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ABSTRACT
The moment-sum-of-squares (moment-SOS) hierarchy is one of the

most celebrated and widely applied methods for approximating the

minimum of an 𝑛-variate polynomial over a feasible region defined

by polynomial (in)equalities. A key feature of the hierarchy is that,

at a fixed level, it can be formulated as a semidefinite program

of size polynomial in the number of variables 𝑛. Although this

suggests that it may therefore be computed in polynomial time,

this is not necessarily the case. Indeed, as O’Donnell [16] and later

Raghavendra & Weitz [20] show, there exist examples where the

sos-representations used in the hierarchy have exponential bit-

complexity. We study the computational complexity of the moment-

SOS hierarchy, complementing and expanding upon earlier work of

Raghavendra & Weitz [20]. In particular, we establish algebraic and

geometric conditions under which polynomial-time computation

is guaranteed to be possible.
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1 INTRODUCTION
Consider the polynomial optimization problem:

𝑓min := min 𝑓 (x)
s.t. 𝑔𝑖 (x) ≥ 0 (1 ≤ 𝑖 ≤ 𝑚),

ℎ 𝑗 (x) = 0 (1 ≤ 𝑗 ≤ ℓ),
x ∈ R𝑛,

(POP)

where 𝑓 , 𝑔𝑖 , ℎ 𝑗 ∈ R[x] are given 𝑛-variate polynomials. The feasible

region of (POP) is a basic semialgebraic set, which we denote by:

𝑆 (g, h) := {x ∈ R𝑛 : 𝑔𝑖 (x) ≥ 0, ℎ 𝑗 (x) = 0}.
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Problems of the form (POP) are generally hard and non-convex.

They naturally capture several classical combinatorial problems,

and have applications in finance, energy optimization, machine

learning, optimal control and quantum computing. As they are

often intractable, several techniques have been proposed to ap-

proximate them. Perhaps the most well-known and studied among

these techniques is the so-called moment-SOS hierarchy, due to

Lasserre [12] and Parillo [17]. The main idea behind the hierarchy

is that one can certify the nonnegativity of a polynomial 𝑝 ∈ R[x]
on 𝑆 (g, h) by representing it as a weighted sum of squares:

𝑝 (x) =
𝑚∑︁
𝑖=0

𝑔𝑖 (x)𝜎𝑖 (x) +
ℓ∑︁
𝑗=1

ℎ 𝑗 (x)𝑝 𝑗 (x), (1)

where 𝜎𝑖 ∈ Σ[x] are sums of squares, 𝑝 𝑗 ∈ R[x] and we set

𝑔0 (x) = 1 for convenience. We say that a representation (1) is of

degree 𝑡 if deg(𝑔𝑖𝜎𝑖 ) ≤ 𝑡 and deg(ℎ 𝑗𝑝 𝑗 ) ≤ 𝑡 for all 𝑖, 𝑗 . For 𝑡 ∈ N,
one then obtains a lower bound sos(𝑓 )𝑡 ≤ 𝑓min on the minimum

of 𝑓 by:

sos(𝑓 )𝑡 := sup

_∈R

{
_ : 𝑓 − _ has a representation (1)

of degree 2𝑡
}
.

(SOS)

For fixed level 𝑡 , this lower bound may be computed by solving a

semidefinite program (SDP) involving matrices of size polynomial

in 𝑛. It is often claimed that one may therefore (approximately)

compute sos(𝑓 )𝑡 in polynomial time, for instance by applying the

ellipsoid algorithm. As was noted by O’Donnell [16] and later by

Raghavendra & Weitz [20], this is not necessarily the case. Indeed,

polynomial runtime of the ellipsoid algorithm is only guaranteed

when the feasible region of the SDP contains an inner ball which
is not too small, and is contained in an outer ball which is not too

large. Informally, these two balls ensure that it is possible to choose

the coefficients of the multipliers 𝜎𝑖 , 𝑝 𝑗 in the representation (1) so

that their bit-complexity is polynomial in 𝑛. We call such a repre-

sentation compact. Roughly speaking, the following mild algebraic

boundedness assumption on the feasible region 𝑆 (g, h) guarantees
the existence of the inner ball for the SDP-formulation of sos(𝑓 )𝑡 .

Definition 1. We say that the problem (POP) is explicitly bounded
if 𝑔1 (x) = 𝑅2 − ∥x∥2

2
for some 𝑅 ≥ 0.

Remark 2. If (POP) is explicitly bounded, then (SOS) is feasible

for all 𝑡 ≥ ⌈deg(𝑓 )/2⌉.

Remark 3. Explicit boundedness is a slightly stronger assump-

tion than the usual Archimedean condition, which merely requires

𝑅2 − ∥x∥2
2
to have a representation of the form (1). For example,
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the semialgebraic set defined by 𝑥2 (1 − 𝑥2) ≥ 0 is Archimedean
1

since we have the identity 1 − 𝑥2 = (1 − 𝑥2)2 + 𝑥2 (1 − 𝑥2), but it
clearly does not have a constraint of the form 𝑅2 − 𝑥2 in its descrip-

tion. Likewise, we point out that a compact semialgebraic set is not

necessarily Archimedean (see, e.g. [19, Ex. 6.3.1], [13, Ex. 3.19]).

The remaining question, then, is whether an outer ball always

exists. O’Donnell [16] shows that in fact, it does not; he constructs

an example where every representation (1) of 𝑓 (x) − sos(𝑓 )2 nec-
essarily involves multipliers 𝜎𝑖 , ℎ 𝑗 whose coefficients are doubly-

exponentially large in 𝑛. Raghavendra & Weitz [20] subsequently

show that it is possible to construct such an example even when the

equalities h include the boolean constraints x𝑖 − x2
𝑖
= 0, negatively

answering a question posed by O’Donnell [16]. On the positive

side, they show conditions under which existence of a compact

representation (1) is guaranteed. These conditions are met for the

reformulation of several well-known combinatorial problems as a

(POP), as well as for optimization over the unit hypersphere. To

state our and their results, we make the natural assumption that

the coefficients of the objective function 𝑓 and the polynomials

𝑔𝑖 , ℎ 𝑗 defining the feasible region 𝑆 (g, h) of (POP) have polynomial

bit-complexity.

Assumption 4. Throughout, we assume that the coefficients of

the polynomials 𝑓 , 𝑔𝑖 , ℎ 𝑗 in (POP) have polynomial bit-complexity

in 𝑛 and that their degree is independent of 𝑛. We also assume that

the number of constraints (𝑚 + ℓ) is polynomial in 𝑛.

Theorem 5 (Main positive result of [20], paraphrased). Let
𝑆 (g, h) be a semialgebraic set and let 𝑡 ≥ ⌈deg(𝑓 )/2⌉ be fixed. Assume
that 𝑆 (g, h) is explicitly bounded: 𝑔1 (x) = 𝑅2 − ∑𝑛

𝑖=1 x
2

𝑖
for some

1 ≤ 𝑅 ≤ 2
poly(𝑛) . Suppose furthermore that the following conditions

are satisfied:

(1) For any 𝑝 ∈ R[x]𝑡 with 𝑝 (x) = 0 for all x ∈ 𝑆 (g, h), there are
𝑝1, 𝑝2, . . . , 𝑝ℓ ∈ R[x] such that:

𝑝 (x) =
ℓ∑︁
𝑗=1

𝑝 𝑗 (x)ℎ 𝑗 (x),

and deg(𝑝 𝑗ℎ 𝑗 ) = 𝑂 (𝑡).
(2) Let ` be the uniform probability measure on 𝑆 (g, h). The mo-

ment matrix𝑀𝑡 (`) defined by:

𝑀𝑡 (`)𝛼,𝛽 :=

∫
𝑆 (g,h)

x𝛼+𝛽𝑑` (x) (𝛼, 𝛽 ∈ N𝑛𝑡 )

has smallest non-zero eigenvalue ≥ 2
−poly(𝑛) .

(3) There exists an [ ≥ 2
−poly(𝑛) such that 𝑔𝑖 (x) ≥ [ for all

x ∈ 𝑆 (g, h) and 1 ≤ 𝑖 ≤ 𝑚.

Then the program (SOS) has an (approximately) optimal solution in-
volving only multipliers 𝜎𝑖 , 𝑝 𝑗 whose coefficients are at most 2poly(𝑛) .

The conditions of Theorem 5 have a natural interpretation in the

dual formulation of (SOS), the moment formulation, which reads

1
Technically, both the Archimedean and explicit boundedness condition are properties

of the description of a semialgebraic set and not of the set itself. However since we

always fix the description, we often write ‘the set 𝑆 (𝒈,𝒉) is explicitly bounded’.

(see, e.g., [5]):

mom(𝑓 )𝑡 := inf

𝐿∈R[x]∗
2𝑡

{
𝐿(𝑓 ) :𝐿(1) = 1, 𝐿(𝑝) ≥ 0 for 𝑝

with a representation (1)

of degree 2𝑡
}
.

(MOM)

We refer to Section 3.3 for a detailed discussion of (MOM) and the

duality between it and (SOS). For now let us introduce two types of

matrices associated to linear functionals 𝐿 ∈ R[x]∗
2𝑡
: the moment

matrix 𝑀𝑡 (𝐿) and, for a polynomial 𝑔, the localizing matrix𝑀𝑡 (𝑔𝐿).
Their entries are given by

𝑀𝑡 (𝐿)𝛼,𝛽 = 𝐿(x𝛼+𝛽 ) ( |𝛼 |, |𝛽 | ≤ 𝑡), (2)

𝑀𝑡 (𝑔𝐿)𝛼,𝛽 = 𝐿(𝑔(x)x𝛼+𝛽 ) ( |𝛼 |, |𝛽 | ≤ 𝑡 − ⌈deg(𝑔)/2⌉). (3)

For ease of notation, we use a subscript 𝑡 for the localizing matrix

𝑀𝑡 (𝑔𝐿) even though it is indexed by monomials of degree at most

𝑡 − ⌈deg(𝑔)/2⌉. Here we use terminology associated to measures

since the linear functionals 𝐿 in (MOM) can be viewed as relaxations

of probability measures: any probability measure ` whose support

is contained in 𝑆 (g, h) gives rise to a feasible 𝐿` defined by

𝐿` (𝑝) =
∫
𝑆 (g,h)

𝑝 (x)𝑑` (x) for 𝑝 ∈ R[x]2𝑡 . (4)

We can then interpret the conditions in Theorem 5 as follows:

(2) says that𝑀𝑡 (𝐿` ) has smallest non-zero eigenvalue ≥ 2
− poly(𝑛)

and (3) implies that the same holds for all localizing matrices

𝑀𝑡 (𝑔𝐿` ) with 𝑔 ∈ g.

1.1 Our contributions
The main goal of this paper is to carefully map under what circum-

stances computation of the bounds sos(𝑓 )𝑡 (and/or mom(𝑓 )𝑡 ) and
the corresponding representation (SOS) is guaranteed to be possible

in polynomial time.

Our starting point will be the following proposition which con-

cerns the boundsmom(𝑓 )𝑡 . The proof of this proposition consists of
a straightforward reformulation of the conditions of strict feasibility

for the SDP formulation of mom(𝑓 )𝑡 for explicitly bounded poly-

nomial optimization problems, see Section 3.4. As we will see there,

the conditions (1) and (2) in Proposition 6 below will guarantee the

existence of a ball in the feasible region of (MOM), whose radius

depends on the smallest non-zero eigenvalue of the (localizing)

moment matrices corresponding to a feasible solution 𝐿.

Proposition 6. Let 𝑆 (g, h) be a semialgebraic set and let 𝑡 ≥
⌈deg(𝑓 )/2⌉ be fixed. Assume that 𝑆 (g, h) is explicitly bounded:𝑔1 (x) =
𝑅2 − ∑𝑛

𝑖=1 x
2

𝑖
for some 1 ≤ 𝑅 ≤ 2

poly(𝑛) . Suppose furthermore that
there exists an 𝐿 ∈ R[x]∗

2𝑡
with 𝐿(1) = 1 and the following properties:

(1) For any 𝑔 ∈ g and any 𝑝 ∈ R[x]𝑡−⌈deg(𝑔)/2⌉ , if 𝐿(𝑔𝑝2) = 0,
then there are 𝑝1, 𝑝2, . . . , 𝑝ℓ ∈ R[x] such that:

𝑔𝑝2 (x) =
ℓ∑︁
𝑗=1

𝑝 𝑗 (x)ℎ 𝑗 (x),

and deg(𝑝 𝑗 ) ≤ 2𝑡 − deg(ℎ 𝑗 ) for each 𝑗 ∈ [ℓ]. We recall that
1 ∈ g by convention.

(2) The matrices 𝑀𝑡 (𝐿) and 𝑀𝑡 (𝑔𝐿) (𝑔 ∈ g) have smallest non-
zero eigenvalue at least 2− poly(𝑛) .
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Then for Y ≥ 2
−poly(𝑛) , the bound mom(𝑓 )𝑡 (which equals sos(𝑓 )𝑡 )

may be computed in polynomial time in 𝑛 up to an additive error of
at most Y.

The statement of Proposition 6 is stronger than the result of

Raghavendra & Weitz in the sense that it guarantees polynomial-

time computation of the bound sos(𝑓 )𝑡 , whereas Theorem 5 only

guarantees existence of a compact representation (1). Furthermore,

its conditions do not require strict positivity of the inequality con-

straints g on 𝑆 (g, h). As we see below, it therefore applies to several
natural settings where Theorem 5 may not be applied. On the other

hand, the first condition of Proposition 6 is more restrictive than the

first condition of Theorem 5. We note that it is satisfied for example

when 𝐿 is the linear operator associated to a positive Borel measure

supported on 𝑆 (g, h), and the constraints h form a Gröbner basis

of a real radical ideal (cf. [13, Sec. 2]).

Our first contribution is a sufficient condition for the second

requirement of Proposition 6.

Theorem 7. Let 𝑆 (g, h) be an explicitly bounded semialgebraic
set with 𝑅 ≤ 2

poly(𝑛) and let 𝐿 ∈ R[x]∗
2𝑡

be a feasible solution to
mom(𝑓 )𝑡 . Assume that 𝐿(x𝛼 ) ∈ Q has polynomial bit-complexity
for all 𝛼 ∈ N𝑛

2𝑡
. Then the smallest non-zero eigenvalue of𝑀𝑡 (𝐿) is at

least 2− poly(𝑛) and the same holds for the localizing matrices𝑀𝑡 (𝑔𝐿)
for 𝑔 ∈ g.

Our second contribution is an alternative, geometric condition on
the feasible region 𝑆 (g, h) of (POP) which guarantees polynomial-

time computation of sos(𝑓 )𝑡 in the special case where the formula-

tion does not contain any equality constraints. We write 𝑆 (g) for
𝑆 (g, ∅).

Theorem 8. Let 𝑆 (g) ⊆ R𝑛 be a semialgebraic set defined only by
inequalities. Assume that the following two conditions are satisfied:

(1) 𝑆 (g) is explicitly bounded: 𝑔1 (x) = 𝑅2−
∑𝑛
𝑖=1 x

2

𝑖
with constant

1 ≤ 𝑅 ≤ 2
poly(𝑛) .

(2) 𝑆 (g) contains a ball of radius 𝑟 ≥ 2
−poly(𝑛) , i.e., 𝐵(𝑧, 𝑟 ) ⊆

𝑆 (g) for some 𝑧 ∈ R𝑛 .
Then, for fixed 𝑡 ≥ ⌈deg(𝑓 )/2⌉ and Y ≥ 2

−poly(𝑛) , the bound sos(𝑓 )𝑡
may be computed in polynomial time in 𝑛 up to an additive error of
at most Y.

The inclusions 𝐵(𝑧, 𝑟 ) ⊆ 𝑆 (g) ⊆ 𝐵(𝑧, 𝑅) for 1

𝑟 , 𝑅 ≤ 2
poly(𝑛)

are a

natural way to ensure that 𝑓 has an approximate minimizer over

𝑆 (g) whose bit-complexity is poly(𝑛). Furthermore, they are very

reminiscent of the sufficient conditions for solving semidefinite

programs in polynomial time, see Theorem 15 below.

As we will see in Proposition 14, it is possible to choose con-

straints g = (𝑔𝑖 ), each with constant bit-complexity, such that the

second condition of Theorem 8 is not satisfied. Notably, the re-

sulting semialgebraic set 𝑆 (g) does not satisfy the conditions of

Theorem 5 or Theorem 6 either.

Finally, as a third contribution, we make explicit the connection

between computational aspects of the primal formulation (SOS)

of the sos-hierarchy, and its dual formulation (MOM) in terms of

moments. This connection is implicitly present in the proof of

Theorem 5 in [20].

Theorem 9. Let 𝑆 (g, h) be a semialgebraic set and suppose that
the conditions of Theorem 6 or Theorem 8 are satisfied. Then, for

a fixed 𝑡 ≥ ⌈deg(𝑓 )/2⌉ and Y > 0, there exists a sum-of-squares
representation (1) proving nonnegativity of 𝑓 − sos(𝑓 )𝑡 + Y on 𝑆 (g, h)
with bit-complexity poly(𝑛, log(1/Y)).

2 ON THE GEOMETRIC CONDITION
Before we move on to the proofs of our results, let us give some

examples of natural settings where they may be applied. In general,

Theorem 8 is better equipped to deal with non-discrete semialge-

braic sets 𝑆 (g, h) than Theorem 5. The third condition of Theorem 5,

which demands in particular that 𝑔𝑖 (x) > 0 for each x ∈ 𝑆 (g, h), is
rather hard to satisfy:

Example 1. The unit hypercube [−1, 1]𝑛 , the unit ball 𝐵𝑛 ⊆ R𝑛
and the standard simplex Δ𝑛 ⊆ R𝑛 are semialgebraic sets, defined

by:

[−1, 1]𝑛 = {x ∈ R𝑛 : 1 − x2𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛},
𝐵𝑛 = {x ∈ R𝑛 : 1 − ∥x∥2

2
≥ 0},

Δ𝑛 = {x ∈ R𝑛 : x𝑖 ≥ 0, 1 − ∑𝑛
𝑖=1 x𝑖 ≥ 0}.

It is straightforward to see that they each satisfy the conditions

of Theorem 8 (after adding a ball constraint 𝑔1 (x) = 𝑅2 − ∥x∥2
2

if needed). They do not, however, satisfy the third condition of

Theorem 5.

The following proposition gives an alternative sufficient condi-

tion related to strict feasibility of (POP), which implies that the con-

ditions for Theorem 8 are satisfied and thus guarantees polynomial-

time computability of the bound mom(𝑓 )𝑡 .
Proposition 10. Let 𝑆 (g) be a full-dimensional semialgebraic set

contained in a ball of radius 𝑅 ≤ 2
poly(𝑛) . Assume that there exists a

rational point x ∈ 𝑆 (g) with 𝑔𝑖 (x) > 0 for all 𝑖 , whose bit-complexity
is polynomial in 𝑛. Then 𝑆 (g) contains a ball of radius 𝑟 ≥ 2

− poly(𝑛) .

Proof. As the polynomials 𝑔𝑖 are of fixed degree and have

bounded coefficients, their Lipschitz constants on 𝐵(0, 𝑅) can be

bounded by 2
poly(𝑛)

. Furthermore, as x has polynomial bit-complexity

in𝑛, we know that𝑔𝑖 (x) ∈ Q has polynomial bit-complexity as well,

and therefore 𝑔𝑖 (x) > 0 implies that 𝑔𝑖 (x) ≥ 2
− poly(𝑛)

. Together,

this implies that there exists an 𝑟 ≥ 2
− poly(𝑛)

such that 𝑔𝑖 (y) ≥ 0

for all y with ∥x − y∥2 ≤ 𝑟 , i.e., such that 𝑆 (g) contains the ball of
radius 𝑟 ≥ 2

− poly(𝑛)
centered at x. □

2.1 Semialgebraic sets with large volume
contain a large ball

Another class of semialgebraic sets satisfying the conditions of The-

orem 8 are those of sufficiently large volume. In the case that 𝑆 (g)
is convex, we have the following consequence of John’s theorem.

Lemma 11. Let 𝑆 (g) ⊆ R𝑛 be a convex semialgebraic set. Assume
that 𝑆 (g) is contained in a ball of radius 𝑅 ≤ 2

poly(𝑛) . Then there
exists a constant

𝑟 ≥
√︁
vol(𝑆 (g)) · 2− poly(𝑛)

such that 𝑆 (g) contains a (translated) ball of radius 𝑟 .

Proof. By John’s theorem [10] there exists an ellipsoid 𝐸 with

center 𝑐 ∈ R𝑛 such that

𝐸 ⊆ 𝑆 (g) ⊆ 𝑐 + 𝑛(𝐸 − 𝑐) .
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These inclusions show that𝑛𝑛 vol(𝐸) = vol(𝑐+𝑛(𝐸−𝑐)) ≥ vol(𝑆 (g))
and thus vol(𝐸) ≥ vol(𝑆 (g))𝑛−𝑛 . Let 𝐸 = {𝑥 ∈ R𝑛 : (𝑥−𝑐)𝑇𝐴−1 (𝑥−
𝑐) ≤ 1} for a positive definite matrix 𝐴. Let 𝑣 be an eigenvector

of 𝐴 corresponding to eigenvalue _. Then 𝑐 ±
√
_𝑣 ∈ 𝐸 ⊆ 𝐵(0, 𝑅)

and hence _ ≤ 𝑅2. Moreover, vol(𝐸) = vol(𝐵(0, 1))∏𝑛
𝑖=1

√
_𝑖 where

_1, . . . , _𝑛 are the eigenvalues of𝐴. Combined with the lower bound

on vol(𝐸), this shows for each 𝑖 ∈ [𝑛] that

_𝑖 ≥ vol(𝑆 (g))𝑛−𝑛 (𝑅2)−(𝑛−1)
vol(𝐵(0, 1))−1 .

We thus have 𝐵(𝑧, 𝑟 ) ⊆ 𝐸 ⊆ 𝑆 (g) for 𝑧 = 𝑐 and

𝑟 =

(
vol(𝑆 (g))

𝑛𝑛𝑅2(𝑛−1) vol(𝐵(0, 1))

) 1

2

≥
√︁
vol(𝑆 (g)) · 2− poly(𝑛) .

□

Lemma 11 can be used to show that full-dimensional, rational

polytopes contain a large enough ball (which is well known, see,

e.g., [8, Thm. 3.6], [7, Lem. 1-2]).

Corollary 12. Let 𝑃 ⊆ R𝑛 be a full-dimensional polytope defined
by rational linear inequalities with polynomial bit-complexity. Then
𝑃 is contained in a ball of radius 𝑅 ≤ 2

poly(𝑛) and vol 𝑃 ≥ 2
− poly(𝑛) .

Using Lemma 11, 𝑃 thus contains a ball of radius 𝑟 ≥ 2
− poly(𝑛) .

Proof. Let {𝑝1, . . . , 𝑝𝑁 } be the vertices of 𝑃 , each of which has

polynomial bit-complexity in 𝑛, as a consequence of Cramer’s rule.

As 𝑃 is full-dimensional, we may assume w.l.o.g. that 0 ∈ 𝑃 and

that 𝑝1, 𝑝2, . . . 𝑝𝑛 are linearly independent. Therefore,

0 < vol

(
span{𝑝1, . . . 𝑝𝑛}

)
=

1

𝑛!
| det

(
𝑝1 𝑝2 . . . 𝑝𝑛

)
|.

But since the 𝑝𝑖 ’s have polynomial bit-complexity in 𝑛, we may

conclude that

vol 𝑃 ≥ 1

𝑛!
| det

(
𝑝1 𝑝2 . . . 𝑝𝑛

)
| ≥ 2

− poly(𝑛) .

□

In fact, a result similar to Lemma 11 can be shown without the
assumption that 𝑆 (g) is convex. That is, any bounded semialgebraic

set 𝑆 (g) ∈ 𝐵(0, 𝑅) with 𝑅 ≤ 2
poly(𝑛)

and vol(𝑆 (g)) ≥ 2
− poly(𝑛)

satisfies the conditions of Theorem 8. To show this, we use an

upper bound on the volume of neighborhoods of algebraic varieties

from [1]. Obtaining such volume bounds is a problem with a long

history, see, e.g., [1, 14, 24] for a discussion.

Proposition 13. Let 𝑆 (g) ⊆ R𝑛 . Assume that 𝑆 (g) is contained
in a ball of radius 𝑅 ≤ 2

poly(𝑛) . Then there exists a constant

𝑟 ≥ vol(𝑆 (g)) · 2− poly(𝑛)

such that 𝑆 (g) contains a (translated) ball of radius 𝑟 .

Proof. Let𝐺 =
∏
𝑔∈g 𝑔. First observe that the boundary of 𝑆 (g)

is contained in the variety 𝑉 (𝐺) = {x ∈ R𝑛 : 𝐺 (x) = 0}. Now
consider the 𝛿-neighborhood of 𝑉 (𝐺), i.e., the set of x ∈ R𝑛 such

that dist(x,𝑉 (𝐺)) ≤ 𝛿 . In [1, Theorem 3.2], building on [14], it is

shown that for all positive 𝛿 we have

vol(𝑉 (𝐺) + 𝐵(0, 𝛿))
vol(𝐵(0, 𝑅)) ≤ 4

𝑛∑︁
𝑖=1

(
𝑛

𝑖

) (
4𝐷𝛿

𝑅

)𝑖 (
1 + 𝛿

𝑅

)𝑛−𝑖

where 𝐷 =
∏
𝑔∈g deg(𝑔).2 In particular, this shows that

vol (𝑉 (𝐺) + 𝐵(0, 𝛿)) ≤
𝑛∑︁
𝑗=1

𝑐 𝑗𝛿
𝑗

where the coefficients 𝑐 𝑗 ∈ R satisfy 0 < 𝑐 𝑗 ≤ 2
poly(𝑛)

. For 𝛿 ≤ 1,

the upper bound is of the form 𝛿 · 2𝑝 (𝑛) for some polynomial 𝑝 , and

hence for 𝛿 < vol(𝑆 (g))/2𝑝 (𝑛) we have
vol(𝜕𝑆 (g) + 𝐵(0, 𝛿)) ≤ vol(𝑉 (𝐺) + 𝐵(0, 𝛿)) < vol(𝑆 (g)),

which implies that there exists an x ∈ 𝑆 (g) that has distance greater
than 𝛿 to the boundary of 𝑆 (g). The ball 𝐵(x, 𝑟 ) with center x and

radius 𝑟 = 𝛿 ≥ vol(𝑆 (g))/2poly(𝑛) is thus contained in 𝑆 (g). □

2.2 A counterexample
To end this section, we show that the second condition of Theorem 8

is not superfluous by exhibiting a full-dimensional semialgebraic set

which does not contain a hypercube [−𝑟, 𝑟 ]𝑛 of size 𝑟 ≥ 2
− poly(𝑛)

.

As a direct result, it cannot contain a ball of radius 𝑟 ≥ 2
− poly(𝑛)

,

either. We use a simple repeated-squaring argument.

Proposition 14. There exists a full-dimensional semialgebraic set
𝑆 (g), defined only by polynomial inequalities g = (𝑔1, 𝑔2, . . . , 𝑔𝑚) of
fixed degree, whose coefficients have constant bit-complexity, which
does not contain a (translated) cube [−𝑟, 𝑟 ]𝑛 for 𝑟 ≥ 2

−poly(𝑛) .

Proof. Let 𝑆 (g) be the set defined by the system of inequalities:

x𝑖 ≥ 0 (1 ≤ 𝑖 ≤ 𝑛),
x𝑖 − x2𝑖+1 ≤ 0 (1 ≤ 𝑖 ≤ 𝑛 − 1),

x𝑛 ≤ 1/2.

Set 𝑟 := 2
−2𝑛−1

. Then [0, 𝑟 ]𝑛 ⊆ 𝑆 (g) and so 𝑆 (g) is full-dimensional.

But from the inequalities it follows that 0 ≤ x1 ≤ 𝑟 for any x ∈ 𝑆 (g),
meaning 𝑆 (g) cannot contain a cube of size at least 2

−poly(𝑛)
. □

3 PRELIMINARIES
3.1 Notation
We denote by R[x] the space of 𝑛-variate polynomials. For 𝑑 ∈ N,
we write R[x]𝑑 for the subspace of polynomials of degree at most 𝑑 ,

whose dimension is equal to ℎ(𝑛,𝑑) :=
(𝑛+𝑑
𝑑

)
. It has a basis of

monomials x𝛼 = x𝛼1
1
. . . x𝛼𝑛𝑛 , with 𝛼 ∈ N𝑛

𝑑
:= {𝛼 ∈ N𝑛 : ∥𝛼 ∥1 ≤ 𝑑}.

We denote by S𝑛 the space of 𝑛-by-𝑛 real symmetric matrices. We

have the trace inner product ⟨𝑋,𝑌 ⟩ = Tr(𝑋𝑌 ) onS𝑛 , which induces
the Frobenius norm ∥𝑋 ∥𝐹 =

√︁
⟨𝑋,𝑋 ⟩.

3.2 Complexity of semidefinite programming
We will make use of the following result on the complexity of

semidefinite programming. Let 𝐶 ∈ Q𝑛×𝑛 , 𝐴𝑖 ∈ Q𝑛×𝑛 , 𝑏𝑖 ∈ Q,
1 ≤ 𝑖 ≤ 𝑚 be rational input data. Consider the following SDP in

standard form:

val = inf ⟨𝐶,𝑋 ⟩
⟨𝐴𝑖 , 𝑋 ⟩ = 𝑏𝑖 (1 ≤ 𝑖 ≤ 𝑚),
𝑋 ∈ S𝑛 is positive semidefinite.

(SDP)

2
Theorem 3.2 of [1] applies to more general algebraic varieties 𝑉 , here we use the

special case where𝑉 is the zero set of a single polynomial and dimR (𝑉 ) = 𝑛 − 1.
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We denote the feasible region of (SDP) by:

F := {𝑋 ∈ S𝑛 : 𝑋 ⪰ 0, ⟨𝐴𝑖 , 𝑋 ⟩ = 𝑏𝑖 (1 ≤ 𝑖 ≤ 𝑚)}.

One can show, for example using the ellipsoid method [9], that

under certain assumptions (SDP) can be solved in polynomial time.

We use the following explicit formulation from [6] where a similar

result was shown using an interior point method.

Theorem 15 (Thm. 1.1 in [6]). Let 𝑟, 𝑅 > 0 be given and suppose
that there exists an 𝑋0 ∈ F so that:

𝐵(𝑋0, 𝑟 ) ⊆ F ⊆ 𝐵(𝑋0, 𝑅),

where 𝐵(𝑋0, _) is the ball of radius _ ∈ R (in the norm ∥ · ∥𝐹 ) centered
at 𝑋0 in the subspace:

𝑉 = 𝑉 (F ) := {𝑋 ∈ S𝑛 : ⟨𝐴𝑖 , 𝑋 ⟩ = 𝑏𝑖 (1 ≤ 𝑖 ≤ 𝑚)}.

Then for any rational Y > 0 one can find a rational matrix 𝑋 ∗ ∈ F
such that:

⟨𝐶,𝑋 ∗⟩ − val ≤ Y,
in time polynomial in 𝑛,𝑚, log(𝑅/𝑟 ), log(1/Y) and the bit-complexity
of the input data 𝐶,𝐴𝑖 , 𝑏𝑖 and the feasible point 𝑋0.

3.3 Dual formulation and moments of measures
It will be convenient to work with the dual formulation of (SOS),

which we recall is (see, e.g., [5]):

mom(𝑓 )𝑡 := inf 𝐿(𝑓 )
s.t. 𝐿(1) = 1,

𝐿(𝑔𝑖𝑝2) ≥ 0, (𝑔𝑖𝑝2 ∈ R[x]2𝑡 )
𝐿(ℎ 𝑗x𝛼 ) = 0, (ℎ 𝑗x𝛼 ∈ R[x]2𝑡 )
𝐿 ∈ R[x]∗

2𝑡 .

(MOM)

Assuming that (POP) is explicitly bounded, these formulations are

equivalent.

Theorem 16 ([3, Sec. 2.6.3, Ex. 2.12], see also [11]). If (POP) is
explicitly bounded3, we have strong duality between the primal and
dual formulations (SOS) and (MOM) of the moment-SOS hierarchy.
That is, we then have:

sos(𝑓 )𝑡 = mom(𝑓 )𝑡 ∀𝑡 ≥ ⌈deg(𝑓 )/2⌉ .

As is well known (see e.g., [13, Prop. 6.2]), explicit boundedness

of 𝑆 (g, h) also gives a bound on the feasible region of (MOM).

Lemma 17. Assume that 𝑆 (g, h) is explicitly bounded for some
𝑅 > 0. Let 𝐿 ∈ R[𝑥]∗

2𝑡
be a feasible solution to (MOM). Then

|𝐿(x𝛼 ) | ≤ 𝑅 |𝛼 | for all 𝛼 ∈ N𝑛
2𝑡
.

There is a natural relation between the dual formulation (MOM)

and moments of measures supported on 𝑆 (g, h), which clarifies the

assumptions made in Theorem 5 and Theorem 6. For a measure `

supported on 𝑆 (g, h), the moment of degree 𝛼 ∈ N𝑛 is defined by:

𝑚(`)𝛼 :=

∫
𝑆 (g,h)

x𝛼𝑑` (x) .

3
If we assume instead that 𝑆 (g, h) is Archimedean with non-empty interior, then it is

known that sos(𝑓 )𝑡 = mom(𝑓 )𝑡 for 𝑡 large enough [12, Theorem 4.2].

For 𝑡 ∈ N, the (truncated) moment matrix𝑀𝑡 (`) of order 𝑡 for ` is
the matrix of size ℎ(𝑛, 𝑡) =

(𝑛+𝑡
𝑡

)
given by:

𝑀𝑡 (`)𝛼,𝛽 =𝑚(`)𝛼+𝛽 ( |𝛼 |, |𝛽 | ≤ 𝑡) . (5)

Consider the linear functional 𝐿` ∈ R[x]∗
2𝑡

defined by:

𝐿` (𝑝) :=
∫
𝑆 (g,h)

𝑝 (x)𝑑` (𝑥) (𝑝 ∈ R[x]2𝑡 ). (6)

For any constraint 𝑔𝑖 and 𝑝 ∈ R[x] with deg(𝑔𝑖𝑝2) ≤ 2𝑡 , we have:

𝐿` (𝑔𝑖𝑝2) = p⊤𝑀𝑡 (𝑔𝑖`)p =

∫
𝑆 (g,h)

𝑝2 (x)𝑔𝑖 (x)𝑑` (x) ≥ 0,

where p denotes the vector of coefficients of 𝑝 ∈ R[x]𝑡 in the mono-

mial basis. Here the (𝛼, 𝛽)-entry of the localizing matrix 𝑀𝑡 (𝑔𝑖`)
is defined as

∫
𝑆 (g,h) 𝑔𝑖 (x)x

𝛼+𝛽𝑑` (x). In particular, for each 𝑖 the

matrix𝑀𝑡 (𝑔𝑖`) is positive semidefinite. Note that𝑀𝑡 (`) = 𝑀𝑡 (𝐿` )
and similarly for the localizing matrices. Furthermore, for any con-

straint ℎ 𝑗 and 𝛼 ∈ N𝑛 with deg(x𝛼ℎ 𝑗 ) ≤ 2𝑡 , we have:

𝐿` (ℎ 𝑗x𝛼 ) =
∫
𝑆 (g,h)

ℎ 𝑗 (x)x𝛼𝑑` (x) = 0.

If ` is a probability measure, we get 𝐿` (1) = 1, and it follows that

𝐿` is a feasible solution to (MOM).

3.4 Standard form of the moment formulation:
Proof of Proposition 6

In order to apply Theorem 15 in our proof of Proposition 6 below, we

need to express the formulation (MOM) in the standard form (SDP).

Set 𝑁 = ℎ(𝑛, 𝑡) + ∑
𝑖∈[𝑚] ℎ(𝑛, 𝑡 − ⌈deg(𝑔𝑖 )/2⌉). One can construct

𝐴1, . . . , 𝐴𝐾 ∈ Q𝑁×𝑁
and 𝑏1, . . . , 𝑏𝐾 ∈ Q with entries either −1, 0,

1, or a coefficient of the polynomials 𝑔𝑖 , ℎ 𝑗 , such that the conditions

⟨𝐴 𝑗 , 𝑋 ⟩ = 𝑏 𝑗 for 𝑗 ∈ [𝐾] are equivalent to the statement that 𝑋 is a

block-diagonal matrix 𝑋 = 𝑀𝑡 (𝐿) ⊕
(⊕

𝑖∈[𝑚] 𝑀𝑡 (𝑔𝑖𝐿)
)
where

𝑀𝑡 (𝐿)𝛼,𝛽 = 𝐿(x𝛼+𝛽 ) ( |𝛼 |, |𝛽 | ≤ 𝑡), (7)

𝑀𝑡 (𝑔𝑖𝐿)𝛼,𝛽 = 𝐿(𝑔𝑖 (x)x𝛼+𝛽 ) ( |𝛼 |, |𝛽 | ≤ 𝑡 − ⌈deg(𝑔𝑖 )/2⌉), (8)

for some linear functional 𝐿 ∈ R[x]∗
2𝑡

satisfying 𝐿(1) = 1 and

𝐿(ℎ 𝑗x𝛼 ) = 0 for each 𝑗 ∈ [ℓ] and |𝛼 | ≤ 2𝑡 − deg(ℎ 𝑗 ). Let 𝐶𝑓 ∈ S𝑁
be such that ⟨𝐶𝑓 , 𝑋 ⟩ = 𝐿(𝑓 ), then we have

mom(𝑓 )𝑡 = inf ⟨𝐶𝑓 , 𝑋 ⟩
⟨𝐴𝑖 , 𝑋 ⟩ = 𝑏𝑖 (1 ≤ 𝑖 ≤ 𝐾),

𝑋 ∈ S𝑁 is positive semidefinite.

(MOM-SDP)

To see the equivalence it suffices to observe that the conditions

𝐿(𝑔𝑖𝑝2) ≥ 0 for all 𝑔𝑖 and 𝑝 of appropriate degree of (MOM) are

equivalent to 𝑋 ⪰ 0.

The upshot is that we may apply Theorem 15 to the formula-

tion (MOM) in the following way.

Proposition 18. Consider an instance of (MOM) with feasible
solution 𝐿0 ∈ R[x]∗

2𝑡
that satisfies the property: 𝐿0 (𝑔𝑖𝑝2) = 0 implies

𝑔𝑖𝑝
2 =

∑ℓ
𝑗=1 𝑝 𝑗ℎ 𝑗 for some polynomials 𝑝 𝑗 with deg(𝑝 𝑗 ) ≤ 2𝑡 −

deg(ℎ 𝑗 ). Let 𝑋0 = 𝑀𝑡 (𝐿0) ⊕
(⊕

𝑖∈[𝑚] 𝑀𝑡 (𝑔𝑖𝐿0)
)
be the matrix

associated to 𝐿0 via (7) and (Eq. (8)). If all non-zero eigenvalues of 𝑋0
are at least 𝑟 > 0, then 𝐵(𝑋0, 𝑟/2) is contained in the feasible region
of (MOM-SDP).
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Proof. Let𝑋 ∈ 𝐵(𝑋0, 𝑟/2) andwrite𝑋 = 𝑋0+�̃� . Here𝐵(𝑋0, 𝑟/2)
is the ball of radius 𝑟/2 (in the Frobenius norm) in the affine space

𝑉 (F ) defined by the linear equalities of (MOM-SDP). We first show

that a zero-eigenvector of 𝑋0 is a zero-eigenvector of 𝑋 . Since 𝑋0
is block-diagonal, a zero-eigenvector of 𝑋0 corresponds to a zero-

eigenvector 𝑣 of a single block 𝑀𝑡 (𝑔𝑖𝐿0). For such a vector 𝑣 we

have

0 = 𝑣𝑇𝑀𝑡 (𝑔𝑖𝐿0)𝑣 = 𝐿0 (𝑔𝑖 (x)𝑝𝑣 (x)2)
where 𝑝𝑣 (x) =

∑
|𝛼 | ≤𝑡−⌈deg(𝑔𝑖 )/2⌉ 𝑣𝛼x

𝛼
. By assumption on 𝐿0, we

therefore have𝑔𝑖𝑝
2

𝑣 =
∑ℓ
𝑗=1 𝑝 𝑗ℎ 𝑗 for polynomials 𝑝 𝑗 with deg(𝑝 𝑗 ) ≤

2𝑡 − deg(ℎ 𝑗 ).
To show that 𝑣 corresponds to a zero-eigenvector of𝑋 it remains

to observe that, since 𝑋 ∈ 𝑉 (F ), it corresponds to a linear func-

tional 𝐿 ∈ R[x]∗
2𝑡

via (7) and (8) with the property that 𝐿(ℎ 𝑗𝑝) = 0

for all 𝑗 ∈ [𝑚] and polynomials 𝑝 of degree at most 2𝑡 − deg(ℎ 𝑗 ).
In particular,

𝐿(𝑔𝑖 (x)𝑝𝑣 (x)2) =
∑︁
𝑗∈[ℓ ]

𝐿(ℎ 𝑗𝑝 𝑗 ) = 0,

and therefore 𝑣 corresponds to a zero-eigenvector of the 𝑔𝑖 -th block

of 𝑋 .

Finally, to show that 𝑋 is positive semidefinite, note that by

assumption 𝑋 = 𝑋0 + �̃� where ∥�̃� ∥𝐹 ≤ 𝑟/2. In particular, the eigen-

values of �̃� are all at most 𝑟/2. Since the kernel of 𝑋0 is contained
in the kernel of 𝑋 , this means that all non-zero eigenvalues of 𝑋

are at least 𝑟/2 and hence 𝑋 is positive semidefinite. □

As a corollary of Proposition 18 we obtain Proposition 6.

Proof of Proposition 6. By assumption 𝐿 is such that for all

𝑔 ∈ g and 𝑝 ∈ R[x]𝑡−⌈deg(𝑔)/2⌉ we have 𝐿(𝑔𝑝2) = 0 implies 𝑔𝑝2 =∑ℓ
𝑗=1 𝑝 𝑗ℎ 𝑗 for some polynomials 𝑝 𝑗 with deg(𝑝 𝑗 ) ≤ 2𝑡 − deg(ℎ 𝑗 ).

Moreover, all non-zero eigenvalues of𝑀𝑡 (𝐿) ⊕
(⊕

𝑖∈[𝑚] 𝑀𝑡 (𝑔𝑖𝐿)
)

are at least 2
− poly(𝑛)

. By Proposition 18, the feasible region of

(MOM-SDP) contains a ball of radius 2
− poly(𝑛)

(in 𝑉 (F )), and by

Lemma 17 it is contained in a ball of radius 2
poly(𝑛)

. Theorem 15

thus shows that we can compute an Y-additive approximation to

the value mom(𝑓 )𝑡 in time polynomial in 𝑛 and log(1/Y). □

4 AN ALGEBRAIC CONDITION FOR
POLYNOMIAL-TIME COMPUTABILITY:
PROOF OF THEOREM 7

We split the proof of Theorem 7 into two parts: we first consider

the moment matrix𝑀𝑡 (𝐿) and then the localizing matrices𝑀𝑡 (𝑔𝐿)
for 𝑔 ∈ g. A key tool is the following auxiliary lemma.

Lemma 19 (Lemma 3.1 in [20].). Let𝑀 ∈ Z𝑁×𝑁 be a symmetric
integer matrix with |𝑀𝑖 𝑗 | ≤ 𝐵 for all 𝑖, 𝑗 ∈ [𝑁 ]. Then each non-zero
eigenvalue of M has absolute value at least (𝐵𝑁 )−𝑁 .

Using this lemma, we are able to show the following.

Proposition 20. Assume that 𝑆 (g, h) ⊆ 𝐵(0, 𝑅) is explicitely
bounded with 𝑅 ≤ 2

poly(𝑛) , and let 𝐿 ∈ R[x]∗
2𝑡

be a feasible so-
lution to (MOM). Assume further that 𝐿(x𝛼 ) ∈ Q has polynomial
bit-complexity for all 𝛼 ∈ N𝑛

2𝑡
. Then _min (𝑀𝑡 (𝐿)), the smallest non-

zero eigenvalue of the moment matrix𝑀𝑡 (𝐿) of (7), satisfies:
_min (𝑀𝑡 (𝐿)) ≥ 2

− poly(𝑛) .

Proof. By assumption, there exists an integer𝐶 ≤ 2
poly(𝑛)

such

that 𝐶 ·𝑀𝑡 (𝐿) is an integer matrix. Furthermore, using Lemma 17,

the largest entry of 𝐶 · 𝑀𝑡 (𝐿) in absolute value is bounded from

above by𝐶 ·𝑅2𝑡 ≤ 2
poly(𝑛)

. Writing 𝑁 := ℎ(𝑛, 𝑡) =
(𝑛+𝑡
𝑡

)
≤ poly(𝑛)

for the number of monomials of degree at most 𝑡 , we may thus use

Lemma 19 to conclude that the smallest non-zero eigenvalue of

𝑀𝑡 (𝐿) is at least _min (𝑀𝑡 (𝐿)) ≥ (2poly(𝑛) ·𝑁 )−𝑁 ≥ 2
− poly(𝑛)

. □

Proposition 21. Under the same assumptions as in Proposition 20,
let 𝑔 ∈ R[x] be one of the constraints defining 𝑆 (g, h). Then the
smallest non-zero eigenvalue of the localizing matrix𝑀𝑡 (𝑔𝐿) of (8)
satisfies _min (𝑀𝑡 (𝑔𝐿)) ≥ 2

− poly(𝑛) .

Proof. We may express 𝑔 in the monomial basis as:

𝑔(x) =
∑︁
|𝛼 | ≤𝑑

𝑔𝛼x𝛼 (𝑔𝛼 ∈ Q) .

The coefficients 𝑔𝛼 have polynomial bit-complexity by assumption,

and so |𝑔𝛼 | ≤ 2
poly(𝑛)

for each |𝛼 | ≤ 𝑑 . For the same reason, there

exists an integer 𝐶𝑔 ≤ 2
poly(𝑛)

such that 𝐶𝑔𝑔𝛼 ∈ Z for all |𝛼 | ≤ 𝑑 .
Recall that the entries of 𝑀𝑡 (𝑔𝐿) are linear combinations of the

entries of𝑀𝑡 (𝐿), namely for |𝛼 |, |𝛽 | ≤ 𝑡 − ⌈deg(𝑔𝑖 )/2⌉ the (𝛼, 𝛽)-th
entry is of the form:

𝑀𝑡 (𝑔𝐿)𝛼,𝛽 =
∑︁

|𝛾 | ≤deg(𝑔𝑖 )
𝑔𝛾𝐿(x𝛼+𝛽+𝛾 ) .

Now, as in Proposition 20, we see that 𝐶𝑔 ·𝐶 ·𝑀𝑡 (𝑔𝐿) is an integer

matrix for some integer𝐶 ≤ 2
poly(𝑛)

. Furthermore, since the entries

of 𝑀𝑡 (𝐿) are at most 2
poly(𝑛)

, the entries of 𝑀𝑡 (𝑔𝐿) are bounded
from above by

2
poly(𝑛) ·

∑︁
|𝛼 | ≤𝑑

|𝑔𝛼 | ≤ 2
poly(𝑛) ·

(
𝑛 + 𝑑
𝑑

)
·𝐶𝑔 ≤ 2

poly(𝑛) .

As before, we may thus invoke Lemma 19 to conclude the proof. □

5 A GEOMETRIC CONDITION FOR
POLYNOMIAL-TIME COMPUTABILITY:
PROOF OF THEOREM 8

Recall that we consider in Theorem 8 an explicitly bounded semial-

gebraic set 𝑆 (g) ⊆ R𝑛 with the additional geometric assumption:

𝐵(𝑧, 𝑟 ) ⊆ 𝑆 (g) (9)

for some 𝑟 ≥ 2
− poly(𝑛)

and 𝑧 ∈ R𝑛 . To prove Theorem 8, we will

exploit this assumption to exhibit a feasible solution 𝐿 ∈ R[x]∗
2𝑡

to (MOM) that satisfies the conditions of Theorem 7.

We begin by noting that the inclusion (9) implies that 𝑆 (g) con-
tains a translated hypercube 𝐵 := [−𝑟, 𝑟 ]𝑛 +𝑧, for a (slightly smaller)

𝑟 ≥ 2
− poly(𝑛)

. We consider the probability measure `𝑧 obtained by

restricting the Lebesgue measure to 𝐵 and renormalizing. We show

that the operator 𝐿`𝑧 ∈ R[x]∗
2𝑡

associated to `𝑧 via (4) satisfies the

conditions of Proposition 6. Let us first note that condition (1) is

satisfied automatically as 𝐵 is full-dimensional. Indeed, this means

that

∫
𝑆 (g) 𝑔𝑝

2𝑑` = 0 if and only if 𝑔𝑝2 = 0. It remains to show that

condition (2) also holds, for which we use Theorem 7.

For simplicity, we assume first that 𝑧 = 0, so that 𝐵 = [−𝑟, 𝑟 ]𝑛 .
In this case, we may use an explicit formula for the moments of `0
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(see, e.g., [5]) to find:

𝐿`0 (x𝛼 ) =
∫
[−𝑟,𝑟 ]𝑛

x𝛼𝑑`0 (x) =
{∏𝑛

𝑖=1
𝑟𝛼𝑖
𝛼𝑖+1 if 𝛼 ∈ (2N)𝑛,

0 otherwise.
(10)

As 𝑟 ≥ 2
− poly(𝑛)

, it follows that 𝐿`0 (x𝛼 ) ∈ Q has polynomial bit-

complexity for all |𝛼 | ≤ 2𝑡 , i.e., that 𝐿`0 satisfies the condition of

Theorem 7.

It remains to consider the case 𝑧 ≠ 0. Since 𝑆 (g) is explicitly
bounded, we must have ∥𝑧∥2 ≤ 𝑅 ≤ 2

poly(𝑛)
. After possibly choos-

ing a slightly smaller 𝑟 , we may assume that 𝑧 ∈ Q𝑛 and that 𝑧 has

polynomial bit-complexity in 𝑛. First, note for all |𝛼 | ≤ 2𝑡 that

𝐿`𝑧 (x𝛼 ) =
∫
[−𝑟,𝑟 ]𝑛+𝑧

x𝛼𝑑`𝑧 (x) =
∫
[−𝑟,𝑟 ]𝑛

(x − 𝑧)𝛼𝑑`0 (x)

= 𝐿`0 ((x − 𝑧)𝛼 ).

Second, note that the coefficients 𝑐𝛾 in the expansion of (x − 𝑧)𝛼
in the monomial basis all have polynomial bit-complexity. The

nonzero coefficients are those for which 𝛾 is entrywise less than

or equal to 𝛼 , which we denote 𝛾 ≤ 𝛼 . Note that there are at most

2
poly(𝑛)

such coefficients. We may thus use (10) to find that

𝐿`𝑧 (x𝛼 ) = 𝐿`0 ((x − 𝑧)𝛼 ) =
∑︁
𝛾≤𝛼

𝑐𝛾 · 𝐿`0 (x𝛾 )

has polynomial bit-complexity for all 𝛼 ∈ N𝑛 with |𝛼 | ≤ 2𝑡 . It

follows that 𝐿`𝑧 satisfies the condition of Theorem 7.

6 FROMMOMENTS TO SUMS OF SQUARES:
PROOF OF THEOREM 9

Proposition 6 and Theorem 8 show that, under their respective

conditions, we can find an additive Y-approximation to mom(𝑓 )𝑡 =
sos(𝑓 )𝑡 in time poly(𝑛, log(1/Y)) by solving (MOM-SDP). We now

show that, under these conditions, we have a compact sum-of-

squares proof for this bound as well.

Theorem 22 (Detailed version of Theorem 9). Let 𝑆 (g, h) be
a semialgebraic set and suppose that the conditions of Theorem 6 or
Theorem 8 are satisfied for some fixed 𝑡 ≥ ⌈deg(𝑓 )/2⌉. Suppose that
𝑓 − _ has a sum-of-squares decomposition:

𝑓 (x) − _ = 𝜎0 (x) +
𝑚∑︁
𝑖=1

𝑔𝑖 (x)𝜎𝑖 (x) +
ℓ∑︁
𝑗=1

ℎ 𝑗 (x)𝑝 𝑗 (x), (11)

where deg(ℎ 𝑗𝑝 𝑗 ) ≤ 2𝑡 and the sum-of-squares are of the form 𝜎𝑖 =∑𝐾
𝑘=1

𝑠2
𝑖,𝑘

for 𝑠𝑖,𝑘 ∈ R[x] with deg(𝑔𝑖𝑠2𝑖,𝑘 ) ≤ 2𝑡 . Then, for a fixed
Y > 0, there exists a polynomial E(x) of degree 2𝑡 such that

𝑓 (x) − _ + E(x) = �̃�0 (x) +
𝑚∑︁
𝑖=1

𝑔𝑖 (x)�̃�𝑖 (x) +
ℓ∑︁
𝑗=1

ℎ 𝑗 (x)𝑝 𝑗 (x) (12)

where, for 𝑖 = 0, . . . ,𝑚, we have �̃�𝑖 (x) =
∑𝐾
𝑘=1

𝑠2
𝑖,𝑘

for polynomials

𝑠𝑖,𝑘 with bit-complexity poly(𝑛, log(1/Y)) and ∥E∥1 ≤ Y𝑅2𝑡 2poly(𝑛) .
In particular, this proves nonnegativity of 𝑓 (x) − _ + 𝑅2𝑡 ∥E∥1 on
𝑆 (g, h).

From the SDP-formulation of (SOS) it follows that one can bound

𝐾 by the rank of the matrices involved, i.e., we have 𝐾 ≤
(𝑛+𝑡
𝑡

)
and

thus 𝐾 ≤ poly(𝑛).

Proof of Theorem 22. Let 𝜎𝑖 =
∑𝐾
𝑘=1

𝑠2
𝑖,𝑘

and 𝑝 𝑗 as in (11) be

given. We first show that the coefficients of the 𝑠𝑖,𝑘 are upper

bounded. To do so, let 𝐿 be a linear functional that satisfies the

conditions of Proposition 6 (in the proof of Theorem 8 we also con-

struct such an 𝐿). We then have 𝐿(𝑓 − _) = 𝐿(𝜎0) +
∑𝑚
𝑖=1 𝐿(𝑔𝑖𝜎𝑖 ),

and since all terms on the right-hand side are nonnegative, this

implies in particular that (using Lemma 17):

𝐿(𝑔𝑖𝑠2𝑖,𝑘 ) ≤ 𝐿(𝑓 − _) ≤ 𝑅2𝑡 · poly(bitcomplexity(𝑓 )),
for all 0 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑘 ≤ 𝐾 , where we set 𝑔0 = 1 for

convenience. We can now distinguish two cases: (i) 𝐿(𝑔𝑖𝑠2𝑖,𝑘 ) ≠ 0,

or (ii) 𝐿(𝑔𝑖𝑠2𝑖,𝑘 ) = 0. In the first case, if 𝐿(𝑔𝑖𝑠2𝑖,𝑘 ) ≠ 0, then we also

have

𝐿(𝑔𝑖𝑠2𝑖,𝑘 ) ≥ _min (𝑀𝑡 (𝑔𝑖𝐿)) · ∥𝑠𝑖,𝑘 ∥22,
where _min (𝑀𝑡 (𝑔𝑖𝐿)) is the smallest non-zero eigenvalue of𝑀𝑡 (𝑔𝑖𝐿),
and so

∥𝑠𝑖,𝑘 ∥22 ≤ 𝑅2𝑡 · _min (𝑀𝑡 (𝑔𝑖𝐿))−1 · poly(bitcomplexity(𝑓 )) .
For the second case, if on the other hand 𝐿(𝑔𝑖𝑠2𝑖,𝑘 ) = 0, then by

condition (1) of Proposition 6 we have 𝑔𝑖𝑠
2

𝑖,𝑘
=

∑ℓ
𝑗=1 ℎ 𝑗𝑞 𝑗 for some

polynomials 𝑞 𝑗 . We may thus remove such 𝑠𝑖,𝑘 from the sum-of-

squares part of (11) and add them to the ideal part of the certificate.

Using the above bound on the coefficients of the 𝑠𝑖,𝑘 , we now

show a bound on the size of the coefficients of the 𝑝 𝑗 . The poly-

nomial identity (11) allows us to view the coefficients of the 𝑝 𝑗
as the solution of a linear system 𝐴p = b where p is a vector that

contains the coefficients of the 𝑝 𝑗 (p is at most ℓ
(𝑛+2𝑡
2𝑡

)
-dimensional),

𝐴 contains coefficients of the ℎ 𝑗 , and b is the

(𝑛+2𝑡
2𝑡

)
-dimensional

vector that contains the coefficients of 𝑓 (x) − _ − ∑𝑚
𝑖=0 𝑔𝑖 (x)𝜎𝑖 (x).

The system 𝐴p = b is feasible, b ≠ 0, and therefore 𝑟 = rank(𝐴) is
strictly positive. Let 𝐴 be an invertible 𝑟 -by-𝑟 submatrix of 𝐴 and

write p and b for the restrictions of p and b to the corresponding
rows/columns. Cramer’s rule then shows that the 𝑖th coordinate of

p can be written as

p𝑖 =
det(𝐴𝑖 )
det(𝐴)

where 𝐴𝑖 is the matrix formed by replacing the 𝑖th column of 𝐴

with the vector 𝑏. To upper bound |p𝑖 | we must give a lower bound

on | det(𝐴) | and an upper bound on | det(𝐴𝑖 ) |. Let us first observe
that | det(𝐴) | ≥ 2

− poly(𝑛)
. Indeed, 𝐴 is an invertible 𝑟 -by-𝑟 matrix

with 𝑟 ∈ poly(𝑛), its entries have bit-complexity poly(𝑛) since
they correspond to coefficients of the ℎ 𝑗 , and therefore applying

Lemma 19 to a suitable integer multiple of𝐴 shows that | det(𝐴) | ≥
2
− poly(𝑛)

. To upper bound | det(𝐴𝑖 ) | it suffices to observe that all

entries of 𝐴𝑖 are upper bounded in absolute value by 2
poly(𝑛)

: for

the 𝑖th column this follows from the above-derived bound on the

𝜎𝑖 , for the other columns, as before, we observe that they contain

coefficients of the ℎ 𝑗 . By setting all remaining coordinates to zero,

we can extend p to a feasible solution p of 𝐴p = b. To summarize,

this shows that there exists a sum-of-squares decomposition of

𝑓 − _ as in (11) where ∥𝑠𝑖,𝑘 ∥22 ≤ 𝑅2𝑡_min (𝑀𝑡 (𝑔𝑖𝐿))−1 · poly(𝑛) for
all 𝑖, 𝑘 and ∥𝑝 𝑗 ∥∞ ≤ 2

poly(𝑛)
for all 𝑗 .

We finally show that rounding each coefficient of this certificate

to few bits introduces a small error. For each 𝑖 ∈ [𝑚], 𝑗 ∈ [𝐾], let
𝑠𝑖,𝑘 be the polynomial 𝑠𝑖,𝑘 with each of the coefficients rounded
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to the nearest integer multiple of Y. Therefore, for |𝛼 | ≤ 𝑡 we

have | (𝑠𝑖,𝑘 )𝛼 − (𝑠𝑖,𝑘 )𝛼 | ≤ Y. Using the identity 𝑠2
𝑖,𝑘

− 𝑠2
𝑖,𝑘

= (𝑠𝑖,𝑘 +
𝑠𝑖,𝑘 ) (𝑠𝑖,𝑘 −𝑠𝑖,𝑘 ), this shows | (𝑠2𝑖,𝑘 −𝑠

2

𝑖,𝑘
)𝛼 | ≤ Y (2(𝑠𝑖,𝑘 )𝛼 + Y) and thus

∥𝑠2
𝑖,𝑘

− 𝑠2
𝑖,𝑘

∥1 ≤ Y (2∥𝑠𝑖,𝑘 ∥1 + Y
(𝑛+2𝑡
2𝑡

)
). Similarly, for each 𝑗 ∈ [ℓ], let

𝑝 𝑗 be the polynomial 𝑝 𝑗 with each of the coefficients rounded to the

nearest integer multiple of Y. Then we have (12) for the polynomial

E(x) defined as

E(x) :=
𝑚∑︁
𝑖=0

𝑔𝑖 (�̃�𝑖 − 𝜎𝑖 ) +
ℓ∑︁
𝑗=1

ℎ 𝑗 (𝑝 𝑗 − 𝑝 𝑗 )

and hence

∥E∥1 ≤
∑︁
𝑖=0

∥𝑔𝑖 ∥1

(
𝐾∑︁
𝑘=1

∥𝑠2
𝑖,𝑘

− 𝑠2
𝑖,𝑘

∥1

)
+

ℓ∑︁
𝑗=0

∥ℎ 𝑗 ∥1∥𝑝 𝑗 − 𝑝 𝑗 ∥∞ .

As shown above, we have 𝐾 ∈ poly(𝑛), ∥𝑝 𝑗 − 𝑝 𝑗 ∥∞ ≤ Y, and

∥𝑠2
𝑖,𝑘

− 𝑠2
𝑖,𝑘

∥1 ≤ Y
(
𝑅2𝑡_min (𝑀𝑡 (𝑔𝑖𝐿))−1 poly(𝑛) + Y

(
𝑛 + 2𝑡

2𝑡

))
.

Using Proposition 21wemoreover have _min (𝑀𝑡 (𝑔𝑖𝐿))−1 ≤ 2
poly(𝑛)

.

Combining these estimates shows ∥E∥1 ≤ Y𝑅2𝑡2poly(𝑛) .
The statement 𝑓 (x)−_+𝑅2𝑡 ∥E∥1 ≥ 0 on 𝑆 (g, h) follows from (12)

by adding 𝑅2𝑡 ∥E∥1 − E(x) to both sides of the equation, using the

fact that 𝑅2𝑡 ∥E∥1 −E(x) ∈ M(g)2𝑡 , which follows from Lemma 23

below. □

Lemma 23. Let 𝑔1, . . . , 𝑔𝑚 ∈ R[x] be such that for 𝑅 > 0 we have
𝑅2 − 𝑥2

𝑖
∈ M(g)2 for each 𝑖 ∈ [𝑛]. For 𝑡 ∈ N and 𝛼 ∈ N𝑛 with

|𝛼 | ≤ 2𝑡 , we have 𝑅 |𝛼 | − 𝑥𝛼 ∈ M(g)2𝑡 .

Proof. We first consider the case of coordinatewise even expo-

nents, i.e., 𝑅2 |𝛼 | − 𝑥2𝛼 . For this we use induction on |𝛼 |. The case
|𝛼 | = 1 holds by assumption and for |𝛼 | > 1 we use the identity

𝑅2 |𝛼 |−𝑥2𝛼 = 𝑅2 |𝛼 |−2 (𝑅2−𝑥2𝑗 )+𝑥
2

𝑗 (𝑅
2 |𝛼 |−2−𝑥2(𝛼−𝑒 𝑗 ) ) ∈ M(g)

2 |𝛼 |

where 𝑗 ∈ [𝑛] is an index for which 𝛼 𝑗 > 0 and 𝑒 𝑗 is the 𝑗-th

unit vector. Here we use that the first term on the right hand side

belongs to M(g)2 and the second term belongs to M(g)
2 |𝛼 | as

𝑅2 |𝛼 |−2 − 𝑥2(𝛼−𝑒 𝑗 ) ∈ M(g)
2 |𝛼 |−2 by the induction hypothesis.

Now let 𝛾 ∈ N𝑛 with |𝛾 | ≤ 2𝑡 . We distinguish two cases: |𝛾 | is
odd or even. When |𝛾 | is odd we write 𝛾 = 𝛼 + 𝛽 for 𝛼, 𝛽 ∈ N𝑛 with

|𝛼 |, |𝛽 | ≤ 𝑡 and |𝛼 | + 1 = |𝛽 | = |𝛾 |+1
2

. We then observe that we have

the following identity

(𝑅𝑥𝛼 − 𝑥𝛽 )2 + 𝑅2 (𝑅2 |𝛼 | − 𝑥2𝛼 ) + (𝑅2 |𝛽 | − 𝑥2𝛽 )
2𝑅

=
𝑅2+2 |𝛼 | + 𝑅2 |𝛽 | − 2𝑅𝑥𝛼+𝛽

2𝑅
= 𝑅 |𝛾 | − 𝑥𝛾

where in the last equality we use the identities 𝑅 |𝛾 | = 𝑅 |𝛼 |+|𝛽 | =
𝑅1+2 |𝛼 | = 𝑅2 |𝛽 |−1. In the first part of the proof we have shown that

𝑅2 |𝛼 |−𝑥2𝛼 , 𝑅2 |𝛽 |−𝑥2𝛽 ∈ M(g)2𝑡 and sincemoreover (𝑅𝑥𝛼−𝑥𝛽 )2 ∈
M(g)2𝑡 , the above identity thus shows that 𝑅 |𝛾 | − 𝑥𝛾 ∈ M(g)2𝑡 .
Finally, for the case where |𝛾 | is even we use a similar argument.

We write 𝛾 = 𝛼 + 𝛽 for 𝛼, 𝛽 ∈ N𝑛 with |𝛼 | = |𝛽 | and use the identity

𝑅 |𝛾 | − 𝑥𝛾 =
(𝑥𝛼 − 𝑥𝛽 )2 + (𝑅2𝛼 − 𝑥2𝛼 ) + (𝑅2𝛽 − 𝑥2𝛽 )

2

. □

7 DISCUSSION
We have given algebraic and geometric conditions that guarantee

polynomial-time computability of the moment-SOS hierarchy for

polynomial optimization problems (POP). In the general, explicitly

bounded setting, our conditions are similar to the ones considered

by Raghavendra & Weitz [20] to show existence of compact sum-

of-squares certificates. For full-dimensional feasible regions 𝑆 (g),
we give explicit, geometric conditions, which include for instance

that 𝑆 (g) either contains a small ball, a strictly feasible point of low

bit-complexity, or has sufficient volume. Furthermore, we make

explicit the connection between polynomial-time computability of

the boundmom(𝑓 )𝑡 and the existence of compact feasible solutions

to the sum-of-squares formulation sos(𝑓 )𝑡 , which is only implicitly

present in [20].

A general geometric condition
Theorem 8 applies only when the feasible region 𝑆 (g) of (POP)
is a full-dimensional semialgebraic set. It would be very interest-

ing to formulate a similar, geometric condition that guarantees

polynomial-time computability of the moment-SOS hierarchy in

the general case. This requires finding an appropriate analog of the

second condition of Theorem 8 in the setting where 𝑆 (g, h) might

not be full-dimensional.

Relation to the complexity of SDP
Our present discussion relates closely to the more general study of

the computational complexity of semidefinite programming. It is

an open question whether SDPs can be solved to (near-)optimality

in polynomial-time. Even the exact complexity of testing feasi-

bility of SDPs is not known. We do know that in the bit-model,

membership of the feasibility problem in NP and Co-NP is simulta-

neous [21]. (In the real number model of Blum-Shub-Smale it lies

in NP ∩ Co-NP [21].)

On the positive side, polynomial-time solvability of SDPs is guar-

anteed when the feasible region contains an ‘inner ball’ and is

contained in an ‘outer ball’ of appropriate size [6, 9]. On the nega-

tive side, there are several classes of relatively simple SDPs whose

feasible solutions nonetheless have exponential bit-complexity, see,

e.g., [18] and the discussion therein.

In principle, these positive and negative results on SDPs pro-

vide conditions on (SOS) and (MOM) that (partly) show when

polynomial-time computation can and cannot be guaranteed. The

key difference with our results is that we only impose conditions on

the original polynomial optimization problem (POP), rather than

on the semidefinite programs resulting from the moment/sum-of-

squares relaxations.

Finding exact SOS-decompositions
In the setting of polynomial optimization, it usually suffices to find

approximate SOS-decompositions, for which one can use (standard)

SDP-solvers. The problem of finding exact SOS-decompositions

is more complicated. In the general case one could in principle

use, for example, quantifier-elimination algorithms [2, 22]. In the

univariate case specialized algorithms have been developed [4, 23],

see also [15]. We note however that none of these methods come

with polynomial runtime guarantees.
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