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Neural network based rate- and temperature-dependent Hosford–Coulomb 
fracture initiation model 

Xueyang Li a, Christian C. Roth a, Dirk Mohr a,b,* 

a Chair of Artificial Intelligence in Mechanics and Manufacturing, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland 
b Impact and Crashworthiness Lab, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA   

A R T I C L E  I N F O   

Keywords: 
A. Machine learning 
B. Rate- and temperature effect 
C. Finite element analysis 
D. Ductile fracture 

A B S T R A C T   

The accurate description of the strain rate and temperature dependent response of metals is a perpetual quest in 
crashworthiness and forming applications. In the present study, experiments are carried out to probe the onset of 
ductile fracture for an aluminum alloy AA7075-T6 for 136 combinations of stress state, strain rate and tem-
perature. The experimental campaign covers strain rates ranging from 0.001/s to 100/s, and temperatures 
ranging from 20 ◦C to 360 ◦C. We combine a YLD2000 yield surface with a neural network based hardening law 
to describe the large deformation plasticity response of the material. The NN-based hardening law is trained on 
experimental data, achieving 3.9% accuracy on force predictions including the post-necking regime. The loading 
paths to fracture are extracted for each simulation, showcasing non-proportionally evolving stress triaxiality, 
Lode angle parameter, strain rate and temperature. A neural network parameterized Hosford–Coulomb fracture 
locus is proposed, which is trainable using these evolving loading histories. The accuracy of the proposed fracture 
model is validated against the experimental onset of fracture, predicting the fracture onset at an error of 8%.   

1. Introduction 

The effect of the stress state and loading path changes on ductile 
failure has been extensively studied through experiments (e.g. [1–8]) 
and micromechanical analysis (e.g. [9–14]). The rate of void growth is 
monotonically related to stress triaxiality (e.g. [15,16]) which is an 
important qualitative feature that is well captured by most porous 
plasticity models (e.g. [17–19]). In addition to the effect of the stress 
triaxiality, the fracture strains are affected by the Lode angle parameter 
in a non-monotonic manner, as observed in studies by Bai and Wierz-
bicki [20], Lou and Huh [21], Lou et al. [22], Mohr and Marcadet [23], 
Xiao et al. [24]. Furthermore, the fracture strains are affected by ma-
terial anisotropy (e.g. [25–27]). And finally, the ductility is affected by 
the temperature and strain rate (e.g. [28,29]), but experimental data is 
still scarce mostly due to the high experimental complexity and the wide 
range of failure mechanisms that can become active under these con-
ditions (e.g. [30]). 

In engineering applications involving the viscoplastic behavior of 
metals, the phenomenological Johnson-Cook plasticity model [31] is 
widely used. Despite the missing explicit incorporation of the underlying 
physical mechanisms governing the strain rate and 

temperature-dependent fracture response, this model has been remark-
ably successful over the past three decades due to its simplicity and ease 
of parameter identification. Several extensions of the Johnson-Cook 
plasticity model have also been proposed and compared (e.g. 
[32–38]). As an alternative, physics-based thermo-visco-plastic models 
(e.g. [39–47]) have been developed mostly based on the theory of 
thermally-activated dislocation motion (e.g. [48,49]). These models aim 
to capture the underlying physics of dislocation motion under different 
loading conditions, but they often require more complex calibration 
procedures and are computationally more demanding as compared to 
purely phenomenological models. 

Higher fracture strains at higher strain rates are observed in dual 
phase steels (e.g. [35,47]), while a reduction in formability at higher 
strain rates have been reported for aluminum alloys (e.g. [50,51]). 
Additionally, the effect of temperature adds another complexity to 
ductile fracture of metals in the form of twinning (e.g. [52]), phase 
transformation (e.g. [53]), or dynamic strain aging (e.g. [54]). Among 
the stress-state dependent phenomenological fracture models, the 
Johnson-Cook model and its modifications (e.g. [34]) as well as the 
Hosford–Coulomb model (e.g. [35]) incorporate the strain rate and 
temperature effects on ductile fracture (e.g. [55,56]). 
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While machine learning based constitutive models can be built such 
as to replace the entire mathematical framework of conventional 
constitutive models (e.g. [57,58]), the targeted insertion of neural 
network functions into existing phenomenological and physics-based 
plasticity and fracture models has also been pursued. Fully connected 
neural networks represent the relationship between the input vector x 
(with NIN entries) and the output vector y (with NOUT entries). It is 
described through a series of nonlinear transformations. Each of these 
transformation computes a new vector H(n + 1) (hidden layer) based on 
the output H(n)of the previous transformation, 

x→H(1)→H(2)→...→H(NHL)→y (1)  

with 

H(n+1) = g
(
WnHn + bn+1) (2)  

where g( ⋅ ) is a non-linear activation function. The trainable parameters 
of the network are the weight matrices Wn and the bias vectors bn + 1. 
The network architecture is then characterized by the hyper-parameters 
NHL (the number of hidden layers), NNPL (number of neurons per hidden 
layer) and the specific choice of the activation function. Al-Haik et al. 
[59] made use of a fully-connected neural network (FCNNs) to predict 
the one-dimensional stress relaxation of a polymer matrix carbon-fiber 
composite material using the temperature, initial stress and time as 
input and the relaxation stress as output. Talebi-Ghadikolaee et al. [60] 
used a machine learning model to predict damage evolution during the 
bending process of the aluminum 6061-T6 sheet metal. Kessler et al. 
[61] employed an FCNN to describe the rate- and 
temperature-dependent stress–strain response of an aluminum 6061 
alloy. A similar FCNN approach has been taken by Jenab et al. [62] to 
model the rate-dependent hardening response of an aluminum 5182-O 
alloy. Jordan et al. [63] demonstrated that neural network-based 
models are able to learn the rate- and temperature-dependent hard-
ening response from robot-assisted high-throughput experiments 
without imposing the constraint of constant temperature or strain rate 
conditions. Li et al. [64] introduced a neural network based hardening 
law to account for complex phenomena such as a non-monotonic yield 
stress-dependence on the temperature. Furthermore, a counter-example 
trained neural network is proposed [65] to separate between positive 
rate effects associated with viscous flow and negative rate effects asso-
ciated with dynamic strain aging. 

In close analogy with the enhancement of phenomenological plas-
ticity models, the accuracy of ductile fracture models may also be 

improved through the introduction of neural network functions. With 
that goal in mind, Pandya et al. [66] used a neural network to describe 
the fracture locus as a function of triaxiality, Lode angle parameter, 
strain rate and temperature. However, their flexible model has a draw-
back: it is trained using calibrated Hosford–Coulomb fracture models 
assuming constant, i.e. non-evolving strain rates and temperatures. 
Similar to the evolution in stress state during loading of a material point, 
the significant increase in temperature (>20 ◦C for aluminum and 
>150 ◦C for steel) and rise in strain rate (up to an order of magnitude) 
occurring at elevated loading speeds (> 1/s) needs to be taken into ac-
count (e.g. [67]). Averaging or assuming constant values can lead to 
inaccurate predictions of the fracture strains. 

In the present work, a neural network enriched fracture model is 
developed to address the shortcomings of the approach taken by Pandya 
et al. [66]. Aluminum 7075 is chosen for the associated experimental 
campaign due to the important effects of temperature and strain rate 
during hot stamping (e.g. [68–70]). This experimental campaign in-
vestigates a total of 136 unique combinations of stress states (uniaxial 
tension, notched tension, central hole and shear specimens), strain rates 
(from 0.001/s to 100/s) and temperatures (from 20 ◦C to 360 ◦C). A 
YLD2000–3D yield surface combined with a neural network based 
hardening model is employed to accurately describe the plasticity 
response at large deformation. The loading paths to fracture reveal 
significant evolutions in triaxiality, Lode angle parameter, strain rate 
and temperature. A neural network parameterized Hosford–Coulomb 
(HC) fracture model is proposed to accurately map the evolution in 
material ductility. The HC formulation constrains the model’s behavior 
in triaxiality and Lode space, while the network retains its flexibility in 
the rate- and temperature domain. The fracture model is calibrated 
using the complete loading histories while minimizing the loss on the 
terminal damage. The network predictions are compared to the exper-
imental onset of fracture using full loading paths. 

2. Material and experimental procedures 

This section details the base material, specimen design and experi-
mental campaign involved in the study. Firstly, an electron back- 
scattered diffraction (EBSD) analysis is carried out to reveal the initial 
texture of the base material. The specimen design is subsequently 
described. The experimental procedure at various combinations of strain 
rates, temperatures and stress states are then described, together with 
the corresponding measurement and acquisition devices. 

2.1. Material and specimens 

The material under investigation is an aluminum alloy AA7075-T6 
which had been received in the form of 2 mm thick sheets. An elec-
tron back-scattered diffraction (EBSD) analysis (Fig. 1) reveals the 
polycrystalline microstructure. The estimated average grain area is 148 
µm2 (following the ASTM E112-12 planimetric method [71]), with a 
mean grain diameter of approximately 12 µm. The grain size varies from 
5 µm to 30 µm, with intermetallic particles located both inside the grain 
and along the grain boundaries. 

All specimens are extracted using water-jet cutting, with the excep-
tion of the SH specimens. The latter are extracted using wire-electric 
discharge machining to obtain a lower roughness of the machined 
edges. The following specimen geometries are considered:  

• Uniaxial tension (UT) specimens with a 40 mm long and 10 mm wide 
gauge section (Fig. 2a). A reduced gauge section (15 mm length and 
5 mm width) is used for dynamic UT specimens (Fig. 2g).  

• Central hole (CH) specimens with a circular cut-out of 5 mm or 8 mm 
diameter. The water-jet pre-cut hole is reamed to obtain a high 
surface quality of the hole (Fig. 2b).  

• Notched tension (NT) specimens with symmetric lateral cutouts of 
radius R = 20 mm and R = 6 mm (Fig. 2c-d). Identical gauge section 

Fig. 1. EBSD inverse pole map of the AA7075-T6 base material with a mean 
grain diameter of 12 µm (min. 5 µm, max. 30 µm). 
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designs are used with modified clamping fixtures on the universal 
testing machine (NT) and the split Hopkinson bar system (D-NT, 
Fig. 2h–i).  

• In-plane shear (SH) specimens with a single gauge section designed 
for medium ductility materials (Roth and Mohr, 2018) (Fig. 2e). 
Fig. 2f shows the dynamic shear (D-SH) specimens for use in the 
Split-Hopkinson bar fixture.  

• Mini-punch [3] specimens for equi-biaxial tension tests (Fig. 2j).  

• Mini-Nakazima [72] specimens for plane-strain tension tests 
(Fig. 2k). 

2.2. Experimental procedures 

2.2.1. Experimental techniques for low strain rates 
All experiments at low strain rates are carried out on a 100 kN hy-

draulic universal testing machine (Instron 8801) using a constant 
crosshead velocity. An overview of the experimental setup is provided in 

Fig. 2. Specimen geometries used for material characterization: (a) uniaxial tension, (b) central hole, (c) notched tension with R = 20 mm cutout, (d) notched 
tension with R = 6 mm cutout, (e) shear, (f) dynamic shear, (g) dynamic uniaxial tension, (h) dynamic NT6, (i) dynamic NT20, (j) mini-Punch and (k) mini-Nakazima 
specimens. The blue dots represent the location of the virtual extensometers used to measure relative displacement and speed. The red dots highlight the corre-
sponding locations at which axial surface strains are extracted with DIC. The Lankford ratios are measured from a horizontal and vertical pair of virtual extensometers 
(blue dots) on the UT specimens. 
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Fig. 3. (a) High temperature experimental setup at low and intermediate speeds with ①customized induction heating coil, ②NT20 specimen in water-cooled clamps, 
③pyrometer, ④infrared (high speed) camera, ⑤optical camera. (b) Schematic drawing of the split Hopkinson pressure bar system for tensile test with ⑥customized 
induction heating coil, ⑦load-inversion device and ⑧strain gauge attached to the output bar. (c) Picture of the high speed – high temperature experimental setup: 
⑨pyrometer and ⑩high-speed optical camera. 

Fig. 4. Schematic diagram of the neural network based strain, strain rate and 
temperature dependent hardening function. 

Table 1 
The mean AA7075 material parameters extracted from quasi-static tensile tests: 
yield stress σYS, the ultimate tensile strength σUTS, the engineering strains at 
ultimate tensile strength εU, the engineering strain to fracture εT and Lankford 
ratios rα.  

α 
[◦] 

σYS 

[MPa] 
σUTS 

[MPa] 
εU 

[-] 
εT 

[-] 
rα 
[-] 

0 468 562 0.13 0.15 0.57 
15 466 561 0.12 0.17 0.64 
30 460 559 0.13 0.14 0.86 
45 451 547 0.13 0.16 1.07 
60 442 542 0.12 0.13 0.98 
75 460 558 0.13 0.15 0.82 
90 462 559 0.12 0.13 0.82  
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Fig. 3a. The uniaxial tension (UT) specimens are tested at an actuator 
speed of 2.4 mm/min (4 × 10− 5 m/s), corresponding to an engineering 
strain rate of 0.001/s. To obtain similar strain rates, the notched tension 
(NT), central hole (CH) and in-plane shear (SH) specimens are tested at a 
speed of 0.4 mm/min (6.6 × 10− 6 m/s), while mini-Nakazima and mini- 
punch specimens are tested at 2 mm/min (3.3 × 10− 5 m/s). A random 

graphite-based black and white speckle pattern (speckle diameter of 
about 140 µm) is applied to the specimens prior to testing. Using an 
induction heating system with specimen specific induction coil shapes, 
all specimens are heated to their respective target temperatures between 
20 ◦C and 360 ◦C at a rate of about 30 K/s [65]. For low speed tests, 
isothermal conditions are assured with a closed-loop feedback control of 
the induction heating system with a pyrometer measuring the surface 
temperature at a frequency of about 120 Hz. A 12 Megapixel digital 
camera (FLIR, Model GS3-U3–120S6M-C) with a 100 mm f2.8 macro 
lens is utilized to acquire images at a frame rate of 1 Hz. Digital image 
correlation (DIC) is performed using VIC-2D software (version 4.4.1, 
Correlated Solutions) with a virtual strain gage length of 0.37 mm [29]. 
This results in a spatial resolution of 13 µm/pixel for the SH and 25 
µm/pixel for all other specimens. A FLIR x6801sc high speed infrared 
camera is employed at 1 Hz to monitor the temperature evolution on the 
specimen surface in the area of interest, achieving a spatial resolution of 
340 µm/pixel. 

Table 2 
Plasticity model parameters for AA7075 calibrated from room temperature low 
speed experiments.  

E 
[GPa] 

ν 
[-] 

ρ 
[kg/ 
m3] 

Cp 

[J/ 
kgK] 

ηk 

[-] 
kcond 

[W/ 
mK]   

69 0.3 2780 897 0.9 130   
A 

[MPa] 
ε0 

[-] 
n 
[-] 

k0 

[MPa] 
Q 
[MPa] 

β 
[-] 

α 
[-]  

855.4 0.026 0.151 502.4 194.1 10.1 0.50  
α1 α2 α3 α4 α5 α6 α7 α8 

0.899 1.039 0.998 1.007 1.017 0.952 1.030 1.052  

Fig. 5. Hosford–Coulomb fracture initiation model: (a) Fracture surface from quasi-static experiments at 20 ◦C. For plane stress conditions, the HC criterion is 
visualized in (b) the equivalent plastic strain versus triaxiality plane and (c) the equivalent plastic strain versus Lode angle parameter plane. 
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2.2.2. Experimental techniques for intermediate strain rates 
Intermediate strain rate experiments are carried out at 0.1/s and 2/s, 

corresponding to 240 mm/min (4 × 10− 3 m/s) and 4800 mm/min (0.08 
m/s) for UT tests. To obtain comparable strain rates, the notched tension 
(NT), central hole (CH) and in-plane shear (SH) tests are performed at 
40 mm/min (6.6 × 10–4 m/s) and 800 mm/min (1.3 × 10–2 m/s). For all 
intermediate strain rate tests, an optical high-speed camera (Photron SA- 
Z) is employed to obtain DIC images at 1000 Hz and 8000 Hz, respec-
tively. This setup achieves a spatial resolution of 58 µm/pixel. The 
infrared camera (FLIR x6801sc) monitors the temperature evolution on 

the specimen surface at 2000 Hz with a resolution of 640 × 64 pixels. We 
trigger the fully synchronized data and image acquisition simulta-
neously with the rise in the analog force signal. 

2.2.3. Experimental techniques for high strain rates 
Experiments at high strain rates are performed on a modified split 

Hopkinson pressure bar system. Fig. 3b and c summarize the high speed - 
high temperature experimental setup. The system features a 4990 mm 
long striker, a 5927 mm long input bar and a 5951 mm output bar. A 
load inversion device converts the compressive loading into tensile 
loading at the specimen level [28]. The specimen specific custom-made 
induction coils heat the flat specimens from the top. The optical 
high-speed camera operates at 100 kHz, monitoring the global 
displacement on the specimen shoulder from the side [65]. With a res-
olution of 512 × 280 pixels, this setup achieves a spatial resolution of 71 
µm/pixel. The axial force histories are calculated from strain gauge 
signals on the output bar. 

Fout[t] = EoutAoutεtra[t]. (3) 

A laser light barrier is mounted right before the striker impacts the 
input bar, simultaneously triggering the image and data acquisition and 
turning off the induction system to avoid any electro-magnetic inter-
ference on the strain gage signals. 

3. Plasticity modeling 

Accurate predictions of the large-deformation, post-necking plastic 
response of the material is critical for identifying loading paths to 
fracture. This section starts by introducing a novel combination of the 
analytical YLD2000-3D model [73] with a neural-network based hard-
ening function, to account for the material’s combined rate- and tem-
perature dependency. Procedures to calibrate this modeling framework 
is then summarized. 

3.1. Yield function and hardening law 

In the present work, we make use of the 3D extension by Dunand 
et al. [73,74] of the YLD2000-2d model [75]. The yield function is 
defined by the equivalent stress and a flow resistance, 

f = σYld2000 − k
[
εp, ε̇p,T

]
, (4)  

with 

σYld2000 =
1

21/m(ϕ
′[s′] + ϕ″[s″])1/m

. (5) 

The equivalent stress is a function of the two deviatoric stress vectors 
s′ and s′′, which are calculated from the Cauchy stress vector σ =
{σxx,σyy,σzz,σxy,σyz,σzx} 

s’ =
{

s’
xx, s’

yy, s’
xy, s’

yz, s’
xz
}

and
s’’ =

{
s’’xx, s’’yy, s’’xy, s’’yz, s’’xz

}
.

(6) 

In close analogy to the original Yld2000-2d, we calculate the stress 
deviatoric vectors s′and s′′ through linear transformations 

s′ = L′σ and s″ = L″σ. (7) 

The linear transformations L′ and L′′are described using eight 
Yld2000-2D parameters α1,..., α8 and the exponent m = 8. 

L′ =
1
3

⎡

⎢
⎢
⎢
⎢
⎣

2α1 − α1 − α1 0 0 0
− α2 2α2 − α2 0 0 0

0 0 0 3α7 0 0
0 0 0 0 3 0
0 0 0 0 0 3

⎤

⎥
⎥
⎥
⎥
⎦

(8) 

Fig. 6. (a) Schematic diagram for the neural network parameterized HC frac-
ture model. (b) Training procedure for the NN parameterized HC frac-
ture model. 
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The functions ϕ′ and ϕ′′ are the modified Yld2000-2d functions that 
extends into the general stress states. 

ϕ′[s′] =
[(

s′
xx − s′

yy
)2

+ 4
(

s′2
xy + s′2

xz + s′2
yz

)]m
2 (10)  

ϕ’’[s’’] =

[
3
2
(
s’’

xx + s’’
yy
)
+

1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
s’’

xx − s’’
yy
)2

+ 4
(

s’’2
xy + s’’2

xz + s’’2
yz

)√ ]m

+

[
3
2
(
s’’

xx + s’’
yy
)
−

1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
s’’

xx − s’’
yy
)2

+ 4
(

s’’2
xy + s’’2

xz + s’’2
yz

)√ ]m

(11) 

In the case of plane stress, the above functions reduce to the Yld2000- 
2d function. 

Fig. 7. (a) Engineering stress–strain curve from uniaxial tensile tests of seven orientations (0◦, 15◦, …, 90◦). (b) Yield stress ratios (black) and Lankford ratios (blue) 
as a function of material orientation together with model fit. The experimental measurements are denoted by dots. (c) Yield locus for plane stress state (black line) 
compared to von Mises yield surface (yellow line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.). 

L″ =

1
9

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 2α3 + 2α4 + 8α5 − 2α6 − 4α4 + 4α6 + α3 − 4α5 α3 + 2α4 − 4α5 − 2α6 0 0 0

4α3 − 4α4 − 4α5 + α6 − 2α3 + 8α4 + 2α5 − 2α6 − 2α3 − 4α4 + 2α5 + α6 0 0 0

0 0 0 9α8 0 0

0 0 0 0 9 0

0 0 0 0 0 9

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9)   
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An associated flow rule is employed herein and the equivalent plastic 
strain increment dεp is retrieved through work conjugacy 

σ : dεp = σYld2000dεp. (12) 

As proposed by Li et al. [64], we decompose the deformation resis-
tance k into a reference strain hardening term kSV [εp] and a neural 
network term kNN[εp, ε̇p,T] accounting for the effect of strain rate and 
temperature, 

Fig. 8. Engineering stress–strain curves of uniaxial tensile experiments obtained at nominal strain rates of (a) 0.001/s, (b) 0.1/s, (c) 2/s and (d) 110/s for various 
temperatures. (e) Extracted 0.2% yield stress as a function of temperature for all strain rates. (f) Engineering stress–strain curves for initial temperatures of 20 ◦C, 
180 ◦C and 360◦C. 
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Fig. 9. Force–displacement curves of NT20 experiments obtained at displacement rates of (a) 6.6 × 10− 6 m/s, (c) 6.6 × 10− 4 m/s, (e) 1.3 × 10− 2 m/s and (g) 2.5 m/s 
for various temperatures. Only NT20 force–displacement curves are used for training. The local strain measurements (b, d, f, h) are shifted up by 0.125 for read-
ability. These local strain measurements serve as validation. 
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Fig. 10. Force–displacement curves of NT6 experiments obtained at displacement rates of (a) 6.6 × 10− 6 m/s, (c) 6.6 × 10− 4 m/s, (e) 1.3 × 10− 2 m/s and (g) 2.5 m/s 
for various temperatures. The logarithmic axial strain from 1 mm local extensometers are plotted on the right column in (b) (d) (f) and (h). The NT6 experiments 
serve as validation. 
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k
[
εp, ε̇p, T

]
= kSV

[
εp
]
kNN
[
εp, ε̇p,T

]
. (13)  

The reference strain hardening is a linear combination of Swift [76] and 
Voce [77] hardening laws with the weighting parameter αSV ∈ [0, 1], 

kSV
[
εp
]
= αSV A

(
ε0 + εp

)n
+(1 − αSV)

{
k0 +Q

(
1 − e− βεp

)}
. (14) 

The formulation of the neural network kNN[εp, ε̇p,T] follows the 
format presented in Li et al. [64]. The network features three hidden 
layers of ten neurons, amounting to 297 model parameters (weights and 
biases). An overview of the NN based hardening model is shown in 

Fig. 4. 

3.2. Calibration of the plasticity model 

The Yld2000-3D model parameters are identified following the 
procedures detailed in Gorji and Mohr [78]. The exponent m = 8 is 
chosen for FCC materials as recommended by Logan and Hosford [79]. 
The eight coefficients {α1,α2,...α8} are determined from the yield stress 
and Lankford ratios, which are extracted from uniaxial tension experi-
ments along seven orientations (Table 1-2). The Swift {A, ε0, n} and 

Fig. 11. Force–displacement curves of central hole (CH) experiments obtained at displacement rates of (a) 6.6 × 10− 6 m/s, (c) 6.6 × 10− 4 m/s, (e) 1.3 × 10− 2 m/s for 
various temperatures. Note that for the slow speed a 5 mm diameter central hole is used, while for all other CH tests an 8 mm diameter was used due to limited 
clamping force. The local strain measurements (b, d, f) are shifted up by 0.125 for readability. The CH experiments serve as validation. 
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Voce {k0, Q, β} hardening parameters are determined from two inde-
pendent least square fits of the true stress-plastic strain curves extracted 
from uniaxial tension test along the rolling direction. We obtain the 
weighting parameter αSV from inverse fitting the quasi-static room 
temperature NT20 experiments [23]. 

The neural network based hardening function kNN[εp, ε̇p,T] is trained 
using the force displacement curves of NT20 experiments through a 
hybrid numerical-experimental approach. This requires repeatedly 
running FE simulations to minimize the difference between the simu-
lated and the experimental force-displacement curves. Coupled thermal- 
mechanical simulations are performed with Abaqus/explicit using first- 
order solid elements (C3D8RT). A constant Taylor-Quinney coefficient 
of 0.9 is chosen. High-speed infrared imaging shows that the tempera-
ture at the boundary of the gauge section remains constant throughout 
the test. Hence, a constant temperature boundary condition is applied 
along the boundaries of the simulated gauge section. The rest of the 
sample surfaces are treated as adiabatic. An element edge length of 
0.125 mm is chosen in the gage section, corresponding to 16 elements 
through the thickness (or 8 elements through half thickness). One-eighth 
of the notched tension and central-hole specimens are simulated due to 
symmetry, while the shear specimen is simulated with full thickness 
(Fig. A 1). We employ mass-scaling with more than 105 time steps to 
accelerate low strain rate simulations. 

Together with the Yld2000-3D plasticity framework, the neural 
network hardening law is implemented into a user-material subroutine 
(VUMAT). During the training process, a counter-example regulariza-
tion technique is employed to enforce positive strain rate sensitivity 
[65], thereby guaranteeing the convergence of the elastoplastic 
return-mapping algorithm. 

4. Fracture modeling 

We present the novel extension of the Hosford–Coulomb (HC) frac-
ture model into the strain rate and temperature domain. The section 
starts by introducing the damage accumulation framework to account 
for non-proportional loading, followed by the formulation of the neural 
network-based HC model. The calibration procedure for this NN based 
HC model with loading paths featuring evolving (non-constant) stress 
triaxiality η, Lode angle parameter θ, equivalent plastic strain εp, strain 
rate ε̇p and temperature T is provided. 

4.1. Damage indicator model 

A damage indicator model is proposed to predict the onset of fracture 
for a given loading path to fracture. This involves introducing a damage 
indicator variable D that, starting from zero for the undeformed 

Fig. 12. Force–displacement curves of in-plane shear (SH) experiments obtained at displacement rates of (a) 6.6 × 10− 6 m/s, (b) 6.6 × 10− 4 m/s, (c) 1.3 × 10− 2 m/s 
and (d) 2.5 m/s for various temperatures. The SH experiments serve as validation. 
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material, increases monotonically as the material deforms plastically, 

dD =
dεp

εpr
f

[
η, θ, ε̇p,T

]. (15) 

The effects of stress state, strain rate and temperature are introduced 
through the function εpr

f [η, θ, ε̇p,T] which corresponds to the equivalent 

plastic strain at the onset of fracture under proportional isothermal 
loading at constant strain rate. Fracture is then assumed to initiate when 
D = 1. In other words, we have an integral condition, 

D =

∫ εf

0

dεp

εpr
f

[
η, θ, ε̇p, T

] = 1 (16)  

that determines the fracture strain εf for a given loading history. Within 
the damage indicator framework, the fracture model response is defined 
by the specific form of the function εpr

f [η,θ, ε̇p,T]. 

4.2. Neural network based Hosford–Coulomb model 

A highly versatile and flexible fracture model is obtained when 
representing the entire function εpr

f [η, θ, ε̇p,T] through a neural network 
[66], 

εpr
f = fNN

[
η, θ, ε̇p,T

]
. (17) 

The shortcoming of this approach is that it requires very large 
amounts of training data in the 5D space of stress triaxiality η, Lode 
angle parameter θ, equivalent plastic strain εp, strain rate ε̇p and tem-
perature T due to its flexibility. Pandya et al. [66] achieved this through 
the artificial augmentation of their training data sets. 

Here, a new approach is proposed. Firstly, we constrain the fracture 
model such that the stress state dependence (for a given strain rate and 
temperature) is governed by the Hosford–Coulomb (HC) fracture initi-
ation model ([23]). For proportional loading histories, the latter reads 

εHC
f [η, θ,a, b, c] = b(1 + c)

1
n

({
1
2
((f1 − f2)

a
+ (f2 − f3)

a
+ (f1 − f3)

a
)

}1
a 

+c(2η + f1 + f3)

)− 1
n

(18)  

with the model parameters a, b, and c, the fixed transformation 
parameter n = 0.1, and the Lode angle dependent trigonometric 
functions, 

f1[θ] =
2
3

cos
[π
6
(1 − θ)

]
,

f2[θ] =
2
3

cos
[π
6
(3 + θ)

]
,

f3[θ] = −
2
3

cos
[π
6
(1 + θ)

]
.

(19) 

The HC model effectively defines a surface that describes the fracture 
strain εHC

f as a function of the stress triaxiality η and the Lode angle 
parameter θ (Fig. 5a). The parameter b controls the overall magnitude of 
the fracture strain, the parameter a affects the Lode angle dependency, 
while the parameter c controls both the effects of the Lode angle and the 
stress triaxiality. For plane stress conditions, the Lode angle parameter 
may be expressed as a function of the stress triaxiality (solid line). This 
allows the HC model to be visualized in the [η, εHC

f ] plane (Fig. 5b) or the 
[θ, εHC

f ] plane (Fig. 5c). 
Secondly, we render the Hosford–Coulomb model strain rate and 

temperature dependent by expressing its defining parameters [a, b, c] as 

Fig. 13. The extracted force-maximum as a function of initial temperature at 
four loading speeds from (a) NT20, (b) NT6 and (c) SH experiments. 

Table 3 
Normalization ranges of the NN based hardening function. Note that the output 
layers feature the hyperbolic tangent activation function.   

Variable Unit Min Max 

Input εp [-] 0.001 3 
log(ε̇p) [s− 1] − 9 12 
T [◦C] 0 500 

Output kNN [-] 0.1 2  
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a neural network function of the strain rate and temperature, i.e. 

fNN
[
ε̇p,T

]
=

⎛

⎝
a
b
c

⎞

⎠. (20) 

The neural-network based rate- and temperature-dependent Hos-
ford–Coulomb model then reads 

εpr
f

[
η, θ, ε̇p,T

]
= εHC[η, θ, fNN

[
ε̇p,T

]]
. (21)  

4.3. Gradient calculation 

We choose a mean squared error loss function to guide the identifi-
cation of the weights Wkl that specify the neural network function fNN. 
For each experiment j∈[1,…,nexp], we compute the damage indicator Dj 
up to the point of fracture initiation through numerical integration. The 
result is then compared with the ground truth (D = 1) to quantify the 

error, 

Loss =
1

2nexp

∑nexp

j

(
Dj − 1

)2 (22) 

Neural networks are typically trained using a gradient descent 
minimization framework (e.g. [80,81]). For each weight parameter Wkl 
of the neural network, the learning rule requires the computation of the 
gradient ∂Loss/∂Wkl to update the weights, 

ΔWkl = − ηl
∂Loss
∂Wkl

. (23) 

Fig. 6 includes a schematic that outlines the training procedure. The 
process of calculating the partial derivative ∂Loss/∂Wkl is broken down 
into four steps: 

Step 1. We have 

Fig. 14. FE-predicted surface temperature compared to IR measured surface temperature of (a) NT20, (b) NT6, (c) CH, and (d) SH specimens. All experiments are 
performed at an initial temperature of 180 ◦C and loading speed of 1.3 × 10− 2 m/s (Int II). Up to 64 pixels are available along the sample width direction due to the 
limited resolution. 
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Fig. 15. 3D visualization of the NN based hardening model for fixed temperatures of 20◦ to 300 ◦C, and fixed strain rates of 0.001/s to 1000/s. The red curve in (a) 
and (b) highlight the room temperature quasi-static (0.001/s) response of the material. 
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Fig. 16. Evolution of equivalent plastic strain as a function of stress triaxiality for different initial temperatures. SH, CH, NT20 and NT6 specimens are highlighted 
with triangle, cross, square and diamond, respectively. The loading speeds are colored by 6.6 × 10− 6 m/s (black), 6.6 × 10− 4 m/s (magenta), 1.3 × 10− 2 m/s (green), 
and 2.5 m/s (blue). All loading paths are non-proportional, featuring an evolution in stress triaxiality and Lode angle parameter. 
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∂Loss
∂Wkl

=
∑nexp

j

∂Loss
∂Dj

∂Dj

∂Wkl
, (24)  

where the term ∂Loss
∂Dj 

is obtained directly from the quadratic cost function 
(Eq. 22), 

∂Loss
∂Dj

=
1

nexp

(
Dj − 1

)
. (25) 

Step 2. Subsequently, we decompose the term ∂Dj
∂Wkl 

for each exper-
iment number j. Discretizing the loading path, the damage may be 
written as the sum of nINC increments, 

Fig. 17. Evolution of equivalent plastic strain as a function of the Lode angle parameter for different initial temperatures. Note the evolving triaxiality and Lode angle 
parameter for all paths. 
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Fig. 18. Evolution of equivalent plastic strain as a function of strain rate for (a) NT20, (c) NT6, (e) CH and (g) SH tests. The evolution of equivalent plastic strain and 
temperature of all experiments is shown in (b), (d), (f) and (h). Note the rise in temperature during tests at elevated strain rates. 
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Dj =
∑nINC

i

Δεp
i

εHC
i

with

εHC
i = εHC

[
ηi, θi, fNN

[
ε̇(i)p ,Ti

]]
.

(26)  

Applying the chain rule into the summation for experiment j and 
increment i, we have 

∂Dj

∂Wkl
=
∑nINC

i

(

−
Δεp

i

(εHC
i )

2
∂εHC

i

∂fNN
i

⋅
∂fNN

i

∂Wkl

)

. (27) 

Combining Steps 1 and 2 yields: 

∂Loss
∂Wkl

=
1

nexp

∑nexp

j

(
1 − Dj

)∑nINC

i

(
Δεp

i

(εHC
i )

2
∂εHC

i

∂fNN
i

⋅
∂fNN

i

∂Wkl

)

(28) 

Step 3. The third step evaluates the partial derivative of the HC 
fracture strain εHC

i with respect to the network output fNN
i . This is ach-

ieved through a numerical derivative of the HC model with respect to its 
parameters at the current stress state (ηi,θi), 

∂εHC
i

∂fNN
i

=

[
∂εHC

i

∂ai
,
∂εHC

i

∂bi
,
∂εHC

i

∂ci

]T

. (29)  

Step 4. The remaining term ∂fNN
i

∂Wkl 
is the derivative of the neural 

network function with respect to the weights, which is conveniently 
obtained through standard back-propagation 

∂fNN
i

∂Wkl
=

[
∂ai

∂Wkl
,

∂bi

∂Wkl
,

∂ci

∂Wkl

]T

. (30)   

4.4. Choice of the optimizer and network size (hyperparameters) 

The optimization framework for the fracture modeling neural 
network is constructed in Python 3.9.11. We obtain the partial deriva-
tive ∂fNN

i /∂Wkl using the gradient tape function in TensorFlow 2.6.0. 
Following the formulation of Riedmiller and Braun [82], we coded the 
resilient-back propagation (RPROP) optimizer in the TensorFlow 
framework. Comparable accuracies are achieved using the Adam 

Fig. 19. Evolution of the temperature as a function of strain rate for (a) NT20, (b) NT6, (c) CH and (d) SH tests from the element with the highest equivalent plastic 
strain. The gray curves in (a) denote the strain rate and temperature histories extracted from all elements on the mid-plane of the NT20 specimen. Note the rise in 
strain rate due to localized necking and the rise in temperature due to plastic dissipation. 
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optimizer (Fig. A 2) by Kingma and Ba [83], with greater performance 
variations for networks with many layers. During training, we also 
introduce a clipping function to prevent overfitting. The clipped loss 
reads 

Loss =
1

2nexp

∑nexp

j

(
Clip

[
Dj − 1

])2 (31)  

with 

Clip[x] =
{

x, |x| > 0.05
0, |x| ≤ 0.05 . (32) 

The goal here is to penalize samples with large error on the damage 
Dj, while redirecting the optimization focus from the samples whose 
terminal damage Dj lies within the range Dj ∈ [0.95, 1.05]. 

5. Results and discussion 

The experimental results are first summarized in this section, indi-
cating an increase in strain rate sensitivity at higher temperature for 
aluminum AA7075-T6. Predictions of the plasticity model are compared 
with experimental measurements, showcasing good agreement at large- 
deformation. The loading paths to fracture are used to calibrate the 
neural network based Hosford–Coulomb fracture model, which is visu-
alized in the stress state domain [η, θ] and the rate- and temperature 
domain [ε̇p,T]. 

5.1. Experimental results 

5.1.1. Uniaxial tension at room temperature 
Uniaxial tension experiments are performed at room temperature for 

seven different angles (0◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦) between the 
tensile direction and the rolling direction (Table 1). A summary of the 
engineering stress-strain curves is presented in Fig. 7a. The material 
shows low strain hardening irrespective of the material orientation, with 
less than 100 MPa increase from the yield stress to the ultimate tensile 
strength (UTS). The highest UTS (561 MPa) is measured in the rolling 
direction (0◦), while the lowest tensile strength (542 MPa) is observed 
for the 60◦ orientation. The corresponding yield stress ratios (black dots) 
and Lankford values (blue dots) are plotted in Fig. 7b. Overall, the 
material shows a mild anisotropy in the yield stress ratios, ranging from 
0.96 (45◦) to 1.01 (90◦), while the r-values ranging from 0.59 (0◦) to 
1.09 (45◦). 

5.1.2. Experiments at elevated strain rates and temperatures 
Fig. 8a-d summarize the experimentally-measured engineering 

stress–strain curves from uniaxial tension (UT) experiments at various 
strain rates and temperatures. Out of the two repeats, only one repre-
sentative curve is shown for readability. We truncate the curves once a 
crack is visible on the specimen surface. At temperatures below 60 ◦C, 
the material shows almost no strain rate hardening for low and inter-
mediate strain rates (<2/s) - only at a strain rate of 110/s, an increase in 
yield strength of 4.4% (22 MPa) is observed (Fig. 8e–f). However, when 
further increasing the temperature (> 120 ◦C), the viscous effect begins 
to play a much more significant role. For example, increasing the strain 
rate from 0.001/s to 0.1/s leads to a 21% increase in yield stress at 
180 ◦C (Fig. 8f), while the same strain rate difference would cause a 90% 
rise in yield stress at 360 ◦C. It is noteworthy that at a strain rate of 
0.001/s and high temperatures (above 240 ◦C) necking occurs at very 
low strains, making a direct experimental measurement of the large 
deformation response impossible. Across all UT tests, an increase in 
temperature results in a reduction of the yield strength and the strain 
hardening rate. For example, when increasing the temperature from 
20 ◦C to 360 ◦C the yield stress reduces by a factor of 9.5. An overview of 
the 0.2% offset yield stress for all UT experiments is given in Fig. 8e. 

Across all combinations of stress states, strain rates and tempera-
tures, i.e. NT20 (Fig. 9), NT6 (Fig. 10), CH (Fig. 11) and SH (Fig. 12) 
similar trends are observed in the measured force–displacement curves 
(dotted curves) as for their UT counterparts. The material shows a low 
strain rate sensitivity at room temperature and a higher strain rate 
sensitivity at elevated temperatures. For example, the room temperature 
NT20 tests stay within 3% (0.5 kN) range of each other. In contrast, a 
45% increase in maximum force is observed at 180 ◦C when increasing 
from low to fast loading speeds (Fig. 9 and Fig. 13). 

Apart from higher reaction forces, experiments at higher loading 
speeds also exhibit a lower displacement to fracture. At 180 ◦C, NT20 
experiments fracture at a displacement of 1.79 mm at 6.6 × 10− 6 m/s, 
1.35 mm at 6.6 × 10− 4 m/s, 1.21 mm at 1.3 × 10− 2 m/s, and 0.99 mm at 
2.5 m/s. For all specimen types, we observe higher fracture displace-
ments with increasing temperature. For example, the NT6 low speed 
tests feature a fracture displacement of 3.4 mm at 360 ◦C, approximately 

Fig. 20. (a) NN-parameterized fracture model: effective mean absolute error on 
terminal damage after training for maximum 1000 epochs for various network 
width and depth combinations, using the RPROP optimizer. A two layer 
network with ten neuron each layer is chosen, as a compromise between per-
formance and network size. (b) Early stopping is activated at epoch 710 to 
prevent over-fitting, where the mean absolute error reaches a minimum and 
stops decreasing. 

Table 4 
Normalization ranges of the NN parameterized fracture model. Note that the 
output layers feature the hyperbolic tangent activation function.   

Variable Unit Min Max 

Input log(ε̇p) [s− 1] − 9 10 
T [◦C] 0 500 

Output a [-] 1.0 2.0 
b [-] 0.2 3.0 
c [-] 0 0.12  
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four times higher than the fracture displacement at 20 ◦C (0.83 mm). In 
addition, the higher fracture displacements also correspond to higher 
local axial strain measurements, which are taken from 1 mm long virtual 
extensometers on the specimen surface (red dots in Fig. 2). Comparing 
the CH specimens at 6.6 × 10− 4 m/s (Fig. 11c–d), the axial strain at 
fracture increases more than eight times from 20 ◦C (0.15) to 360 ◦C 
(1.22). Note that the axial strain measurements are each shifted up by 
0.125 for better visibility. 

Fig. 13 summarized the force maxima observed in the NT20, NT6 and 
SH experiments. The plots elucidate the monotonic effect of the tem-
perature, i.e. the higher the temperature, the softer the specimen 
response. Furthermore, they show the positive strain rate effect on the 
force maximum which becomes more pronounced for higher 
temperatures. 

Fig. 21. NN parameterized Hosford–Coulomb fracture onset (solid dots) calculated using full loading paths (solid lines). The NN predicted fracture loci for plane 
stress conditions are highlighted in dashed lines. 
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5.2. Plasticity model training and validation 

Fig. 7c depicts the identified Yld2000 yield locus for plane stress 
conditions. The model parameters are calibrated so that the r-value and 
yield stress values for uniaxial tension are captured accurately (compare 
the solid lines with the experimental results in Fig. 7b). In addition, a 
finite element simulation of the shear experiment is used to identify the 
biaxial yield stress ratio (black solid line, Fig. 12a). 

The hardening law is identified based on the results from the NT20 
specimens with a mean squared error of 0.039 kN2 after 500 epochs. 
This result was obtained after 620 h of training on a high performance 
computing cluster (using 100 cores). Fig. 9 shows the predictions of the 
trained model (solid lines) next to the force-displacement curves 
included in the training dataset (solid dots). 

Overall, the rate- and temperature dependent response of the mate-
rial is captured with good accuracy. The highest calibration error is 

Fig. 22. NN parameterized Hosford–Coulomb fracture onset (solid dots) calculated using full loading paths (solid lines). The NN predicted fracture loci for plane 
stress conditions are highlighted in dashed lines. 
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observed for the highest temperatures, e.g. the low speed 360 ◦C case FE 
simulation over-estimates the experimental force measurement by 0.48 
kN (60%). The maximum difference on the local strain measurements 
(0.06) is also obtained for 360 ◦C. According to the UT yield stress 

measurements (Fig. 8), the flow stress at 360 ◦C is only around 10% of 
the value at 20 ◦C. The output of the NN-based hardening function kNN is 
normalized between [0.1, 2], as shown in Table 3. This NN hardening 
multiplier kNN features a hyperbolic tangent function at the output layer. 
Consequently, the network output at 360 ◦C lies on the lower plateau of 
the tanh( ⋅ ) activation function, with minimum gradient to penalize 
upon. We therefore speculate that the mismatch is mainly caused by 
diminishing gradient effects during training. Extending the normaliza-
tion range of the NN function kNN to [0, 2] could potentially enhance the 
model performance at 360 ◦C. 

The results from NT6 (Fig. 10), CH (Fig. 11) and SH (Fig. 12) sim-
ulations serve as validation data to assess the performance of the cali-
brated plasticity model. Similar to the NT20 training data, the worst 
predictions for NT6 and CH experiments (validation data) are observed 
for low speeds at 360 ◦C. 

The SH simulations (Fig. 12) follow closely the experimental data 
points at the onset of yielding. Deviations between the experimental and 
the FE results are observed at large deformation. Specifically, at 1.3 ×
10− 2 m/s, the FE simulations tend to over-estimate the force towards the 
end of the curve. At 2.5 m/s, the FE simulations lie well within the 
experimental scatter, with a significant force drop caused by the tem-
perature rise. We speculate that the Taylor-Quinney coefficient might be 
lower for the shear stress state which would reduce the temperature 
estimates for SH specimens. 

Fig. 14 shows the surface temperature field before the onset of 
fracture for the intermediate speed (1.3 × 10− 2 m/s) experiments 
starting at 180 ◦C. On average, the plastic dissipation leads to a tem-
perature rise of approximately 20 ◦C, with a max 6 ◦C difference on the 
terminal temperature between the IR measurements and the FE simu-
lations (CH case). It should be noted that the slight gradient in the 
experimental measurements (less than 4 ◦C) is observed along the hor-
izontal axis of the specimen. This is attributed to the off-axis positioning 
of the infrared camera by around 30◦ (which was inevitable in our 
experimental setup). 

Fig. 15 provides a 3D visualization of the NN based hardening 
function for selected temperatures and strain rates, respectively. The red 
lines in Fig. 15a–b highlight the material response at 20◦ and quasi-static 
strain rate (0.001/s). Comparing Fig. 15a,c,e,g, the flow stress reduces 
with the increase in temperature, i.e. the so-called temperature soft-
ening effect. At 20 ◦C (Fig. 15a), the isolines are mainly aligned along 
the strain rate axis, meaning that strain hardening is the dominant 
material response. This is in stark contrast to the results at 300 ◦C 
(Fig. 15g), where the isolines are primarily aligned along the plastic 
strain axis, indicating a strain rate dominant material response. The flow 
stress also rises with the increase of the strain rate (compare surfaces in 
Fig. 15b,d,f,h). This corresponds to a positive strain rate sensitivity 
across all temperatures. 

5.3. Loading paths to fracture 

The loading paths to fracture are critical in calibrating fracture 
initiation models, as they capture the loading history of the material 
point from the beginning of plastic deformation to the initiation of 
ductile fracture. We make use of a hybrid experimental-numerical 
approach to determine the loading paths [84]. They are extracted 
from the element in which the onset of fracture occurs, i.e. the element 
with the highest equivalent plastic strain in the finite element 
simulations. 

In this study, the loading paths to fracture describe the evolution of 
five variables: (i) stress triaxiality η, (ii) Lode angle parameter θ, (iii) 
equivalent plastic strain εp, (iv) equivalent plastic strain rate ε̇p and (v) 
temperature T. The 3D general stress state is characterized by the stress 
triaxiality η and the Lode angle parameter θ, calculated from the stress 
tensor invariants {I1, J2, J3}: 

Fig. 23. Fracture strain under proportional loading for stress states of uniaxial 
tension (UT), shear (SH), plane strain tension (PST) and equi-biaxial tension 
(EBT). The equivalent plastic strain at fracture is visualized as a function of 
strain rate and temperature. 
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η = −
p

σVM
=

I1

3
̅̅̅̅̅̅̅
3J2

√ , (33)  

θ = 1 −
2
π arccos

[
3
̅̅̅
3

√

2
J3

(J2)
3/2

]

. (34) 

Most of the extracted loading paths are non-proportional, meaning 
that stress state, strain rate and temperature change throughout each 
experiment before fracture initiates (Figs. 16–19). These path 

characteristics are primarily caused by adiabatic heating and changes in 
the gage section geometry due to large deformation. 

At a first glance, for most specimens and testing speeds, the fracture 
strain decreases with the strain rate, while it increases with the tem-
perature. Fig. 16 summarizes the evolution of the equivalent plastic 
strain as a function of the stress triaxiality. The results for slow, Int I, Int 
II and fast loading speeds are shown in black, magenta, green and blue 
color, respectively. The markers highlight the onset of fracture at the end 
of each loading path. Fig. 17 plots the evolution of the equivalent plastic 

Fig. 24. Fracture strain under proportional loading for temperatures of 20 to 360 ◦C. The fracture loci for constant strain rates of 0.001/s, 0.5/s, 2/s and 500/s are 
highlighted in gray, magenta, green and blue respectively. 
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strain as a function of Lode angle parameter in the same color scheme. 
For all temperatures investigated, experiments at low strain rates feature 
the highest fracture strain. The largest difference (65%) between the 
low-speed tests and the rest of the speeds is observed at 180 ◦C in the 
NT20 specimens. An increase in the temperature also leads to a higher 
fracture strain. The 360 ◦C experiments fail at strains above 2.5 (CH 
specimens), approximately ten times higher than those at 20 ◦C (0.25). 

Apart from evolving stress states, the loading paths feature non- 
constant strain rate and temperature histories. After the onset of local-
ized necking, the local strain rate increases by approximately one order 
of magnitude from the nominal value. Fig. 18a,c,e,g show the equivalent 
plastic strain as a function of strain rate categorized by different spec-
imen geometries. As an example, the Int II experiments start at the 
nominal loading speed of around 1/s and end at around 10/s. 

The conversion of plastic work into heat leads to a temperature rise 
for intermediate and high strain rate experiments, as shown previously 
by the temperature fields (Fig. 14). The right column plots in Fig. 18 

show the temperature evolution as a function of the equivalent plastic 
strain. In general, a higher testing speed correlates with a higher tem-
perature rise. Focusing on the NT20 tests with initial temperature of 
180 ◦C, the temperature rises are 0 ◦C (slow), 23 ◦C (Int I), 36 ◦C (Int II) 
and 61 ◦C (fast), respectively. 

Fig. 19 visualizes the loading paths in the plane of equivalent plastic 
strain and temperature for (a) NT20, (b) NT6, (c) CH and (d) SH ex-
periments. The gray curves in Fig. 19a represent the rate and tempera-
ture histories extracted from all elements on the mid-plane of the NT20 
specimen. As the mid-plane elements had been used for training the 
hardening model, the gray area highlights the rate- and temperature- 
domain covered during plasticity model training. 

5.4. Fracture model training and validation 

For the NN-based fracture model, a preliminary training is carried 
out on the effect of the network size (hyperparameters) on the prediction 

Fig. A 1. Finite element meshes as used for network training and validation (a) NT20, (b) NT6, (c) CH and (d) SH specimens.  
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accuracy after 1000 epochs. All tested networks are initialized with the 
same random seeding. Fig. 20a summarizes the network performance as 
a function of its depth and width. Networks deeper than two layers show 
no significant increase in accuracy. For networks with more than ten 
neurons per layer only, a minor increase in accuracy is observed. We 
therefore settle for a network with two hidden layers of ten neurons, 
featuring in total (2 + 1) × 10 + (10 + 1) × 10 + (10 + 1) × 3 = 173 
trainable parameters (weights and biases). 

The network is trained by minimizing the error on the terminal 
damage (Eq. 22). The training is stopped once the mean absolute error 
reaches a minimum and ceases to decrease (Fig. 20b). Combined with 
the clipping function (Eq. 32), this early stopping method successfully 
prevented over-fitting during network training. We achieve a mean 
absolute error on the terminal damage of 0.08 after 710 training epochs 
(corresponding to 9 h on a single core). Table 4 summarizes the 
normalization rages of NN parameterized HC fracture model. 

The plots in Figs. 21–22 summarize the prediction of the calibrated 
fracture model using full loading paths. The largest error on the damage 
prediction (0.52) is obtained for the NT20 specimen for “Int I” at 360 ◦C. 
This corresponds to a 0.78 (92%) difference on the predicted fracture 
strain. The NN predicts more accurate results below 260 ◦C, where 78 
out of 98 samples feature damage error below 0.12. Below 260 ◦C, the 
maximum difference on fracture strain (0.19) is observed for the slow 
NT20 180 ◦C case. 

5.5. Visualizations of the identified fracture model 

The heart of the fracture model is the function εpr
f [η, θ, ε̇p,T] which 

describes the strain to fracture for hypothetical loading paths, along 
which the stress state, strain rate and temperature are kept constant. In 
the sequel, we visualize cross-sections of the above function in 2D and 
3D sub-spaces. The fracture loci for plane stress conditions are plotted in 
dashed lines in Figs. 21–22 for strain rates of 0.001/s, 0.1/s, 2/s and 
200/s. For all temperatures considered, the highest fracture strain is 
obtained for the low strain rate conditions (black dashed lines). The NN 
model also predicts a decreasing fracture strain for increasing strain 
rates which agrees with the conclusions drawn from the discussion of the 
loading paths in Section 5.3. 

Pure shear (SH), uniaxial tension (UT), plane strain tension (PST) 
and equi-biaxial tension (EBT) are characteristic points of the fracture 
locus. For these stress states, we plot the plastic strain to fracture as a 
function of temperature and strain rates using the trained NN model 
(Fig. 23). As prescribed by the Hosford–Coulomb formulation (Eq. 18), 
the UT and EBT surfaces are identical, while the PST surface always 
features the lowest fracture strain. Across all four stress states, an 

increase in the temperature leads to higher ductility (Fig. 23). A ductility 
peak is obtained around 350 ◦C at 0.001/s, with fracture strains as high 
as 2.7 for UT and EBT loadings. We also witness a lower fracture strain at 
higher strain rates, with a minimum in ductility obtained at 20 ◦C and 
1000/s. Additionally, the Hosford–Coulomb fracture parameters {a, b, 
c} are visualized as a function of strain rate and temperature in Fig. A 3. 

Fig. A 2. Performance of different network sizes using Adam optimizer. Adam 
achieves similar Loss values to RPROP, with less consistent performance for 
networks with many layers. 

Fig. A 3. Evolution of Hosford–Coulomb a, b, c parameters as a function of the 
strain rate and temperature. 
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Ten selected temperatures and four selected strain rates of the cali-
brated NN fracture loci are shown in Fig. 24. All fracture surfaces follow 
the well-defined Hosford–Coulomb formulation, with different HC pa-
rameters given by the neural network. For most of the temperatures, an 
increase in the strain rate corresponds to a reduction in the fracture 
strain. The fracture loci feature a wider scatter at higher temperatures, 
indicating a higher strain rate sensitivity. 

6. Conclusions 

A combined experimental and numerical campaign on aluminum 
AA7075-T6 has been performed, covering temperatures from 20 ◦C to 
360 ◦C and strain rates from 0.001/s to more than 100/s. The main 
findings are:  

• The strain rate sensitivity of the hardening curve increases with the 
temperature. For example, increasing the strain rate from 0.001/s to 
0.1/s corresponds to 0.3% stress increase at 20 ◦C, while at 180 ◦C 
this strain rate difference would lead to a 21% rise in the yield stress.  

• A phenomenological plasticity model composed of a Yld2000-3D 
yield surface, an associated flow rule and a neural network based 
rate- and temperature-dependent hardening law can capture the 
large deformation response with good accuracy. 

• The loading paths to fracture are determined by simulating experi-
ments with 116 unique stress-state, strain rate and temperature 
combinations. The loading paths reveal evolving (non-constant) 
stress triaxiality, Lode angle parameter, strain rate, temperature, and 
equivalent plastic strain at the material point where fracture 
initiates.  

• A new stress-state, strain rate-, temperature-dependent fracture 
initiation model is proposed to describe all hybrid numerical- 
experimental results. The backbone of the model is the stress-state 
dependent Hosford–Coulomb formulation which has been extended 
through a neural network term that accounts for the effects of strain- 
rate and temperature. The model is trained using a tailored back- 
propagation algorithm which accounts for the non-proportional 
and non-isothermal loading history of the experiments. 

The proposed plasticity and fracture models are successfully vali-
dated through detailed finite element simulations of all experiments. 
The neural network formulation turned out to be particularly powerful 
to identify the effects of strain-rate and temperature from experiments 
with complex loading histories. Now that these effects have been 
revealed and quantified, the neural network formulation may also be 
approximated through simple parametric forms or replaced through 
tabulated models for immediate use in industrial practice. 
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[56] Erice B, Pérez-Martín MJ, Gálvez F. An experimental and numerical study of 
ductile failure under quasi-static and impact loadings of Inconel 718 nickel-base 
superalloy. Int J Impact Eng 2014;69:11–24. https://doi.org/10.1016/j. 
ijimpeng.2014.02.007. 

[57] Gorji MB, Mozaffar M, Heidenreich JN, Cao J, Mohr D. On the potential of 
recurrent neural networks for modeling path dependent plasticity. J Mech Phys 
Solids 2020;143:103972. https://doi.org/10.1016/j.jmps.2020.103972. 

[58] Bonatti C, Mohr D. One for all: universal material model based on minimal state- 
space neural networks. Sci Adv 2021;7:1–9. https://doi.org/10.1126/sciadv. 
abf3658. 

[59] Al-Haik MS, Hussaini MY, Garmestani H. Prediction of nonlinear viscoelastic 
behavior of polymeric composites using an artificial neural network. Int J Plast 
2006;22:1367–92. https://doi.org/10.1016/j.ijplas.2005.09.002. 

[60] Talebi-Ghadikolaee H, Moslemi Naeini H, Talebi Ghadikolaee E, Mirnia MJ. 
Predictive modeling of damage evolution and ductile fracture in bending process. 
Mater Today Commun 2022;31:103543. https://doi.org/10.1016/j. 
mtcomm.2022.103543. 

[61] Kessler BS, El-Gizawy AS, Smith DE. Incorporating neural network material models 
within finite element analysis for rheological behavior prediction. J Press Vessel 
Technol 2007;129:58–65. https://doi.org/10.1115/1.2728894. 

[62] Jenab A, Sari Sarraf I, Green DE, Rahmaan T, Worswick MJ. The Use of genetic 
algorithm and neural network to predict rate-dependent tensile flow behaviour of 
AA5182-sheets. Mater Des 2016;94:262–73. https://doi.org/10.1016/j. 
matdes.2016.01.038. 

[63] Jordan B, Gorji MB, Mohr D. Neural network model describing the temperature- 
and rate-dependent stress-strain response of polypropylene. Int J Plast 2020;135: 
102811. https://doi.org/10.1016/j.ijplas.2020.102811. 

[64] Li X, Roth CC, Mohr D. Machine-learning based temperature- and rate-dependent 
plasticity model: application to analysis of fracture experiments on DP steel. Int J 
Plast 2019;118:320–44. https://doi.org/10.1016/j.ijplas.2019.02.012. 

[65] Li X, Roth CC, Bonatti C, Mohr D. Counterexample-trained neural network model of 
rate and temperature dependent hardening with dynamic strain aging. Int J Plast 
2022;151:103218. https://doi.org/10.1016/j.ijplas.2022.103218. 

[66] Pandya KS, Roth CC, Mohr D. Strain rate and temperature dependent fracture of 
aluminum alloy 7075: experiments and neural network modeling. Int J Plast 2020; 
135:102788. https://doi.org/10.1016/j.ijplas.2020.102788. 

[67] Soares GC, Hokka M. Synchronized full-field strain and temperature measurements 
of commercially pure titanium under tension at elevated temperatures and high 
strain rates. Metals (Basel) 2022;12. https://doi.org/10.3390/met12010025. 

[68] Omer K, Abolhasani A, Kim S, Nikdejad T, Butcher C, Wells M, et al. Process 
parameters for hot stamping of AA7075 and D-7xxx to achieve high performance 
aged products. J Mater Process Technol 2018;257:170–9. https://doi.org/ 
10.1016/j.jmatprotec.2018.02.039. 

[69] Wang X, Qiu Y, Slattery SR, Fang Y, Li M, Zhu SC, et al. A massively parallel and 
scalable multi-CPU material point method. ACM Trans Graph 2020;39. https://doi. 
org/10.1145/3386569.3392442. 

[70] Xiao W, Wang B, Zheng K. An experimental and numerical investigation on the 
formability of AA7075 sheet in hot stamping condition. Int J Adv Manuf Technol 
2017;92:3299–309. https://doi.org/10.1007/s00170-017-0419-6. 

[71] Standard Astm. E112-12: standard test methods for determining average grain size. 
ASTM Int 2012:1–27. https://doi.org/10.1520/E0112-12.1.4. E112-12. 
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