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ABSTRACT The 2D magnetic field effect arises when the winding height is lower than the window
height due to isolation requirements and mechanical constraints. In this situation, most analytical models
for calculating HF-losses in Litz wire fail to predict the winding losses accurately since they are normally
based on a 1D magnetic field assumption. Although numerical or semi-numerical methods can accurately
calculate the winding losses, they are too time-consuming to be integrated into the converter optimization
routines. This paper provides a new loss model, which is validated to have a much lower error (< 10%)
than 1D field loss models (up to -45%) by numerical calculations and experiments. The model is presented
for two winding transformers with layered windings and non-gapped cores with high permeability in the
frequency range, where the strand diameter to skin depth ratio is equal to 1.2. Moreover, the model can
also be extended for interleaved windings by separating the windings to multiple blocks. Furthermore, the
computation time is less than 300 µs using the algorithm provided in this paper. This new model achieves a
good balance between accuracy and computational time and has great potential to improve the transformer
as well as the converter design.

INDEX TERMS 2D magnetic field, high frequency losses, Litz wire, transformer

Nomenclature
hw Window height
ww Window width
dLip, dLis Outer diameter of Pri/Sec LW
ns Number of strands
Ip, Is Current in each turn of Pri/Sec
Np, Ns Number of turns in Pri/Sec winding
Nl Number of turns in each layer
hp, hs Winding height of Pri/Sec winding
ap, as Winding width of Pri/Sec winding
at Total winding width.
dyp, dys Distance between each winding layer and

core yoke for Pri/Sec winding
dxi, dxo Distance between windings and cen-

ter/outter core leg
δ Skin depth
σ Conductivity
µr Relative permeability
∆ Penetration ratio of strands
ds Diameter of strands
dLi Outer diameter of LW
Jp, Js Current per unit length of Pri/Sec winding
havg Average winding height
HWR Magnetic field in winding region

I. Introduction

MAGNETIC components such as medium frequency
transformers play a key role in many power electronic

systems. Because of the high-frequency (HF) effects, the
winding losses increase rapidly with frequency and limit the
efficiency and the power density of the magnetic components
as well as the power electronic systems. Litz wire (LW)
consisting of numerous twisted strands is often used to
minimize the winding losses. With perfect twisting in theory,
each strand in the LW conducts the same current and the
bundle level proximity effect is canceled [1]. Although
perfect twisting is assumed, calculating the HF-losses in
LW windings by numerical methods, such as FEM, results
in high computational effort. By contrast, analytical models
are typically much faster and are preferred in optimization
routines where the losses must be evaluated several thousand
times as explained in [2], [3].
In [4] four different such analytical models presented in [5]–
[10], have been evaluated and compared with respect to
accuracy and computational time. In all of these models,
a 1D external magnetic field is assumed, i.e. the fields are
considered to be in parallel to the winding layers and have
a constant amplitude along each field line. However, this as-
sumption/simplification is not fulfilled, if the winding height
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is not the same as the (core) window height. Due to isolation
requirements and mechanical constraints, the winding height
must typically be lower than the window height, e.g. in
medium voltage (MV) where the nominal voltage is usually
between 1 kV and 35 kV, the required isolation distance
between the winding and the core is larger than it is in
the low voltage, where the nominal voltage is below 1 kV.
In the case of a large distance between the core yoke and
the winding, the magnetic field disperses out of the winding
in different directions and has a more 2D distribution. In
some publications (e.g. [11] and [12]), this 2D field effect
is investigated as ’edge effect’. The results presented in [4]
demonstrate that considerable error occurs, if the mentioned
four models are used to calculate the winding losses in
presence of such a 2D field. This error increases rapidly with
the contribution of losses caused by the proximity effect and
the distance between the winding and the yoke, which can
be measured in the average window to winding height ratio
(hw/havg). Compared to measurement results, the error of
1D field loss model [5] could be up to −45% for multi-
layered windings with hw/havg > 1.5.

To calculate the losses caused by such a 2D magnetic
field more accurately, FEM is used in [11], [13]–[15]. In
[16]–[19], the losses are calculated by a semi-numerical
method, which calculates the magnetic field by FEM and
uses this magnetic field in the analytical model to estimate
the losses. However, the computational time of both methods
is too long for converter optimization routines, since the
loss calculation needs to be iterated numerous times. To
reduce the computational time of FEM simulation, in [20]
the PEEC (Partial element equivalent circuit) method is
used to calculate the HF-losses based on the magnetic field
calculated by 2D FEM. Moreover, in [21] and [22], the 2D
LW geometry with numerous realistic strands is simplified to
a homogeneous winding region with an equivalent complex
permeability, of which the number of mesh elements can be
substantially reduced. However, both methods for reducing
the calculation time are still too computationally expensive
to be integrated into optimization routines.
Compared to numerical methods, analytical models are faster
and preferred in converter optimization routines. In [23],
the 2D magnetic field is calculated by using the method
given in [24]. However, only planar windings located in
the air and above a magnetic substrate are considered. In
[25], an analytical loss model considering the effects of
twisting is presented, but no model for calculating the 2D
magnetic field is given. In [26] and [27], the winding losses
are derived based on iteratively calculated magnetic field
and current density for round conductors, as the external
magnetic field and the induced eddy current interact with
each other. This model is accurate and suitable for any
winding arrangements and core types with/without air gap(s).
However, in LW the contribution of each strand to the
magnetic field must be considered, and the losses converge
after at least 3 or 4 iterations. Depending on the number

of strands and total number of turns in litz wire windings,
the total number of round conductors considered in the
loss calculation can easily exceed several thousands. Hence,
this model needs serval minutes to calculate the winding
losses for litz wire windings. Moreover, if the windings are
enclosed in the core window, the windings must be mirrored
to each core boundary multiple times, as the contribution of
the strand images to the magnetic field and losses must also
be considered. In this case, the total number of conductors
as well as the computational effort increase multiple times.
To calculate the losses of litz wire windings enclosed in a
core window could take several hours, which is unacceptable
for converter optimization routines.
In [28], the ”direct integration method” for calculating the
losses caused by the proximity effect in a round conductor
is proposed. In this method, the flux induced by the eddy
current is integrated over the conductor area to calculate
the losses in that conductor, based on the superposition of
magnetic fields caused by all other conductors. To avoid this
integral of flux and reduce the calculation time, the ”three
orthogonal fields method” is presented. Using this simplified
method, the losses caused by the proximity effect can be
calculated for 1000 round conductors within around 75
seconds. However, as mentioned before, litz wire windings
in a transformer usually contain several thousand of strands.
The calculation time is up to several minutes or several hours
for litz wires enclosed in a core window. Therefore, this
method is also very computationally expensive for converter
optimization routines.
Besides the loss model for LW, the 2D magnetic field model
is also an essential part of calculating the loss of LW. In [29]–
[32], the 2D magnetic field is calculated for rectangular
winding layers. As the winding is enclosed in the core,
the results contain an infinite Fourier series. Although the
fourier series converge relatively fast, the spatial average of
the squared field in the winding region is normally required
for the loss calculation, which is difficult or computationally
expensive to calculate based on this Fourier series. In [5],
[33], [34] the method of mirror images is applied for
calculating the 2D magnetic field for solid wire and LW.
To calculate the magnetic field accurately, the complete
windings must be mirrored on the 4 window edges for a
closed core window [3]. Thus, the method of mirror images
is also relatively time consuming.
In [35], a closed-form model to estimate the HF losses
caused by 2D magnetic fields is presented. This model
considers only transformer windings with the same height
and no isolation layer between the primary and the secondary
winding. However, in real transformer the winding height of
the primary and the secondary or even the winding height of
each layer in the same winding could be different, as shown
in [3], [34], [36], [37]. Moreover, for some assumptions
made in [35], a detailed physical explanation is missing, and
the model is not validated by the experiment. To overcome
these limitations, the model presented in [35] is adopted in
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FIGURE 1. Example for deriving the transformation of the 2D curved field lines in a) to the 2D straight field lines in c). As the winding is symmetric to
the midline, only a half of the winding is shown. The transformer shown here is the same the transformer design 5 in Fig. 14. The magnetic field
distribution calculated by FEM and colored based on the value of Hnorm =

√
|H⃗x|2 + |H⃗y|2 for windings with and without isolation distance d are

shown in a) and b). In c), the winding region (WR) with a 1D-field shown in b) is replaced by a homogenously distributed current density region (HCR)
and all curved field lines are replaced by straight field lines. The flux density calculated by FEM on the midline are shown at the bottom of each figure.

this paper, and more detailed physical explanation is added.
Note that this paper focuses on two winding transformers
with layered windings and ungapped cores with high per-
meability. The model can also be extended for transformers
with interleaved windings. A simple example for such an
extension is given in the conclusion section. The frequency
range of interest is where the HF-losses in the transformer
with litz wire are lower than the one with an equivalent
round wire, which has the same DC resistance as the litz
wire. According to [4], litz wires result only in lower HF-
losses than equivalent round wires in the frequency range,
where the strand diameter is smaller than the skin depth, i.e.
ds/δ < 1. As the litz wire should be avoided in transformer
design beyond that frequency range, this paper focuses only
on the frequency range (ds/δ < 1.2), where litz wires are
beneficial. Furthermore, this paper also presents an algorithm
that is 30 times faster than the one presented in [35]. An
experimental validation for the proposed model based on
multiple transformer designs is also conducted in this paper.
This paper is arranged as follows. Section II presents the 2D
magnetic field model. In section III, the modified loss model
is derived. In order to implement the new model computa-
tional efficiently, an algorithm is derived in section IV. In
section V, the new model is numerically and experimentally
evaluated and compared to the 1D-field loss model presented
in [5] with respect to accuracy and computational time. The

equations for calculating the magnetic field are summarized
in appendix A.

II. 2D magnetic field calculation
In this section, the model for calculating the 2D magnetic
field is derived. As the magnetic field is 2D, it is difficult
and not necessary to distinguish the internal field from the
external field for the loss calculation. In this paper, the losses
caused by the proximity effect are calculated by the total
magnetic field through the winding, thus, only two types
of HF-losses (losses caused by the skin and the proximity
effect) are considered. The losses caused by the external
proximity effect Pp increase much faster with frequency than
the losses caused by the skin effect (PSkin), and dominate
the total losses in the high frequency range. Furthermore, the
accuracy for calculating the losses caused by the skin effect
depends on whether the current is equally shared between
strands, which is controlled primarily by the twisting and
wire termination, is not affected by the winding arrangement.
Therefore, if perfect twisting is assumed, the accuracy of the
loss model depends principally on whether Pp is precisely
calculated.
In the presented model it is assumed, that an external
magnetic field exists only outside the core, as an infinite
permeability of the core (µr,core → ∞) is assumed and
the amplitude of the magnetic field in the core becomes
zero (Hcore ≈ 0). If the magnetic field distribution in the

VOLUME , 3



:

winding region (HWR) is known, the 2D losses per unit
length caused by the proximity effect for a single strand in
a certain winding layer can be given by:

Pp = G(f)
1

S

∫∫
H2

WRdS = G(f)H2
WR,RMS (1)

Equation (1) implies that HWR,RMS is the spatial RMS value
of the peak value over the sinusoidal variation rather than
the time RMS value that is commonly used in electrical
engineering. Furthermore, the area S in (1) refers to the
rectangular area outlining a winding layer, since the losses
are calculated layer by layer in this paper. The winding
region (WR) is composed by these areas as the region
highlighted in dark blue in Fig. 1b. The factor G(f) in (1)
is assumed to be related to the material, the conductor shape
and the frequency and independent of the 2D magnetic field.
Hence, only HWR and HWR,RMS need to be derived in order
to include the 2D H-field effect in the loss calculation.

A. Straight field line approximation
The magnetic field in the window can be derived based
on Ampere’s law. In order to determine the integral path
of the magnetic field, a straight field line approximation is
proposed. In the following, a transformer with a one-layer
primary and a two-layer secondary winding (see Fig. 1) is
considered as an example for deriving the basic idea of the
straight field line approximation. Since the core window is
symmetric to the midline, only the upper half of the core
window is shown.
In Fig. 1a and 1b, the magnetic field distribution calcu-
lated by FEM is shown. In many applications, coil for-
mers/bobbins are used to simplify the manufacturing and
to achieve a proper winding arrangement, as well as to
provide the necessary electrical isolation. As the bobbins
or isolation materials generate neither eddy-current losses
nor influences the 2D H-field distribution. The bobbins or
isolation materials can be treated as an air gap between
the primary and the secondary winding. This is indicated
with a green bar shown in Fig. 1a. As the magnetic field
does not change significantly within the gap between the
primary and the secondary winding (cf. Fig. 1a), the gap
does in a first approximation not affect the magnetic field
distribution inside the windings. Therefore, the gap between
the primary and the secondary winding could be eliminated
for the winding loss calculation by moving the secondary
winding right next to the primary winding as shown in Fig.
1b, where the straight field line approximation is applied.
Since the winding height (hp or hs) is smaller than the
window height (hw) as shown in Fig. 1b, a share of magnetic
field lines does not reach up to the yoke but enters directly
into the center or the outer core legs. Therefore, the magnetic
field is more 2D between the yokes and the winding region
(WR) as shown in Fig. 1b, i.e. it consists of both an x-
and a y-component. Within the WR the magnetic field is
approximately 1D, i.e. it has only a y-component in the
considered case. Thus, the upper half core window can be

(a) (b)

FBLFBL

P S
pxH sxH

)x, y(

x

y

1θ
2θ

ax bx′x0

FIGURE 2. a) The magnetic field distribution calculated by FEM for 2
rectangular winding blocks, which conduct the same current (±10A) but
in the opposite direction are shown. The field boundary line FBL, which
separates the magnetic fields that bent to left and right (the dashed line in
a) is also shown. b) The two rectangular winding blocks are simplified into
2 current lines for calculating the coordinate of the FBL, as the height of
the winding block is assumed to have no impact on the location of FBL.

divided into one 2D field region (2DFR) with a 2D (H-
field) and one WR with a 1D H-field as shown in Fig. 1b
by the yellow and the purple areas. In order to calculate
the length of each field line, the curved field lines in the
2DFR as well as the WR in Fig. 1b are approximated by
the straight field lines as given in Fig. 1c. In the 2DFR, the

norm of the magnetic field vector Hnorm =
√

|H⃗x|2 + |H⃗y|2
is calculated, since in Ampere’s law only the magnetic field
amplitude along the field line is considered.
As the winding is symmetric to the midline and µr does

not change in the window, the flux density B distributed
on the midline has only a y-component. In addition, LW is
usually applied in a frequency range where the skin depth
is bigger than the strand diameter. Otherwise, LW produces
more losses than its equivalent round wire. In this frequency
range, the winding can be replaced by a homogenously
distributed current density region, which is abbreviated by
HCR (Fig.1c). With the HCR, the flux density changes
linearly along the midline as shown in Fig. 1c.
Moreover, the window can be divided into 4 regions (R1-
R4), based on the core parts that the H-fields enter as shown
in Fig. 1c. In R1 and R4, the H-fields enter the center or
the outer core leg, whereas in R2 and R3 the H-fields enter
the core yoke. The boundaries of these 4 regions can be
determined by 3 points (xB1, xFBL and xB2 shown in Fig.
1c). Since the coordinates of the 3 points are different in
the different coordinate systems, to keep the derivation more
compact, the coordinate system must fulfill the following 3
rules.

1) The x axis of the coordinate system must be in parallel
to the midline.

2) The WR must be located on the positive x half-axis
3) The origin of the coordinate system must be located

on the outer edge of the winding of interest.

Based on the 3 rules, a coordinate system is chosen as shown
in Fig. 1c for solving the H-field of the secondary winding.
In the case of solving the H-field of the primary winding,
the coordinate system must be reversed and shifted to the
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outer edge of the primary winding as shown in Fig. 1c.
To calculate the H-field in the different regions, the position
xFBL of the field boundary line (FBL), which separates
the magnetic fields that bent to left and right, needs to
be determined in the first step. To simplify the calculation,
the primary and the secondary winding are considered as 2
winding blocks with the same height as shown in Fig. 2a).
As the core does not affect the location of FBL, the core
can be neglected in the calculation of xFBL. Moreover, the
MMF caused by primary and the secondary winding has the
same amplitude but in the opposite direction. As shown in
Fig. 2a), a share of H-fields is bent to the left and closed
in the left hand side of the FBL, the rest magnetic fields
are bent to the right and closed in the right hand side of
the FBL. Therefore, in the transition between the left bent
and the right bent field lines, a straight field line must exist,
i.e. the x-component Hx of the magnetic field on the FBL
is zero. As the same winding height of the primary and the
secondary winding is assumed, scaling both windings with
the same factor in height does not affect the location of FBL,
consequently the winding block can be further simplified to
2 line current sources as shown in Fig. 2b). The 2 line current
sources with length −xa and xb are located both on the x-
axis. The x-component of the H-field H ′

sx at a random point
(x, y) caused by a random point current in the secondary line
current source can be given by (2), where Js is the current
density of the secondary line current source.

H ′
sx =

Jsy

2π [(x− x′)2 + y2]
(2)

The x-component of the H-field caused by the secondary
line current source (Hsx) is equal to the integral of the
current density Js over the interval [0, xb] and is given by:

Hsx =

∫ xb

0

H ′
sxdx

′ =
Js
2π

θ2 (3)

Similar to the secondary line current source, the x-
component of the H-field (Hpx) caused by the primary line
current source is given by:

Hpx =

∫ 0

−xa

Jpy

2π [(x− x′)2 + y2]
dx′ =

Jp
2π

θ1 (4)

The variable θ1 and θ2 in (3) and (4) are given by:

θ1 = arctan

(
x− xa

y

)
− arctan

(
x

y

)
θ2 = arctan

(
xb − x

y

)
+ arctan

(
x

y

) (5)

As the current (Ipb and Isb) in the primary and the secondary
line current source flows in the opposite direction, the
primary current density Jpb is given by:

Jpb = Jsb
xb

xa
(6)

As the sum of Hpx and Hsx on the FBL is zero everywhere
and is independent of variable y, where x′

FBL is the coordi-
nate of FBL in the coordinate system in Fig. 2b), the value

r
x

FBL
∗x

)
r

,x
F
B
L

∗
x(

f

(a) (b)
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FIGURE 3. a) The surface plot of f(x∗
FBL, xr) VS. x∗

FBL and xr based on
equation (8) is shown. The red line is the results by solving equation
f(x∗

FBL, xr) = 0, which is intersection line between the surface plot and
the plane, where f(x∗

FBL, xr) = 0. b) The red line with star markers is the
numerical solution (red line in a) of x∗

FBL and xr that satisfied the
equation f(x∗

FBL, xr) = 0. The green line the fitted curve for the
numerical solution.

of y is set to 1 for simplicity. Substituting (3), (4) and (5)
into (6), (7) can be derived.

arctan (x′
FBL − xa)− arctan (x′

FBL)

arctan (xb − x′
FBL) + arctan (x′

FBL)
=−xa

xb
(7)

Unfortunately, there is no general and unique solution for
x′
FBL in (7). Nevertheless, x′

FBL can be solved numerically
for given winding widths (xa, xb). However, the computa-
tional time (≈20ms) of this numerical solution is relatively
high. To reduce the computational time, the numerical so-
lution can be replaced by a fitted curve function. As shown
in (7) the value of x′

FBL depends both on xa and xb. To
avoid 3D curve fitting , the number of variables need to
be reduced to one. As in the a small interval close to
origin (|x| ≪ 1), the function arctan(x) can be considered
as a linear function, i.e arctan(ax) = a arctan(x), xa

can be extracted from the arctan-function and eliminated.
The number of variables in (7) can be reduced to 2 and
expressed as a function f(x∗

FBL, xr) as given by (8), where
x∗
FBL =

x′
FBL

xa
and xr = xb

xa
.

f(x∗
FBL, xr) =

arctan
(
x∗
FBL − 1

)
− arctan

(
x∗
FBL

)
arctan

(
xr − x∗

FBL

)
+ arctan

(
x∗
FBL

) +
1

xr
(8)

The solution of xFBL in (7) can be calculated by solv-
ing equation f(x∗

FBL, xr) = 0. The solution of equation
f(x∗

FBL, xr) = 0 is the red line, which is the cut line between
the function f(x∗

FBL, xr) and the surface f = 0, as shown
in Fig. 3b. On the cut line for each xr, there is a value of
x∗
FBL which satisfies the equation f(x∗

FBL, xr) = 0. Based
on these numerical results, a 2D curve fitting, which is much
faster than the 3D curve fitting, can be used to predict the
value of x∗

FBL as shown in Fig. 3a. The equation of the fitted
curve is given by:

x∗
FBL,CF = 0.8158e−0.05541xr − 1.113e0.261xr (9)

Finally, the value of xFBL in the coordinate system shown
in Fig. 1c can be calculated as:

xFBL = at − ap(x
∗
FBL,CF + 1) (10)

To evaluate the derivation of xFBL, the x-component of the
magnetic field Hx is calculated for an exemplary winding
as shown in Fig. 4a. The current in the primary and the
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FIGURE 4. a) The x-component of H-field distribution calculated by FEM.
The field boundary line (FBL), where Hx is equal to 0, calculated by FEM
is highlighted in blue. The FBL calculated by proposed model is given by
the red line. The coordinate (xFBL) of the FBL is 13.66mm. b) Hx along
the calculated FBL (red line).

secondary winding is 10A and −10A. The variable xr,
x∗
FBL,CF, and xFBL for this winding setup is equal to -

1.5, 0.1341 and 13.66mm. The FBL calculated by FEM
is given by the blue line in Fig. 4a, which is not entirely
straight as assumed. Nevertheless, the average value of the
x coordinates of all the points on the FBL calculated by
FEM is equal to 13.65mm, which is very close to the value
13.66mm calculated by the proposed model. In Fig. 4b, Hx

along the FBL calculated by the proposed model is shown.
As expected, Hx on the FBL is almost zero, except the line
sections, which are near the top and the bottom edge of the
winding.
In order to determine the coordinates of points xB1 and xB2

as well as the field amplitude HWR, three assumptions need
to be made (A1 and A3 are inherited from [35]):

• A1:A linearly increasing flux (ϕapprox) along the win-
dow edges (points P1-P2-P3-P4 in Fig. 1b and P ′

1-P2-
P3-P ′

4 in Fig. 1c) is assumed. A comparison to FEM
results calculated for the considered case shown in Fig.
1b is given in Fig. 5a.

• A2: In the WR, a homogenously distributed current
density region HCR as shown in Fig. 1c is assumed.
Furthermore, the isolation thickness between two ad-
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FIGURE 5. a) Flux density B and flux per unit length ϕ on the outer edge
of 2DFR (P1-P2-P3-P4 in Fig. 1b) and the approximated flux ϕapprox on
the outer edge of 2DFR (P ′

1-P2-P3-P ′
4 in Fig. 1c). b) The H-field

distributions, which are estimated based on the piece-wise linear
assumption (A3) and calculated by FEM on the cut line (magenta dashed
line) for the transformer shown in Fig. 1.

Identification of region (R1-R4)
Step 2:

Define coordinate system
Step 1:

Step 3:
Length of field lines as function of x

Step 4:
)x(WRH 4R1-Rin regions

Step 5:
WR,RMSH for nth-layer

FIGURE 6. Procedure for calculating the RMS value (HWR,RMS) of the
amplitude of the magnetic field in the winding region.

jacent layers is neglected so that the magnetic field
increases continuously from layer to layer. Thus, the
current per unit width of the WR for the primary and
the secondary winding is given by (11).

Jp = NpIp
hp

Sp
Js = NsIs

hs

Ss
(11)

There, Sp and Ss are the rectangle areas of the primary
and the secondary winding.

• A3: A piece-wise linear amplitude HPL of the H-field
along each approximated straight field line is assumed
as shown in Fig. 5b. In the 2DFR, the amplitude of
the H-field H2DFR is considered to increase/decrease
with a constant slope kp or ks along the length of the
field line l for the primary or the secondary winding.
Therefore, H2DFR of the primary and the secondary
winding are given by: H2DFR,p = kpl + bp and
H2DFR,s = ksl + bs, where bp = bs = 0, since l
starts at the window boundary and H2DFR,p(l = 0) =
H2DFR,s(l = 0) = 0. In the WR, a constant amplitude
of the H-field HWR along the field line is assumed,
since the H-field in the WR is 1D as shown in Fig. 1c.
Note that in this assumption the MMF (magnetomotive
force) which is the area surrounded by HPL and HFEM

as shown in Fig. 5, must be equal.

B. Magnetic field calculation for secondary winding
In this section, the RMS value of the magnetic field in the
WR HWR,RMS is derived for the secondary winding. Since
HWR has only a y component and is constant along the field
line, the RMS value of HWR for the nth layer HWR,RMS is
defined by equation (12). HWR,RMS can be derived in 5 steps
as shown in Fig. 6, where the 1st step, i.e. the definition of
the coordinate system has been discussed in the last section
and the related parameters are shown.

HWR,RMS =

√
1

dLis

∫ ndLis

(n−1)dLis

H2
WR(x)dx (12)

• Step 2: Since each winding layer may consist of a
different number of turns and has therefore a different
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FIGURE 7. The transformer winding window after applying the straight field line approximation. The window is divided into 4 regions indicated by R1 to
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in c) for the secondary winding.

winding height, HWR,RMS needs to be determined for each
layer separately. HWR,RMS varies from region to region,
hence the region(s) where each winding layer is located in
must be determined first. Therefore, the positions of xB1 and
xB2 are calculated in this step with derived xFBL from the
last section.
In region R1, the flux per unit length ϕB1 through the line
segment L0,xB1

on the midline is equal to the flux per unit
length ϕP3−P4′ through the line segment LP3,P4′ as shown in
Fig. 1c. Based on assumption A1 and the linearly increased
flux density from x = 0 to x = xFBL shown at the bottom
of Fig. 1c, xB1 can be derived as given in (13). Note that
for windings where the winding height of each layer is
different, the average winding height hap and has is used
for calculating dyp and dys of the primary and the secondary
winding (e.g. dys = hw−has

2 ).

xB1 = xFBL

√
dys

dys + dL2
(13)

Analog to deriving the position xB1, the flux per unit length
ϕB32 through line segment LxB3,xB2 is equal to the flux per
unit length through line segment LP1′ ,P2 as shown in Fig.
1c. Based on assumption A1, the length dB23 of line segment
LxB3,xB2 is given by (14). The position of xB2 is equal to
at − dB23.

dB23 =

√
ap

(
at −

x2
FBL

as

)(
dyp

dyp + dL3

)
(14)

• Step 3: In this step, the lengths of the straight field lines
as shown in Fig. 1c are calculated for each region.

1) Region 1
In Fig. 7a, a random magnetic field line (dashed line), which
consists of two parts, the 1D part in the WR and the 2D part
in the 2DFR, is shown. The 1D part in the WR is as long
as half of the winding height, and the length of the 2D part

in the 2DFR is equal to dab =
√

(x+ dxo)2 + d2bP ′
4
, where

the unknown value of dbP ′
4

is given by (15).

daP ′
4
=

x2

x2
B1

dys (15)

Because the winding is symmetric to the midline, the total
length of the field line in R1 is equal to lR1 = hs + 2dab.

2) Region 2
Similar to R1, the length of the 2D part of the field line is
equal to dab =

√
d2ys + d2xb =

√
d2ys + (x+ dxo − dbP3)2

where the unknown value of dbP3 must be derived (see
Fig. 7b). Based on assumption A1, the flux density ϕx−xB1

through line segment Lx,xB1
is equal to the flux per unit

length through the line segment Lb,P3, so that dbP3 is given
by (16).

daP3 =
x2 − x2

B1

x2
FBL − x2

B1

dL2 (16)

3) Region 3
As shown in Fig. 7c, only a very small part of the secondary
winding is located in R3 in the considered example. Similar
to R2, the length of the 2D part of the field line can be
calculated by dab =

√
d2ys + d2xb, where the unknown value

of dxb is equal to dxb = xFBL + dbF − x. Therefore, the
only unknown variable is dbF which can be derived with
(17), which is again based on assumption A1.

dbF =
dL3(x

2 − x2
FBL)

(a2s − x2
FBL) +

as

ap
(a2p − d2B23)

(17)

• Step 4: In this step, the amplitude of the magnetic field in
the winding region HWR is calculated. Based on Ampere’s
law, the integral of the H-field along a closed loop, which
includes distance dab in both 2DFRs, and the winding height
hs in the WR, is equal to the current through that loop as

VOLUME , 7



:

given by (18). As can be seen in Fig. 5b, the magnetic field in
the 2DFR H2DFR is assumed to increase linearly with field
line length l with a slope kp or ks, which can be derived
by applying Ampere’s law to a specific field line. Since the
slope varies with field lines, in this paper the field line which
separates the flux in a region into 2 equal parts is considered
as the mid field line, which is chosen to calculate the slope
(kp or ks) for each region. ks can be calculated for each
region based on (18) and an example for region R2 is given
by (19).

2

∫ dab

0

H2DFR(l)dl +

∫ hs

0

HWRdl =

∫ ndLis

(n−1)dLis

J(x)dx

(18)

ks2 =
JsxM2

dab(hs + dab)
(19)

There, xM2 is equal to xM2 =
√
2
2

√
x2
B1 + x2

FBL.
With (18) and (19), a general form for the H-field HWR in
the WR can be derived for the secondary winding as given
in (20). By substituting the corresponding values of ks and
dab calculated in step 2, HWR(x) for different regions can
be derived. The resulting equations are given in appendix A.

HWR(x) =
Jsx− ksd

2
ab

hs
(20)

• Step 5: In this step the RMS value of HWR for each layer
is derived. By replacing HWR in (12) with the equations
given in appendix A and B, the RMS value of HWR for the
nth-layer is calculated, e.g. HWR,RMS for the nth layer in
region R1 is given by (21).

HWR,RMS =

√
1

dLis

∫ ndLis

(n−1)dLis

H2
WR,R1(x)dx (21)

For a layer which is located in 2 regions (e.g. the first layer
of secondary winding in Fig. 1b is located in both region 1
and 2), H2

WR,RMS is given by (22).

H2
WR,RMS =

1

dLis

(∫ xB1

(n−1)dLis

H2
WR,R1(x)dx

+

∫ ndLis

xB1

H2
WR,R2(x)dx

) (22)

C. Magnetic field calculation for primary winding
The magnetic field for the primary winding in the example
transformer case is calculated in this section. The derivation
is similar to the one in the secondary winding. As step 5 for
both windings is identical, in this section only step 1 to step
4 are discussed.
• Step 1: In order to reuse some calculation results from
Section B and simplify the derivation, the coordinate system
built for calculating the H-field of the secondary winding
needs to be reversed horizontally as shown in Fig.8. The
coordinate system must fulfill the 3 rules given in Section
A, but the origin of the coordinate system aligns now with
the outer edge of the primary winding.

• Step 2: In the reversed coordinate system, the boundary
positions xFBLR and xB2R as shown in Fig. 8 are equal to
at − xFBL and dB23.

• Step 3: As shown in Fig. 2c the primary winding is
located in regions R3 and R4, and the length of straight
field lines is calculated for these two regions in this step.

1) Region 4
The derivation of the field line length is the same as it is
in region R1 for the secondary winding. As can be seen in
Fig. 8a, the length of the field line in the 2DFR is equal
to dab =

√
(x+ dxi)2 + d2bP1

, where the unknown value of
dbP1

is given by:

daP1
=

x2

d2B23

dyp (23)

2) Region 3
Similar to the derivation for secondary winding in region
R3, the length of the 2D part of the field line is equal to
dab =

√
d2xb + d2yp, where dxb = x + dxi − dbP2 as shown

in Fig. 8b. The unknown value of dbP2
is given by:

dbP2 =
dL3(x

2 − d2B23)
ap

as
(a2s − x2

FBL) + (a2p − d2B23)
(24)

• Step 4: Also, the mid field line in each region is chosen
for calculating the gradient kp as it is done for the secondary
winding. The gradient kp3 can be calculated for example for
region R3 by:

kp3 =
JpxM3

dab(hp + dab)
(25)

There, xM3 =
√
2
2

√
d2B23 + a2p.

The general equation for calculating the magnetic field in
the WR for primary winding can be therefore given by:

HWR(x) =
Jpx− kpd

2
ab

hp
(26)

b
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FIGURE 8. The transformer winding window after applying the straight
field line approximation which is similar to Fig. 7. An arbitrary field line
(black dashed line with an arrow) as an example for the calculation of the
field line length in region R1 in a), in region R2 in b) and in region R3 in c)
for the primary winding.
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The method introduced here is based on considerably strong
assumptions (A1 and A3) and cannot be used to accurately
estimate the magnetic field everywhere in the window. How-
ever, an accurate estimation of the magnetic field everywhere
is not necessary for the loss calculation, as the accuracy of
the field calculation is not equivalent to the accuracy of loss
calculation. Moreover, the equations of HWR for different
regions are polynomials that can be analytically integrated
and be relatively faster computed than other equations ob-
tained by solving Maxwell’s equations directly.

III. Loss calculation
The following calculation of winding losses is derived by
modifying the two models presented in [5] and [9], which
are based on Bessel and hyperbolic functions. By modifying
the loss contribution Pp, the accuracy of both models can be
significantly improved. The modification of the model based
on Bessel functions can be simply performed by substituting
the external magnetic field in Pp by HWR,RMS calculated for
each layer from the last section.
However, the model based on hyperbolic functions needs
to be adapted in 2 steps. Since the calculated 2D magnetic
field HWR,RMS is only applied to the losses caused by the
external proximity effect, the loss equations for the skin and
the proximity effect have to be separated as given in [4].
The loss equation of Pp for each strand can be derived and
given by:

Pp = GH(f)H
2
WR,RMS (27)

GH(f) =
1

nsNl

h∆s

hsσ′
sinh(∆s)− sin(∆s)

cosh(∆s) + cos(∆s)
(28)

∆s =
(π
4

) 3
4 ds
δ

√
ds
ps

(29)

where hs =
√
π
2 ds is the thickness of the transformed

foil winding. Accordingly, the separated equation of losses
caused by the skin effect for a single turn is given by:

PSkin =
1

2
I2RDCFH(f) (30)

FH(f) =
∆s

2

sinh(∆s) + sin(∆s)

cosh(∆s)− cos(∆s)
(31)

Note that the derived loss equations (27) and (30) are valid
for both primary and secondary winding. Compared to the
1D field loss model in [5], the main difference is the field cal-
culation, as the 2D field effect is considered in the proposed
model. Therefore, the proposed model needs 2 more input
parameters, including the distance between winding and core
yoke (dy) and the distance between winding and center
core leg (dxi). All other parameters in the proposed model
can be derived based on the input parameters. Moreover,
some algorithm, that detects in which region(s) that each
winding layer is located, needs to be implemented in order
to select the correct function(s) for calculating the magnetic
field. Therefore, the losses Pp must be calculated separately
for each layer. Consequently, the calculation effort increases

Extract coefficient and variable terms from
     the indefinite integral of           

Calculate the number of integral      in each
region for each winding

IN

Generate the necessary unit and operation 
matrix O

Calculate the total winding losses

Assemble coeffcient, variable and operation 
matrixes

)x(WR
2H

     for different regions in each winding
)x(WR

2HCalculate the indefinite integral of

for each winding layerCalculate WR,RMS
2H

ext,pP+SkinP=w,tP

FIGURE 9. Algorithm flow chart for using the proposed model to calculate
winding losses in LW.

with the number of layers. To reduce calculation time due
to the increasing number of layers, an algorithm which
assembles the calculation of losses for different layers into
a single matrix system, is introduced in the next section.

IV. Algorithm
To calculate the RMS value of HWR for each layer, the
integral of H2

WR needs to be calculated. In the previous
work [35], the integral is calculated by using the Matlab
function ’integral’. Furthermore, the integral needs to be
performed at least n times for an n-layer winding. If the
layers are located in more than one region, the integral must
be conducted up to n + 3 times. The average calculation
time for the 13 different transformer cases presented in [35]
is around 8.3ms, which can be significantly improved by
using the algorithm presented in this section.
The basic idea of the algorithm is to use a single matrix
system to represent all the integrals for a winding. Instead
of integrating H2

WR for each layer separately, with the
matrix system the integrals of H2

WR of all layers can be
evaluated in a single step. Furthermore, this algorithm
accelerates the computation further by getting rid of using
the Matlab function ’integral’. The algorithm is explained
for the secondary winding as an example in the following.
For the secondary winding, which is located in 3 regions
(R1-R3), all the integrals of H2

WR can be arranged in a
single matrix system as given in (33). There, NIR1 - NIR3
are the number of integrals and nR1-nR3 are the number of
layers in regions R1-R3. Since the equation HWR in every
region is a polynomial, the indefinite integral of H2

WR can
be written in a matrix form as given by:

VOLUME , 9



:

∫
H2

WRdx = a9x
9 + a8x

8 + . . . a1x
1 + a0 = AX

A =
[
a9 a8 . . . a1 a0

]
X =

[
x9 x8 . . . x1 1

] (32)

where A is the coefficient matrix and X is the variable
matrix. Matrix A is different for different windings and
regions, e.g. the coefficient matrix for the secondary winding
in region 1 is AR1s.

∫ dLi
0 HWR,R1s(x)

2dx

...∫ xB1
nR1dLi

HWR,R1s(x)
2dx

∫ (nR1+1)dLi
xB1

HWR,R2s(x)
2dx

...∫ xFBL
nR2dLi

HWR,R2s(x)
2dx

∫ nR2+1)dLi
xFBL

HWR,R3s(x)
2dx

...∫ xas
nR3dLi

HWR,R3s(x)
2dx



NIR1s

NIR2s

NIR3s

(33)

Each definite integral in (33) can be expressed by matrix A

and X, e.g. the integral
∫ dLis

0
HWR,R1s(x)dx can be written

as (34).([
AR1s

AR1s

] [
X0 XdLis

] [1
1

] [
1
1

])⊺ [−1
1

]
(34)

Accordingly, the integral system in (33) can be converted to
a matrix system as given by:


AR1s

...
AR3s




X0

...
Xxas


⊺ 

1

. . .

1



1

...
1




⊺

︸ ︷︷ ︸
Hs,Int


O1

...
Ons


⊺

(35)

where Hs,Int is a 1× 2NIs matrix (NIs = (NIR1s +NIR2s +
NIR3s)) containing the integral value of H2

WR at each node
of integral intervals. For a layer which is located in a single
region, such as the first layer in region R1, the integral∫ dLis

0
HWR,R1s(x)

2dx is equal to Hs,Int(2)−Hs,Int(1), which
can be written in a matrix form as given by:

Hs,IntO1 =
[
Hs,Int(1) · · · Hs,Int(NIs)

]
·
[
−1 1 0 . . . 0

]⊺
(36)

For the layer, which is located in more than one regions,
such as the last layer of the secondary winding located in re-
gions R2 and R3, the integral of

∫ xFBL

(ns−1)dLis
HWR,R2(x)

2dx+∫ nsdLis

xFBL
HWR,R3(x)

2dx can be written in a matrix form as
given by:

Hs,IntOns=
[
Hs,Int(1) · · · Hs,Int(NIs)

]
·
[
0 . . . 0−1 1−1 1

]⊺
(37)

Since O is a 2NIs × ns matrix, (35) results in the integral
value of H2

WR for each layer HS,Int. The RMS value of the
magnetic field through the winding region for each layer is
then equal to HWR,RMS =

√
1

dLis
HS,Int.

The complete loss calculation procedure using this algorithm
is shown in Fig. 9. At the beginning, the indefinite integrals
of the functions HWR(x) in each region need to be calculated.
The coefficient and variables are extracted from the indefinite
integrals of the functions HWR(x) in each region as given
in (32). Furthermore, to assemble the matrix system given
in (35), the number of integrals in each region (NI) and the
operation matrix need to be further calculated based on input
parameters. Finally, H2

WR,RMS and the total winding losses
can be calculated based on the matrix system. This algorithm
uses a single matrix system to calculate HWR,RMS for all
winding layers, which significantly reduces the calculation
time of the proposed model. The detailed evaluation of this
algorithm as well as the proposed model is given in the next
section.

V. Evaluation and comparison
In this section, the proposed model is evaluated by the
numerical method and the experiments. 2D FEM is chosen
for the numerical validation, as the proposed model is 2D,
the 3D effects such as the bundle level HF-effect of litz wire
and the influence of the winding part located outside the core
window are not considered. In the experiment, 5 transformers
based on E/ETD and pot cores and 3 different litz wires
are designed and implemented. The experimental validation
is done by comparing the winding resistance calculated by
the proposed model to the winding resistance measured by
impedance analyzer.

A. Numerical validation
The field model proposed in section II is validated first with
FEM simulations for transformer designs 5 and 10 shown in
Fig. 14. As in the proposed model and other loss models,
the losses of each strand in the same layer are assumed to
be identical and the losses are calculated layer by layer, the
magnetic field is also compared layer-wise. Moreover, the
proposed model uses the spatial RMS value of the magnetic
field for each layer (see (1)) in the loss calculation, thus this
spatial RMS value of the magnetic field is also calculated
by FEM for comparison. In Fig. 10a1 and Fig. 10b1, the
magnetic field calculated by the proposed model HWR,RMS

and the 1D model H1D, and the average value of the 1D
field Havg are compared to the value HFEM calculated by
FEM, where H1D and Havg for the nth layer in the primary
or the secondary winding are given by:

H1D =

(∑n−1
k Nl(k) +

∑n
k Nl(k)

)
I

2hw
(38)

Havg =

(∑n−1
k Nl(k) +

∑n
k Nl(k)

)
I

hw + hl
(39)

HFEM =

√
1

Sn

∫∫
H2

normdS (40)

In (38) and (39), Nl, I and hl are the number of turns pro
layer, the current in one turn, and the winding height of the
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FIGURE 10. Evaluation of field and loss calculation by FEM based on transformer design 5 and 10 shown in Fig. 14. In a1 and b1, the magnetic field for
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and [38]. a3 and b3 shows the error of total losses calculated by different models compared to FEM reuslts, where Error = (Panalytical −PFEM)/PFEM.

considered winding layer. In (40), Sn is the rectangle area
including the conductor area outlining the nth winding layer,
which is indicated by different colors for transformer designs
5 and 10 in Fig. 14.
As can be seen in Fig. 10a1 and 10b1, the proposed field
model always underestimates the magnetic fields through the
winding layers close to the center and the outer core legs.
This can be seen for example for P1 and S2 in transformer
design 5, and P1, S2 and S3 in transformer design 10 shown
in Fig. 14. The winding layers close to the center and the
outer core legs are usually located in regions R1 and R4,
so that the field lines through these winding layers in the
simulation are not 1D and not parallel to the winding layer
as that is assumed in the proposed model. The field lines are
rather 2D and even go perpendicularly through the winding
layer and enter the core leg. Therefore, the resulting field line
length in the simulation is smaller than it is assumed in the
proposed model. This results in a higher H-field amplitude
in the simulation than it in the proposed model. Moreover,
the field amplitude of the winding layers located in regions
R2 and R3 is mainly affected by the relative position of the
primary and the secondary winding. If the height difference
between the primary and the secondary winding is small,
so that the field line through the winding layers located in
regions R2 and R3 are relatively straight, the estimated field
amplitude by the proposed model matches well to the one in
the simulation, as shown in Fig. 10a1. However, if the height
difference between the primary and the secondary winding
is relatively large, so that the field lines are bent towards the
center of the primary or the secondary winding as shown
in Fig. 11. In this case, the field lines (purple dashed line
shown in Fig. 11b) are not straight in the winding region as

assumed in the proposed model and are hence longer than
the assumed field lines (red dashed line shown in Fig. 11b),
what results in a lower field amplitude in the simulation.
Since there are 4 methods for calculating the magnetic field
and 2 methods for calculating the G-factor, 4 × 2 = 8
different methods plus 1 method, which is introduced in [16]
can be used for the loss calculation. In Fig. 10 a2, a3, b2
and b3 seven methods are compared to FEM results. The
1D loss model presented in [5] is used for comparison, as
it has a relatively smaller error than other 1D loss models.
Moreover, the proposed model based on the hyperbolic func-
tions (”New H”) is more accurate than the model based on
the Bessel functions (”New B”) (see Fig. 14), thus only the
method ”New H” is used. In Fig. 10, the methods ”AVGB”,
”AVGH”, ”HFEMB”, and ”HFEMH” are the loss models
based on 1D average field and Bessel/hyperbolic functions
and the loss model based on HFEM and Bessel/hyperbolic
functions. The last model ”SFD” (squared field derivative)
presented in [16] is also used for comparison. As can be seen
in Fig. 10a2 and 10b2, the method with higher accuracy
of field estimation exhibit also a better accuracy of loss
calculation for most layers.

To compare the accuracy of different methods for loss
calculation more precisely, the error for the total losses of
transformer design 5 and 10 are shown in Fig. 10a3 and
Fig. 10b3. For both transformer designs, the proposed model
has the best accuracy (< 2%), and the method ”AVGB” is
the second most accurate one with an accuracy between 3%
and 4%. Although the semi-numerical methods ”HFEMB”,
”HFEMH”, and ”SFD” are based on the most accurate field
results, the accuracy of these methods is worse than methods
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FIGURE 11. a). The magnetic field distribution for transformer case 10. b).
Comparison of the approximated straight field line (black dashed line) to
the realistic field line (red dashed line), which is distort because of the
unequal height of the primary and the secondary winding in region R2.

”New H” and ”AVGB”. The possible reasons for this can be
concluded in the following 2 reasons:

• The losses of strands in the same layer are not identical.
• The G-factor is not accurate or the equation (1) is not

rigorous for calculating 2D losses.

The first reason can be conducted from Fig. 1, as the
field amplitude through each strand in the same layer is
different, the losses of the strands, which are subject to
different field amplitudes, are also different. Therefore, using
a uniform field (spatial average field) for all strands in the
same layer to calculate the losses results in inaccuracy. To
verify the second reason, the G factors based on Bessel GB

and hyperbolic GH functions and used in method ”SFD”
G”SFD” (see [39]), which are all derived based on a 1D field
assumption and are named 1D G factors here, are compared
to the G factor calculated from FEM (GFEM). Note that the
G factor G”SFD” is equal to the losses Pp,”SFD” divided
by H2

FEM, which is not the same as it is defined in [39].
Moreover, the GFEM can be calculated by (41), if PSkin is
assumed to be orthogonal to Pp,

GFEM =
Pt,FEM − PSkin,FEM

H2
FEM

(41)

where Pt,FEM is the total losses of a strand. As LWs is
usually made of the same strands and all 1D G factors
depend only on the frequency, material and dimension of
the strand, the 1D G factors is the same for the strands in
the same winding. In Fig. 12, the G factors for the 333
strands in the primary winding of transformer design 5 are
shown. As GFEM is shown in a grey line with 20% opacity,
the darker lines or area contain multiple curves of GFEM.
The G factor GFEM varies significantly for different strands,
nevertheless, around 90% of the curves of GFEM are located
within ±7.5% range of the average value (GFEMavg ) of
GFEM, which is highlighted in yellow in Fig. 12. Moreover,
the curves of the 1D G factors, which are located on the top
of the profile of the GFEM curves, are very close to each
other and are slightly higher than the curve of GFEMavg .
The remaining 10% strands, of which the curves of GFEM
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FIGURE 12. Comparison of G-factor used in different analytical models to
the G-factor derived from FEM for different strands. a) 1D G-factors and
the G factors calculated from FEM for different strands in the primary
winding (P1) of transformer design 5 shown in Fig. 14 in frequency range
0.1 < ∆ = ds/δ < 1.2. b) The zoomed version of a). The current density
and field distribution calculated by 2D FEM for the 4 strands highlighted
in magenta with label 1 to 4 in Fig. 1b are shown in a and b.

are below the curve of GFEMavg
, are located mainly around

the left edge of the primary winding, which are highlighted
in black in Fig. 1. Note that the transformer design 5 is
the same as the transformer shown in Fig.1, and strands 1
and 2, which are highlighted in magenta in Fig.1b, belong
also to this 10% strands. These strands are close to the
center core leg, thus a certain share of the magnetic field
is bent and enters directly into the center core leg rather
than traveling straight and entering the core yoke. In this
case, the magnetic fields through these 10% strands have
more 2D shape, which means the magnetic field through
the strands are curved with changing amplitude rather than
straight with a constant amplitude. To compare this 1D and
2D field, the current density and field line of 4 strands,
which are shown in magenta in Fig.1), are calculated by
FEM, as shown in Fig. 12. The curvature of the field line
decreases from strands 1 to 4, and the magnetic field tends to
converge to a straight line. Correspondingly, GFEM increases
from strand 1 to 4, as the smaller the curvature of the field
line is, the closer is the magnetic field to 1D. The curve
of GFEM of strand 4 is aligned with the 1D G factors, as
the field is almost 1D. Moreover, equation (1) is derived
based on the assumption that the magnetic field is 1D and
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FIGURE 13. Explanation of converting the 3D error figure (a) to an error
bar figure (b). a) The surface plot of Error VS. hw/havg VS. ∆ = ds/δ. The
error is calculate by the 1D field loss model in [5] for transformer designs
1-6 in Fig 14. b) The error bar figure, which is obtained by projecting the
surface plot in 3D to the plane C1 in a). Each error bar contains the peak,
the median and the minimal value of the error with respect to ∆.
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FIGURE 14. Error comparison between proposed model based on Bessel (”New B”) and hyperbolic functions (”New H”), the 1D average field loss
model based on Bessel (”AVGB”) and hyperbolic functions (”AVGH”), and the 1D field loss model (Ferreira’s model) for 12 different transformer designs
of which the geometries are also shown. The error is calculated by Error =

Pmodel−PFEM
PFEM

× 100%, where PFEM is calculated by 2D FEM simulations.
The share of losses caused by the proximity effect (Pp = PFEM − PSkin) at the maximum frequency is given in percentage next to the label of each
transformer design. The average value of the maximum error for each transformer is also calculated and shown in the legend for each method. Next to
the number label of each transformer case, the share of the losses caused by the proximity effect to the overall losses at the max. frequency
(ds/δ = 1.2) is given. Note that the diameter of the strands is between 0.18mm and 0.3mm, the frequency range is 0 < ∆ = ds/δ ≤ 1.2, where ds is
the diameter of the finer strand in each transformer design.

perpendicular to the conductor. Thus, (1) is not accurate for
calculating the losses Pp for a round conductor subjected to
a 2D magnetic field. Nevertheless, this overestimated 1D G
factor used in the proposed model is kind of compensated
by the underestimated magnetic field through those winding
layers, which are next to the center/outer core leg. This
results in accurate loss results for layer P1 and S2 in Fig.
10a2 and for layer P1 and S3 in Fig. 10b2.
Based on the analysis above, it can be concluded that the
accuracy of the loss calculation can be improved by replacing
the 1D magnetic field in the 1D model [5] by other more
accurate field values. However, more accurate field values do
not results in more accurate losses because of the inaccurate
1D G factors and unequal losses in the different strands
in the same layer. Moreover, the strands subjected to the
strong 2D field are close to the center and outer core legs,
thus, the error of the semi-numerical models increases with
the loss contribution of the strands close to the core legs.
As this paper aims to provide an accurate analytical loss
model, the semi-numerical models (”HFEMB”, ”HFEMH”,
and ”SFD”), which uses the magnetic field calculated by
FEM are not considered in the following comparison. As it is
difficult to identify, which analytical model is more accurate,
it is necessary to compare them for different transformer de-
signs. In the following comparison, 12 transformer designs,
which cover a wide range of core sizes (from E 20/20/5
to E 90/50/16), and winding arrangements with different
window to winding height ratio are used as shown in Fig.
14. Because of the symmetry, only a single core window is

simulated. Since the transformers are designed to evaluate
the loss models, they are not optimized.
In order to compare different models in the same figure,
an error bar figure is used. As can be seen in Fig. 13, the
error bar figure is converted from a 3D figure by projecting
the 3D figure on the plane C1 and extracting the peak, the
median, and the minimal error for each transformer. The
error bar figure shows not only the losses changing with the
window to the average winding height ratio hw/havg, but also
with frequency, which is indicated by the penetration ratio
∆ = ds/δ.
In Fig. 14 the new models based on the hyperbolic
(”New H”) and the Bessel functions (”New B”), as well
as models based on the 1D average field (”AVGH” and
”AVGB”) are compared to the 1D field loss model [5] ,
which is widely used for calculating the HF-losses of LW.
The error displayed in Fig. 14 is calculated by Error =
Pmodel−PFEM

PFEM
× 100%. The geometry used for the loss calcula-

tion of each transformer case is also displayed. It can be seen
that the error of the proposed model based on the hyperbolic
function (”New H”) is lower than all other methods for every
transformer design except for transformer design 9, where
the error of method ”AVGB” is slightly lower than method
”New H”. The error of the 1D field loss model increases
with hw/havg, and it is up to -30% when hw/havg is bigger
than 1.3, whereas the error amplitude of the proposed method
”New H” is within 8.5%. By comparing the average value
of the maximum error Eavg,max of each transformer design
as shown in the legend of Fig. 14, the proposed method
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TABLE 1. Computational time (tcal) tested on a laptop with the CPU i7-

8665U (4 cores, 1.9-4.8 GHz)

Method Ferreira ”New H” without
algorithm

”New H” with
algorithm

tcal±20% 75 µs 8.3ms 275 µs

”New H” with Eavg,max = 2.69% is identified to be the
most accurate one. Although the average error Eavg,max of
the method ”AVGB” (4.32%) is bigger than the proposed
method ”New H”, the method of ”AVGB” is easier and
faster than the proposed model ”New H”. Therefore, both
methods are selected for the experimental validation.
Besides the accuracy, the computational time is also com-
pared. Table 1 shows the average computational time of 3
calculation procedures, including the 1D field loss model,
the proposed model with and without using the algorithm
presented in this paper. The computational time is the
average time of calculating losses at 12 frequencies based
on 12 transformer cases shown in Fig. 14 and is measured
by using the Matlab function ’timeit’ on a laptop with a CPU
i7-8665U. Thanks to the algorithm, the computational time
of the new model given in Table 1 is around 275 µs, which
is 30 times less than it without using the algorithm. Note
that no parallel computing is used in all functions in the
calculation, hence, only a single core is used. By integrating
this new model and the algorithm into converter optimization
routines, a better and faster design can be achieved.

B. Experimental validation
Besides the numerical validation, experiments have been also
performed to validate the proposed model. The validation
is done by comparing the AC resistance RAC of different
transformers calculated by the proposed model to the one
measured with an impedance analyzer. A standard short
circuit measurement is performed, i.e. the primary or the
secondary winding is shorted during the measurement as
shown in Fig.15. Usually, the transformer designed for
converters has very low winding resistance to improve
the efficiency. However, such transformers are not suitable
for accurate impedance measurements, since the impedance
analyser can only measure the impedance accurately in a
certain range, which is normally larger than the impedance
of such transformers. Therefore, special measurement setup
and transformer designs are required and discussed in this
section.

1) Measurement setup
To accurately measure the AC resistance of the windings,
the following 2 issues must be considered:

• The impact of the core losses on the winding losses
must be kept at a very low level.
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FIGURE 15. a) Equivalent circuit of short circuit measurement for
transformer, where Rp, Lσp and Rs, Lσs are the winding resistance and
the leakage inductance of the primary and the secondary winding. Rc and
Lm are the equivalent core loss resistance and the magnetizing
inductance. a is the turns ratio. b) Simplified equivalent circuit of short
circuit measurement for transformer, if the transformer is perfectly
coupled and the core losses and magnetizing inductance are neglected.
There, Rt = Rp + a2Rs and Lσ = Lσp + a2Lσs.

• The resistance of the winding must be designed in an
appropriate range, where the impedance analyser can
measure the resistance accurately.

To minimize the core losses, core materials with low loss
density, such as N87, are used in the transformer design.
Moreover, the core losses consist mainly of hysteresis and
eddy current losses, which increase with frequency and
the flux density in the core. To further reduce the core
losses, the amplitude and frequency of the current/voltage
excitation must be kept at a low level. According to the
data sheet of material N87 [40], the imaginary part of the
permeability, which is related to the core losses, increases
rapidly after 200 kHz. Therefore, the maximum frequency
of the excitation in the performed measurements is below
200 kHz, except for transformer a3). The used frequency
ranges are given in Table 2.
In addition to the excitation frequency, the excitation ampli-
tude must be kept also low. However, excessively small ex-
citation amplitude reduces the measurement accuracy of the
impedance analyser. Based on the manual of the impedance
analyser (E4990A), if other configurations such as measure-
ment frequency, measurement time and so on, are set to
fix values, the impact of the excitation/oscillator level (Vosc)
on the overall measurement accuracy can be calculated. As
shown in Fig. 16a, the oscillator level with the lowest error
is at 100mV and between 200mV and 500mV. To keep
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FIGURE 16. a) The measurement error of impedance analyser under
different oscillator level for a impedance value Z = 197mΩ at 100Hz. b)
The measurement error at four-terminal pair port, the error caused by the
fixture (16047E) and the combined error for measuring different
impedance value at 100Hz. In both a) and b) the measurement time is 5,
and no bias current is applied.
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TABLE 2. Transformer setup for the measurement

Transformer a3 b3 c3 d3 e3

Core ETD 59/31/22 P 66/56 E 55/28/21 E 65/32/27 E 80/38/20
Coil (Pri./Sec.) LW3/LW1 LW2/LW1 LW1 LW1/LW1 LW1/LW2
Number of turns/layer (Pri.) [16,16] [14,13] [14,14] [17] [18,18]
Number of turns/layer (Sec.) [19,19] [18,19] [14,14] [14,14] [11,11,11]
Turn length/layer (Pri.) [mm] [83,94.2] [108.8,125.1] [91.1,101.5] [112] [92,103]
Turn length/layer (Sec.) [mm] [107,116.8] [139.8,150] [111.2,121.5] [152.8,163.2] [148.5,177,196.7]
Frequency range [Hz] [50,1.24M] [50,156k] [50,156k] [50,156k] [50,156k]

the core loss level low, 100mV oscillator level is used in
the measurement.
As the impedance analyser can only accurately measure the
impedance in a certain range, the impedance needs to be in
the range of (300mΩ-3MΩ) and the measurement frequency
needs to be in the range of 20Hz- 10MHz to achieve less
than 1% accuracy, based on the accuracy map of impedance
measurements with four terminal pair port given in [41].
However, this impedance range is usually hard to achieve,
as at very low frequencies the impedance of the transformer
is almost equal to the DC resistance of the winding, which
is usually much lower than 300mΩ, where the measurement
accuracy is not well specified. Moreover, the accuracy map
given in [41] is only for the 4-terminal pair port. In the
measurement, a fixture for connecting the transformer to the
impedance analyser must be used. The extra measurement
error caused by the fixture, which is not included in the
accuracy map in [41], must be also considered. To determine
the measurement accuracy for the low range of impedance
values, the error caused by the 4-terminal pair port, the
fixture and the combined error are calculated as a function
of impedance values given in Fig. 16b. As can be seen in
Fig. 16b, the combined error is below 5% at Z > 90mΩ,
hence, the DC resistance of windings is designed around
or above 90mΩ. Furthermore, the error drops rapidly with
frequency, as the impedance of the transformer and the
measurement accuracy of the impedance analyser increase
both with the frequency. Measurement errors are visible as
stochastic fluctuations in the impedance curve as shown in
Fig. 18a2. Usually, large combined error values occur only
in the low frequency range (f < 1 kHz see Fig. 18a2) and
decrease to less than 1% at above 1 kHz.

2) Transformer design
The transformer design here is based on the constrains
given by the measurement setup rather than the technical
requirements of a converter design. Therefore, high power

TABLE 3. Litz wire used for the measurement

Parameters ns ds [mm] dLi [mm] RDC [mΩ/m]

LW1 50 0.2 2 11.33
LW2 65 0.25 2.6 6.27
LW3 420 0.071 2.4 11.57

density and efficiency are not important, but the proper DC
resistance of the winding and low core loss. Besides those
2 design criteria, the following points must be considered:

1) The designed transformers need to cover a wide range
of the window to winding height ratio.

2) The HF-effect of the winding must be visible under
200 kHz.

3) Variable winding arrangements and LW types need to
be implemented in some transformers.

4) Transformers need to be sufficiently different in terms
of geometry.

Based on these requirements, 5 different transformers with
window to winding height ratios from 1.1 to 1.8 are de-
signed, which satisfies requirements 1) and 4). The de-
tailed design parameters are given in Table 2. To obtain
a significant HF-effect of LW under 200 kHz, the strand
diameter must be larger than the skin depth of copper at
200 kHz which is 0.15mm. Furthermore, to achieve high DC
resistance of windings (around 90mΩ), long winding length
and LWs with relatively high DC resistance are needed.
These requirements can be met by using large cores and LWs
with a low number of strands. The detailed core size and LW
parameters are given in Table 2 and 3. In addition, 3D printed
bobbins are used as shown in Fig. 17 to achieve different
winding arrangements of the primary and the secondary
winding.

Secondary bobbin

Primary bobbin

E 80/38/20

FIGURE 17. The CAD model of the 3D printed bobbins and cores for
transformer design (e3).
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FIGURE 18. Experimental validation for the proposed model ”New H”, the 1D average field loss model ”AVGB” and the 1D field loss model in [5] based
on 5 different transformers. (a1)-(e1) Comparison of total AC resistance of the secondary side (RAC of the primary winding is reflected to the
secondary side) calculated by these 3 analytical models to the measured RAC . (a2)-(e2) The error of these 3 analytical method compared to
measurement results, where Error = (Pmodel − PMea)/PMea. (a3)-(e3) Transformer prototype for the measurement.

3) Measurement results
In total, the impedance of 5 different transformer prototypes
(see Fig. 18) is measured. The AC resistance is calculated
by the proposed model ”New H”, ”AVGB” and the 1D field
loss model for comparison as shown in Fig. 18 (a1)-(e1). To
indicate the exact error of the analytical models compared
to measured values, the error of these 3 models is also given
in the Fig. 18 (a2)-(e2).
The bobbin offered by the ferrite core manufacturer is used
in the transformer cases (a3) and (b3) and the window is
fully occupied by the winding to achieve a minimal window
to winding height ratio. The secondary winding is wound
directly on the primary winding. As can be seen in Fig.

18 (a2), the error of all analytical models is within ±10%.
The error amplitude (7.5%) of proposed model AVG H is
slightly bigger than the error amplitude of model ”AVGB”
but is smaller than the error amplitude (8.5%) of the 1D field
model. The proposed model overestimates the total winding
losses, because in the proposed model AVG H the winding
is assumed to be enclosed in the core window. However, in
the transformer shown in Fig. 18 (a3), E shaped cores are
used and only approximately half of the winding sections is
enclosed in the core. The other half of winding sections is
located outside the core window, where the magnetic field
and the winding losses are lower than them inside the core
winding.
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TABLE 4. Comparison of different models, the semi-numerical models

refer to the model ”SFD”, ”HFEMB”, and ”HFEMH”.

Model 1D ”New H” ”AVGB” Semi-numerical

Application 2 winding transformers with
ideal core without airgap

no constraints

Accuracy < 45% < 10% < 15% < 10%

tcal 75 µs 275 µs 75 µs minutes
Rec. hw

havg
< 1.1 < 1.5 < 1.2 no constraints

To evaluate the proposed model ”New H” properly, a trans-
former with two pot cores is built as shown in Fig. 18
(b3). This ensures that the winding sections are completely
enclosed in the core window. In the setups, the bobbin
supplied by the core manufacturer is used. As expected, the
proposed model ”New H” has the lowest error (< 1.8%)
in the whole frequency range, as shown in Fig. 18 (b2).
The error of the model ”AVGB” is slightly bigger than the
proposed model ”New H”. However, the error of the 1D
field model is up to -13%, which is much higher than the
error of the presented 2 models.
As can be seen in Fig. 18 (c3), a single LW is used for
both the primary and the secondary winding. The LW is
first wound in two layers for the primary winding and then
bent over, to be wound in the opposite direction to form the
two layers of the secondary winding. This technique builds
a perfect series opposing connection. As the turns ratio is
one, the flux in the core generated by the primary winding
is exactly canceled by the secondary winding. Therefore,
the effect of core loss on the measurement is significantly
reduced. The resistance curve calculated by the proposed
model matches the measurement results perfectly in the
complete frequency range, as shown in Fig. 18(c1). In Fig.
18(c2), the error of the proposed model is almost equal to 0,
whereas the error of method ”AVGB” and the 1D field loss
model is up to -6.43% and -20%.
In Fig. 18 (d1) and (e1) the AC resistances for transformers

with a large window to winding height ratio (1.5 and 1.8)
are calculated and compared. In these two transformers, two
3D printed bobbins (see Fig.17) are used for the primary and
the secondary windings with different winding heights and
LW types in each transformer. In Fig. 18 (d2), the proposed
model predicts the AC resistance with less than 10% error
in the whole frequency range, whereas the error of method
”AVGB” is up to -14.7%, which is twice as much as the
peak error of the proposed model ”New H” (up to -7.2%)
for transformer (d3). In Fig. 18 (e3), the error of method
”AVGB” (up to -10.2%) is slightly bigger than the error of
the proposed method ”New H” (up to -8.7%) for transformer
(e3). By contrast, the error of 1D field loss model is up to
-35% and -45%, which is much higher than the error of the
other 2 models for transformer (d3) and (e3).
Based on both the numerical validation and the measurement
results, it can be concluded that, only the proposed model
”New H” can accurately predict the winding losses with less

b)

P PPS S P

H H
B1 B2 B3 B4

a)

FIGURE 19. Example of 2D field calculation for an interleaved winding
extending the proposed model. a) Magnetic field distribution calculated
by 2D FEM for a transformer with interleaved windings. The turns ratio np

ns
is 3/2, and the winding arrangement is PSPSP, where P refers to the
primary winding and S refers to the secondary winding. If the field is
assumed to be 1D, the average field value across the winding from left to
right is given by the bottom diagram. The zero crossover of the magnetic
field is indicated by the magenta and purple dashed lines. b) Based on the
field zero crossovers given in the figure, the winding window can be split
into 4 blocks, B1 to B4. The proposed model can be applied to each
winding block separately. Because of symmetry, only the magnetic field in
block B1 and B2 needs to be calculated, as blocks B1 and B4 as well as
blocks B2 and B3 are symmetric to the midline (the purple dashed line).

than 10% error for transformers with a window to winding
height ratio smaller than 1.5 (hw/havg < 1.5). The model
”AVGB” is comparably accurate as the proposed model
”New H” in the range hw/havg < 1.2, however, in the range
hw/havg ≥ 1.2 the error of model ”AVGB” (up to -14.7%)
becomes significantly larger than the proposed model. As
model ”AVGB” is similarly accurate but much simpler than
the proposed model ”New H” in range hw/havg < 1.2,
thus, model ”AVGB” is recommended for transformers with
a window to winding height ratio smaller than 1.2. For
transformers with a window to winding height ratio bigger
than 1.2, only the proposed model ”New H” achieves a good
accuracy of less than 10%. Therefore, the proposed model
is recommended for transformers, which have a window
to winding height ratio bigger than 1.2. A comparison of
different models is given in Table. 4.

VI. Conclusion
Due to isolation requirements and mechanical constraints,
the winding height is usually lower than the window height
and therefore 2D magnetic fields occur in the window,
what results in substantial error for conventional 1D field
loss models [5]–[10]. To improve the accuracy of the
loss calculation, a new loss model, that calculates the 2D
magnetic field in the winding region and modifies the 1D
field loss models with this magnetic field, is proposed in
this paper. Furthermore, an algorithm, that converts the
integral of the magnetic field for each layer into a matrix
system, substantially reduces the calculation time. The model
(”New H”) and the algorithm proposed in this paper offer
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a good compromise between accuracy and computational
time. By comparing to 3 semi-numerical methods and 3 other
analytical models including 2 average field model and a 1D
field model from [5], the proposed model is more accurate
than all other analytical models for the most transformer
designs, especially for the transformer designs with a large
window to winding height ratio (hw/havg > 1.2). The
proposed model exhibits even a better accuracy than these
3 semi-numerical methods. The numerical and experimental
validations based on multiple transformer cases indicate that
the proposed model can estimate the winding losses with less
than 10% error within 300 µs on a personal laptop, whereas
the conventional 1D field loss model [5] has an error up to
-45%. With these promising results, the proposed model will
improve the optimization of the magnetic component as well
as the converter designs.
Furthermore, the proposed model can be easily extended to
interleaved windings. As shown in Fig. 19, an exemplary
interleaved winding with a PSPSP arrangement is shown.
Based on the magnetic field distribution shown in Fig. 19a,
the winding window can be divided into 4 blocks (B1-
B4), where the field starts always at zero and increase to
a peak value and goes back to zero. Therefore, the proposed
model can be applied to each winding block by dividing the
repetitive winding block into 4 regions (R1-R4) as shown
in Fig. 19b. Fortunately, this interleaved winding example
is symmetric to the midline (purple dashed line) in Fig. 19.
Therefore, only the field value in blocks B1 and B2 needs
to be calculated, as the field value in blocks B3 and B4 is
equal to that in blocks B1 and B2.

Appendix A
HWR(x) of secondary and primary winding
The magnetic fields in the winding region HWR(x) of the
secondary winding in regions R1, R2 and R3 and of the
primary winding in region R3 and R4 are given by (42), (43),
(44), and (45), (46) respectively. Note that in the following
the primary and the secondary winding is defined based
on the winding width rather than by the direction of the
power transfer, i.e. the wider winding, which is located in
3 regions, is defined as the secondary winding, and the
narrower winding, which is located in 2 regions, is defined
as the primary winding. If the winding width of the primary
and the secondary winding is identical, the primary and the
secondary winding can be arbitrarily defined. In this case,
as both windings are located in two regions, only (42), (43),
(45) and (46) are used to calculate HWR(x).
• Region R1:

HWR,R1(x) =

Jsx− ks1

[
(x+ dxo)2 +

(
x2

x2
B1
dys

)2
]

hs
(42)

• Region R2:

HWR,R2(x) =

Jsx− ks2

[(
x+ dxo − x2−x2

B1
x2

FBL−x2
B1
dL2

)2

+ d2ys

]
hs

(43)

There, dL2 = dxo + xFBL.
• Region R3:

HWR,R3(x) =

Jsx− ks3

[(
xFBL − x+

dL3(x
2−x2

FBL)

(a2
s −x2

FBL)+
as
ap

(a2
p −d2

B23
)

)2

+ d2ys

]
hs

(44)

There, dL3 = ww − dL2.
HWR(x) of priamry winding in region R3 and R4 are given
by (45) and (46), respectively.
• Region R3:

HWR,R3(x) =

Jpx− kp2

[(
x+ dxi −

dL3(x
2−d2B23)

ap
as

(a2
s −x2

FBL)+(a2
p −d2B23)

)2

+ d2yp

]
hp

(45)

• Region R4:

HWR,R4(x) =

Jpx− kp1

[
(x+ dxi)

2 +

(
x2

d2B23
dyp

)2
]

hp
(46)
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