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QVISOR: Virtualizing Packet Scheduling Policies

Albert Gran Alcoz, Laurent Vanbever
ABSTRACT
The concept of programmable packet scheduling has been re-
cently introduced, enabling the programming of scheduling
algorithms into existing data planes without requiring new
hardware designs. Notably, several programmable schedulers
have been proposed, which are capable of running directly
on existing commodity switches. Unfortunately, though, their
focus has been limited to single-tenant traffic scheduling: i.e.,
scheduling all incoming traffic following one single schedul-
ing policy (e.g., pFabric to minimize flow completion times).

In this paper, we emphasize the fact that today’s networks
are heterogeneous: they are shared by multiple tenants, who
run applications with different performance requirements.
As such, we introduce a new research challenge: how can we
extend scheduling programmability to multi-tenant policies?

We envisionQVISOR, a scheduling hypervisor that enables
multi-tenant programmable scheduling on existing switches.
With QVISOR, tenants program the scheduling policies for
their traffic flows; operators define how tenants should share
the available resources; andQVISOR does the rest: deploying
the scheduling policies into the underlying hardware.

1 INTRODUCTION
Packet scheduling has been an active area of research since
the early days of the Internet. However, despite the numerous
scheduling algorithms proposed over the years, only a few
of them have made it into production. The reason is that
deploying a new scheduling algorithm requires dedicated
hardware support, yet developing new switch ASICs takes
years and costs a lot of money (up to 200 million USD [2]).
Recently, programmable scheduling has been proposed,

allowing operators to specify (new) scheduling policies on
high-level abstractions that can be deployed to programmable
hardware [31]. Significantly, a set of the programmable sched-
ulers proposed do not require new hardware, and can directly
run on existing commodity switches [3, 12, 26, 27, 39, 40]. They
do so by smartly engineering the resources of programmable
data planes to tag packets with ranks (i.e., priorities) based
on a given policy, and by using the available scheduling
resources to drop or prioritize packets following their ranks.

While promising, these works only cover the case of single-
tenant scheduling, where all the traffic needs to be scheduled
following one single scheduling policy. For example, they may
schedule traffic following the Shortest-Remaining Processing
Time policy to minimize FCTs [4, 5, 25]; or the FIFO+ policy
to minimize tail latency [8, 21]; or a Fair Queuing scheme to
enforce fairness across pre-defined traffic classes [10, 14, 20].
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Figure 1: QVISOR’s high-level architecture.

In practice, however, most networks today (e.g., cloud,
data-center networks, and wide area networks) are shared
by multiple tenants running various applications [19]. Each
of these tenants may need to schedule their traffic using
different policies in order to achieve their performance goals.

As such, in this paper, we introduce a new challenge: can
we simultaneously deploy multiple scheduling algorithms on
the scheduling resources of existing commodity switches?

Enabling multi-tenant scheduling on commodity switches
requires solving two main challenges: (i) providing tenants
a substrate where they can specify their scheduling policies,
and (ii) findingmechanisms tomerge and deploy the specified
policies on top of the underlying hardware resources.

In other domains, this problemhas long been solved thanks
to virtualization, which abstracts the hardware resources and
allows multiple tenants to coexist on the same infrastructure.
The key enabler is the hypervisor, an interface between the
tenants and the hardware, that deploys the applications of the
tenants and orchestrates the hardware resources across them.
Similarly, to enable multi-tenant scheduling on commodity
switches, we need, essentially, a scheduling hypervisor.

A scheduling hypervisor Existing hypervisors typically
virtualize compute resources at the end-hosts (CPU, memory,
and I/O), allowing multiple tenants to access them while
running their applications on virtual machines. Tenants only
need to worry about programming their application, without
having to mind about what other tenants do, nor about the
details of the underlying infrastructure. Operators just have
to specify tenants’ access to resources (e.g., offering isolation
and/or certain guarantees) and how resource conflicts should
be resolved (e.g., by treating some tenants preferentially).
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A scheduling hypervisor should follow the same intuition,
but virtualizing the scheduling resources of the switch (i.e.,
the buffer and compute resources to execute the scheduling
policies). Tenants should specify the scheduling policies to
be used for their traffic on a high-level abstraction, as if they
were to run in isolation on dedicated hardware. The operator
should define how the scheduling resources should be shared
across tenants (e.g., prioritizing traffic from certain tenants).
The hypervisor should take care of the rest: combining and
deploying the specified policies into the hardware resources.

QVISOR We envision QVISOR, a scheduling hypervisor to
virtualize the scheduling resources of commodity switches,
allowing them to be shared by multiple tenants (see Fig. 1).
QVISOR takes as input a specification on how tenants wish
to schedule their traffic, along with a high-level policy by the
operator on how the scheduling resources should be shared.
QVISOR then comes up with a joint scheduling strategy that
follows the per-tenant policies while satisfying the operator’s
constraints, and deploys it into the underlying hardware.

Key challenges Realizing the vision for QVISOR, requires
solving two challenges. First, we need to find flexible and
easy ways for tenants and operators to specify their policies.
Second, we need a means to merge and deploy these policies
into the available infrastructure, while being able to reason
about their performance. The solutions for both challenges
have to be co-designed: we can not offer tenants a more-
expressive abstraction than what can be later deployed, since
it would lead to non-compilable applications, nor a more-
limiting one, since it would lead to inefficient resource usage.

Insights We introduce a preliminary design of QVISOR
that builds upon the following insights:

• Tenants have the illusion that their traffic is scheduled
by a PIFO queue, which they can program using ranks.

• Operators define their policy with a composition lan-
guage that enables resource sharing and prioritization.

• With these definitions, the problem is reduced to gener-
ating a single joint scheduling function, that combines
the scheduling policies of the tenants and the operator.

• The specification is a 2-layer scheduler where the leafs
(resp. root) are the intra- (resp. inter-) tenant policies.

• Multi-tenant policies have higher expressivity than
single-tenant ones, but this only affects the worst case.
In practice, workloads are not always active and do not
always overlap, allowing us to multiplex the schedul-
ing resources over time. When workloads do overlap,
we resort to the high-level policy of the operator.

• Once we have a synthesized joint scheduling function,
we can seamlessly deploy it to commodity schedulers.

• Overall, we essentially “trick” single-tenant schedulers
to work as multi-tenant programmable schedulers.

Traffic volume

Time
t0 t1

Tenant 3
Background
Fair QueuingTenant 2 

Deadline-based
EDF

Tenant 1
Interactive
pFabric

Figure 2: Example of a data-center workload.

2 MOTIVATION
Put yourself in the shoes of an operator managing a network
with three tenants,T1,T2, andT3 (see Fig. 2). Each tenant runs
a different application. Your task is to handle the congestion
in a switch, where the workloads of the three tenants coexist.
The switch supports a PIFO queue, which you can configure
to distribute the available bandwidth across the tenants.

All tenants have specified the scheduling policies that they
wish to use for their traffic.T1 runs an interactive application,
sensitive to delay. Thus,T1 would like to use pFabric’s sched-
uling policy, which prioritizes flows with shorter remaining
time, to minimize FCTs [4]. T2 runs deadline-constrained
flows, where meeting deadlines is crucial but delay sensitiv-
ity is low. Therefore,T2 picks the earliest-deadline-first (EDF)
algorithm to maximize meeting deadlines [9]. T3 runs back-
ground applications and opts for a Fair Queuing scheme [10].
Based on the tenants’ contracts, you know that tenants

T1 and T2 should share the resources fairly, and should have
priority overT3. Your task is challenging for various reasons:

Problem 1: Scheduling policies clash with each other
Within t0 < t < t1, traffic from tenantT1 should be scheduled
using pFabric, and traffic from tenantT2, using EDF. How can
we achieve this behavior on a conventional scheduler? Both
scheduling policies have different objectives, and prioritize
packets based on different metrics: EDF prioritizes packets
based on the deadlines of their flows, and pFabric does it
based on the remaining flow size [4, 9]. As such, if we naively
execute the two scheduling policies simultaneously, they
clash. Indeed, most packets from the deadline-constrained
flows end up taking the link resources, since the priorities de-
fined by the EDF scheduling policy are higher than the ones
set by pFabric [39]. Thus, to reason about how to combine
policies together, we need a way to compare them fairly.

Idea 1: Homogenize scheduling policiesWe can “nor-
malize” and “quantize” policies into a common scale and
granularity. This constrains their behavior and helps us
reason about their interaction. Once polices are homoge-
nized, we can compare them fairly, and think about how
to merge them into a joint scheduling policy.
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Problem 2: The way policies clash changes over time
Even if we have a means to homogenize scheduling policies,
their behavior is not constant: it depends on traffic, and traffic
always changes. Traffic shifts becomemore drastic as tenants
enter or leave the network. For example, at t1, tenantsT1 and
T2 become inactive and tenant T3 starts transmitting. T3 has
different performance requirements thanT1 andT2 and, thus,
requires a different scheduling strategy. At the same time,
traffic from T3 should be scheduled with the lowest priority.
How can we seamlessly switch between scheduling policies?

Idea 2: Anticipate traffic shifts or react upon them
We can develop analysis techniques to evaluate how dif-
ferent scheduling policies may work together, either the-
oretically, offline (e.g., based on worst-case analysis from
the given specification) or online at runtime (e.g., based
on the latest packets received). We can use the results to
anticipate the scheduler to potential traffic shifts.

If we have an upfront specification of the policies of all the
tenants, we can develop static analysis techniques to reason
about the worst-case scenario for the combined workloads.
Then, we can smartly design combined scheduling functions
that enforce the desired behaviors even in the worst condi-
tions. For example, if tenant T3 should be scheduled with
lower priority than T1 and T2, we can shift all the priorities
from the T3’s scheduling policy such that, even in the worst
case, it does not impact the performance of the other tenants.
If we do not have the specification of all tenants in ad-

vance, we can design reaction methods to adapt the schedul-
ing policy at runtime, as tenants enter or leave the network.
Similarly to how we deploy forwarding rules when a packet
from a new flow arrives to an SDN switch, we can adapt the
switch’s scheduling policy under certain events. For example,
an event-driven controller could synthesize a new schedul-
ing policy after the first packets of a new workload arrived,
and deploy it into the data plane. While this may come with
challenges, such as emptying the buffers (e.g., if an incoming
tenant has priority), or resetting the state of stateful sched-
uling functions, we believe that recently-proposed runtime
programmable data planes can help lighting the path [38].
These analysis techniques would also be valuable to pre-

vent adversarial workloads from potentially malicious ten-
ants. For example, they could help us develop monitoring
techniques to identify such adversarial workloads in the net-
work and automatically stop them in case they ever occurred.

Problem 3: We don’t have a standard scheduler PIFO
queues provide us with a comfortable abstraction that eases
the solution to the different challenges. Indeed, PIFO queues
schedule packets with the guarantee that high-priority pack-
ets will always be scheduled before low-priority ones. This
allows us to reduce the problem of designing a scheduling

hypervisor into the one of analyzing how prioritization func-
tions interact with each other and how they can be combined
effectively. Existing switches today, however, do not support
PIFO queues. Instead, they run, at most, PIFO approximations
on top of strict-priority queues or FIFO queues [3, 26, 27, 40].
These PIFO approximations support different operations, and
they offer various types of performance guarantees. How can
we deploy multi-tenant policies on top of these schedulers?

Idea 3: Develop standard APIs or build synthesizers
We can build standard APIs that allow the deployment
of combined scheduling policies into existing schedulers.
Alternatively, we can leverage program synthesis to trans-
form high-level scheduling specifications down to the
available hardware resources of existing switches.

To run on top of an existing scheduler, a scheduling hyper-
visor would need a set of APIs to interact with the various
configuration parameters of the scheduler (e.g., to dedicate
a set of priority queues to a certain tenant). As such, we
would need to abstract the operations that the scheduler
can support, and provide them to the hypervisor as a design
space. With them, the hypervisor would be able to come up
with a possible configuration, that satisfied the specification
and reason about its guarantees. Further, given the set of
operations supported by the scheduler, the hypervisor could
leverage program synthesis to come up with a scheduling
policy that fit into the available resource constraints, even if
it could only satisfy a part of the input specification [13].

3 QVISOR OVERVIEW
We present a preliminary design forQVISOR, that defines its
architecture and grounds the foundation for future research.

At the high-level, we envisionQVISOR to work as follows
(cf. Fig. 1). First, every tenant must specify the scheduling
algorithms that should schedule the traffic within their flows.
Second, the network operator must define a policy on how
the scheduling resources should be distributed across tenants.
Based on these inputs, QVISOR should: (i) synthesize a joint
scheduling policy that follows the scheduling algorithms
specified by the tenants, while respecting the constraints
given by the operator; and (ii) deploy this policy into the un-
derlying hardware to be used to forward incoming packets.

Accordingly, we propose a design composed of two parts:
a synthesizer that runs in the control plane and generates
the joint scheduling policy based on the inputs, and a pre-
processor that runs in the data plane and “prepares” packets
such that they can be scheduled with the synthesized policy.

In the following, we describe QVISOR’s inputs (§3.1), syn-
thesizer (§3.2) and pre-processor (§3.3). We also discuss how
to deploy QVISOR on existing hardware schedulers (§3.4).
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3.1 QVISOR inputs

Per-tenant scheduling policies Tenants define the sched-
uling policy that they want to use to schedule their traffic as
a tuple composed of a traffic subset and a scheduling algo-
rithm. For example, tenant T1 = {P1,pFabric} defines a set
of packets P1, which should be scheduled with the pFabric
algorithm. Another tenant, T2 = {P2, STFQ}, comprises the
set of packets P2 which have to be scheduled using the STFQ
algorithm. Note that a tenant refers to a traffic segment (e.g.,
from a given application), not necessarily a physical tenant.

Packet labels For QVISOR to process incoming packets, it
requires tenants to identify their packets with two labels:
the tenant identifier, and the packet rank. Intuitively, the
tenant identifier allows QVISOR to decide how to schedule
the packet with respect to packets from other tenants, and
the packet rank describes how to schedule the packet with
respect to other packets from the same tenant. Packet ranks
define the priority with which packets should be scheduled
based on the rank function picked by the tenant. Ranks can be
computed at the end-host or at the same switch, but always
have to be specified before reachingQVISOR’s pre-processor.

Operator’s specification The operator defines a high-level
inter-tenant policy using a simple string with the tenant iden-
tifiers, separated by three possible operators: {>>}, {>}, and
{+}. The first operator indicates that the preceding tenant(s)
should have strictly-higher priority than the following one(s),
mandating isolation. The second, states that the preceding
tenant(s) should be preferentially treated with respect to the
following tenant(s). In this case, the priority is applied in
a best-effort manner. The third operator indicates that pre-
ceding and following tenant(s), should share the resources.
For example, the specification {T1 >> T2 > T3 +T4 >> T5}
indicates that tenant T1 should have strictly-higher prior-
ity than tenants T2, T3, and T4, which in turn should have
strictly-higher priority than T5. It also defines that tenant T2
should have higher priority, whenever possible, than T3 and
T4, and that tenants T3 and T4 should share their resources.

3.2 QVISOR synthesizer
Given the input policy specifications of the tenants and the
operator, the goal of the synthesizer is to generate a joint
scheduling function that combines the algorithms of the
different tenants, such that they can be simultaneously used,
while satisfying the high-level requirements of the operator.

We express the joint scheduling function as a set of rank
transformation functions to be applied to the ranks of the
incoming packets. These functions are then deployed into the
pre-processor and applied at line rate to incoming packets.
QVISOR’s synthesizer supports two types of transformation
functions: rank-shift and rank-normalization operations.

T1: {7,8,9}     

T2:    {1,3}        

T3:    {3,5}       

QVISOR  Pre-processor
{1,2,3}


{4,6}

{5,7}

PIFO

31879

54213

12345

  T1 >> T2 + T3

  Tenant 3: Fair Queuing {1,2}

  Tenant 2: EDF {1, 3}

  Tenant 1: pFabric {7,8,9}

A

A B

B

Figure 3: QVISOR’s transformations.

Rank shift It allows the prioritization of traffic from certain
tenants over others. For instance, to prioritize traffic fromT1
over T2, we can shift the ranks of all packets of T1 such that
they have lower ranks than all packets fromT2. Alternatively,
we can shift all ranks ofT2 such that they are higher than the
ones of T1. If the rank distributions are bounded and known
in advance, we can implement most priority operations by
just applying shifts to the ranks of the different tenants.

Rank normalization As we have seen in §2, naively sched-
uling packets with various rank functions simultaneously on
the same scheduler can be detrimental. The normalization
function consists in bounding the ranges of a given rank
function, and quantizing its ranks into discrete levels such
that they can be fairly compared with the (normalized) ranks
of other tenants. With this function, different tenants can be
scheduled simultaneously with a higher degree of fairness
and without loosing their intra-tenant scheduling behavior.

3.3 QVISOR pre-processor
For each incoming packet, QVISOR’s pre-processor parses
the packet headers and extracts the tenant identifier and the
packet rank. It uses these tags to query the transformation
functions that should be applied to the packet, based on the
results of the synthesizer. It executes them, updates the rank,
and forwards the packet to the hardware scheduler.

Example Fig. 3 shows QVISOR’s pre-processor handling a
sequence of packets from tenantsT1,T2, andT3, ranked using
pFabric, EDF, and FQ algorithms, respectively. The operator
has specified that traffic from T1 should have higher priority
than traffic fromT2 andT3, which should share the resources.
Given these inputs, the synthesizer has generated three trans-
formation functions: packets fromT1 carrying ranks {7, 8, 9},
have to be re-labeled with ranks {1, 2, 3}, respectively; pack-
ets from T2 with ranks {1, 3} have to be transformed into
{4, 6}; and packets fromT3 with ranks {3, 5}, into {5, 7}. The
pre-processor applies these transformations and forwards
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the traffic to the scheduler (a PIFO queue), which sorts the
packets based on ranks. As a result, the output sequence
satisfies the input specifications: all packets fromT1 have the
highest priority, and the traffic from tenants T2 and T3 share
the resources evenly. At the same time, traffic within each
tenant is scheduled in order of rank, following the specified
ranking algorithm and achieving their desired performance.

3.4 QVISOR on existing schedulers
To run QVISOR on top of an existing scheduler, we have to
consider two aspects. First, such schedulers consist of the
baseline hardware (e.g., a set of FIFO queues), and some pre-
processing function (e.g., to map packets to queues, or to
decide which packets to admit). To virtualize them, we need
to virtualize both, the hardware and the functions on top.
Second, differently from PIFO queues, these schedulers do
not always guarantee perfect packet sorting based on ranks.
Thus, QVISOR may need additional configurations to fulfill
the specification (e.g., dropping packets above a certain rank
or dedicating queues to some tenants). As such, in order
for QVISOR to run on existing schedulers, it should know
what packet-processing operations they support and what
guarantees they provide. With this information, QVISOR
should be able to synthesize a set of operations to satisfy the
specification while staying within the available resources.

For example, in Fig. 3 we need to prioritize traffic from T1.
In most existing schedulers [3, 27, 39], we can only guarantee
such prioritization by allocating dedicated queues. This is,
if we have a scheduler with five queues, we can map traffic
fromT1 to the three highest-priority queues, and traffic from
T2 and T3 to the two lowest-priority queues. Then, we need
to run two mapping functions in parallel: one to map traffic
from T1 to the first three queues based on the pFabric policy,
and another to map traffic from T2 and T3 to the last two
queues, based on the EDF and FQ algorithms fairly combined.

4 PRELIMINARY EVALUATION
In this section, we show the potential of QVISOR and prove
that it is actually possible to simultaneously run multiple
scheduling algorithms on top of a single-tenant scheduler.
We implement a prof-of-concept version of QVISOR on

Netbench [1], a packet-level simulator. We evaluate it when
scheduling the traffic from two tenants on a data-center
network. We use a leaf-spine topology with 144 servers con-
nected through 9 leaf and 4 spine switches, and set the access
and leaf-spine links to 1Gbps and 4Gbps, respectively. The
first tenant runs a data-mining workload that needs to be
scheduled with the pFabric algorithm. The second tenant
runs 100 flows that transmit at a constant bit-rate of 0.5Gbps
between pairs of servers picked uniformly at random, which
have to be scheduled following the EDF algorithm.
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Figure 4: QVISOR’s performance.

Wemeasure the flow completion time of the pFabric traffic,
under various loads, when the workloads are scheduled by:
a FIFO queue, a PIFO queue, and QVISOR on top of a PIFO
queue under three different policies: when the pFabric traffic
is prioritized, when the EDF traffic is prioritized, and when
both tenants share the resources. We also analyze the ideal
case in which there is only pFabric traffic in the network.
Fig. 4 illustrates the resulting flow completion times for

both, small and big flows. We can see how, FIFO andQVISOR
with a policy that prioritizes EDF traffic, are the most detri-
mental cases for pFabric. This is expected: for the first, the
FIFO scheduler can not prioritze traffic, and thus the pFabric
policy becomes useless; and for the second, pFabric traffic
gets blocked behind EDF traffic. We also see how naively
executing the two scheduling policies on a PIFO queue is
detrimental for pFabric, since most of the pFabric packets
get deprioritized after the ones of EDF. Instead, when we
use QVISOR with a policy that either prioritizes pFabric, or
lets both tenants share the resources fairly, pFabric’s traffic
achieves a performance that is either ideal (i.e., equivalent to
when pFabric traffic runs in isolation), or very close to ideal.

5 LOOKING FORWARD
The path towards scheduling virtualization is still plenty of
open problems. In the following, we discuss a subset of them.

Increasing specification expressivity In our preliminary
QVISOR design, tenants specify their scheduling algorithms
using ranks, and operators define their policies using three
basic operators (§3.1). We expect future research to explore
novel QVISOR designs which can support more expressive
specifications. For example, recent research has proposed
more complex abstractions such as PIFO trees or Directed
Acyclic Graphs (DAGs) [21–23, 30, 31, 33], which offer a
higher degree of expressivity for both tenants and operators.
With them, tenants can specify hierarchical and non-work-
conserving scheduling algorithms, and operators can specify
complex relations across tenants (e.g., multiple tiers). How to
support these abstractions on QVISOR is an open question.

5
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Compiling scheduling policies into hardware We also
expect future research to focus on the interaction between
QVISOR and existing schedulers. As discussed in §3.4, to
work on existing infrastructures, QVISOR needs to be aware
of the operations that they support. These operations have to
be abstracted and provided to QVISOR as a domain-specific
language, which it can then use to synthesize scheduling
configurations. QVISOR also needs to know the guarantees
that these operations offer, to be able to reason about whether
the synthesized configurations can satisfy the specifications.

We could frame QVISOR’s goal as a compilation problem
where, given a high-level specification of the scheduling poli-
cies, and the design space of the operations supported by
hardware, the objective is to come up with a set of operations
that satisfies the policies. In a second step, we could take a
synthesis approach, where QVISOR would not just fail if the
desired policy could not be compiled, but would propose par-
tial specifications implementable on the available resources.
QVISOR would output the proposed configuration, together
with the supported specifications and the offered guarantees.

Optimizing configurations at runtime We expect future
designs of QVISOR to optimize at runtime both, the joint
scheduling policy (e.g. computing transformation functions
at line rate, based on the distribution of the latest packets),
and the hardware-scheduler configurations (e.g., reallocating
queues mapped to a tenant if the tenant is not transmitting).

Multi-objective scheduling algorithms In QVISOR, we
have asked ourselves whether it is possible to run multiple
scheduling algorithms on a single infrastructure. We have
considered the case of having multiple tenants with different
objectives. Another perspective would be to analyze whether
we can achieve multiple objectives simultaneously on the
same traffic. For example, Fair Queuing schemes enforce
fairness, but also help in reducing FCTs, since they implicitly
prioritize short flows. Multi-objective scheduling algorithms
add another dimension to theQVISOR problem, offering new
opportunities to combine traffic with similar requirements.

Synthesizing scheduling algorithms With the advent of
programmable scheduling, we have more abstractions than
ever to represent scheduling algorithms [21, 31] as well as
algorithms for various objectives. Could we abstract and gen-
eralize this knowledge to create scheduling algorithms for
arbitrary performance objectives? This is, given a workload
and a performance goal (e.g., as a utility function or an SLA),
could we synthesize the optimal scheduling algorithm?

Cross-device virtualization Recent works have managed
to implement multi-tenant scheduling policies at the end-
hosts, allowing the virtualization of the scheduling resources
across tenants at the NICs [23, 33]. QVISOR enables multi-
tenant scheduling in the network at commodity switches. As

such, similarly to works in other domains [11, 35], we expect
future research to propose mechanisms to orchestrate the
scheduling virtualization from a network-wide perspective.

6 RELATEDWORK

Packet scheduling Historically, most research on packet
scheduling has focused on the design of algorithms with a
single performance objective, such as enforcing fairness across
traffic classes [8, 10, 14, 20, 28], minimizing FCTs [4, 5, 25]; or
minimizing jitter [8, 21]. Recently, researchers explored the
existence of a universal scheduler that could replicate any
given algorithm [21, 32]. The lack of such a silver-bullet [32]
triggered programmable scheduling [30] and the emergence
of abstractions to make it possible [21, 23, 29, 31, 33]. Among
them, a number of works focused on enabling it on com-
modity hardware [3, 12, 26, 27, 29, 40]. As a result, operators
today can not satisfy all scheduling objectives at once, but
can approximate most individual policies on existing devices.
In QVISOR, we bring up a new research question: is it

possible to simultaneously implement multiple scheduling
algorithms on a shared hardware scheduling infrastructure?
We answer positively by proposing a scheduling hypervisor
that navigates the space between programmable scheduling,
and the ideal concept of a universal packet scheduler.

Virtualizing programmable networks Previous works
have focused on virtualizing programmable networks, from
their end-host counterparts to the in-network resources [6, 7,
15, 17, 18, 24, 34, 36–38, 41–43]. While most solutions target
software switches, SmartNICs or NetFPGAs [17, 24, 34, 41],
a few focus on hardware switches [16, 38, 41–43]. Among
them, [16, 41, 42] optimize resource sharing at compile time
by combining multiple applications into a single program,
[38] enables runtime reprogramming of switch data planes,
and [43] facilitates the dynamic sharing of switch resources
across applications. Only [7, 17] address the virtualization of
the scheduling infrastructure of programmable switches, but
they do not virtualize programmable scheduling policies.

7 CONCLUSION
We introduce a vision for QVISOR, a scheduling hypervisor
to virtualize the scheduling resources in commodity switches,
enabling efficient resource sharing among multiple tenants.
QVISOR acts as an intermediary between tenants and the
underlying hardware. It allows tenants to program their own
policies for their traffic, and operators to define a high-level
policy on how resources should be shared. With these inputs,
QVISOR creates a joint scheduling strategy that combines
the tenant policies, while satisfying the operator’s conditions,
and deploys it to hardware. As a result,QVISOR brings multi-
tenant programmable scheduling to conventional switches.
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