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Robust Feature Selection for Continuous BP
Estimation in Multiple Populations: Towards
Cuffless Ambulatory BP Monitoring

Ana Cisnal, Student Member, IEEE, Yanke Li, Bertram Fuchs, Mehdi Ejtehadi,
Robert Riener, Senior Member, IEEE, and Diego Paez-Granados', Member, IEEE

Abstract— Current blood pressure (BP) estimation meth-
ods have not achieved an accurate and adaptable approach
for application in populations at risk of cardiovascular dis-
ease, with generally limited sample sizes. Here, we intro-
duce an algorithm for BP estimation solely reliant on pho-
toplethysmography (PPG) signals and demographic fea-
tures. Our approach automatically obtains signal features
and employs the Markov Blanket (MB) feature selection to
discern informative and transmissible features, achieving a
robust space adaptable to the population shift. We validated
our approach with the Aurora-BP database, compromising
ambulatory wearable cuffless BP measurements for over
500 individuals. By evaluating several machine-learning re-
gression methods, Gradient Boosting emerged as the most
effective. The comparative assessment encompassed both
a generic model (trained on unclassified BP data) and spe-
cialized models (tailored to each distinct BP population),
with the former demonstrating consistent superiority with
MAE of 10.2mmHg(0.28) for systolic BP and 6.7mmHg(0.18)
for diastolic BP on the whole dataset. Moreover, a compari-
son of in-clinic and ambulatory model performance showed
a significant decrease in accuracy for the latter of 2.85mmHg
in systolic (p < 0.0001, F-value = 32764.76) and 2.82mmHg
for diastolic (p < 0.0001, F-value = 65675.36) estimation
errors. Our work contributes to a resilient BP estimation
algorithm from PPG signals, underscoring the advantages
of causal feature selection and quantifying the disparities
between ambulatory and in-clinic measurements.

Index Terms— Continuous cuffless blood pressure, pho-
toplethysmography, pulse wave analysis.
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[. INTRODUCTION

LOOD Pressure (BP) is a widely accepted surrogate

biomarker in many health conditions that aid in iden-
tifying individuals at risk of cardiovascular disease (CVD) [1]
and a direct biomarker in conditions such as hypertension.
Traditionally, BP measurements have been obtained in clinical
settings, providing valuable insights into a person’s cardio-
vascular health. However, the increasing recognition of the
dynamic nature of BP calls for ambulatory measurements that
capture BP changes during daily living to further understand
the cardiovascular system.

In recent works, various cuffless wearable devices using a
variety of signal modalities have been proposed for ambulatory
blood pressure (ABP) monitoring, such as electrocardiogram
(ECG), tonometry, bioimpedance, and photoplethysmography
(PPG), with the latter the most widespread [2]. PPG is a
non-invasive, non-occlusive, optical technique for measuring
volumetric changes in blood flow. Models based on the pulse
arrival time (PAT) [3], pulse transit time (PTT) [4], and pulse
wave velocity (PWYV) [5] remain as the most common ones.
However, these methods require a PPG signal, combined with
either an ECG signal or another PPG signal from a different
peripheral site.

An alternative is developing models that rely solely on one
PPG signal, in turn requiring a pulse wave analysis (PWA)
involving a morphological understanding of the PPG pulse
to extract features that can be used to estimate BP. This has
been shown through multiple linear regression [6], regression
trees [7], random forest [8], support vector machine [8] and
artificial neural network [9]-[11]. Nonetheless, in the presence
of noise and motion artefacts, PPG signals adopt different
morphologies; according to Dawber [12], four PPG classes
can be distinguished according to the diastolic phase (Fig. [I).
The dicrotic notch (DN) is defined as the time point for the
end of the systole and the beginning of the diastole. Despite its
importance, neither its formation nor its exact location is clear
[13]. Moreover, it has been suggested that DN is sometimes
only present in people with healthy compliant arteries [14].
Thus previous work had reduced its scope to devices with
class I and II, whereas ambulatory measurements are on class
IIT and IV. Our work has been validated for class IV, as we
aim for continuous ambulatory BP estimations.
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e Signal pre-processing for noise removal, signal segmen-
tation, and data cleaning.
« Identification of the fiducial points in the signals.
o Extraction of signal and demographic features.
Class I Class II Class II Class IV

Fig. 1: Classification of PPG waveforms: I) a DN is evident;
II) no evident DN but the descendent line becomes horizontal;
IIT) no evident DN but there is a change in the angle of the
descendent line; IV) no evidence of a DN is visible.

The accuracy of machine learning (ML) models is fully
dependent on the dataset used and the feature space selected,
and no agreement has been reached. BP estimation mod-
els to date, have considered only a few fiducial points for
time-domain feature extraction with a focus on performance
optimization for singular datasets, without attending to the
problem of generalization across different populations. This is
particularly important for populations with limited available
sample data, such as pregnant women, neonates, and spinal
cord injury (SCI) people. These are in turn the populations
that would benefit drastically from continuous BP estimations
as they require special care for the cardiovascular function.

Given these populations’ small sample sizes, personal mod-
els and domain-transferred features are essential for devel-
oping accurate and reliable BP estimation models. Transfer
learning, involving feature selection, can help to identify a
discriminatory set of features and enhance quality learning
by dropping less descriptive features. Moreover, since the BP
waveform is not yet fully understood, the feature extraction
and selection phase is particularly important for subsequent
interpretable model development.

The focus and main contribution of this work are three-
fold: (1) A method for defining and identifying features
in PPG signal for robust transfer among small populations
based on the Markov Blanket (MB); (2) the first ambulatory
BP estimation model from single wrist PPG using a large
dataset: the Aurora-BP [15] where we achieved a boosting
model with a mean absolute error (MAE) 11 mmHg in nested
cross-validation throughout four different sub-populations; (3)
extensive analysis of the cross-population performance and
model differences found especially on inpatient vs. ambulatory
data, which highlights the gap with previous works where only
inpatient data was used. Finally, we provide our method and
library for extensive PPG wave signal analysis as an open-
access library to motivate advancement in fair model sharing
[16].

[I. MATERIALS AND METHODS

In contrast to previous works, our approach focuses on
extracting a comprehensive set of features through PWA and
developing a feature selection process that prioritizes robust-
ness across diverse populations, rather than solely optimiz-
ing prediction accuracy for a single dataset. This emphasis
on feature robustness contributes to the generalizability and
reliability of the BP estimation method. Our proposed method
for PPG-based BP estimation consists of five steps (depicted

in Fig. ):

e Robust feature selection.
¢ Prediction of BP using ML models.

A. Dataset

In our work, we selected the Aurora-BP dataset [15] as
the first large-scale collection of ambulatory and cuff-less BP
measurements obtained over a 24-hour period using wearable
technology. A data transfer agreement was signed with Mi-
crosoft, and the ETh Zurich IRB waived ethical review for us-
ing the dataset. The dataset comprises measurements obtained
from both in-clinic and ambulatory setups. The ambulatory
measurements include recordings of ECG, tonometry, PPG,
and oscillometric measurement of reference BP. In-clinic mea-
surements additionally involved the acquisition of reference
BP using the auscultatory protocol. During the measurements,
participants underwent an initial clinical visit and a return visit
after the 24-hour recording, where reference cuff-based BP
measurements were taken. During the ambulatory phase, the
cuff-based ABP monitor was automatically triggered every 30
minutes during waking hours and every 60 minutes during the
night. For each of the cuff-based BP measurements, 30-second
physiological signal segments were recorded at a frequency of
500 Hz. In this study, we utilized data obtained from both
ambulatory and in-clinic setups, incorporating oscillometric
reference BP, to estimate BP based on the single channel 30-
second PPG signals.

B. PPG Signal Pre-processing

Time-domain features are generated based on time, am-
plitude, and area extracted using PWA and they require the
previous identification of the fiducial points e.g., systolic peak
(S), dicrotic notch (DN). However, identifying these features
can be challenging and most studies only consider S for
extraction. Hence, these features are commonly complemented
with methods such as PAT, PTT, and PWYV values [17]-[20],
with the inherent disadvantage of a second signal. Nonetheless,
we present here a method to achieve it even with noisy
ambulatory data.

The fiducial points of a PPG pulse are identified by analyz-
ing its derivatives, which are highly distorted in the presence
of noise. Hence, high-frequency noise removal is required, and
low-pass filtering should keep a balance between maintaining
the original features and reducing noise. Moreover, some
studies employ polynomial interpolation [21] or apply filtering
techniques such as 25-ms moving average [22] to smooth
the signals and improve the computation of the derivatives.
However, these techniques might alter the content of the signal
recordings. In our work, the raw PPG signals were filtered
using a 4th-order Butterworth bandpass filter with cut-off
frequencies of 0.25 and 10 Hz [23].

To extract pulse wave features, it is necessary to identify
individual beat-to-beat pulse waves which necessitate the
detection of pulse onset and end (Fig. [3). However, the signals’
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Fig. 2: Schematic diagram illustrating the methodology employed in this study for the estimation of BP using PPG.
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Fig. 3: PPG signal pre-processing steps: I) raw PPG signal;
I) signal after Butterworth band-pass filter with DC drift,
resulting in amplitude variation of the troughs (-); III) signal
after baseline removal; IV) pulse segmentation by detecting
peaks (x) and troughs (+); V) remaining beat-to-beat waves
after morphology analysis; VI) template matching, with the
mean wave represented by (- -) and individual waves shown
by (-). Pulse wave morphology analysis considers: a) peak
location, b) pulse width, ¢) trough position, and d) trough
depth difference.

troughs vary in amplitude since the DC components of the
PPG signals are affected by biological characteristics such
as tissue composition, respiration, vasomotor activity, and
thermoregulation as well as external factors, such as light
and acquisition device [23]. Hence, the baseline was removed
using an adaptive iteratively reweighted penalized least squares
[24].

The extraction of the beat-to-beat waves involves the detec-
tion of the peaks and troughs using an adaptive amplitude
threshold [11]. In this work, a local maximum value was
considered a peak if the difference between this point and the
adjacent local minimum exceeded the threshold. Similarly, for
a local minimum to be considered a trough, the difference
between this point and the adjacent local maximum is needed
to surpass the threshold. The dynamic threshold was set as
70% of the range between the median values of the identified
maxima and minima within the 30-second window.

Following the identification of the pulse waves, the noisy
wave units were discarded by analyzing the pulse wave
morphology, utilizing four parameters with heuristically de-
termined thresholds. The pulse width, representing the time
interval between two consecutive troughs, was constrained to
be within 0.3-2 seconds, corresponding to an extreme pulse
rate of 30-200 bpm. The maximum value, corresponding to
the systolic peak, was expected to occur in the first half part
of the segment [25]. Similarly, the trough or minimum value
should be located at the beginning or at the end of the segment,
corresponding to the onset or valley point. Lastly, the trough
depth difference between successive pulses was limited to less
than 20% of the PPG segment height [25].

The remaining beat-to-beat waves were normalized to zero
mean and unit variance. Given that the dataset provided 30-
second PPG segments, we assumed that the PPG morphology
should remain relatively stable within this time frame. There-
fore, a template-matching approach was employed to further
investigate the reliability of the remaining PPG waves [26].
During this procedure, the mean wave was calculated based on
all the extracted waves within the time window. Subsequently,
the Euclidean distance between each individual wave and the
mean wave was calculated. If the distance exceeded a device-
specific threshold of the expected noise, indicating a low
correlation with the mean wave, the corresponding beat-to-beat
wave was deemed unreliable (likely noisy) and discarded for
further analysis. Lastly, the analysis progressed only if there
were more than five reliable pulse waves; in the absence of this
criterion, all pulse waves within the 30-second PPG segment
were excluded. The aforementioned signal quality checking
procedure is integrated as the initial processing stage within a
Python package [16], accessible for open-access usage.

C. Fiducial Points Identification

The fiducial points were identified for each pulse wave using
derivative analysis (Fig. ). Typically, a change of sign of the
first derivative identifies the exact point for class I waveforms
(Fig. , but for PPG without an evident DN, the first derivative
is always negative. On the other hand, the peak of the second
derivative of a class I wave provides a good but not perfect
approximation of the DN [21], [27], or as the location where a
change of sign in the first derivative from negative to positive
occurs [22]. Likewise, the D is not always noticeable. In such
cases, it can be difficult to identify it, and different methods
combining the first, second, and/or third derivatives have been
proposed in the literature to do so [28], [29].

In our work, we provide algorithm [I] for PPG ambulatory
data (including class IV), where the onset (O) and valley (V)
points were set to the onset and end of the wave. The S was
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Fig. 4: Left: Identification of the fiducial points based on the
and ddPPG (second derivative or acceleration of PPG) signals.
diastolic branch width (DBWXx).

detected as the largest peak of the pulse, and it was used to
split the wave into a systolic phase and a diastolic phase. The
maximum derivative (MD) point corresponds to the maximum
peak of the first derivative in the systolic phase. The diastolic
peak (D) was identified as the local maxima occurring within
the diastolic phase, within a time interval of 80 ms to 0.6
times the duration of the diastolic phase. Then, the inflexion
point (IP) was identified as the local maximum of the first
derivative before D, and DN as the local minimum before
IP. In some cases, there were no local maxima and only an
inflection point existed. Hence, D corresponded to IP, and it
was detected as the absolute maximum of the first derivative
in the region of search, while DN was the local maximum in
the second derivative. Several local maxima can be identified
in the region of search, especially in low-quality signals. In
these cases, IP was identified as the maximum peak of the first
derivative, D was the local maximum right after IP, and DN
was the local minimum before IP. Point a was the maximum
second derivative and the b point was the point of strongest
negative acceleration in the falling edge [30].

D. Feature Generation

The features of each validated pulse wave were extracted,
and subsequently, the average value of each feature within the
30-second window was computed to serve as input for the
models. The generated features can be divided into four main
groups: time domain (TF), frequency-based (FF), statistical
(SF), and demographic features (DF). A Python package
that encompasses the processing and feature extraction stages
was made readily accessible [16] with this publication. The
package accepts a raw signal, along with parameters specifying
the window size and step size. As a result, it produces a
feature vector that represents the observed time interval. The
package allows users to adjust various parameters, including
window and step size, as well as additional tuning options to
optimize denoising and feature extraction according to specific
task requirements. Across multiple windowing steps, a feature
table is constructed, which can subsequentially be used for
feature selection. Details of each feature can be found in the
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online VitalPy library [16].

1) Time-domain Features (TF): The proposed time-domain
features can be divided into six subcategories regarding inten-
sity, time, area, slope, branch width, and others.

Intensity-based and time-based features include the absolute
and normalized value (time or amplitude) of one fiducial point
or between two points. Intensity-based features also include
the intensity of the first and second derivatives of the PPG
fiducial points. The slope and the area under the curve between
the two points were also calculated. Additionally, the intensity
ratio, time ratio, and area ratio were included. These four types
of characteristics were calculated for all possible combinations
of the fiducial points.

Features that only depend on the branch width (BW) at
a given percentage of the pulse height have been commonly
used due to their simplicity [7], [8], [10], [11], [17]. A total
of 28 BW-based features were extracted (Fig. M), including
the systolic branch width (SBWx), the diastolic branch width
(DBWXx), the branch width (DWx = SBWx+DBWx), and the
branch width ratio (BWRx=DBWx/SBWXx) at x% of the pulse
height (x = 10, 25, 33, 50, 66, 75, 90).

Some features have been proven to be specifically related to
BP. Reflection index (RI) or augmentation index (AI) measures
the pulse reflection, it is related to the arterial tone and it is
calculated as the intensity’s ratio between the intensity of the
S and IP [21], [31]. Inflection point area (IPA) is defined as the
ratio of the area between O, MS, S, IP, V and has proved to be
an indicator of peripheral resistance [21], [31]. Crest time (CT)
is the time difference between O and S, which is related to the
PWYV [21]. PPGK, also known as PPG characteristic value or
K value [17], is related to blood viscosity and total peripheral
resistance. Normalized pulse volume (mNpV) is also related
to the total peripheral resistance, and it is the ratio of the peak-
to-peak amplitude divided by its DC value [21]. Large Artery
Stiffness Index (LASI) is an indicator of the stiffness of the
arteries and it is inversely related to the time interval between
S and IP [21], [31], [32]. While the aforementioned features
were initially included in the analysis as intensity, time, or
area-related features, the additional features of PPGK, mNpV,
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Algorithm 1 Algorithm for fiducial points identification.

Input: wave

Output: O,V,S,MD,D,IP,DN,a,b

. d_wave = first_derivative(wave)

dd_wave = second_derivative(wave)

O = wawvelfirst point]

V = wave[last point]

S = maximum_peak(wave)

systolic_phase = wave[from O to S]
diastolic_phase = wave[from S to V]

M D = maximum_peak(wave in systolic_phase)
search_zone =[diastolic_phase from 80 ms to 0.6x
duration(diastolic_phase)]

10: n = number_of_local_maxima(wave in search_zone)
11: if n = 0 then

122 D = maximum_peak(d_wave in search_zone)

13: IP=D

14: DN = maximum_peak(dd_wawve right before I P)
15: else if n = 1 then

16: D = maximum_peak(wave in search_zone)

R A A ol S

17: I P = local_maximum(d_-wave right before D)
18: DN = local_minimum(wave right before I P)
19: else

20: I P = maximum _peak(d_wave in search_zone)

21: D = local_maximum(wave right after IP)
22: DN = local_minimum(wave right before IP)
23: end if

24: a = maximum_peak(dd_wave in systolic_phase)
25: b = minimum_peak(d_wave in systolic_phase)
26: return O, V,S,MD,D,IP,DN,a,b

and LASI were also incorporated into the analysis.

Finally, 17 more generic temporal features were computed
based on [33]: autocorrelation, centroid, entropy calculated
both using the Kernel Density Estimation (KDE) and the
Gaussian function, number of minimum and maximum peaks,
mean and median of differences, mean and median of absolute
differences, the sum of the absolute differences between con-
secutive points, travelled distance, number of zero crossings of
the first, second and third derivative and total energy as well
as absolute energy.

2) Frequency-based Features (FT): Using the Fast Fourier
Transform (FFT), the frequency and magnitude of the first,
second, and third harmonics were extracted. Relative power
[34] along with relative power at the first, second, and third
harmonics were also included. Other 19 frequency-based
features were based on [33]: spectral distance, fundamental
frequency, maximum power spectrum density, maximum and
median frequencies, spectral centroid, spectral decrease, spec-
tral kurtosis, spectral skewness, spectral spread, spectral slope,
spectral variation, spectral roll-off, spectral roll-on, number of
maximum spectral peaks, human range energy ratio, power
spectrum density bandwidth, and spectral and wavelet en-
tropies. These features were derived from the beat-to-beat PPG
pulse waveforms and PPG segments, which were constructed
exclusively using validated PPG pulses (i.e., removing invalid

pulses from the original 30-second segment during the signal
processing).

3) Statistical Features (SF): Previous studies used statistical
features for BP estimation [8], [11], [19], [35]. In this work,
for each pulse waveform, 14 statistical features were extracted:
SKewness (SK), Kurtosis, Mean Absolute Value (MAV), me-
dian, Mean Absolute Deviation (MAD), Median Absolute De-
viation, Root-Mean-Square (RMS), Standard Deviation (SD),
Shape Factor (SF), Impulse Factor (IF), Crest Factor (CF),
variance, interquartile range (IRQ) and perfusion.

4) Demographic Features (DF): Five demographic features
were employed: age, weight, body mass index (BMI), rest
systolic BP (SBP), and rest diastolic BP (DBP).

E. MB Feature Selection

Features that are used to train ML models have a high
influence on their performance. Irrelevant or partially relevant
features can negatively impact model performance. Appropri-
ate feature selection can reduce overfitting, improve robust-
ness, and shorten training time. Our goal here was to analyse
the best transferability across sub-populations, therefore, we
performed a wrapped selection over the entire dataset to
provide subsequently a population feature analysis and per-
formance comparison. As a first step in this process to reduce
the computational cost, we used the minimum redundancy
maximum relevance (MRMR) method, a filter-based approach
that significantly reduces the number of features [36]. Then,
we applied the wrapped method Predictive Permutation Fea-
ture Selection (PPFS) [37], a feature selection using the MB
derived from a graphical model, which statistically determines
the sufficient set of features for prediction across different
subgroups. This potentially introduces a bias to the subsequent
models nonetheless, we identify the best robust feature space
to potentially transfer to ambulatory settings in future studies
with smaller populations.

1) MB Discovery: MB Discovery refers to finding the set of
variables that are sufficient for predicting the target variable
based on a graphical model and d-separation. Under the
assumption of causal sufficiency [38], MB consists of the
parents, children, and spouses of the target node in the directed
acyclic graph (as illustrated in Fig. [5b). We make use of the
concept of graphical models where nodes and edges represent
variables and statistical relations among them. Due to the
compact statistical relations encoded and a clear structural
representation, this framework has been developed and applied
in various fields such as health science [39], computational
biology [40], and earth science [41], facilitating a deeper
understanding of complex systems. Fig. [5a] shows a graphical
model with 10 variables and its factorized distribution can be
derived as below:

10
P(X) =[] p(XiXpai) )
i=1
where X, ;) stands for the vector that includes all parental
nodes of X; in the graph. The factorization encodes sparsity in
the structure via conditional Independence that can be further
utilized for feature selection and robust inference.
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(c) The MB (blue nodes in the gray transparent ring) of the target
variable SBP. The undirected edges represent the plausible associa-
tions between nodes without specific claims of causal relations since
in this paper the direct MB discovery is used without doing global
causal discovery.

Fig. 5: Illustration of (a) graphical models; (b) Markov blanket
(MB); (c) the potential application of using MB for SBP
estimation.

According to d-separation [38], all nodes outside the MB
will be conditionally independent of the target node given the
MB such that those variables apart from the MB and the
target would be redundant in predicting the target variable.
By using the MB discovered, as shown in Fig. where
sparse structure and essential features are identified towards
predicting SBP from generated PPG feature space, predictive
models trained on the selected features are expected to learn
sparse and essential relations from the optimal features to
increase robustness against spurious correlations and covariate
shifts in the generated feature space across different popula-
tions [42]. In this paper, we focus on approaches that can
handle mixed-type features without distribution assumptions
using non-parametric methods, leading to the adoption of the
PPFS approach [37].

F. ML Models and Evaluation Metrics

Based on previous studies some of the best-performing
ML models have been implemented to estimate BP from the
selected features: Ridge Regression (RR), Gradient Boosting
(GB), Decision Tree (DT), K-Neighbors (KNN), Linear Sup-
port Vector Regressor (L-SVR) and AdaBoost. Also, different
scalers on each feature space were used MinMaxScaler, Quan-
tileTransformer, Normalizer, StandarScaler and RobustScaler,
details can be found in the open library VitalPy [16].

The performance of the ML models was evaluated using
a nested cross-validation approach since it provides less op-
timistic and less biased estimation compared to the tradi-
tional train/test split method. Furthermore, it overcomes the

problem of over-fitting the training dataset. A 10-fold inner
loop optimizes the model hyper-parameters. The outer loop
used a leave-one-participant-out validation and provided the
estimation error. The estimation error was calculated as the
average of the individual model scores of every participant.

The assessment of the results was conducted using the
evaluation metrics and visualizations recommended by the
IEEE Std 1708-2014 standard [43], as well as ANSI/AAMI
SP 10-1987 standard [44].

The IEEE standard recommends the use of scatter plots,
such as the Bland-Altman plot, and BP change histograms to
visualize the differences between the reference measurements
and the measurements to be validated. In addition, the IEEE
standard introduces the MAE as an alternative to the mean +
standard deviation (MD =+ SD) proposed by the ANSI/AAMI
SP and the cumulative percentage errors suggested by the
British Hypertension Society (BHS) protocol [45].

The IEEE standard also introduces a new grading system
based on the MAE accuracy level, which can be compared
with the grading system proposed by the ANSI/AAMI SP10
(pass if MAE is less than 5 £ 8 mmHg, fail otherwise) and
the BHS evaluation system. It assigns grade A for MAE less
than 5 mmHg, grade B for MAE in the range of 5-6 mmHg,
grade C for MAE between 6-7 mmHg, and grade D (fail) for
MAE greater than 7 mmHg. Accordingly, in this paper, the
performance charts include three lines at 5, 6, and 7 mmHg
to delineate these grades.

Since the BP data were collected from different populations,
we are particularly interested in finding how large the distance
between each pair of populations can be. There exist extensive
works inspecting distribution distances, e.g. KL-divergence
and H-divergence, and how to utilize these metrics for further
applications. In our work, we use a distance metric called
Wasserstein distance to measure the distance of two empirical
distributions [46]. Its formal mathematical definition is given
with a hyperparameter p. The p-Wasserstein distance between
probability measures  and v on R? is defined as

Wyuv)= inf (EX-Y|")s px1l @

~LY ~ov

The distance metric from the optimal transport perspective
is the minimum effort it would take to move mass points from
one distribution to the other. This can be approximated using
a numeric method called Sinkhorn iterations [47]. For a better
focus of the paper, we skip the details of this algorithm and
directly apply the method to compute the distance of each pair
of sub-populations.

[1l. RESULTS

The performance of different ML algorithms for BP estima-
tion with the selected set of features by the MB algorithm was
firstly compared, with the aim proposing the most accurate one
for subsequent evaluations. Considering training and testing
BP estimation models on specific sub-populations can help
improve accuracy and reliability, the cross-population stability
of the selected feature space was also evaluated by training and
testing several models specialized for different groups and a
general model for all data. Additionally, the performance of
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the BP estimation algorithm is also evaluated for ambulatory
and in-clinic data separately.

A. Dataset

From the 548 participants of the database, only 534 have
available in-clinic data regarding the BP in the rest position,
especially sitting with the arm down, which is used as the
reference BP. Each participant has a mean (SD) of 55.70 (4.11)
measurements, split into 14.15 (0.68) and 41.55 (4.07) in in-
clinic and ambulatory measurements, respectively. After data
pre-processing, only 523 participants remained with a mean
of 23.92(11.36) measurements. The mean of the mean DBP
and SBP at rest position are 86.21 (10.88) and 131.15 (15.53)
mmHg respectively. The delta DBP and SBP is 40.72 (11.87)
and 54.03 (16.25) mmHg, respectively.

To assess the performance of the BP estimation algorithm,
it is essential to have a wide distribution of BP data relative to
the resting position. According to the IEEE standard [43], the
BP values from the calibration point should differ by at least
10 mmHg for DBP and 15 mmHg for SBP. The distribution
of BP changes from rest position for every measurement is
shown in Fig.

B. Feature Selection and Machine Learning Models

The feature selection process resulted in a subset of 68 and
76 features for SBP and DBP estimation (Fig. |Z|), with 37
features at the intersection of the subsets. While no SFs were
included in the selected features, four DFs were found to be
significant for both DBP and SBP estimation. In fact, they
ranked among the top 11 in terms of importance: age (5/68
for SBP; 26/76 for DBP), weight (8/68 for SBP; 11/76 for
DBP), SBP at rest (7/68 for SBP; 9/76 DBP) and DBP at rest
(6/68 for SBP; 10/76 DBP). Additionally, the common features
for SBP and DBP estimation encompassed all six subgroups
of TF and thirteen FF. An evaluation of the feature selection
process robustness through MB compared to recursive feature
elimination can be detailed in the appendix [I]

Following the feature selection process, two datasets were
created. The systolic BP dataset consists of 69 features and
a reference BP value, and the DBP dataset comprises 77
features and a reference BP value. Various scalers were tested,
and the MinMaxScaler yielded the highest accuracy. Table [
presents the results for DBP estimation using each algorithm
while applying the MinMaxScaler. Among the algorithms, GB
achieved the highest accuracy exhibiting an MAE of 10.29 and
6.74 mmHg and an MD (SD) of 0.18 (13.82) and -0.22 (8.71)

(a) Features for SBP estimation (b) Features for DBP estimation.

Fig. 7: Set of selected features categorized into the four main
categories: time domain (TF), frequency-based (FF), statistical
(SF), and demographic (DF). The time domain category is
further divided into subgroups, including intensity (I), time
(T), area (A), slope (SLP), branch width (BW), and others
(OT).
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Fig. 8: Bland-Altman plot for SPB and DBP estimation
showing the MD and SD of the reference BP measurements
and the estimated BP values. The ANSI/AAMI SP 10 requires
to have MD=SD less 5+8 mmHg.

for SBP and DBP, respectively (Fig. [8). From this point, only
the performance of the GB model is reported.

C. Results for Sub-populations

According to the ACC/AHA guidelines [48], participants
can be classified into four BP categories based on the rest
DBP/SBP measurements (Fig. Da). These categories included
normal, elevated, hypertension stage 1 (HTN S1), and hyper-
tension stage 2 (HTN S2).

One generic model was developed using the information
coming from all the participants, while various specialized
models are trained and tested with each sub-population based
on BP category. The MAE of the generic model along with
the MAE of the specialized models based on BP are presented
in Table [lIl The MAE of the generic model is subdivided ac-
cording to each subgroup, and the MAE of all four individual
models is combined. Additionally, the number and percentage
of available measurements for each sub-population, including
the mean and standard deviation for each participant is also
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the Sinkhorn algorithm [47] normalized to the number of
dimensions. (¢) Normalized distance matrix of selected SBP
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selected DBP feature space by PPFS.

provided in Table [

The overall BP estimation accuracy of the generic and
BP-based individual models are compared in Fig. The
generic model had a lower MAE and SD when compared to
the combined BP estimation accuracy of the group-specific
models. Additionally, the p-value at the level of 0.0001 from
a paired t-test showed that there were significant differences
between the generic and individualized models for all four
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TABLE I: Performance of best machine learning algorithms for SBP and DBP regression.
SBP DBP
MD (SD) MAE MAPE MD (SD) MAE MAPE
RR -0.24 (14.14) 10.79 8.72 0.00 (9.48) 7.21 9.79
GB 0.18 (13.82) 10.29 8.44 -0.22 (8.71) 6.74 9.39
AdaBoost  -0.17 (13.97) 1057 8.51 0.14 (922) 696  9.42
DT 0.45 (15.54) 11.68 8.72 -0.14 (10.44) 7.87 10.65
KNN 0.88 (15.35) 11.75  8.72 0.13 (9.85) 7.52 10.17
LSVR 0.22 (14.28) 10.81 8.72 -0.35 (9.69) 7.32 10.02
TABLE II: Performance, expressed as MAE (SD), of one general model and specialized models based on BP category.
Available measurements MAE (SD) - SBP MAE (SD) - DBP
Total Percentage ~ Mean (SD) Individual Generic Individual Generic
Normal 2057  16,4% 2338 (11.55) 9.82 (0.29) 1027 (029)2 591 (0.34)  6.71 (0.22)2
Elevated 3082  24,6% 24,66 (11.45)  9.63 (0.41) 10.32 (0.24)2 658 (0.19)  6.76 (0.14)2
HTN S1 4359 34,8% 23,19 (11.42)  10.58 (0.50) 10.28 (0.32)2  7.01 (0.29) 6.73 (0.18)2
HTN S2 3012 24,1% 24,69 (12.22)  11.77 (0.47) 10.31 (0.24)2  7.95 (0.19) 6.74 (0.17)2
All 12510  100,0% 23,92 (11.36)  10.50 (0.91)!  10.29 (0.28) 6.94 (0.72)'  6.74 (0.18)
T Indicates combined results from individual models. 2 Indicates split results from the generic model by BP group.
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Fig. 10: Performance evaluation of the general model and
specialized models for BP estimation across sub-populations
(normal, elevated, HTN S1, and HTN S2) as well as all data.
* denotes a significant difference by a paired t-test at the level
p < 0.0001.

BP subgroups (normal, elevated, HTN S1 and HTN S2) and
all participants. While the specialized models provided better
results for the normal and elevated subgroups, the results were
worse for HTN S1 and S2 subgroups.

Additionally, the results show that the MAE of the generic
model remains relatively consistent MAE across all sub-
populations in contrast to specialized models (Fig.[TT). Specif-
ically, the ANOVA revealed that the dependent variable (BP
profile) had no significant impact on the results of the generic
model for estimating both SBP (p — level > 0.1, F value =
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in-clinic, ambulatory, and all measurements. % denotes a
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0.77) and DBP (p —level > 0.1, F value = 1.76). Conversely,
the BP profile exerted a significant influence on the outcomes
of their corresponding individual models for SBP (p —level <
0.0001, F value = 585.57) and DBP estimation (p — level <
0.0001, F value = 1188.12).

D. Ambulatory vs In-clinic Data

The database was separated into two subsets: in-clinic and
ambulatory measurements. Two GB models were trained and
tested with each dataset separately after the feature selection
process. The number of selected features for SBP estimation
is 61 and 49 for ambulatory and in-clinic, while for DBP
estimation is 62 and 46, respectively. The MAE (SD) of SBP

and DBP are 8.49 (0.25) mmHg and 5.03 (0.25) mmHg for in-
clinic measurements and 11.35 (0.44) mmHg and 7.85 (0.25)
mmHg for ambulatory measurements (Fig. [I2). Statistically
significant differences were found between ambulatory and
in-clinic data for the performance on both SBP (p — level <
0.0001, F-value = 32764.76) and DBP (p — level < 0.0001,
F-value 65675.36) and estimation algorithms.

IV. DISCUSSION AND CONCLUSIONS
A. Feature Selection

The results coming from the feature selection process indi-
cate that more than half of the selected features belong to the
TF category, including all six subcategories, similar to [8], [11]
which also found TF of great importance for BP estimation.
The results also indicate the importance of DF features, in line
with findings from other studies [11], [49], although BMI was
not selected.

Noteworthy features were identified within the FF category
as well. Specifically, the wavelet entropy was selected for both
SBP and DBP estimation. These findings contradict the results
in [19], where a set of 35 features spanning TF, FF, and SF was
examined, and although the approximate entropy was ranked
among the top 15 features, while no features in the wavelet
domain were identified as influential.

Additionally, we found that the SF offer relatively less
informative value compared to other feature types and hence,
none of them were selected. These findings align with previous
works [8], [11].

Prior studies have focused on selecting the optimal features
for BP estimation, yet many of them proposed a limited
range of feature types. For instance, [9], [17], [50] proposed
feature sets confined to TF, with 24, 42 and 65 features.
These restricted set overlooked valuable information encoded
in other feature domains. Similarly, [11] proposed 74 features
encompassing TF, SF and DF features, while disregarding FT.
Likewise, [19] proposed 34 features in the TF, FF and SF
domains, omitting DF. In contrast, our work offers a com-
prehensive set of features belonging to four main categories
(TF, FF, ST and DF), ensuring a more robust feature selection
process through the Markov Blanket.

B. Domain Transfer

The study conducted by Miao et al. [51] emphasized the
substantial variation in feature importance across individuals.
Their study demonstrated the subject-specific nature of feature
selection, as the optimal feature set differed among subjects,
highlighting the importance of individualized approaches for
accurate BP estimation. However, in practical applications,
subject-specific feature selection may not be feasible due to
the need for extensive individual data for model pre-training.
In this work, we propose the adoption of an MB-based feature
selection method to obtain a reliable and consistent feature set
across individuals, enabling robust BP estimation without the
requirement for subject-specific customization.

As shown in Fig. Pbl0d} compared with the normalized
distance matrix of full feature space, the normalized distances
of selected feature spaces for estimation of SBP and DBP
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appear more salient, which means using PPFS can identify
the set of features that are more informative and differentiated
across sub-populations so as to enable the consequent generic
modeling to capture those individualized distinctions.

The findings of this study reflected that the generic al-
gorithm exhibited significantly superior estimation accuracy
compared to the overall estimation accuracy of the specialized
models for both SBP and DBP. Moreover, the BP profile did
not have a significant impact on the accuracy of DBP/SBP
estimation when using the generic model.

In contrast, Khalid et al. [7] proposed a two-step algorithm
that involved the classification of BP into three categories
(hypotensive, normotensive, and hypertensive), followed by
the application of a specific BP estimation algorithm corre-
sponding to the classified BP category. The two-step algo-
rithm was found to outperform the generic algorithm, and
statistically significant differences were observed for SBP
and DBP estimation. Additionally, the BP profile significantly
influenced the DBP and SBP estimation accuracy using either
two models. Similarly, [52] found that the estimation errors
were significantly higher in HTN subjects compared to nor-
motensive individuals.

The use of feature selection based on the MB allowed
for the selection of a stable set of features applicable across
all populations, enabling the use of a single model for the
entire population with improved performance. Moreover, the
feature space selected by MB should have better transferability
in terms of prediction accuracy and robustness. Indeed, the
outcomes of prediction (Fig. [[3) demonstrated the superiority
of the PPFS method based on the MB criteria over the RFE,
indicating a more effective generalization of the approach. This
has significant implications for BP estimation in small samples
of populations, such as pregnant women, neonates and SCI
individuals, where there may be insufficient data to train large
deep learning models.

C. Ambulatory vs In-clinic data

Performance validation for ambulatory measurement
showed that the estimation deviated more from the reference
BP compared to in-clinic, with the MAE exceeding 8 mmHg
for DBP and SBP. Previous research has pointed out the
inadequacy of those methods to follow the dynamic changes
in BP elicited by the cardiovascular autonomic nervous
activities [52]. However, it is important to remark that
in-clinic data included not only rest measurements (supine,
sitting arm down/lap/up) but also dynamic BP changes
induced by various cardiac maneuvers (walking, cooling
down, and running).

It can be therefore concluded that BP estimation accuracy
from in-clinic measurements is superior to the 24-hour record-
ing of ambulatory measurements as ambulatory measurements
are more prone to noise. BP estimation models are highly
influenced not only by biological characteristics (respiration,
vasomotor activity, thermoregulation) but also by external
factors, such as motion or light [14]. Therefore, while ambu-
latory measurements could provide a comprehensive picture
of a person’s BP levels, in-clinic measurements are far more
accurate and reliable.

D. Conclusion

Our work is the first in its kind using both ambulatory and
inpatient data and aiming to identify relevant transnational
features for robust estimation of BP across populations. There-
fore, comparing it to previous work is not straight forward
due to difference in the number of subjects [53], data and
population.

The only work using Aurora-BP dataset is the one from
Mieloszyk et al. [15], where a BP estimation algorithm
using different physiological signals, included ECG, PPG,
and tonometry. Their results from PPG signal achieved an
SBP and DBP estimation accuracy of 0.42 (8.98) and 0.54
(5.95) mmHg, respectively. In contrast, our work showed lower
accuracy with values of 0.48 (13.93) and -0.22 (8.71) mmHg
for SBP and DBP estimation, respectively. Nonetheless, their
study only used an average of 19.3 (10.1) measurement of
a total of 227 participants, without providing specific details
regarding the resulting BP distribution. In contrast, our study
incorporated data from 523 participants, with a mean of 23.92
(11.36) measurements per participant and the BP distribution
in Fig. 0] These discrepancies highlight the influence of data
processing and cleaning techniques on the accuracy of results.

Moreover, in [15] incorporated three features that were left
out in this work: acceleration, which was omitted to only
employ one signal modality, and the sin and cosine of the
time of the day, which introduces a bias by assuming a uniform
sleep pattern for all subjects.

As we observed, BP estimation performance is highly
influenced by the characteristics of the dataset used, which
has been observed in several works where the same BP
estimation algorithm applied to different datasets yielded sub-
stantial differences in accuracy [4], [8], [10], resulting from
a number of factors, such as differences in the population
characteristics, data acquisition protocols, signal quality, and
noise levels present in the datasets. On our work we measured
the significant deviation of the model accuracy when using in-
clinic data in contrast to ambulatory data, even though the
population characteristics and acquisition devices were the
same.

Nevertheless, it is crucial for subsequent research to pri-
oritize the development of BP estimation algorithms that are
robust across diverse populations and reliable enough to handle
suboptimal conditions in PPG signals. Therefore, despite our
comparatively lower accuracy results, we believe that our
findings provide a more realistic representation of a BP
estimation algorithm for ambulatory BP monitoring, aligning
with the future goal of achieving continuous ambulatory BP
monitoring.

Code Availability

The code for preprocessing and feature extraction generated during
this study is available under the GPLv3 License on GitHub [16].

APPENDIX |
FEATURE SELECTION ROBUSTNESS

We evaluated the robustness of the MB-based feature
selection method (PFFS) and compared it with the baseline
of recursive feature elimination (RFE) an algorithm
commonly used in ML to identify the most relevant features
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Fig. 13: Performance comparison between PPFS and RFE
method in the task of domain generalization: both feature
selection methods were tested using a cross-population vali-
dation strategy where the prediction results are obtained using
the selected feature space with ML model finetuning.

for a given variable [54]. It is an iterative process that aims
to determine the optimal subset of features by eliminating
less essential or redundant features based on the ranking
such as feature importance or model-specific coefficient. To
this end, the GB model was trained on the normal, elevated
and HTN S1 populations, and tested on the HTN S2
population. The model developed using the PPFS method
exhibited superior generalization compared to the model
relying on the RFE selection method, as evidenced by the
results for both SBP and DBP estimation (Fig. [T3).
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