2

. The approximation sub problem that has to be solved per iteration is then 

posed as 
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 argmin
 𝐢𝐢

1
2𝛼𝛼
‖𝐢𝐢 − (𝐢𝐢0 − 𝛼𝛼∇𝑓𝑓(𝐢𝐢0))‖22 + λ‖𝐢𝐢‖1, (3.23) 

with 𝛼𝛼 being the step length. The proximal mapping operator is then defined as  

 proxλ,ℎ(𝐳𝐳) = argmin
 𝐢𝐢

 1
2
‖𝐢𝐢 − 𝐳𝐳𝑘𝑘‖22 + λℎ(𝐢𝐢), (3.24) 

for iteration 𝑘𝑘 and with 𝐳𝐳𝑘𝑘 = 𝐢𝐢𝑘𝑘 − 𝛼𝛼∇𝑓𝑓(𝐢𝐢𝑘𝑘). The reconstruction problem per iteration step is then posed 

as  

 𝐳𝐳(𝜅𝜅+1) = 𝐢𝐢(𝜅𝜅) − 𝛼𝛼𝐄𝐄T(𝐄𝐄𝐢𝐢(𝜅𝜅−1) − 𝐝𝐝)  (3.25) 

and 

 𝐢𝐢(𝜅𝜅+1) = argmin
 𝐢𝐢

 1
2
‖𝐢𝐢 − 𝐳𝐳𝑘𝑘‖22 + 𝛼𝛼λ𝑅𝑅(𝐢𝐢) =� prox𝛼𝛼,λ,𝑅𝑅(𝐳𝐳𝑘𝑘). (3.26) 

Of note, the convergence rate of standard proximal gradient descent is linear (O(1/𝜅𝜅)) but can be 

accelerated to O(1/𝜅𝜅2) by inclusion of Nesterov-acceleration into the proximal gradient method (178). 

ADMM optimization is required when 𝐏𝐏 in Equation (3.14) is not invertible, e.g. in case of TV 

regularization, where 𝐏𝐏 = 𝛁𝛁). The major idea of ADMM is to perform variable splitting and decompose 

optimization of the data and penalty terms, imposing constraints on the splitted variables: 

 
argmin

𝐳𝐳,𝐢𝐢
 𝑔𝑔(𝐢𝐢) + ℎ(𝐳𝐳) +

υ
2
‖𝛁𝛁𝐢𝐢 − 𝐳𝐳‖22  

s. t.𝛁𝛁𝐢𝐢 = 𝐳𝐳, 
(3.27) 

with 𝑔𝑔(𝐢𝐢) = 1
2
‖𝐄𝐄𝐢𝐢 − 𝐝𝐝‖22, ℎ(𝐳𝐳) =  λ‖𝐳𝐳‖1 and the augmentation parameter υ > 0. This equivalent 

augmented constrained optimization problem can be solved using the dual ascent method, yielding 

ADMM iterations with scaled dual variables: 

 𝐢𝐢(𝜅𝜅+1) = argmin
 𝐢𝐢

 
1
2
‖𝐄𝐄𝐢𝐢 − 𝐝𝐝‖22 +

υ
2
‖𝛁𝛁𝐢𝐢 − 𝐳𝐳𝜅𝜅 + 𝐮𝐮𝜅𝜅‖22, (3.28) 

 𝐳𝐳(𝜅𝜅+1) = argmin
 𝐳𝐳

 λ‖𝐳𝐳‖1 +
υ
2 �

𝛁𝛁𝐢𝐢(𝜅𝜅+1) − 𝐳𝐳 + 𝐮𝐮𝜅𝜅�2
2, (3.29) 

and the dual step: 

 𝒖𝒖(𝜅𝜅+1) = 𝒖𝒖(𝜅𝜅) + 𝛁𝛁𝐢𝐢(𝜅𝜅+1) − 𝐳𝐳(𝜅𝜅+1). (3.30) 
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Theoretically, ADMM convergence is similar to PGD (O(1/𝜅𝜅)) but can be slower when compared to 

Nesterov-accelerated PGD. However, for both ADMM and PGD, acceleration methods are available (173). 

Most importantly, ADMM depends on the augmentation parameter υ which has to be tuned in addition 

to the regularization λ. This is also the case for PGD, where the step length 𝛼𝛼 also has to be chosen. 

However, an 𝛼𝛼 for the convergence of proximal gradient steps should be in the order of magnitude of the 

operator 𝐄𝐄 norm for which efficient line search methods exist. υ on the other hand can be very difficult 

to determine in practice (173). While the final image reconstruction is not affected, the convergence rate 

is highly dependent on proper tuning, which poses a significant disadvantage for reconstruction problems 

which are posed in the analysis form and thus require ADMM optimization (173). 

Local Low-rank Regularization 

Instead of treating dynamic variations by the sparsity regularization term, the low-rank model renders 

itself sufficient if locally low-rank models are employed (27). Dynamic signal variations have a better 

chance to be correlated locally if the nuclear norm of distinct local patches (i.e. 3D blocks) is regularized. 

Thus, spatio-temporal correlation of imaging data is leveraged by penalizing the nuclear norms of patch 

matrices stacked along time. For zero-filled k-space data, the Casorati matrix is of shape 𝐝𝐝 ∈ ℂNsNc×T with 

T dynamics, Nc coils, containing Ns k-space samples. Locally low-rank (LLR) reconstructed image data 

𝐄𝐄LLR ∈ ℂNv×T of Nv voxels is obtained by solving the following convex optimization problem (27): 

 �̂�𝐄LLR = argmin
𝐄𝐄

‖𝐄𝐄𝐄𝐄 − 𝐝𝐝‖22 + 𝜆𝜆LLR ∑ ‖𝐏𝐏𝑏𝑏𝐄𝐄‖∗𝑏𝑏∈U , (3.31) 

with the undersampling operator 𝛀𝛀 ∈ {0,1}NsNc×NsNc, Fourier transform 𝓕𝓕 ∈ ℂNsNc×NvN𝑐𝑐, coil 

sensitivities 𝐂𝐂 ∈ ℂNcNv×Nv and regularization weight λLLR. The distinct patch extraction operator 𝐏𝐏b ∈

{0,1}nxnynz×Nv refers to the b-th patch, where U is a set of patch indices, with patch size of nx × ny × nz 

voxels. The patch extraction is a linear operation that can be computed efficiently. The image 

reconstruction is thus decomposed for each patch and allows to apply PGD optimization to solve the 

problem. In Figure 3.5 B the local rankedness for varying patch sizes is depicted. Compared to the global 

patch over the entire image, smaller patches are of lower rank. While for global and larger patches (Figure 

3.5 C and D) images are blurred, with smaller patches (Figure 3.5 E), local correlation can reduce blurring. 

However, with smaller patches motion characteristics are masked, as motion introduces variance in the 

penalty term, which is effectively averaged over all timeframes when the reconstruction problem is 

solved. Similarly, if 𝜆𝜆LLR is chosen too high, motion characteristics are suppressed. For larger distinct 

patches, motion characteristics are preserved but can result in blocking artefacts at the coherent edges 

of the patches. 
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Figure 3.5: Patch based locally low-rank (LLR) reconstruction (A) Varying sizes of patches P. (B) 
Corresponding rankedness for reconstructions with patch size from 120 x 120 (global) to 8 x 8. (C-E) 
Corresponding LLR images with varying patch sizes. 

 

Blocking artefacts can be mitigated using overlapping patches. Again, the temporal patch projections are 

then considered separately. In a final step, overlapping boundary areas are averaged. However, using 

overlapping patches is computationally expensive. E.g., for a matrix size of 120 x 120 x 10 and patches of 

8 x 8 x 8, 144 000 SVDs have to be computed per iteration as compared to 144 for distinct patches. 

Proximal gradient descent cannot be directly applied as the patch extraction operator for overlapping 

patches is not invertible. The reconstruction is then no longer posed in the synthesis form, as it is for 

distinct patches and alternatives such as ADMM (175,176) have to be used. In the given reconstruction 

problem in Equation (3.31), blocking artefacts are alleviated by randomly selecting a set of patch indices 

U to introduce incoherence to the border regions of the patches. The computational burden of the distinct 

patch extraction operation can be reduced by randomly shifting the image over the grid of the given patch 

size instead of randomly changing the geometry of the patch. Note that adding random patch shifts in 

PGD iterations approximates overlapping patch geometry by computing proximal maps of distinct 

patches. Although this approach is effective and widely employed in medical image reconstruction 

methods (27), it should be mentioned that no rigorous proofs on the approximation quality are known to 
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the author. As a general remark, SVD is faster on CPU than on GPU. Acceleration of the reconstruction on 

GPU is faster, as Fourier transforms can be computed more efficiently. Computational efficiency can 

further be improved by neglecting the calculation of SVD for patches over a certain upper bound. For 

patches above the threshold, SVD is zero. Non-convergence of the LLR reconstruction problem to global 

minima results in intensity flickering in the temporal domain as well as residual aliasing artefacts. 

In conclusion, the choice of hyperparameters is very important for CS (especially regarding quantitative 

analysis) and poses a problem for 3D DCE FPP imaging. Dynamic frame by frame imaging and the required 

high acceleration factors render fully-sampled GT image acquisition infeasible. In addition, every 

consecutive image acquisition lacks comparability as CNR characteristics differ due to residual contrast 

agents in blood and tissue. Furthermore, CS alters the noise statistics and can lead to reduced contrast. It 

is thus difficult to find solutions that match conventional noise characteristics known from e.g. fully-

sampled SENSE acquisition reconstructions. As observed in LLR reconstruction, intensity flickering 

indicates the non-convergence of CS image reconstruction problems. Additional hyperparameters that 

keep the standard deviation of background intensity variation to a certain value can be defined. As an 

alternative, grid search can be applied to empirically select parameters that generalize well for various 

given datasets by image quality rating from experienced users. 

Typical CS artefacts are blurring, lack in contrast, blocking artefacts (e.g. especially for LLR). Compared to 

PI methods, CS can be considered as an extension with a dedicated undersampling pattern that allows 

higher scan acceleration R and hence requires more sophisticated methods to solve the optimization 

problem. Conventional PI is unbiased, i.e. without regularization, and reconstruction accuracy is reduced 

as compared to CS methods. PI is commonly faster and easier to solve. However, PI is limited in high scan 

acceleration and is susceptible to noise in the data. 
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3.4 Motion Correction and Compensation 
Techniques 

The most prevalent motion correction and compensation techniques applied to first-pass perfusion 

imaging are summarized in the following. 

Image domain registration in its basic form is an image warping technique (179). Application of inverse 

transformation results in a registered image, where transformation models can either be rigid, global (i.e. 

affine) or non-rigid. Respiratory-induced organ motion is often considered a rigid translation and thus 

locally rigid models are applied for registration of CMR perfusion data (180,181). Zhou et al. (182) 

successfully applied linear phase shifts in k-space according to motion information from a rigid registration 

step. Assuming 3D translations only, the application of phase ramps is also feasible for 3D imaging.  

Motion correction using non-rigid motion models to account for local variations can be achieved by 

application of displacement fields. The series of moving images 𝐄𝐄𝑚𝑚 =  [𝐢𝐢1, … , 𝐢𝐢𝑇𝑇] are registered to a fixed 

target image 𝐄𝐄𝑓𝑓 by the displacement fields 𝐃𝐃𝑓𝑓𝑚𝑚 = �𝐃𝐃1T, … ,𝐃𝐃𝐼𝐼
T�T for 𝐃𝐃 ∈ ℝNv×𝐼𝐼 according to: 

 𝐄𝐄𝑓𝑓 ≈ 𝐄𝐄𝑚𝑚 ∘ 𝐃𝐃𝑓𝑓𝑚𝑚. (3.32) 

While a benchmark study (183) did not show benefits of non-rigid over rigid motion correction, later work 

by Scannel et al. (25) motivated non-rigid registration by the need to distinguish between bulk motion 

and signal intensity changes. First, bulk motion compensation is applied where the image series 𝐄𝐄 is 

decomposed into a low-rank component 𝐋𝐋 and a sparse component 𝐒𝐒 according to: 

 
argmin

𝐋𝐋,𝐒𝐒
‖𝐋𝐋‖∗ + λ‖ 𝐒𝐒‖1 

s. t.  𝐋𝐋 + 𝐒𝐒 = 𝐄𝐄  
(3.33) 

Deformation fields derived from 𝐋𝐋 are then used to compensate for bulk motion. In a second step, motion 

correction refinement using increasing values of λ and finer grids is applied. In a similar fashion, in a work 

by Xue et al. (184), perfusion contrast changes are decoupled from respiratory motion by iterating 

between non-rigid motion correction and perfusion transform-based model image estimation. 
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For 3D perfusion imaging, the displacement field vector is defined as 𝐃𝐃 = �𝐃𝐃1T, … ,𝐃𝐃𝐼𝐼
T�T for 𝐃𝐃 ∈ ℝNv×𝐼𝐼 . It 

can be obtained by solving the optimization problem (185):  

 𝐃𝐃� = argmin
𝐃𝐃

 𝐸𝐸D(𝐃𝐃; 𝐄𝐄𝑓𝑓 , 𝐄𝐄𝑚𝑚) + 𝜆𝜆𝐸𝐸R(𝐃𝐃), (3.34) 

where 𝐸𝐸D is an image dissimilarity metric and 𝐸𝐸R is a spatial displacement regularization term. While sum 

of squared intensity differences are often used as dissimilarity metric, PCA based similarity measures are 

advantageous (186) and thus the nuclear norm is employed.  

 𝐃𝐃� = argmin
𝐝𝐝∈{𝐃𝐃1,…,𝐃𝐃𝑇𝑇}

‖[𝐢𝐢1 ∘ 𝐃𝐃1, … , 𝐢𝐢𝐼𝐼 ∘ 𝐃𝐃𝐼𝐼]‖∗ + 𝜆𝜆∑ �∑ �∇𝑘𝑘𝐃𝐃𝑗𝑗�𝑝𝑝𝑖𝑖
2

𝑗𝑗𝑘𝑘𝑝𝑝𝑖𝑖 . (3.35) 

As regularization term vectorial total variation (VTV) (187) for each spatio-temporal voxel location (𝑝𝑝, 𝑡𝑡) 

can be used. Furthermore, such a non-rigid registration can be isotropic if the displacement field is 

parametrized as 𝐃𝐃𝑖𝑖 = 𝐃𝐃𝑖𝑖(𝐃𝐃𝑖𝑖′) with B-spline coefficients 𝐃𝐃𝑖𝑖′  over isotropic number of voxels in each spatial 

dimension. For quantitative 3D perfusion, non-rigid image domain registration was used by Mendes et al. 

(20) to align images. 

Another type of motion compensation technique includes radial self-gating and motion binning. Since 

radial sampling repeatedly traverses the k-space center (23,135,188,189), the acquired radial interleaves 

can be sorted into cardiac and respiratory phases. For perfusion imaging, these methods are feasible with 

moderate undersampling factors (135,190). Retrospective binning has also been proposed for multiband 

excitation to achieve whole-heart phase-resolved quantitative perfusion imaging by Tian et al. (135). 

For 3D perfusion CMR, dual-step motion compensation approaches, which use initially obtained image 

information to improve the conditioning of iterative image reconstruction methods, can be beneficial. In 

an extension of 3D k-t PCA by Schmidt et al. (18), at first, motion is extracted from the low-resolution 

training and the undersampled k-t dataset by non-rigid image registration. The x-pc domain can then be 

motion corrected by translation of single time frames to a specific respiratory state. 

In a similar fashion, Chen et al. (191) proposed the block low-rank sparsity with motion-guidance (BLOSM) 

motion correction method for 2D perfusion CMR. Motion information is first deduced by registration of 

initial low-resolution reconstruction. Data is then divided into blocks or patches to exploit local sparsity. 

These blocks are then tracked over time using the registration displacement fields. While this method has 

not been applied to 3D perfusion acquisition, it has been extended to reconstruct from continuously 

acquired radial, simultaneous multi-slice data by Tian et al. (135). 
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3.5 Perfusion Quantification 
Perfusion quantification requires segmentation of epi- and endocardial contours as well as a region of 

interest in either the left-ventricular blood pool or, preferably, in the aortic root. Conventionally, the 

myocardium is segmented into circumferential sectors in every slice according to the AHA segment model 

(107). The segmental summation of pixel intensities results in sector-wise and arterial, i.e. AIF, signal 

intensity-time profiles. 

3.5.1 Semi-quantitative Estimation 
Several semi quantitative measures can be derived from signal intensity time (SI-t) curves of contrast 

enhancement as summarized in Figure 3.6. As signal intensities are given in arbitrary units, measured 

signal-time profile characteristics are most suitable for relative comparisons. 

 

Figure 3.6: Characteristic signal intensity-time curve for myocardial contrast enhancement from left-
ventricular myocardium (MYO) and the arterial input function (AIF). Semi-quantitative perfusion 
estimates can be deduced from linear models of the MYO and AIF upslope. Figure adapted from (108) 
using own data. 

 

The myocardial upslope (192) can be derived from a linear regression over the initial myocardial signal 

enhancement. The area under the myocardial SI-t curve is the signal curve time integral from the 

beginning of the upslope to the time of peak AIF signal (193). Peak SI refers to the maximum of the 

myocardial SI-t curve. Reduction of this peak value can be linked to coronary artery stenosis (87). Another 

parameter is the time to peak. It denotes the time between contrast arrival and the maximum of 
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myocardial signal (194). In general, all semi-quantitative measures are prone to AIF variability between 

rest and stress. Especially under pharmacological stress, semi-quantitative measures reportedly 

underestimate an increase in perfusion (195). Furthermore, the presented semi-quantitative measures 

do not allow for inter-subject comparison, which limits their diagnostic value. 

3.5.2 Absolute Perfusion Quantification 
Absolute myocardial perfusion quantification relies on either the model-independent central volume 

principle (196) or the compartment models describing the kinetics of contrast agent distribution in the 

tissue of interest (108,197). Prior to application of the models, prerequisites must be met. First, the AIF 

has to be acquired with high fidelity. Furthermore, the relationship between signal and contrast agent 

concentration needs to be established. To achieve these goals, a dual sequence approach is used 

(113,198,199), which involves two separate imaging modules with different saturation delay times.  

Signal to Concentration Conversion 

Independent of the underlying kinetic assumption, the acquired signal has to be converted. Given the 

signal model of the saturation recovery Cartesian sequence, T1(t) translates to signal I(t) as (197,200) 

 I(t) = I0 ∙ �(1− exp (− tsat
T1(t)

)) ∙  a(t)n−1  + (1 − exp (− TR
T1(t)

)) ∙ 1−a(t)n−1

1−a(t)
�, (3.36) 

with  

 a(t) = exp �−
TR

T1(t)� cos α, (3.37) 

the baseline signal for fully relaxed magnetization I0, saturation delay tsat, repetition time TR, flip angle 

α, and the number of profiles sampled until k-space centre n. Only by keeping track of n, the correct signal 

weighting according to the effective saturation delay of the current profile is considered. The AIF is 

acquired with a short saturation delay and for both the tissue and the AIF signal the linear relation 

between signal intensity I(t) and contrast agent concentration can be obtained from Equation (3.1) as 

 𝑐𝑐(𝑡𝑡) =  1
𝑖𝑖1
∙ � 1

T1(t)
− 1

T1,0
�, (3.38) 

where T1,0 refers to the normal relaxation time of the tissue without contrast enhancement. It can either 

be used based on literature values or from acquisition of a T1 MOLLI scan (201). I0 can then either be 

fitted or taken from a prepend scan, acquired without saturation pre-pulse (202,203).  
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Model-free Quantification 

Model-independent central volume principle (196) implies that no functional kinetic model is considered. 

Instead, one volume of perfusion 𝑣𝑣𝑑𝑑 with a single in- and outlet is considered Figure 3.7 A. The rate of 

blood accumulation in the tissue is driven by the concentration differences of the contrast agent flowing 

into and out of the region multiplied by the rate of blood flow 𝐹𝐹 (108,204). 

For absolute perfusion quantification the relation between concentration in the myocardial tissue, the AIF 

and the MBF can be established as a mathematical deconvolution problem. The impulse response function 

(IRF) relates to the contrast dynamics as (197) 

 cMYO(t) = IRFFermi(t) ∗ cAIF(t), (3.39) 

with cMYO(t) and cAIF(t) referring to the myocardial tissue and AIF concentrations, respectively. The 

deconvolution of Equation (3.39) can then be conducted with the Fermi deconvolution model, which 

applies only for the first-pass of the contrast agents, with the corresponding IRF (197,205): 

  IRFFermi(t) =  𝐹𝐹 ∙
1 − ν

1 − ν ∙ exp(−μt) ∙ Θ(t − tshift) (3.40) 

The fitting parameters μ and ν do not entail any physiological meaning. The time difference between AIF 

and myocardial signal tshift is reflected by the Heaviside step function Θ. However, for 𝑡𝑡 = 0, the 

amplitude of  IRFFermi corresponds to the MBF. Convolution of  IRFFermi(t) with the cAIF(t) of AIF leads 

to an estimated model tissue curve. This curve is then fitted to the actual sector- or pixel-wise measured 

tissue curve. The least-squares fitting routine optimizes the model parameters in order to obtain the 

impulse response function with the desired MBF value. 

As the central volume principle does not entail any information about the physiological kinetics, it is 

limited to the MBF parameter. Only the first-pass of perfusion can be reflected by the  IRFFermi and 

primarily relates to the vascular transit of contrast with accurate estimation yield. If more than the first-

pass is considered, the MBF is underestimated. More complex physiological models are required to 

consider kinetics beyond the first-pass. 
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Figure 3.7: Summary of kinetic models. (A) Single distribution volume 𝑣𝑣𝑑𝑑, where only the rate of blood 
flow 𝐹𝐹 at in- and outlet is considered i.e. independent of the underlying physiology (‘black box’). (B) 
Two-compartment model with exchange of extracellular contrast agent (blue dots) between plasma 
𝑣𝑣𝑝𝑝 (grey) and extracellular space 𝑣𝑣𝑖𝑖, described by the permeability-surface area product 𝑃𝑃𝑃𝑃. (C) Multi-
compartment distributed parameter model, referred to as Blood tissue exchange model (BTEX), 
where spatio-temporal kinetics are considered. (A,B) adapted from (206–208). (E) adapted from 
Bassingthwaighte et al. (209). 

 

Model-based Quantification 

In theory, model-based perfusion quantification should encompass as much of the involved physiological 

kinetics as possible. An overview on models is given in (206). The contrast agent is diluted in the plasma 

and the extravascular extracellular space while a single inlet and outlet are assumed. The flowrate F 

corresponds to the MBF. The exchange between the plasma and extracellular space is governed by the 

permeability surface area product PS while 𝑣𝑣𝑝𝑝 and 𝑣𝑣𝑖𝑖 describe the relative intravascular and extracellular 

spaces. 

The two-compartment model (Figure 3.7 B) describes the bi-directional exchange between plasma and 

extracellular space (210). The model is referred to as lumped two-compartment model, where a uniform 

distribution of contrast agent concentration is assumed (108). Similar to the Fermi deconvolution, the 

lumped compartment model can be condensed into a time dependent IRF. The solution of the time 

dependent differential equation describing the tracer kinetics in the model is given as (206): 
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 IRF2−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(t) = 𝐹𝐹 ∙ exp�−
𝐹𝐹
𝑣𝑣𝑝𝑝
� t + 𝑃𝑃𝑃𝑃 ∙ exp �−

𝑃𝑃𝑃𝑃
𝑣𝑣𝑖𝑖
� t , (3.41) 

which can then be fitted to the measured concentration time-curve. In that case, the fitting parameters 

do not only entail shape describing character but are related to the physiological parameters described in 

the tracer kinetic model by 𝑣𝑣𝑝𝑝, 𝑣𝑣𝑖𝑖, 𝑃𝑃𝑃𝑃 and F. Of note, the physiological meaning of the additional 

parameters is only relevant if myocardial concentration curves beyond the first-pass are considered. 

As not considering spatial concentration variations may result in underestimation of 𝑣𝑣𝑝𝑝 and 𝑣𝑣𝑖𝑖 (108), 

distributed parameter models, where a higher contrast agent concentration at the inlet as compared to 

the outlet are considered, are preferable (Figure 3.7 E). Hence, in addition to the compartmentation 

between plasma and extracellular space spatial variation of the concentration is considered in the 

longitudinal direction of the vascular space. Originally developed as blood tissue exchange model (BTEX) 

by Bassingthwaighte et al. (209), Kellman et al. (198) applied such a distributed parameter model to 

estimate MBF. It assumes no exchange into the intercellular space and neglects metabolic consumption. 

The spatial variation of contrast concentration is considered and described by a system of partial 

differential equations (PDE): 

 
𝜕𝜕c𝑝𝑝(x, t)

𝜕𝜕𝑡𝑡
=
−𝐹𝐹𝑝𝑝𝐿𝐿
𝑣𝑣𝑝𝑝

𝜕𝜕c𝑝𝑝(x, t)
𝜕𝜕𝑥𝑥

+
𝑃𝑃𝑃𝑃
𝑣𝑣𝑝𝑝

∙ �c𝑖𝑖(x, t)−c𝑝𝑝(x, t)� + D𝑝𝑝
𝜕𝜕2c𝑝𝑝(x, t)
𝜕𝜕𝑥𝑥2

 (3.42) 

 
𝜕𝜕c𝑖𝑖(x, t)

𝜕𝜕𝑡𝑡
= −

𝑃𝑃𝑃𝑃
𝑣𝑣𝑖𝑖

∙ �c𝑖𝑖(x, t)−c𝑝𝑝(x, t)� + D𝑖𝑖
𝜕𝜕2c𝑖𝑖(x, t)
𝜕𝜕𝑥𝑥2

 (3.43) 

Again, subscripts 𝑝𝑝 and 𝑒𝑒 correspond to the plasma and extracellular space, respectively. D is the axial 

Diffusion coefficient, 𝐿𝐿 denotes the length of the capillary and x is the direction along the capillary. 

Boundary conditions are a fixed range of capillary length from 0 to 𝐿𝐿, which can be set to 1 mm (209), 

with a fixed number of spatial steps. Blood plasma concentrations c𝑝𝑝(t) relate to the AIF concentration 

c𝑏𝑏(t) and the blood hematocrit (HCT), according to c𝑝𝑝(t) = c𝑏𝑏(t)
1−𝐻𝐻𝐶𝐶𝐼𝐼

. For healthy subjects, blood HCT = 0.42 

(198) is assumed. Blood volume and flow are then derived as F𝑏𝑏 = F𝑝𝑝
1−𝐻𝐻𝐶𝐶𝐼𝐼

 and V𝑏𝑏 = V𝑝𝑝
1−𝐻𝐻𝐶𝐶𝐼𝐼

, respectively. 

Plasma and extravascular diffusion coefficients for Gadobutrol contrast agents can be considered as: D𝑝𝑝 =

1𝑒𝑒 − 5 cm2/s and D𝑖𝑖 = 1𝑒𝑒 − 6 cm2/s (211). As the PDEs cannot be solved as a simple set of exponentials, 

an iterative fitting algorithm (L2-norm) procedure can be used to yield 𝑣𝑣𝑝𝑝, 𝑣𝑣𝑖𝑖, PS and 𝐹𝐹, i.e. the MBF. 

While this dilution model offers increased details regarding the underlying physiological complexity it 

comes with the drawback that the differential equation problem is an overdetermined system and a 

contrast time curve can result from more than one sets of parameters. An explanatory equivalent time 

curve is shown in Figure 3.8. 
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Figure 3.8: Signal-time equivalent curves derived from simulating the blood tissue exchange model 
(BTEX). Blood flow F𝑏𝑏= 0.68 ml/g/min (blue line) corresponds to PS = 1.32 ml/g/min, V𝑝𝑝 = 9.7 ml/100 
mg and 𝑣𝑣𝑖𝑖 = 20.8 ml/100mg. Blood flow F𝑏𝑏= 0.75 ml/g/min (markers) corresponds to PS = 1.45 
ml/g/min, V𝑝𝑝 = 10.67 ml/100 mg and 𝑣𝑣𝑖𝑖 = 22.88 ml/100mg. Adapted from (212). 

 

Another downside of the complexity is the increased vulnerability to noise when applying conventional 

least-squares fitting. CNNs can be used to predict perfusion parameters fast and accurately. In absence of 

sufficient amounts of quantified perfusion data, training can be performed with synthetically generated 

data simulated with the BTEX model. However, while CNN prediction is considerably faster, only using 

training data from BTEX modelling can be prone to overfitting (213). A more promising approach is 

automatic MBF quantification using physics informed CNNs as recently proposed by van Herten et al. 

(214). 
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Chapter 4  

 

Myocardial Fibrosis and Scar CMR 

4.1 Background 
Myocardial scar imaging by LGE imaging (11) is considered the reference standard for myocardial viability 

assessment (12) in the context of acute and chronic MI (215,216). Myocardial scar mass is also of 

prognostic value in patients with ischemic cardiomyopathies (34–37). 

 

Figure 4.1: Signal-time curves of contrast enhancement in first-pass perfusion and late Gadolinium 
enhancement in a porcine model with acute myocardial infarction. Figure adapted from (11). 

 

LGE relies on contrast enhancement using Gadolinium contrast agent material temporarily trapped in 

tissue (Figure 4.1). Accordingly, LGE imaging is performed 10 to 20 minutes post injection (10). 
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Differences in contrast agent uptake can already be seen after 3 to 5 minutes in the early enhancement 

images. While contrast agent concentrations are significantly reduced in healthy myocardium, infarcted 

tissue remains enhanced. Zones of tissue with microvascular obstruction remains dark in LGE imaging. 

After 10-20 minutes, the contrast agent concentration in healthy myocardium is further reduced while 

contrast material remains trapped in tissue with compromised cell membranes, which translates into high 

contrast between scar (hyperenhanced) and healthy tissue. The recommended contrast agent dose for 

LGE imaging is 0.1 to 0.2 mmol/kg body weight (b.w.), which matches the administered concentrations 

after a stress and rest perfusion protocol. 

To further illustrate contrast agent concentration in myocardial tissue over time, T1 values in a porcine 

animal model after a single and repeated contrast agent injection are shown in Figure 4.2. 

 

Figure 4.2: Change in T1 in healthy myocardial tissue, left-ventricular blood pool and infarcted tissue 
after Gadolinium contrast agent injection. (A) Single contrast agent injection (0.2 mmol/kg b.w.) in a 
porcine model with acute inferior myocardial infarction. The inset shows the corresponding regions 
of interest (ROIs) in a midventricular late Gadolinium enhancement (LGE) image. The infarct is 
discernible in the inferior myocardium. (B) Series of six contrast agent injections (dose: 0.075 
mmol/kg b.w. each) in a healthy porcine model. The inset on the right shows the ROIs in a 
midventricular cine short-axis view image. All T1 values were obtained using a T1 MOLLI scan (201).  

 

After a single injection of 0.2 mmol/kg b.w., blood T1 decreases from 1750 ms to 375 ms after 23 minutes. 

T1 values in healthy and infarcted myocardium are reduced from 1039 ms to 610 ms and from 1150 ms 
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to 686 ms, respectively. Over the course of 15 hours, T1 in blood slowly recovers to the original value. 

Healthy and infarcted tissue also recover, but at a slower rate and not to their initial values. Of note, the 

renal clearance in porcine models decreases over the course of experiment under general anesthesia. For 

comparison, in humans, the mean half-life time of Gadobutrol contrast agent is 1.8 hours in blood (217). 

The T1 evolution for repeated contrast agent administrations of 0.075 mmol/kg b.w. is shown in Figure 

4.2 B. After the third injection and a waiting period of 46 minutes, washout almost compensates the third 

contrast agent injection. After a total of 6 injections, the T1 values are reduced to 487 ms and 287 ms, 

respectively. 

4.2 LGE Imaging Strategies 
Inversion recovery (IR)-based imaging is employed in LGE. The corresponding simplified signal model, 

assuming ideal inversion pulses, reads:  

 SIR(TI) = M0
1+exp�−TRT1�−2exp�−

TI
T1�

1+cos(𝛼𝛼)exp�−TRT1�
∙ sin(𝛼𝛼) exp �− TE

T2∗
�, (4.1) 

where TI, TR, TE and 𝛼𝛼 denote inversion time, repetition time, echo time and imaging flip angle, 

respectively. Assuming small imaging flip angles (i.e. cos(𝛼𝛼) ≈ 1) and TE ≪ T2∗ the model can be 

simplified to: 

 SIR(TI) ∝ M0
1+exp�−TRT1�−2exp�−

TI
T1�

1+exp�−TRT1�
, (4.2) 

and if TR ≫ T1 reduces to: 

 SIR(TI) ∝ M0(1− 2 exp �− TI
T1
�.) (4.3) 

To maximize contrast between scar and healthy myocardium in LGE imaging, the inversion time TI has to 

be set to the value at which the magnetization of healthy myocardium crosses zero during readout (Figure 

4.3 A). The optimal TI is manually identified from a Look-Locker scan (218) that acquires a set of images 

with varying TI.  
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Figure 4.3: Late Gadolinium enhancement imaging sequence. (A) Electrocardiogram (ECG) to trigger 
image acquisition. (B) Inversion recovery (IR) sequence and longitudinal magnetization (Mz). The 
inversion time delay (TI) is set to a value at which Mz of the healthy myocardium (inset) equals zero. 

 

Following the review on LGE by Kellman et al. (11) and SCMR recommendations (4,12), the spatial in-plane 

resolution is recommended to be between 1.4 mm and 1.8 mm; higher resolutions of up to 1.0 mm are 

beneficial to assess small scars in thinned myocardial walls. Slice thickness should be 6 to 8 mm with slice 

gaps of 1 to 2 mm. A temporal footprint between 150 ms to 200 ms is recommended to mitigate cardiac 

motion artifacts in mid- to end-diastole but should be further reduced in tachycardia (>100 bpm). Three-

dimensional acquisition methods allow for whole-heart coverage. For in-plane resolutions comparable to 

2D methods, the volumetric data has to be acquired in every heartbeat (219–222). Accordingly, the 

condition for the simplified signal model no longer holds and the signal model according to Equation (4.1) 

is to be used. 3D LGE imaging is especially advantageous in combination with motion compensation 

techniques including navigator gating (223–226), which allow for free-breathing acquisitions. Thereby, 

high and isotropic resolution can be achieved (227). Of note, a study by Bustin et al. (228) showed that 3D 

high-resolution free-breathing LGE was able to detect more LGE areas in patients with a history of COVID-

19 when compared to conventional 2D LGE.   
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4.3 Myocardial Scar Analysis and Quantification 
In clinical practice, the visual assessment of LGE images is sufficient for many indications (31). After image 

intensity windowing to obtain dark myocardium, occurrence of LGE is assessed. Scar localization is then 

compared to other acquired views to identify matching structures. CAD and non-CAD (e.g. myocarditis) 

type hyperenhancement is mainly distinguished by the presence of subendocardial hyperenhancement. 

For precise characterization of ischemia and viability, the location and transmurality of LGE should then 

be compared with cine and perfusion images using the AHA 17-segment model (229). 

Scar mass quantification requires the segmentation of the myocardium and the hyperenhanced tissue in 

every imaging slice. Scar mass is calculated from the sum of slice thickness and interslice gap, which is 

then multiplied by the hyperenhanced area and the density of tissue. It is typically presented in percent 

of total LV mass (%LV). 

Manual LV and scar segmentation is time-consuming and requires well-trained operators. With limited 

contrast, precise delineation of myocardial and scar borders can be challenging, even when anatomical 

information from cine imaging is at hand. This can introduce significant interobserver variation hampering 

the diagnostic quality. 

To improve consistency and reduce the manual workload, semi-automatic approaches have been 

developed. Using the full-width-at-half-maximum (FWHM) method, a threshold 𝜏𝜏FWHM is defined at 50% 

of the maximum hyperenhanced myocardial signal intensity in a scar region identified by the operator 

(230,231): 

 𝜏𝜏FWHM =
𝑚𝑚𝑚𝑚𝑥𝑥myocardium 

2
. (4.4) 

Another approach uses thresholding at n times the standard deviation (n-SD) add to the mean of healthy 

myocardial signal, which requires the manual segmentation of a healthy (remote) region within the 

myocardium (Figure 4.4). The threshold 𝜏𝜏n−SD is defined as: 

 𝜏𝜏n−SD = 𝜇𝜇𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑𝑖𝑖𝑖𝑖 + 𝑛𝑛 ∙ 𝜎𝜎remote, (4.5) 

where 𝜇𝜇𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑𝑖𝑖𝑖𝑖 and 𝜎𝜎remote denote the mean signal amplitude and the SD in the remote healthy tissue, 

respectively. While earlier SCMR guidelines proposed n=2 and n=5 for non-ischemic scar and MI, 

respectively (12,232), there is no consensus for non-ischemic scar in the latest recommendations (31). 

The selection of extent and location of the healthy remote myocardium can hamper the reproducibility 

and can cause high variability, especially when no surface coil sensitivity normalization is applied 

(233,234). 
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Depending on the definition of the threshold by either the FWHM or n-SD thresholding method, LGE 

within the myocardium is then segmented automatically. Hyperenhancement artefacts due to noise or 

partial voluming effects, as well as zones of MVO, can require manual observer interaction, which 

increases subjectivity and adds workload. Variations in coil sensitivities over the myocardium affect the 

underlying signal statistics used for either of the thresholding methods, thereby introducing potential 

bias. 

While comparisons of manual and semi-automatic approaches suggest no significant difference in 

segmented scar volumes and reproducibility (37,230,235–237), there is no consensus which method 

should be preferred (31,238). Most recent work on data from a multi-center and multi-vendor study 

concluded that n-SD thresholding can be unreliable (233). However, when body-coil sensitivity 

normalization was used, identification of MI using the FWHM method was comparable to n-SD 

thresholding at 5 SDs (233). 

 

Figure 4.4: Scar segmentation using the n times the standard deviation (n-SD) method. (A) Late 
Gadolinium enhancement (LGE) image with manually drawn epi- and endocardial borders and the 
remote healthy tissue segmentation (µ = 0.109). (B) Signal intensity histogram of myocardial 
intensities with thresholds τ2SD = 0.199 and τ5SD = 0.334. For comparison, the threshold for the FWHM 
method is τFWHM = 0.372 is shown. (C) Resulting n-SD thresholding segmentation mask. 

 

Other algorithms that require LV segmentation but do not require further user interaction have been 

proposed to segment myocardial scar by means of level set, expectation maximization or Gaussian 

mixture model algorithms (237,239,240). Several approaches to mitigate the burden of manual LV 

segmentation have been proposed. Semi-automatic and fully automatic methods, either combining co-

registration of cine and LGE images (241,242) or only LGE images in combination with prior knowledge on 

physiological constraints and inter-slice smoothness have been proposed (235,243). An overview 

automatic scar segmentation algorithms is given by Karim et al. (235). 
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4.4 Machine Learning Segmentation 
Deep learning algorithms, and more specifically U-Net type convolutional neural networks (CNNs) 

(244,245), have led to efficient automatization of medical image segmentation tasks. In the following 

sections, the fundamentals of U-net based myocardial scar segmentation are outlined by referring to the 

review work by Chen et al. (38). 

4.4.1 U-Net architecture 
Generally, CNNs for image segmentation tasks consist of an encoder and decoder pathway. The encoder 

captures local information from the input image (i.e. input layer) by convolving the input with learned 

filters followed by spatial down-sampling, while the decoder path performs spatial up-sampling to obtain 

an output of the input image size (i.e. output layer). Due to the condensation of information in the 

encoder, spatial information can be lost. This motivates the direct propagation of features from the 

encoder to the decoder by so-called skip connections as proposed by Ronneberger et al. (244,245). An 

example U-Net is shown in Figure 4.5.  

 

Figure 4.5: Exemplary U-Net type convolutional neural network architecture for image segmentation. 
The input layer is an image (matrix size: 128x128x1). The output layer consists of resulting 
segmentation masks with three channels (matrix size: 128x128x3) for three different tissue classes. 
The number of filters are 𝑘𝑘𝑖𝑖 ∈ 64, 128, 256, 512. Quadratic convolutional kernels are of size 
𝑛𝑛𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 ∈  1𝑥𝑥1, 3𝑥𝑥3. 

 

The encoder and decoder pathways are connected by convolutional layers. Convolutional layers apply 𝑘𝑘𝑖𝑖 

convolutional kernels of size 𝑛𝑛𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 x 𝑛𝑛𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (e.g. size 3 x 3) to extract 𝑘𝑘𝑖𝑖 feature maps. The number of 

parameters in a convolutional layer is given as:  
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 𝑘𝑘𝑖𝑖 ∙ (𝑛𝑛𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 ∙ 𝑙𝑙𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖 + 1), (4.6) 

where 𝑙𝑙𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖 is the number of channels of the input image. For the first convolutional layer the number 

of parameters is 64 ∙ (32 ∙ 1 + 1) = 640. Convolution operations are often followed by a non-linear 

transformation such as the rectifier linear unit (ReLU) activation function, defined as 𝜌𝜌�(𝑥𝑥) = max (0, 𝑥𝑥). 

After the first three convolutions, a 2 x 2 max pooling kernel is applied to further down-sample the spatial 

dimensions. In Figure 4.5, in total four down-sampling steps are applied in the encoder resulting in a low 

spatial resolution and high-level feature representation (8 x 8 x 512). Further convolution steps would 

increase the detection of features and thus the depths of the network but can lead to over-fitting (see 

below). The depth of the network increases with the receptive field of a network which defines the area 

in the input image that contributes to the feature aggregation after a given number of down-sampling 

steps. In Figure 4.5, after four down-sampling steps, the maximal local extent in information in one 

element of a 8 x 8 matrix corresponds to the receptive field of 16x16 pixels in the original image. From 

the deepest point of feature detection, the decoder reinterprets the feature maps to up-sample the data 

back towards the original input dimensions of high-spatial resolution and low features. The most 

commonly used up sampling strategy is the learnable transposed convolutions followed by ReLU 

activation. Resulting feature maps are then concatenated with the feature maps that are fed in from the 

encoder pathway via the skip connections to promote a multiscale analysis of the available data. After 

another convolution and activation layer, the next up-sampling step is performed. After four up-sampling 

steps, the feature maps are transformed using sigmoid activation function defined as 𝜌𝜌(𝑥𝑥) = 1
1+𝑖𝑖−𝑥𝑥

 in 

order to threshold the classification features to either 0 or 1. 

4.4.2 Neural Network Training 
Successful CNN based segmentation methods require training of the network weights. The most common 

approach is supervised training that requires sets of images and feature or class label pairs (for semi- and 

unsupervised learning refer to the end of this chapter). In the training process, the total number of these 

feature label pairs is split into a training, a validation (i.e. 10% to 20%) and an ‘unseen’ test set. In the 

forward evaluation, the training sets are used to train the network weights. The current weights are then 

tested on the independent validation set to track the model performance. An optimizer and an evaluation 

metric (i.e. loss function) are required to update the trained weights in every iteration over all training 

data (i.e. epoch) and to stochastically minimize the segmentation loss function using backpropagation. 

Using the independent test set, the generalization accuracy in comparison to the prediction performance 

on the validation set can be estimated. 
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At the beginning of network training, weights need to be initialized. Improper choice of initial weights can 

lead to vanishing or exploding gradients in the backpropagation and have an impact on the generalization 

of the final classification model. In the U-net architecture shown in Figure 4.5, transfer learning techniques 

(see below) using pretrained weights from another classification network e.g. ResNet34 (246) are 

employed to accelerate the training process. In the illustrated implementation, the ResNet34 expects a 

three-channel image and thus a single convolutional layer of three 1 x 1 kernels was prepended to the 

exemplary network architecture. 

The two most commonly used optimizers for the iterative training process are mini batch gradient descent 

and adaptive-moment-estimation (Adam). For Adam, the learning rate as well as the corresponding 

moment estimation smoothing parameters 𝛽𝛽1 and 𝛽𝛽2 have to be chosen manually but do not require 

specific hyperparameter tuning. 

Several loss functions which evaluate the current state of the training model during the training process 

can be defined. For segmentation problems, pixel-wise comparison functions such as cross-entropy or 

Dice loss are the methods of choice. Cross-entropy minimizes the Kullback–Leibler (KL) divergence 

between the probability of the output over all label classes and the training label per pixel. For a given 

target segmentation mask 𝒚𝒚𝑖𝑖𝑝𝑝 and the predicted probabilistic mask 𝒔𝒔�𝑖𝑖𝑝𝑝 from 𝑐𝑐 classes of labels, the cross-

entropy loss can be defined as (38):  

 ℒcross−entropy = −
1
𝑛𝑛
��𝒚𝒚�𝑖𝑖𝑝𝑝

𝑖𝑖

𝑝𝑝=1

𝑖𝑖

𝑖𝑖=1

log (𝒔𝒔�𝑖𝑖𝑝𝑝) (4.7) 

The Dice-loss function captures the spatial correspondence between the target and predicted 

segmentation mask and is computed from the area of overlap divided by the total number of pixels in 

both masks: 

 ℒDice = 1 −
2∑ ∑ 𝒚𝒚�𝑖𝑖𝑝𝑝𝐶𝐶

𝑝𝑝=1
𝑖𝑖
𝑖𝑖=1 𝒔𝒔�𝑖𝑖𝑝𝑝

∑ ∑ (𝒚𝒚�𝑖𝑖𝑝𝑝𝐶𝐶
𝑝𝑝=1

𝑖𝑖
𝑖𝑖=1 + 𝒔𝒔�𝑖𝑖𝑝𝑝)

 (4.8) 

Focal loss is another method that has been proposed for segmentation tasks with imbalances among 

classes (247). To this end, the cross-entropy loss is extended by an additional focus factor that weighs 

pixels with high positive classification accuracy less than securely wrong classified pixels and those with 

high ambiguity. 

4.4.3 Overfitting Reduction 
A general challenge is to avoid overfitting of the network weights to the features of the training data sets. 

While the determined weights may result in minimal loss on the training dataset, generalization accuracy 

to ‘unseen’ test images can be reduced. During the training process overfitting is detected if the training 
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and validation losses continuously diverge and/or differ by orders of magnitude. In practice, various 

strategies exist to avoid overfitting. However, these strategies cannot be applied interchangeably and only 

monitoring and evaluation of training and validation losses can help to obtain the best combination of 

strategies. A main factor for overfitting is the network architecture itself. Overfitting is promoted when 

the number of optimizable parameters is too high for the size and diversity of the training dataset. On the 

other hand, it is also desirable to increase the representational capacity of networks by adding more 

convolutional layers and hence free parameters to capture all relevant data features. Thus, the 

architecture should be chosen so that a sufficient complexity, which can be trained reliably on the given 

amount of data, is achieved. Estimation of the optimal network depth requires practical experience 

supported by evaluation of the loss metrics. If the validation error does not follow the training error, 

overfitting is likely to have occurred. If either training or validation error does not converge, early stopping 

of the training process may reduce the chances of overfitting. Kernel weight regularization adds a penalty 

term (e.g. ℓ1-, ℓ2-norm or Tikhnonov regularization) to the loss function to promote aggregation of only 

relevant features by penalizing large weights. In addition to ℓ2-norm regularization, ℓ1-norm penalizes 

the accumulation of several mid-size weights in order to promote a sparser representation of the learned 

weights. Transfer learning uses prior knowledge from a different segmentation task by utilizing suitable 

weight initialization. While it helps to lower the generalization error and thus overfitting, it also reduces 

the necessary training time. Ensemble learning combines several trained models to increase the total 

segmentation accuracy. The chances of overfitting are reduced if one model is biased. The Dropout 

technique (248) is a strategy that randomly sets a fraction of the network weights per batch evaluation to 

zero. This helps to avoid encoding of one image by just a single parameter which would result in in 

overfitting. Data augmentation is used to enlarge the number and diversity of training data sets by various 

transformations of the original data and thus reduces the generalization error. Opposite to over-fitting, 

under-fitting is the result of insufficient representational complexity leading to insufficient inference 

accuracy. Under-fitting can be a problem if fundamental network or training parameters are chosen 

wrongly and consequently prevent the model from converging. In practice, under-fitting can be revealed 

immediately if inferred segmentation on the validation images does not represent the training class labels 

(i.e. the segmentation masks). 

4.4.4 Test Time Augmentation 
In addition to extending the training set, data augmentation can be used to improve segmentation 

accuracy for an already trained model by exposing the network to various augmentations of the input 

image, resulting in a set of predictions. This process is referred to as test time augmentation (TTA) (249). 

The average over all predictions yields a probabilistic description of the pixel classification. In order to 

obtain classification, a majority vote (e.g. thresholding at 0.5) is required to determine the unique class 
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membership of individual pixels. In Figure 4.6, the 8-fold TTA consisting of four 90° rotations and four 

reflections is shown. 

 

Figure 4.6: Test time augmentation (TTA) for myocardial scar segmentation. In the augmentation 
phase, the input is rotated and reflected. | and — refer to reflections along the vertical and horizontal 
axes, respectively. The augmented images are then segmented individually. Augmentation 
operations are inversely applied to the resulting segmentation masks. The final prediction mask is 
obtained as an average of the augmented predictions. Majority vote results in final classification. 
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4.4.5 State of the Art Myocardial Scar Segmentations 
Due to the limited availability of annotated LGE datasets, the deployment of network-based myocardial 

scar segmentation algorithms is relatively limited when compared to other segmentation tasks. In order 

to compare network performance for segmentation tasks, several metrics have been used in 

segmentation challenges (250). The Dice score (Equation (4.8)) is well established as measure for local 

correspondence. Surface distance-based metrics as e.g. the Hausdorff distance (251) measure the 

distance between two surfaces. Clinical diagnostic parameters, e.g. %LV for myocardial scar mass, are of 

value to compare segmentation performance. Notably, comparison of several metrics should be 

investigated to corroborate the segmentation performance of a method. However, often only the Dice 

score is reported in publications. To contextualize myocardial scar segmentation performance, an 

overview of recent work using U-Net implementations (e.g. EMIDEC (252)) and peer-reviewed 

publications (38) is given in the following section. 

Early on, work proposed by Fahmy et al. (253) successfully increased the robustness of U-Net based scar 

segmentation by additional input of aligned or fused short-axis cine images to the LGE images in the 

training dataset. Only clinical metrics and no Dice scores were evaluated, but segmentation accuracy and 

variability were similar to manual segmentation. In a study by Moccia et al. (254), a fully connected CNN 

was used for scar segmentation in 30 patients with LGE images as sole input. Assessment using leave-one-

patient out cross validation led to Dice scores of 0.88. In a multicenter, multivendor study by Fahmy et al. 

(255) U-Net type CNNs, with LGE images as their only input, were used to segment scars in patients with 

hypertrophic cardiomyopathy. The reported Dice scores were ~0.5. Work proposed by Zabihollahy et al. 

(256) used 3D LGE datasets to train a U-Net based scar segmentation. Cascading two U-Nets for 

myocardial and scar segmentation yielded Dice scores of 0.85. Another U-Net implementation by Brahim 

et al. (257) also cascaded an anatomical net and a pathology net for additional pathological constraints, 

which were trained separately. Their performance assessment showed Dices scores for myocardium and 

scar tissues of 0.88 and 0.74, respectively, thereby improving on most methods reported in the EMIDEC 

challenge (252). In another study by Popescu et al. (258), which had access to 155 patients datasets, 

augmented training data was used to complement training of the U-Net. Based on cine data, artificial 

images with myocardial scars matching LGE histograms were generated. Inclusion of additional 

anatomical information allowed to deploy so-called anatomically-informed segmentation with direct 

output of clinical features and scar burden. Segmentation Dice scores for LV and scar segmentation were 

0.93 and 0.57, respectively. 

While U-Net type architectures, trained using supervised learning, represent the current state of the art 

for myocardial scar segmentation, unsupervised learning should be explored too. Also, other network 

topologies could be considered as reviewed elsewhere (38).  
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5.1 Introduction 
The clinical utility and value of dynamic contrast-enhanced myocardial first-pass perfusion imaging has 

been demonstrated in a number of landmark trials (7,8,259). While in today’s clinical use image data is 

mostly assessed visually or semi-quantitatively to identify ischemia, quantitative approaches (260) have 

gained momentum with recent technical advances in data acquisition, reconstruction and processing 

(184,261–263). 

In contrast to conventional dynamic multi-slice 2D imaging sequences, 3D approaches with whole-heart 

coverage allow data acquisition in a single time window per cardiac cycle (17). The potential clinical value 

of robust 3D myocardial perfusion imaging relates, in particular, to the ability to quantify the relative 

ischemic myocardial volume (14,16). In view of the increasing utilization of ischemic burden as a marker 

for decision making for revascularization in stable coronary artery disease (48), added value has been 

indicated. Moreover, the importance of quantification of myocardial blood flow and related parameters 

has been emphasized in the context of triple vessel coronary artery disease (29,264), microvascular 

disease (28,265) and other conditions (266). 

Dynamic 3D perfusion methods require substantial scan acceleration in order to accommodate data 

sampling into a sufficiently short acquisition window per cardiac cycle. To this end, k-t undersampling in 

conjunction with k-t BLAST, k-t SENSE (138,267,268) and k-t PCA (114,155) has initially been deployed and 

demonstrated in the clinical setting for various applications and compared against reference standards in 

single (14–16,115,116) and multi-centre trials (117,118). Dedicated advances to improve the 

reconstruction accuracy from undersampled multi-slice 2D or 3D Cartesian (18,119,269), radial 

(19,149,270–273) and spiral (121,122,146,147) k-space trajectories have been proposed. Work on 3D 

Cartesian (114), radial stack-of-stars (20,135) and spirals (123) has demonstrated improvements with 

impact on quantitative perfusion parameters. The ramification of spatio-temporal fidelity on quantitative 

perfusion indices has been investigated and quantified (166). 

A challenge with k-t reconstruction, however, relates to the requirement to ensure sufficient spatio-

temporal data correlations. Therefore, data acquisition is typically conducted in a breathhold, which has 

been limiting, in particular, during adenosine-induced stress. In order to increase patient comfort and 

compliance, initial research has been directed to enable free-breathing 3D data acquisition based on 

Cartesian (18) and stack-of-stars undersampling (19). 

To address respiratory motion of free-breathing data acquisition, approaches applying global or local 

registration in the image domain have been described. To address challenges due to the dynamic contrast 

enhancement, image signal separation into low-rank and sparse components followed by model-based 
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registration has been proposed (25). It is noted, however, that 2D registration-based methods can 

inherently only correct for in-plane and not continuous through-slice motion. 

Besides image-domain registrations, radial self-gating and respiratory motion binning have been used 

(23,135,188,189) to restrict or sort data to different respiratory states. However, retrospective binning of 

spokes into breathing and heart phases is only applicable for moderate undersampling or continuous 

acquisition schemes (135,190). 

In general, non-rigid motion, corrupting the data, can be corrected for using an approximate solution 

given by an estimated motion field (274). If rigid motion is assumed, it can be compensated for by 

application of linear phase shifts in k-space as demonstrated for perfusion imaging (182). 

Motion correction has become an important step to improve the conditioning of iterative image 

reconstruction methods (18,191,275). Block low-rank sparsity tracking (BLOSM) has proved beneficial 

(191), and has been extended to reconstruct from continuously acquired radial, simultaneous multi-slice, 

heart-phase resolved data (135). Similar methods have also been used in computed tomography perfusion 

imaging (276) and in other MR applications such as MR parameter mapping (27) and MR fingerprinting 

(277). 

For quantification of perfusion data, a dual-sequence, single-bolus approach is desirable (20,113,119). The 

arterial input function (AIF) is preferably recorded in the ascending aorta in an interleaved fashion (278). 

The present study proposes and validates a 3D motion correction approach for locally low-rank (LLR) 

image reconstruction of Cartesian pseudo-spiral in-out k-t undersampled single bolus first-pass perfusion 

data. The method is referred to as respiratory motion-informed locally low-rank reconstruction (MI-LLR). 

It is shown that, by incorporating a transformation displacement field for each dynamic frame, MI-LLR is 

able to correct for non-rigid in- and through-plane organ motion during rest and stress. Numerical 

simulations and phantom experiments are used to demonstrate the robustness of the MI-LLR approach 

with respect to cardiac and breathing motion in comparison to LLR (27) and frame-by-frame compressed 

sensing (CS) using wavelets as sparsifying transform (ℓ1-wavelet) (279,280) reconstructions. In-vivo 

feasibility of the proposed method is assessed in subjects during rest and stress condition. 
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5.2 Methods 

5.2.1 Image Acquisition 
A dynamically interleaved 2D/3D dual-sequence, single-bolus scheme was implemented on a clinical 1.5T 

MR system based on an electrocardiogram (ECG) triggered saturation-recovery spoiled gradient echo 

sequences with T1- and B1-insensitive saturation preparation pulses (281) as described previously (119). 

As shown in Figure 5.1 A, the 3D perfusion scan is triggered to end systole. The 2D arterial input function 

(AIF) images are acquired in the ascending aorta during diastole. A pseudo-spiral Cartesian undersampling 

pattern was implemented as illustrated in Figure 5.1 B,C. The sampling distribution was defined by a 

variable density function (159) with an elliptical k-space shutter as depicted in Figure 5.1 B. For each 

dynamic imaging frame, k-space profiles were chosen according to the density distribution while avoiding 

profile duplication. At the k-space centre, a 2 x 4 kz-ky area was fully sampled. The temporal order of 

profiles was according to a spiral-in – spiral-out scheme, placing the k-space centre and the nominal 

saturation delay at half the acquisition time (Figure 1C). Imaging parameters were: TR/TE = 2.0/1.0 ms, 

spatial resolution: 2.5 x 2.5 x 10 mm3, FOV: 300 x 300 x 100 mm3, covering the full ventricle from apex to 

base, flip angle: 15°, acquisition window: 240 ms, saturation delay: 135 ms, undersampling factor R = 10. 

For the interleaved acquisition of the AIF, a fully sampled centre-out Cartesian pattern was used with 

spatial resolution: 10 x 10 mm2, slice thickness: 15 mm, flip angle: 15°, acquisition window: 56-64 ms, 

saturation delay: 30 ms. TR and TE were set equal to the corresponding 3D sequence to avoid different T1 

and T2* weightings. 

All images were acquired on a 1.5 T Philips Achieva MR system (Philips Healthcare, Best, The Netherlands) 

using a 5-element cardiac receive coil array. Gadobutrol (Gadovist, Bayer Schering Pharma, Germany) was 

used as contrast agent (CA). 
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Figure 5.1: Data acquisition. (A) Dual-sequence diagram with corresponding ECG trace and typical 
planning of the 3D and 2D stacks. The 3D perfusion scan is triggered to end systole, the 2D AIF images 
to diastole. The 3D volume is sampled by the proposed undersampled pseudo-spiral in-out Cartesian 
trajectory, while linear centre-out Cartesian sampling is used for the 2D AIF slice. (B) 3D data 
acquisition scheme. Data are sampled using a volumetric pseudo-spiral Cartesian sampling pattern. 
Undersampling density function (top), idealised spiral-in-out trajectory (middle), exemplary 10-fold 
undersampling pattern (bottom). (C) Resulting ky-kz sampling pattern after ten dynamics. The yellow 
rectangle highlights the densely sampled k-space centre. 
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5.2.2 Image Reconstruction and Motion Compensation 
Conventional LLR reconstruction (27) leverages spatio-temporal correlation of imaging data by penalizing 

the nuclear norms of patch matrices stacked along time. For zero-filled k-space data 𝐒𝐒 ∈ ℂNsNc×T with T 

dynamics, Nc coils, containing Ns k-space samples each, locally low-rank (LLR) reconstructed image data 

𝐄𝐄LLR ∈ ℂNv×T of Nv voxels is achieved by solving the following convex optimization problem (27): 

 𝐄𝐄LLR = argmin
𝐄𝐄

‖𝛀𝛀 𝓕𝓕𝐂𝐂𝐄𝐄 − 𝐒𝐒‖22 + 𝜆𝜆LLR� ‖𝐏𝐏𝑏𝑏𝐄𝐄‖∗
𝑏𝑏∈U

 (5.1) 

with the undersampling operator 𝛀𝛀 ∈ {0,1}NsNc×NsNc, Fourier transform 𝓕𝓕 ∈ ℂNsNc×NvN𝑐𝑐, coil 

sensitivities 𝐂𝐂 ∈ ℂNcNv×Nv and regularization weight λLLR. The patch extraction operator 𝐏𝐏b ∈

{0,1}nxnynz×Nv refers to the b-th patch, where U is a set of patch indices, with patch size of nx × ny × nz 

voxels. In each iteration, patches are selected randomly to avoid blocking artefacts. The optimization 

problem (Equation (5.1)) is posed in the synthesis form (282) and, therefore, solved with Nesterov-

accelerated proximal gradient descent (178). 

For the first stage of MI-LLR reconstruction, approximate displacement fields are derived to feed a motion-

compensated reference system to a second reconstruction stage, allowing to reduce the rank of the 

inverse problem. Therefore, the initial reconstruction 𝐄𝐄LLR = [𝐢𝐢1, … , 𝐢𝐢𝐼𝐼] is then registered across 𝑇𝑇 

dynamics using the pTV registration toolbox (185). Group-wise image registration is achieved by 

minimizing the nuclear image dissimilarity metric of warped images 𝐢𝐢𝑖𝑖 ∘ 𝐝𝐝𝑖𝑖  stacked over time ‖[𝐢𝐢1 ∘

𝐝𝐝1, … , 𝐢𝐢𝐼𝐼 ∘ 𝐝𝐝𝐼𝐼‖∗ (186), where displacement fields 𝐝𝐝𝑖𝑖 = 𝐝𝐝𝑖𝑖(𝐝𝐝𝑖𝑖′) are parametrized by 1st-order B-spline 

coefficients 𝐝𝐝𝑖𝑖′  with a cell width of 5 voxels in each spatial dimension: 

 [𝐝𝐝1′ , … ,𝐝𝐝𝐼𝐼′ ] = argmin
�𝐝𝐝1′ ,…,𝐝𝐝𝑇𝑇

′ �
‖[𝐢𝐢1 ∘ 𝐝𝐝1, … , 𝐢𝐢𝐼𝐼 ∘ 𝐝𝐝𝐼𝐼‖∗ + 𝜆𝜆VTV ∑ �∑ �∇𝑘𝑘d𝑗𝑗′�𝑝𝑝𝑖𝑖

2
𝑗𝑗𝑘𝑘𝑝𝑝𝑖𝑖 . (5.2) 

The regularization weight 𝜆𝜆VTV penalizes the vectorial total variation (VTV) (187), which imposes group 

sparsity over displacement component 𝑗𝑗 in direction 𝑘𝑘 for each spatio-temporal voxel location (𝑝𝑝, 𝑡𝑡). 
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Figure 5.2: 3D data acquisition and reconstruction steps. (A) Data acquisition using the Cartesian 10-
fold accelerated spiral-in – spiral-out acquisition pattern. (B) Motion-informed locally low-rank (MI-
LLR) reconstruction pipeline: Patch-based initial local low-rank reconstruction (LLR) followed by full 
field of view (FOV) registration. Resulting deformation field allows to regularize over motion states 
for MI-LLR. (C) Alternative image reconstructions using LLR and a frame by frame ℓ1-wavelet 
(wavelet) reconstruction. After step B and D, 3D image series still contain motion as indicated by the 
intensity-time profiles and require registration in the reduced FOV around the heart (D) in order to 
perform myocardial blood flow (MBF) quantification (E). Please note: The MI-LLR reconstruction 
pipeline is also further detailed in Supporting Information Figure S1. 

 

Displacements fields 𝐝𝐝𝑗𝑗, estimated by image registration, map acquired images into a common refence 

frame. To pose the second stage of the MI-LLR reconstruction problem in the synthesis form (282), the 

displacement fields are inverted using linear interpolation: 𝐪𝐪𝑖𝑖 ≈ 𝐝𝐝𝑖𝑖−1. Hence, corresponding linear 

operators 𝐐𝐐𝑖𝑖𝐢𝐢𝑖𝑖 = 𝐐𝐐𝑖𝑖(𝐪𝐪𝑖𝑖)𝐢𝐢𝑖𝑖 = 𝐢𝐢𝑖𝑖 ∘ 𝐪𝐪𝑖𝑖 were used to map a fixed reference frame to the target configuration 

𝑡𝑡: 

 𝐄𝐄MI−LLR = argmin
𝐄𝐄

‖𝛀𝛀 𝓕𝓕𝐂𝐂[𝐐𝐐1𝐢𝐢1, … ,𝐐𝐐𝐼𝐼𝐢𝐢𝐼𝐼] − 𝐒𝐒‖22 + 𝜆𝜆MI−LLR� ‖𝐏𝐏𝑏𝑏𝐄𝐄‖∗
𝑏𝑏∈U

. (5.3) 

Here, 𝜆𝜆MI−LLR weights LLR regularization in the motion-compensated configuration, while 𝐐𝐐𝑖𝑖𝐢𝐢𝑖𝑖 for 𝑡𝑡 =

1, … ,𝑇𝑇 represents the original image sequence defined by the k-spaces 𝐒𝐒. Since image warping operators 

𝐐𝐐𝑖𝑖 are applied in the data term, this optimization problem is convex and formulated in the synthesis form 

allowing to use the Nesterov-accelerated proximal gradient descent (178). The algorithm was 

implemented in Matlab (Mathworks, Natick, MA) on GPUs.  

Sensitivity maps for coil calibration were estimated from reference scans using the ESPIRiT method (283). 

Imaging data from the scanner was extracted and pre-processed using MRecon (Gyro Tools LLC, Zurich, 

Switzerland). 
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The entire framework is schematically outlined in Figure 5.2 A-E. At first, data is acquired using the 

Cartesian pseudo spiral acquisition and put into the MI-LLR reconstruction, which encompasses two 

stages. In the first stage (Figure 5.2 B), images are reconstructed using LLR (Equation 1) with a patch size 

of nx = ny = nz = 12 and underregularization to capture spatio-temporal image variations (𝜆𝜆LLR =

0.05). While the images show residual undersampling artefacts, motion patterns are not suppressed and 

visible. These images are registered using Equation (5.2) with regularization weight 𝜆𝜆VTV = 0.001 on the 

displacements to suppress the impact of residual aliasing artefacts in the initial LLR reconstruction. 

Thereafter, estimated displacement fields are used to perform the second stage of the MI-LLR 

reconstruction according to Equation (5.3), thereby allowing to reduce the regularization weight. The MI-

LLR pipeline is illustrated for a representative case in Supporting Information Figure S1*. 

For alternative reconstructions (Figure 5.2 C), LLR and ℓ1-wavelet (wavelet), referring to CS reconstruction 

using wavelets as sparsifying transform and sensitivity encoding (i.e. SPARSE-SENSE) 

(159,279,280,284,285), were used. Image data 𝐄𝐄wavelet ∈  ℂNvxT of Nv voxels was obtained by solving: 

 𝐄𝐄wavelet = argmin
𝐄𝐄

‖𝛀𝛀 𝓕𝓕𝐂𝐂𝐄𝐄 − 𝐒𝐒‖22 + 𝜆𝜆wavelet‖𝐃𝐃 𝐄𝐄‖1,. (5.4) 

where D is the discrete Daubechies wavelet transform. Equation (5.4) was solved using the Berkeley 

advanced reconstruction toolbox (BART) (286).  

For in-vivo image reconstructions, the minimum values of the regularization parameters 𝜆𝜆MI−LLR and 

𝜆𝜆LLR, which suppress background signal variation to 0.05 % of the maximum image intensity, were chosen 

using a grid search approach and were 𝜆𝜆MI−LLR ~ 0.30 and 𝜆𝜆LLR ~ 0.40. The regularization parameter of 

the ℓ1-wavelet reconstruction 𝜆𝜆wavelet was set to 0.01. For synthetic experiments, optimal regularization 

parameters, yielding the lowest reconstruction error, were found using a grid search and were 

𝜆𝜆MI−LLR ~ 0.25, 𝜆𝜆LLR ~ 0.30 and 𝜆𝜆wavelet ~ 0.01. 

5.2.3 Postprocessing And Myocardial Blood Flow 
Quantification 

Reconstructed 3D data was zero-filled to 1.25 x 1.25 x 5 mm3 and 2D-AIF images were zero-filled to 2.5 x 

2.5 mm2. All image series were registered to compensate for residual motion prior to signal post-

processing. Signal post-processing and perfusion quantification were conducted in Matlab (Mathworks, 

Natick, MA). For local myocardial perfusion mapping, the images were convolved using the following 

kernel: 1
5

[0,1,0; 1,1,1; 0,1,0] to reduce noise at the cost of resolution. 

*Supporting Information is available online: https://pubmed.ncbi.nlm.nih.gov/35713206/  
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The myocardium was segmented across the 10 slices and divided into six circumferential sectors per slice. 

Local and sector-wise myocardial signal time curves were derived along with the AIF. 

Given the signal model of the saturation recovery Cartesian sequence, T1(t) translates to signal I(t) as 

(197,200): 

 

I(t) = I0 ∙ �(1 − exp (−
Tsat

T1(t))) ∙  a(t)n−1  + (1 − exp (−
TR

T1(t))) ∙
1 − a(t)n−1

1 − a(t) � 

with 

a(t) = exp (− TR
T1(t)

) cos α  

(5.5) 

with the baseline signal for fully relaxed magnetization I0, saturation delay Tsat, repetition time TR, flip 

angle α, the number of profiles sampled until k-space centre n. Accordingly, T1(t) was calculated for every 

dynamic t and for myocardium as well as in the ascending aorta. Concentration-time curves c(t) were 

derived using: 

 c(t) = T1,0−T1(t)
T1(t)∙T1,0∙r

 , (5.6) 

where T1,0 refers to the native T1 relaxation time and r to the specific contrast agent relaxivity 

(Gadobutrol: r = 5.2 L/mmol ∙ s). Accordingly, MBF was quantified using cMYO(t) and cAIF(t) based on a 

Fermi model (197): 

 

cMYO(t) = IRFFermi(t) ∗ cAIF(t), 

with 

 IRFFermi(t) =  MBF ∙
1 − ν

1 − ν ∙ exp(−μt) ∙ Θ(t − tshift) 

(5.7) 

with fitting parameters ν, μ that entail no physiological meaning and the Heaviside step function Θ, with 

the time difference between AIF and myocardial signal given by tshift. The parameters of interest were 

fitted in the least square sense. To determine the global myocardial and blood T1,0 a MOLLI scan (201) 

was used. Further details of the implementation of the deconvolution and estimation process are outlined 

in (119). 

5.2.4 Simulation Studies 
Numerical simulations were performed to validate the MI-LLR framework. A fully sampled free-breathing 

3D perfusion numerical phantom was created using the signal model given in Equation (5.5) based on the 

MRXCAT simulation framework (287). Spatial resolution of the ground truth (GT) phantom was 1.25x1.25 

mm2, slice thickness: 5 mm, 20 slices. To introduce partial volume effects, the GT object was subsequently 
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downsampled to yield the final phantom parameters: 2.5x2.5x10 mm3, 10 slices, TR/TE: 2.0/1.0 ms, flip 

angle: 15°, contrast agent dose: 0.075 mmol/kg body weight (b.w.), 5 receive coils, myocardial blood flow 

(MBF): 3.5 mL/g/min, 70 simulated heart beats, R=10. The numerical phantom was further modified to 

include cardiac and respiratory motion during readout to investigate the effects of motion on 

reconstruction and MBF estimation. Heart rates between 60 and 120 bpm and respiratory motion based 

on in-vivo navigator data with maximum amplitudes of 25 and 40 mm as provided in the supporting 

material (Supporting Information Figure S2) were simulated. 

In order to analyze the simulation results, the normalized root mean square error (nRMSE) of 

reconstructed magnitude images with respect to GT images in the masked myocardial region of interest 

(respective masks are indicated in Figure 5.3 A) were calculated according to: 

 nRMSE =  �
∑ |𝐄𝐄(p�)− 𝐄𝐄GT(p�)|2p� ϵ mask

Nmask ∗ max (𝐄𝐄GT(p�)2) 
, (5.8) 

where Nmask corresponds to the number of pixels p�  in the myocardial mask. 

MBF data derived from reconstructed images was compared to MBF values from GT. Reconstructed image 

data was registered using the displacement fields obtained from registration of the GT image series to 

avoid confounding effects of the final registration step on MBF accuracy. Quantification errors were 

evaluated as mean absolute error (MAE) ± one standard deviation of the absolute error (SD) over all 

myocardial pixels from 10 slices of the 3D volume, calculated according to: 

 MAE =  
∑ |𝐌𝐌𝐁𝐁𝐅𝐅(p�)−𝐌𝐌𝐁𝐁𝐅𝐅𝐆𝐆𝐆𝐆(p�)|p� ϵ mask

Nmask 
, (5.9) 

where N mask corresponds to the number of myocardial pixels p�  in the masked 3D volume. To investigate 

the effects of signal-to-noise ratio (SNR) on MBF quantification accuracy, different noise levels were added 

to simulated data at resting heart-rate, i.e. 60 bpm, and 25mm respiratory motion amplitude. 

Statistical differences were assessed using the two tailed paired Student’s t-test; p<0.05 was considered 

significant. 

5.2.5 Phantom Studies 
To verify the signal to concentration conversion after image acquisition and reconstruction, tubes were 

filled with purified water and doped with different concentrations of Gadobutrol (from 0 to 2.25 mmol/L). 

The detailed setup of the phantom validation is summarized in Figure 5.5. The tubes were inserted into a 

cylindrical Agar phantom. Concentrations were sequentially varied to mimic the contrast agent dynamics 

in the left ventricle (LV) and in myocardium by manually replacing tubes in between subsequent 
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measurements. Concurrently, the phantom was displaced laterally to four positions with a maximum 

displacement of 30 mm to mimic in-vivo breathing motion dynamics. 

5.2.6 In-vivo Experiments 
Twelve healthy volunteers (7 male) with an average age 25.2 ± 2.4 years underwent first-pass rest 

perfusion examinations; 7 underwent a rest and stress protocol. All volunteers were scanned upon written 

informed consent according to local ethics regulations. Two contrast-enhanced dual-sequence imaging 

experiments were run using contrast agent boluses at doses of 0.075 mmol/kg b.w. to compare imaging 

at rest and stress. contrast agent was injected at 4 mL/s and followed by a 30 mL saline flush at the same 

rate using a power injector (Medrad, Indianola, PA, USA). Fifteen minutes were allowed for contrast agent 

washout in-between the two bolus injections; stress imaging was always performed first. Adenosine 

(Kantonsapotheke, University Hospital Zurich, Switzerland) was injected for at least 3 minutes at doses of 

140 μg/kg b.w./min under continuous monitoring of heart rate and blood pressure in accordance with 

standard clinical practice. Image acquisition covered 80 heartbeats during free breathing of the subject. 

MI-LLR images, intensity-time profiles, concentration-time curves and resulting MBF maps were 

compared to LLR and ℓ1-wavelet reconstructions for reference. 

5.3 Results 

5.3.1 Simulation Studies 
Comparing MI-LLR to LLR and ℓ1-wavelet reconstructions, image error was found to be reduced as shown 

by images at left-ventricular (LV) and myocardial (Myo) peak signal (Figure 5.3) with reconstruction 

nRMSEs for MI-LLR of 14.7% (LV) and 8.7% (Myo) versus LLR (26.2% and 9.6%) and ℓ1-wavelet (37.9 % and 

13.8 %). Intensity-time profiles indicate improved motion compensation with ML-LLR relative to LLR as 

indicated by yellow markers (Figure 5.3 B,C). Concentration-time curves of the six sectors reflect improved 

motion compensation of the myocardium. In particular septal sectors show reduced signal variance with 

MI-LLR when compared to LLR and ℓ1-wavelet. For MI-LLR, local and sector-wise MBF maps reveal more 

uniform values of 3.53 ± 1.01 mL/g/min with MI-LLR when compared to 3.82 ± 1.33 mL/g/min with LLR 

and 4.38 ± 1.75 mL/g/min with ℓ1-wavelet. MBF maps generally show MBF overestimation which is, 

however, reduced with MI-LLR when compared to LLR and ℓ1-wavelet. 
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Figure 5.3: Simulation results for synthetic stress data at a heartrate of 60 bpm and 25 mm respiratory 
amplitude. Ground truth (GT) (A) and the proposed motion-informed locally low-rank reconstruction 
(MI-LLR) (B), LLR (C) and ℓ1-wavelet (wavelet) (D). The panels show (horizontal order), for a 
midventricular slice, reconstruction results and errors (nRMSEs) at peak left-ventricular (LV) and peak 
myocardial signal in the myocardial region as indicated by white dashed masks, intensity-time profiles 
upon motion correction with displacement fields obtained from registration of GT image series (for 
reference, GT profiles are shown for the registered and the free-breathing case), concentration-time 
curves, for all slices, myocardial blood flow (MBF) maps, and regional means with MBF±SD, 
respectively. 

 

In Figure 5.4 reconstruction nRMSE and mean absolute error (MAE) of MBF as a function of heart rate, 

respiratory amplitude and SNR are reduced with MI-LLR when compared to LLR and ℓ1-wavelet. Heart 

rate dependencies for 25 mm and 44 mm peak respiratory amplitude show a reduced reconstruction 

nRMSEs and MBF MAEs of MI-LLR when compared to LLR (Figure 5.4 A,B,D,E). With a peak respiratory 

amplitude of 25 mm, median reconstruction nRMSEs for MI-LLR varied from 7.9% to 8.5%, while LLR 

shows higher median reconstruction nRMSEs (8.8% to 9.5%), as does ℓ1-wavelet (13.5% to 13.4%). 

Reduced MBF MAEs resulted with MI-LLR (1.25 – 1.44) as compared to LLR (1.55 – 1.61) and ℓ1-wavelet 

(2.39 – 2.86) up to a heart rate of 120 bpm. As summarized in Table 5.1, regional MBF showed significantly 

reduced variation with MI-LLR (± 30%) as compared to LLR (± 38%) and ℓ1-wavelet (± 45%). With a peak 

respiratory amplitude of 40 mm, MI-LLR yielded reduced median nRMSEs of 8.7% to 8.9% when compared 

to 8.8% to 9.3% for LLR and 13.1% to 13.2% for ℓ1-wavelet; reduced MBF MAEs are seen with MI-LLR (1.25 

– 1.44) when compared to LLR (1.89 – 2.03) and ℓ1-wavelet (3.05 – 3.14). Regional MBF showed 

significantly reduced variation for MI-LLR (± 38%) when compared to LLR (± 44%) and ℓ1-wavelet (± 44%). 
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Figure 5.4: Simulation results comparing reconstruction nRMSE (A-C) and MBF MAE (D-E) for MI-LLR 
versus LLR and ℓ1-wavelet (wavelet) for heart rates from 60 to 120 bpm for respiration amplitudes of 
25 mm (A,D) and 40 mm (B,E), and as a function of SNR (C,F). The boxplots summarize reconstruction 
RMSE over ten slices at myocardial peak signal. Shaded areas in (D-F) indicate one standard deviation 
(SD) of MBF over all pixels from all ten slices. To enhance representation, shaded areas are not shown 
for MAE < 0.5. Significant differences (p < 0.05) are marked by asterisks: * refers to significant 
reduction when motion-informed locally low-rank (MI-LLR) is compared relative to LLR. ** refers to 
significant reduction when MI-LLR or LLR are compared relative to ℓ1-wavelet (wavelet). For 
amplitudes of 25 mm, 40 mm and SNR all p* < 0.001, p** < 0.001). 

 

The SNR dependence demonstrates improved performance of MI-LLR when compared to LLR; median 

reconstruction nRMSEs decreased from 10.1% to 8.1% for MI-LLR when compared to 10.8% to 9.0% for 

LLR, and 14.5% to 13.4% for ℓ1-wavelet when increasing SNR from 12 to 37 (Figure 5.4 C); likewise reduced 

MBF MAE is seen with MI-LLR (1.38 – 1.07) when compared to LLR (3.11 – 2.44) and ℓ1-wavelet (3.73 – 

3.17) with reduced regional MBF variation for MI-LLR (± 34%) as compared to LLR (± 53%) and ℓ1-wavelet 

(± 52%). 

The average motion accuracy after the final registration step was 1.96 mm and 2.18 mm for 25 mm and 

40 mm breathing amplitude, respectively. After registration, differences in motion accuracy between MI-

LLR and LLR were insignificant.th 

 



Results 

67 

 

Table 5.1: MBF quantification metrics for simulation and in-vivo data. Significant differences (p < 0.05) 
of absolute and relative myocardial blood flow (MBF) standard deviation (SD, SD[%]) are marked by 
asterisks: * refers to significant differences when MBF SDs of motion-informed locally low-rank (MI-
LLR) are compared relative to LLR; ** refers to significant differences when MBF SDs of MI-LLR or LLR 
are compared relative to ℓ1-wavelet (wavelet). In-vivo SDs were normalized by the means (SD[%]). 

 

5.3.2 Phantom Studies 
Reconstruction results for the proposed method are shown in Figure 5.5. Exact signal to concentration 

conversion is examined by comparison of reference to measured concentration with a linear regression 

model. Figure 5.5 D shows the contrast agent concentrations derived from T1 values measured with the 

proposed 3D acquisition and reconstruction. Data are in agreement up to Gadolinium concentrations of 

2.4 mmol/L as indicated by the slope of linear regression of 1.08 (offset = 0.07). 
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Figure 5.5: Phantom sequence validation. (A) Agar phantom holds three sites for falcon tubes filled 
with saline, doped with various concentrations of Gadobutrol. (B) The respective concentrations are 
varied concomitant with a displacement of the phantom, measured with a navigator, in order to 
reflect the perfusion and breathing dynamics, respectively. (C) Resulting motion informed locally low-
rank (MI-LLR) reconstructions at concentrations corresponding to left-ventricular (LV) and myocardial 
maximum with respective temporal intensity profile plot. (D) Comparison of reference Gadolinium 
concentrations, verified by T1 mapping, and the measured concentrations obtained with the 3D 
acquisition scheme. 
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5.3.3 In-vivo Studies 
In Figure 5.6 and Figure 5.7, example reconstruction results for rest and stress acquisitions of a healthy 

male volunteer (average heart rate 70 bpm (rest) and 81 bpm (stress), navigator displacement 20 mm 

(rest) and 24 mm (stress) are reported at peak left-ventricular and myocardial contrast maximum, and 

intensity profiles. At rest, MI-LLR images appear less blurred than LLR at myocardial intensity maximum. 

Intensity profiles indicate sharper borders between myocardium and blood pool for MI-LLR when 

compared to LLR. At stress, MI-LLR images appear less blurred than LLR; ℓ1-wavelet images show 

pronounced artefacts. Intensity profiles indicate sharper borders between myocardium and blood pool 

for MI-LLR as compared to LLR images, with more residual motion seen in the LLR profile, while ℓ1-wavelet 

intensity profiles are dominated by pronounced signal intensity artefacts. 

 

Figure 5.6: In-vivo results for motion-informed locally low-rank (MI-LLR) (A), LLR (B) and ℓ1-wavelet 
(wavelet) (C) during rest condition. Imaging results are shown (horizontal order) over ten slices at 
left-ventricular myocardial signal maximum and as a temporal intensity profile at a midventricular 
slice, indicated by blue frame and dashed line. Average heart rate and maximum displacement were 
70 bpm and 20 mm, respectively. 
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Figure 5.7: In-vivo results for motion-informed locally low-rank (MI-LLR) (A), LLR (B) and ℓ1-wavelet 
(wavelet) (C) during stress condition. Imaging results are shown (horizontal order) over ten slices at 
left-ventricular, myocardial signal maximum and as a temporal intensity profile at a midventricular 
slice, indicated by blue frame and dashed line. Average stress heart rate and maximum displacement 
were 81 bpm and 24 mm, respectively. 

 

At stress (Figure 5.9), concentration-time curves show residual artefacts induced by motion for both MI-

LLR and LLR. Signal maxima are lower for MI-LLR (at 0.69 mmol/L with 0.65 ± 0.05 mmol/L) as compared 

to LLR (at 0.80 mmol/L with 0.69 ± 0.08 mmol/L). MBF maps show uniform MBF values but signal spilling 

in the basal slices. Apical locations show reduced local MBFs as compared to basal locations. Bulls eye 

plots indicate that regional means are compromised less with MI-LLR; MBF variation is seen to be 

significantly reduced (p < 0.05) using MI-LLR (±0.70 mL/g/min) vs. LLR (±0.79 mL/g/min) versus ℓ1-wavelet 

(±3.36 mL/g/min). 

Spatial variation of contrast agent concentration across the myocardium at peak myocardial enhancement 

for all volunteers is compared in Supporting Information Table S1. MBF quantification results for all 

subjects are summarized in Table 5.1and Supporting Information Figure S3. One subject showed a high 

response to adenosine stress resulting in heart rates exceeding 130 bpm. Failing ECG gating resulted in 

triggering of only every second heartbeat. The stress scan was thus excluded from analysis. For MI-LLR 

reconstruction, at an average resting heart rate of 67 ± 7 bpm, the average inter-volunteer MBF was 0.65 

± 0.22 mL/g/min, while, under stress and an average stress heart rate of 87 ± 9 bpm, the average MBF 

was 3.23 ± 0.61 mL/g/min compared to 0.68 ± 0.23 mL/g/min (rest) and 3.39 ± 0.34 mL/g/min (stress) for 

LLR versus 1.03 ± 0.75 mL/g/min (rest) and 5.94 ± 3.98 mL/g/min (stress) for ℓ1-wavelet.  



Results 

71 

 

Figure 5.8: Quantification of in-vivo results during rest resulting from motion-informed locally low-
rank (MI-LLR) (A), LLR (B) and ℓ1-wavelet (wavelet) (C) data of the volunteer presented in Figure 5.6. 
The results in panels show (horizontal order) mean concentration time curves over myocardial sectors 
from midventricular slice (indicated by blue frame in Figure 5.6) with the 2D arterial input function 
(AIF) myocardial blood flow (MBF) maps and regional means with MBF±SD. Average resting heart rate 
and maximum displacements were 70 bpm and 20 mm, respectively. 

 

Intra-volunteer variation of absolute and relative MBF was lower in MI-LLR (± 0.17 mL/g/min (26%) and ± 

1.07 ml/g/min (33%)) versus LLR (± 0.19 mL/g/min (28%) and ± 1.22 mL/g/min (36%)) and versus ℓ1-

wavelet (± 1.17 mL/g/min (113%) and ± 6.87 mL/g/min (115%)), for rest and stress, combined. At rest, the 

reduction in regional MBF variation between MI-LLR and LLR was significant (p = 0.0073); at stress it was 

insignificant. SDs of MBF values derived from MI-LLR and LLR were significantly reduced when compared 

to ℓ1-wavelet at rest and stress. 
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Figure 5.9: Quantification of in-vivo results during stress resulting from motion-informed locally low-
rank (MI-LLR) (A), LLR (B) and ℓ1-wavelet (wavelet) (C) data of the volunteer presented in Figure 5.7. 
The results in panels show (horizontal order) mean concentration time curves over myocardial sectors 
from midventricular slice (indicated by blue frame in Figure 5.7) with the 2D arterial input function 
(AIF), myocardial blood flow (MBF) maps and regional means with MBF±SD. Average stress heart rate 
and maximum displacements were 81 bpm at 24 mm, respectively. 

 

5.4 Discussion 
In this study, a 3D motion-informed locally low-rank image reconstruction framework, combined with 

Cartesian pseudo-spiral k-t undersampling, was developed and the suitability for robust free-breathing 

whole-heart quantitative perfusion imaging has been demonstrated under rest and stress conditions in 

volunteers. 

The proposed MI-LLR approach yields qualitative and quantitative improvement compared to LLR 

reconstruction for free-breathing imaging. In-vivo MBF values derived from both 3D MI-LLR and LLR agree 

with the range of values reported for quantitative 2D perfusion CMR methods (17). Reduced variation of 

regional MBF values was found for MI-LLR when compared to LLR and ℓ1-wavelet in simulation and for 

in-vivo data at rest. Average rest and stress values and their variations compare well to data from other 

3D studies (119,135,166). Differences between MI-LLR and LLR depend on individual subjects’ breathing 

pattern and heart rates (example cases shown in Supporting Information Figures S5-S8; Supporting 

Information Video S3, S4). 
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Especially in simulation, MI-LLR reduces signal elevations in the septal region as caused by high contrast 

signal from the right- and left-ventricular blood pools. The visually apparent trend for underestimation in 

the infero-lateral regions is relative to the sites of increased signal which are observed predominantly in 

basal slices. 

In order to relate MI-LLR and LLR to methods commercially available on clinical MR systems, frame-by-

frame ℓ1 compressed sensing with wavelets as sparsifying transform and coil encoding was used, which 

resulted in significant image distortions and erroneous MBF quantification. The Cartesian pseudo spiral 

in-out sampling pattern used in the present work ensured that the central k-space was always covered 

halfway during the acquisition window. This differs from other works which promote motion robustness 

by means of radial sampling strategies (20,135,288), where the central k-space is traversed by every 

profile and as such is susceptible to variations in motion state throughout the acquisition, unless this is 

accounted for by e.g. retrospective binning. Of note, 3D stack-of-stars acquisition schemes inherently 

demand higher undersampling factors, i.e. pi/2 more data is required in order to fulfil the Nyquist criterion 

when compared to Cartesian sampling (17,20). Possible reduction of the acquisition window by means of 

partial echo and partial Fourier sampling as used in other studies (20,119) was avoided as the 

approximated Hermitian symmetry is potentially violated by the local modulation of signal phase due to 

the contrast agent (289). However, cardiac motion during the acquisition could have contributed to Gibbs 

ringing, i.e. dark-rim artefacts (290), which were observed in some cases in this study (e.g. Supporting 

Information Video S2).  

Conversion of signal intensities to concentrations requires a signal model. Phantom validation (Figure 5.5) 

of MI-LLR signal intensity to concentration conversion showed good agreement within precision of 

experiment in the range of expected myocardial Gadobutrol concentrations from 0.1 to 2.3 mmol/L and 

motion amplitudes of 30 mm. 

Simulation studies using the MRXCAT framework confirmed sufficient robustness of MI-LLR at higher 

heart rates and breathing amplitudes and was shown to outperform LLR and ℓ1-wavelet over a realistic 

SNR range. MBF quantification from MI-LLR reconstruction showed reduced variability in apical and basal 

sectors, as well as reduced overestimation of midventricular, infero- and anteroseptal regions. The 

investigated respiratory amplitudes of 25 mm and 40 mm in feet-head direction were taken from recorded 

in-vivo respiratory motion amplitudes as shown in Supporting Information Figure S2; other works only 

considered amplitudes of 1.7 mm and ~8 mm (18,135). In the simulation studies sinusoidal breathing 

patterns of 4.5 s cycle duration were assumed; especially under stress, more irregular and abrupt 

breathing patterns might occur. In these cases, the exact implications of sudden motion on quantification 

accuracy remain to be quantified. 
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It is noted that the perfusion model (Equation (5.7)) fitting problem is reasonably well posed, i.e. three 

model parameters are fitted considering approximately 40 time points per pixel (the exact value depends 

on the time span of the first-pass and thus the shape of the curve). Therefore, no clear trend in MBF 

accuracy vs. heartrate or SNR could be detected, contrary to reconstruction nRMSEs (Figure 4A-C). 

However, systematic bias is intrinsic to each of the considered methods, therefore a significant 

improvement of MI-LLR compared to LLR in terms of MBF accuracy was seen in the simulation studies. In 

the future, a blood tissue exchange model (BTEX) with four free parameters modelled as partial 

differential equations should be tried as proposed in (209,291). In that case, superiority of MI-LLR motion 

compensation is expected to improve quantification robustness more profoundly than shown for the 

Fermi-based fitting. 

In image reconstruction, the patch size as well as the range of regularization parameters 𝜆𝜆 were 

determined empirically and found to be generalizable to all datasets. A reference ground truth image 

could alternatively be used to optimize 𝜆𝜆s (292), the acquisition of which is, however, hampered by the 

residual contrast agent in the tissue and the resulting change in contrast. The effects of regularization and 

employed image registration on net spatio-temporal resolution are yet to be determined. Although 

simulation and in-vivo results show motion robustness of the proposed reconstruction, maximum scan 

acceleration factors to reduce the influence of intra-shot cardiac motion contributions remain to be 

investigated. Previous work exploiting motion information for 3D perfusion imaging utilized uniform 

Cartesian k-t undersampling (18) in conjunction with ℓ2 based regularization, as opposed to non-uniform 

k-t undersampling and nuclear norm regularization used here. As a result of ℓ2-regularization, temporal 

blurring was observed compromising MBF quantification (18). A comparison of different quantitative free-

breathing perfusion approaches (i.e. data acquisition, reconstruction and MBF quantification) for uniform 

Cartesian, random Cartesian, radial and spiral undersampling based on synthetic data could be beneficial 

and will be subject of future work. 

Relating to previous work that uses motion correction with LLR, the BLOSM approach is similar to the 

proposed MI-LLR strategy but was only applied in the context of 2D data (191); through-plane motion 

from true 3D acquisitions was not investigated. Continuous Radial Interleaved simultaneous Multi-slice 

acquisition at sPoiled steady-state (CRIMP) achieves whole-heart coverage combining self-gating and 

patch tracking in a continuous multiband acquisition, which uses dual bolus injections for MBF 

quantification (135). 

Computation times for the entire reconstruction were on the order of ~15 min per scan using a hybrid 

CPU-GPU implementation. Processing times are mainly determined by the cost of the 3D image 

registration steps. Furthermore, currently a 5-channel coil is used. For larger numbers of receiver 

channels, the proposed method could be adapted using coil compression methods (293). 
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A limitation of our study is the small number of subjects included. In order to allow for more generalizable 

statistical results, future studies should enroll larger numbers of subjects without and with suspected 

coronary artery disease. Diagnostic accuracy should then be addressed in simulation and the in-vivo 

evaluation. Reader assessment regarding image quality should be investigated. The method was 

implemented at 1.5 T but is applicable to other field strengths. 

5.5 Conclusion 
The combination of 3D Cartesian spiral in-out undersampling in conjunction with motion-informed low-

rank reconstruction improves single-bolus free-breathing quantitative 3D myocardial perfusion imaging 

under rest and stress condition. 
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Chapter 6  

 

Hypercapnic Myocardial Stress 

Perfusion in a Porcine Model – A 

Pilot Experiment 

6.1 Background 
Among the main objectives of myocardial perfusion imaging is the detection of ischemia. Detection of 

tissue associated with ischemia at early stages is only possible after induction of pharmacological induced 

stress to reach a regime of vasodilation beyond the physiological autoregulation (294). Autoregulation of 

vascular impedance or tone supports coronary flow over a wide range of pressure to satisfy the oxygen 

demand of myocardial tissue (Figure 6.1). Accordingly, compromised coronary vessel integrity may be 

masked and hence cannot be detected by perfusion imaging at normal, resting condition. Therefore, 

autoregulation needs to be suppressed by inducing a state of maximum vasodilatation, which is referred 

to as a stress state. While unobstructed vessels would show minimum pressure loss and hence maximum 

flow (Figure 6.1, black dashed arrow), an epicardial stenosis would induce progressive pressure loss with 

resulting reduction of coronary flow (Figure 6.1, grey dashed arrows), potentially causing ischemia (294). 
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Figure 6.1: Coronary pressure to flow relationship (dark blue). 𝑃𝑃v is the venous pressure. Vascular 
tone is indicated by red circles. Variation in cardiac function results in change of position (blue 
horizontal arrow) and change of slope (light blue). Figure adapted from Siebes et al. (294). 

 

In a clinical setting, pharmacological stress agents, such as adenosine, are used to suppress vascular 

autoregulation. Adenosine induces coronary vasodilation by acting on endothelial receptors (A2A) in 

coronary vessels, forcing vascular smooth muscle cells to relax (295). Systemic vasodilation results in 

lowered blood pressure and tachycardia. In practice, adenosine stress is induced for 2-3 minutes, which 

is a sufficient time span to perform contrast-enhanced myocardial perfusion imaging. 

However, besides the elevation of heart rate and MBF, current stress agents can cause side effects such 

as chest pain or discomfort, shortness of breath, headache, dizziness, nausea or flushing. In rare cases, 

this can lead to an atrioventricular block (4). Also, the short half-time of adenosine requires continuous 

infusion during the required imaging time window along with monitoring of blood pressure by medical 

personal. 

Besides pharmacologically induced vasodilation, the vasodilatory effect of CO2 in blood has been explored 

(296,297). It has been found that an increase in arterial CO2 partial pressure, which is equivalent to the 

end-tidal partial CO2 pressure (PETCO2), results in an increase of cerebral and myocardial perfusion 

(296,297). An elevation of PETCO2 above the normal range in humans, i.e. 35-45 mmHg, has various 

physiological effects. It causes a shift in body acid-base balance towards lower blood pH, changes in 
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metabolism and respiratory compensation. The effect of vasodilation is associated with activation of K+
ATP 

channels and/or stimulation of nitric oxide (NO) production in the vessel walls, resulting in relaxation of 

smooth muscle cells. Similar to the effects of adenosine-induced vasodilation, increased MBF can be 

expected. Systemically, an increase in respiratory rate and heart rate is induced. 

In the literature, the effect of hypercapnia on MBF has been reported early on (298). Numerous authors 

have tried to establish relations between hypercapnia and MBF in experimental preclinical and clinical 

settings using a variety of invasive and non-invasive methodologies. While the majority of preclinical 

studies could report elevated blood flow as a response of hypercapnia in animal models (297,299–304), 

other studies could not show such relation (305,306). In humans, elevated blood flow in large coronary 

vessels was measured using Doppler ultrasound and velocity encoded CMR (307), using transthoracic 

Doppler echocardiography (308) and invasive catheter Kety-Schmidt MBF estimation (309). In a PET 

investigation, elevated blood flow in the heart was detected during hypercapnia (310). In contrast, a 

Doppler ultrasound study could not show significantly elevated coronary blood flow induced by 

hypercapnia (311). The authors related the inconclusive and contradictory results to differences in study 

design and limited standardisation of animal species, blood flow probing methodology and especially 

hypercapnia protocols (312). 

These problems were mitigated in more recent works which are based on a setup with automatically 

controlled PETCO2 and PETO2. The dependency between an increase in PETCO2 (at a constant level of PETO2 

i.e. normal blood O2 pressure or euoxia) and hypercapnia with an elevation of blood flow in the 

myocardium could be established using multiple methodologies: MR blood oxygen level dependent 

(BOLD) myocardial imaging has been studied, where myocardial oxygenation is used as a surrogate for 

myocardial perfusion (79,313). In a study by Yang et al. (79), the response between targeted PETCO2 and 

blood PCO2 was validated in a canine model for a range of 20 to 60 mmHg. Hypercapnia was induced twice 

in plateaus of PETCO2 at 10 mmHg above the subject’s normal PETCO2 for 4 minutes with waiting periods 

of 5 minutes in between. In the same study, hypercapnia was induced in healthy young men twice in 

plateaus of PETCO2 at 5 and 10 mmHg above the subject’s normal PETCO2 for 4 minutes. Imaging was 

performed 1 minute after PETCO2 stabilized. Controlled hypercapnia was shown to invoke stimuli similar 

to adenosine. In a second study (313), hypercapnia was induced in canines four times in plateaus of PETCO2 

at 60 mmHg (i.e. 25 mmHg above normal) for 5 minutes with waiting periods of 5 minutes in between 

while euoxia was maintained at PETO2 at 130 mmHg. The BOLD response to hypercapnia could be 

established and showed the potential to non-invasively assess ischaemic heart disease. Noteworthy, in 

studies on oxygen sensitive CMR (82,314), it was shown that vasoactive breathing exercises, i.e. 

hyperventilation and long breathholds, induce changes in blood CO2, which trigger hypercapnia-induced 

vasodilation in a similar manner as pharmacological vasodilators. Yang et al. went on to study hypercapnia 



Background 

80 

and the myocardial perfusion response using MBF quantification in a PET study in canines (315). 

Hypercapnia was induced once during a plateau of PETCO2 at 60 mmHg (i.e. 25 mmHg above normal while 

euoxia was maintained at PETO2 = 125 mmHg). At rest PETCO2 = 35 mmHg was targeted. The effect of 

hypercapnia on MBF was compared with adenosine and showed elevated MBF comparable to standard 

dose adenosine (315). In a PET study by Pelletier et al. (312), these results were replicated in young healthy 

men and could show a PETCO2 dose-dependent increase in MBF. Hypercapnia was induced four times in 

plateaus of PETCO2 = 50, 55 and two times 60 mmHg for 6 minutes each, while euoxia was maintained at 

PETO2 of 100 mmHg. The first three plateaus with steps were used to investigate dose response with 

resting periods of 4 minutes in between. The last two plateaus were used to test repeatability and were 

separated by a waiting period > 10 minutes to allow the return of PETCO2 to normal. PET imaging was 

started after 3 minutes in the plateau. At rest PETCO2 was targeted to the respective subject’s normal value 

(35-43 mmHg). For stress stimuli at 60 mmHg, MBF doubled but was not higher when compared to 

adenosine. Generally, stress hypercapnia above PETCO2 of 60 mmHg increases the risk for acidosis and is 

not sustainable in an experiment with repetitive hypercapnia, especially in anesthetized animal models. 

Given these previous works, inducing hypercapnia by controlled modulation of PETCO2 is of interest for 

contrast-enhanced MBF perfusion imaging. While canine models have been studied in detail, little is 

known about the effects of hypercapnia in porcine models. Previous work conducted by our group has 

revealed that induction of pharmacological stress is difficult in the porcine model, i.e. adenosine has 

proven itself to be difficult because of a non-specific systemic response with severe loss of blood pressure. 

Similarly, Elias et al. (316) also observed loss in systolic, diastolic and mean arterial blood pressure and 

found that heart rate and cardiac output did not increase upon adenosine infusion. Husso et al. (317) 

showed the expected hemodynamic (i.e. blood pressures, cardiac output and heart rate) and blood flow 

response using co-administered phenylephrine to maintain blood pressure. 

The pilot study described in the following aimed at investigating the feasibility of myocardial stress 

perfusion induced by hypercapnia in a porcine animal model. To this end, induction of hypercapnia by 

modulating end tidal partial pressure was tested and optimized. The response of MBF to hypercapnia was 

measured using quantitative free-breathing 2D and 3D perfusion CMR. 
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6.2 Methods 

6.2.1 Hypercapnia Instrumentation 
The experimental setup for mechanical ventilation is depicted in Figure 6.2. In order to control PETCO2, a 

computer-controlled gas blender was used (RespirAct RA-MR, Thornhill research, Toronto, Canada) 

(318,319). The active control unit remained in the MR control room and the gas blending unit was placed 

close to the subject’s head. The respiratory ventilation was provided by a standard clinical ventilator with 

external O2 and air input. In the first setup for pilot experiment #1, the ventilator was placed in the control 

room, which required long hoses (~10 m as compared to 1.5 to 2.0 m in clinical setting) for ventilation 

and did not allow to maintain the required ventilation response (please refer to Figure 6.4). For the second 

and third set of pilot experiments, the ventilation was placed behind the back wall of the scanner room in 

order to keep the distance between ventilator and subject’s head as short as possible (~2.0 m). A camera 

allowed monitoring of the ventilator from the control room. Expiratory and inspiratory hoses were 

inserted into the scanner room via waveguides in the RF cage. The inspiratory tube ran from the ventilator 

into the blending unit. From there, the gas mixture was fed into the animal. There, inspiration and 

expiration hoses were connected to the intubation tube by a fork junction. A valve ensured one-

directional air flow. For gas sensing, a small hose was attached right at the end of the junction to feed air 

back to the blending unit. The sensory information was sent to the control unit in the MR control room. 

Cables and hoses which provide O2, CO2 and a calibration gas were fed through a waveguide to link the 

control with the blending unit. The calibration gas was a dedicated mixture of 10% O2 and N2. It allowed 

to perform autocalibration prior to the experiments. The required PETCO2 pressures for rest and 

hypercapnia stress were set in the interface of the RespirAct before the control was activated. PETO2 was 

also preset but are adapted by the algorithm to maintain euoxia. During the experiment the target 

pressures and corresponding measurement as well as breathing were monitored as shown in the inset of 

Figure 6.2. 
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Figure 6.2: Experimental setup for the hypercapnia experiments in the anesthetized porcine model 
using the RespirAct device in conjunction with a clinical ventilator. The inset in the bottom right shows 
a screenshot of the RespirAct’s interface during a hypercapnia stress experiment. The schematic is 
not to scale. 
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6.2.2 In-vivo Experiments 
The porcine model experiments follow procedures adapted from hypercapnia canine and human studies 

by Yang et al. (79,313,315) and the human study by Pelletier et al. (312). 

The first goal of the experiment was to establish the feasibility of the experimental setup. The second goal 

was to test the MBF response to hypercapnia and to investigate the repeatability as well as the dose 

response relationship. 

 

Figure 6.3: Protocol of the hypercapnia challenge. The active PETCO2 controlled by the gas blender is 
indicated in red. The PETO2 level for euoxia is indicated in green. The expected time for the system 
and the ventilated subject to adapt to the control is indicated by the down- and up-slope for PETCO2 
and PETO2, respectively. The expected PETCO2 response to the stress plateau at 60 mmHg is indicated 
by black markers. In the bottom line the timeline with the corresponding MRI experiments is given. 

 

In pilot #1, the system’s ability to reach controlled PCO2 and a targeted plateau of PETCO2 at 60 mmHg for 

6 minutes was tested. In pilot study #2, the response of MBF to change in PETCO2 was measured for a 

protocol as shown in the overview Figure 6.3. At the start of the protocol, the PETCO2 control is activated 

and the targeted baseline is set to PETCO2 at 35 mmHg, while PETO2 euoxia was maintained by the gas 

blender. According to the previous studies (79,313,315), the expected range for PETO2 was 140 to 160 

mmHg. Depending on the animal’s physiological normal state, a couple of minutes of delay was expected 

before the targeted values at baseline were achieved. Functional imaging for planning as well as a MOLLI 

T1 scan were acquired in the meantime. Initial 3D perfusion imaging at baseline (i.e. PETCO2 = 35 mmHg) 

was performed to establish the normal MBF value at rest. It was followed by pairs of plateaus at 60 mmHg 

(for repeatability) and 50 mmHg (dose dependent response and repeatability), respectively. The duration 

of the hypercapnia plateau was set to 6 minutes to account for the initial PETCO2 overshoot that is settled 

within 1 to 2 minutes (79,313,315). Perfusion experiments were performed in the last two minutes of the 
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plateaus. In order to allow for return to baseline PCO2 at euoxia, which requires several breathing cycles 

in anesthesia, and sufficient contrast agent washout from tissue, the waiting time between experiments 

was >10 minutes. A final perfusion experiment was obtained at baseline during rest. 

For pilot #3, the protocol of pilot #2 was repeated. In order to differentiate and consider different levels 

of myocardial perfusion in the different heart phases, 2D perfusion experiments with imaging of three 

slices triggered to peak systole, early diastole and diastole, were used. 

The direct conversion of targeted PETCO2 into arterial PCO2 is considered the independent variable for 

vasoreactivity (79,320). As the RespirAct is not intended for use in anaesthetised animals, this relationship 

had to be validated (79). For the pilot studies #2 and #3, the collected arterial and venous blood gases 

(see animal handling) were measured before and during the stress plateaus and compared against the 

values sensed by the RespirAct blending unit. 

For perfusion experiments, a contrast-enhanced 2D/3D dual-sequence single-bolus scheme was used. 

Contrast agent boluses at doses of 0.075 mmol/kg b.w. and 0.1 mmol/kg b.w. were injected at 4 mL/s and 

followed by a 30 mL saline flush at the same rate using a power injector (Medrad, Indianola, PA, USA). 

Image acquisition covered 60 heartbeats during continuous respiratory ventilation of the animals. 

6.2.3 Animal Handling 
Three domestic healthy female swine (Sus scrofa domestica, breed: Swiss large white, body weights 45 

kg) were used for the experiments. All swine were premedicated and intubated. The animal for pilot #1 

was positioned laterally. For pilot #2 and #3, animals were positioned supine. General anesthesia was 

maintained with isoflurane (2 to 3%) by positive pressure ventilation. In the standard CMR anesthesia 

setup, ventilation is conducted with 100% O2. However, when the ventilation runs in series with the 

RespirAct, the ventilator O2 is set to 0%, while the peak end expiratory pressure (PEEP) is increased from 

3.8 to 15.0 mmHg. Heart rate and ECG, inspiratory and expiratory gas partial pressures, urine output, 

arterial and venous blood gases were monitored continuously throughout the procedure. Arterial blood 

pressure was measured before and during every hypercapnic stress measurement. All animal handling, 

procedures and protocols were approved by the Cantonal Veterinary Office (Zurich, Switzerland). 

6.2.4 Image Acquisition and Reconstruction 
MR imaging was conducted on a clinical 1.5 T Philips Achieva MR system (Philips Healthcare, Best, The 

Netherlands) with a 40 mT/m at 200 T/m/s gradient system, equipped with a five-channel cardiac receiver 

array. Gadobutrol (Gadovist, Bayer Schering Pharma, Germany) contrast agent was used. 

For the 3D perfusion dual-sequence scheme, imaging parameters were: TR/TE = 2.0/1.0 ms, spatial 

resolution: 2.5 x 2.5 x 10 mm3, FOV: 300 x 300 x 100 mm3, covering the full ventricle from apex to base, 
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flip angle: 15°, acquisition window: 240 ms, saturation delay: 135 ms, undersampling factor R = 10. The 

3D perfusion scan was triggered to end systole.  

For the interleaved acquisition of the AIF, a fully sampled centre-out Cartesian pattern was used with 

spatial resolution: 10 x 10 mm2, slice thickness: 15 mm, flip angle: 15°, acquisition window: 56-64 ms, 

saturation delay: 30 ms. TR and TE were set equal to the corresponding 3D sequence to avoid different T1 

and T2* weightings. The 2D AIF images were acquired in the ascending aorta during diastole. 

The 3D perfusion images were reconstructed using the motion informed locally low-rank pipeline detailed 

in (321). 2D perfusion data were reconstructed on the scanner using the product SENSE implementation. 

6.2.5 Image Post-processing and Analysis 
Post-processing and perfusion quantification were conducted in MATLAB (Mathworks, Natick, MA). The 

2D perfusion data was registered prior to quantification (185). Semi-quantitative analysis of signal time 

curve upslopes was performed in 6 circumferential myocardial sectors and the left ventricular AIF (108). 

Myocardial upslopes were normalized by the upslope of the AIF. Full MBF quantification was performed 

using Fermi model deconvolution (9). Values per experiment are given as the sectorial mean of the mid-

ventricular slice. 

6.3 Results 

6.3.1 Hemodynamic Response to Hypercapnic Stimuli 
The PETCO2 data for pilot #1 is shown in Figure 6.4. During the first ten minutes, end-tidal pressure was 

subject to variation during initialization of the system. When the PETCO2 control was turned off during 

switching of the system sequence, the lack in active control led to a spike in PETCO2 and a rapid negative 

drop in PETO2 (also shown in Figure 6.5 for pilot #2 and #3). PETCO2 reached a baseline of 39 mmHg after 

15 minutes, 5 mmHg higher than the set value of 35 mmHg. During baseline, PETO2 varied between 135-

138 mmHg. At the onset of the target plateau level of 60 mmHg (in the following referred to as stress-60), 

PETCO2 rose to 56 mmHg over the course of 2 minutes, followed by a sharp decline down to 41 mmHg. 

Just before the end of the stress-60 plateau, PETCO2 peaked at 53 mm and thus failed to reach the intended 

value of 60 mmHg. At onset of the stress-60 plateau, PETO2 sharply rose to 163 mmHg and steadily 

decreased during the stress experiment. 
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Figure 6.4: End-tidal pressure pilot #1. (A) Curve of target PETCO2 as produced by the gas blender (red 
line) and measured PETCO2 (blue dots). The intended plateau at PETCO2 = 60 mmHg is labelled as stress 
60. (B) Corresponding measured PETO2 (green markers). Red, dashed lines indicate the stress 60 
plateau. 

 

Figure 6.5 shows the PETCO2 tracing for pilot #2 and #3 with the short ventilation tube setup. In pilot #2, 

during the first ten minutes, end-tidal pressure was again subject to variations during initiation of active 

PETCO2 control. PETCO2 reached the baseline after 60 minutes. Similarly, PETO2 rose to euoxia at 160 mmHg. 

At the onset of stress-60, PETCO2 steadily increased to 60 mmHg over the course of 3.5 minutes (as also 

shown in the inset). The level was maintained as scheduled for the remaining 2.5 minutes. At the onset of 

stress, PETO2 briefly increased and slightly decreased during stress to 157 mmHg. At the end of the plateau, 

PETO2 decreased, while the system had to regulate in response to the sudden drop in PETCO2. Baseline was 

again reached after 20 minutes. For the second stress-60, the plateau was reached even swifter. For the 

following two stress-50 plateaus, data showed an instantaneous increase with the expected brief 

overshoot of the plateau (see second inset). The plateau was maintained for 5 out of 6 minutes. 

For pilot #3, the baseline of PETCO2 was reached after 25 minutes. At baseline, PETO2 reached 155 mmHg. 

For the stress-60 experiments, the response was quicker than that seen for pilot #2, also indicated by the 

short overshoot. For stress-50, the plateau was reached but was subject to a sudden drop down to 40 

mmHg. Gaps in the traces of target PETCO2 marked the end of one experiment as assigned by the gas 

blender. Before the system transitioned again into a controlled state of PETCO2 it briefly reset. During this 

period active gas control was off causing a sudden downslope in PETO2 along with a spike in PETCO2.  
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Figure 6.5: End-tidal history at different levels of hypercapnia for pilot #2 and #3 in A and B, 
respectively. Respective top panels show curve of target PETCO2 as produced by the gas blender (red 
line) and measured PETCO2 (blue markers). The insets show enlarged plot of 6 minute plateaus. 
Bottom panel shows corresponding measured PETO2 (green markers). Red, dashed lines indicate 
corresponding stress plateaus. 

 

Results on PETCO2 and PETO2 as measured by the gas blender as well as from arterial blood samples (PCO2 

and PO2) as measure for vasoreactivity are summarized in Figure 6.6. For pilot #2 and #3, comparison of 

arterial blood CO2 pressure against PETCO2 as measured by the sensor in the blending unit shows a linear 

correlation (R=0.96, p<0.0001). Comparison of arterial blood O2 against PETO2 showed no linear 

correlation. A detailed summary is given in Table 1 and 2 for pilot #2 and #3, respectively. 
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Figure 6.6: Relationship between blood partial and end-tidal pressures for CO2 (A) and O2 (B) in pilot 
experiments #2 and #3. For the relationship of blood CO2 and PETCO2, a linear correlation is shown (R2 
= 0.92, two tailed Student’s t-test p<0.00001). Full data is summarized in Table 1 and 2. 

 

Comparing of heart rate before onset of the PETCO2 stress plateau and at the plateau shows no increase 

in heart rate (variation of < 1 bpm) as shown in Table 1 and 2. 
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6.3.2 MBF Response to Hypercapnic Stimulus 
The results for the investigation of the response of MBF to hypercapnia stimuli in pilot study #2 are shown 

in the MBF maps in Figure 6.7. In the two baseline experiments, median MBFs were 0.77 ml/g/min and 

0.97 ml/g/min for the final and initial experiment, respectively. At the two 60 mmHg targets, MBF was 

0.71 ml/g/min and 0.77 ml/g/min as compared to 0.76 ml/g/min and 0.78 ml/g/min at the two 50 mmHg 

targets, respectively. Accordingly, no response of MBF to different levels of hypercapnia is seen (for full 

data see Table 6.1). For pilot study #3, results of semi-quantitative perfusion estimation are shown in 

Table 6.2. Upslope values for myocardium and LV AIF, as well as normalized myocardium do not show a 

consistent response to the hypercapnic stimulus. 

 

Table 6.1: Summary of results for pilot #2. Quantitative perfusion estimates are given as their 
median±SD. Semi-quantitative perfusion estimates are given as mean±SD in arbitrary units (a.u.). 
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Table 6.2: Summary of results for pilot #3. Fully quantitative could not be obtained. Semi-quantitative 
perfusion estimates are given as mean±SD in arbitrary units (a.u.). 

 

 

Figure 6.7: Myocardial blood flow (MBF) results for pilot #2. From left to right, myocardial MBF maps 
superimposed to the perfusion images in a midventricular slice are shown for experiment 1 to 6 with 
their PETCO2 targets and median myocardial MBF given in ml/g/min. 
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6.4 Discussion 
This work documents inconclusive hemodynamic responses to hypercapnia in an anaesthetized porcine 

model. While delivery of hypercapnic stimuli was successful, once the distance between the mechanical 

respirator and the animal was kept as short as possible and the animal was positioned in supine position, 

myocardial perfusion did not show the expected increase in response to hypercapnia. Also, monitored 

heart rates remained constant and showed no response to hypercapnic stimuli. 

The absence of a hemodynamic response in our studies may be linked to several factors. In previous 

human studies, increases in cardiac work due to hypercapnia were noted (309,311) and hypercapnia 

induced increases in MBF are considered to be partially induced by increased heart work as hemodynamic 

response. Corrections were made to separate the effect of hypercapnia on MBF from heart rate and blood 

pressure. The corrected MBF (MBFcor) was normalized by heart rate and systolic blood pressure (SBP) as 

combined in the Rate Pressure Product (RPP). Correction is then MBF𝑝𝑝𝑑𝑑𝑖𝑖 = �MBF ∙

mean (RPPrest,population �/ RPPstress,subject): Considering the corrected MBF is arguably relevant, as 

especially microvascular vasodilation can occur independent of increased cardiac work (294). In the PET 

study by Pelletier et al. (312), average corrected MBF increased for PETCO2 at 60 mmHG from 0.44 ± 0.045 

ml/g/min to 0.59 ± 0.15 ml/g/min. This reduced MBF response in ‘absence’ of heart rate elevation.  

Second, in light of the corrected MBF response of 34% in the human PET study, the inconsistent MBF 

results in the conducted measurements, the precision and accuracy of the CMR quantitative perfusion 

measures have to be contextualized. For the 3D quantitative methods in pilot #2, mean±SD of coefficients 

of variance (COV) for pixel-wise MBF mapping in the healthy myocardium were 13 ± 7%. For 2D, semi-

quantitative normalized upslope sector-wise COVs (mean±SD) over all measurements were 26 ± 13% and 

18 ± 8% for pilot #2 and pilot #3, respectively. In addition, reduced precision after the initial contrast agent 

administration has to be considered for insufficient washout times. Nevertheless, the contrast to noise 

ratio after the first administration of contrast agent, can be considered to be sufficient for quantitative 

perfusion measurements (108). For the 3D perfusion method, MBF accuracy can be as low as ~25% (321). 

In light of these findings, a limitation of the pilot studies is the lack of blood pressure data. While blood 

pressure was monitored throughout the experiments, continuous data was not stored. Although general 

anaesthesia was maintained using Isoflurane, it was initiated using Propofol which is a known vasodilator 

(322). However, Husso et al. (316) used Propofol combined with Fentanyl to maintain anesthesia in a 

porcine adenosine stress study and argue that both substances together do not affect blood pressure 

(323).  

To test whether euoxic- end-tidal PETCO2-targeted hypercapnia invokes any hemodynamic response, 

invasively obtained blood pressure in the coronary arteries during hypercapnia could be obtained. In 
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addition, stroke volume obtained from cine imaging in conjunction with MBF measurements should be 

monitored.  

As the utility of the porcine model to investigate MBF changes in response to hypercapnia remains 

inconclusive as has been reported in previous studies (316), future work should either consider the use of 

canines as the preferable animal model or rather focus entirely on the application in humans. The 

application of hypercapnia in humans is considered clinically save (324,325).  

In conclusion, the here investigated hypercapnia stress setup and protocol was able to induce controlled 

euoxic-hypercapnia in a porcine model. Vasodilation and MBF response were found non-existent within 

the limited sensitivity of the employed 2D and 3D free-breathing myocardial perfusion CMR, which is also 

a consequence of negligible hemodynamic response in animal model. To validate the relevance of 

hypercapnia induced vasodilation for DCE CMR, a pilot study in healthy young human volunteers should 

be conducted. Dose dependent hypercapnic stress response should be investigated and compared to 

adenosine induced stress. 
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7.1 Introduction 
Myocardial scar mass derived from cardiovascular magnetic resonance (CMR) late Gadolinium 

enhancement (LGE) imaging (11) is considered the gold-standard for non-invasive myocardial viability 

assessment (12) in the context of acute and chronic myocardial infarction (MI) (215,216). LGE imaging can 

identify reversible myocardial dysfunction before coronary revascularization (326). Myocardial scar mass 

is of prognostic value in patients with ischemic and non-ischemic cardiomyopathies (34–37,236,255,327–

330). 

In clinical practice, myocardial scar mass quantification requires segmentation of epicardial and 

endocardial contours (epi- and endo-contours) of the left ventricle (LV) in LGE short-axis view images. 

With limited contrast, precise delineation of myocardial borders can be challenging, even when 

anatomical information from aligned functional cine imaging is at hand. 

Scar tissue segmentation is either conducted manually or using semi-automatic thresholding methods. 

For the latter, the two recommended methods are thresholding at 50% of the maximum hyperenhanced 

myocardial signal intensity, referred to as full-width-at-half-maximum (FWHM), and thresholding at n 

times the standard deviation (n-SD) of mean healthy myocardial signal (12,31). Both thresholding 

methods require manual segmentation of epi- and endo-contours followed by delineation of hyperintense 

or remote tissue, respectively (31,230). Comparisons of the manual and the two semi-automatic 

approaches suggest no significant difference in segmented scar volumes and reproducibility (37,230,234–

236). Generally, the manual segmentation is time-consuming and requires well-trained observers as well 

as standardized criteria to account for varying CMR sequences and hardware. In a multi-center study, 

significant interobserver differences in %LV mass were reported (331), indicating limited generalization 

of the classification of scar data. 

Several attempts to mitigate the limitations of human interactions in scar segmentation have been 

proposed. Semi-automatic and fully automatic methods, either combining co-registration of CINE and LGE 

images (241,242), or only LGE images in combination with prior knowledge on constraints and inter-slice 

smoothness, have been reported (235,243). More recently, deep learning algorithms and more 

specifically convolutional neural networks (CNN) have been proposed for myocardial scar segmentation 

(38), especially as contributions to segmentation challenges (252). These machine learning techniques 

either rely on fusion of CINE and LGE images (253), or take LGE images as their only input (254–257). Other 

work incorporates augmented training data to deploy anatomically informed segmentation (258). 

The standard data processing approach for CNN based segmentation includes resampling or interpolation 

of image data to obtain training and test data with constant field-of-view (FOV) and matrix size, i.e. 

constant in-plane resolution, as well as normalized contrast (253–255,257,258). This is especially 



Methods 

95 

necessary when training data from publicly available CMR datasets is used, e.g. from segmentation 

challenges. For CNN based image reconstruction, varying data and processing have shown to produce 

biased results (39,332). For myocardial scar mass quantification, the impact of image resolution changes 

(e.g. artefacts introduced by partial volume effects) remains to be studied. 

In general, the achievable in-vivo image resolution is constrained by motion and especially limited by 

inconsistent contrast during lengthy image acquisition durations. In absence of in-vivo ground-truth data, 

post-mortem high-resolution data has been used in animal models to study accuracy of LGE imaging and 

scar segmentation methods (231,333). 

The objective of the present study is to investigate the impact of varying image resolutions on automatic 

LGE myocardial scar quantification using a representative U-Net type network. To generate reference 

segmentations for LGE data of MI, high-resolution post-mortem porcine MI models (n=45) are used; 

training and test data of different in-plane resolutions are derived from the reference data. The network 

is trained at in-plane image resolutions of Δx = 0.7, 1.2, and 1.7 mm, and tested on resolutions ranging 

from Δx = 0.7 to 1.8 mm. The network predictions are compared against n-SD thresholding using manual 

observer LV and remote region annotations, based on signed fractional errors of scar mass and Dice score. 

7.2 Methods 

7.2.1 Animal Cohort and Handling 
Forty-five domestic healthy female swine (Sus scrofa domestica, breed: Swiss large white, body weights 

(BW) 60–85 kg) were used for the experiments. All swine were fully anesthetized and intubated for 

positive pressure ventilation. General anesthesia was maintained with isoflurane (2% - 3%) in 100% 

oxygen. Heparin was administered intravenously and repeated every hour to maintain an activated 

clotting time of >250s. 
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Figure 7.1: Processing of images and reference (REF) segmentation. From top to bottom: Late 
Gadolinium enhancement (LGE) image acquisition with crop to final matrix size and manual expert 
observer segmentation of epi- and endocontours and healthy myocardium. Resolution reduction by 
multiplication of k-space signal with low-pass filter-kernel at constant field-of-view. Examples of 
resulting images with in-plane resolutions Δx = 0.7 mm, 1.2 mm and 1.7 mm, respectively. 
Semiautomatic scar segmentation using n-SD thresholding at respective resolutions with REF 
myocardial masks followed by morphologic denoising of scar masks. Healthy myocardium in green, 
medium scar with intensity I > 2SD, < 5SD in red and dense scar (I > 5SD) in blue. Total scar (I > 2SD) 
is the sum of red and blue regions. Bottom row shows resulting segmentation masks at respective 
image resolutions. Corresponding image feature pairs serve as training data. 

 

Acute MI and microvascular obstruction in the apical septum, or basal inferior and lateral wall was induced 

by 90 minutes occlusion of the left anterior descending coronary artery (LAD) or the left circumflex artery, 

respectively. After the procedure and subsequent imaging, performed in the acute phase of MI (6h after 

reperfusion), all animals were euthanized in deep anesthesia by lethal injection of pentobarbital. All 
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animal handling, procedures and protocols were approved by the Cantonal Veterinary Office (Zurich, 

Switzerland). The full data curation pipeline is illustrated in Figure 7.1. 

7.2.2 Image Acquisition 
Imaging was conducted on a clinical 1.5 T Philips Achieva MR system (Philips Healthcare, Best, The 

Netherlands), delivering 40 mT/m at 200 T/m/s, and a five- or 32-channel cardiac receiver array. 

Functional as well as Gadolinium-enhanced imaging was performed as part of a standard ischemic heart 

disease protocol (4). 

A Gadobutrol contrast agent (Gadovist, Bayer Schering Pharma, Germany) was injected (0.2 mmol/kg 

BW). The animal was euthanized 20 min after contrast administration and LGE imaging was immediately 

performed post-mortem. High-resolution images were acquired using a sequence consisting of a 3D 

inversion-recovery gradient-echo sequence with the following parameters: TE/TR 2.3/4.7 ms, acquisition 

resolution 0.7x0.7x2.0 mm3, parallel imaging (SENSE) reduction factor: 2.2, and flip angle: 15°. The optimal 

inversion delay was estimated using an inversion delay scout sequence, maximizing signal contrast 

between affected and remote myocardium (~290 ms). Total image acquisition time of one 3D dataset 

was 25 min. 

The 3D whole-heart image data was resliced in short-axis orientation yielding 2D slices (~60-80 per 

dataset) covering the LV from apex to base. 

7.2.3 Image Post-processing 
The high-resolution images were analyzed using GTVolume (GyroTools LLC, Zurich, Switzerland). Apical 

and basal slices were omitted when endocardial borders were not distinguishable without referring to 

functional imaging, or the extent of muscle around the blood pool was smaller than 100%. In all other 

slices, epi- and endocardial borders were manually delineated. Healthy remote tissue regions were 

labelled by drawing of b-spline contours around myocardium that showed no hyperenhancement. The 

papillary muscles were excluded for the analysis. Images and segmentation masks were exported and 

further processed using Python (version 3.8). 

Masks for myocardial- and scar-tissue were generated using the n-SD approach, i.e. by assigning the 

thresholds according to 

 𝜏𝜏 = 𝜇𝜇𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑𝑖𝑖𝑖𝑖 + 𝑛𝑛 ∙ 𝜎𝜎remote (7.1) 

where 𝜇𝜇𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑𝑖𝑖𝑖𝑖 and 𝜎𝜎remote denote the mean signal amplitude and its SD in the remote healthy tissue, 

respectively. Two values of n (i.e. 2 and 5) were used to differentiate total and dense scar, i.e. >2SD and 

>5SD scar, respectively. Class associations are presented as RGB images where color channels correspond 
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to healthy myocardium in green, medium scar (2SD<I<5SD) in red, and dense (I>5SD) scar in blue. The sum 

of red and blue regions refers to total scar (I>2SD). 

To avoid mislabeling of single pixels as scar in the high-resolution data, the reference (REF) masks were 

denoised by applying morphological opening to the binary total scar mask (red + blue). To ensure 

consideration of individual pixels in the vicinity adjacent to the clusters red and blue, a dilation operation 

was performed to the total scar mask before it was multiplied with both original red and blue channels. 

An example case of this filtering process with the original mask, the filtered mask and their difference is 

shown in Figure 7.1. 

7.2.4 Reduction of Image Resolution 
To test the dependence on image resolution for training and prediction, the high-resolution data was 

projected to resolutions of Δx ∈ {0.7, … ,1.8} mm, with the highest resolution corresponding to the 

original acquisition resolution of Δxorig~0.7 mm. To this end, the image data was Fourier transformed to 

k-space data, multiplied with a rectangular low-pass filter and inverse Fourier transformed back to image 

space. Accordingly, a constant matrix size of (128x128) at a constant FOV was kept throughout. An outline 

of the resolution reduction is shown in Figure 7.1. 

7.2.5 Network Training 
A five-fold cross-validation scheme was applied to increase statistical meaning of the reported errors. In 

each cross-validation pass the total dataset of 45 subsets was split into training (n=36; 1970 - 2036 slices) 

and test data (n=9; 461 - 527 slices). For each of the three in-plane resolutions: Δx = 0.7 mm, 1.2 mm, and 

1.7 mm, a U-net style architecture network (Ternaus-Net (334)) was trained using the ‘Segmentation 

Models for PyTorch’ library (335). For the encoder path, a ResNet34 (246) with pretrained weights from 

the ImageNet dataset (www.image-net.org) was used to accelerate convergence and increase accuracy 

(334,336,337). The number of down-sampling steps in the encoder path was set to 5, and the number of 

convolutional channels in the decoder path were (256, 128, 64, 32, 16). In the decoder path, batch norm 

operations were used after every convolution and the final layer used a sigmoid activation. As optimizer, 

Adam with an initial learning rate of 1e-3, 𝛽𝛽1 = 0.9 and 𝛽𝛽2 = 0.999 was used. The training batch size was 

set to 32 and as loss function the multi-class Dice loss was used. Three-hundred epochs were used to train 

the network. 

Before passing the LGE images to the network, the images were cropped to a 128 × 128 matrix centered 

at the LV. This process matches the procedure of other work (253,257,258). Furthermore, the test image 

intensity was normalized to [0, 1] per image. Test time augmentation was used i.e.  training data was 

augmented 8-fold using multiple 90-degree rotations combined with horizontal or vertical flipping. At 
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test/validation time, the mask prediction for each test image was obtained by applying the same 8 image 

augmentation operations and by computing the mean of all predictions after reversing the augmentation. 

7.2.6 Error Metrics 
Predictions of each network (trained at Δx = 0.7, 1.2 and 1.7 mm) were evaluated on the test data with 

resolutions ranging from Δx = 0.7 to 1.7 mm. The resulting estimation of myocardium, total and dense 

scar tissue area was compared pair-wise against n-SD thresholding. 

For all resolutions Δx, the areas (in mm2) of the tissue segmentations (Ƭ ∈ {MYO, SD2, SD5}) per slice 

with pixels p�  of mask M is given as: 

 A𝐶𝐶(Ƭ) = Δx2 Σp�∈M (𝑃𝑃(p�)  ∧  Ƭ). (7.2) 

where 𝑃𝑃 is the segmentation derived from either network prediction or n-SD thresholding of the data 

using myocardial epi- and endocontours at the highest resolution image. 

The signed relative fractional error in percent for myocardial tissue is then derived to compare network 

performance against n-SD thresholding as: 

 ΔMYO = Anetwork(MYO)−AnSD(MYO)
AnSD (MYO)

. (7.3) 

For scar tissues (Ƭ ∈ {SD2, SD5}), the signed pairwise fractional error in percent points (p.p.) is derived 

as: 

 ΔƬ = Anetwork(Ƭ)
Anetwork(MYO)

− AnSD(Ƭ)
AnSD (MYO)

. (7.4) 

To provide full descriptive statistics, resulting marginal distributions of fractional errors with their medians 

and interquartile range (IQR) minima and maxima as well as their means and SDs are reported. 

To capture the spatial correspondence of network segmentation and thresholding the Sorensen-Dice 

coefficient was calculated between tissue masks as area of overlap divided by the total number of pixels 

in both masks (338): 

 Dice score(Ƭ) = 2 ∙ Σp�  {network(p�) ∧ Ƭ ∙  nSD(p�) ∧ Ƭ} 
Σp�  {network(p�) ∧ Ƭ + nSD(p�) ∧ Ƭ} 

. (7.5) 

Dice score marginal distributions with their medians and IQR minima and maxima, as well as their means 

and SDs are derived. For all three training resolutions, Dice score histograms at the training resolutions 

are derived, respectively. To enhance readability, Dice score histograms are visualized as their kernel 

density estimations for all investigated test image resolutions. 



Results 

100 

7.3 Results 

7.3.1 Cohort Data Set 
Over the 45 subjects (1497 slices), mean (±SD) myocardial area is 1150 mm2 (±335 mm2) on REF. The 

relative area of total scar (i.e. SD2) is 10% (±12%) and dense scar (i.e. SD5) relative area is 5% (±8%) of the 

myocardial area. Total scar can extend to up to 40% of the myocardial area, while the extent of dense scar 

is <10% for ~92% of the investigated slices.  

7.3.2 Segmentation Performance Dependency on Effective 
Resolution 

Representative Case 

Figure 7.2 shows a representative LGE test case, which features an infarct in the antero- and inferoseptal 

myocardial wall. Resolution reduction leads to partial voluming and change of noise level in the images, 

as also shown in the corresponding close ups of the identical case in Figure 7.1. 

For the network prediction from high-resolution training (Figure 7.2 B), all segmented areas remain 

relatively constant for Δx ≤ 1.1 mm. For test images with lower resolution Δx > 1.2 mm, total and dense 

scar is overestimated, especially at the anteroseptal border.  
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Figure 7.2: Representative example dataset. Late Gadolinium enhancement (LGE) images with 
reduction in in-plane resolution Δx and n-SD thresholding segmentation masks are shown in (a). 
Corresponding network segmentation predictions for the networks trained at these resolutions are 
shown in (b-d), respectively. Healthy myocardium in green, medium scar with intensity I > 2SD, < 5SD 
in red and dense scar (I > 5SD) in blue. Total scar (I > 2SD) is the sum of red and blue regions. Regional 
areas in mm for myocardium, total scar and dense scar are given as numbers in green, red and blue, 
respectively. Blue frames highlight the resolutions Δx = 0.7 mm, 1.2 mm and 1.7 mm of image label 
pairs used for network training. Dice scores relative to n-SD thresholding on REF are given in the top 
right corner of the shown frames. 

 

At test image resolution Δx = 1.7 mm, SD2 and SD5 scar area prediction fails. Myocardial area prediction 

is biased with overestimations of 22.4% to 30.6% at the highest and lowest resolutions, respectively. For 

the two lower training resolutions, myocardial area prediction bias remains constant at ~20%. 
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At training resolution, Δx = 1.2 mm (Figure 7.2 C), predicted areas for myocardial, SD2 and SD5 are subject 

to a more moderated increase over the full range of investigated resolutions. Of note, classification 

between SD2 and SD5 scar varies. 

At lowest training resolution, Δx = 1.7 mm (Figure 7.2 D), predicted areas for myocardial, SD2 and SD5 are 

the most constant. Prediction masks show residual artefacts. 

Fractional Scar Area Investigation 

Results for fractional scar area investigation are shown in Figure 7.3. As for the example case, marginal 

distributions of fractional errors indicate that for networks trained at high resolution, masks are prone to 

changes for varying test resolutions. 

For the network prediction from high-resolution training (Figure 7.3 A), mean ΔMYO remains on the order 

of 3% (±13%) for resolutions Δx ≤ 1.1 mm. For resolutions Δx ≥ 1.2 mm, mean errors remain constant but 

exhibit increased variance (±19%). Over the span of investigated resolutions, a trend towards inaccurate 

SD2 and SD5 scar prediction is visible with a pronounced increase of up to ~25p.p. (±25p.p.) and ~10p.p. 

(±13p.p.), respectively. 

For training at Δx = 1.2 mm (Figure 7.3 B), ΔMYO results indicate an approximately constant bias <1%.  A 

trend towards underestimation in pairwise comparisons of SD2 scar prediction is indicated. ΔSD5 shows 

moderate variation over the span of investigated resolutions. Again, data suggests that accuracy benefits 

from increased test image resolution, as also indicated by decreased IQRs. 

For training at Δx = 1.7 mm (Figure 7.3 C), ΔSD2 indicates a trend from 3.8p.p. overestimation at high 

resolution to -4.3p.p. underestimation at low resolution. ΔSD5 shows a similar, but more moderate trend. 

SDs remain constant at ~5p.p. 
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Figure 7.3: Boxplot analysis of signed errors between network predictions and n-SD thresholding as 
function of in-plane resolutions Δx from 0.7 mm to 1.7 mm are shown for networks trained at Δx = 
0.7 mm (A), 1.2 mm (B) and 1.7 mm (C). From left to right, panels show box-plots for signed errors 
ΔMYO relative to myocardial area at reference (REF), signed fractional differences for total (SD2) and 
dense (SD5) scar, respectively. Mean ± SD are given in the legend. 

 

Spatial Correspondence 

Figure 7.4 illustrates the results of network performance by means of Dice score comparison (for mean ± 

SD see Table 7.1). 

For high-resolution training (Figure 7.4 A) and high-resolution test images (Δ𝑥𝑥 < 1.2 mm), mean 

myocardium Dice scores are 0.88 (±0.05). For test resolutions Δ𝑥𝑥 ≥ 1.2 mm, Dice  
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Figure 7.4: Dice score marginal distributions between network predictions and n-SD thresholding as 
function of in-plane resolutions Δx from 0.7 mm to 1.7 mm are shown for networks trained at Δx = 
0.7 mm (A), 1.2 mm (B) and 1.7 mm (C). From left to right, panels show Dice scores as kernel density 
estimations of histograms for myocardium, total (SD2) and dense (SD5) scar, respectively. Actual 
histogram reflects distribution of Dice scores at training data resolution. Corresponding mean ±SD 
are given in Table 7.1. 
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scores decrease, and the shape of distributions varies. Specifically, for the lowest resolution test images 

(Δ𝑥𝑥 = 1.7 mm), the mean Dice score is 0.80 (±0.10). SD2 Dice score for resolutions Δx ≤ 1.2 mm vary from 

0.86 (±0.06) to 0.83(±0.08); for Δx > 1.2 mm, mean Dice scores further decrease from 0.81 (±0.07) to 0.65 

(±0.16). Distributions of SD5 Dice scores show pronounced variation over the span of test resolutions. 

For training at Δx = 1.2 mm (Figure 7.4 B), variations of distributions are more moderate. Mean 

myocardium Dice scores remain in the range of 0.88 (±0.05) to 0.87 (±0.06). SD2 Dice scores for test 

resolutions Δx ≤ 1.2 mm, vary from 0.86 (±0.06) to 0.85 (±0.07). For Δ𝑥𝑥 > 1.2 mm, mean Dice scores 

decrease from 0.85 (±0.07) to 0.82 (±0.08). Distributions of SD5 Dice score are broadened with less 

pronounced peaks as for the highest resolution training but only show subtle variations over the span of 

test resolutions.  

For training at Δx = 1.7 mm (Figure 7.4 C), myocardial Dice score distributions show no variation. Their 

means remain in the range of 0.89 to 0.88 at constant SDs (±0.05). Compared to data for network training 

resolution Δx = 1.2 mm, SD2 Dice score distributions are more homogeneous. SD5 Dice score distributions 

are again broadened with less pronounced peaks as seen for the highest training resolution. Biggest 

variations are seen for distributions for test data at Δx = 0.7 and 0.9 mm. As for the fractional errors, for 

both networks at lower resolution, Dice score investigation suggests that variability benefits from 

increased image resolution. 

Results for fractional scar area investigation and spatial correspondence are further summarized in Figure 

7.5. Medians and IQRs of signed fractional errors over all investigated test image resolutions are shown 

in Figure 7.5 A. For training resolutions Δx = 0.7, 1.2 and 1.7 mm, median (IQR) compares as 0.0% (9.7%), 

-1.9% (6.9%) and 0.9% (7.1%)  
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Figure 7.5: Segmentation performance summary. (A) Signed errors median and inter quartile ranges 
(IQRs) over all investigated in-plane resolutions Δx from 0.7 mm to 1.8 mm are shown for networks 
trained at Δx = 0.7 mm, = 1.2 mm and = 1.7 mm. Boxes refer to median (IQR) signed errors ΔMYO 
relative to myocardial area at reference (REF), signed fractional errors for total (SD2) and dense (SD5) 
scar, respectively. Legend refers to panel (A) and (B). (B) Dice score mean ± SD between network 
predictions and n-SD thresholding over all investigated in-plane resolutions Δx are shown for same 
network trainings as in (A). 

 

for myocardium, as 3.8p.p. (15.6p.p.), 2.5p.p. (15.1p.p.) and 2.3p.p. (14.3p.p.) for SD2 scar, and as 0.0p.p. 

(3.0p.p.), -0.3p.p. (2.3p.p.) and 0p.p. (1.9p.p.) for SD5 scar, respectively. 

In Figure 7.5 B, mean ± SD of Dice scores over all test image resolutions for training resolutions Δx = 0.7, 

1.2 and 1.7 mm compare as 0.86 (±0.07), 0.88 (±0.05) and 0.89 (±0.05) for myocardium, as 0.80 (±0.12), 

0.85 (±0.07) and 0.85 (±0.05) for SD2 scar, and as 0.50 (±0.24), 0.56 (±0.23) and 0.57 (±0.23) for SD5 scar, 

respectively. As for the fractional errors, this suggests that networks trained at lower resolution images 

show higher local correspondence. 

7.4 Discussion 
In this chapter, the impact of image resolution on scar segmentation using neural networks has been 

evaluated. Our high-resolution post-mortem dataset allowed to train networks at three different effective 

resolutions i.e. enabled a change of the image point-spread function (PSF) while keeping matrix size and 

field-of-view constant. 

Networks trained on high-resolution images were found to be less robust to changes in test image 

resolutions, when compared to networks trained at lower resolutions. This was reflected in the marginal 

distributions of signed fractional area errors and Dice scores and was further highlighted in the 

segmentation performance summary (Figure 7.5). 
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Reduced resolution corresponds to a wider PSF, which leads to a spatial information being smeared out 

over neighboring pixel i.e. spatial signal variations occur on a larger scale and are smoother. Accordingly, 

when used in the training, the network becomes insensitive to changes on fine scales. To this end, a 

network, which was trained on low-resolution data, shows a tendency towards overestimating scar areas 

with increasing resolution in the test data as it is less sensitive to sharper transitions in the image. 

On the contrary, networks trained on high-resolution images can represent features and variations on a 

fine scale. When trained on the highest resolution and deployed on successively lower resolution test 

data, significant overestimation of scar areas occurs. We associate this finding with the inability of the 

network to represent increasing partial volume effects in the test data. 

Given the recommended range for LGE image acquisition resolutions of approximately ~1.4-1.8 mm (4) 

and potentially higher resolutions used in clinical trials (34), the results shown in Figure 7.3. B for a 

network trained at Δx = 1.2 mm reflect a practical scenario. Considering a test data resolution ranging 

from Δx = 1.2-1.7 mm, a small tendency of underestimating scar area with increasing variability for 

decreasing test data resolution was observed. However, changes in bias and variability were bound to -

1.3 p.p. and 4.2 p.p., respectively. These results can be contextualized when comparing the errors to 

analyses of inter-center and inter-observer agreement of manual segmentations in e.g. the multi-center 

study by Klem et al. (331). In their work, the interobserver variability for manual scar segmentations 

ranged from ±3.5 p.p. to ± 6.4, respectively. Accordingly, the network predictions in this scenario yielded 

changes in variability similar to the variability introduced by multiple observers. 

The PSF-dependent bias and variability demonstrated in our work indicates the importance of considering 

and reporting acquisition rather than reconstruction resolution as a crucial parameter when designing 

and evaluating segmentation networks. It is therefore suggested to always document acquisition 

resolution and PSF to estimate the effects. 

While scar segmentation using post-mortem high-resolution data has previously been shown in studies 

with pigs (n=17) and canines (n=11) (231,333), the number of cases in these studies would have been too 

small for re-training of networks. 

A limitation of the present work is that the impact of effective resolution on myocardial segmentation 

accuracy was only investigated for a standard CNN architecture. Other pipelines, e.g. multi-modality 

learning models for LGE LV segmentation incorporating LGE, cine and atlas data (339,340) were not 

investigated. 

While no extensive hyperparameter tuning of the employed network architecture was conducted, for the 

test sets, the mean myocardial, total and dense scar Dice scores were on the order of 0.88, 0.85 and 0.5-



Conclusion 

109 

0.6, respectively. This is comparable with established work (38,252) and the network training was thus 

considered sufficient for the described analysis. 

An aspect which has also not been investigated in this work is the through-plane resolution of the 3D 

image datasets. Future work should include this analysis, also regarding SNR, as this is of further interest 

when 3D LGE imaging is used and scar segmentation algorithms are applied (219,220). 

Future work should also generate reference validation epi- and endocardial segmentations from multiple 

experienced observers to mitigate uncertainties in the current reference segmentation dataset. In 

addition, manual scar segmentation and/or thresholding using the FWHM method (232) should be 

considered to generate alternative reference segmentation as there is no consensus for the optimal 

method of quantitative scar assessment (31). Such data could then also serve as a better reference for 

interobserver variability and overall segmentation accuracy comparisons. 

7.5 Conclusion 
Image acquisition resolution variations can lead to misestimation of total and dense scar using 

convolutional neural networks. Networks, which are trained in lower-resolution training data and 

deployed on higher resolution test sets, tend to be more robust against variation in test image resolution. 

On the contrary, networks trained at higher resolution, when compared to the test data resolution, can 

lead to systematic overestimation of total and dense scar areas for decreasing test data resolution. It is 

therefore recommended to consider and report image acquisition resolution used in both training and 

testing. 
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Chapter 8  

 

Summary 
In this thesis, challenges in 3D CMR perfusion imaging and scar quantification have been addressed. 

Advances include a framework for tailored Cartesian acquisition strategies and motion-conditioned CS 

reconstruction for improved quantitative 3D free-breathing perfusion imaging with whole-heart 

coverage. The proposed framework was also employed to explore hypercapnia-induced stress in 

anaesthetized porcine models. To advance viability assessment using LGE imaging, a testing framework 

for current network-based automatic scar segmentation was implemented. 

8.1 Discussion 
In Chapter 5, a dual-stage approach for improved quantitative 3D free-breathing perfusion imaging using 

motion information from displacement fields was presented. A similar concept has been described for 2D 

imaging (i.e. BLOSM (191)), which was expanded to full 3D using pseudo-spiral in-out Cartesian data 

sampling (i.e. MI-LLR), herein. While the robustness of image reconstruction was shown in simulations 

with realistic physiological parameters, irregular breathing- and heart-motion patterns should be included 

in future experiments to corroborate current results. Along this line, the influence of registration on the 

final MBF quantification should be studied. To further benchmark the imaging performance of MI-LLR, 

comparisons with other frameworks such as STCR (149,161) and k-t PCA (18) reconstructions should also 

be included. 

A limitation of all current iterative image reconstruction methods is the need to adjust the regularization 

weight without having ground truth in-vivo image information available. In consequence, the 

regularization weight is often not optimal, which may also impact the accuracy of MBF quantification. To 

this end, more sophisticated synthetic datasets are urgently needed to derive optimal regularization 

functions and corresponding weights. 

Another open question remains in relation to the best k-t trajectory for free-breathing quantitative 

perfusion 3D imaging. While radial stack-of-stars acquisition schemes have been tried (20), the 

computational cost of gridding reconstruction presents a hurdle. Of note in this context, the Cartesian 
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pseudo-spiral in-out scheme proposed in the present work showed competitive image quality when 

compared to radial stack-of-stars. Recent work by Huang et al. (133) compared 2D simultaneous multi-

slice imaging to a stack-of-stars dual-sequence scheme. Acquiring both schemes in alternating heart cycles 

allowed for a direct comparison of image quality and absolute perfusion quantification. Such an 

alternating heart cycle acquisition could also facilitate hyperparameter tuning if interleaved with e.g. 

conventional 2D sequences. 

In terms of computational load, the main limitation of the dual stage MI-LLR framework is the 

computational cost of the required 3D image registration step. Although partially run on GPUs, it accounts 

for about 80% of the total reconstruction time. To speed up this step neural network-based image 

registration shall be implemented and tested. 

In the second project an alternative approach to induce stress by hypercapnia was explored in this thesis. 

While the experiments could show that, with an optimized automatic gas blending setup, hypercapnic 

stimuli are applicable, hemodynamic response could not be detected. This finding links with an earlier 

study on the lack of effects of hypercapnia in a porcine model (316). At the same time, these findings 

differ from studies reporting responses in canine models in similar experimental setups (79,313,315). The 

fact that successful studies were almost exclusively conducted in canines raises suspicions that stress 

induction in porcine models is physiologically different. 

In the third contribution of this thesis, automatic network-based segmentation of myocardium and scar 

was found to be susceptible to variations in image resolution between training and testing data. Our 

findings stress that image acquisition resolution used in both training and testing must be considered 

when applying network-based segmentation methods. A limitation of our high-resolution porcine 

infarction model dataset relates to the limited contrast-to-noise ratio when compared to clinical LGE 

imaging. To improve the comparability to 2D LGE imaging, re-slicing of the 3D images to the common slice 

thickness of 2D LGE images should thus be investigated. While our U-Net architecture used 2D images as 

input, a 3D architecture would presumably enhance segmentation accuracy as the extent of scar could 

then also be inferred from information of adjacent slices. 
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8.2 Outlook 
While the MI-LLR acquisition and reconstruction framework has been tested in volunteers and in a small 

set of patients, larger patient cohorts with different diseases shall be studied to establish the diagnostic 

yield of the method. To speed up image reconstruction, CNN-based registration (341) shall be integrated. 

Further, motion-informed model-based reconstruction (342) may be attempted, potentially enabling 

reconstruction times of less than a minute. 

In relation to streamlining quantitative perfusion analysis, approaches are well under way to automatize 

pixel-wise perfusion mapping (184). In particular, automatic MBF perfusion quantification using ML 

methods is a promising approach (343,344). As proposed by van Herten et al. (214), the lack of training 

data may be mitigated by physics-informed CNNs. 

Robust ECG triggering remains a key challenge in cardiac acquisitions, especially in stress condition. 

Missed triggers during contrast uptake render absolute perfusion quantification problematic. While 

alternative triggering by e.g. ultrasonic or fiber-optic methods can be employed (345), continuous imaging 

methods for cardiac phase-resolved perfusion imaging should be kept in mind (135). 

One aspect not covered in this thesis is the optimization of the k-space trajectory and sampling patterns 

for dynamic contrast-enhanced imaging. Undersampling mask optimization has been researched by 

means of learning and Bayesian inference in the context of model- and data-based image reconstruction 

(346,347). On-the-fly undersampling pattern generation would be ideal. Such sampling masks could be 

inferred using joint optimization of sampling and reconstruction as proposed by Vishnevskiy et al. (348). 

To further enhance spatio-temporal resolution, a neural implicit k-space learning method for binning-free 

imaging should be considered (349). In such an approach, an implicit k-space representation of k-space 

coordinate intensity pairs is learned. From the acquired data, the learned k-space representation can be 

inferred. 

Despite the inconclusive results of hypercapnia in our animal experiments, oxygenation-sensitive CMR 

has shown promising results previously (82). To verify hypercapnia-induced vasodilation, a pilot study in 

healthy young human volunteers comparable to the study by Pelletier et al. (312) should be conducted. 

The dose-dependent hypercapnic stress response should be investigated and compared to adenosine 

induced stress. 

When using network-based scar segmentation, data consistency checks between training and clinical data 

need to be included to ensure reliable segmentation. In a study on multi-organ datasets (350) attempts 

to predict segmentation performance have been made. Automatic quality control has been included on 

largescale data (351) and in real-time (352). 
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As alternative to CNNs, multi-modality learning models for segmentation incorporating LGE, cine and atlas 

data (339,340) may be considered. Among alternative network topologies, especially transformer 

networks (353) could be of interest, which do not rely on convolution operations (354). Transformers have 

been successfully applied in the context of language processing and have gained momentum for medical 

image segmentation tasks (355–357). Most recent work by Ding et al. (358) proposes multi-scale 

transformer learning for myocardial scar segmentation achieving Dice scores of 0.84. 

A general limitation of supervised learning-based methods is the dependence on labeled ground-truth 

training data. This poses a fundamental problem as there is no consensus on the optimal method for 

quantitative scar segmentation (31) (233). First, there is no clear consensus on how pathologies present 

in LGE imaging, especially in border regions of scar. Second, the image resolution has a large influence on 

the quantified scar mass (e.g. due to partial volume effects). An advanced simulation using a high-

resolution synthetic model including realistic imperfections might help to compare image acquisition 

methods and parameters. 
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