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Abstract

Semidefinite Optimization has attracted the attention of many re-
searchers over the last twenty years. It has nowadays a huge variety

of applications in such different fields as Control, Structural Design, Statis-
tics, or in the relaxation of hard combinatorial problems. In this thesis,
we focus on the practical tractability of large-scale semidefinite optimization
problems. From a theoretical point of view, these problems can be solved
by polynomial-time Interior-Point methods approximately. The complexity
estimate of Interior-Point methods grows logarithmically in the inverse of
the solution accuracy, but with the order 3.5 in both the matrix size and
the number of constraints. The later property prohibits the resolution of
large-scale problems in practice.

In this thesis, we present new approaches based on advanced First-Order
methods such as Smoothing Techniques and Mirror-Prox algorithms for solv-
ing structured large-scale semidefinite optimization problems up to a moder-
ate accuracy. These methods require a very specific problem format. How-
ever, generic semidefinite optimization problems do not comply with these
requirements. In a preliminary step, we recast slightly structured semidefi-
nite optimization problems in an alternative form to which these methods are
applicable, namely as matrix saddle-point problems. The final methods have
a complexity result that depends linearly in both the number of constraints
and the inverse of the target accuracy.

Smoothing Techniques constitute a two-stage procedure: we derive a smooth
approximation of the objective function at first and apply an optimal First-
Order method to the adapted problem afterwards. We present a refined ver-
sion of this optimal First-Order method in this thesis. The worst-case com-
plexity result for this modified scheme is of the same order as for the original
method. However, numerical results show that this alternative scheme needs
much less iterations than its original counterpart to find an approximate solu-
tion in practice. Using this refined version of the optimal First-Order method
in Smoothing Techniques, we are able to solve randomly generated matrix
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saddle-point problems involving a hundred matrices of size 12′800 × 12′800
up to an absolute accuracy of 0.0012 in about four hours.
Smoothing Techniques and Mirror-Prox methods require the computation of
one or two matrix exponentials at every iteration when applied to the matrix
saddle-point problems obtained from the above transformation step. Using
standard techniques, the efficiency estimate for the exponentiation of a sym-
metric matrix grows cubically in the size of the matrix. Clearly, this opera-
tion limits the class of problems that can be solved by Smoothing Techniques
and Mirror-Prox methods in practice. We present a randomized Mirror-Prox
method where we replace the exact matrix exponential by a stochastic ap-
proximation. This randomized method outperforms all its competitors with
respect to the theoretical complexity estimate on a significant class of large-
scale matrix saddle-point problems. Furthermore, we show numerical results
where the randomized method needs only about 58% of the CPU time of
the deterministic counterpart for solving approximately randomly generated
matrix saddle-point problems with a hundred matrices of size 800× 800.
As a side result of this thesis, we show that the Hedge algorithm – a method
that is heavily used in Theoretical Computer Science – can be interpreted
as a Dual Averaging scheme. The embedding of the Hedge algorithm in the
framework of Dual Averaging schemes allows us to derive three new versions
of this algorithm. The efficiency guarantees of these modified Hedge algo-
rithms are at least as good as, sometimes even better than, the complexity
estimates of the original method. We present numerical experiments where
the refined methods significantly outperform their vanilla counterpart.
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Zusammenfassung

Die Semidefinite Optimierung hat in den letzten 20 Jahren das Interesse
unzähliger ForscherInnen auf sich gezogen und weist heutzutage eine

Vielzahl von Anwendungen in den verschiedensten Gebieten wie Regelungs-
technik, Baukonstruktion oder Statistik auf. Ausserdem werden schwierige
kombinatorische Probleme häufig durch semidefinite Hilfsprobleme appro-
ximiert. Der Fokus dieser Arbeit liegt auf dem möglichst raschen Lösen
von grossen semidefiniten Optimierungsproblemen. Theoretisch können diese
Probleme approximativ mit der Inneren-Punkte Methode gelöst werden, da
dieser Algorithmus eine polynomielle Laufzeit hat. Die schlimmst mögliche
theoretische Laufzeit dieser Methode wächst logarithmisch mit dem In-
versen der Fehlertoleranz und mit der Potenz 3.5 bezüglich der Grösse
der Entscheidungsmatrix und der Anzahl der Nebenbedingungen. In der
Praxis ist tatsächlich eine relativ schnelle, obwohl polynomielle, Zunahme
der Rechenzeit bezüglich der Matrixgrösse und der Anzahl der Nebenbedin-
gungen beobachtbar. Dadurch ist die Innere-Punkte Methode ungeeignet für
die numerische Lösung grosser semidefiniter Optimierungsprobleme.

In dieser Arbeit werden neue Methoden vorgestellt, die leicht strukturierte,
grosse semidefinite Optimierungsprobleme bis auf einen moderaten Approxi-
mationsfehler lösen können. Diese Methoden basieren auf fortgeschrittenen
Subgradienten Algorithmen wie Smoothing Techniques oder Mirror-Prox
Methoden, die aber nur auf Probleme mit einer ganz speziellen Struktur
angewendet werden können. Jedoch weicht die Form der semidefiniten Opti-
mierungsprobleme, die in dieser Dissertation betrachtet werden, von der vo-
rausgesetzten Struktur ab. In einem ersten Schritt werden die Ausgangspro-
bleme daher in eine passende Form umgewandelt und als Sattelpunktpro-
bleme formuliert, auf welche die fortgeschrittenen Subgradienten Methoden
angewendet werden können. Die theoretischen Laufzeiten der so erhaltenen
Methoden wachsen linear in der Anzahl der Nebenbedingungen und im In-
versen der Fehlergenauigkeit.
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chend differenzierbare Approximation der Zielfunktion hergeleitet. Danach
wendet man auf das neue Problem eine optimale Subgradienten Methode
an. In dieser Dissertation wird eine verfeinerte Version dieser optimalen
Subgradienten Methode hergeleitet. Die theoretische Laufzeit des adap-
tierten Algorithmus ist im ungünstigen Fall von der gleichen Grössenordnung
wie die Laufzeit der ursprünglichen Methode. In der Praxis ist allerdings
eine signifikante Beschleunigung beobachtbar, da der angepasste Algorith-
mus bedeutend weniger Iterationen als die ursprünglichen Methode braucht.
Durch die Integration dieser abgeänderten Methode in Smoothing Techniques
sind zufällig erzeugte Instanzen von Sattelpunktproblemen mit Matrizen der
Grösse 12′800×12′800 bis auf einen absoluten Fehler von 0.0012 in ungefähr
vier Stunden lösbar.
Wenn die fortgeschrittenen Subgradienten Methoden auf die Sattelpunkt-
probleme, die durch die Transformation der ursprünglichen semidefiniten
Optimierungsprobleme entstehen, angewendet werden, muss pro Iteration
mindestens ein Matrixexponential berechnet werden. Die Rechenzeit für
eine solche Operation wächst kubisch mit der Grösse der symmetrischen Ma-
trix, vorausgesetzt, dass das Exponential über die Diagonalisierung der sym-
metrischen Matrix berechnet wird. Diese Operation wird in der Praxis offen-
sichtlich zum kritischen Faktor, falls Smoothing Techniques oder Mirror-Prox
Methoden zum Lösen von grossen Instanzen der betrachteten Sattelpunkt-
probleme eingesetzt werden sollen. In dieser Dissertation wird eine ran-
domisierte Mirror-Prox Methode präsentiert, bei der das Matrixexponential
durch eine stochastisch erzeugte Approximation ersetzt wird. Dieser ran-
domisierte Algorithmus unterbietet alle existierenden Methoden bezüglich
der theoretischen Laufzeit auf einer signifikanten Subklasse von grossen
Sattelpunktproblemen mit Matrizen. Diese theoretischen Resultate wer-
den durch Beobachtungen in der Praxis belegt: Die randomisierte Methode
benötigt etwa 58% der Rechenzeit des deterministischen Pendants für das ap-
proximative Lösen von zufällig erzeugten Instanzen mit Matrizen der Grösse
800× 800.
Als Nebenresultat dieser Dissertation wird der Hedge Algorithmus – eine
Methode, die in der Theoretischen Informatik weit verbreitet ist – im Kon-
text von Dual Averaging Methoden eingebettet und diskutiert. Basierend
auf dieser Interpretation werden drei neue Versionen des ursprünglichen
Hedge Algorithmus hergeleitet. Die theoretischen Komplexitätsresultate der
neu entwickelten Algorithmen sind gleich gut oder gar besser als die Ef-
fizienzgarantien der bisherigen Methode. Es werden numerische Resultate
präsentiert, bei denen diese neuen Methoden zu deutlich besseren Resultaten
führen als der ursprüngliche Hedge Algorithmus.
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Chapter 1
Introduction

1.1 Motivation

Semidefinite Optimization is generally appreciated as the most exciting in-
novation in Convex Programming in the 1990’s; see for instance [Fre99]. It
constitutes a generalization of Linear Programming, where the cone of non-
negative vectors is replaced by the cone of positive semidefinite matrices.
That is, we are supposed to minimize a linear function over a set of positive
semidefinite matrices, where this set of matrices is described by a collection
of linear inequalities.
Nowadays, an impressive amount of real-life optimization problems, from
nearly all fields of engineering, can be represented or approximated by
semidefinite optimization problems. For instance, Semidefinite Optimization
is used in Control [BGFB94], in Structural Design [BTN97], or in Statis-
tics [BV04], only to name a few. Probably the most famous applications
are semidefinite relaxations of hard combinatorial problems; see for instance
[GW95, NRT99].
Many modern real-life optimization problems – including up-to-date semidef-
inite optimization problems – are of very large-scale. Generally speaking,
the emergence of large-scale optimization problems has two reasons. One
the one hand, it has become relatively easy and cheap to collect and store
huge amounts of data over the last few years. For instance, we may men-
tion here web-based social platforms, customer bonus cards, or surveillance
cameras, where massive amounts of data are collected every day. On the
other hand, the real-life systems that we study and try to model as opti-
mization problems are getting more and more complex. The relatively new
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2 1. Introduction

field of Systems Biology serves as a prime example here. In Systems Biology,
researcher try to analyze, reconstruct, and understand highly complex bio-
logical systems using – among others – optimization tools; see for instance
[HNTW09, PRP04, TS08].

Motivated by these facts, we study the practical tractability of large-scale
semidefinite optimization problems in this thesis. Semidefinite optimization
problems that involve matrices of size a few hundred times a few hundred
and with a few thousand constraints can be solved up to a very high ac-
curacy by Interior-Point methods [Ali95, NN93]. However, if we go beyond
this problem size, it takes Interior-Point methods too long to derive an ap-
proximate solution in practice. More formally, Interior-Point methods have
a theoretical worst-case running time that is of the order

O
(√
m+ n

[
mn3 +m2n2 +m3] ln [(m+ n)/ε]

)
,

where m denotes the number of constraints, n the matrix size, and ε the
target accuracy; see Chapter 6 for a review. The logarithmic dependence
on ε makes Interior-Point methods a tailored tool for finding highly accurate
solutions, whereas the fast – although polynomial – growth in m and n limits
the size of problems that can be handled in practice. In order to comply with
the modern trends in Semidefinite Optimization, that is, in order to be able to
solve large-scale semidefinite optimization problems in practice, the following
question arises immediately:

“Assume that we tolerate a moderate complexity increase with respect to the
solution accuracy ε, say from ln[1/ε] to 1/ε, or even to 1/ε2. Does there exist
an algorithm for solving semidefinite optimization problems with a running
time that is below the complexity estimate of Interior-Point methods with
respect to the matrix size and the number of constraints?”

This is the opening question of this thesis. Note that a moderate solution
accuracy is usually not a barrier in practice, as two or three accuracy digits
are typically sufficient for practical applications.

In 2007, Arora and Kale [AK07] introduced an alternative approach for solv-
ing slightly structured large-scale semidefinite optimization problems. They
perform a Binary Search over the objective function values. At every itera-
tion of this search, they are supposed to answer a feasibility question. The
answer to this question is derived by a Matrix Multiplicative Weights Update
method. In total, they need to perform, roughly speaking, O

(
ln[1/ε]/ε2

)
it-

erations of this method in order to find a solution with approximation error
ε > 0. By “roughly speaking”, we refer to the fact that the complexity result
depends also on other problem parameters such as the scaling of the problem.
At every iteration of this method, the exponentiation of a symmetric matrix
and some other computations not exceeding the cost of O(mn2) arithmetic
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operations are supposed to be carried out. Provided that we compute the
exponential through an eigendecomposition of the symmetric matrix, we end
up with a method that requires in total, roughly speaking,

O
(
[n3 +mn2] ln[1/ε]/ε2

)
arithmetic operations to compute an approximate solution. In case of sparse
matrices, the term mn2 in the above complexity result can be reduced in
accordance to the sparsity pattern of the matrices. Arora and Kale [AK07]
also discuss some strategies to replace the exact value of the matrix expo-
nential by a random approximation in their Matrix Multiplicative Weights
Update method. For instance, they present a random approximation that is
based on the Johnson-Lindenstrauss Lemma [JL84] and on an appropriate
truncation of the matrix exponential Taylor series. Using this randomization
procedure, we end up with an algorithm whose complexity grows with the
order of O(ln[1/ε]/ε5) with respect to solution accuracy ε > 0. Because of
this fast growth in ε, we do not elaborate more on this randomization of their
method in this thesis.

The Matrix Multiplicative Weights Update method, which was intro-
duced simultaneously by Arora and Kale [AK07] and by Warmuth et al.
[TRW05, WK06], can be seen as a generalization of Multiplicative Weights
Update methods to matrices; see [AHK05] for a survey of these methods.
The basic concept of Multiplicative Weights Update methods plays a cru-
cial role in the development of algorithms in Machine Learning and in Data
Mining, or, more generally, in Computer Science. For instance, AdaBoost
[FS97] – one of the top ten Data Mining algorithms (see [WKR+07] for the
complete list) – is based on the Hedge algorithm [FS97], which follows the
same basic construction as Multiplicative Weights Update methods. Inter-
estingly enough, the Hedge algorithm and (Matrix) Multiplicative Weights
Update methods have the same analytical complexity as Dual Averaging
schemes [Nes09]: the iteration count of all these methods grows with the
order O(1/ε2). This observation gives rise to the conjecture that the Hedge
algorithm and (Matrix) Multiplicative Weights Update methods are partic-
ular instances of Dual Averaging schemes.

Let us now get back to Semidefinite Optimization. When we compare the
complexity results of Interior-Point methods and Arora and Kale’s scheme for
solving slightly structured semidefinite optimization problems, we make the
following two observations. On the one hand, the complexity of Arora and
Kale’s method grows only linearly in the number of constraints. This is in
sharp contrast to Interior-Point methods, where the complexity result grows
with the power 3.5 with respect to m. On the other hand, there is a tremen-
dous gap (namely, a factor of 1/ε2) in the worst-case complexity bounds of
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Interior-Point methods and Arora and Kale’s scheme. These observations
result in the following adaption of the opening question:

“Does there exist a method for solving slightly structured semidefinite opti-
mization problems whose iteration count grows, roughly speaking, with the
order O(1/ε) and whose iteration cost is given by O(n3 +mn2)?”

Smoothing Techniques [Nes05] and Mirror-Prox methods [Nem04a] were
introduced recently. These powerful methods can be applied to non-
differentiable convex problems that have a very specific structure, namely
to a huge variety of matrix saddle-point problems. The matrix saddle-point
problems that we consider in this thesis correspond all to the problem of
minimizing the maximal eigenvalue of convex combinations of symmetric
matrices. When we speak of matrix saddle-point problems, we henceforth au-
tomatically refer to the maximal eigenvalue minimization problem. Interest-
ingly enough, the iteration count of Smoothing Techniques and Mirror-Prox
methods grows with the desired order O(1/ε), where ε denotes the solution
accuracy. However, these powerful methods are not directly applicable to
generic semidefinite optimization problems, as these problems do not satisfy
the structural requirements of the algorithms. Nevertheless, this approach
seems to be very promising, because Chudak and Eleutério [CE05] success-
fully applied these methods to large-scale linear optimization problems with
up to millions of variables and constraints. As linear programs constitute a
particular subclass of semidefinite optimization problems, it seems to be very
natural to extend their approach to the more general class.

In the situation where the decision variables are matrices, Smoothing Tech-
niques and Mirror-Prox methods suffer the same computational bottleneck
as the Matrix Multiplicative Weights Update algorithm: they need to deter-
mine the exponential of a symmetric (n × n)-matrix at every iteration; see
[Nes07] and [Nem04a] for the details. There exists plenty of different ways to
determine or to approximate these exponentials; see [ML03] for the classical
survey on this topic. Standardly, this exponentiation is performed through
an eigendecomposition of the symmetric matrix, requiring O(n3) arithmetic
operations and, consequently, hampering the resolution of problems with
huge matrices. In order to extend the class of matrix saddle-point problems
that can be successfully handled by Smoothing Techniques or Mirror-Prox
methods in practice, we need to find strategies that allow us to replace this
matrix exponential by an approximation that can be computed faster.

1.2 Goals of the thesis

Let us list the goals of this thesis.
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A. Apply Smoothing Techniques and Mirror-Prox methods to
semidefinite optimization problems

In order to close the dramatic gap between the complexity results of Interior-
Point methods and Arora and Kale’s scheme [AK07] with respect to the so-
lution accuracy, we want to apply Smoothing Techniques and Mirror-Prox
methods to slightly structured semidefinite optimization problems. However,
these problems do not match the structural requirements of Smoothing Tech-
niques and Mirror-Prox methods. In a preliminary step, we therefore need
to find an appropriate reformulation of semidefinite optimization problems,
that is, we are supposed to recast them as matrix saddle-point problems.

B. Reduce the number of iterations of Smoothing Techniques in
practice

Smoothing Techniques are a two-stage procedure. In a first step, an appro-
priate smooth approximation of the objective function is built. This con-
struction exploits the very specific form by which non-differentiability enters
the problem. In a second step, we apply an optimal First-Order method
[Nes04, Nes05] to the smooth auxiliary problem. At every iteration of this
optimal First-Order method, the Lipschitz constant of the gradient of the
smoothed objective function is used to determine the next iterate. Clearly,
this constant is a global parameter of the problem and might be very pes-
simistic for the local environment of the algorithm’s current iterate. We want
to derive a strategy that allows us to replace this global constant by local
estimates in the optimal First-order method [Nes04, Nes05].

C. Reduce the iteration cost in Mirror-Prox methods

As pointed out above, both Smoothing Techniques and Mirror-Prox methods
require the computation of a matrix exponential at every iteration when
applied to matrix saddle-point problems. When we solve problems with huge
matrices, this operation becomes critical with respect to the running time of
the method. We want to overcome this difficulty by replacing the exact
value of the matrix exponential in Mirror-Prox methods by a randomized
approximation that can be computed faster. We perform this discussion for
Mirror-Prox methods, as this topic was studied in a joint project with Arkadi
Nemirovski, the designer of Mirror-Prox methods.

D. Interpret the Hedge algorithm as a Dual Averaging scheme

As shown in [CBL06], the Hedge algorithm can be seen as a particular in-
stance of Mirror-Descent methods [NY83], which are a subclass of Dual Aver-
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aging schemes. In this thesis, we want to study this interpretation, point out
its severe inconsistencies, and give a complete and consistent discussion of
the Hedge algorithm in the context of Dual Averaging schemes. In particular,
given the knowledge we gain from this new perspective on the Hedge algo-
rithm, we hope to define alternative versions of this scheme, which perform
even more successfully in theory and in practice than the vanilla method.

1.3 Structure of the thesis

This thesis is split in three parts.

Part I: Analytical complexity of solution methods in Convex Op-
timization

In Part I of this thesis, we lay the theoretical and methodical foundation of
this thesis. We introduce general optimization problems, review all properties
of both the objective function and the feasible set which are relevant for this
thesis, and study the computational tractability of optimization problems in
Chapter 2. In Chapter 3, we discuss some Black-Box Optimization methods,
namely Dual Averaging schemes, Primal-Dual Subgradient methods, Mirror-
Descent algorithms, and optimal First-Order methods. In particular, we
present a refinement of optimal First-Order methods which complies with
Goal B. We conclude Part I by reviewing Smoothing Techniques, Mirror-
Prox schemes, and Interior-Point methods in Chapter 4.

Part II: A new perspective on the Hedge algorithm

Part II consists only of Chapter 5 and addresses exclusively Goal D. In this
chapter, we recast the Hedge algorithm in the context of Dual Averaging
schemes and derive three new versions of this method, which have theoretical
convergence guarantees that are better or at least as good as the convergence
result for the vanilla scheme. Numerical results show that all these modified
methods perform better than their original counterpart in practice.

Part III: Approximately solving large-scale semidefinite optimiza-
tion problems

Part III represents the core of this thesis. In Chapter 6, we give an introduc-
tion to large-scale Semidefinite Optimization and derive the full complexity
result of Interior-Point methods for semidefinite optimization problems. We
recast the Matrix Multiplicative Weights Update method in the context of
Dual Averaging schemes and discuss the approach of Arora and Kale [AK07]
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for solving slightly structured semidefinite optimization problems in Chapter
7. The first part of this chapter can be seen as a generalization of some of the
results from Chapter 5 to a matrix setting. In Chapter 8, we achieve Goal A
by reformulating slightly structured semidefinite optimization problems in a
form to which we can apply not only Primal-Dual Subgradients methods and
Mirror-Descent schemes, but also advanced tools such as Smoothing Tech-
niques and Mirror-Prox methods. That is, we recast these problems as ma-
trix saddle-point problems. In the same chapter, we discuss the complexity
of Mirror-Descent schemes when applied to these problems. We particular-
ize Smoothing Techniques for matrix saddle-point problems in Chapter 9. In
particular, we obtain a procedure that can be used to solve slightly structured
semidefinite optimization problems. Importantly, the complexity estimate of
this procedure is of the form O(1/ε) with respect to the solution accuracy
ε > 0. In Chapter 10, we study the application of Mirror-Prox methods
to matrix saddle-point methods and discuss a randomized computation of
matrix exponential approximations. We conclude this part by showing some
numerical results in Chapter 11.
The conclusions and an outlook are presented in Chapter 12. In the Ap-
pendix, we give a short introduction to regular norms and collect some tech-
nical proofs.





Part I

Analytical complexity of solution methods in

Convex Optimization





Chapter 2
Convex Optimization and

computational tractability

“In our opinion, the main fact, which should be known to any person deal-
ing with optimization models, is that in general optimization problems are
unsolvable.”

(Yurii Nesterov, 2004; see Page xv in [Nes04])

Every human being has to make several decisions every day. Some of
them are of harmless consequences, others may seriously affect the de-

cision maker and her environment in a positive or negative way, maybe even
for a long time. Given a set of alternatives, called the feasible set, any rea-
sonable decision maker wants to find an alternative with the most favorable
utility for her and/or her environment. The utility is expressed in the form
of an objective function, that is, a function that assigns a value to any
alternative from the feasible set. The decision maker’s target is now to find
an element from the feasible set that maximizes the objective function, that
is, the utility, over this set.
We give a mathematical reformulation of this decision problem in Section 2.1.
Recasting a real-life decision problem in such a mathematical form is often a
time-consuming, intensive, but also highly interesting process that requires
a lot of creativity, experience in system design, and reflection on the current
real-life situation. However, not any reformulation of the real-world problem
as a mathematical optimization problem is computationally tractable. Sys-
tem design (or mathematical modeling) is typically a trade-off between com-
putational tractability and accurate reproduction of the real-world situation.

11
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Loosely speaking, computational intractability means that the computation
time required to find such an element with the most favorable utility grows
prohibitively fast with respect to certain problem parameters. A proper in-
troduction of the notion of computational (in)tractability is given in Section
2.2.

In Section 2.3, we study convexity and other properties of both the feasible
set and the objective function. If both the feasible set and the objective func-
tion are convex, we say that an optimization problem is convex. Convex
optimization problems form a particularly favorable family of optimization
problems. As we show in Section 2.4, convex optimization problems are com-
putationally tractable under very mild assumptions. This in sharp contrast
to the computational tractability of general optimization problems, as no
efficient method is known for solving them.

Finally, in Section 2.5, we introduce the notion of Bregman distances. Breg-
man distances are a tool to represent the geometric structure of the feasible
set more adequately than, for instance, the standard Euclidean metric. This
tool plays an important role in the subsequent chapters, where we study
algorithms that can be applied to convex optimization problems.

Contributions and relevant literature: This chapter is a review
of existing basic definitions and results. We mainly use the references
[BTN01, HUL93, Nem04a, Nes04, Nes07, Nes09, Roc70]. Parts of this re-
view chapter are taken from [BBN11].

2.1 Mathematical formulation of an optimization prob-
lem

In this section, we give a mathematical reformulation of the real-life decision
problem that we sketched above.

The alternatives in the above real-life decision problem are modeled as real
vectors of length n, implying that the set of alternatives corresponds to a
subset of Rn. We refer to this set as feasible set and denote it by Q ⊂ Rn.
The elements of Q are called feasible points. The negative utility of a feasible
point x ∈ Q is expressed (or modeled) as the function value f(x), where
f : Rn → R ∪ {+∞} may attain any real number or +∞. We refer to f as
the objective function. Solving the real-life decision problem corresponds
now to minimize1 the objective function over the feasible set, which can be
formulated as the optimization problem:

f∗ := inf
x∈Q

f(x). (2.1)

1Note that minimizing the negative utility corresponds to maximizing the utility.
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Throughout the thesis, we assume that Problem (2.1) is solvable, that is,
there exists a point x∗ ∈ Q such that f∗ = f(x∗) < +∞.2 In particular,
the “inf”-expression in (2.1) can be replaced by a “min”. Any point x∗ ∈ Q
that satisfies f∗ = f(x∗) is called an optimal solution to (2.1), and we
refer to f∗ as the optimal value to (2.1). Identifying an optimal decision
to the mathematical formulation of the real-life problem is now equivalent to
finding a feasible point x∗ that satisfies f∗ = f(x∗).

Example 2.1 (Linear Optimization) A linear optimization problem, or
Linear Program, is of the form

min
x

{
cTx : Ax ≤ b, x ∈ Rn≥0

}
, (2.2)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and R≥0 := {x ∈ Rn : x ≥ 0}. It is called
linear, as both the objective function and the feasible set are described solely
by linear functions.

2.2 What does computational tractability mean?

In order to find an optimal solution to Problem (2.1), we would like (and
we typically need) to take advantage of the immense computation power
of modern computers. In this section, we discuss the details of the use of
computers for finding such a solution to (2.1), that is, we specify the computer
model we want to use, the input to the computer, the code that we run,
and the output of the computer. Importantly, this discussion will enable us
to specify what computational tractability of optimization problems means.
We follow closely Sections 5.1.2, 5.4.2, and 6.1 in the book of Ben-Tal and
Nemirovski [BTN01].
At first, we need to clarify what we expect from the computer. In this the-
sis, we use the real arithmetic computer model, which corresponds to
an idealized variant of the common computer. In this model, the computer
can store countably many real numbers. In addition, the computer is able
to perform exactly the elementary operations, which are addition, subtrac-
tion, multiplication, division, evaluation of standard functions such as exp(·),
and comparisons. Although these requirements significantly differ from the
properties of a real-world computer, this model is commonly used in Con-
vex Optimization. The main reason for its popularity is that we can avoid
annoying formal details by choosing this model.

2For the problems that we study later on, we can explicitly guarantee the existence
of an optimal solution. To simplify our exposition, we thus assume the existence
of an optimal solution in this theory review and do not elaborate on infeasible or
unbounded problems.
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As next, we discuss the encoding of Problem (2.1). We never study the
performance of a solution method with respect to a single instance of Problem
(2.1), but rather for a family of problem instances. This family P is defined by
the common structure of all problem instances p ∈ P. Any instance p ∈ P
is encoded by a finite-dimensional real data vector Data(p). This vector
comprises the dimension parameters of the problem and the coefficients of the
generic analytic expressions for f(x) and Q. In order to make the encoding
clear, we give an example below. We define the size of the instance p ∈ P
as the dimension of the data vector, that is:

Size(p) := dim(Data(p)).

Example 2.2 (Ex. 2.1 continued; see Section 5.1.2 in [BTN01])
Any instance p of the family LP of Linear Optimization Problems (2.2) is
encoded as follows:

Data(p) = [n,m, a11, . . . , a1n, a21, . . . , am1, . . . , amn, b1, . . . , bm, c1, . . . , cn] ,

where A = (aij)
m,n
i,j=1. We obtain:

Size(p) = 2 +mn+m+ n.

From the previous section, we know that the resolution of Problem (2.1) is
identical to finding an optimal solution. However, this target can typically
not be achieved. Generally, it is impossible to compute an exact real opti-
mal solution to an arbitrary instance of (2.1) using finitely many elementary
operations. Fortunately, this is not a practical restriction at all, as “approx-
imate” solutions are sufficient for all practical purposes. No decision maker
is able to implement a solution with an infinite number of digits in practice.
Let us now formalize what we mean by “approximate” solutions.
Let P be a family of Optimization Problems (2.1), p ∈ P, and x ∈ Rn.
We assume that this family is equipped with an infeasibility measure
InfeasP(x, p). This measure complies with the requirements:

1. InfeasP(x, p) ≥ 0.

2. InfeasP(x, p) = 0 if and only if x is feasible for p.

3. For any λ ∈ [0, 1] and any y ∈ Rn:

InfeasP(λx+ (1− λ)y, p) ≤ λInfeasP(x, p) + (1− λ)InfeasP(y, p).

Example 2.3 (Ex. 2.1 continued; see Section 5.1.2 in [BTN01])
For the family LP of linear optimization problems, we can take:

InfeasLP(x, p) = max

[
0, max

1≤j≤m
{(Ax)j − bj} , max

1≤i≤n
{−xi}

]
,

where x ∈ Rn and p ∈ LP.
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We are able to define approximate solutions properly.

Definition 2.1 (ε-solution) Let ε > 0. We call x̂ ∈ Rn an ε-solution to
(2.1) if it satisfies at the same time InfeasP(x̂, p) ≤ ε and f(x̂)− f∗ ≤ ε.

A feasible ε-solution to (2.1) is consequently a point x̂ ∈ Q that complies
with the condition f(x̂)− f∗ ≤ ε. Alternatively, we may define approximate
solutions in relative scale:

Definition 2.2 (Feasible ε-solution in relative scale) Let ε ∈ (0, 1)
and f∗ > 0. We refer to x̂ ∈ Q as a feasible ε-solution in relative scale
to (2.1) if f(x̂)− f∗ ≤ εf∗, that is, if f(x̂) ≤ (1 + ε)f∗.

Note that we display here the strong version for the definition of approximate
solutions in relative scale. There exists also a weak version of this notion,
where we replace f(x̂) − f∗ ≤ εf∗ in the above definition by the condition
f(x̂) − f∗ ≤ εf(x̂), that is, by (1 − ε)f(x̂) ≤ f∗. Clearly, any point x ∈ Q
that satisfies f(x)− f∗ ≤ εf∗ fulfills also the requirement f(x)− f∗ ≤ εf(x),
as f(x) ≥ f∗ by the definition of f∗. However, the opposite statement is not
true, which explains the attributes “weak” and “strong”.

In both the absolute and the relative scale, the ultimate goal is to control
the optimality gap: given a feasible point x̂ ∈ Q, we want to bound

δ(x̂) := f(x̂)− f∗. (2.3)

As x̂ is feasible, this quantity is evidently non-negative. If we allow x̂ to take
values outside of Q, the difference δ(x̂) might become negative.

We compute an approximate solution to Problem (2.1) by running a piece of
code on the idealized real arithmetic computer. Formally, we call this code
a solution method M for the family P of Optimization Problems (2.1). In
order to solve an instance p ∈ P, the computer reads in Data(p) and ε,
performs a finite number of elementary operations instructed by the solution
method M, and outputs an ε-solution for p.

Let us now discuss the efficiency of the solution method M. We write
ComplM(p, ε) for the number of elementary operations that are carried out by
the computer when we run M for finding an ε-solution to problem instance
p. This notion involves both the particular problem instance p ∈ P and the
chosen error tolerance ε. However, efficiency of a solution method should be
defined not only with respect to a single problem instance, but rather with
respect to the whole family of problems. Let us formalize this requirement.

Definition 2.3 (Polynomial-time solution method) We call M a
polynomial-time solution method on P if there exists a polynomial

q : R× R→ R such that:
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ComplM(p, ε) ≤ q
(

Size(p), ln

(
Size(p) + ‖Data(p)‖1 + ε2

ε

))
(2.4)

for any p ∈ P and for any ε > 0.

As discussed in Section 5.1.2 in [BTN01], we can interpret

Digits(p, ε) := ln

(
Size(p) + ‖Data(p)‖1 + ε2

ε

)
as a bound on the number of accuracy digits of an ε-solution. When we fix p
and assume that ε is bounded from above by a constant O(1), the numerator
in the above fraction can be bounded by another constant O(1), which allows
us to write:

Digits(p, ε) = O(1) ln

(
1

ε

)
= O(1)α with ε = 10−α.

Let us illustrate the relationship between the accuracy and the complexity
of a solution method.

Example 2.4 (Adapted from Section 5.1.2 in [BTN01]) In Sections
4.2 and 6.2, we study Interior-Point (IP) methods [Kar84], which are of
polynomial time and have an Upper Bound (2.4) that is linear with respect
to Digits(p, ε). Let us focus now for a moment on the effects of the solution
accuracy ε > 0 on the complexity result. We assume that p ∈ P. Then, the
complexity estimate for Interior-Point methods can be written in the form:

ComplIP(p, ε) = O(1) ln

(
1

ε

)
= O(1)α with ε = 10−α. (2.5)

Suppose that there exists another solution method, denoted by AFO and with
the complexity estimate:

ComplAFO(p, ε) = O(1)
1

ε
= O(1)10α with ε = 10−α. (2.6)

That is, AFO may correspond to one of the advanced First-Order methods that
will be discussed in Section 3.4 as well as Chapters 9 and 10.
It was in 2006 when I attended my first course in Optimization. Let us assume
that both solution methods IP and AFO were able to solve p up to an accuracy
of two digits in, say, t seconds using a modern computer in 2006. Moore’s
law says that the computer speed doubles every 18 months, that is, a modern
computer of 2012 is 16 times faster than the computer which was used in
2006. Applying solution method IP to problem instance p and running it on
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a modern computer in 2012 for the same t seconds, we obtain a solution that
is correct up to 32 digits. In contrast, with solution method AFO, we obtain a
solution with only three accuracy digits.

Finally, we are ready to define computational tractability of optimization
problems.

Definition 2.4 (Polynomially solvable family) We say that a family P
of optimization problems is polynomially solvable if there exists a polynomial-
time solution method for P.

Polynomial solvability, that is, computational tractability, is a purely theo-
retical concept. But, what does this concept mean for practical tractability
of a family of optimization problems? Is a polynomial-time solution method
always fast in practice? Do non-polynomial-time solution methods necessar-
ily show a bad performance in practice? Let us discuss these questions with
the aid of an example.

Example 2.5 (Ex. 2.1 cont.; see Sect. 5.1.2, 5.4.2, 6.1 in [BTN01])
A polynomially solvable family P of optimization problems admits, by def-
inition, a polynomial-time solution method M. However, the number of
elementary operations performed by the computer when running solution
method M for finding an ε-solution to a problem instance p ∈ P could grow
of the order [Size(p)]3.5, or of the order [Size(p)]10, or even worse. So,
polynomial-time solution methods are not necessarily fast in practice. The
prime example here is the so-called Ellipsoid method [Sho77] (see [BTN01]
for a description of this method). The Ellipsoid method is a polynomial-time
solution method for Linear Programming. Nevertheless, it is never used
to solve linear optimization problems in practice, as it is not able to solve
low/medium-scale problems (say about 100 variables) in reasonable time.
The most commonly used, and actually in practice highly efficient, method
to solve linear optimization methods is the Simplex method, which was
introduced in the late forties by Dantzig [Dan63]. However, Klee and Minty
[KM72] showed that the Simplex method is a non-polynomial-time solution
method. Given these two facts, the usefulness of theoretical complexity
considerations was at least questionable for practical computations since the
late seventies / early eighties: it had become an important issue to clarify
the existence of polynomial-time solution methods that are also efficient in
practice. Finally, Interior-Point methods [Kar84] were introduced for Linear
Programming. These methods run indeed in polynomial time and are at the
same time highly efficient in practice. The development of Interior-Point
methods was a milestone in the history of real arithmetic complexity theory,
as it finally showed that theoretical complexity considerations are linked to
practical tractability. Nevertheless, we should keep in mind that a solution
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method should not only be analyzed theoretically, but also thoroughly tested in
practice. In accordance to this observation, we will perform both a theoretical
complexity study and solid numerical tests for all methods presented in this
thesis.

Unfortunately, there exist many problems in the general form of (2.1) for
which no efficient solution methods are known; see the preface in [BTN01]
and Example 1.1.4 in [Nes04] for some examples. This is bad news. The good
news is: as we show in Section 2.4, convex optimization problems, that is, a
subfamily of optimization problems, which includes among others all linear
programs, are computationally tractable under very mild assumptions. First,
let us now introduce this subfamily of optimization problems very carefully.
Together with convexity, we study some other important properties of the
feasible set and the objective function.

2.3 What is a convex optimization problem?

2.3.1 Convexity and other properties of the feasible set

Throughout the thesis, we assume that Q is a subset of Rn with 1 ≤ n <∞.
We consider Rn together with the standard Euclidean scalar product, which
we denote by 〈·, ·〉. The space Rn is equipped with a norm ‖·‖, which may
differ from the norm that is induced by the scalar product.

A set is convex if the whole line segment of any two points in this set lies
also in the set. More formally:

Definition 2.5 (Convex set) We say that Q is convex if λx+(1−λ)y ∈ Q
for any x, y ∈ Q and for any λ ∈ [0, 1].

The following set is of particular interest in this thesis:

Definition 2.6 (Simplex) We denote by ∆n the (n− 1)-dimensional sim-
plex:

∆n :=

{
x ∈ Rn : x ≥ 0,

n∑
i=1

xi = 1

}
.

Lemma 2.1 ∆n is convex.

Let us briefly recall some other basic definitions.

Definition 2.7 (Interior of a set) A point x ∈ Q is called an interior
point of Q if there exists an ε > 0 such that {y ∈ Rn : ‖y − x‖ ≤ ε} ⊂ Q.
The set int(Q) of all interior points of Q is called the interior of Q.
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A standard result in Analysis says that all norms defined on Rn are equiv-
alent. It implies that the above definition is independent of the particular
choice of the norm ‖·‖.
We observe that the above definition concerns the interior of Q with respect
to the full space Rn. In some situations, it is more meaningful to study the
interior of Q with respect to its affine hull, that is, with respect to the set

aff(Q) :=

{
n∑
i=1

θixi :

n∑
i=1

θi = 1, xi ∈ Q, θi ∈ R ∀ i = 1, . . . , n

}
.

Definition 2.8 (Relative interior of a set) We say that x ∈ Q be-
longs to the relative interior of Q if there exists an ε > 0 such that
{y ∈ Rn : ‖y − x‖ ≤ ε} ∩ aff(Q) ⊂ Q. We write relint(Q) for the relative
interior of Q.

As for the interior of Q, the definition of the relative interior of Q is indepen-
dent of the particular choice of the norm ‖·‖. The following example shows
that the sets int(Q) and relint(Q) may significantly differ.

Example 2.6 (Simplex) The set ∆n has an empty interior, but:

relint(∆n) =

{
x ∈ Rn : x > 0,

n∑
i=1

xi = 1

}
6= ∅.

Let us continue with the review of some basic definitions.

Definition 2.9 (Open set) We say that Q is an open subset in Rn if the
equation Q = int(Q) holds.

Definition 2.10 (Closed set) If the complement Rn \Q is an open subset
in Rn, we call Q a closed subset of Rn.

Definition 2.11 (Compact set) A set Q ⊂ Rn is compact if every se-
quence in Q has a subsequence that converges to an element in Q.

Compact sets are characterized by closed- and boundedness:

Theorem 2.1 (Heine-Borel’s Theorem; Theorem 3.5 in [AE05]) A
set Q ⊂ Rn is compact if and only if it is closed and bounded.

Example 2.7 (Simplex) The set ∆n is compact, as it is evidently bounded
and closed.
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2.3.2 Objective function: convexity and other properties

Convexity of Optimization Problem (2.1) concerns both the feasible set and
the objective function. In this section, we turn our attention now to the
objective function.
Throughout this section, we mostly consider functions that are of the form
f : Rn → R ∪ {+∞}. As a first definition, we introduce the domain of f ,
that is, the set of all x ∈ Rn for which f(x) is finite.

Definition 2.12 (Domain) We refer to the set

dom f := {x ∈ Rn : f(x) < +∞}

as the domain of f : Rn → R ∪ {+∞}.

We always suppose that dom f 6= ∅. If f is given by the Optimization Prob-
lem (2.1), this requirement is satisfied, as we have assumed that there exists
an optimal solution x∗ with f(x∗) < +∞.

2.3.2.1 A geometric definition of convex functions

We can use the convexity definition of sets from above in order to specify
convex functions. For this, we identify the function f : Rn → R ∪ {+∞} as
a set in Rn+1, which we call the epigraph of f .

Definition 2.13 (Epigraph) The epigraph of f : Rn → R ∪ {+∞} is de-
fined as the set

epi f := {(x, t) ∈ dom f × R : f(x) ≤ t} ⊂ Rn+1.

A graphical illustration of the set epi f is given in Figure 2.1. This set
representation of f can be used to define convex functions.

Definition 2.14 (Convex function) We say that f : Rn → R ∪ {+∞} is
convex if epi f is a convex set.

Given a function f : Q→ R, we say that h is convex if its extension

f̄ : Rn → R ∪ {+∞} : x 7→

{
f(x), if x ∈ Q
+∞, otherwise

is convex. On the other hand, a function h : Rn → R∪{+∞} is called convex
on Q if domh ∩Q 6= ∅ and if

h|Q : Rn → R ∪ {+∞} : x 7→

{
h(x), if x ∈ Q
+∞, otherwise

is convex. We are positioned to define convex optimization problems.
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Γf

(x, f(x))

t
epi f Γf

(x, f(x))

(y, f(y))
(z, f(y) + λ[f(x)− f(y)])

(z, f(z)), z = y + λ(x− y)

Figure 2.1: Different characterizations of convex functions. Left figure: ge-
ometric characterization by the epigraph. Right figure: ana-
lytic characterization by Inequality (2.7). In both figures, we
denote by Γf := {(x, f(x)) : x ∈ Rn} the graph of the function
f : Rn → R ∪ {+∞}.

Definition 2.15 (Convex optimization problem) We say that Problem
(2.1) is convex if both the feasible set Q and the objective function f are
convex.

2.3.2.2 An analytic approach to convex functions

In literature, there exist many alternative ways to define convex functions,
and from each definition we gain new insights on them. In the next two
paragraphs, we display some alternative convexity representations that are
relevant for this thesis. For a more complete list and more details, we refer
to the books of Rockafellar [Roc70], Nesterov [Nes04], as well as Boyd and
Vandenberghe [BV04].

We first give an analytic description of convex functions.

Theorem 2.2 (Theorem 3.1.2 in [Nes04]) Let f : Rn → R∪{+∞}. The
function f is convex if and only if dom f is convex and if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (2.7)

for all x, y ∈ dom f and for any λ ∈ [0, 1].

For a graphical illustration of the above condition, we refer to Figure 2.1.

2.3.2.3 A dual view on convex functions

Finally, let us describe convex functions by affine mappings.
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(x, f(x))

{(y, f(x) +
〈
λg + (1− λ)g, y − x

〉
) : y ∈ Q}, λ ∈ (0, 1)

{(y, f(x) + 〈g, y − x〉) : y ∈ Q}, g ∈ ∂f(x)

{(y, f(x) +
〈
g, y − x

〉
) : y ∈ Q}, g ∈ ∂f(x)

Γfepi f

Figure 2.2: The dark gray zone corresponds to the epigraph of a convex
function f : Rn → R ∪ {+∞}. In light gray, we show the
set of all affine spaces passing through (x, f(x)), x ∈ Rn, and
defining half-spaces that contain the entire epigraph of f . By
Γf we denote the graph of f .

Definition 2.16 (Subgradient) Let f : Rn → R∪{+∞} be a convex func-
tion. We say that g ∈ Rn is a subgradient of f at x ∈ dom f if

f(y) ≥ f(x) + 〈g, y − x〉 ∀ y ∈ dom f.

The set of all subgradients of f at x ∈ dom f is called the subdifferential of
f at x and denoted by ∂f(x).

Remark 2.1 Every element g ∈ ∂f(x) gives rise to an affine mapping

y 7→ s(y) := f(x) + 〈g, y − x〉

from Rn to R, where its linear part represents a dual element through the
scalar product. According to the Riesz Representation Theorem, this repre-
sentation is unique (see for instance Theorem 2.14 in [AE08]).

The subdifferential ∂f(x) of the convex function f at x ∈ dom f can be
associated with affine spaces that have the following two characteristics:

1. these affine spaces lie in Rn+1 and pass through (x, f(x));

2. they contain the entire epigraph of f ;

see Figure 2.2 for a graphical illustration.
Let us discuss the existence of subgradients.

Theorem 2.3 (Theorem 23.4 in [Roc70]) Let f : Rn → R ∪ {+∞} be a
convex function. We have:
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1. For any x ∈ relint(dom f), the set ∂f(x) is non-empty.

2. If x /∈ dom f , the set ∂f(x) is empty.

Vice versa, we can show:

Theorem 2.4 (Lemma 3.1.6 in [Nes04]) Let f : Rn → R ∪ {+∞}. The
function f is convex if dom f is convex and if

{g ∈ Rn : f(y) ≥ f(x) + 〈g, y − x〉 ∀ y ∈ dom f} 6= ∅ ∀ x ∈ dom f.

We conclude this subsection by presenting some results that indicate the
importance of subgradients in Convex Optimization.

Theorem 2.5 (Theorem 3.1.15 in [Nes04]) Let f : Rn → R ∪ {+∞} be
a convex function and x∗ ∈ dom f . We have f(x∗) ≤ f(y) for any y ∈ dom f
if and only if (0, . . . , 0)T ∈ ∂f(x∗).

Theorem 2.6 (Theorem 25.1 in [Roc70]) Let f : Rn → R ∪ {+∞} be a
convex function and x ∈ dom f . If the function f is differentiable at x, then
∂f(x) = {∇f(x)}. Vice versa, the function f is differentiable at x if it has
a unique subgradient at x.

Theorem 2.7 (Theorem 27.4 in [Roc70]) Let f : Rn → R ∪ {+∞} be a
convex function and x∗ ∈ dom f . It holds that f(x∗) ≤ f(y) for any y ∈ Rn
if and only if there exists an element g ∈ ∂f(x∗) for which 〈g, x− x∗〉 ≥ 0
for any x ∈ relint(dom f).

2.3.2.4 Strongly convex functions

According to Theorem 2.3, any convex function can be approximated from
below by affine functions (on the relative interior of its domain). However,
these underestimators do not include any information about the curvature
of the convex function. Note that Theorem 2.3 cannot be improved, as the
convex function might not have any curvature at all; see Figure 2.2 for an
example. However, many convex functions allow us to bound their curvature
from below. These functions are called strongly convex.

Definition 2.17 (Strongly convex function) We say that the function
f : Rn → R∪{+∞} is strongly convex with modulus σ = σ(Rn) > 0 if dom f
is convex and if

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y) +
σ

2
λ(1− λ) ‖y − x‖2

for all x, y ∈ dom f and for any λ ∈ [0, 1].
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Note that the parameter σ = σ(Rn) depends on the choice of the norm ‖·‖.
We call a function f : Q → R strongly convex with modulus σ(Q) if its
extension

f̄ : Rn → R ∪ {+∞} : x 7→

{
f(x), if x ∈ Q
+∞, otherwise

is strongly convex with modulus σ(Q). In addition, we say that the function
h : Rn → R ∪ {+∞} is strongly convex with modulus σ(Q) on Q if the set
domh ∩Q is non-empty and if

h|Q : Rn → R ∪ {+∞} : x 7→

{
h(x), if x ∈ Q
+∞, otherwise

is strongly convex modulus σ(Q). We often make a slight notational abuse
and write σ instead of σ(Q).
As for convex functions, we can give a characterization of strongly convex
functions using first-order information.

Theorem 2.8 (Theorem VI.6.1.2 in [HUL93]) 3 Assume that
f : Rn → R ∪ {+∞} is a convex function. The function f is strongly
convex with modulus σ > 0 if and only if

f(y) ≥ f(x) + 〈g, y − x〉+
σ

2
‖y − x‖2 ∀ x, y ∈ dom f, ∀ g ∈ ∂f(x).

As the curvature is bounded from below, strongly convex functions have a
unique minimizer over the set Q, provided that this set is closed and convex.

Theorem 2.9 (Lemma 6 in [Nes09]) Consider Problem (2.1) with a
closed and convex feasible set Q ⊂ dom f . If f is strongly convex and con-
tinuous on Q, Optimization Problem (2.1) is solvable, its optimal solution
x∗ is unique, and it holds that

f(x) ≥ f(x∗) +
σ

2
‖x− x∗‖2 ∀ x ∈ Q.

We conclude this subsection by presenting several examples of strongly con-
vex functions.

Example 2.8 (Euclidean setup; see [Nes09]) Consider the space Rn to-
gether with the Euclidean norm. The function

deuc(x) : Rn → R≥0 : x 7→ 1

2
‖x‖22

is strongly convex with modulus 1.

3Theorem VI.6.1.2 in [HUL93] explores the necessary and sufficient conditions under
which a real-valued convex function f : Rn → R is strongly convex on a convex set
Q. The same arguments as utilized in [HUL93] also show the correctness of Theorem
2.8.
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The following example is of particular interest in the context of this thesis.

Example 2.9 (Simplex setup; see [Nes09]) We equip Rn with the norm
‖x‖1 :=

∑n
i=1 |xi|. The shifted negative entropy function

d∆n(x) : ∆n → R≥0 : x 7→ ln(n) +

n∑
i=1

xi ln(xi)

is strongly convex with modulus 1.

Let us quickly comment on the choice of the 1-norm. This comment involves
the dual norm.

Definition 2.18 (Dual norm) The dual norm ‖·‖∗ to ‖·‖ is defined as

‖u‖∗ := max
x∈Rn

{〈u, x〉 : ‖x‖ = 1} , u ∈ Rn.

Clearly, we have ‖x‖1 ≥ ‖x‖2 for any x ∈ Rn. However, the dual norm
‖·‖∞ to ‖·‖1 satisfies the converse inequality. We recall that the dual of the
Euclidean norm is the Euclidean norm itself.

The above simplex setting can be naturally extended to matrices.

Example 2.10 (Matrix simplex setup; see [Nes07]) We consider the
space Sn of symmetric real (n × n)-matrices. Given a matrix X ∈ Sn, we
write λn(X) ≥ . . . ≥ λ1(X) for its eigenvalues and equip Sn with the norm
‖X‖(1) :=

∑n
i=1 |λi(X)|. The set

∆M
n :=

{
X ∈ Sn : λ1(X) ≥ 0,

n∑
i=1

λi(X) = 1

}

is called the simplex in matrix form. When we restrict this set to diagonal
matrices, we recover ∆n. By applying the shifted negative entropy function
d∆n to the eigenvalues of X ∈ ∆M

n , we can define the function

d∆Mn
(X) : ∆M

n → R≥0 : X 7→ ln(n) +
n∑
i=1

λi(X) ln(λi(X)).

As shown in [Nes07], this function is strongly convex with modulus 1.
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2.3.2.5 Differentiable functions with Lipschitz continuous gradient

According to the last two subsections, we can approximate any convex func-
tion from below by an affine function, or, in the case of strongly convex
functions, by a function that is quadratic with respect to the norm ‖·‖. In
other words, we approximate the epigraph of a function from outside, that is,
with a larger set. In this subsection, we consider the opposite approximation
problem: we derive an approximation of the epigraph from inside.
It turns out that we can give such an approximation for differentiable func-
tions with a Lipschitz continuous gradient. The definition of this class of
functions includes the norm of the gradients. The gradient represents a dual
element through the scalar product. Consequently, we need to use the dual
norm for the gradients.

Definition 2.19 (Lipschitz continuous gradient) Assume that Q ⊂ U
for an open set U ⊂ Rn. Let f : Rn → R ∪ {+∞} be a function which is
differentiable on U . We say that f has a Lipschitz continuous gradient on Q
if there exists a constant L(Q) > 0 such that:

‖∇f(x)−∇f(y)‖∗ ≤ L(Q) ‖x− y‖ ∀ x, y ∈ Q. (2.8)

We refer to L(Q) as the Lipschitz constant of the gradient of f on Q. We
write f ∈ C1

L(Q) if f is differentiable on an open set that includes Q and if
the gradient of f satisfies (2.8).

We can give the following characterization of differentiable functions with
Lipschitz continuous gradients. If f ∈ C1

L(Q), we can use this characterization
to derive an approximation of epi f from inside.

Theorem 2.10 (Theorem 2.1.5 in [Nes04]) Let U ⊂ Rn be an open set
with Q ⊂ U and f : Rn → R ∪ {+∞} be a function that is differentiable on
U . This function belongs to C1

L(Q) if and only if

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L(Q)

2
‖x− y‖2 ∀ x, y ∈ Q.

If there is no possibility of confusion, we abbreviate L(Q) into L.

2.4 Convex optimization problems are polynomially
solvable!

“In fact the great watershed in Optimization is not between linearity and
non-linearity, but convexity and non-convexity.”

(R. Tyrell Rockafellar, 1993; see Page 185 in [Roc93])
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Let us now review the assumptions under which convex optimization prob-
lems become computationally tractable. We follow closely Section 5.3 in the
book of Ben-Tal and Nemirovski [BTN01]. We assume that P is a family of
optimization problems in the form of

min
x∈Q

f(x), (2.9)

where both Q ⊂ Rn and f : Rn → R are convex. We equip the family P with
an infeasibility measure InfeasP(·, ·).

Definition 2.20 (Polynomially computable family) We call P polyno-
mially computable if there are two codes C1 and C2 for the real arithmetic
computer. These codes satisfy for any p ∈ P, any x ∈ Rn, and any ε > 0:

1. for input Data(p) and x, the code C1 returns the objective function value
f(x) and a subgradient of f at x. The running time of C1 is bounded
from above by a polynomial in Size(p);

2. for input Data(p), x, and ε > 0, the code C2 outputs whether
InfeasP(p, x) ≤ ε or not. In the later case, it returns a hyperplane
which separates x from all y ∈ Rn that satisfy InfeasP(p, y) ≤ ε. The
running time of this code is bounded from above by a polynomial in
Size(p) and Digits(p, ε).

Example 2.11 (Ex. 2.1 continued; see Section 5.3 in [BTN01])
The family LP of linear optimization problems is polynomially solvable, as:

1. for any x ∈ Rn, the computation of the objective function value cTx
requires O(n) arithmetic operations. The gradient of the objective func-
tion at x is c;

2. for any x ∈ Rn and any p ∈ LP, the computation of

InfeasLP(x, p) = max

[
0, max

1≤j≤m
{(Ax)j − bj} , max

1≤i≤n
{−xi}

]
needs O(mn) arithmetic operations. If InfeasLP(x, p) > ε for a fixed
ε > 0, then there exists 1 ≤ i∗ ≤ n or 1 ≤ j∗ ≤ m such that xi∗ < −ε
or such that (Ax)j∗ − bj∗ > ε. Let us focus on the second case, as the
first case works similarly. The j∗-th row of A defines a hyperplane with
(Ax)j∗ > bj∗ + ε and such that

(Ay)j∗ ≤ bj∗ + ε ∀ y ∈ Rn with InfeasLP(y, p) ≤ ε.
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Definition 2.21 (Family with polynomial growth) We say that P is of
polynomial growth if there exists a polynomial q : R→ R such that:

|f(x)|+ InfeasP(p, x) ≤ O(1)
(
Size(p) + ‖x‖1 + ‖Data(p)‖1

)q(Size(p))

for any x ∈ Rn and any p ∈ P.

Clearly, the family LP of linear optimization problems is of polynomial
growth.

Definition 2.22 (Polynomially bounded feasible sets) The family P
of optimization problems is with polynomially bounded feasible sets if there
exists a polynomial q : R→ R such that:

Q = Qp ⊂
{
x ∈ Rn : ‖x‖2 ≤ O(1)

(
Size(p) + ‖Data(p)‖1

)q(Size(p))
}

for any p ∈ P, where Q = Qp denotes the feasible set of p.

We have prepared all the necessary conditions for computational tractability.

Theorem 2.11 (Theorem 5.3.1 in [BTN01]) The family P of Opti-
mization Problems (2.9) is polynomially solvable if P is polynomially com-
putable, of polynomial growth, and with polynomially bounded sets.

Linear and semidefinite optimization problems are polynomially computable
and with polynomial growth; see the previous examples and Section 5.3 in
[BTN01] for the details. However, these families of optimization problems
do not necessarily have polynomially bounded feasible sets. Fortunately, as
shown in Section 5.3 of [BTN01], there is a brute-force trick to invoke this
property with no restrictions for all practical computations. We conclude:

Corollary 2.2 (Section 5.3 in [BTN01]) The families of all linear and
semidefinite optimization problems that appear in practice are polynomially
solvable.

2.5 Bregman distances

Let us now focus again on the feasible set. We assume that Q is a closed
and convex set. In addition, we choose a reference point x0 ∈ relint(Q). A
priori, we measure the distance of any y ∈ Q with respect to the chosen
reference point using the Euclidean metric. However, there is no reason to
believe that this metric is well adapted to the geometry of the feasible set.
In this section, we introduce Bregman distances. Provided that we initialize
Bregman distances appropriately, we can use it to reproduce the geometry
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of the sets ∆n and ∆M
n – the most relevant feasible sets of this thesis – in a

much more accurate way than with the standard Euclidean metric.

First, we need to introduce the notion of distance-generating functions.

Definition 2.23 (Distance-generating function) Let Q ⊂ Rn be closed
and convex. We say that the function d: Q → R is a distance-generating
function if the following three conditions hold:

1. d is continuous on Q;

2. d is strongly convex with modulus 1 on Q;

3. given the set Qo(d) := {x ∈ Q : ∂d(x) 6= ∅}, there exists a continuous
mapping d′ : Qo(d)→ Rn : x 7→ d′(x) := g(x), where g(x) ∈ ∂d(x).

If there is no possibility for confusion, we write Qo instead of Qo(d).

Example 2.12 (Ex. 2.8 - 2.10 continued; see [Nes07, Nes09])
The functions deuc, d∆n , and d∆Mn

are distance-generating functions. For
these functions, we obtain the sets Qo(deuc) = Rn, Qo(d∆n) = relint(∆n),
and Qo(d∆Mn

) = relint(∆M
n ). Note that these functions are continuously

differentiable on their corresponding sets Qo.

Let d : Q → R be a distance-generating function defined on the closed and
convex set Q. In this thesis, we study several algorithms for solving convex
optimization problems. The following type of convex optimization problems
needs to be routinely solved in these methods:

min
x∈Q
{φs(x) := d(x)− 〈s, x〉} , s ∈ Rn. (2.10)

Let s ∈ Rn. Due to the strong convexity of the distance-generating function
d, the function φs(x) := d(x)− 〈s, x〉 is also strongly convex on Q. Applying
Theorem 2.9, we observe that Problem (2.10) has a unique minimizer x∗s . By
its definition, this minimizer satisfies φs(x) ≥ φs(x

∗
s) for any x ∈ Q, which

can be rewritten as:

d(x) ≥ d(x∗s) + 〈s, x− x∗s〉 ∀ x ∈ Q.

In particular, the element s belongs to ∂d(x∗s), and thus x∗s ∈ Qo. We have
verified the following result.

Remark 2.2 Problem (2.10) has a unique minimizer and this minimizer is
in Qo.
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The practical success of the methods which we study in this thesis depends
heavily on the effort that is required to find this unique minimizer. We make
therefore the following assumption, which shall hold for the first part of this
thesis excluding Section 4.2.

Assumption 2.1 The unique minimizer x∗s of (2.10) can be written in a
closed form.

Let us verify that the distance-generating functions deuc, d∆n , and d∆Mn
satisfy this requirement.

Example 2.13 (Euclidean setup; see [Nes09]) Given s ∈ Rn, we ob-
tain:

s = arg min
x∈Rn

{deuc(x)− 〈s, x〉} .

Example 2.14 (Simplex setup; see [Nes09]) For s ∈ Rn, we have:[
exp(si)∑n
k=1 exp(sk)

]n
i=1

= arg min
x∈∆n

{d∆n(x)− 〈s, x〉} ,

whose computation requires O(n) arithmetic operations.

Example 2.15 (Matrix simplex setup; see [Nem04a, Nes07]) Given
two real (n× n)-matrices A and B, we write

〈A,B〉F :=

n∑
i,j

AijBij

for the Frobenius scalar product. Let X ∈ Sn be a symmetric real (n×n)-
matrix. We denote by λ(X) the vector of eigenvalues of the matrix X. Given
a vector λ ∈ Rn, Diag(λ) represents the diagonal matrix whose diagonal is
λ. Every X ∈ Sn admits an eigendecomposition

X = Q(X)Diag(λ(X))Q(X)T =

n∑
i=1

λi(X)qi(X)qi(X)T ,

where Q(X) := (q1(X), . . . , qn(X)) is a (not necessarily unique) orthogonal
matrix of dimension n×n, and q1(X), . . . , qn(X) form an orthogonal basis of
unitary eigenvectors. An eigendecomposition of a generic symmetric matrix
can be computed in O(n3) elementary operations [HJ96].
Let S ∈ Sn with eigendecomposition S = Q(S)Diag(λ(S))Q(S)T . Then,

Q(S)Diag(λ∗(S))Q(S)T = arg min
X∈∆Mn

{
d∆Mn

(X)− 〈S,X〉F
}
, (2.11)



2. Convex Optimization and computational tractability 31

where

λ∗i (S) :=
exp(λi(S))∑n
k=1 exp(λk(S))

∀ i = 1, . . . , n.

The computation of the minimizer to the optimization problem defined in
(2.11) requires O(n3) arithmetic operations.

Applying Remark (2.2) for s = 0, we can define the d-center.

Definition 2.24 (d-center) The d-center is defined as

c(d) := arg min
x∈Q

d(x) ∈ Qo.

Without loss of generality, we assume that the distance-generating function
d vanishes at its d-center.

Provided that there is no possibility of confusion, we write c instead of c(d).
As d vanishes at c, Theorem 2.9 implies the following lower bound on the
distance-generating function:

d(x) ≥ 1

2
‖x− c‖2 ∀ x ∈ Q. (2.12)

The d-centers of the running examples are very well-known.

Example 2.16 (Ex. 2.8 - 2.10 cont.; see [Nem04a, Nes07, Nes09])
We denote by In the identity matrix in Rn×n. On the sets Rn, ∆n, and ∆M

n ,
we have:

c(deuc) = (0, . . . , 0)T , c(d∆n) =
1

n
(1, . . . , 1)T , and c(d∆Mn

) =
1

n
In,

respectively.

Let d : Q → R be a distance-generating function. Given this function, we
can define Bregman distances on Q.

Definition 2.25 (Bregman distance) Let x ∈ Qo and y ∈ Q. The Breg-
man distance of y with respect to x is defined by the function

Vx : Q→ R≥0 : y 7→ Vx(y) := d(y)− d(x)−
〈
d′(x), y − x

〉
.

See Figure 2.3 for a graphical illustration of this definition. Note that the
Bregman distance does not define a metric on Q, as neither it is symmetric,
nor it fulfills the triangle inequality.
We deduce the Bregman distances for the distance-generating functions that
we introduced in Examples 2.8 - 2.10.
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Γd

(y, d(y))

(x, d(x))

(y, d(x) + 〈d′(x), y − x〉)

Vx(y)

Figure 2.3: Bregman distance Vx(y). The graph of the distance-generating
function d is denoted by Γd.

Example 2.17 (Ex. 2.8 - 2.10 cont.; see [Nem04a, Nes07, Nes09])
For the three functions deuc, d∆n , and d∆Mn

, we obtain the following Bregman
distances:

1. deuc : With x, y ∈ Rn, we have Vx(y) = 1
2
‖y − x‖22.

2. d∆n : Given x ∈ relint(∆n), it holds that:

Vx(y) =

n∑
i=1

yi ln

(
yi
xi

)
∀ y ∈ ∆n.

In Probability Theory and in Machine Learning, this quantity is re-
ferred to as Kullback-Leibler divergence and relative entropy, re-
spectively.

3. d∆M
n

: We obtain:

VX(Y ) =

n∑
i=1

λi(Y ) ln

(
λi(Y )

λi(X)

)
∀ X ∈ relint(∆M

n ), ∀ Y ∈ ∆M
n .

In Figure 2.4, we show the level sets for the Bregman distances defined by
deuc and by d∆3 , respectively, on the two-dimensional simplex ∆3. We ob-
serve that the relative entropy reflects the geometry of the set ∆3 much more
accurately than the squared Euclidean norm.

Let x ∈ Qo and consider the Bregman distance Vx(·) defined by d:

Vx : Q→ R≥0 : y 7→ Vx(y) := d(y)− d(x)−
〈
d′(x), y − x

〉
.
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Figure 2.4: We present the level sets for different Bregman distances
Vx(y) := d(y) − d(x) − 〈d′(x), y − x〉 on the set ∆3. Top left
figure: We set d = deuc and x = (1/3, 1/3, 1/3). Top right
figure: d = deuc, x = (1/8, 1/2, 3/8). Bottom left figure:
d = d∆3 , x = (1/3, 1/3, 1/3). Bottom right figure: d = d∆3 ,
x = (1/8, 1/2, 3/8). We observe that the Bregman distance de-
fined by the entropy function reflects the geometry of the set ∆3

much more accurately than the squared Euclidean norm.

Due to the strong convexity of d, we can give an improved lower bound on
the Bregman distance:

Vx(y) ≥ 1

2
‖x− y‖2 ∀ x ∈ Qo, ∀ y ∈ Q. (2.13)

Bregman-distances give rise to the so-called d-diameter of the set Q.

Definition 2.26 (d-diameter) The d-diameter of the set Q is defined as

ΩV (d) :=
√

2 sup
y∈Q

Vc(d)(y).

Note that the supremum in the above definition can be replaced by a maxi-
mum if the feasible set Q is compact. As before, we write ΩV instead ΩV (d)
if it is clear from the context which distance-generating function we refer to.
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As c(d) minimizes d over Q and as the distance-generating function vanishes
at this point, we can upper bound ΩV (d) by:

ΩV (d) ≤
√

2 sup
x∈Q

d(x).

Example 2.18 (Ex. 2.8 - 2.10 cont.; see [Nem04a, Nes07, Nes09])
In the situation of the three sets Rn, ∆n, and ∆M

n , we have:

sup
x∈Rn

deuc(x) = +∞, max
x∈∆n

d∆n(x) = ln(n), and max
X∈∆Mn

d∆Mn
(X) = ln(n),

which implies:

ΩV (deuc) = +∞, ΩV (d∆n) ≤
√

2 ln(n), and ΩV (d∆Mn
) ≤

√
2 ln(n),

respectively.

Let us conclude this subsection by discussing the relation between ΩV (d) and
the standard diameter of the set Q. Recall that the standard diameter of Q
is defined as follows.

Definition 2.27 (Diameter) We write ΩQ := supx,y∈Q ‖x− y‖ for the di-
ameter of Q.

Applying (2.13), we obtain:

‖y − c(d)‖ ≤ ΩV (d) for any y ∈ Q, and thus ΩQ ≤ 2ΩV (d). (2.14)

These definitions and observations will be heavily used in the next chapters.



Chapter 3
Black-Box optimization methods

In this and the next chapter, we present several solution methods for solv-
ing a broad class of convex optimization problems. All these methods are

of iterative nature, that is, a set of instructions is repeated until a prede-
fined stopping criterion is satisfied. Together with the methods, we always
give a theoretical worst-case analysis of the analytical complexity. The
analytical complexity corresponds to the number of iterations that need to
be performed to meet the stopping criterion. The arithmetic complexity,
that is, the total number of arithmetic operations that are required by the
method until the stopping criterion is fulfilled, is then given by the analyt-
ical complexity multiplied by the cost per iteration (plus the setup cost
of the method); see for instance [Nes04]. While the analytical complexity of
a method remains unchanged for the whole family of problems that can be
solved by this method, the cost per iteration typically varies a lot depending
on the problem’s explicit format. The discussion of the iteration cost is thus
postponed to Chapters 6 - 10, where we apply these methods to semidefinite
optimization problems.

Convex optimization methods can be divided into two classes of methods,
namely in Black-Box optimization methods and in Structural opti-
mization methods; see for instance [NY83, Nes04]. While Structural op-
timization methods have access to the exact format of the problem they are
dealing with, we hide the problem from the method in Black-Box Optimiza-
tion. In particular, Black-Box optimization methods have access only to a
limited amount of information on the problem they are dealing with. In this
chapter, we focus on Black-Box optimization methods. Schemes that exploit

35



36 3. Black-Box optimization methods

O
v
e
rv

ie
w

o
f

so
lu

tio
n

m
e
th

o
d
s

fo
r

fi
n
d
in

g
fe

a
sib

le
ε-so

lu
tio

n
s

to
c
o
n
v
e
x

o
p
tim

iz
a
tio

n
p
ro

b
le

m
s

S
o
lu

tio
n

m
eth

o
d

A
n
a
ly

tica
l

O
p
tim

iza
tio

n
T

y
p

e
o
f

D
iscu

ssed
in

co
m

p
lex

ity
a

fra
m

ew
o
rk

in
fo

rm
a
tio

n

P
rim

a
l-D

u
a
l

S
u
b
g
ra

d
ien

t
m

eth
o
d
s

O (1
/
ε
2 )

B
la

ck
-B

ox
F

irst-O
rd

er
S
ectio

n
3
.3

M
irro

r-D
escen

t
m

eth
o
d
s
b

O (1
/
ε
2 )

B
la

ck
-B

ox
F

irst-O
rd

er
S
ectio

n
3
.3

S
m

o
o
th

in
g

T
ech

n
iq

u
es

O
(1
/
ε)

S
tru

ctu
ra

l
F

irst-O
rd

er
S
ectio

n
4
.1

.1
M

irro
r-P

rox
m

eth
o
d
s

O
(1
/
ε)

S
tru

ctu
ra

l
F

irst-O
rd

er
S
ectio

n
4
.1

.2
O

p
tim

a
l

F
irst-O

rd
er

m
eth

o
d
s

O
(1
/ √

ε)
B

la
ck

-B
ox

F
irst-O

rd
er

S
ectio

n
3
.4

In
terio

r-P
o
in

t
m

eth
o
d
s

O
(ln

[1
/
ε])

S
tru

ctu
ra

l
S
eco

n
d
-O

rd
er

S
ectio

n
4
.2

T
a
b
le

3
.1

:
O

verview
o

f
th

e
co

n
vex

o
p

tim
iza

tio
n

m
eth

od
s

th
a

t
a

re
d

iscu
ssed

in
th

is
th

esis.
F

o
r

ea
ch

m
eth

od
,

w
e

give
its

a
n

a
lytica

l
co

m
p

lexity
fo

r
fi

n
d

in
g

a
fea

sible
ε-so

lu
tio

n
,

w
e

sa
y

w
h

eth
er

it
is

a
B

la
ck-B

o
x

o
r

S
tru

ctu
ra

l
o

p
tim

iza
tio

n
m

eth
od

a
n

d
w

h
eth

er
it

is
a

F
irst-

o
r

a
S

eco
n

d
-O

rd
er

m
eth

od
,

a
n

d
w

e
refer

to
th

e
sectio

n
w

h
ere

w
e

in
trod

u
ce

th
e

m
eth

od
.)

a
W

e
d
isp

la
y

h
e
re

th
e

a
n
a
ly

tic
a
l

c
o
m

p
le

x
ity

o
n
ly

w
ith

re
sp

e
c
t

to
th

e
so

lu
tio

n
a
c
c
u
ra

c
y
ε.

T
h
e
se

c
o
m

p
le

x
ity

re
su

lts
ty

p
ic

a
lly

in
v
o
lv

e
o
th

e
r

p
ro

b
le

m
p
a
ra

m
e
te

rs
su

ch
a
s

th
e

L
ip

sch
itz

c
o
n
sta

n
t

o
f

th
e

g
ra

d
ie

n
t

o
r

a
n

u
p
p

e
r

b
o
u
n
d

o
n

th
e

n
o
rm

o
f

th
e

su
b
g
ra

d
ie

n
ts.

N
o
te

th
a
t

w
e

o
rd

e
r

th
e

m
e
th

o
d
s

a
c
c
o
rd

in
g

to
th

e
ir

a
n
a
ly

tic
a
l

c
o
m

p
le

x
ity

;
fro

m
th

e
slo

w
e
st

to
th

e
fa

ste
st

m
e
th

o
d
.

bM
irro

r-D
e
sc

e
n
t

m
e
th

o
d
s

a
re

a
p
a
rtic

u
la

r
su

b
c
la

ss
o
f

P
rim

a
l-D

u
a
l

S
u
b
g
ra

d
ie

n
ts

m
e
th

o
d
s;

se
e

S
e
c
tio

n
3
.3

.
F
o
r

th
e

sa
k
e

o
f

c
o
m

-
p
le

te
n
e
ss,

w
e

e
x
p
lic

itly
m

e
n
tio

n
M

irro
r-D

e
sc

e
n
t

m
e
th

o
d
s

h
e
re

,
a
s

w
e
ll.



3. Black-Box optimization methods 37

the explicit problem structure are left for the next chapter. In Table 3.1, we
give an overview of all convex optimization methods that we discuss in this
thesis. For each method, we give its analytical complexity with respect to
the solution accuracy ε and show whether the method belongs to the class
of Black-Box or Structural optimization methods. In addition, we indicate
for each method whether it is a First-Order or a Second-Order method. A
First-Order method uses only first-order information on the problem (that
is, function values and subgradients of the objective function) to update the
iterates, whereas a Second-Order method utilizes function values, gradi-
ents, and Hessians of the objective function. For reference, we also add the
section where we introduce the corresponding method.

We start this chapter by introducing the concept of Black-Box Optimization
in Section 3.1. In Sections 3.2 - 3.4, we study several algorithms belonging to
this class of optimization algorithms: Dual Averaging schemes (Section 3.2),
Mirror-Descent and Primal-Dual Subgradient methods (Section 3.3), as well
as Optimal First-Order methods (Section 3.4). The methods are ordered
according to their requirements on the objective function. We start with
methods that make no assumptions on the objective function (except the ex-
istence of an oracle that provides certain information) and add step by step
more properties to the objective function, which can be used to strengthen
the theoretical guarantees of the methods or to design more elaborated al-
gorithms. Note that Dual Averaging schemes are not listed explicitly in
Table 3.1 of convex optimization methods. When we apply Dual Averaging
schemes to convex optimization problems, we call the resulting algorithms
Primal-Dual Subgradient methods, which can be found in Table 3.1. Interest-
ingly, although being introduced for solving convex optimization problems,
Dual Averaging schemes can be applied in a much broader context than just
in Convex Optimization. In fact, we exploit this much broader applicability
of these schemes in Chapter 5, where we embed an algorithm from Machine
Learning in the context of Dual Averaging schemes.

Contributions: In Section 3.4, we present a refined version of the original
Optimal First-Order methods introduced in [Nes04]. The original methods
use the Lipschitz constant at every instance to update the iterates. We
replace this global constant by local estimates, which yields to impressively
faster methods in practice; see Chapter 11. The theoretical worst-case bounds
on the analytical complexity of the original and the refined methods are of
the same order. The methods and complexity results presented in Sections
3.1 - 3.3 are known.

Relevant references: We mainly use the references [NY83, Nes04, Nes05,
Nes09]. Parts of this chapter are taken from [BB10, BB11].
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minx∈Q f(x) optimization method

Black-Box
x ∈ Qo

f(x), g ∈ ∂f(x)
oracle

full

knowledge

Figure 3.1: Schematic representation of the Black-Box Optimization idea
with a First-Order oracle: in order to have the entities in this
illustration well-defined, we assume that the feasible set Q ⊂ Rn
is closed and convex and that the objective function f : Q→ R
is convex.

3.1 Black-Box Optimization

Let us start by introducing the Black-Box Optimization concept, which is
due to Nemirovski and Yudin [NY83].

In this framework, the optimizer knows in advance several characteristics
of the problem she wants to solve. For instance, she might know that her
problem is convex, with a differentiable objective, and she might also know
the Lipschitz constant of the gradient, and so on. Based on this information,
the optimizer chooses an optimization method to solve the particular instance
of her problem.

According to the Black-Box Optimization setting, this method does not have
access to the problem instance it is dealing with as a whole. Metaphorically
speaking, the optimizer hides the full problem instance in a black box from
the method she has chosen. Importantly, the method is not able to open
this box. However, there is an oracle that is attached to this black box.
An oracle is an entity (a piece of code, for instance), that takes as input a
test point and returns some relevant information on the instance, such as the
value of the objective function or a subgradient at that point; see Figure 3.1
for a schematic representation. The optimization method calls this oracle and
uses its output to construct an approximate solution to the problem instance
it is confronted with. Most importantly, the information that the oracle gives
should be local, that is, if we modify the problem instance outside of a certain
neighborhood of the test point, the oracle answer should not change.

Hiding the full format of the problem instance in a black box has several
advantages. In fact, this setting has been created to formalize the complexity
study of some families of methods on some classes of problems. For instance,
we can define the oracle outputs as nastily as possible, which has resulted
in many negative complexity results; a classical account on this topic can
be found in [NY83]. Second, using the oracle to outsource the computation
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of the relevant problem information (objective function value, subgradients,
and so on) simplifies the complexity analysis of the optimization method
significantly. And last but not least, we prohibit implicitly any assumption
on the structure of the problem, which results in optimization methods that
are broadly applicable.

3.2 Dual Averaging schemes

Dual Averaging schemes [Nes09] carry the underlying idea of Black-Box Op-
timization to the extremes. In the analysis of these schemes, we disregard
the objective function and give a convergence result that considers exclu-
sively the oracle returns. Clearly, when disregarding the objective function,
we cannot make any statement on the Optimality Gap (2.3). We thus need
to define at first an alternative quantity which we would like to keep under
control by Dual Averaging schemes. In the second part of this section, we
introduce Dual Averaging methods and study their analytical complexity.
We describe by Q ⊂ Rn the set of alternatives and suppose that this set is
closed and convex. We assume that we have at our disposal an oracle G. For
input x ∈ Q, this oracle returns a vector g = G(x) ∈ Rn, which we interpret as
loss vector associated to the alternative x. We define the corresponding loss as
〈g, x〉, meaning that g represents a dual function through the scalar product.
Assume now that we play the following iterative game. For t ∈ N0 := N∪{0},
we choose an alternative xt ∈ Q, call the oracle G with input xt, observe a
loss vector gt = G(xt) ∈ Rn, and update the choice xt+1 of the alternative.
After T rounds, we suffer then a total loss of

LT :=

T−1∑
t=0

〈gt, xt〉 .

Given these loss vectors (gt)
T−1
t=0 , we would choose by hindsight as alternative

x∗ ∈ arg min
x∈Q

{
T−1∑
t=0

〈gt, x〉

}

in order to have minimal total loss, which we denote by L∗T :=
∑T−1
t=0 〈gt, x

∗〉.
Clearly, the value of the optimal hindsight decision x∗ depends on the ob-
served loss vectors (gt)

T−1
t=0 . As these vectors are not known in advance,

there is no chance to determine x∗ at the beginning. However, we can use
the quantity L∗T as reference value for the total loss LT that we suffer by our
online choice of alternatives (xt)

T−1
t=0 . The difference of these two quantities

is called regret.
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Definition 3.1 (Regret) Given the vectors (xt)
T−1
t=0 ⊂ Q and (gt)

T−1
t=0 ⊂ Rn

as above, we define the regret at T ∈ N as

RT :=

T−1∑
t=0

〈gt, xt〉 −min
x∈Q

{
T−1∑
t=0

〈gt, x〉

}
= max

x∈Q

{
T−1∑
t=0

〈gt, xt − x〉

}
.

In principle, the regret can take non-positive values, for instance when xt
and gt satisfy 〈gt, xt〉 = minx∈Q 〈gt, x〉 for any 0 ≤ t ≤ T − 1.
The perception of the losses might be time-dependent. For instance, a loss
that we suffer today might be much more painful or costly than a future loss.
Or, vice versa, the latter we observe a loss, the more valuable it can be as it
is more up-to-date. A simple way of including this kind of considerations in
the evaluation is to multiply the losses by time-dependent weights. We refer
to the resulting quantity as weighted regret.

Definition 3.2 (Weighted regret) Let the assumptions of Definition 3.1
hold and choose positive weights (γt)

T−1
t=0 ⊂ R. We define the weighted regret

at T ∈ N as

WT :=
1∑T−1

k=0 γk
max
x∈Q

{
T−1∑
t=0

γt 〈gt, xt − x〉

}
.

Now, the following question arises naturally: is there a way to update the
alternatives (xt)

T−1
t=0 such that the weighted regret WT at T ∈ N can be

bounded from above by a quantity that goes to zero when T goes to infinity?
And related to this question: how fast does this quantity go to zero? These
questions have been answered in [NY83, Nes09] in full generality, whereas
they are discussed in [FS97, AHK05] for a particular setting. We display
here the version of Nesterov [Nes09], because it gives the most complete
answers to these questions. In Chapter 5, we show that the results in [FS97]
can be indeed rediscovered in Nesterov’s framework [Nes09].
Let T ∈ N and 0 ≤ t ≤ T − 1. In [Nes09], all loss vectors (gk)tk=0 are
accumulated in a weighted dual variable st = −

∑t−1
k=0 γkgk, where γk > 0,

k = 0, . . . , t − 1, are some positive weights. To be compatible with the
terminology in Convex Optimization, we refer to the weights γk as step-
sizes from now on. The dual variable st is then projected (or mirrored)
back on the feasible set Q using a parametrized mirror-operator. This
operator requires a distance-generating function d : Q→ R and is defined as

πQ,β : Rn → Qo : s 7→ arg min
x∈Q
{− 〈s, x〉+ βd(x)} , (3.1)

where β > 0. Recall from Remark 2.2 that this parametrized mirror-operator
is well-defined and that its unique minimizer can be written in a closed



3. Black-Box optimization methods 41

Algorithm 3.1 Dual Averaging methods [Nes09]

1: Fix T ∈ N, which corresponds to the total number of iterations.
2: Set s0 = 0.
3: Select positive step-sizes (γt)

T−1
t=0 and a non-decreasing sequence (βt)

T
t=0

of positive projection parameters.
4: Set x0 = c(d) ∈ Qo.
5: for 0 ≤ t ≤ T − 1 do
6: Call the oracle G to get an element gt = G(xt) ∈ Rn.
7: Set st+1 = st − γtgt.
8: Compute xt+1 := πQ,βt+1(st+1) ∈ Qo.
9: end for

form due to Assumption 2.1. We just explained the construction of a single
iteration of Dual Averaging schemes. For a full description of these methods,
we refer to Algorithm 3.1.
We assume that the sequences (xt)

T
t=0, (gt)

T−1
t=0 , (λt)

T−1
t=0 , and (βt)

T
t=0 are in

accordance to the update rules defined in Algorithm 3.1. Nesterov [Nes09]
proved the following upper bound on the (restricted) weighted regret.

Theorem 3.1 (Theorem 1 in [Nes09]) Let Γ =
∑T−1
t=0 γt and Ωd ≥ 0.

Then,

1

Γ
max

x∈Q:d(x)≤Ωd

{
T−1∑
t=0

γt 〈gt, xt − x〉

}
≤ 1

Γ

(
βTΩd +

1

2

T−1∑
t=0

γ2
t

βt
||gt||2∗

)
. (3.2)

Let us quickly make a comment on the constant Ωd in the above theorem.
Recall that the set Q is not necessarily bounded. However, there might be no
maximizer of a linear function over an unbounded non-empty set. We invoke
the additional restriction d(x) ≤ Ωd to bound the problem in the left-hand
side of (3.2) artificially. The constants Ωd for the simplex and the matrix
simplex setup are presented in Example 2.18.
We observe that the right-hand side in (3.2) does not need to converge nec-
essarily. The convergence or divergence of this quantity is determined by the
choice of the sequences (γt)

T−1
t=0 and (βt)

T
t=0. Let Ωd > 0 and assume that the

norm of the vectors gt is uniformly bounded, that is, there exists a constant
M such that ‖gt‖∗ ≤ M for any 0 ≤ t ≤ T − 1. The most basic choice
for the βt’s corresponds to setting all equal to 1. Nesterov [Nes09] observed
that in this situation the right-hand side in (3.2) is guaranteed to converge
to zero if and only if

∑t
k=0 γk diverges and γt converges to zero as t goes to

infinity. The latter condition says that the weight of the losses is decreasing
over time. However, the common sense dictates that new losses should be
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treated with more consideration than old losses as they are likely to contain
more relevant information.

If the time horizon T is finite and known in advance, the requirement γt → 0
is not necessary any more. In particular, we can take γt = γ as constant for
any 0 ≤ t ≤ T − 1. Minimizing the right-hand side in (3.2) with respect to
γ, we obtain the following optimal constant step-size policy:

γ∗ =
1

M

√
2Ωd
T

.

With these parameter choices, Inequality (3.2) in Theorem 3.1 can be rewrit-
ten as:

1

T
max
x∈Q

{
T−1∑
t=0

〈gt, xt − x〉 : d(x) ≤ Ωd

}
≤M

√
2Ωd
T

. (3.3)

That is, for any ε > 0, we are guaranteed that the left hand-side in (3.3) is
bounded from above by ε after at most

T =
⌈
2ΩdM

2/ε2
⌉

iterations of Algorithm 3.1.

Nesterov derived in his paper [Nes09] a technique that allows to choose non-
decreasing step-sizes while still ensuring that the right-hand side in (3.2)
converges to zero. For instance, we can choose constant step-sizes γt = γ̄ for
any 0 ≤ t ≤ T − 1, where γ̄ > 0, and set

β0 = 1 and βt+1 =

t∑
k=0

1/βk ∀ 0 ≤ t ≤ T − 1. (3.4)

For these parameters, we can rewrite Inequality (3.2) in Theorem 3.1 as:

1

T
max
x∈Q

{
T−1∑
t=0

〈gt, xt − x〉 : d(x) ≤ Ωd

}
≤ βT

T

(
Ωd
γ̄

+
M2γ̄

2

)
. (3.5)

The right-hand side of the above inequality is minimized by

γ̄∗ =

√
2Ωd
M

.

We observe that γ̄∗ does not depend on T , whereas γ∗ does. Consider now
the following lemma.
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Lemma 3.1 (Lemma 3 in [Nes09]) With (βt)
T
t=0 defined as in (3.4), we

have for any T ≥ 1:

√
2T − 1 ≤ βT ≤

1

1 +
√

3
+
√

2T − 1.

Using γ̄∗ at the place of γ̄ in (3.5) and applying the above lemma, we obtain:

1

T
max

x∈Q:d(x)≤Ωd

{
T−1∑
t=0

〈gt, xt − x〉

}
≤M

√
2Ωd

(
1(

1 +
√

3
)
T

+

√
2

T
− 1

T 2

)
.

The right-hand side of the above inequality converges to zero with the order
O(1/

√
T ). In order to bound the left-hand side of the above inequality by

ε > 0, we thus need to perform O(1/ε2) iterations of Algorithm 3.1.
In Chapter 5, we discuss an alternative choice for the sequences (γt)

T−1
t=0 and

(βt)
T
t=0.

3.3 Primal-Dual Subgradient methods

Primal-Dual Subgradient methods are particular instances of Dual Averaging
schemes. These methods were developed by Nesterov in [Nes09] and – as
we will review in this section – generalize Mirror-Descent schemes [NY83]
and the standard Gradient method for unconstrained convex optimization
problems. In contrast to Dual Averaging schemes, Primal-Dual Subgradient
methods make an assumption on the objective function, namely they require
its convexity. This allows us to define the oracle returns as subgradients of
the objective function and to derive an upper bound on the optimality gap
from (3.2).

3.3.1 Exact subgradients

Primal-Dual Subgradient methods consider problems of the form

f∗ = min
x∈Q

f(x),

where Q ⊂ Rn is a closed and convex set and the function f : Q → R is
convex. We assume that a First-Order oracle GFO is associated to this prob-
lem. This oracle returns the objective function value f(x) and a subgradient
g ∈ ∂f(x) when we call it with x ∈ Qo. Primal-Dual Subgradient methods
are Dual Averaging schemes, where we use GFO as oracle. The resulting
schemes are presented in Algorithm 3.2.
Let the sequences (xt)

T
t=0, (gt)

T−1
t=0 , (γt)

T−1
t=0 , and (βt)

T
t=0 be given by Algo-

rithm 3.2 and set Γ =
∑T−1
t=0 γt. We denote by x∗ an optimal solution to
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Algorithm 3.2 Primal-Dual Subgradient methods [Nes09]

1: Fix T ∈ N, which corresponds to the total number of iterations.
2: Set s0 = 0.
3: Select positive step-sizes (γt)

T−1
t=0 and a non-decreasing sequence (βt)

T
t=0

of positive projection parameters.
4: Set x0 = c(d) ∈ Qo.
5: for 0 ≤ t ≤ T − 1 do
6: Call the oracle GFO to get a subgradient gt = GFO(xt) ∈ ∂f(xt).
7: Set st+1 = st − γtgt.
8: Compute xt+1 := πQ,βt+1(st+1) ∈ Qo.
9: end for

minx∈Q f(x) and remember that the definition of the parametrized mirror-
operator πβt,Q requires a distance-generating function d : Q→ R. We assume
now that there exists a constant Ωd > 0 such that Ωd ≥ d(x∗). As the or-
acle returns correspond to subgradients of the function f , the (restricted)
weighted regret gives as an upper bound on the optimality gap:

1

Γ
max
x∈Q

{
T−1∑
t=0

γt 〈gt, xt − x〉 : d(x) ≤ Ωd

}

≥ 1

Γ
max
x∈Q

{
T−1∑
t=0

γt [f(xt)− f(x)] : d(x) ≤ Ωd

}

=
1

Γ

T−1∑
t=0

γtf(xt)−min
x∈Q
{f(x) : d(x) ≤ Ωd}

≥ min
0≤t≤T−1

f(xt)− f∗.

Applying Theorem 3.1, we obtain the following convergence result for Algo-
rithm 3.2.

Theorem 3.2 [Nes09] We have:

min
0≤t≤T−1

f(xt)− f∗ ≤
1

Γ

(
βTΩd +

1

2

T−1∑
t=0

γ2
t

βt
||gt||2∗

)
.

In a similar way, it can be proven that

f(x̄T )− f∗ ≤ 1

Γ

(
βTΩd +

1

2

T−1∑
t=0

γ2
t

βt
||gt||2∗

)
, x̄T :=

1

Γ

T−1∑
t=0

γtxt.
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Clearly, the strategies that we discussed in the last section for choosing the
step-sizes (γt)

T−1
t=0 and the sequence (βt)

T
t=0 are applicable to Primal-Dual

Subgradients methods, as well. If we select the most basic strategy to choose
the βt’s in Algorithm 3.2, that is, βt = 1 for any 0 ≤ t ≤ T , we redis-
cover Mirror-Descent schemes, which are due to Nemirovski and Yudin
[NY83]. These methods have been existing more than twenty years before
Primal-Dual Subgradient methods. Note the similarities in the names of the
methods: ”Primal-Dual” refers to the switches between the primal sequence
(xt)

T
t=0 and the dual sequence (st)

T
t=0, ”Mirror” to the fact that we mirror

(or project) the dual points st back to feasible set. Recall that subgradients
generalize the concept of gradients to non-differentiable convex functions and
that gradients point in the opposite direction of the steepest descent. These
observations motivate and relate the terms ”Descent” and ”Subgradient” in
the names of the methods.
We can also show that the most elementary Gradient algorithm is a Primal-
Dual Subgradient method if the problem is unconstrained. Let us verify this
carefully. We assume that we want to minimize a convex and differentiable
function f : Rn → R over Rn. Starting from x0 ∈ Rn, the most elementary
Gradient algorithm generates a sequence xt+1 := xt − γt∇f(xt), where
γt > 0 is an appropriate step-size and ∇f(xt) denotes the gradient of f at xt.
Alternatively, the point xt+1 can be expressed as xt+1 = x0−

∑t
k=0 γt∇f(xt).

Let us now look at iteration t of Algorithm 3.2 and assume that

πQ,βt+1 ≡ πRn,1 : Rn → Rn : s→ arg max
x∈Rn

{〈s, x〉 − dx0
euc(x)}

with the distance-generating function dx0
euc : Rn → R : x 7→ ‖x− x0‖22 /2 and

with βt+1 := 1. For st+1 = −
∑t
k=0 γk∇f(xk), we obtain:

xt+1 := arg max
x∈Rn

{〈
−

t∑
k=0

γk∇f(xk), x− x0

〉
− 1

2
‖x− x0‖22

}

= x0 −
t∑

k=0

γk∇f(xk),

which shows that the most elementary Gradient algorithm is a Mirror-
Descent scheme (and thus a Primal-Dual Subgradient method), provided
that the feasible set is unconstrained.

3.3.2 Stochastic subgradients

In some situations, the objective function might include a stochastic compo-
nent. For instance, we might consider the objective function

φ : Q× Ξ→ R : (x, ξ) 7→ φ(x, ξ),
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where Q ⊂ Rn is convex and closed and (Ξ,B,P) denotes a Borel probability
space. That is, the objective function φ depends not only on a deterministic
decision vector x ∈ Q, but also on a random element ξ ∈ Ξ. One way to deal
with this uncertainty is to consider the expectation of φ with respect to ξ,
that is, we look at

f(x) := EP [φ(x, ξ)] ,

where we assume that φ(x, ·) is P-integrable for every x ∈ Q. In addition,
we suppose that φ(·, ξ) is convex for any ξ ∈ Ξ, implying that we can apply
Primal-Dual Subgradient methods to the stochastic optimization problem

min
x∈Q

{
f(x) = EP [f(x, ξ)] =

∫
Ξ

φ(x, ξ)dP(ξ)

}
, (3.6)

provided that we can easily define an oracle that returns subgradients of
f (that is, the computation of subgradients of f should be easy). In most
cases, it is however impossible to compute the exact value of f at a given
point x ∈ Q or to derive a subgradient of f at x. Instead of having an
exact First-Order oracle, that is, an oracle that returns the exact value of a
subgradient g of f at x ∈ Q, we need to content ourselves with a stochastic
First-Order oracle G̃FO

N . When we call the stochastic First-Order oracle
G̃FO
N with input point x ∈ Q, it returns a sample approximation

g̃ = g̃(ξ1, . . . , ξN ) :=
1

N

N∑
i=1

gx(ξi)

of g ∈ ∂f(x), where ξ1, . . . , ξN ∈ Ξ are N independent realizations of the
random element ξ and gx(ξi) ∈ ∂xφ(x, ξi) denotes a subgradient of φ(·, ξi)
at x for any 1 ≤ i ≤ N . Interestingly enough, Primal-Dual Subgradient
methods also work with this stochastic oracle. The stochastic version of
Primal-Dual Subgradient methods is given in Algorithm 3.3. Importantly, as
the iterates (xt)

T
t=1 depend on the sample approximations (g̃t)

T−1
t=0 , they are

themselves realizations of random variables. With a slight abuse of notation,
we write xt for both the random variable and its realization. The meaning
should be clear from the context.

Denote by x∗ an optimal solution to (3.6). Choose T ∈ N and assume that
the sequences (xt)

T
t=0, (g̃t)

T−1
t=0 , (λt)

T−1
t=0 , and (βt)

T
t=0 are given by Algorithm

3.3. We fix Ωd ≥ d(x∗) and Γ =
∑T−1
t=0 γt. Algorithm 3.3 is a Dual Averaging

scheme, implying that we obtain by Theorem 3.1:

1

Γ
max
x∈Q

{
T−1∑
t=0

γt 〈g̃t, xt − x〉 : d(x) ≤ Ωd

}
≤ 1

Γ

(
βTΩd +

1

2

T−1∑
t=0

γ2
t

βt
||g̃t||2∗

)
.
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Algorithm 3.3 Stochastic Primal-Dual Subgradient methods [Nes09]

1: Fix T ∈ N, which corresponds to the total number of iterations.
2: Set s0 = 0 and choose N ≥ 1.
3: Select positive step-sizes (γt)

T−1
t=0 and a non-decreasing sequence (βt)

T
t=0

of positive projection parameters.
4: Set x0 = c(d) ∈ Qo.
5: for 0 ≤ t ≤ T − 1 do
6: Call the stochastic oracle G̃FO

N to get an approximation g̃t = G̃FO
N (xt)

of gt ∈ ∂f(xt).
7: Set st+1 = st − γtg̃t.
8: Compute xt+1 := πQ,βt+1(st+1) ∈ Qo.
9: end for

On the other hand, we have:

1

Γ
max
x∈Q

{
T−1∑
t=0

γt 〈g̃t, xt − x〉 : d(x) ≤ Ωd

}

≥ 1

Γ

T−1∑
t=0

γt 〈g̃t, xt − x∗〉

=
1

Γ

T−1∑
t=0

γt

〈
1

N

N∑
i=1

gxt(ξt,i), xt − x
∗

〉

=
1

Γ

T−1∑
t=0

γt
N

N∑
i=1

〈gxt(ξt,i), xt − x
∗〉

≥ 1

Γ

T−1∑
t=0

γt
N

N∑
i=1

[φ(xt, ξt,i)− φ(x∗, ξt,i)] ,

where the concluding inequality holds as gxt(ξt,i) is a subgradient of φ(·, ξt,i)
at xt for any 0 ≤ t ≤ T − 1 and any 1 ≤ i ≤ N . Thus,

1

Γ

(
βTΩd +

1

2

T−1∑
t=0

γ2
t

βt
||g̃t||2∗

)

≥ 1

Γ

T−1∑
t=0

γt
N

N∑
i=1

[φ(xt, ξt,i)− φ(x∗, ξt,i)] . (3.7)

Let us assume that there exists a constant M̃ such that

EPN
[
‖g̃‖2∗

]
≤ M̃2
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for any output g̃ of the oracle G̃FO
N . In addition, we observe that xt and

ξt,1, . . . , ξt,N are independent random variables, as xt depends only on the
random variables ξk,i, where 0 ≤ k ≤ t−1 and 1 ≤ i ≤ N . The independence
of these random variables allows us to write EPNT φ(xt, ξt,i) as EPNT f(xt) for
any 0 ≤ t ≤ T − 1. Taking expectations on both sides of Inequality (3.7), we
thus obtain:

1

Γ

(
βTΩd +

M̃2

2

T−1∑
t=0

γ2
t

βt

)

≥ 1

Γ

(
βTΩd +

1

2

T−1∑
t=0

γ2
t

βt
EPN

[
‖g̃t‖2∗

])

=
1

Γ
EPNT

[
βTΩd +

1

2

T−1∑
t=0

γ2
t

βt
‖g̃t‖2∗

]

≥ 1

Γ
EPNT

[
T−1∑
t=0

γt
N

N∑
i=1

[φ(xt, ξt,i)− φ(x∗, ξt,i)]

]

=
1

Γ

T−1∑
t=0

γt
N

N∑
i=1

(EPNT [φ(xt, ξt,i)]− EPNT [φ(x∗, ξt,i)])

=
1

Γ

T−1∑
t=0

γt
N

N∑
i=1

(EPNT [f(xt)]− f(x∗))

=
1

Γ

T−1∑
t=0

γt (EPNT [f(xt)]− f(x∗)) .

We have verified the following result.

Theorem 3.3 [Nes09]It holds that:

EPNT

[
min

0≤t≤T−1
f (xt)

]
− f(x∗) ≤ 1

Γ

(
βTΩd +

M̃2

2

T−1∑
t=0

γ2
t

βt

)
.

Using the convexity of f , we can also show:

EPNT

[
f

(
1

Γ

T−1∑
t=0

γtxt

)]
− f(x∗) ≤ 1

Γ

(
βTΩd +

M̃2

2

T−1∑
t=0

γ2
t

βt

)
.

3.3.3 How fast can Subgradient methods be?

The Black-Box Optimization framework has been developed to formalize
the complexity analysis of some optimization algorithms and has resulted in
many lower complexity bounds. Of particular interest to us is the following
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theorem, which concerns Subgradient methods and shows that these schemes
cannot convergence faster than with the order Ω(1/

√
T ). In particular, this

result ensures the optimality of the Algorithms 3.2 and 3.3.

Theorem 3.4 (Theorem 3.2.1 in [Nes04]) Consider the unconstrained
minimization problem min f(x), where f : Rn → R is a convex function,
and let x0 ∈ Rn. Assume that there exists a minimizer x∗ of f , that x∗

belongs to B := {x ∈ Rn : ||x− x0||2 ≤ R} for an R > 0, and that f is Lip-
schitz continuous on B with Lipschitz constant M . We have at our disposal
a First-Order oracle x 7→ (f(x), g) ∈ R × ∂f(x). If the optimization method
constructs a sequence of points (xt)t≥0 such that xt ∈ x0 +span{g0, . . . , gt−1}
for any t ≥ 1, then:

f(xt)− f(x∗) ≥ MR

2(1 +
√
t+ 1)

∀ 0 ≤ t < n.

3.4 Optimal First-Order methods

In this section, we consider optimization problems of the form

f∗ = min
x∈Q

f(x),

where Q is a closed and convex subset of Rn and f : Rn → R is a function
that is convex on Q and that belongs to C1

L(Q). By Definition (2.19), the
constant L = L(Q) > 0 satisfies the inequality:

‖∇f(x)−∇f(y)‖∗ ≤ L ‖x− y‖ ∀ x, y ∈ Q. (3.8)

Nesterov [Nes04, Nes05] designed a method for this problem class; see Equa-
tions (5.6) in [Nes05]. This method has a convergence rate of O

(
L/T 2

)
,

which outperforms the rate of convergence for Subgradient methods by two
orders of magnitude.

At every step of Nesterov’s method [Nes04, Nes05], the Lipschitz constant L
is used to update the iterates. However, the constant L is a global parameter
of the function f , as L needs to satisfy Condition (3.8) on the whole set Q.
In this section, we introduce a refined version of Nesterov’s algorithm, where
we replace the global parameter L by local estimates. Numerical results
in Chapter 11 show that this replacement yields to methods with a better
performance in practice.

Let d : Q → R be a distance-generating function. Recall from Section 2.5
that we write Vz(x) = d(x)−d(z)−〈d′(z), x− z〉 for the Bregman distance of
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x ∈ Q with respect to z ∈ Qo. Nesterov’s method requires a prox-mapping,
that is, a mapping of the form:

ProxQ,z : Rn → Qo : s 7→ arg min
x∈Q
{〈s, x− z〉+ Vz(x)} , z ∈ Qo. (3.9)

Given s ∈ Rn and z ∈ Qo, the prox-mapping ProxQ,z(s) can be rewritten as

ProxQ,z(s) = arg min
x∈Q

{〈
s− d′(z), x

〉
+ d(x)

}
,

which shows that the value ProxQ,z(s) is well-defined, that it belongs to
Qo (by Remark 2.2), and that it can be written in a closed form (due to
Assumption 2.1).

We consider Algorithm 3.4 and let T ∈ N0. Provided that we set Lt = L
for any 0 ≤ t ≤ T in Algorithm 3.4, this scheme coincides with Nesterov’s
method [Nes04, Nes05].

Let us now study the analytical complexity of the modified method. We as-
sume that the sequences (xt)

T+1
t=0 , (ut)

T+1
t=0 , (zt)

T
t=0, (x̂t)

T+1
t=1 , (γt)

T+1
t=0 , (Γt)

T+1
t=0 ,

(τt)
T
t=0, and (Lt)

T
t=0 are generated by Algorithm 3.4.

Given 0 ≤ t ≤ T , we say that Inequality (It) holds if

Γtf(ut) +

t−1∑
k=0

(Lk+1 − Lk)

(
d(zk+1)− 1

2
‖zk − x̂k+1‖2

)
≤ ψt, (It)

where

ψt := min
x∈Q

{
t∑

k=0

γk (f(xk) + 〈∇f(xk), x− xk〉) + Ltd(x)

}
.

As the proof of the following result is rather long and technical, we give it in
the Appendix B.1.

Theorem 3.5 Inequality (It) holds for any 0 ≤ t ≤ T .

As usual, the element x∗ ∈ Q represents an optimal solution to the optimiza-
tion problem f∗ = minx∈Q f(x).

Theorem 3.6 For any T ∈ N0, we have:

f(uT )−f∗ ≤ 1

ΓT

[
LT d(x∗) +

T−1∑
t=0

(Lt − Lt+1)

(
d(zt+1)− 1

2
‖zt − x̂t+1‖2

)]
.
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Algorithm 3.4 Optimal First-Order method with adaptive L-estimation

1: Choose T ∈ N0.
2: Choose (γt)

T+1
t=0 with γ0 ∈ (0, 1], γt ≥ 0, and γ2

t ≤ Γt :=
∑t
k=0 γk for any

0 ≤ t ≤ T + 1.
3: Set L0 = L and x0 = c(d).
4: Compute u0 := arg minx∈Q {γ0 (f(x0) + 〈∇f(x0), x− x0〉) + L0d(x)}.
5: Set z0 = u0, τ0 = γ1/Γ1, and x1 = τ0z0 + (1− τ0)u0 = z0.
6: Define x̂1 := ProxQ,z (γ1∇f(x1)/L0).
7: Set u1 = τ0x̂1 + (1− τ0)u0.
8: for 1 ≤ t ≤ T do
9: Choose 0 < Lt ≤ L such that:

f(ut) ≤ f(xt) + 〈∇f(xt), ut − xt〉+
Lt
2
‖ut − xt‖2 . (3.10)

10: Set zt = arg minx∈Q
{∑t

k=0 γk (f(xk) + 〈∇f(xk), x− xk〉) + Ltd(x)
}

.
11: Set τt = γt+1/Γt+1 and xt+1 = τtzt + (1− τt)ut.
12: Compute x̂t+1 := ProxQ,zt (γt+1∇f(xt+1)/Lt).
13: Set ut+1 = τtx̂t+1 + (1− τt)ut.
14: end for

Proof: Let 0 ≤ t ≤ T . The convexity of the function f and the definition of
Γt imply:

ψt := min
x∈Q

{
Ltd(x) +

t∑
k=0

γk (f(xk) + 〈∇f(xk), x− xk〉)

}

≤ Ltd(x∗) +

t∑
k=0

γk (f(xk) + 〈∇f(xk), x∗ − xk〉)

≤ Ltd(x∗) +
t∑

k=0

γkf(x∗)

= Ltd(x∗) + Γtf(x∗).

It remains to combine this inequality with Theorem 3.5.
Nesterov [Nes04, Nes05] suggests to choose the sequence (γt)

T+1
t=0 as

γt :=
t+ 1

2
∀ 0 ≤ t ≤ T + 1. (3.11)

Lemma 2 of [Nes05] shows that we have

τt =
2

t+ 3
∀ 0 ≤ t ≤ T
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and

Γt =
(t+ 1)(t+ 2)

4
, γ2

t ≤ Γt ∀ 0 ≤ t ≤ T + 1

for this choice of the γt’s. With this setting, Theorem 3.6 results in the
following corollary.

Corollary 3.2 Let us choose the sequence (γt)
T+1
t=0 in Algorithm 3.4 as de-

scribed in (3.11). Then, we have for any T ≥ 0:

f(uT )− f∗ ≤ 4

(T + 1)(T + 2)
LT d(x∗)

+

T−1∑
t=0

4 (Lt − Lt+1)

(T + 1)(T + 2)

(
d(zt+1)− 1

2
‖zt − x̂t+1‖2

)
.

In the non-adaptive setting, that is, if Lt = L for any 0 ≤ t ≤ T , the
inequality of the above corollary takes the form

f(uT )− f∗ ≤ 4

(T + 1)(T + 2)
Ld(x∗).

According to this inequality, we need to perform at most

T =
⌈
2
√
Ld(x∗)/ε− 1

⌉
iterations of Algorithm 3.4 to find a point x ∈ Q satisfying f(x) − f∗ ≤ ε,
where ε > 0 denotes the absolute accuracy. This result is in full accordance
with Theorem 2 in [Nes05].
In the adaptive setting, we can bound LT d(x∗) from above by Ld(x∗). More-
over, we have:

4

(T + 1)(T + 2)

T−1∑
t=0

(Lt − Lt+1)

(
d(zt+1)− 1

2
‖zt − x̂t+1‖2

)
≤

20L supx∈Q d(x)

T + 2
,

which holds due to Inequality (2.14). Thus, Algorithm 3.4 needs at most

T =

⌈
20L sup

x∈Q
d(x)/ε− 2

⌉
iterations to find a feasible ε-solution, provided that supx∈Q d(x) is finite.
However, we can always switch back to the non-adaptive setting. That is,
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we can choose a constant O(1) and install the following supplementary rule
for the choice of the parameters Lt. As soon as

i−1∑
k=0

(Lk − Lk+1)

(
d(zk+1)− 1

2
‖zk − x̂k+1‖2

)
≥ O(1)Ld(x∗) (3.12)

for some i ≥ 1, we set Lt = L for all t > i. In other words, we switch back
to the non-adaptive setting after we have reached a certain threshold defined
by O(1).
Algorithm 3.4 equipped with this additional switch-back rule has - in O-
notation – the same worst-case analytical complexity bound as the original
method presented in [Nes04, Nes05]. As we will observe in Chapter 11, we can
significantly reduce the running time of the method in practice by replacing
the global constant L by smaller local estimates Lt ≤ L of L.





Chapter 4
Solution methods in

Structural Optimization

The key feature of Black-Box Optimization is that the exact form (or the
structure) of the problem is hidden from the solution method. How-

ever, in order to choose an optimization method, the optimizer needs to verify
several characteristics (such as convexity, for instance) of the problem. In
particular, she knows the exact form of the problem. Immediately, the fol-
lowing question arises: what is the purpose of putting the problem artificially
in a black box? In the last chapter, we gave some reasons that justify this
approach. However, the knowledge about the exact problem structure might
help us to solve the problem more efficiently. In other words, we might de-
sign solution methods that are particularized to a certain problem structure
and run much faster on these problem classes than Black-Box optimization
schemes. This is the basic motivation of Structural Optimization, where we
give the optimization method full access to the problem structure; see [Nes04]
for more details.

We study several methods that exploit the particular structure of a prob-
lem class in this chapter and show that they significantly outperform tradi-
tional Subgradient methods with respect to the analytical complexity. In Sec-
tion 4.1, we review Smoothing Techniques [Nes05] and Mirror-Prox methods
[Nem04a]. These methods are of first-order-type. They can be applied to the
same subfamily of non-smooth convex optimization problems and share the
same analytical complexity result: about O(1/ε) iterations of these methods
are required to find a feasible ε-solution. Smoothing Techniques and Mirror-

55
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Prox methods are probably the most exciting developments in Convex Opti-
mization in the last ten years. Due to these methods, we are nowadays able
to solve approximately structured large-scale convex optimization problems
whose practical tractability was out of reach ten years ago; see [Ele09, Peñ08]
for some examples.

We conclude the study of solution methods for convex optimization problems
by introducing Interior-Point methods [Kar84] in Section (4.2). Interior-Point
methods have attracted substantial research efforts over the last 30 years and
have been implemented in excellent software. These methods are superior to
all the other methods that we discuss in this thesis with respect to the ana-
lytical complexity. In order to find a feasible ε-solution, they require at most
O(ln[1/ε]) iterations, which makes them very well suited for the computation
of solutions with a very small approximation error. Under the assumption
that a problem satisfies the structural conditions required by Interior-Points
methods, these methods are an excellent tool to solve small- and medium-
scale problems approximately. However, and in contrast to the other methods
presented in this thesis, Interior-Point methods require the computation of
second-order information and the resolution of a system of linear equations
at every iteration. These requirements hamper the applicability of Interior-
Point methods to very large-scale problems. We will discuss this issue in
Chapter 6 in more detail.

Contributions and relevant literature: All methods and complexity
results presented in this chapter are known. We mainly use the references
[JNT08, Nem04a, Nes04, Nes05]. Parts of this review chapter are taken from
[BB09, BBN11].

4.1 First-Order methods in Structural Optimization

Traditional Subgradient methods have an analytical complexity of O
(
1/ε2

)
for finding a feasible ε-solution to convex optimization problems; see Section
3.3. In Section 3.4, we observed that the situation becomes much more
favorable if the objective function is not only convex, but also differentiable
with a Lipschitz continuous gradient. In this situation, we can approximately
solve the problem by performing O (1/

√
ε) iterations of Algorithm 3.4. These

two results show a difference of two orders of magnitude with respect to the
accuracy. Naturally, the following question arises: is there any First-Order
method that fills this gap of the two algorithms for a subfamily of convex
optimization problems?

It was a huge breakthrough when Nesterov [Nes05] answered affirmatively
this question. He considers a subfamily of convex optimization problems
with a very particular structure of non-differentiability. In a first step, he
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constructs a smooth approximation of the objective function, that is, an
auxiliary objective function that is differentiable with a Lipschitz continuous
gradient. Then, the resulting auxiliary problem is solved using Algorithm
3.4. In total, this procedure requires O (1/ε) iterations of Algorithm 3.4 to
derive an approximate solution to the initial problem. Let us now start by
introducing Nesterov’s procedure.

4.1.1 Smoothing Techniques

We assume that the sets Q1 ⊂ Rn and Q2 ⊂ Rm are both compact and
convex. In addition, we endow the spaces Rn and Rm with two (maybe
different) norms. We denote by ‖·‖Rn and ‖·‖Rm the norm of the spaces Rn
and Rm, respectively. Nesterov considers convex optimization problems of
the form:

min
x∈Q1

max
y∈Q2

φ(x, y), φ(x, y) := 〈a, x〉+ 〈A(x), y〉+ 〈b, y〉 , (4.1)

where a ∈ Rn, b ∈ Rm, and A : Rn → Rm is a linear operator. Note that we
write 〈·, ·〉 for the Euclidean scalar product in both spaces Rn and Rm. In
principle, the analysis would also work for

φ̃(x, y) := f1(x) + 〈A(x), y〉 − f2(y)

with convex and smooth functions f1 and f2. However, some of the subse-
quent results would become slightly worse (especially in Section 4.1.2, where
we would obtain larger constant factors for some estimates and which would
result in smaller step-sizes for the algorithms).

According to the standard MiniMax Theorem in Convex Analysis (see Corol-
lary 37.3.2 in [Roc70]), we have due to the compactness and convexity of the
sets Q1 and Q2 the following pair of primal-dual convex optimization prob-
lems:

min
x∈Q1

{
φ(x) := max

y∈Q2

φ(x, y)

}
= max
y∈Q2

{
φ(y) := min

x∈Q1

φ(x, y)

}
.

The operator A comes with an adjoint operator A∗ : Rm → Rn, which is
defined by the relation:

〈A(x), y〉 = 〈x,A∗(y)〉 ∀ (x, y) ∈ Rn × Rm.

The analysis of Nesterov’s Smoothing Techniques requires an operator norm
of A. This norm is constructed as follows.



58 4. Solution methods in Structural Optimization

Definition 4.1 (Operator norm) The norm of the operator A : Rn → Rm
is defined as:

‖A‖Rn,Rm := max
x∈Rn,y∈Rm

{
〈A(x), y〉 : ‖x‖Rn = 1, ‖y‖Rm = 1

}
.

Note that the operator norm can be expressed as

‖A‖Rn,Rm = max
x∈Rn

{
‖A(x)‖Rm,∗ : ‖x‖Rn = 1

}
= max

y∈Rm

{
‖A∗(y)‖Rn,∗ : ‖y‖Rm = 1

}
,

where ‖·‖Rn,∗ and ‖·‖Rm,∗ denote the dual norms of ‖·‖Rn and ‖·‖Rm , respec-
tively. The above expression gives rise to the inequalities:

‖A∗(y)‖Rn,∗ ≤ ‖A‖Rn,Rm ‖y‖Rm and ‖A(x)‖Rm,∗ ≤ ‖A‖Rn,Rm ‖x‖Rn , (4.2)

where x ∈ Rn and y ∈ Rm, respectively.

We are ready to form a smooth approximation of φ to which we can apply
Algorithm 3.4. We choose a distance-generating function dQ2 : Q2 → R and
consider the auxiliary function

φµ : Rn → R : x 7→ max
y∈Q2

{〈a, x〉+ 〈A(x) + b, y〉 − µdQ2(y)} ,

where µ > 0 is a positive smoothness parameter. This function defines a
uniform approximation of φ, as

φµ(x) ≤ φ(x) ≤ φµ(x) + µ max
z∈Q2

dQ2(z) ∀ x ∈ Q1; (4.3)

see Inequality (2.7) in [Nes05]. The function y 7→ 〈A(x) + b, y〉 − µdQ2(y) is
strongly concave (that is, y 7→ − (〈A(x) + b, y〉 − µdQ2(y)) is strongly con-
vex) for any x ∈ Q1, as the distance-generating function dQ2 is strongly
convex by its definition. Hence, the function y 7→ 〈A(x) + b, y〉 − µdQ2(y)
has a unique maximizer on Q2. We denote this maximizer by y∗(x).

Nesterov showed that φµ is differentiable with a Lipschitz continuous gradi-
ent.

Theorem 4.1 (Theorem 1 in [Nes05]) The function φµ is well-defined,

continuously differentiable, and convex on Rn. The gradient of φµ takes the
form

∇φµ(x) = a+A∗(y∗(x)),

and is Lipschitz continuous with the constant Lµ = Lµ(Rn) := ‖A‖2Rn,Rm /µ.
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Algorithm 4.1 Algorithm 3.4 (with γt = (t+1)/2) applied to Problem (4.4)

1: Choose T ∈ N0.
2: Choose a smoothness parameter µ > 0 and a distance-generating function
dQ1 : Q1 → R.

3: Set L0 = Lµ = ‖A‖2Rn,Rm /µ and x0 = c(dQ1).

4: Set u0 = arg minx∈Q1

{
1
2

(
φµ(x0) + 〈∇φµ(x0), x− x0〉

)
+ L0dQ1(x)

}
.

5: Set z0 = u0, τ0 = 2
3
, and x1 = τ0z0 + (1− τ0)u0 = z0.

6: Define x̂1 := ProxQ1,z

(
∇φµ(x1)/L0

)
.

7: Set u1 = τ0x̂1 + (1− τ0)u0.
8: for 1 ≤ t ≤ T do
9: Choose 0 < Lt ≤ Lµ such that:

φµ(ut) ≤ φµ(xt) +
〈
∇φµ(xt), ut − xt

〉
+
Lt
2
‖ut − xt‖2Rn .

10: Set

zt = arg min
x∈Q1

{
t∑

k=0

k + 1

2

(
φµ(xk) + 〈∇φµ(xk), x− xk〉

)
+ LtdQ1(x)

}
.

11: Set τt = 2
t+3

and xt+1 = τtzt + (1− τt)ut.
12: Compute x̂t+1 := ProxQ1,zt

(
t+2

2
∇φµ(xt+1)/Lt

)
.

13: Set ut+1 = τtx̂t+1 + (1− τt)ut.
14: end for

As an immediate consequence, we can apply Algorithm 3.4 to the problem:

min
x∈Q1

φµ(x). (4.4)

Algorithm 4.1 corresponds to Algorithm 3.4 when we apply this method with
step-sizes as described in (3.11) to Problem (4.4).

A slight adaptation of the proof of Theorem 3 in [Nes05] yields to the follow-
ing result. This slight adaption of the proof is required, as we use Algorithm
3.4 with local estimates for Lµ and not the original method with Lt = Lµ.
We need the definitions:

D1 := max
x∈Q1

dQ1(x) and D2 := max
y∈Q2

dQ2(y).

Theorem 4.2 Fix T ∈ N0 and assume that the sequences (xt)
T+1
t=0 , (ut)

T+1
t=0 ,

(zt)
T
t=0, (x̂t)

T+1
t=1 , and (Lt)

T
t=0 are generated by Algorithm 4.1 for the smooth-

ness parameter
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µ :=
2 ‖A‖Rn,Rm
T + 1

√
D1

D2
.

For

x̄ := uT ∈ Q1 and ȳ :=
T∑
t=0

2(t+ 1)

(T + 1)(T + 2)
y∗(xt) ∈ Q2,

we have:

0 ≤ φ(x̄)− φ(ȳ) ≤
4 ‖A‖Rn,Rm

√
D1D2

T + 1
− 4χT

(T + 1)2
,

where

χT :=

T−1∑
t=0

(Lt+1 − Lt)
(
dQ1(zt+1)− 1

2
‖zt − x̂t+1‖2Rn

)
.

For the non-adaptive setting, that is, with Lt = Lµ for any 0 ≤ t ≤ T , we
recover Theorem 3 in [Nes05]. In this setting, we need to perform at most

T =
⌈
4 ‖A‖Rn,Rm

√
D1D2/ε− 1

⌉
iterations of Algorithm 4.1 in order to find a tuple (x̄, ȳ) ∈ Q1 × Q2 that
satisfies φ(x̄)− φ(ȳ) ≤ ε, where ε > 0.

Proof: Let T ∈ N0 and µ > 0. We suppose that the sequences (xt)
T+1
t=0 ,

(ut)
T+1
t=0 , (zt)

T
t=0, (x̂t)

T+1
t=1 , and (Lt)

T
t=0 are generated by Algorithm 4.1. Let

x̄, ȳ, and χT be defined as in the above theorem. In accordance to Theorem
3.5 (that is, we apply Inequality (IT )) and to the step-size choice (3.11), we
have the inequality:

φµ(x̄) = φµ(uT ) ≤ 4(LTD1 − χT )

(T + 1)(T + 2)
+ min
x∈Q1

2βT (x)

(T + 1)(T + 2)
, (4.5)

where

βT (x) :=
T∑
t=0

(t+ 1)
(
φµ(xt) +

〈
∇φµ(xt), x− xt

〉)
∀ x ∈ Q1.

Let x ∈ Q1. Using Theorem 4.1, we can write:

βT (x) =

T∑
t=0

(t+ 1) (〈a, x〉+ 〈A(x) + b, y∗(xt)〉 − µdQ2(y∗(xt)))

q : R× R→ R such that:
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≤
T∑
t=0

(t+ 1) (〈a, x〉+ 〈A(x) + b, y∗(xt)〉)

=
(T + 1)(T + 2)

2
(〈a, x〉+ 〈A(x) + b, ȳ〉) .

The above inequality implies:

min
x∈Q1

βT (x) ≤ (T + 1)(T + 2)

2
φ(ȳ). (4.6)

Using that LT ≤ Lµ = ‖A‖2Rn,Rm /µ by construction and applying Inequali-
ties (4.5), (4.6), and (4.3), we obtain:

4(D1 ‖A‖2Rn,Rm /µ− χT )

(T + 1)2
≥ 4(LTD1 − χT )

(T + 1)(T + 2)

≥ φµ(x̄)− φ(ȳ)

≥ φ(x̄)− φ(ȳ)− µD2. (4.7)

It remains to minimize
4D1‖A‖2Rn,Rm

µ(T+1)2
+ µD2 with respect to µ > 0.

There exist several strategies to ensure convergence of Algorithm 4.1. First,
we may equip Algorithm 4.1 with the switch-back rule described in (3.12).
Then, Algorithm 4.1 has – in O-notation – the same worst-case running time
as the non-adaptive original method.
On the other hand, we can give the following upper bound for the quantity
(−χT ) in Theorem 4.2:

−χT ≤ 5LµD1T =
5D1 ‖A‖2Rn,Rm T

µ
.

This allows us to rewrite (4.7) in the above proof as:

φ(x̄)− φ(ȳ) ≤
20D1 ‖A‖2Rn,Rm

(T + 1)µ
+ µD2.

The right-hand side of the above inequality is minimized by:

µ = 2 ‖A‖Rn,Rm

√
5D1

(T + 1)D2
,

for which we obtain:

φ(x̄)− φ(ȳ) ≤ 4 ‖A‖Rn,Rm
√

5D1D2

T + 1
.

Note that this worst-case bound is weaker than the corresponding result for
the non-adaptive method.
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4.1.2 Mirror-Prox methods

Inspired by Nesterov’s work [Nes05], Nemirovski suggested in [Nem04a] an al-
ternative method to solve approximately convex optimization problems satis-
fying the very specific structural requirements described in (4.1). While Nes-
terov derives a smooth approximation of the initial problem at first and runs
Algorithm 3.4 on the resulting auxiliary problem afterwards, Nemirovski’s
method is directly applied to the underlying saddle-point problem. Although
the algorithmic concepts are completely different, the two methods share the
same analytical complexity. Both methods require O(‖A‖Rn,Rm /ε) iterations
to find a feasible ε-solution to (4.1).

Together with Saddle-Point Problem (4.1), we can consider the linear oper-
ator

F : Q1 ×Q2 → Rn × Rm : (x, y) 7→
(
∂φ(x, y)

∂x
,−∂φ(x, y)

∂y

)
,

that is, F (x, y) = (a + A∗(y),−A(x) − b) for any (x, y) ∈ Q1 × Q2. As for
Smoothing Techniques, we endow the set sets Q1 and Q2 with two distance-
generating functions dQ1 : Q1 → R and dQ2 : Q2 → R, respectively. The set
Q1×Q2 is a subset of the product space Rn×Rm. We equip this space with
the norm

‖(x, y)‖Rn×Rm :=

√
1

Ω2
V (dQ1)

‖x‖2Rn +
1

Ω2
V (dQ2)

‖y‖2Rm

for any (x, y) ∈ Rn ×Rm, where ΩV (dQ1) and ΩV (dQ2) denote the dQ1 - and
the dQ2 -diameter of the sets Q1 and Q2, respectively; see Definition 2.26.
The dual norm takes the form:

‖(u, v)‖Rn×Rm,∗ :=
√

Ω2
V (dQ1) ‖u‖2Rn,∗ + Ω2

V (dQ2) ‖v‖2Rm,∗

for any (u, v) ∈ Rn × Rm. The operator F has the following property.

Lemma 4.1 The operator F is Lipschitz-continuous with constant

L := ΩV (d1)ΩV (d2) ‖A‖Rn,Rm ,

that is, ∥∥F (x, y)− F (x′, y′)
∥∥
Rn×Rm,∗ ≤ L

∥∥(x, y)− (x′, y′)
∥∥
Rn×Rm

for any (x, y), (x′, y′) ∈ Q1 ×Q2.
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Algorithm 4.2 Mirror-Prox methods (adapted from [Nem04a])

1: Choose T ∈ N.
2: Set z0 = (x0, y0) = c(dQ1×Q2) ∈ Qo1 ×Qo2.
3: for 1 ≤ t ≤ T do
4: Choose γt > 0 such that:

γt ≤
1

L
. (4.10)

5: Compute F (zt−1) = F (xt−1, yt−1).
6: Set wt = ProxQ1×Q2,zt−1(γtF (zt−1)) ∈ Qo1 ×Qo2.
7: Compute F (wt).
8: Set zt = (xt, yt) = ProxQ1×Q2,zt−1(γtF (wt)) ∈ Qo1 ×Qo2.
9: end for

10: Return z̄ :=
(∑T

t=1 γt
)−1∑T

t=1 γtwt.

Proof: For any (x, y), (x′, y′) ∈ Q1 ×Q2, we have:∥∥F (x, y)− F (x′, y′)
∥∥2

Rn×Rm,∗

= Ω2
V (dQ1)

∥∥A∗(y − y′)∥∥2

Rn,∗ + Ω2
V (dQ2)

∥∥A(x− x′)
∥∥2

Rm,∗

≤ Ω2
V (dQ1) ‖A‖2Rn,Rm

∥∥y − y′∥∥2

Rm + Ω2
V (dQ2) ‖A‖2Rn,Rm

∥∥x− x′∥∥2

Rn

= Ω2
V (dQ1)Ω2

V (dQ2) ‖A‖2Rn,Rm
∥∥(x− x′, y − y′)

∥∥2

Rn×Rm ,

where the inequality is due to (4.2).

We consider the function

dQ1×Q2 : Q1 ×Q2 → R : (x, y) 7→ 1

Ω2
V (dQ1)

dQ1(x) +
1

Ω2
V (dQ2)

dQ2(y). (4.8)

As proven in Lemma 4.1 in [JNT08], this is a distance-generating function
defined on the set Q1 ×Q2 with the following properties:

ΩV (dQ1×Q2) =
√

2 and c(dQ1×Q2) = (c(dQ1), c(dQ2)). (4.9)

4.1.2.1 Original Mirror-Prox methods

In their original form, which is presented in Algorithm 4.2, Mirror-Prox meth-
ods aim at solving Saddle-Point Problem (4.1) when exact values of F are
available.

The analytical complexity study of this method requires the following result.
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Lemma 4.2 (Lemma 5.3 in [JNT08]) Let z ∈ Qo1 × Qo2, γ > 0, and
choose u, v ∈ Rn × Rm. Consider the points

w := arg min
p∈Q1×Q2

{〈
γu− d′Q1×Q2

(z), p
〉

+ dQ1×Q2(p)
}
,

z+ := arg min
p∈Q1×Q2

{〈
γv − d′Q1×Q2

(z), p
〉

+ dQ1×Q2(p)
}
.

Let p ∈ Q1 ×Q2. Then,

〈γv, w − p〉 ≤ Vz(p)− Vz+(p)− Vz(z+) + 〈γv, w − z+〉 , (4.11)

where we moreover have:

−Vz(z+) + 〈γv, w − z+〉

≤ γ2

2
‖u− v‖2Rn×Rm,∗ −

1

2
‖w − z‖2Rn×Rm . (4.12)

We display here the lemma taken from [JNT08] and not the initial version
of this result presented in [Nem04a], as the more recent version is slightly
stronger than its predecessor. Basically, the stronger version allows us to take
steps of size at most 1/L, whereas the step-sizes in [Nem04a] are bounded
from above by 1/(

√
2L). As we will observe in Chapter 11, larger step-sizes

remarkably improve the the practical behavior of the algorithm.
Using this result in the proof of Theorem 3.2 in [Nem04a], we obtain the
following result on the performance of Algorithm 4.2.

Theorem 4.3 (Adapted version of Theorem 3.2 in [Nem04a]) Let
Algorithm 4.2 return z̄ = (x̄, ȳ) ∈ Q1 ×Q2. Then,

φ(x̄)− φ(ȳ) ≤ 1∑T
t=1 γt

.

Provided that we use constant step-sizes γt = 1/L for any 1 ≤ t ≤ T , the
above inequality takes the form:

φ(x̄)− φ(ȳ) ≤
ΩV (dQ1)ΩV (dQ2) ‖A‖Rn,Rm

T
.

In this situation, we need to perform at most

T =

⌈
ΩV (dQ1)ΩV (dQ2) ‖A‖Rn,Rm

ε

⌉

iterations of Algorithm 4.2 to find (x̄, ȳ) ∈ Q1 × Q2 with φ(x̄) − φ(ȳ) ≤ ε,
where ε > 0.
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We give here the proof of the above theorem. Based on the proof, we can
discuss a strategy to replace the constant L by some local substitutes that
we update dynamically.

Proof: Let the sequences (wt)
T
t=1 = ((ut, vt))

T
t=1, (zt)

T
t=0, and (γt)

T
t=1 and

the point z̄ = (x̄, ȳ) be given by Algorithm 4.2. Choose p = (q, r) ∈ Q1×Q2.
As φ is bilinear, we have:

T∑
t=1

γt 〈F (wt), wt − p〉 =

T∑
t=1

γt (φ(ut, vt)− φ(q, vt) + φ(ut, r)− φ(ut, vt))

=

T∑
t=1

γt (φ(ut, r)− φ(q, vt))

=

T∑
t=1

γt (φ(x̄, r)− φ(q, ȳ))

≥
T∑
t=1

γt
(
φ(x̄)− φ(ȳ)

)
,

where the inequality is due to the definitions of φ and φ. Using Inequality
(4.11), Definition (2.26), and Equation (4.9), we can verify the following
relations:

T∑
t=1

γt 〈F (wt), wt − p〉

≤ Vc(dQ1×Q2
)(p) +

T∑
t=1

(
−Vzt−1(zt) + 〈γtF (wt), wt − zt〉

)
≤ Ω2

V (dQ1×Q2)

2
+

T∑
t=1

(
−Vzt−1(zt) + 〈γtF (wt), wt − zt〉

)
= 1 +

T∑
t=1

(
−Vzt−1(zt) + 〈γtF (wt), wt − zt〉

)
.

We use now Inequality (4.12), the Lipschitz continuity of F , and Condition
(4.10) to show that

T∑
t=1

(
−Vzt−1(zt) + 〈γtF (wt), wt − zt〉

)
≤ 0.

Indeed, we have for any 1 ≤ t ≤ T :
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−Vzt−1(zt) + 〈γtF (wt), wt − zt〉

≤ γ2
t

2
‖F (wt)− F (zt−1)‖2Rn×Rm,∗ −

1

2
‖wt − zt−1‖2Rn×Rm

≤ L2γ2
t

2
‖wt − zt−1‖2Rn×Rm −

1

2
‖wt − zt−1‖2Rn×Rm

≤ 0.

Condition (4.10) appears in the above proof only in the last step, where we
use it to ensure the relation −Vzt−1(zt) + 〈γtF (wt), wt − zt〉 ≤ 0 for any
1 ≤ t ≤ T . Instead of enforcing (4.10) in Algorithm 4.2, we can proceed as
suggested in [Nem04a]: given a point zt−1 ∈ Q1×Q2, we use a computation-
ally more attractive step-size γ̃t ≥ 1/L instead of γt ≤ 1/L, compute wt and
zt, and verify the condition −Vzt−1(zt) + 〈γ̃tF (wt), wt − zt〉 ≤ 0. We refer to
[Nem04a] for a possible adjustment strategy of the step-sizes γ̃t. We can view
this dynamic step-size strategy as a replacement of Condition (4.10), where
we substitute the Lipschitz constant L by local estimates in order to get a less
restrictive condition on the step-sizes. Compared to the L-substitution by
local estimates in Algorithm 4.1, the dynamic step-size strategy for Mirror-
Prox methods has a intrinsic drawback. In Algorithm 4.1, we can validate
the current L-replacement before we use it. In Mirror-Prox methods how-
ever, the validation of the L-replacement requires the next iterates wt and
zt, which implies that we may need to adapt the L-replacement in hindsight
and to recompute the iterates wt and zt. This adaptive process might even
require several iterations.

4.1.2.2 Mirror-Prox methods with noisy first-order information

More recently, Juditsky et al. [JNT08] have introduced stochastic Mirror-
Prox algorithms, where they allow noisy first-order information. In contrast
to the original Mirror-Prox algorithm [Nem04a], they replace the true value
of the operator F by an approximate substitute.
More precisely, let us assume that (Ξ,B,P) is a probability space. The oper-
ator F (z), z ∈ Q, is approximated by F̂ξ(z), where F̂ξ(z) depends not only
on the point z, but also on a realization ξ of the random variable ξ : Ξ→ Rd.
The resulting scheme is shown in Algorithm 4.3. Note that we write ξ for
both the random variable and its realization. The exact meaning will always
be clear from the context.
Assume that the sequences (wt)

T
t=1 = ((ut, vt))

T
t=1, (zt)

T
t=0, and (γt)

T
t=1 as

well as the point z̄ = (x̄, ȳ) are generated by Algorithm 4.3. In the course of
this method, we use outcomes of independent identically distributed random
variables ξt : Ξ → Rd. From now on, we write ξ[t] for the sequence (ξk)tk=1,
and (Ξt,F t,Pt) for the product probability space (⊗ti=1Ξ,⊗ti=1F ,⊗ti=1P).
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Algorithm 4.3 Mirror-Prox method with noisy first-order information
(adapted from [JNT08])

1: Choose the number of iterations T ≥ 1.
2: Choose independent identically distributed random variables ξt, where

1 ≤ t ≤ 2T .
3: Choose dQ1×Q2 as in (4.8).
4: Set z0 = (x0, y0) = c(dQ1×Q2) ∈ Q0

1 ×Qo2.
5: for 1 ≤ t ≤ T do
6: Choose γt > 0 such that

γt ≤
1√
2L

. (4.13)

7: Observe realizations ξ2t−1 and ξ2t of the random variables ξ2t−1 and
ξ2t, respectively.

8: Compute F̂ξ2t−1(zt−1) and set wt = ProxQ1×Q2,zt−1(γtF̂ξ2t−1(zt−1)).

9: Determine F̂ξ2t(wt) and set zt = ProxQ1×Q2,zt−1(γtF̂ξ2t(wt)).
10: end for

11: Return z̄ :=
(∑T

t=1 γt
)−1∑T

t=1 γtwt.

Note that wt depends on the realizations ξ[2t−1]. For notational ease, we omit
ξ[2t−1] and write wt instead of the formally correct wt(ξ[2t−1]). The element
wt constitutes a realization of the random variable wt : Ξ2t−1 → Q. Similarly,
zt is an outcome of the random variable zt : Ξ2t → Q, and, consequently,
Algorithm 4.3 returns a realization z̄ of the random variable

z̄ =

∑T
t=1 γtwt∑T
t=1 γt

: Ξ2T−1 → Q.

Note that Algorithm 4.3 corresponds exactly to the Mirror-Prox algorithm
with erroneous information discussed in Subsection 3.1 in [JNT08], except
that we are allowed to use slightly larger step-sizes than Juditsky et al. This
is due to the fact that we consider a slightly less general setting as they do.
More precisely, they assume that F satisfies∥∥F (z)− F (z′)

∥∥
Rn×Rm,∗ ≤ L̄

∥∥z − z′∥∥Rn×Rm + M̄ ∀ z, z′ ∈ Q

for some given constants L̄, M̄ ≥ 0. However, in the setting of this thesis,
the constant M̄ vanishes and L̄ := L. In particular, the operator F does not
need to be associated with Saddle-Point Problem (4.1) in their setting.
Let us now extend Theorem 4.3 to the current setting. This result requires
the definition of the following entities:
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µzt−1 := EP

[
F̂ξ2t−1(zt−1)| ξ[2t−2]

]
− F (zt−1),

µwt := EP

[
F̂ξ2t(wt)| ξ[2t−1]

]
− F (wt),

σzt−1 := F̂ξ2t−1(zt−1)− EP

[
F̂ξ2t−1(zt−1)| ξ[2t−2]

]
,

σwt := F̂ξ2t(wt)− EP

[
F̂ξ2t(wt)| ξ[2t−1]

]
,

(4.14)

where 1 ≤ t ≤ T and EP

[
F̂ξ1(z0)| ξ[0]

]
:= EP

[
F̂ξ1(z0)

]
. Note that σzt−1 and

σwt are martingale differences; see Appendix A for the definition of martin-
gale difference sequences and their main properties. Recall from Definition
2.27 that ΩQ1×Q2 := maxz,z′∈Q1×Q2

‖z − z′‖Rn×Rm .

Theorem 4.4 (Adapted version of Theorem 3.2 in [JNT08]) Define
the random variable

ε := 1 +
√

2

∥∥∥∥∥
T∑
t=1

γtσwt

∥∥∥∥∥
Rn×Rm,∗

+ ΩQ1×Q2

T∑
t=1

γt ‖µwt‖Rn×Rm,∗

+2

T∑
t=1

γ2
t

(∥∥σwt − σzt−1

∥∥2

Rn×Rm,∗ +
∥∥µwt − µzt−1

∥∥2

Rn×Rm,∗

)
.

Then,

EP2T

[
φ(x̄)− φ(ȳ)

]
≤ 1∑T

t=1 γt
EP2T [ε] .

Proof: Let us set (wt)
T
t=1 = ((ut, vt))

T
t=1 and choose p = (q, r) ∈ Q1 × Q2.

Let 1 ≤ t ≤ T . By Definitions (4.14), we have the expressions:

F (zt−1) = F̂ξ2t−1(zt−1)− σzt−1 − µzt−1 and F (wt) = F̂ξ2t(wt)− σwt − µwt .

Combining these relations with the linearity of F and the definition of φ and
φ, we can show that:

T∑
t=1

γt
(
φ(x̄)− φ(ȳ)

)
≤

T∑
t=1

γt (φ(ut, r)− φ(q, vt))

=
T∑
t=1

γt 〈F (wt), wt − p〉

=

T∑
t=1

γt
〈
F̂ξ2t(wt)− σwt − µwt , wt − p

〉
. (4.15)

Note that



4. Solution methods in Structural Optimization 69

∥∥∥F̂ξ2t(wt)− F̂ξ2t−1(zt−1)
∥∥∥2

Rn×Rm,∗

≤ 2 ‖F (wt)− F (zt−1)‖2Rn×Rm,∗

+2
∥∥σwt − σzt−1 + µwt − µzt−1

∥∥2

Rn×Rm,∗

≤ 2L2 ‖wt − zt−1‖2Rn×Rm

+2
∥∥σwt − σzt−1 + µwt − µzt−1

∥∥2

Rn×Rm,∗ ,

where the concluding inequality is due to the Lipschitz continuity of F . Ap-
plying the same arguments as in the proof of Theorem 4.3, that is, Lemma
4.2, Definition (2.26), and Equation (4.9), as well as exploiting the above
inequality, we can verify that:

T∑
t=1

γt
〈
F̂ξ2t(wt), wt − p

〉
≤ 1 +

T∑
t=1

γ2
t

2

∥∥∥F̂ξ2t(wt)− F̂ξ2t−1(zt−1)
∥∥∥2

Rn×Rm,∗

−1

2

T∑
t=1

‖wt − zt−1‖2Rn×Rm

≤ 1 +

T∑
t=1

γ2
t

∥∥σwt − σzt−1 + µwt − µzt−1

∥∥2

Rn×Rm,∗

+

T∑
t=1

(
γ2
tL

2 − 1

2

)
‖wt − zt−1‖2Rn×Rm

≤ 1 +

T∑
t=1

γ2
t

∥∥σwt − σzt−1 + µwt − µzt−1

∥∥2

Rn×Rm,∗

≤ 1 + 2

T∑
t=1

γ2
t

∥∥σwt − σzt−1

∥∥2

Rn×Rm,∗

+2

T∑
t=1

γ2
t

∥∥µwt − µzt−1

∥∥2

Rn×Rm,∗ , (4.16)

where the second-last inequality is due to (4.13). In addition, we have:

T∑
t=1

γt 〈σwt + µwt , p− wt〉

=

T∑
t=1

γt 〈σwt , p− c(dQ1×Q2)〉

+

T∑
t=1

γt (〈σwt , c(dQ1×Q2)− wt〉+ 〈µwt , p− wt〉)
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≤ ΩV (dQ1×Q2)

∥∥∥∥∥
T∑
t=1

γtσwt

∥∥∥∥∥
Rn×Rm,∗

+

T∑
t=1

γt
(
〈σwt , c(dQ1×Q2)− wt〉+ ΩQ1×Q2 ‖µwt‖Rn×Rm,∗

)
=
√

2

∥∥∥∥∥
T∑
t=1

γtσwt

∥∥∥∥∥
Rn×Rm,∗

+

T∑
t=1

γt
(
〈σwt , c(dQ1×Q2)− wt〉+ ΩQ1×Q2 ‖µwt‖Rn×Rm,∗

)
.

It remains to combine the above inequality with (4.15) and (4.16), to take
expectations on both sides of the resulting inequality, and to observe that
EP2T [〈σwt , c(dQ1×Q2)− wt〉] vanishes as σwt is a martingale difference and
as wt depends only on ξ[2t−1].

4.2 Interior-Point methods

“The introduction of polynomial-time Interior-Point methods is one of the
most remarkable events in the development of Mathematical Programming in
the 1980’s. The first method of this family was suggested for Linear Program-
ming by the landmark paper of Karmarkar. An excellent complexity result
[. . . ] made this work a sensation and subsequently inspired very intensive
and fruitful studies.”

(Yurii Nesterov and Arkadi Nemirovski, 1993; see Page 1 in [NN93])

In this section, we give a brief review of Interior-Point methods. We do not
intend to explain them in full detail, but rather to present their underlying
conceptual ideas, which will be sufficient to understand the advantages and
disadvantages of these algorithms regarding the tractability of (large-scale)
structured optimization problems. We refer to the books of Nesterov and
Nemirovski [NN93] and Renegar [Ren01] for an extensive discussion of these
methods.
Interior-Point schemes are based on the Newton method. The Newton
method is a powerful algorithm for solving convex optimization problems
with linear equality constraints and with a twice differentiable objective func-
tion. Provided that we start the method close enough from an optimal solu-
tion, it convergences quadratically to this point; see Section 1.2.4 in [Nes04]
and Section 10.2 in [BV04] for a detailed discussion.
Roughly speaking, the Newton method approximates min {f(x) : Ax = b},
where f is twice differentiable and convex, A ∈ Rm×n, and b ∈ Rm, by a
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sequence of convex quadratic optimization problems. Given a feasible point
xt, the corresponding quadratic auxiliary problem is defined by the second-
order Taylor approximation of f around xt:

min
x:Ax=b

{
f(xt) +∇f(xt)

T (x− xt) +
1

2
(x− xt)T∇2f(xt)(x− xt)

}
, (4.17)

where we denote by ∇2f(xt) the Hessian of f at xt. We can rewrite this
problem as:

min
∆x

{
∇f(xt)

T∆x+
1

2
∆xT∇2f(xt)∆x : A∆x = 0

}
.

The next iterate xt+1 := xt + ∆x∗ is then given by the Karush-Kuhn-Tucker
(KKT) conditions:[

∇2f(xt) AT

A 0

] [
∆x∗

λ∗

]
=

[
−∇f(xt)

0

]
, (4.18)

where λ∗ is the associated optimal dual variable. The above system of equa-
tions admits a solution (∆x∗, λ∗) only if the matrix [∇2f(xt) A

T ;A 0] is
invertible, which can be proved to be the case when f is strongly convex and
if A is of full row rank.
We consider now the following the optimization problem:

ϕ∗ = min
x
{〈c, x〉 : x ∈ Q, Ax = b} , (4.19)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and Q ⊂ Rn is a closed and convex set
with a non-empty interior.
Evidently, the Newton method is not directly applicable to Problem (4.19)
because of the constraint x ∈ Q. The basic idea of Interior-Point meth-
ods is to replace (4.19) by a sequence of problems which can all be solved
individually by the Newton method. For this, we include the intractable con-
straints in the objective function. Ideally, we would like to have a problem
reformulation as

ϕ∗ = min
x
{〈c, x〉+ χQ(x) : Ax = b} ,

where χQ(x) = 0 if x ∈ Q and χQ(x) = +∞ otherwise. However, this
objective function is not differentiable any more, meaning that we cannot
apply the Newton method to the above optimization problem. Interior-Point
methods resolve this issue by replacing χQ by a parametrized barrier function
FQ/µ, where µ > 0. We call FQ : Rn → R ∪ {+∞} a barrier function for
the set Q if it fulfills the following conditions:
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1. domFQ = int(Q);

2. it is smooth and strictly convex on its domain;

3. it goes to infinity when its argument approaches the boundary of Q,
that is, if x := limi→∞ xi ∈ Q \ int(Q) with xi ∈ int(Q) for any i, then
limi→∞ FQ(xi) = +∞;

see Section 6.2.2 in [BTN01]. Given the parameter µ > 0 and a barrier
function FQ for the set Q, the corresponding auxiliary problem is now of the
form:

ϕ∗(µ) = min
x

{
〈c, x〉+

1

µ
FQ(x) : Ax = b

}
. (4.20)

Under very mild assumptions, there exists a unique optimal solution to this
optimization problem, which we denote by x∗(µ). We solve this problem for
increasing values of µ, as 〈c, x∗(µ)〉 converges to ϕ∗ when µ goes to infinity.
As Theorem 4.2.7 in [Nes04] shows, it holds that 〈c, x∗(µ)〉 − ϕ∗ ≤ O(1/µ).
In particular, the increase of µ is a direct measure of the progress of the
algorithm.
The curve µ 7→ x∗(µ) is called the central path. Interior-Point methods
follow this path approximately. Every Auxiliary Problem (4.20) is approx-
imately solved by the Newton method. In order to ensure not only that
the steps are well-defined, but also that the approximate solution for a cer-
tain µ can be used as starting point for the Newton method with a larger
µ, we impose some extra conditions on FQ. These extra conditions, which
ensure that we can increase µ by a constant at every step, describe some
relations between the first, the second, and the third derivative of FQ. If FQ
satisfies these extra requirements, we call FQ a ν-self-concordant barrier
function, where ν > 0 is some parameter appearing in the aforementioned
relations. A complete description of these conditions would be beyond the
scope of this thesis. We refer the interested reader to the book of Nesterov
[Nes04]. However, we remark that the self-concordance parameter ν > 0 is
the dominating factor of the analytical complexity of Interior-Point methods:

Theorem 4.5 (Theorem 4.2.8 in [Nes04]) Interior-Point methods re-
quire at most

O
(√

ν ln
[ν
ε

])
Newton steps in order to compute a feasible ε-solution to the Initial Problem
(4.19).

Because of their importance for this thesis, let us present the following stan-
dard ν-self-concordant barrier functions.
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Example 4.1 (Positive orthant; see Section 4.3.2 in [Nes04]) The
function

FLP : Rn → R ∪ {+∞} : x 7→

{
−
∑n
i=1 ln(xi), if x ∈ Rn>0

+∞, otherwise

is a ν-self-concordant barrier function for the set Q = Rn≥0 with ν = n. When
we apply Interior-Point methods to linear optimization problems, we use FLP
as ν-self-concordant barrier function.

Example 4.2 (Section 4.3.3 in [Nes04]) Recall that we denote by Sn the
space of real symmetric (n× n)-matrices and that we write

λn(X) ≥ . . . ≥ λ1(X)

for the eigenvalues of any symmetric matrix X ∈ Sn. The function

FSDP : Sn → R ∪ {+∞} : X 7→

{
−
∑n
i ln(λi(X)), if λ1(X) > 0

+∞, otherwise

is an n-self-concordant barrier function for Q = {X ∈ Sn : λ1(X) ≥ 0}. We
will use this function in Chapter 6, when we apply Interior-Point methods to
semidefinite optimization problems.

Clearly, the following question remains: what is the cost of a Newton step?
That is, what is the iteration cost? The reader may anticipate that a Newton
step can become critically costly for large-scale practical applications, as we
need to resolve the System (4.18) of linear equations at every iteration. We
discuss this issue in full detail in Section 6.2, where we apply Interior-Point
methods to semidefinite optimization problems.





Part II

A new perspective on the Hedge algorithm





Chapter 5
Hedge algorithm and

Dual Averaging schemes

In this chapter, we highlight the broad applicability of Dual Averaging
methods by embedding the Hedge algorithm in the framework of these

methods. The Hedge algorithm was introduced by Freund and Schapire
[FS97] and encompasses many well-known schemes in Machine Learning and
in Data Mining. As Freund and Schapire showed, this method is for instance
related to the now widely used AdaBoost algorithm1, which was introduced
in the same paper [FS97] as the Hedge algorithm. In addition, Multiplica-
tive Weights Update methods are a variation of the Hedge algorithm; see
[AHK05] for a survey. Finally, there exists also a matrix version of the Hedge
algorithm, which is called the Matrix Multiplicative Weights Update method
[AK07]. We discuss this method and its usefulness for solving semidefinite
optimization problems in Chapter 7.
The Hedge algorithm can be best understood in the context of the following
online allocation problem. We want to invest an amount of money at the
stock market in a portfolio consisting of different assets. After each time
step, we can modify the current composition of the portfolio. The Hedge
algorithm defines an update strategy for the portfolio such that the average
performance that we achieve is not much worse than the average performance
of the most favorable investment product. The portfolio update rule is based
on the current loss (or gain) that is associated with every investment product.

1The AdaBoost algorithm is one of the top ten Data Mining algorithms. These top ten
algorithms were identified by the IEEE International Conference on Data Mining in
December 2006; see [WKR+07] for more details.
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A precise description of the Hedge algorithm is given in Section 5.1.
In Section 5.2, we propose an alternative viewpoint on the Hedge algorithm,
namely we show that the Hedge algorithm is a Dual Averaging scheme. It is
well-known that the Hedge algorithm can be interpreted as a Mirror-Descent
scheme with an entropy-type distance-generating function; see for instance
Chapter 11 in [CBL06]. However, this interpretation has two drawbacks.
First, Mirror-Descent schemes require the definition of a convex objective
function; see Section 3.3. In this setting, the current loss of the investment
products corresponds to a subgradient of this objective function. However,
modeling the performance of a portfolio with a static objective function,
even when we allow random losses, is at best questionable. As the last
financial crisis has shown, significant sudden changes in the performance of
an investment product can appear. Having a static objective function forbids
us to deal with these sudden shocks. Second, we observed in Section 3.3 that
Mirror-Descent schemes need to consider subgradients with more weight the
earlier they appear in order to ensure convergence. However, common sense
dictates that recent losses contain more relevant information on the future
development of the stock market than losses occurred years ago.
Dual Averaging schemes get rid of the two deficiencies at the same time.
When applied to the given allocation problem, Dual Averaging schemes do
not make any assumptions on the construction of the losses. For instance,
they can be chosen in adversarial way with respect to the current portfolio,
they can be randomly generated, or – which reflects some of the latest events
at the stock market more accurately – their construction rule may dynam-
ically change. In addition, in Dual Averaging schemes, we can give more
weight to the latest losses, which allows us to react much faster to significant
changes in the market behavior.
Based on this alternative interpretation of the Hedge algorithm, we give in
Section 5.2 three modifications of the Hedge algorithm, namely the Optimal
Hedge algorithm, the Optimal Time-Independent Hedge algorithm, and the
Optimal Aggressive Hedge algorithm. All these methods have convergence
results that are better or at least as good as the convergence guarantee for
the vanilla Hedge algorithm. The Optimal Hedge algorithm has the same
form as the original Hedge algorithm, except that all method parameters are
chosen in an optimal way. The Optimal Time-Independent Hedge algorithm
requires less a priori information than the Optimal Hedge algorithm. Finally,
the Optimal Aggressive Hedge algorithm considers losses as more relevant the
later they appear. Numerical results in Section 5.3 show that all these alter-
native methods perform better than the vanilla Hedge algorithm in practice.
More interestingly, using the Optimal Aggressive Hedge algorithm, we end
up with an average benefit that is even better than the profit of the most
favorable single investment product, provided that the losses incur shocks
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reverting the performance of assets. This effect would not have been possible
with a static objective function.

Contributions: It is known that the Hedge algorithm is a Mirror-Descent
scheme. However, as we pointed out above, this interpretation has two signif-
icant drawbacks, which can be resolved by interpreting the Hedge algorithm
as an instance of the more general Dual Averaging schemes. To the best of
our knowledge, this much more general view on the Hedge algorithm is new.
The refinements of the Hedge algorithm presented in Section 5.2, namely the
Optimal Hedge algorithm, the Optimal Time-Independent Hedge algorithm,
and the Optimal Aggressive Hedge algorithm are original.

Relevant literature: We use the reference [FS97]. The material presented
in this chapter is taken from [BB10, BB11].

5.1 The Hedge algorithm

The problem the Hedge algorithm aims at solving can be described as follows.
We assume that we want to invest a certain amount of money at the stock
market. We have at our disposal a basket of n investment products such
as shares, currencies, gold, raw materials, real estates, and so on. Let us
denote by xt,i ≥ 0 the share of the initial amount of money that we invest
in product i at time t, where i = 1, . . . , n and t ≥ 0. We suppose that we
invest the whole amount of money, that is, we assume xt ∈ ∆n for all t ≥ 0.
At every time step t ≥ 0, we evaluate the loss (or gain) `t,i corresponding to
the investment product i, where we assume `t,i ∈ [−µ, ρ] for every t ≥ 0 and
any i = 1, . . . , n. Thus, given the portfolio xt at time t, we suffer a loss of
〈`t, xt〉 at this time step. The Hedge algorithm defines now a portfolio update
strategy such that the averaged loss

∑T−1
t=0 〈`t, xt〉 /T that we face after T ∈ N

rounds is not much worse than the averaged total loss min1≤i≤n
∑T−1
t=0 `t,i/T

of the investment product with the best performance.

The Hedge scheme evaluates the losses through a decreasing score function
U : [−µ, ρ] → (0, 1]. We focus on score functions of the form U(z) = γaz+b,
where γ ∈ (0, 1), a > 0, and b ∈ R are some parameters whose choices we
discuss in detail afterwards. The Hedge algorithm assigns a weight wt,i to
every investment product 1 ≤ i ≤ n and for every time step t ≥ 0. The
current weight of investment product i depends on its initial weight and on
its performance in the past. Concretely, it is defined as wt+1,i := wt,iU(`t,i).
The portfolio xt+1 is then given by the normalization of the weight vector
wt+1. The full method is shown in Algorithm 5.1.

Given T ∈ N, let the sequences (xt)
T
t=0 and (`t)

T−1
t=0 be generated by Al-

gorithm 5.1. Freund and Schapire studied the convergence behavior of this
method. In their paper, they considered the situation where µ = 0 and ρ = 1.
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Algorithm 5.1 Hedge algorithm [FS97]

1: Choose T ∈ N.
2: Let γ ∈ (0, 1), a > 0, b ∈ R, and w0 = (1/n, . . . , 1/n) ∈ Rn.
3: for t = 0, . . . , T − 1 do
4: Set xt = wt/

∑n
i=1 wt,i.

5: Observe loss vector `t.
6: Set wt+1,i = γa`t,i+b for any i = 1, . . . , n.
7: end for

The immediate extension of their reasoning to the more general setting of
Algorithm 5.1 yields to the following result.

Theorem 5.1 (Theorem 2 in [FS97]) With parameters a = 1/(µ + ρ)
and b = µ/(µ+ ρ), we have:

T−1∑
t=0

(µ+ 〈`t, xt〉) ≤
µ+ ρ

1− γ −
ln(γ)

1− γ min
1≤i≤n

(
T−1∑
t=0

(µ+ `t,i)

)
.

As mentioned in [FS97], the above theorem can be extended to any decreasing
score function U : [−µ, ρ]→ R that complies with the condition

γ
z+µ
µ+ρ ≤ U(z) ≤ 1− (1− γ)

z + µ

µ+ ρ
∀ z ∈ [−µ, ρ]. (5.1)

In accordance to Section 2.2 in [FS97], we set

γ :=
1√

2 ln(n)/T + 1
.

We end up with the score function

U : [−µ, ρ]→ R : z 7→
(√

2 ln(n)/T + 1
)− z+µ

µ+ρ
, (5.2)

for which one can prove the following statement using Theorem 5.1; see [FS97]
for more details on the derivation of this score function.

Corollary 5.1 (Consequence of Lemma 4 in [FS97]) With the above
score function, we have:

1

T

(
T−1∑
t=0

〈`t, xt〉 − min
1≤i≤n

T−1∑
t=0

`t,i

)
≤ (µ+ ρ)

(
ln(n)

T
+

√
2 ln(n)

T

)
. (5.3)
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5.2 The Hedge algorithm is a Dual Averaging method

In this section, we show that we can recast the Hedge algorithm in the frame-
work of Dual Averaging schemes. Based on this alternative view on the Hedge
algorithm, we derive three advanced versions of the original method.
Referring to the notation of Algorithm 3.1, we define Q as the (n − 1)-
dimensional standard simplex ∆n, so that Q encompasses all possible port-
folios. We equip Rn with the norm ‖x‖1 :=

∑n
i=1 |xi|, for which the corre-

sponding dual norm is of the form ‖s‖∞ := max1≤i≤n |si|. In addition, we
endow Algorithm 3.1 with the distance-generating function

d∆n : ∆n → R : x 7→ ln(n) +

n∑
i=1

xi ln(xi).

Dual Averaging schemes require a parametrized mirror-operator defined as
in (3.1). For the given setup, this parametrized mirror-operator is of the
form:

π∆n,β(s) =

(
exp(si/β)∑n
j=1 exp(sj/β)

)n
i=1

∀ s ∈ Rn, ∀ β > 0;

see Example 2.14. Given a loss vector `t ∈ Rn, that is, `t,i corresponds to the
loss of investment product i at time t, we evaluate this vector component-
by-component through an affine function z 7→ az + b, where a > 0 and
b ∈ R. We interpret the resulting vector gt := (a`t,i + b)ni=1 as the output
G(xt) of the oracle G in Algorithm 3.1 for input vector xt ∈ Rn. Note that
we do not specify any construction rule for the loss vector `t. For instance,
it could be chosen randomly or in an adversarial way with respect to the
portfolio xt. Algorithm 3.1 takes the form shown in Algorithm 5.2 for the
given setting, where we express the parametrized mirror-operator π∆n,β in
a form that makes the comparison of the resulting method with the Hedge
algorithm rather transparent.
Let us now discuss several strategies for choosing the weights γt, the pro-
jection parameters βt, and the affine function z 7→ az + b in Algorithm 5.2.
However, first we observe that the norm of each oracle return a`t+ b and the
distance-generating function d∆n are bounded from above by the quantities

M(a, b) := max {|−aµ+ b| , |aρ+ b|} and by Ωd∆n
:= ln(n),

respectively. Let the sequences (xt)
T−1
t=0 and (`t)

T−1
t=0 be generated by Algo-

rithm 5.2.
Fix γ ∈ (0, 1). If βt = 1 for any 0 ≤ t ≤ T and γt = ln(1/γ) for any
0 ≤ t ≤ T − 1, we recover the Hedge algorithm, which shows that this
method is a Dual Averaging scheme. In order to avoid any confusion, we
refer henceforth to this method as Original Hedge algorithm.
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Algorithm 5.2 Extended Hedge algorithm

1: Choose T ∈ N.
2: Choose positive weights (γt)

T−1
t=0 and a non-decreasing sequence (βt)

T
t=0

of positive projection parameters.
3: Let a > 0, b ∈ R, and w0 = (1/n, . . . , 1/n) ∈ Rn.
4: for t = 0, . . . , T − 1 do
5: Set xt = wt/

∑n
i=1 wt,i.

6: Observe loss vector `t.

7: Set wt+1,i = exp
(
− γt(a`t,i+b)

βt+1

)
w

βt+1
βt

t for any i = 1, . . . , n.

8: end for

5.2.1 Optimal Hedge algorithm

Given the weights and projection parameters of the Original Hedge algo-
rithm, Theorem 3.1 implies the inequality:

1

T
max
x∈∆n

T−1∑
t=0

〈`t, xt − x〉

≤ 1

aT ln(1/γ)

(
ln(n) +

T ln2(1/γ) max
{

(−aµ+ b)2 , (aρ+ b)2}
2

)
.

This bound is minimized by parameters γ∗, a∗, and b∗ that satisfy

γ∗ = exp

(
− 2

a∗(µ+ ρ)

√
2 ln(n)

T

)
and b∗ =

µ− ρ
2

a∗,

where a∗ > 0. We refer to Algorithm 5.2 with the just specified setting as
Optimal Hedge algorithm, for which the following result holds due to the
above inequality.

Corollary 5.2 If the sequences (xt)
T−1
t=0 and (`t)

T−1
t=0 are generated by the

Optimal Hedge algorithm, we have:

1

T
max
x∈∆n

T−1∑
t=0

〈`t, xt − x〉 ≤ (µ+ ρ)

√
ln(n)

2T
.

This result improves Bound (5.3) by the additive quantity (µ + ρ) ln(n)/T
and by a multiplicative factor of 2. Note that the resulting score function
U(z) = (γ∗)a

∗z+b∗ does not comply with Condition (5.1). Therefore, neither
Theorem 5.1 nor its extension can be used to establish the above bound.



5. Hedge algorithm and Dual Averaging schemes 83

5.2.2 Optimal Time-Independent Hedge algorithm

The update parameter γ depends on the number of iterations T in both algo-
rithms, the Original Hedge algorithm with the Score Function (5.2) suggested
by Freund and Schapire [FS97] and the Optimal Hedge algorithm. However,
when investing money at the stock market, we might not want to fix the num-
ber of times that we adapt the portfolio in advance. We thus need an update
parameter that is independent of T . Adapting Nesterov’s Strategy (3.4), we
choose γ ∈ (0, 1) and set γt := ln(1/γ), β0 = 1, and βt+1 =

∑t−1
k=0 1/βk for

any t ≥ 0. Applying Theorem 3.1, we obtain for any T ≥ 1:

1

T
max
x∈∆n

T−1∑
t=0

〈`t, xt − x〉

≤ βT
aT ln(1/γ)

(
ln(n) +

ln2(1/γ) max
{

(−aµ+ b)2 , (aρ+ b)2}
2

)
.

We minimize the right-hand side of the above inequality, that is, we choose
a∗ > 0 and set

γ∗ = exp

(
−

2
√

2 ln(n)

a∗(µ+ ρ)

)
and b∗ =

µ− ρ
2

a∗.

Exploiting Lemma 3.1, we obtain for the resulting method, which we refer
to as the Optimal Time-Independent Hedge algorithm, the following
upper bound on the regret.

Corollary 5.3 Assume that the sequences (xt)
T−1
t=0 and (`t)

T−1
t=0 are generated

by the Optimal Time-Independent Hedge algorithm. Then,

1

T
max
x∈∆n

T−1∑
t=0

〈`t, xt − x〉 ≤ (µ+ ρ)

(
1(

1 +
√

3
)
T

+

√
2

T

)√
ln(n)

2
.

We observe that the right-hand side of the above inequality can be bounded
from above by:

(µ+ ρ)

(
1(

1 +
√

3
)
T

+

√
2

T

)√
ln(n)

2
≤ 2(µ+ ρ)

√
ln(n)

T
,

which shows that the convergence rates of the Optimal Time-Independent
Hedge algorithm and the Optimal Hedge algorithm are of the same order

O
(

[µ+ ρ]
√

ln(n)/T
)

.
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5.2.3 Optimal Aggressive Hedge algorithm

The later a loss appears, the more likely it is that this loss vector contains
relevant information on the future development of the investment products’
performances. We introduce now an alternative version of the Hedge algo-
rithm where we continuously increase the weights of the loss vectors when
time proceeds.
For fixed γ ∈ (0, 1), we set γt = ln(1/γ)(t + 1)2 and βt = t2.5 for any t ≥ 0.
Let T > 6. Using the relations

T−1∑
t=0

(t+ 1)2 =
T (T + 1)(2T + 1)

6
>
T 3

3
,

T−1∑
t=0

(t+ 1)4 ≤ 2T 5

7
,

and Theorem 3.1, we obtain for Algorithm 5.2 with the just defined param-
eters:

6

T (T + 1)(2T + 1)
max
x∈∆n

T−1∑
t=0

(t+ 1)2 〈`t, xt − x〉

<
3

aT 3
· T

2.5 ln(n)

ln(1/γ)

+
3

aT 3
· 1

2

T−1∑
t=0

(t+ 1)4 ln(1/γ) max
{

(−aµ+ b)2 , (aρ+ b)2}
T 2.5

≤ 3

a
√
T

(
ln(n)

ln(1/γ)
+

ln(1/γ) max
{

(−aµ+ b)2 , (aρ+ b)2}
7

)
.

The latter quantity is minimized for a∗, b∗, and γ∗ satisfying

γ∗ = exp

(
−

2
√

7 ln(n)

a∗(µ+ ρ)

)
and b∗ =

µ− ρ
2

a∗

with a∗ > 0. We refer to the resulting method as the Optimal Aggressive
Hedge algorithm, for which we can rewrite the above inequality in the
following form.

Corollary 5.4 Let (xt)
T−1
t=0 and (`t)

T−1
t=0 be generated by the Optimal Aggres-

sive Hedge algorithm. Then,

6

T (T + 1)(2T + 1)
max
x∈∆n

T−1∑
t=0

(t+ 1)2 〈`t, xt − x〉 < 3(µ+ ρ)

√
ln(n)

7T
.

While all the previous methods ensure some bounds on the regret, the update
strategy defined by the Optimal Aggressive Hedge algorithm yields to an
upper on the weighted regret. The weighted regret reflects the time-varying
choice of the weights γt.
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Figure 5.1: Averaged losses
∑t
k=1 〈`k−1, xk−1〉 /t, t = 1, . . . , T , achieved by

the best investment product (black line), by the Original Hedge
algorithm (magenta line), by the Optimal Hedge algorithm (dot-
ted red line), by the Optimal Time-Independent Hedge algorithm
(dashed blue line), and by the Optimal Aggressive Hedge algo-
rithm (dashed-dotted green line).

5.3 Numerical results

We select a pool of n = 30 investment products and consider T = 31′200
iterations of the methods that we presented. The number T is chosen in
such a way that it corresponds to the number of transactions at a stock
exchange during four months (twenty trading days of six hours and thirty
minutes for one month), provided that there is transaction every minute.
The losses `t ∈ Rn, t = 0, . . . , T − 1, are randomly generated. The first 7′800

losses (`t)
7′799
t=0 , that is, the losses observed during the first month, are real-

izations of a multivariate normally distributed random vector with mean µ̄1

and covariance matrix Σ. The data (µ̄1,Σ) is taken from [dat09]. The losses(
`7′800(j−1)+k

)7′799

k=0
observed in month j, where j = 2, 3, 4, are realizations of

a multivariate normally distributed random vector with the same covariance
matrix Σ, but with a different mean µ̄j . In the experiments that are pre-
sented, we modify each component µ̄j−1,i of µ̄j−1 as µ̄j,i = aj,iµ̄j−1,i + bj ,
with bj small. The coefficient aj,i is negative with an increasing probability
as j becomes larger (namely 1/2, 3/4, and 1), reverting the performance of
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30 investment products (µ = 0.5133, ρ = 0.5175)

w.r.t.
best

# iterations 7′800 15′600 23′400 31′200 product

Best product −0.0045 −0.0034 −0.0081 −0.0110 −
Original Hedge 0.0040 0.0039 −0.0020 −0.0047 42.7%
Opt. Hedge 0.0028 0.0020 −0.0042 −0.0075 68.2%
Opt. Time-I. H. 0.0010 0.0011 −0.0047 −0.0073 66.4%
Opt. Agg. H. 0.0014 −0.0061 −0.0183 −0.0252 229.1%

Table 5.1: Averaged losses achieved by the best investment product, by the
Original Hedge algorithm, by the Optimal Hedge algorithm, by
the Optimal Time-Independent Hedge algorithm, and by the Op-
timal Aggressive Hedge algorithm after one, two, three, and four
months of trading. In the last column, we express the final aver-
aged loss in percentage of the final averaged loss achieved by the
best investment product.

more and more products. The level of perturbation |aj,i| is also increasing
as j becomes larger. The experiments are run ten times, and the obtained
losses are averaged afterwards.

In Figure 5.1, we show the averaged losses, that is,
∑t
k=1 〈`k−1, xk−1〉 /t for

any 1 ≤ t ≤ T , achieved by the most successful investment product at instant
t (obviously, this winning product might change over time), by the Original
Hedge algorithm (with Freund and Schapire’s score function as described in
(5.2)), by the Optimal Hedge algorithm, by the Optimal Time-Independent
Hedge algorithm, and by the Optimal Aggressive Hedge algorithm. Note
that we show for the Optimal Aggressive Hedge algorithm also the quantity∑t
k=1 〈`k−1, xk−1〉 /t, although we use a different weighting in the algorithm

and in its theoretical analysis; compare with the last section. In Table 5.1,
we give the averaged losses after each month.

We observe that all the extensions of the Hedge algorithm that we suggest
in this work significantly outperform its original counterpart. Even more
interestingly, the Optimal Aggressive Hedge algorithm achieves an averaged
loss that is more than twice better than the averaged loss of the best invest-
ment product after four months. The Optimal Aggressive Hedge algorithm
outperforms the most successful investment product, as the investment prod-
uct with the best performance has accumulated a significant loss in an early
month. This happens as we switch signs when we perturb the means of the
distribution that we use to generate random losses.
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Algorithm Averaged CPU time [sec]

Original Hedge 3.29”
Optimal Hedge 3.12”
Optimal Time-Independent Hedge 3.35”
Optimal Aggressive Hedge 4.05”

Table 5.2: Averaged CPU time [in seconds] required by the Original Hedge
algorithm, by the Optimal Hedge algorithm, by the Optimal
Time-Independent Hedge algorithm, and by the Optimal Aggres-
sive Hedge algorithm for performing 31′200 iterations.

Compared to the every other version of the Hedge algorithm that we sug-
gested in this chapter, the Optimal Hedge algorithm reacts faster and thus
more successful to the perturbations. This is due to the increasing weights
γt, which make losses the more relevant the later they appear. Recall that
all the other methods consider the losses as equally important.
As shown in Table 5.2, there is no significant difference with respect to the
CPU time required by the different methods for performing 31′200 iterations.
All numerical results are run on a computer with two AMD Athlon processors
with a CPU of 2.9 GHz and with 3.7 GB of RAM.
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semidefinite optimization problems





Chapter 6
An introduction to

large-scale Semidefinite Optimization

“Semidefinite Programming is the most exciting development in Mathematical
Programming in the 1990’s.”

(Robert M. Freund, 1999; see Page 1 in [Fre99])

Semidefinite Optimization, or Semidefinite Programming [SDP], is gen-
erally recognized as one of the most fertile developments in Convex Op-

timization (see for instance [Fre99]), with applications in virtually all fields
of engineering. Nowadays, a vast range of real-life optimization problems
can be represented or approximated by semidefinite optimization problems,
in such different fields as Control [BGFB94], Structural Design [BTN97], or
Statistics [BV04], only to name a few. Of particular interest are semidefinite
relaxations of hard combinatorial problems; see for instance [GW95, NRT99].

Semidefinite Programming can be seen as a generalization of Linear Program-
ming. As for Linear Programming, the goal in Semidefinite Optimization is
to maximize / minimize a linear function over a set of feasible points, which
are described by a finite number of inequalities. However, in contrast to
Linear Programming, the decision variables are not vectors any more, but
symmetric matrices. In Linear Programming, these decision vectors are re-
quired to be non-negative. In Semidefinite Programming, we replace this
condition by the requirement that all feasible decision matrices are positive-
semidefinite, that is, all eigenvalues of every feasible symmetric matrix are
supposed to be non-negative.

91
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We give a formal description of semidefinite optimization problems in Sec-
tion 6.1. Hereby, we restrict ourselves to a subfamily of slightly structured
semidefinite optimization problems. This slight structural assumptions will
be required in the subsequent chapters, where we apply methods from Part
I to these problems.
Standardly, Interior-Point methods are used to solve generic semidefinite op-
timization problems approximately. As shown in Section 4.2, Interior-Point
methods have an analytical complexity of O (

√
ν ln [ν/ε]), where ε denotes the

solution accuracy and ν is defined by the ν-self-concordant barrier function.
For the semidefinite optimization problems that we consider in this thesis,
the parameter ν is given by the sum m+n, where m and n correspond to the
number of constraints and the size of the decision matrix, respectively. Every
iteration of Interior-Point methods consists in carrying out a Newton step.
In Section 6.2, we study the cost of such a Newton step, which finally allows
us to give a bound on the arithmetic complexity of Interior-Point methods
in Semidefinite Optimization.
We conclude this chapter by making two observations regarding the arith-
metic complexity of Interior-Point methods in Semidefinite Optimization in
Section 6.2. First, Interior-Point methods are of polynomial time. And sec-
ond, the arithmetic complexity grows – although polynomially – prohibitively
fast in the size of the feasible matrices and in the number of constraints for
all practical applications that are of very large scale.
Contributions and relevant literature: This chapter is a review of ex-
isting definitions and results. It is based on the references [Nes04, NN93].

6.1 Some structured semidefinite optimization problems

We start by presenting a family of slightly structured semidefinite optimiza-
tion problems. This family includes many important problems such as the
semidefinite relaxation of the MaxCut problem; see [GW95] for more details
on this relaxation.
Some of the subsequent definitions were introduced (in an explicit or in an
implicit form) at an earlier stage of this thesis. However, for the sake of
completeness, we summarize them here. LetMn be the space of real (n×n)-
matrices. The function Tr :Mn → R : X 7→

∑n
i=1 Xii represents the trace

of its argument. The Frobenius scalar product is denoted by 〈·, ·〉F , that
is,

〈X,Y 〉F =

n∑
i,j=1

XijYij = Tr(XTY ) ∀ X,Y ∈Mn.

We recall that we write Sn for the n(n + 1)/2-dimensional vector subspace
of real symmetric matrices in Mn.
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Figure 6.1: The boundary of S2
+ :=

{
[x z; z y] : x ≥ 0, y ≥ 0, |z| ≤ √xy

}
.

Definition 6.1 (Positive semidefinite matrix) Let X ∈ Sn. We write
X � 0 [X � 0] if X is positive semidefinite [positive definite], that is, if
vTXv ≥ 0 for every v ∈ Rn [resp. vTXv > 0 for each nonzero v ∈ Rn].

The set Sn+ of all positive semidefinite (n × n)-matrices defines a proper
cone, that is, Sn+ ⊂ Rn(n+1)/2 is a cone that is closed, convex, solid (A cone
is called solid if it has a non-empty interior. The interior of Sn+ encompasses
all positive definite (n × n)-matrices and is thus non-empty.), and pointed
(A cone is pointed if it does not contain any line.); see for instance [BV04]
for more details. In Figure 6.1, we give a graphical representation of the
boundary of S2

+.
As indicated in the introduction of this chapter, we can alternatively describe
the set Sn+ by the eigenvalues of the considered matrices. Recall that we
denote by λ(X) the vector formed by the eigenvalues of the matrix X ∈ Sn.
Every X ∈ Sn admits an eigendecomposition

X = Q(X)Diag(λ(X))Q(X)T ,

where Q(X) is a (not necessarily unique) orthogonal matrix of dimension
(n × n) and Diag(λ(X)) represents the diagonal matrix whose diagonal is
λ(X). We observe that all eigenvalues of any matrix X ∈ Sn are real.
Conventionally, we assume that the eigenvalues λn(X) ≥ . . . ≥ λ1(X) are
ordered decreasingly. We write

λmax(X) := λn(X) and λmin(X) := λ1(X)



94 6. An introduction to large-scale Semidefinite Optimization

for the largest and the smallest eigenvalue of X, respectively. A symmetric
matrix is positive semidefinite [positive definite] if and only if all its eigen-
values are non-negative [positive].
Eigenvalues can be used to define norms for Sn. For instance, the induced
p-norms are:

‖X‖(p) := p

√√√√ n∑
i=1

|λi(X)|p,

where 1 ≤ p <∞ and X ∈ Sn, and ‖X‖(∞) := maxi=1,...,n |λi(X)|, which is
the limit of ‖X‖(p) when p goes to infinity.
In this thesis, we consider the following wide class of semidefinite optimization
problems:

ϕ∗ = max
X

〈C,X〉F
s.t. 〈Aj , X〉F ≤ 1 for any j = 1, . . . ,m

X � 0,

(SDP)

where A1, . . . , Am, C ∈ Sn. Loosely speaking, we call this problem
large-scale if it involves large matrices (that is, n is large), or if it has
many constraints (that is, m is large). Let us verify that we cover indeed a
wide class of semidefinite optimization problems by Formulation (SDP). The
most general class of semidefinite optimization problems is given by:

max
Y

〈D,Y 〉F
s.t. A(Y ) = b

Y � 0,

(6.1)

where D ∈ Sp, A : Sp → Rq is a linear operator, and b ∈ Rq. In (SDP), we
restrict ourselves to the following subfamily of (6.1):

max
X∈Sn,u∈Rm

〈C,X〉F
s.t. 〈Aj , X〉F + uj = 1 for any j = 1, . . . ,m[

X 0
0 Diag(u)

]
� 0.

The dual problem of (SDP) takes the following form:

min
y

∑m
j=1 yj

s.t.
∑m
j=1 yjAj � C

y ≥ 0.

(6.2)

The following two duality results are of fundamental importance.
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Theorem 6.1 (Weak Duality; see Section 4.2.2 in [NN93]) Choose a
matrix X ∈ Sn+ and a vector y ∈ Rm≥0 such that max1≤j≤m 〈Aj , X〉F ≤ 1 and∑m
j=1 yjAj � C. The corresponding duality gap 〈C,X〉F −

∑m
j=1 yj is non-

negative.

Theorem 6.2 (Strong Duality; see Section 4.2.2 in [NN93])
Assume that both the Primal Problem (SDP) and its Dual (6.2) are
strictly feasible, that is, there exist an X̄ � 0 such that

〈
Aj , X̄

〉
F
< 1 for

any 1 ≤ j ≤ m and a ȳ ∈ Rm≥0 with
∑m
j=1 ȳjAj � C. Then, the following

statements hold:

1. Both the primal and the dual problem are solvable and attain their op-
timal values.

2. A primal-dual pair (X, y) of feasible points to (SDP) and (6.2) is opti-
mal if and only if the corresponding duality gap is zero.

We can easily construct a point X̄ which is strictly feasible for (SDP).

Remark 6.1 We choose α > 0 such that Tr(Aj) < α for any 1 ≤ j ≤ m.
Recall that we write In for the (n×n)-identity matrix. The matrix X̄ := In/α
is positive definite and satisfies

〈
Aj , X̄

〉
F

= Tr(Aj)/α < 1 for any 1 ≤ j ≤ m.

In order to ensure that Strong Duality holds, we make the following assump-
tion, which shall hold for the rest of this thesis.

Assumption 6.1 There exists an ȳ ∈ Rm≥0 such that
∑m
j=1 ȳjAj � C.

As an immediate consequence, we can validate the following result.

Lemma 6.1 Choose a matrix X � 0 such that 〈C,X〉F > 0. Then,
max1≤j≤m 〈Aj , X〉F > 0.

Proof: Assume that there exists a matrix X � 0 satisfying both inequalities
〈C,X〉F > 0 and max1≤j≤m 〈Aj , X〉F ≤ 0. For any λ > 0, the matrix λX is
feasible for (SDP). In particular, the Problem (SDP) is unbounded, which is
a contradiction to the assumption that Strong Duality holds.

6.2 Interior-Point methods in Semidefinite Optimization

In this section, we discuss the cost of a single iteration of Interior-Point
methods when applied to Problem (SDP). We follow Chapter 4 in the book
of Nesterov [Nes04].
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In a first step, we rewrite Problem (SDP) as

−ϕ∗ = min
X,u

〈−C,X〉F
s.t. 〈Aj , X〉F + uj = 1 for any j = 1, . . . ,m

X � 0, Diag(u) � 0.

(6.3)

Given the (m+ n)-self-concordant barrier function

F (X,u) =

{
− ln(det(X))−

∑m
j=1 ln(uj), if X � 0 and u > 0

∞, otherwise,

Interior-Point methods replace the above problem by a sequence of auxiliary
problems of the form:

−ϕ∗(µ) = min
X,u

〈−C,X〉F + 1
µ
F (X,u)

s.t. 〈Aj , X〉F + uj = 1 for any j = 1, . . . ,m,
(6.4)

where µ > 0 is some parameter; compare with Section 4.2. In Interior-Point
methods, the optimal solution to Problem (6.4) is approximated by carrying
out one Newton step; see Section 4.2. Let us determine now the cost of this
Newton step. We use the notation

Y :=

[
X 0
0 Diag(u)

]
, Yt :=

[
Xt 0
0 Diag(ut)

]
,

Bj :=

[
Aj 0
0 eje

T
j

]
, D :=

[
−C 0
0 0

]
,

where X,Xt ∈ Sn, u, ut ∈ Rm, and ej ∈ Rm denotes the j-th unit vector.
Given the iterates (Xt, ut) ∈ int(Sn+ × Rm≥0) and the parameter µt > 0, the
corresponding Quadratic Approximation Problem (4.17) takes the form

min
Y

〈
µtD − Y −1

t , Y − Yt
〉
F

+ 1
2

〈
Y −1
t (Y − Yt)Y −1

t , Yt − Y
〉
F

s.t. 〈Bj , Y 〉F = 1 for any j = 1, . . . ,m
Y � 0,

which can be rewritten as

min
∆Y

〈
µtD − Y −1

t ,∆Y
〉
F

+ 1
2

〈
Y −1
t ∆Y Y −1

t ,∆Y
〉
F

s.t. 〈Bj ,∆Y 〉F = 0 for any j = 1, . . . ,m
Yt + ∆Y � 0;

see Subsection 4.3.3 in [Nes04]. We use the necessary and sufficient KKT
conditions to determine a solution ∆Y ∗ to the latter problem. Due to these
conditions, ∆Y ∗ is defined by the following linear equations:
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µtD − Y −1
t + Y −1

t ∆Y ∗Y −1
t −

m∑
j=1

λ∗jBj = 0

〈∆Y ∗, Bj〉F = 0 ∀ j = 1, . . . ,m; (6.5)

see Equations (4.3.8) in [Nes04]. According to Theorem 4.1.14 in [Nes04] or
to Theorem 2.2.2 in [NN93], the point Y ∗ = Yt+∆Y ∗ belongs to the interior
of Sn+×Rm≥0, provided that µt is chosen appropriately. The first condition of
(6.5) can be stated as

∆Y ∗ = Yt

(
m∑
j=1

λ∗jBj − µtD + Y −1
t

)
Yt,

which allows us to rewrite the second group of conditions in (6.5) as

m∑
k=1

λ∗k 〈Bj , YtBkYt〉F =
〈
Yt
(
µtD − Y −1

t

)
Yt, Bj

〉
F

∀ j = 1, . . . ,m.

This system of linear equations can be written in matrix form as Uλ∗ = d,
where

Ujk := 〈Bj , YtBkYt〉F and dj :=
〈
Yt
(
µtD − Y −1

t

)
Yt, Bj

〉
F

for any j, k = 1, . . . ,m. As shown in [Nes04], we can solve System (6.5) by
performing the following operations:

1. Computation of the matrices YtBkYt: As

YtBkYt =

[
XtAkXt 0

0 u2
t,keke

T
k

]
∀ k = 1, . . . ,m,

we need O
(
mn3

)
arithmetic operations to compute the m (n × n)-

matrices YtBkYt. Assume now that all matrices Ak are sparse and
that Sk denotes the number of non-zero entries of the matrix Ak. We
define S := max1≤k≤m Sk. Then, the computation of XtAk needs
O (nS) arithmetic operations. However, the resulting matrix might
become dense, implying that the evaluation of all matrices (YtBk)Yt,
k = 1, . . . ,m, requires O

(
mn3

)
arithmetic operations, as well. Conse-

quently, sparsity is of no help in this step.

2. Computation of the matrix U : Given the (n×n)-matrices YtBkYt,
the computation of the m2 elements

Ujk = 〈Bj , YtBkYt〉F = 〈Aj , XtAkXt〉F + u2
t,k 〈ej , ek〉 , 1 ≤ j, k ≤ m,

of the matrix U requires O
(
m2n2

)
[O
(
m2S

)
if the matrices Aj are

sparse] arithmetic operations. Note that U might be dense also for
sparse input matrices Aj .
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3. Computation of the vector d: In order to compute the vector d,
we need to evaluate first the expression

µtYtDYt − Yt =

[
−µtXtCXt −Xt 0

0 −Diag(ut)

]
,

which requires O(n3 +m) arithmetic operations. For any j = 1, . . . ,m,
we derive the value of 〈µtYtDYt − Yt, Bj〉F by carrying out O(n2) arith-
metic operations. In total, we thus need O

(
n3 +mn2

)
[O
(
n3 +mS

)
for sparse matrices Aj ] arithmetic operations to compute d.

4. Computation of the vector λ∗: The computation of λ∗ = U−1d
requires O(m3) arithmetic operations.

5. Computation of the matrix ∆Y ∗: We need O
(
mn2

)
[O (mS) for

sparse matrices Aj ] arithmetic operations to compute

m∑
j=1

λ∗jBj =

[∑m
j=1 λ

∗
jAj 0

0 Diag (λ∗)

]
.

Given this matrix, O
(
n3 +m

)
arithmetic operations are required for

the computation of

Yt

(
m∑
j=1

λ∗jBj

)
Yt =

[
Xt
(∑m

j=1 λ
∗
jAj

)
Xt 0

0 Diag
(
(λ∗ju

2
t,j)

m
j=1

)] .
It remains to subtract µtYtDYt − Yt from this matrix, which requires
O
(
n2 +m

)
arithmetic operations. Note that we have already com-

puted µtYtDYt − Yt above and that sparsity of the matrices Aj does
not affect the last two complexity estimates.

In total, we thus need O
(
mn3 +m2n2 +m3

)
[O
(
mn3 +m2S +m3

)
for

sparse matrices Aj ] arithmetic operations per Newton step.
Combining the cost per iteration with the analytical complexity described in
Theorem 4.5 and recalling that F is a ν-self-concordant barrier function with
ν = m+ n (see Example 4.2), we have verified the following result.

Theorem 6.3 (Section 4.3.3 in [Nes04]) Interior-Point (IP) methods
require

ComplIP(SDP, ε) = O
(√
m+ n

[
mn3 +m2S +m3] ln [(m+ n)/ε]

)
arithmetic operations to compute a feasible ε-solution to Problem (SDP).

As an immediate consequence, we obtain:
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Figure 6.2: CPU time required by Interior-Point methods (SeDuMi) for
solving single random instances of Problem (SDP) with respect
to the accuracy ε, the number of constraints m, and the matrix
size n.
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Corollary 6.2 Interior-Point methods are of polynomial time on the family
of semidefinite optimization problems described in (SDP).

According to Theorem 6.3, the arithmetic complexity of Interior-Point meth-
ods is almost independent of the solution accuracy ε, as this parameter influ-
ences the worst-case running time only logarithmically. This makes Interior-
Point methods very well suited for Problems (SDP) that require solutions
with a very high accuracy.
However, the worst-case complexity estimates for Interior-Point methods
grows very rapidly, but still polynomially, in the matrix size n and in the
number of constraints m: it grows with the power 3.5 for both m and n,
even if the input matrices Aj are sparse. For instance, if we increase the
matrix size n by one order of magnitude, that is, by a factor of ten, the worst-
case running time is multiplied by about 3′100. We conclude: in practice,
polynomial-time Interior-Point methods are too costly for solving
approximately Problems (SDP) if the involved matrices are of very
large size or if there are many constraints!
The above observations are demonstrated by numerical evidence. In Figure
6.2, we plot the CPU time required by Interior-Point methods (SeDuMi1) for
solving random instances of Problem (SDP) versus the accuracy, the number
of constraints, and the matrix size. The numerical experiments are run on
a computer with two AMD Athlon processors with a CPU of 2.9 GHz and
with 3.7 GB of RAM.

1SeDuMi is an open-source Matlab toolbox for Semidefinite Optimization; see [Sed,
Stu99] for more details.



Chapter 7
A matrix version of the Hedge algorithm in

Semidefinite Optimization

In the last chapter, we observed that Interior-Point methods can be used
to solve (SDP) in practice if the problem is of medium size, that is, if the

problem has a few thousand constraints and if it involves matrices of size a
few hundred times a few hundred; see Figure 6.2. In addition, we noticed
that Interior-Point methods are a distinguished tool for finding approximate
solutions of very high accuracy; SeDuMi, which is one of the most prominent
and most frequently used implementations of Interior-Point methods, has
a default accuracy of 10−8. However, when it comes to modern practical
applications, the needs may be different. On the one hand, practitioners
are usually satisfied with solutions with two or three accuracy digits, they
typically do not need solutions with an accuracy of 10−8. On the other hand,
semidefinite optimization problems arising in practice can be of very large
scale. Problematically, the scale of these problems may lie beyond the size
of problems that can be successfully handled by Interior-Point methods in
practice. We recall here that the running time of Interior-Point methods
grows with the order O

(√
m+ n

[
mn3 +mS +m3

]
ln[m+ n]

)
with respect

to m and n, respectively. These two observations motivate the following
conceptual question.

Question 7.1 We accept to face a moderate complexity increase with respect
to the solution accuracy ε; say from ln[1/ε] to 1/ε or even to 1/ε2. Do
algorithms for solving approximately semidefinite optimization problems in
the form of (SDP) with lower running time in m and n, say with a worst-

101

case complexity of at most O
(
(m+ n)3

)
, exist?
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In Part I of this thesis, we prepared a whole battery of alternative meth-
ods (Dual Averaging schemes, Smoothing Techniques, Mirror-Prox meth-
ods), which can be exploited to tackle this question. Recall that these algo-
rithms process only dual information (general loss vectors in Dual Averaging
schemes, gradients or subgradients in the case of First-Order methods). In
particular, these algorithms avoid the costly Newton steps, which makes them
an attractive alternative to Interior-Point methods for large-scale problems.

However, these alternative methods are not directly applicable to semidefinite
optimization problems in the form of (SDP). The Formulation (SDP) does
neither comply with Assumption 2.1 on the existence of a closed-form solution
to Problem (2.10), nor it has the saddle-point structure which is required
by Smoothing Techniques and Mirror-Prox methods. In this and the next
chapter, we study different techniques for rewriting Problem (SDP) in a form
to which the alternative methods are applicable.

The practical tractability of large-scale semidefinite optimization problems
has attracted the interest of many researchers over the last few years. One
of the most well-known papers in this research area is due to Arora and
Kale. In fact, their work [AK07] was the starting point and motivation of
this thesis. They replace Problem (SDP) by a cascade of feasibility problems.
Each of these feasibility problems is approximately solved by a Matrix Mul-
tiplicative Weights Update method, which can be seen as a matrix version
of the Hedge algorithm and can also be embedded in the framework of Dual
Averaging schemes. In total, Õ(ln[1/ε]/ε2) iterations of this Matrix Multi-
plicative Weights Update method are required, where we use the Õ-notation
to indicate that some other problem parameters such as the scaling of the
problem are hidden in this complexity estimate. The cost per iteration is
dominated by a matrix exponentiation and by some other computations re-
quiring O(mn2) arithmetic operations. Applying standard techniques for the
matrix exponentiation, their method needs in total Õ([n3 +mn2] ln[1/ε]/ε2)
arithmetic operations to find a feasible ε-solution to Problem (SDP), which
gives us a first, but rough, answer to the above question. “Rough” in the
sense that the quality of their answer heavily depends on the size of the pa-
rameters that are hidden in the Õ-notation. And, as we will establish in this
thesis, this complexity result leaves space for improvement with respect to
both the solution accuracy ε and the matrix size n.

We study the method of Arora and Kale in this chapter. In Section 7.1, we
introduce their Matrix Multiplicative Weights Update algorithm and show
that this method is a Dual Averaging scheme. In Section 7.2, we first discuss
the reformulation of (SDP) as a cascade of feasibility problems. In a second
step, we present Arora and Kale’s particular instanciation of the Matrix
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Multiplicative Weights Update method which can be used to solve these
feasibility problems approximately.
Contributions: We point out that the Matrix Multiplicative Weights Up-
date method is a Dual Averaging scheme, which enables us to give an alter-
native performance analysis of this algorithm.
Relevant literature: We use the paper [AK07] of Arora and Kale.

7.1 The Matrix Multiplicative Weights Update scheme

The Matrix Multiplicative Weights Update algorithm was independently dis-
covered by Arora and Kale [AK07] as well as by Warmuth and Kuzmin
[WK06]. It can be interpreted as a generalization of the Hedge algorithm
to matrices, where the decision variables are no longer non-negative unitary
n-dimensional vectors, but positive semidefinite (n× n)-matrices with trace
one.
Let us introduce the Matrix Multiplicative Weights Update method as in
the setting presented in [AK07]. We consider the following online matrix
version of the usual two-player zero-sum game. At the beginning of round
t ∈ N0 of the game, the first player chooses a positive semidefinite matrix
Xt of trace one. After this action, the second player (who might follow an
adversarial strategy), picks a matrix 0 � Mt � In, where we recall that In
denotes the identity matrix in Sn. Any round t of this game is concluded by
the following pay-off: the first player pays 〈Mt, Xt〉F to the second player.
After T ∈ N rounds, the total loss suffered by the first player amounts to∑T−1
t=0 〈Mt, Xt〉F . The Matrix Multiplicative Weights Update method defines

an update strategy for the matrices (Xt)t≥0 such that the regret at T ∈ N,
that is,

RT =

T−1∑
t=0

〈Mt, Xt〉F − min
X∈∆Mn

{
T−1∑
t=0

〈Mt, X〉F

}

=

T−1∑
t=0

〈Mt, Xt〉F − λmin

(
T−1∑
t=0

Mt

)
,

can be bounded from above by a quantity which is increasing in the order of
O(
√
T ). This update strategy is described in Algorithm 7.1.

At every iteration of this method, we are supposed to carry out the compu-
tation of (1−γ)St+1 , where γ ∈ (0, 1) and St+1 ∈ Sn. The matrix (1−γ)St+1

is defined as follows. As the matrix St+1 is symmetric, it admits an eigende-
composition St+1 = Q(St+1)Diag(λ(St+1))Q(St+1)T . Using this alternative
representation of St+1, we define (1− γ)St+1 as

(1−γ)St+1 = Q(St+1)Diag(λ̄)Q(St+1)T , λ̄i = (1−γ)λi(St+1) ∀ 1 ≤ i ≤ n.
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Algorithm 7.1 Matrix Multiplicative Weights Update method [AK07]

1: Choose T ∈ N.
2: Choose 0 < γ < 1, set X0 = In/n, and set S0 = 0 ∈ Sn.
3: for 0 ≤ t ≤ T − 1 do
4: Obtain 0 �Mt � In from the second player.
5: Set St+1 = St +Mt.
6: Update Wt+1 = (1− γ)St+1 .
7: Set Xt+1 = Wt+1/Tr(Wt+1).
8: end for

In particular, the computation of (1 − γ)St+1 requires O(n3) arithmetic op-
erations.

In their paper [AK07], Arora and Kale derived an upper bound on RT for Al-
gorithm 7.1, provided that the update update parameter γ is strictly smaller
than 1/2. Instead of presenting here their performance study, we interpret
Algorithm 7.1 as a Dual Averaging scheme at first and apply Theorem 3.1 af-
terwards to obtain an upper bound on the regret RT . Using this alternative
view on the Matrix Multiplicative Weights Update method, we can eliminate
the extra condition γ < 1/2, which plays a crucial role in the proof of Arora
and Kale.

Consider now Dual Averaging schemes (Algorithm 3.1). We make the fol-
lowing choices in Algorithm 3.1:

1. we set Q = ∆M
n and equip Sn with the induced 1-norm ‖·‖(1);

2. we endow Algorithm 3.1 with the distance-generating function

d∆Mn
(X) = ln(n) +

n∑
i=1

λi(X) ln(λi(X)) ∀ X ∈ ∆M
n ;

3. the return of the oracle G at iteration t corresponds to the matrix Mt

chosen by the second player;

4. we use constant step-sizes γt = 1 for any 0 ≤ t ≤ T − 1;

5. we set βt = −1/ ln(1− γ) for any 0 ≤ t ≤ T .

At every iteration 0 ≤ t ≤ T − 1 of Algorithm 3.1, we obtain:

Xt+1 := π∆Mn ,−1/ ln(1−γ)

(
−

t∑
τ=0

Mτ

)
=

Wt+1

Tr(Wt+1)
,
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where:

Wt+1 := exp (−St+1/βt+1) = exp (ln(1− γ)St+1) = (1− γ)St+1 ,

St+1 :=

t∑
τ=0

Mτ .

We observe that Algorithm 3.1 defines the same sequence (Xt)
T
t=0 of ma-

trices as Algorithm 7.1, that is, the Matrix Multiplicative Weights Update
method is a Dual Averaging scheme. By applying Theorem 3.1, we obtain
the following result for the Matrix Multiplicative Weights Update method.

Theorem 7.1 Let the sequences (Xt)
T
t=0 and (Mt)

T−1
t=0 be generated by Al-

gorithm 7.1. Then,

T−1∑
t=0

〈Mt, Xt〉F − λmin

(
T−1∑
t=0

Mt

)
≤ − ln(n)

ln(1− γ)
− ln(1− γ)

2

T−1∑
t=0

‖Mt‖2∗ .

Obviously, we can choose γ in an optimal way (“optimal” in the sense that
we minimize the right-hand side of the above inequality) if a bound on∑T−1
t=0 ‖Mt‖2∗ is known; see Section 3.2 for more details.

Alternatively, we might set γt = − ln(1− γ) and βt = 1 for any t ≥ 0. With
this choice, Nesterov’s Dual Averaging scheme still coincides with Algorithm
7.1 and the above bound on the regret remains valid.

7.2 Application in Semidefinite Optimization

Arora and Kale [AK07] discovered that a subfamily of (SDP) can be solved
by using the Matrix Multiplicative Weights Update method with a carefully
designed strategy for constructing the sequence (Mt)

T−1
t=0 as instrumental

tool. Their method works provided that (SDP) complies with the following
mild assumptions, which shall hold for the remainder of this chapter. Also,
recall that Strong Duality still holds by Assumption 6.1.

Assumption 7.1 In Formulation (SDP), we have A1 = In/R for an R > 0
and Tr(C) > 0.

The first condition corresponds to a simple scaling constraint that ensures
that the trace of any feasible matrix is bounded from above by R. This
constraint is naturally present in the semidefinite relaxations of the combi-
natorial optimization problems that are considered in [AK07].
The second requirement is used to bound the optimal value of (SDP) by a
positive quantity from below. Recall from Remark 6.1 that we have chosen
α > 0 such that Tr(Aj) < α for any 1 ≤ j ≤ m. As the matrix In/α
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is feasible, the optimal value ϕ∗ to (SDP) is thus bounded from below by
Tr(C)/α. In particular, the optimal value ϕ∗ is positive. On the other hand,
we can bound ϕ∗ from above by

∑m
j=1 ȳj , where ȳ is given by Assumption

6.1.

The Multiplicative Weights Update method is a Dual Averaging scheme.
Dual Averaging schemes are applicable to optimization problems that com-
ply with Assumption 2.1. However, Problem (SDP) does not satisfy this
requirement. In a first step, an appropriate problem transformation is thus
required. Let us present the transformation used by Arora and Kale now.

7.2.1 Replacement by a cascade of feasibility problems

In order to find an approximation to the optimal value ϕ∗ of (SDP), Arora
and Kale perform a Binary Search over the interval [Tr(C)/α,

∑m
j=1 ȳj ]. At

every iteration of the Binary Search, they pose the following feasibility ques-
tion.

Question 7.2 (Feasibility problem) Given the current guess ϕ of ϕ∗,
does there there exist a matrix X � 0 with 〈C,X〉F > ϕ and such that
〈Aj , X〉F ≤ 1 for any 1 ≤ j ≤ m?

For the time being, let us assume that there exists an oracle which gives
us approximate answers to the above question. More precisely, we suppose
that there exists a feasibility oracle F with the following property. When
we call F with input (ϕ, δ) ∈ [Tr(C)/α,

∑m
j=1 ȳj ]× (0, 1), it either returns a

matrix X � 0 such that:

〈C,X〉F > ϕ and 〈Aj , X〉F ≤ 1 ∀ 1 ≤ j ≤ m,

or it declares correctly that there cannot exist any X � 0 that satisfies both

〈C,X〉F > (1 + δ)ϕ and 〈Aj , X〉F ≤ 1 ∀ 1 ≤ j ≤ m.

The answers of this oracle are used in the Binary Search of Arora and Kale;
see Algorithm 7.2. For this approximate Binary Search, we have the following
convergence result.

Theorem 7.2 [AK07] Assume that X̂ is returned by Algorithm 7.2 after
T ∈ N iterations. Then,

ϕ∗ −
〈
C, X̂

〉
F
≤
(

5

6

)T ( m∑
j=1

ȳj − Tr(C)/α

)
.
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Algorithm 7.2 Approximate Binary Search [AK07]

1: Choose T ∈ N.
2: Set X̂ = In/α, l0 = Tr(C)/α, u0 =

∑m
j=1 ȳj , and ϕ0 = (u0 + l0) /2.

3: for 0 ≤ t ≤ T − 1 do
4: Set δt = 2(ut−lt)

3(ut+lt)
.

5: Call feasibility oracle F with input (ϕt, δt).
6: if F returns a feasible point Xt+1 with 〈C,Xt+1〉F > ϕt then

7: Update X̂ = Xt+1, lt = 〈C,Xt+1〉F , and ut+1 = ut.
8: else
9: Define lt+1 = lt and ut+1 = (1 + δt)ϕt.

10: end if
11: Set ϕt+1 = (ut+1 + lt+1) /2.
12: end for
13: Return X̂.

As the proof of this theorem is not given in the paper of Arora and Kale,
we verify the correctness of this result in Appendix B.2. The above theorem
shows that we need to perform about

T = O

(
ln

[∑m
j=1 ȳj

ε

])

iterations of Algorithm 7.2 for obtaining a feasible ε-solution to Problem
(SDP). We are left with the construction of the feasibility oracle F .

7.2.2 Arora and Kale’s implementation of the feasibility oracle

In [AK07], the feasibility oracle is realized as a particular instanciation of
Algorithm 7.1 with a very specific strategy for constructing the matrices Mt.
For ϕ ∈ [Tr(C)/α,

∑m
j=1 ȳj ], we define the set ∆̄ϕ

m as

∆̄ϕ
m :=

{
y ∈ Rm : y ≥ 0,

m∑
j=1

yj ≤ ϕ

}
.

In order to specify the matrices (Mt)
T−1
t=0 in Algorithm 7.1, Arora and Kale

make use of a second oracle G. When we call this oracle G with input matrix
X ∈ ∆M

n , it either returns a vector y ∈ ∆̄ϕ
m with

m∑
j=1

yj 〈Aj , X〉F − 〈C,X〉F ≥ 0, (7.1)
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or it declares correctly that there exists no vector y ∈ ∆̄ϕ
m satisfying (7.1).

In addition, we assume that there exists a constant ρ > 0 such that∥∥∥∥∥
m∑
j=1

Ajyj − C

∥∥∥∥∥
(∞)

≤ ρ

for all vectors y ∈ ∆̄ϕ
m that are returned by the oracle G for any input

X ∈ ∆M
n . We refer to the minimal ρ that satisfies the above condition as the

width parameter of the oracle G. As we will see later on in this chapter,
the smaller the parameter ρ is, the more attractive the running time of the
resulting method becomes.

Remark 7.1 (Brute-force implementation of the oracle G) Choose a
matrix X ∈ ∆M

n . The brute-force implementation of the oracle G looks as
follows. We compute:

j∗ ∈ arg max
1≤j≤m

〈Aj , X〉F .

If ϕ 〈Aj∗ , X〉F ≥ 〈C,X〉F , we return ϕej∗ , where ej∗ denotes the j∗-th unit
vector in Rm. Else, there cannot exist an y ∈ ∆̄ϕ

m satisfying (7.1). For this
oracle, we obtain:

ρ = max
1≤j≤m

‖ϕAj − C‖(∞) ≤ ϕ max
1≤j≤m

‖Aj‖(∞) + ‖C‖(∞) .

Remark 7.2 (Arora and Kale’s implementation of the oracle G) In
their paper, Arora and Kale [AK07] consider several problems arising as
semidefinite relaxations of NP-hard problems (for instance the semidefinite
relaxation of MaxCut). For each of these problems, they define a particular
oracle G, which ideally has a smaller width parameter than the straightfor-
ward implementation presented above and that allows fast matrix exponential
approximations. We postpone the discussion of the second issue to a later
point in this section. However, we are not going to study the problem specific
oracle constructions in this thesis, as they are not broadly applicable.

Let us analyze the two situations that are described by the oracle outputs.
We assume that we call the oracle G with the input matrix X ∈ ∆M

n .

Lemma 7.1 [AK07] If there exists a vector y ∈ ∆̄ϕ
m that fulfills (7.1), then

X is infeasible for (SDP) or 〈C,X〉F ≤ ϕ.

Proof: Let y ∈ ∆̄ϕ
m fulfill Condition (7.1) for input matrix X. In addition,

we suppose that X is feasible for (SDP) and that X satisfies 〈C,X〉F > ϕ.
Then,

m∑
j=1

yj 〈Aj , X〉F − 〈C,X〉F <
m∑
j=1

yj − ϕ ≤ ϕ− ϕ = 0,
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which contradicts Condition (7.1).
Note that the arguments of the proof above can be used to show that any
positive scaling aX of the matrix X is infeasible for (SDP) or 〈C, aX〉F ≤ ϕ
if there is no y ∈ ∆̄ϕ

m satisfying (7.1).

Lemma 7.2 [AK07] Assume that the oracle G declares that there is no ele-
ment y ∈ ∆̄ϕ

m that satisfies (7.1) for the input matrix X ∈ ∆M
n . Then, the

matrix

X̂ :=
X

max1≤j≤m 〈Aj , X〉F
is a well-defined and feasible solution to (SDP ) with an objective function
value that is strictly larger than ϕ.

Proof: Assume that oracle G outputs that there is no y ∈ ∆̄ϕ
m that fulfills

(7.1) for input matrix X ∈ ∆M
n . We immediately recognize that 〈C,X〉F > 0,

as otherwise the all zero vector would satisfy Condition (7.1). Applying
Lemma 6.1, we obtain that the matrix

X̂ :=
X

max1≤j≤m 〈Aj , X〉F

is well-defined and positive semidefinite. In addition, the oracle answer guar-
antees that

max
y∈∆̄

ϕ
m

m∑
j=1

yj 〈Aj , X〉F < 〈C,X〉F .

By Lemma 6.1, the left-hand side of the above inequality is strictly positive,
which allows us to rewrite the inequality as

ϕ max
1≤j≤m

〈Aj , X〉F < 〈C,X〉F .

Dividing both sides by max1≤j≤m 〈Aj , X〉F , we immediately obtain that

ϕ <
〈
C, X̂

〉
F
.

Finally, we clearly have max1≤j≤m

〈
Aj , X̂

〉
F

= 1.

The outputs of the oracle G are used to construct the matrices Mt in Algo-
rithm 7.3. If the oracle G returns an element yt ∈ ∆̄ϕ

m for input matrix Xt
at iteration 0 ≤ t ≤ T − 1, we set:

Mt =
1

2ρ

(
m∑
j=1

Ajyt,j − C + ρIn

)
.
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Algorithm 7.3 Arora and Kale’s implementation of F [AK07]

1: Choose T ∈ N and an update parameter 0 < γ < 1.
2: Let X0 = In/n and S0 = 0 ∈ Sn.
3: for 0 ≤ t ≤ T − 1 do
4: Call the oracle G with input matrix Xt.
5: if G returns a vector yt ∈ ∆̄ϕ

m satisfying (7.1) then

6: Set Mt = 1
2ρ

(∑m
j=1 Ajyt,j − C + ρIn

)
and St+1 = St +Mt.

7: Update Wt+1 = (1− γ)St+1 .
8: Set Xt+1 = Wt+1/Tr(Wt+1).
9: else

10: Terminate and return

X̂ :=
Xt

max1≤j≤m 〈Aj , Xt〉F
.

11: end if
12: end for

By the definition of ρ, we have:

−ρ ≤ λmin

(
m∑
j=1

Ajyt,j − C

)
≤ λmax

(
m∑
j=1

Ajyt,j − C

)
≤ ρ,

and thus 0 � Mt � In. In particular, Mt can be interpreted as the matrix
chosen by the second player in the Matrix Multiplicative Weights Update
method described in Algorithm 7.1. As an immediate consequence, we ob-
serve that Arora and Kale’s Algorithm 7.3 is indeed a Matrix Multiplicative
Weights Update method, but with one minor difference. While all T itera-
tions are carried out in Algorithm 7.1, Algorithm 7.3 terminates earlier if the
oracle G fails in finding an element y ∈ ∆̄ϕ

m that satisfies (7.1). If this case
does not occur, we have the following guarantee.

Theorem 7.3 (Theorem 2 in [AK07]) Let δ > 0. We perform

T ≥ 8 ln(n)ρ2R2

δ2ϕ2

iterations of Algorithm 7.3 with update parameter

γ = 1− exp

(
−
√

2 ln(n)

T

)
.
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If the oracle G outputs at every iteration 0 ≤ t ≤ T − 1 an element yt ∈ ∆̄ϕ
m

satisfying (7.1), the vector

ŷ = δϕe1 +
1

T

T−1∑
t=0

yt

is feasible for the Dual Problem (6.2) and has an objective function value of
at most (1 + δ)ϕ, where e1 denotes the first unit vector in Rm.

Note that the update parameter γ in the above theorem deviates from the
parameter that is used by Arora and Kale in their paper [AK07]. We end up
with a different update parameter than Arora and Kale, because we utilize
Theorem 7.1 in the proof below, and this theorem differs slightly from its
analog in [AK07]. Although we use a different update parameter, we obtain
the same bound on the iteration number T as Arora and Kale.
Proof of Theorem 7.3: Let δ > 0. All the notations that we use in this
proof refer to Algorithm 7.3. Assume that

T ≥ 8 ln(n)ρ2R2

δ2ϕ2
(7.2)

iterations of this algorithm are performed and that the oracle G returns at
every iteration 0 ≤ t ≤ T − 1 a vector yt ∈ ∆̄ϕ

m that fulfills (7.1). Due to the
definition of ρ, we obtain ‖Mt‖2(∞) ≤ 1 for any 1 ≤ t ≤ T . In addition, we
have:

T−1∑
t=0

〈Mt, Xt〉F =
1

2ρ

T−1∑
t=0

〈
m∑
j=1

Ajyt,j − C,Xt

〉
F

+
1

2

T−1∑
t=0

Tr(Xt) ≥
T

2
,

where the inequality holds because Xt ∈ ∆M
n and as all yt satisfy Condition

(7.1). As Algorithm 7.3 is a Matrix Multiplicative Weights Update method,
we may apply Theorem 7.1. This theorem yields to:

min
X∈∆Mn

{
T−1∑
t=0

〈Mt, X〉F

}
≥ ln(n)

ln(1− γ)
+
T (1 + ln(1− γ))

2
,

that is,

1

2ρ
min
X∈∆Mn


T−1∑
t=0

〈
m∑
j=1

Ajyt,j − C,X

〉
F

 ≥ ln(n)

ln(1− γ)
+
T ln(1− γ)

2
.

For

γ = 1− exp

(
−
√

2 ln(n)

T

)
,
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the above inequality can be rewritten as

1

2ρ
min
X∈∆Mn


T−1∑
t=0

〈
m∑
j=1

Ajyt,j − C,X

〉
F

 ≥ −√2T ln(n),

which implies:

λmin

(
1

T

T−1∑
t=0

m∑
j=1

Ajyt,j − C

)
≥ −2ρ

√
2 ln(n)

T
. (7.3)

Let ŷ = δϕe1 + 1
T

∑T−1
t=0 yt. As yt ∈ ∆̄ϕ

m for any 0 ≤ t ≤ T − 1, we clearly
have:

m∑
j=1

ŷj ≤ (1 + δ)ϕ.

Exploiting Assumption 7.1 (that is, A1 = In/R), Inequality (7.3), and Con-
dition (7.2), we finally obtain:

λmin

(
m∑
j=1

Aj ŷj − C

)
=

δϕ

R
+ λmin

(
1

T

T−1∑
t=0

m∑
j=1

Ajyt,j − C

)

≥ δϕ

R
− 2ρ

√
2 ln(n)

T
≥ 0,

which shows that ŷ is feasible to (6.2).
Arora and Kale utilize Algorithm 7.3 as feasibility oracle F in Algorithm 7.2.
The resulting method has the following analytical complexity.

Corollary 7.3 [AK07] Let ε > 0. Running Algorithm 7.2 with Algorithm
7.3 as feasibility oracle F , we need to perform

O

α2ρ2R2
[∑m

j=1 ȳj
]2

ln[n]

ε2Tr2[C]
ln

[∑m
j=1 ȳj

ε

]
iterations of Algorithm 7.3 in order to find a feasible ε-solution to (SDP).

Proof: Let ε > 0. At every iteration t of Algorithm 7.2, we call Algorithm
7.3 with an accuracy of

δt =
2(ut − lt)
3(ut + lt)

≥ ε

3
∑m
j=1 ȳj

,
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where ut and lt are given by Algorithm 7.2. The concluding inequality holds
as we can terminate Algorithm 7.2 as soon as ut − lt ≤ ε. It remains to
multiply the analytical complexity of Algorithm 7.2 displayed in Theorem
7.2 with the number of iterations required by Algorithm 7.3; see Theorem
7.3. For the later result, we recall that any guess ϕt of ϕ∗ in Algorithm 7.2
can be bounded from below by Tr(C)/α.
It remains to analyze the cost per iteration. At every iteration 0 ≤ t ≤ T − 1
of Algorithm 7.3, the cost-dominating computations are as follows:

1. We must compute the matrix exponential

(1− γ)St+1 = exp (Ut+1) , Ut+1 := −
√

2 ln(n)

T
St+1.

Using standard techniques, that is, computing the matrix exponential
through an eigendecomposition of the symmetric matrix Ut+1, this op-
eration requires O(n3) arithmetic operations; see [ML03] for the clas-
sical survey on this topic. In their paper [AK07], Arora and Kale
suggest to replace exp(Ut+1) by a random approximation. Basically,
they exploit the fact that exp(Ut+1) can be written as the product
exp(Ut+1/2) exp(Ut+1/2). The rows of exp(Ut+1/2) are approximated
by projecting an appropriate truncation of the matrix exponential Tay-
lor series (about O(1/ε) terms are considered) on O

(
1/ε2

)
random di-

rections. As the resulting algorithm requires about O(ln[1/ε]/ε5) arith-
metic operations to find a feasible ε-solution to Problem (SDP), we do
not further elaborate on this random method. In particular, proving
this result would go beyond the scope of this thesis. Note that we ne-
glect all other problem parameters such as m and n in the previous
complexity estimates.

2. We need O(mn2) arithmetic operations for the computation of∑m
j=1 Ajyt,j .

3. Also, we need to consider the cost of a single call of the oracle G.
Implementing G as described in Remark 7.1, about O(mn2) arithmetic
operations are required per oracle call.

Provided that we utilize for G the straightforward implementation described
in Remark 7.1, we need in total O(n3 + mn2) arithmetic operations per it-
eration. If all matrices Aj have at most S non-zero entries, this complexity
estimate reduces to O(n3 +mS). The following result summarizes the com-
plexity study that we performed in this section.

Corollary 7.4 [AK07] Assume that we use the Dual Averaging (DA) scheme
described in Algorithm 7.3 as feasibility oracle F in the Binary Search (BS)
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Algorithm 7.2. Let the oracle G in Algorithm 7.3 be implemented as described
in Remark 7.1. With

ν :=
ε

R
(

max1≤k≤m ‖Ak‖(∞) + α ‖C‖(∞) /Tr(C)
)∑m

j=1 ȳj
,

the resulting method requires

ComplBS+DA(SDP, ε) = O

(
[n3 +mS] ln[n]

ν2
ln

[∑m
j=1 ȳj

ε

])

arithmetic operations to find a feasible ε-solution to (SDP).

If we consider only the parameters m, n, and ε, the above complexity results
answer affirmatively Question (7.1). However, the quality of this answer is
very rudimentary. First, the above complexity result depends on many more
problem parameters than just ε, m, and n. Namely, it is also affected by R,
the initial lower and upper bound on the optimal value of (SDP), and the
norms of Aj and C. And second, the high iteration cost due to the matrix
exponentiation and the comparatively strong influence of ε > 0 give little
hope to find a meaningful and reasonably large subclass of Problems (SDP)
with n ≥ m, where we can theoretically beat Interior-Point methods. Let us
be more precise. Suppose that the data of (SDP) is chosen so that m ≤ n
and such that mS = nβ with β ∈ [2, 3]. These assumptions do no exclude
the matrix

∑m
j=1 Ajyj from being fully dense. With ν being defined as in the

above theorem, we have ComplBS+DA(SDP, ε) � ComplIP(SDP, ε) if and only
if

1/ν2 � m
√
n,

where we neglect all logarithmic terms. This condition is very restrictive, as
it already fails for ν ≤ n−3/4. However, if n� m, the setting is fully in favor
of Arora and Kale’s method, as the arithmetic complexity of their method
grows only linearly in m. In contrast, the efficiency estimate of Interior-Point
methods grows faster than cubically in m. In future, we will thus always focus
on the more critical situation where n ≥ m.
In the next chapter, we will see that we can apply Dual Averaging schemes
in an alternative way and obtain a better worst-case complexity result due
to lower iteration cost.



Chapter 8
From semidefinite optimization problems to

matrix saddle-point problems

In this and the subsequent two chapters, we approach Question 7.1 by using
Primal-Dual Subgradient methods, Smoothing Techniques, and Mirror-

Prox methods. However, these methods cannot be applied to the current
formulation of Problem (SDP). In this chapter, we show that we can express
Problem (SDP) alternatively as a (cascade of) matrix saddle-point prob-
lem(s), which meet(s) both Assumption 2.1 and the structural requirements
of Smoothing Techniques and Mirror-Prox methods.

In Section 8.1, we reuse the problem transformation utilized by Arora and
Kale in [AK07]. In contrast to them, we answer the feasibility problem
described in Question 7.2 by solving a matrix saddle-point problem approx-
imately. In Section 8.2, we present an alternative problem transformation
that also yields to a matrix saddle-point reformulation of Problem (SDP).
While the first transformation based on Arora and Kale’s strategy requires
Assumption 7.1 to hold, this alternative approach asks for a positive definite
matrix C in (SDP).

Matrix saddle-point problems can be described in a primal and in a dual
form. As we observe in Section 8.3, where we apply Primal-Dual Subgradi-
ent methods (more specifically Mirror-Descent schemes) to both the primal
and the dual version of the matrix saddle-point problem, the dual description
has significant computational advantages over its primal counterpart. More
precisely, when applying Mirror-Descent methods to the primal problem ver-
sion, we are supposed to carry out a matrix exponentiation at every iteration.

115
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However, with the dual strategy, we only need to derive the maximal eigen-
value and the leading eigenvector of a symmetric matrix at every iteration,
yielding to a lower iteration cost. Combining the resulting complexity esti-
mate with the problem transformations studied in Section 8.1 and 8.2, we
get an affirmative answer to Question 7.1, that is, we obtain an algorithm
that is fast enough to meet our complexity requirements. More importantly,
this answer is much less restrictive than the one presented in Corollary 7.4.

Finally, we conclude this chapter by applying Interior-Point methods to ma-
trix saddle-point problems in Section 8.4. We compare their efficiency esti-
mates with the complexity result of Mirror-Descent methods and show that
there exist a meaningful group of large-scale matrix saddle-point problems
where Mirror-Descent methods outperform Interior-Point methods theoreti-
cally.

Contributions: The transformation of (SDP) into a matrix saddle-point
problem that we present in Section 8.2 is original. The first problem trans-
formation is known.

Relevant literature: We use the reference [NY83]. Parts of this chapter
are taken from [BB09, BBN11].

8.1 Binary Search based on matrix saddle-point prob-
lems

In this section, we show that we can answer the Feasibility Question 7.2 by
approximately solving an appropriate matrix saddle-point problem. More
importantly, the approximate solution to this matrix saddle-point problem
can be utilized to implement the feasibility oracle F that is described in
Section 7.2.1. As an immediate consequence, we recognize that the optimal
value of Problem (SDP) can be approximated by solving a cascade of matrix
saddle-point problems. Let us introduce these matrix saddle-point problems
now.

We use the same notation as in the previous chapter. As in the setting of
Arora and Kale [AK07], we impose the following assumptions:

Assumption 8.1 The trace of C is positive and A1 = In/R for a constant
R > 0.

We choose Tr(C)/α ≤ ϕ ≤
∑m
j=1 ȳj and consider the matrix saddle-point

problem:

min
X∈∆Mn

max
y∈∆m

m∑
j=1

yj 〈Aj − C/ϕ,X〉F = min
X∈∆Mn

max
1≤j≤m

〈Aj − C/ϕ,X〉F . (8.1)
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First of all, Problem (8.1) is in a form such that Primal-Dual Subgradient
methods, Smoothing Techniques, and Mirror-Prox methods are applicable
to it. On the one hand, Problem (8.1) satisfies Assumption 2.1. For both
the standard simplex ∆m and the matrix simplex ∆M

n , we know distance-
generating functions for which the optimal solution to Problem (2.10) can be
written in a closed form; see Examples 2.14 and 2.15. On the other hand,
Problem (8.1) complies with the structural requirements specified in (4.1).

When we apply one of the above methods to Problem (8.1), we obtain an
element X̄ ∈ ∆M

n with the following guarantee:

max
1≤j≤m

〈
Aj − C/ϕ, X̄

〉
F
− min
X∈∆Mn

max
1≤j≤m

〈Aj − C/ϕ,X〉F ≤ ε̄, (8.2)

where ε̄ > 0 is the solution accuracy. Assume now that ε̄ = δ/R for some
δ > 0. Clearly, the method output X̄ satisfies exactly one of the following
two conditions:

1. either we have max1≤j≤m
〈
Aj − C/ϕ, X̄

〉
F
< 0;

2. or max1≤j≤m
〈
Aj − C/ϕ, X̄

〉
F
≥ 0, which implies by (8.2) that

min
X∈∆Mn

max
1≤j≤m

〈
Aj − C/ϕ, X̄

〉
F
≥ −δ/R.

The output X̄ can be used to construct a feasibility oracle F as defined in
Section 7.2.1. This procedure is based on the two next lemmas.

Lemma 8.1 Let X̄ ∈ ∆M
n satisfy max1≤j≤m

〈
Aj − C/ϕ, X̄

〉
F
< 0. The

matrix X̂ := X̄/max1≤j≤m
〈
Aj , X̄

〉
F

is well-defined and constitutes a feasible
solution to (SDP) with an optimal value that is strictly larger than ϕ.

Proof: Let X̄ ∈ ∆M
n such that max1≤j≤m

〈
Aj − C/ϕ, X̄

〉
F

< 0. If〈
C, X̄

〉
F
≤ 0, then

1/R ≤ max
1≤j≤m

〈
Aj , X̄

〉
F
≤ max

1≤j≤m

〈
Aj − C/ϕ, X̄

〉
F
< 0,

which is a contradiction. We obtain:

max
y∈∆̄

ϕ
m

m∑
j=1

yj
〈
Aj , X̄

〉
F
−
〈
C, X̄

〉
F
< 0.

It remains to apply the same arguments as in the proof of Lemma 7.2.

We have the following guarantee for the second case.
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Lemma 8.2 If

min
X∈∆Mn

max
1≤j≤m

〈Aj − C/ϕ,X〉F ≥ −δ/R, (8.3)

there exists no feasible point to (SDP) with an objective function value that
is strictly larger than (1 + δ)ϕ.

Proof: Assume that (8.3) holds. Then, there exists an element ŷ ∈ ∆m such
that:

λmin

(
ϕ

m∑
j=1

Aj ŷj − C

)
≥ −δϕ

R
.

In particular, it holds that:

−δϕ
R

+ λmin

(
(ŷ1 + δ)Inϕ

R
+ ϕ

m∑
j=2

Aj ŷj − C

)
≥ −δϕ

R
,

which shows that y := ϕ(ŷ+ δe1) is a feasible solution to (6.2), where e1 de-
notes the first unit vector in Rm. We conclude by recalling that by definition
the components of ŷ sum up to one.

In order to find a feasible ε-solution to Problem (SDP), we thus need to solve
approximately about

O

(
ln

[∑m
j=1 ȳj

ε

])
Matrix Saddle-Point Problems (8.1). Each of these auxiliary problems needs
to be solved up to an accuracy of

ε̄ =
δ

R
≥ ε

3R
∑m
j=1 ȳj

; (8.4)

see Algorithm 7.2 and Theorem 7.2 for the details.

8.2 An alternative problem transformation

In this section, we give an alternative matrix saddle-point problem reformula-
tion of (SDP). While the previous transformation requires a scaling constraint
as described in Assumption 8.1, this alternative approach asks for a positive
definite matrix C in (SDP). For reference, let us formalize this requirement:

Assumption 8.2 The matrix C is positive definite.
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Let this assumption hold for this section. As a consequence, we obtain that
the inequality max1≤j≤m 〈Aj , X〉F > 0 holds for every non-vanishing X � 0.
Indeed, we have 〈C,X〉F > 0 for every non-zero X � 0, as C � 0. It remains
to apply Lemma 6.1.
The following lemma constitutes the first step in the reformulation of Problem
(SDP).

Lemma 8.3 We have:

max
X�0

{
〈C,X〉F : max

1≤j≤m
〈Aj , X〉F ≤ 1

}
=

(
min
Y ∈Q′

max
1≤j≤m

〈Aj , Y 〉F

)−1

, (8.5)

where Q′ :=
{
Y � 0 : 〈C, Y 〉F = 1

}
.

Proof: Let us first prove the equality ϕ∗ = ϕ′, where

ϕ∗ := max
X�0

{
〈C,X〉F : max

1≤j≤m
〈Aj , X〉F ≤ 1

}
,

ϕ′ := sup
X�0

〈C,X〉F
max1≤j≤m 〈Aj , X〉F

.

The function X 7→ 〈C,X〉F /max1≤j≤m 〈Aj , X〉F is homogeneous in X and
strictly positive for all non-zero X � 0. This implies that we can compute its
supremum over all X � 0 by restricting ourselves to all matrices X ∈ ∆M

n .
For any X ∈ ∆M

n , the ratio 〈C,X〉F /max1≤j≤m 〈Aj , X〉F lies in (0,∞),
because both 〈C,X〉F and max1≤j≤m 〈Aj , X〉F belong to the interval (0,∞).
As X 7→ 〈C,X〉F /max1≤j≤m 〈Aj , X〉F is continuous on the compact set
∆M
n , its maximum on this set is attained. In particular, the value ϕ′ is finite

and we can replace the “sup”- by a “max”-operator in the definition of ϕ′.
Obviously, we have ϕ∗ ≤ ϕ′. Indeed, if X̄ is an optimal solution to Problem
(SDP), we have:

max
1≤j≤m

〈
Aj , X̄

〉
F

= 1,

which holds due to the linearity of the objective function. Hence,

〈
C, X̄

〉
F

=

〈
C, X̄

〉
F

max1≤j≤m
〈
Aj , X̄

〉
F

≤ ϕ′.

On the other hand, we can choose a matrix X ′ 6= 0 such that

ϕ′ =
〈C,X ′〉F

max1≤j≤m 〈Aj , X ′〉F
.

Let X̃ := X ′/max1≤j≤m 〈Aj , X ′〉F . Evidently, X̃ is feasible for (SDP), and

ϕ′ =
〈
C, X̃

〉
F
≤ ϕ∗. We conclude that ϕ∗ = ϕ′.
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Observe that Y belongs to Q′ if and only if there exists X � 0 such that
Y = X/ 〈C,X〉F . This implies that we can write

max
X�0

{
〈C,X〉F

max1≤j≤m 〈Aj , X〉F

}
= max
Y ∈Q′

(
max

1≤j≤m
〈Aj , Y 〉F

)−1

.

This last problem is equivalent to the right-hand side of (8.5).
We have converted our original problem into the following auxiliary format:

min
Y ∈Q′

max
1≤j≤m

〈Aj , Y 〉F = min
Y ∈Q′

max
y∈∆m

m∑
j=1

yj 〈Aj , Y 〉F ,

where we use the notation of Lemma 8.3. Unfortunately, no distance-
generating function is known for which we can give a closed form optimal
solution to (2.10) with Q′ as feasible set. The additional transformation step
that is necessary to resolve this difficulty requires a Cholesky decomposition
of the positive definite matrix C. Let C = LLT , where L ∈ Mn is lower
triangular with strictly positive diagonal entries. About O(n3) arithmetic
operations are needed to compute such a matrix L.
Let Y ∈ Q′ and define Ȳ := LTY L � 0. As L is invertible, we can write:

〈C, Y 〉F =
〈
LLT , L−T Ȳ L−1

〉
F

= Tr(Ȳ ),

and:

〈Aj , Y 〉F =
〈
Aj , L

−T Ȳ L−1
〉
F

=
〈
L−1AjL

−T , Ȳ
〉
F

∀ 1 ≤ j ≤ m.

We obtain:

min
Y ∈Q′

max
1≤j≤m

〈Aj , Y 〉F = min
Ȳ ∈∆Mn

max
1≤j≤m

〈
L−1AjL

−T , Ȳ
〉
F
.

Summarizing, we have proven the following lemma.

Proposition 8.4 Let Bj := L−1AjL
−T for any 1 ≤ j ≤ m. We have:

ϕ∗ = max
X�0

{
〈C,X〉F : max

1≤j≤m
〈Aj , X〉F ≤ 1

}
=

(
min
X∈∆Mn

max
1≤j≤m

〈Bj , X〉F

)−1

.

Therefore, the new task consists in solving the following matrix saddle-point
problem:

min
X∈∆Mn

max
1≤j≤m

〈Bj , X〉F = min
X∈∆Mn

max
y∈∆m

m∑
j=1

yj 〈Bj , X〉F , (8.6)
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where the matrices Bj , 1 ≤ j ≤ m, are defined in Proposition 8.4. Note that
this last transformation step can affect the possible structure of the original
problem. For instance, the matrices Bj might be dense even though the
matrices Aj can be sparse.
When we apply Primal-Dual Subgradient methods, Smoothing Techniques,
or Mirror-Prox methods to Problem (8.6), we end up with an approximate
solution to this problem. The next proposition shows how we can transform
this method output in an approximate solution to the Initial Problem (SDP).

Proposition 8.5 Let δ > 0 and X̄ be a feasible δ-solution to (8.6). The
matrix

X̂ :=
L−T X̄L−1

max1≤j≤m
〈
Bj , X̄

〉
F

(8.7)

is well-defined and a feasible solution to Problem (SDP) with

ϕ∗ −
〈
C, X̂

〉
F
≤ δϕ∗

max1≤j≤m
〈
Bj , X̄

〉
F

. (8.8)

Proof: Let δ > 0 and assume that X̄ constitutes a feasible δ-solution to (8.6).
As X̄ � 0, we have L−T X̄L−1 � 0 and max1≤j≤m

〈
Aj , L

−T X̄L−1
〉
F
> 0;

see the short note below Assumption 8.2. Thus, the matrix X̂ defined in
(8.7) is well-defined and positive semidefinite. In addition, it holds that

max1≤j≤m

〈
Aj , X̂

〉
F

= 1, which shows that X̂ is feasible for (SDP).

We can easily see that:〈
C, X̂

〉
F

max
1≤j≤m

〈
Bj , X̄

〉
F

= Tr(X̄) = 1. (8.9)

For the sake of notational simplicity, let us define the function:

h : Sn → R : X 7→ h(X) := max
1≤j≤m

〈Bj , X〉F .

That is in fact the objective function of Matrix Saddle-Point Problem (8.6),
and we write h∗ for its minimal value on ∆M

n . Since X̄ is an δ-solution to
(8.6), it holds that

h(X̄)− h∗ ≤ δ.

Thus, by Proposition 8.4 and Equation (8.9), we obtain:

ϕ∗ −
〈
C, X̂

〉
F

=
1

h∗
− 1

h(X̄)
=
h(X̄)− h∗

h∗h(X̄)
≤ δ

h∗h(X̄)
=

δϕ∗

h(X̄)
.
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Let ε ∈ (0, 1) and choose δ in the above proposition such that δ = ε/
∑m
j=1 ȳj .

Then, the matrix X̂ from (8.7) is a feasible solution to Semidefinite Opti-
mization Problem (SDP) with a relative accuracy of at most ε. Indeed, we
obtain by (8.8):

ϕ∗ −
〈
C, X̂

〉
F
≤ δϕ∗

max1≤j≤m
〈
Bj , X̄

〉
F

= δϕ∗
〈
C, X̂

〉
F
≤ δϕ∗

m∑
j=1

ȳj = εϕ∗.

The first equality comes from (8.9) and the last inequality holds as X̂ is
feasible for (SDP).
Let us summarize this subsection. We can find a feasible solution with relative
accuracy ε ∈ (0, 1) to (SDP) by solving approximately Auxiliary Problem
(8.6). This auxiliary problem needs to be solved up to an accuracy of

δ =
ε∑m
j=1 ȳj

. (8.10)

The forward transformation of the problem and the backward substitution
of the approximate solution require in total O

(
mn3

)
arithmetic operations.

8.3 Solving the primal or the dual problem?

In the two previous sections, we observed that we can compute an approxi-
mate solution to (SDP) by solving a (cascade of) matrix saddle-point prob-
lem(s), provided that Problem (SDP) complies with one of the Assumptions
8.1 or 8.2. Thus, our core problem is henceforth the following matrix
saddle-point problem:

min
X∈∆Mn

ψ(X), ψ(X) := max
y∈∆m

−
m∑
j=1

yj 〈Dj , X〉F , (PSP)

where D1, . . . , Dn are symmetric (n × n)-matrices. Note that we have the
correspondence Dj = −Aj + C/ϕ in Formulation (8.1), as the entries of the
dual variable y sum up to one, and that Dj = −Bj in (8.6) for any 1 ≤ j ≤ m.
We assume that every Dj has at most S non-zero entries and that mS ≥ n2,
implying that the matrices

∑m
j=1 yjDj can be fully dense. In addition, we

define:
L := max

1≤j≤m
‖Dj‖(∞) .

According to the standard MiniMax Theorem in Convex Optimization
(Corollary 37.3.2 in [Roc70]), we have the following correspondence:

min
X∈∆Mn

max
y∈∆m

−
m∑
j=1

yj 〈Dj , X〉F = max
y∈∆m

min
X∈∆Mn

−
m∑
j=1

yj 〈Dj , X〉F



8. From SDPs to matrix saddle-point problems 123

= − min
y∈∆m

max
X∈∆Mn

m∑
j=1

yj 〈Dj , X〉F .

We observe that both the primal problem and its dual counterpart are
solvable by Primal-Dual Subgradient methods, Smoothing Techniques, and
Mirror-Prox methods. However, from a complexity point of view, there are
significant differences whether we solve the primal or the dual version of this
problem, as Primal-Dual Subgradient methods and Smoothing Techniques
make different computational demands on the inner and the outer problem.
In this section, we apply Mirror-Descent methods – a subclass of Primal-Dual
Subgradient methods – to both problems in order to point out the discrep-
ancy of these different computational demands regarding the final arithmetic
complexity of the algorithm.

8.3.1 Mirror-Descent schemes applied to the primal problem

At first, we run Mirror-Descent methods on (PSP).
We equip Sn with the induced 1-norm ‖·‖(1), for which ‖·‖(∞) is the corre-
sponding dual norm. In order to apply to Mirror-Descent methods, we choose
d∆Mn

as distance-generating function on ∆M
n . As Example 2.15 shows, this

setting is in full accordance with Assumption 2.1.
Let us discuss now the iteration cost. At every iteration t ∈ N0 of Mirror-
Descent methods, we need to compute a subgradient Gt of ψ at a point
Xt ∈ relint(∆M

n ). In view of Lemma 3.1.10 in [Nes04], we compute Gt as
follows:

Gt := −Dj∗ , j∗ ∈ arg max
1≤j≤m

−〈Dj , Xt〉F .

This computation requires O(mS) arithmetic operations. In addition, the
norm of all subgradients is bounded from above by the maximal norm of the
matrices Dj :

‖Gt‖(∞) ≤ L ∀ Gt ∈ ∂ψ(Xt), ∀ Xt ∈ relint(∆M
n ).

The computation of the projection π∆Mn ,1(St+1), St+1 ∈ Sn, is the other cost-
dominating operation of Mirror-Descent methods; see Algorithm 3.1. We
recall from Example 2.15 that the computation of this projection corresponds
to carrying out a matrix exponentiation, which requires O(n3) arithmetic
operations.

Theorem 8.1 (Consequence of Chapter 3 in [NY83]) Choose ε > 0.
Mirror-Descent (MD) methods require about

ComplMD(PSP, ε) = O

([
n3 +mS

]
L2 ln[n]

ε2

)
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arithmetic operations to find a feasible ε-solution to Problem (PSP).

Proof: It is an immediate consequence of Theorem 3.2, Inequality (3.3), and
Example 2.18.

8.3.2 Mirror-Descent methods applied to the dual problem

Let us now apply Mirror-Descent schemes to the dual counterpart of (PSP),
that is, to:

min
y∈∆m

φ(y), φ(y) := max
X∈∆Mn

m∑
j=1

yj 〈Dj , X〉F = λmax

(
m∑
j=1

yjDj

)
. (DSP)

Note that we discard the minus sign in front of the problem. We consider
Rm together with the 1-norm ‖·‖1 and choose d∆m as distance-generating
function on the simplex ∆m. As shown in Example 2.14, the evaluation
of the parametrized mirror-operator π∆m,1(st+1) in Algorithm 3.2 requires
O(m) arithmetic operations. In the current setting, the computation of the
First-Order oracle is the operation that dictates the iteration cost. For any
yt ∈ relint(∆m), we compute gt ∈ ∂φ(y) as follows:

gt =
(
〈Dj , X∗〉F

)m
j=1

, X∗ ∈ arg min
X∈∆Mn

m∑
j=1

yt,j 〈Dj , X〉F .

Let D̄ :=
∑m
j=1 yt,jDj , which can be computed in O(mS) arithmetic op-

erations. Given an eigendecomposition Q(D̄)Diag(λ(D̄))QT (D̄) of D̄ with
Q(D̄) = [q1(D̄), . . . , qn(D̄)], the matrix X∗ can be written as

X∗ = λmax(D̄)q1(D̄)qT1 (D̄).

In other words, the matrix X∗ is fully determined by the maximal eigenvalue
and the leading of eigenvector of D̄. Clearly, we can compute these entities
through an eigendecomposition of the matrix D̄, which requires O(n3) arith-
metic operations. However, we can also consider to derive them by running
an (adapted) Power method, which gives us finally not the exact value of X∗,
but an approximation to it. The effects of the use of approximate first-order
information in Mirror-Descent schemes were analyzed by d’Aspremont in
[d’A11]. Clearly, the use of inexact first-order information only makes sense
when we get some computational advantage. According to [KW92], the com-
plexity of computing the largest eigenvalue and its corresponding eigenvector
of a symmetric matrix costs on average Õ(n2

√
L/ε) arithmetic operations,
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where we use the Õ-notation to indicate that all logarithmic terms are sup-
pressed in this result. In our implementation, we have used a variant of the
Power method designed by Arkadi Nemirovski that also runs in Õ(n2

√
L/ε)

arithmetic operations on average. To the best of our knowledge, this variant
has not been published so far.
As these methods produce stochastic approximations of both the maxi-
mal eigenvalue and the leading eigenvector, we refer to Mirror-Descent
schemes with these approximation methods as randomized Mirror-
Descent methods.

Theorem 8.2 (Consequence of Chapter 3 in [NY83]) Randomized
Mirror-Descent (RMD) methods require

Complrand
RMD (DSP, ε) = Õ

(
L2.5n2

ε2.5
+
L2mS

ε2

)
arithmetic operations to find an element y ∈ ∆m for which the expectation
of φ(y) does not deviate more than ε from the optimal value to (DSP).

Note that we add a ”rand“-tag to the complexity notion in order to indi-
cate that the method involves some randomized parts. Of particular impor-
tance in our context, the method outputs not only an element y ∈ ∆m,
but it gives also access to a matrix X ∈ ∆M

n for which the difference
φ(y) − min1≤j≤m 〈Dj , X〉F is at most ε on average; we refer to Section 4
in [Nes09] for the construction of the matrix X, although the method that is
studied there is non-randomized.
Comparison: We compare the efficiencies Complrand

RMD (DSP, ε) and
ComplMD(PSP, ε). We write mS = nβ with a β ∈ [2, 3]. Neglecting all
logarithmic terms, we have Complrand

RMD (DSP, ε)� ComplMD(PSP, ε) if

max
{√
L/ε, nβ−2

}
� n.

We observe that it is complexity-wise more appealing to solve the Dual For-
mulation (DSP) instead of the Primal Version (PSP) if the matrices Dj are
not dense (that is, β < 3) and if the ratio L/ε is smaller than n2. This later
requirement is typically fulfilled if the problem is of large scale and needs
to be solved up to a moderate accuracy. In particular, all conditions match
very well the real-life setting that motivates Question 7.1. For all future
comparisons of efficiency estimates, we thus use the arithmetic complexity
Complrand

RMD (DSP, ε) of randomized Mirror-Descent methods.
Arithmetic complexity for (SDP): Finally, Theorem 8.2 yields the fol-
lowing corollaries. We recall that we neglect all logarithmic terms in the
Õ-notation.
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Corollary 8.6 Suppose that Assumption 8.1 holds and choose ε > 0. We
use the Binary Search (BS) Algorithm 7.2 to find a feasible ε-solution to Prob-
lem (SDP), where we apply at every iteration a randomized Mirror-Descent
method to Problem (DSP). Defining

ν :=
ε

R
(

max1≤k≤m ‖Ak‖(∞) + α ‖C‖(∞) /Tr(C)
)∑m

j=1 ȳj
,

this procedure requires on average

Complrand
BS+RMD(SDP, ε) = Õ

(
n2

ν2.5
+
mS

ν2

)
arithmetic operations.

Let ν be defined as above, suppose that n ≥ m, and fix β ∈ [2, 3] such that
nβ = mS. Then, Complrand

BS+RMD(SDP, ε)� ComplIP(SDP, ε) if

max
{

1/ν2.5, nβ−2/ν2
}
� mn1.5,

where we neglect all logarithmic terms.
Using the alternative problem transformation introduced in Section 8.2, we
get to the following complexity estimate. We tag the ”Compl“-notion with
a ”CD“ in order to indicate that we perform a Cholesky decomposition of the
matrix C in (SDP).

Corollary 8.7 Let Assumption 8.2 hold. We transform Problem (SDP) into
(8.6), apply randomized Mirror-Descent methods to the dual of (8.6), and
compute X̂ as described in (8.7). On average, we need

ComplCD+RMD(SDP, εφ∗) = Õ
(
n2

ν̄2.5
+
mn2

ν̄2
+mn3

)
arithmetic operations to find a feasible solution to (SDP) with relative accu-
racy ε ∈ (0, 1), where

ν̄ :=
ελmin(C)

max1≤k≤m ‖Ak‖(∞)

∑m
j=1 ȳj

.

Note that we write mn2 instead of mS in the above complexity estimate, as
the matrices Bj in (8.6) can be dense, even though the input matrices Aj
might have been sparse.
Proof: For any 1 ≤ j ≤ m, we write λmax(Bj) as Raleigh quotient and
obtain:

λmax(Bj) = max
x6=0

xTBjx

xTx
= max

x6=0

(
L−Tx

)T
Aj
(
L−Tx

)
xTx

= max
L−T y 6=0

yTAjy

yTCy
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= max
y 6=0

yTAjy

yTCy
≤ max

y 6=0

yTAjy

yT y
max
y 6=0

yT y

yTCy

=
λmax(Aj)

λmin(C)
≤
‖Aj‖(∞)

λmin(C)
.

Similarly, we have:

−λmin(Bj) = λmax(−Bj) ≤
‖Aj‖(∞)

λmin(C)
.

We conclude that ‖Bj‖(∞) ≤ ‖Aj‖(∞) /λmin(C). It remains to combine The-

orem 8.2 with (8.10).
Using the same notation as in the above corollary and assuming n ≥ m, we
observe that the relation ComplCD+RMD(SDP, εφ∗)� ComplIP(SDP, ε) holds if

max
{

1/ν̄2.5,m/ν̄2}� mn1.5.

8.4 Interior-Point methods for matrix saddle-point prob-
lems

We conclude this chapter by discussing the arithmetic complexity of Interior-
Point methods when applied to the new Core Problem (PSP).
Note that we can write Problem (PSP) in the following linear form:

min
X,t

t

s.t. −t− 〈Dj , X〉F ≤ 0 for any j = 1, . . . ,m
〈In, X〉F = 1
X � 0.

(8.11)

Applying the same reasoning as in Section 6.2 to the above problem, we
observe that Interior-Point (IP) methods require

ComplIP(PSP, ε) = O
(√
m+ n

[
mn3 +m2S +m3] ln [(m+ n)/ε]

)
(8.12)

arithmetic operations for finding a feasible ε-solution to Problem (PSP).
Comparison: Let us compare finally the complexity results
ComplIP(PSP, ε) of Interior-Point methods and Complrand

RMD (DSP, ε) of
randomized Mirror-Descent schemes. In particular, we want to verify that
there exists a meaningful class of Problems (PSP), where randomized
Mirror-Descent methods outperform Interior-Point methods with respect
to the arithmetic complexity. We assume that n ≥ m. In addition, let
β ∈ [2, 3] such that mS = nβ . Neglecting all logarithmic terms, we have
Complrand

RMD (DSP, ε)� ComplIP(PSP, ε) if

L/ε� max
{
m2/5n3/5,m1/2n(3.5−β)/2

}
. (8.13)
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Typically, this condition is satisfied if a large-scale problem needs to be solved
up to a very moderate accuracy.
When we focus on the solution accuracy ε, we observe that there is a wide
gap. Namely, the running of Interior-Point methods is about O(ln[1/ε]),
whereas the complexity estimate of randomized Mirror-Descent algorithms
is of the orderO(1/ε2.5), where we suppress all parameters except the solution
accuracy ε in the O-notation. In the next chapters, we will fill this gap by
applying advanced First-Order methods such as Smoothing Techniques and
Mirror-Prox methods to Problem (DSP).



Chapter 9
Smoothing Techniques for

matrix saddle-point problems

As shown in the last chapter, both (randomized) Mirror-Descent schemes
and Interior-Point methods can be applied to Matrix Saddle-Point

Problem (PSP), or its Dual (DSP), respectively. We observed that ran-
domized Mirror-Descent schemes are preferably used for solving large-scale
problems, as one single iteration of these algorithms can be carried out
much faster than in the case of Interior-Point methods. More precisely,
randomized Mirror-Descent have – roughly speaking – an iteration cost of
Õ
(
n2[L/ε]0.5 +mS

)
, while Interior-Point methods need O(mn3 +mS+m3)

arithmetic operations per iteration. On the other hand, as the iteration
count grows with the order O(L2 ln[m]/ε2) for (randomized and determinis-
tic) Mirror-Descent methods, these methods allow the computation of solu-
tions with a relatively low approximation quality ε > 0 only. On the con-
trary, Interior-Point methods can easily derive highly approximate solutions,
as the analytical complexity is given by O

(
[m+ n]0.5 ln[(m+ n)/ε]

)
for these

schemes. When we compare the analytical complexity of the two methods,
we recognize a dramatic difference with respect to the solution accuracy. In
particular, we might hope to find a method that has a more favorable ana-
lytical complexity than Mirror-Descent methods, that is, an algorithm whose
iteration count grows with of the order O(L/ε), but that still outperforms
Interior-Points schemes regarding the cost per iteration.

We know from Sections 4.1.1 and 4.1.2 that Smoothing Techniques and
Mirror-Prox methods have an analytical complexity that is of the desired

129
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order. In this chapter, we apply Smoothing Techniques to Problem (PSP)
and its Dual (DSP). As we show in Section 9.1, it is more favorable to apply
Smoothing Techniques to (DSP) than to run them on (PSP), because we
need only one instead of two costly matrix exponentiations per iteration. In
addition, we observe in the same section that the iteration cost of Smooth-
ing Techniques when applied to (DSP) are dominated by the computation of
this matrix exponential and some other matrix operations not exceeding the
complexity O(mS), ending up in the requirement of O(n3 +mS) arithmetic
operations per iteration. As desired, it is indeed less costly to carry out
one iteration of Smoothing Techniques than to perform one Newton step in
Interior-Point methods. In Section 9.2, we specify the arithmetic complexity
of Smoothing Techniques when applied to (DSP). As an immediate conse-
quence, we obtain a complexity estimate for an alternative procedure based
on Smoothing Techniques for solving (SDP) approximately. Finally, we ver-
ify in the same section that there exists a meaningful range for the problem
parameters m, n, and ε for which the efficiency estimate of Smoothing Tech-
niques when applied to (DSP) outperforms the arithmetic complexity of both
Interior-Point methods and randomized Mirror-Descent algorithms.

Contributions: Nesterov [Nes05] studied the application of Smoothing
Techniques to the eigenvalue optimization problem stated in (DSP). Our con-
tribution consists in combining these Smoothing Techniques with the problem
transformation described in Section 8.2 in order to get an algorithm for solv-
ing (SDP). Similar results were independently and simultaneously obtained
by Iyengar et al. [IPS05, IPS11]. They have developed a similar procedure
to solve some semidefinite packing problems, applying Nesterov’s scheme to
a different model than ours. Their construction is based on the Lagrangian
relaxation of the initial problem, which, in their first paper [IPS05], origi-
nates from semidefinite relaxations of MaxCut and Graph Coloring. In their
second paper [IPS11], they generalize their considerations to a broader class
of problems.

Relevant literature: We use the reference [Nes05]. Parts of this chapter
are taken from [BB09].

9.1 Smooth approximation of the primal and of the dual

We observed in Section 8.3 that the core matrix saddle-point problem of
this thesis can take two different forms, namely the Primal Form (PSP)
and the Dual Form (DSP). After specifying a smoothing procedure for either
problems, we study in this section the different cost-dominating computations
per iteration of Algorithm 4.1 when applied to them.

Let µ > 0. We start with the primal problem and endow Rm with the 1-norm
‖·‖1 and choose d∆m as distance-generating function on ∆m. As presented
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in Section 4.1.1, the objective function ϕ of the Primal Problem (PSP) can
be approximated by the following smooth function:

ϕµ : Sn → R : X 7→ max
y∈∆m

{
−

m∑
j=1

yj 〈Dj , X〉F − µd∆m(y)

}
. (9.1)

We can easily derive a closed-form formula for both the value of this function
and its gradient:

ϕµ(X) = µ ln

(
m∑
j=1

exp (−〈Dj , X〉F /µ)

)
− µ ln(m) ∈ R, X ∈ Sn,

and:

∇ϕµ(X) = −
m∑
j=1

Dj exp (−〈Dj , X〉F /µ)∑m
k=1 exp (−〈Dk, X〉F /µ)

∈ Sn, X ∈ Sn;

see [Nes05]. The computation of the gradient ∇ϕµ(X) requires O(mS) arith-
metic operations.
Now, we equip Sn with the induced 1-norm ‖·‖(1) and fix d∆Mn

as distance-

generating function on ∆M
n . We apply Algorithm 4.1 to the problem

min
X∈∆Mn

ϕµ(X). (9.2)

At every iteration of this algorithm, we need to find the unique optimal
solutions of two(!) optimization problems of the form

min
X∈∆Mn

{
〈G,X〉F + d∆Mn

(X)
}
,

where G is a symmetric matrix. As shown in Example 2.15, finding these
optimal solutions corresponds to carrying out two matrix exponentiations,
each of them requiring O(n3) arithmetic operations. So, the iteration cost of
Algorithm 4.1 when applied to (9.2) are dominated by the complexity of the
computation of two matrix exponentials and several matrix operations not
exceeding the cost O(mS).
We turn now our attention to the Dual Problem Formulation (DSP). As
above, we consider Sn with the induced 1-norm and choose d∆Mn

as distance-

generating function on ∆M
n . The computation cost of the gradient of the

smoothed function, namely of:

φµ(y) := max
X∈∆Mn

{
m∑
j=1

yj〈Dj , X〉F − µd∆Mn
(X)

}
, y ∈ Rm,
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is significantly higher. By Theorem 4.1, we have for any y ∈ Rm:[
∇φµ(y)

]
j

= 〈Dj , X∗(y)〉F ∀ 1 ≤ j ≤ m,

where X∗(y) is the unique maximizer of the above maximization problem.
The computation of X∗(y) encompasses the assembly of

∑m
j=1 yj〈Dj , X〉F

and a matrix exponentiation; see Example 2.15. Thus, the evaluation of
∇φµ(y) comprises one matrix exponentiation and some other matrix opera-
tions with a cost that does not exceed O(mS). In contrast, the resolution of
the two optimization subproblems require only O(m) elementary iterations.
Indeed, we equip Rn with the 1-norm and fix d∆m as distance-generating
function on ∆m. The two subproblems are then of the form

min
y∈∆m

{〈g, y〉+ d∆m(y)} , g ∈ ∆m,

whose minimizers can be computed using O(m) arithmetic operations; see
Example 2.14. This leaves a clear advantage for the dual formulation of the
core matrix saddle-point problem if n3 � mS, as we save one costly matrix
exponentiation per iteration.

9.2 Applying an optimal First-Order method

Let us now evaluate the number of iterations needed by Algorithm 4.1 when
applied to the dual problem

min
y∈∆m

φµ(y), φµ(y) := max
X∈∆Mn

{
m∑
j=1

yj〈Dj , X〉F − µd∆Mn
(X)

}
. (9.3)

Fix A : Rm → Sn : y 7→ A(y) :=
∑m
j=1 yjDj . In view of Theorem 4.2, we are

supposed to evaluate the operator norm

‖A‖Rm,Sn := max
y∈Rm,X∈Sn

{
〈A(y), X〉F : ‖u‖1 = 1, ‖X‖(1) = 1

}
= max

1≤j≤m
‖Dj‖(∞) =: L. (9.4)

Applying Theorem 4.1, we can therefore guarantee that the smoothed func-
tion φµ has a gradient Lipschitz constant of Lµ := L2/µ. We recall from
Example 2.18 that d∆m and d∆Mn

are bounded on their domains from above
by ln(m) and by ln(n), respectively. We choose accuracy ε > 0 and fix the
smoothness parameter µ as follows:

µ :=
ε

2 ln(n)
.
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Now, we choose

T ≥

⌈
4L
√

ln(m) ln(n)

ε
− 1

⌉

and assume that the sequences (xt)
T+1
t=0 , (ut)

T+1
t=0 , (zt)

T
t=0, (x̂t)

T+1
t=0 , and

(Lt)
T
t=0 are defined by Algorithm 4.1 when applied to Problem (9.3) with

the above smoothness parameter. In addition, we recall that we write X∗(y)
for the optimal solution to the maximization problem that describes φµ(y),
where y ∈ Rm. Defining

ȳ := uT ∈ ∆m and X̄ :=

T∑
t=0

2(t+ 1)

(T + 1)(T + 2)
X∗(xt) ∈ ∆M

n ,

we obtain by Theorem 4.2:

0 ≤ φ(ȳ)− min
1≤j≤m

〈
Dj , X̄

〉
F
≤ ε− 4χT

(T + 1)2

with

χT :=

T−1∑
t=0

(Lt+1 − Lt)
(
d∆m(zt+1)− ‖zt − x̂t+1‖21 /2

)
.

We note that χT vanishes if Lt = L for any 0 ≤ t ≤ T + 1. We conclude:

Theorem 9.1 (Consequence of Section 4 in [Nes05]) Smoothing
Techniques (ST) require at most

ComplST(DSP, ε) = O

([
n3 +mS

]
L
√

ln[m] ln[n]

ε

)

arithmetic operations to compute a pair (ȳ, X̄) ∈ ∆m × ∆M
n for which the

difference φ(ȳ)−min1≤j≤m
〈
Dj , X̄

〉
F

is bounded from above by ε > 0.

Comparison: We suppose m ≤ n, fix β ∈ [2, 3] such that mS = nβ , and
neglect all logarithmic terms. We have ComplST(DSP, ε)� ComplIP(PSP, ε)
if

L/ε� mn1/2, (9.5)

and ComplST(DSP, ε)� Complrand
RMD (DSP, ε) if

min
{
n3/4, n3−β

}
� L/ε.
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That is, ComplST(DSP, ε)� min
{

ComplIP(PSP, ε),Complrand
RMD (DSP, ε)

}
if

min
{
n3/4, n3−β

}
� L/ε� mn1/2. (9.6)

Note that Condition (9.6) cannot be satisfied if β < 2.5, that is, if – for
instance – the matrices Dj are sparse. As Theorem 9.1 shows, sparsity of the
matrices Dj does not affect the arithmetic complexity of Smoothing Tech-
niques, as mSL/ε = nβL/ε is dominated by n3L/ε, that is, the cost per
iteration is dominated by the efficiency of the matrix exponentiation. This
is in sharp contrast to the situation of randomized Mirror-Descent meth-
ods, where we avoid this costly computation. In particular, the quantity
mSL2/ε2 = nβL2/ε2 in Theorem 8.2 cannot be bounded from above by
n2L2.5/ε2.5. Clearly, in order to enhance the arithmetic complexity of ad-
vanced First-Order methods such as Smoothing Techniques when applied to
(DSP), we thus need to find a strategy to circumvent the cost-determinating
matrix exponentiation, which we standardly do through an eigendecomposi-
tion of the argument. The next chapter addresses this topic.
Arithmetic complexity for (SDP): We conclude with the following con-
sequences of Theorem 9.1.

Corollary 9.1 Let ν be defined as in Corollary 8.6. Applying the same
procedure as in Corollary 8.6, but using Smoothing Techniques instead of
randomized Mirror-Descent schemes, we need

ComplBS+ST(SDP, ε) = O

([
n3 +mS

]√
ln[m] ln[n]

ν
ln

[∑m
j=1 ȳj

ε

])

arithmetic operations to find a feasible ε-solution to (SDP).

Corollary 9.2 Assume ν̄ to be given as in Corollary 8.7. Performing the
same steps as in Corollary 8.7, but with Smoothing Techniques in the role of
randomized Mirror-Descent methods, we are supposed to carry out about

ComplCD+ST(SDP, εφ∗) = O

([
n3 +mn2

]√
ln[m] ln[n]

ν̄
+mn3

)

arithmetic operations for deriving a feasible solution to (SDP) with a relative
accuracy ε ∈ (0, 1).



Chapter 10
Applying randomized Mirror-Prox methods

When we compare randomized Mirror-Descent schemes with advanced
First-Order methods such as Smoothing Techniques, we make two

important observations. On the hand, the analytical complexity of random-
ized Mirror-Descent schemes grows – with respect to the solution accuracy
– one order magnitude faster than advanced First-Order methods. On the
other hand, randomized Mirror-Descent methods have the significant ad-
vantage of avoiding the need of costly eigendecompositions when applied to
(DSP). This is in sharp contrast to standard Smoothing Techniques, where
we need to compute a matrix exponential through an eigendecomposition at
every iteration. In this chapter, we introduce a procedure that combines the
advantages of the two methods.

As we noticed in Sections 4.1.1 and 4.1.2, original Mirror-Prox methods (see
Algorithm 4.2) have the same analytical complexity as Smoothing Tech-
niques. We specify the setting of Mirror-Prox methods when applied to
(DSP) in Section 10.1, and verify in Section 10.2 that they have the same
arithmetic complexity as Smoothing Techniques for (DSP).

In particular, Smoothing Techniques and Mirror-Prox methods share the
same computational bottleneck. At every iteration of Mirror-Prox methods,
we are supposed to carry out two matrix exponentiations, which dominate
the iteration cost provided that mS � n3. In Section 10.3, we introduce a
randomization procedure for computing matrix exponentials. This procedure
is based on a vector sampling and on an appropriate truncation of the Taylor
series approximation of the true matrix exponential. The computation of
this random approximation can be carried out by performing matrix-vector
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products only. As we show in Section 10.3, we obtain a method that outper-
forms all its competitors with the respect to the arithmetic complexity on
a reasonably large subfamily of (DSP). However, as we observe at the end
of this chapter, the arithmetic complexity result of randomized Mirror-Prox
methods cannot be transformed into an efficiency estimate for the initial
Problem (SDP).

Note that Arora and Kale [AK07] introduced a randomization procedure for
the computation of matrix exponentials in Algorithm 7.3. They consider also
an appropriate truncation of the exponential Taylor series approximation, but
project it on, roughly speaking, O(1/ε2) random directions using Johnson-
Lindenstrauss Lemma [JL84], where ε > 0 denotes the accuracy. With the
randomization procedure that is described in this chapter, we need to project
the truncated Taylor series approximation only on, again roughly speaking,
O(1/ε) random directions.

Contributions and relevant literature: The material of this chapter is
taken from [BBN11]. Both the randomization procedure for Mirror-Prox
methods (described in Section 10.3.1) and the complexity analysis of the
resulting algorithm were originally introduced in this joint paper. We are
indebted to Arkadi Nemirovski for establishing the most relevant theoretical
results in this project, that is, for the randomization procedure shown in
Section 10.3.1, Proposition 10.1, and most of the results presented in Section
10.3.2. In this joint project, we were concerned mainly with the numerical
testing of the method. The numerical results will be shown in the next
chapter.

For Section 10.2, we also need the reference [Nem04a].

10.1 Setup of the algorithm

As for randomized Mirror-Descent schemes in Section 8.3.2 and for Smooth-
ing Techniques in Chapter 9, we consider the following matrix saddle-point
problem:

φ∗ = min
y∈∆m

max
X∈∆Mn

φ(y,X), φ(y,X) :=

m∑
j=1

yj 〈Dj , X〉F , (DSP)

where D1, . . . , Dn are symmetric (n×n)-matrices, each of them with at most
S non-zero entries. We suppose that mS ≥ n2, that is, we allow the matrices∑m
j=1 yjDj to be fully dense. We recall that we are interested in large-scale

problems, implying that we clearly have n,m ≥ 3. We make these lower
bounds explicit, as they are needed in the proof of Proposition 10.1 and in
Section 10.3.2. In addition, note that we write Problem (DSP) in a slightly
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different form than in the two previous chapters in order to reveal its saddle-
point structure more clearly.
The function φ(y,X) can be written as φ(y,X) = 〈A(y), X〉F with the linear
operator A : Rm → Sn : y 7→

∑m
j=1 Djyj . As explained in Section 4.1.2,

Mirror-Prox methods deal with the following linear operator:

F (y,X) :=

(
∂φ(y,X)

∂y
,−∂φ(y,X)

∂X

)
= (A∗(X),−A(y))

for any (y,X) ∈ ∆m ×∆M
n , where the linear mapping

A∗ : Sn → Rm : X 7→ A∗(X) = (〈Dj , X〉F )mj=1

is the conjugate of A.
As usual for the (matrix) simplex setup, we equip Rm and Sn with the
norms ‖·‖1 and ‖·‖(1), respectively. In addition, we choose d∆m and d∆Mn

as distance-generating functions on the sets ∆m and ∆M
n , respectively. We

recall from (9.4) that the norm of the operator A takes the value

‖A‖Rm,Sn = max
1≤j≤m

‖Dj‖(∞) =: L

for this setup.
Mirror-Prox methods consider the product set ∆m ×∆M

n , which is a subset
of the space Rm ×Sn. In view of Section 4.1.2, we equip this space with the
norm

‖(y,X)‖Rm×Sn :=

√
1

2 ln(m)
‖y‖21 +

1

2 ln(n)
‖X‖2(1)

for any (y,X) ∈ Rm × Sn, for which the dual norm is given by

‖(u, V )‖Rm×Sn,∗ :=
√

2 ln(m) ‖u‖2∞ + 2 ln(n) ‖V ‖2(∞) (10.1)

for each (u, V ) ∈ Rm ×Sn. Applying Lemma 4.1, we observe that the linear
operator F is Lipschitz continuous with the Lipschitz constant

L := 2L
√

ln(m) ln(n).

Finally, as presented in Section 4.1.2, the mapping

d∆m×∆Mn
: ∆m ×∆M

n → R : (y,X) 7→ 1

2 ln(m)
d∆m(y) +

1

2 ln(n)
d∆Mn

(X)

represents a distance-generating function on ∆m × ∆M
n . We have for this

distance-generating function:

ΩV (d∆m×∆Mn
) =
√

2 and c(d∆m×∆Mn
) = (c(d∆m), c(d∆Mn

));

see Equation (4.9) and Example 2.16 for the definition of the d-centers c(d∆m)
and c(d∆Mn

).
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10.2 Complexity of deterministic Mirror-Prox methods

We study in this section the arithmetic complexity of original Mirror-Prox
methods when applied to Problem (DSP). Not surprisingly, we observe that
this complexity result coincides with the efficiency estimate for Smoothing
Techniques.
We use the original Mirror-Prox methods described in Algorithm 4.2 for
solving approximately Problem (DSP). With the setting that we introduced
in the previous section, we end up with a method that has the form of
Algorithm 10.1. In view of Theorem 4.3, we need to perform

T ≥
2L
√

ln(m) ln(n)

ε

iterations of Algorithm 10.1 in order to find a pair (ȳ, X̄) ∈ ∆m × ∆M
n for

which

max
X∈∆Mn

φ(ȳ, X)− min
y∈∆m

φ(y, X̄) ≤ ε, (10.2)

where ε > 0. The cost of any iteration of this method is determined by the
following computations:

1. Given two matrices X, X̄ ∈ ∆M
n , we need to evaluate A∗(X) and

A∗(X̄), requiring O(mS) arithmetic operations.

2. We need another O(mS) arithmetic operations for the computation of
−A(y) and −A(ȳ), where y, ȳ ∈ ∆m are given.

3. We are supposed to carry out two matrix exponentiations, coming with
the cost of O(n3) arithmetic operations when performing these opera-
tions through eigendecompositions of the matrices at hand.

Note that the computation of yt and ȳt in Algorithm 10.1 is complexity-wise
unproblematic, as each of them requires only O(m) arithmetic operations;
see Example 2.14. We have verified the following complexity result.

Theorem 10.1 (Section 5 in [Nem04a]) Choose ε > 0. Mirror-Prox
(MP) methods require

ComplMP(DSP, ε) = O

([
n3 +mS

]
L
√

ln(m) ln(n)

ε

)

arithmetic operations for the computation of a pair (ȳ, X̄) ∈ ∆m ×∆M
n that

satisfies (10.2).
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Algorithm 10.1 Mirror-Prox methods applied to (DSP)

1: Choose T ∈ N.
2: Set y0 := c(d∆m) and let V0 ∈ Sn be the all zero matrix.
3: for 1 ≤ t ≤ T do

4: Choose γt > 0 such that γt ≤
(

2L
√

ln(m) ln(n)
)−1

.

5: Compute

F

(
yt−1,

exp(Vt−1)

Tr(exp(Vt−1))

)
=

(
A∗(exp(Vt−1))

Tr(exp(Vt−1))
,−A(yt−1)

)
=: (g(Vt−1), H(yt−1)) .

6: Set

ȳt = arg min
y∈∆m

{〈
2 ln(m)γtg(Vt−1)− d′∆m(yt−1), y

〉
+ d∆m(y)

}
.

7: Define V̄t = Vt−1 − 2γt ln(n)H(yt−1).
8: Compute

F

(
ȳt,

exp(V̄t)

Tr(exp(V̄t))

)
=

(
A∗(exp(V̄t))

Tr(exp(V̄t))
,−A(ȳt)

)
=:
(
g(V̄t), H(ȳt)

)
.

9: Set yt = arg miny∈∆m

{〈
2 ln(m)γtg(V̄t)− d′∆m(yt−1), y

〉
+ d∆m(y)

}
.

10: Define Vt = Vt−1 − 2γt ln(n)H(ȳt).
11: end for

12: Return (ȳ, X̄) :=
(∑T

t=1 γt
)−1∑T

t=1 γt
(
ȳt, exp(V̄t)/Tr[exp(V̄t)]

)
.

10.3 Randomized Mirror-Prox methods

In the last section, we observed that the cost per iteration of Mirror-Prox
methods when applied to (DSP) is dominated by the computation of two ma-
trix exponentials, provided that mS � n3. In the remainder of this chapter,
we derive now a Mirror-Prox algorithm that uses random estimates instead
of the precise values of these matrix exponentials. Importantly, these ran-
dom approximations can be computed by performing matrix-vector products
only, resulting in a method that requires for many problems on average less
arithmetic operations than its original counterpart.

In view of Algorithm 10.1, these cost-critical matrix exponentials are only
needed to compute the first component of linear operator F . We intend to

replace this first component of the operator F , that is,
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g(V ) :=
A∗(exp(V ))

Tr(exp(V ))
, V ∈ Sn,

by a random estimate ĝξ(V ). We use the precise value of the second compo-
nent of F , as its computation is unproblematic.

10.3.1 Randomization strategy

Let us describe the randomization procedure we use. We choose V ∈ Sn and
observe that we can write exp(V ) as the product exp(V/2) exp(V/2). For the
time being, let us assume that we have access to the exact value of exp(V/2).
We denote by (Ξζ ,Bζ ,Pζ) a Borel probability space and assume that the ran-
dom vectors ζi : Ξζ → Rn are independent and N (0, In)-distributed for any
1 ≤ i ≤ N . In addition, we denote by (Ξ,B,P) := (⊗Ni=1Ξζ ,⊗Ni=1Bζ ,⊗Ni=1Pζ)
the corresponding product space and write ξ for the sequence

(ζ1, . . . , ζN ) : Ξ→ Rn×N

of random vectors.
Defining χi := exp(V/2)ζi for any 1 ≤ i ≤ N , we observe that:

EP

[
1

N

N∑
i=1

[
χTi D1χi; . . . ;χ

T
i Dmχi

]]
= A∗(exp(V )) =

(
〈Dj , exp(V )〉F

)m
j=1

,

and that:

EP

[
1

N

N∑
i=1

χTi χi

]
= Tr(exp(V ));

see Part a) of Lemma B.3 for the proofs. That is, the random vectors χi
can be used to define unbiased estimators of both the numerator and the
denumerator of A∗(exp(V ))/Tr(exp(V )). Motivated by these observations,
we use

gξ(V ) :=

∑N
i=1

[
χTi D1χi; . . . ;χ

T
i Dmχi

]∑N
i=1 χ

T
i χi

(10.3)

as a random estimate of g(V ) = A∗(exp(V ))/Tr(exp(V )). For this random
estimate, we have the following guarantees.

Proposition 10.1 For any V ∈ Sn, we have:

‖EP [gξ(V )]− g(V )‖∞ ≤ O(1)L
√

ln(m)/N (10.4)

and:

EP
[
‖gξ(V )− EP [gξ(V )]‖2∞

]
≤ O(1)L2 ln(m)/N. (10.5)



10. Applying randomized Mirror-Prox methods 141

The proof of Proposition 10.1 is highly technical and is based on mathemat-
ical concepts that are completely different than the ones we have used so far
in this thesis. We give its proof in Appendix B.3.

The above estimate gξ(V ) requires the random vectors χi = exp(V/2)ζi for
1 ≤ i ≤ N . Given the matrix V and the random vectors ζi, it remains to
discuss a strategy to compute – or to approximate – the random vectors χi by
carrying out matrix-vector products only. Instead of using the exact random
vectors χi, we suggest to replace them by the random vectors

χ̄i :=

K∑
k=0

1

k!
(V/2)k ζi ∀ 1 ≤ i ≤ N, (10.6)

with K ∈ N large enough to guarantee a high approximation quality. The
approximation quality of the truncated Taylor series is given by the fol-
lowing proposition.

Proposition 10.2 Let W ∈ Sn and K ≥ exp(2) ‖W‖(∞). Then,

∥∥∥∥∥exp(W )−
K∑
k=0

W k

k!

∥∥∥∥∥
(∞)

≤ exp(−K).

This result can be proven by applying the same arguments as in the proof of
Lemma 6 in [AK07].

Note that we can compute χ̄i in a recursive way. Namely, we set v̄0 := ζi,
and define v̄k := 1

2k
V v̄k−1 for any 1 ≤ k ≤ K. The computation of χ̄i can

thus be carried out by performing matrix-vector products solely, requiring in
total O(Kn2) arithmetic operations. If the matrix V is sparse, say it has S̄
non-zero entries, this complexity estimate reduces to O(KS̄).

We end up with

ĝξ,K(V ) :=

∑N
i=1

[
χ̄Ti D1χ̄i; . . . ; χ̄

T
i Dmχ̄i

]∑N
i=1 χ̄

T
i χ̄i

(10.7)

as random estimate for g(V ). The computation of this approximation re-
quires in total O(KNn2 +mS) arithmetic operations. In addition, it can be
written as

ĝξ,K(V ) =
A∗(Êξ,K(V ))

Tr(Êξ,K(V ))
, Êξ,K(V ) :=

1

N

N∑
i=1

χ̄iχ̄
T
i . (10.8)
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Algorithm 10.2 Randomized Mirror-Prox methods for (DSP)

1: Choose the number of iterations T ∈ N, the sample size N ∈ N, and
truncation levels Kt ∈ N for any 1 ≤ t ≤ T .

2: Generate 2T independent samples ξ1, . . . , ξ2T , each of them comprising N
independent realizations ζt,1, . . . , ζt,N of a N (0, In)-distributed random
vector.

3: Set y0 := c(d∆m) and let V0 ∈ Sn be the all zero matrix.
4: for 1 ≤ t ≤ T do
5: Choose γt > 0 such that

γt ≤
(

2L
√

2 ln(m) ln(n)
)−1

. (10.9)

6: Approximate F (yt−1, exp(Vt−1)/Tr[exp(Vt−1)]) by(
ĝξ2t−1,Kt(Vt−1), H(yt−1)

)
, where ĝξ2t−1,Kt(Vt−1) is given by (10.7)

and H(yt−1) := −A(yt−1).
7: Compute the minimizer of

y 7→
〈
2 ln(m)γtĝξ2t−1,Kt(Vt−1)− d′∆m(yt−1), y

〉
+ d∆m(y)

over ∆m and denote it by ȳt .
8: Define V̄t = Vt−1 − 2γt ln(n)H(yt−1).
9: Approximate F

(
ȳt, exp(V̄t)/Tr[exp(V̄t)]

)
by

(
ĝξ2t,Kt(V̄t), H(ȳt)

)
,

where ĝξ2t,Kt(V̄t) is given by (10.7) and H(ȳt) := −A(ȳt).
10: Set

yt = arg min
y∈∆m

{〈
2 ln(m)γtĝξ2t,Kt(V̄t)− d

′
∆m(yt−1), y

〉
+ d∆m(y)

}
.

11: Define Vt = Vt−1 − 2γt ln(n)H(ȳt).
12: end for

13: Return ȳ :=
(∑T

t=1 γt
)−1∑T

t=1 γtȳt.

Using the outlined randomization procedure and running Mirror-Prox meth-
ods with noisy first-order information (Algorithm 4.3) on (DSP) with the
setting described in Section 10.1, we obtain a method as described in Algo-
rithm 10.2.

10.3.2 Complexity of randomized Mirror-Prox schemes

Let us now derive an arithmetic complexity result for Algorithm 10.2. We
use the notation of Algorithm 10.2.
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10.3.2.1 Discussion of the truncation levels

Choose the number of iterations T ∈ N and let 1 ≤ t ≤ T . We start by fixing
the truncation levels Kt ∈ N of the Taylor approximations of the matrix
exponentials exp(Vt/2) and exp(V̄t/2). Using the recursive definitions of Vt
and V̄t in Algorithm 10.2 and considering that V0 is the all zero matrix, we
have:

‖Vt‖(∞) ≤ 2 ln(n)L
t∑

τ=1

γτ ≤ t

√
ln(n)

2 ln(m)
and

∥∥V̄t∥∥(∞)
≤ t

√
ln(n)

2 ln(m)
.

Let 0 < ε� 1 and Kt = O(1)t
√

ln(n)/ ln(m) ln(1/ε), where O(1) denotes an
appropriate absolute constant. According to Proposition 10.2, the norm of
the difference between the exact matrix exponentials exp(Vt/2) and exp(V̄t/2)
and their truncated Taylor series approximations is at most ε. Let us now
initialize ε as machine accuracy. Setting

Kt = O(1)t
√

ln(n)/ ln(m) (10.10)

with a moderate constant1 O(1), we observe that the truncated Taylor series
approximation is – for all practical applications – the same as the true matrix
exponential. Justified by this observation, we will perform a simplified anal-
ysis of Algorithm 10.2, where we do not elaborate on the difference between
gξ defined in (10.3) and on its approximation ĝξ,K given in (10.7). That is,
we study the arithmetic complexity of an idealized version of Algorithm 10.2,
where we use gξ instead of ĝξ,K .

10.3.2.2 Expected convergence

The expected convergence of the idealized version of Algorithm 10.2 can
be deduced from Theorem 4.4. In this section, we bound from above all
quantities that define ε in Theorem 4.4.
Let 1 ≤ t ≤ T and recall that we write ξ[t] for the sequence (ξ1, . . . , ξt). Using
the notation of Algorithms 4.3 and 10.2, we have for the Definitions (4.14):

zt−1 = (yt−1, exp(Vt−1)/Tr[exp(Vt−1)])
wt = (ȳt, exp(V̄t)/Tr[exp(V̄t)])

µzt−1 =
(
EP
[
gξ2t−1(Vt−1)|ξ[2t−2]

]
− g(Vt−1), 0

)
=: (µ̄zt−1 , 0)

µwt =
(
EP
[
gξ2t(V̄t)|ξ[2t−1]

]
− g(V̄t), 0

)
=: (µ̄wt , 0)

σzt−1 =
(
gξ2t−1(Vt−1)− EP

[
gξ2t−1(Vt−1)|ξ[2t−2]

]
, 0
)

=: (σ̄zt−1 , 0)
σwt =

(
gξ2t(V̄t)− EP

[
gξ2t(V̄t)|ξ[2t−1]

]
, 0
)

=: (σ̄wt , 0),

1With the standard machine accuracy of Matlab, which is 2−52, this moderate constant
is given by ln(252) exp(2)/(2

√
2) < 95.
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where we set EP
[
gξ1(V0)|ξ[0]

]
= EP [gξ1(V0)]. Exploiting the definition of the

dual norm (see (10.1)) and Inequality (10.4), we obtain:

EP

[∥∥µzt−1

∥∥
Rm×Sn,∗ |ξ[2t−2]

]
=

√
2 ln(m)EP

[∥∥µ̄zt−1

∥∥
∞ |ξ[2t−2]

]
≤ O(1)L ln(m)/N.

In a similar way, we can derive the following inequality:

EP

[
‖µwt‖Rm×Sn,∗ |ξ[2t−1]

]
=

√
2 ln(m)EP

[
‖µ̄wt‖∞ |ξ[2t−1]

]
≤ O(1)L ln(m)/N. (10.11)

Recall that γt denotes the step-size at iteration t of Algorithm 10.2. Using
the above bounds, we obtain:

EP2T

[
T∑
t=1

γ2
t

∥∥µwt − µzt−1

∥∥2

Rm×Sn,∗

]
≤ O(1)L2 ln2(m)

T∑
t=1

γ2
t /N

2. (10.12)

Finally, Inequality (10.11) leads to

EP2T

[
T∑
t=1

γt ‖µwt‖Rm×Sn,∗

]
≤ O(1)L ln(m)

T∑
t=1

γt/N. (10.13)

For σ̄zt−1 and σ̄wt , we have by Inequality (10.5):

EP

[∥∥σ̄zt−1

∥∥2

∞ |ξ[2t−2]

]
≤ O(1)L2 ln(m)/N,

and:

EP
[
‖σ̄wt‖

2
∞ |ξ[2t−1]

]
≤ O(1)L2 ln(m)/N. (10.14)

As an immediate consequence, we obtain:

EP2T

[
T∑
t=1

γ2
t

∥∥σwt − σzt−1

∥∥2

Rm×Sn,∗

]

= 2 ln(m)EP2T

[
T∑
t=1

γ2
t

∥∥σ̄wt − σ̄zt−1

∥∥2

∞

]

≤ O(1)L2 ln2(m)

T∑
t=1

γ2
t /N. (10.15)

Observe that EP
[
σ̄zt−1 |ξ[2t−2]

]
= EP

[
σ̄wt |ξ[2t−1]

]
= 0. Considering Example

A.2, applying Proposition A.1, and using (10.14), it holds that:

EP2T

∥∥∥∥∥
T∑
t=1

γtσ̄wt

∥∥∥∥∥
2

∞

 ≤ O(1)L2 ln2(m)

T∑
t=1

γ2
t /N.
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Due to Cauchy-Schwarz Inequality, we end up with the relation:

EP2T

∥∥∥∥∥
T∑
t=1

γtσwt

∥∥∥∥∥
Rm×Sn,∗

 =
√

2 ln(m)EP2T

[∥∥∥∥∥
T∑
t=1

γtσ̄wt

∥∥∥∥∥
∞

]

≤
√

2 ln(m)

√√√√√EP2T

∥∥∥∥∥
T∑
t=1

γtσ̄wt

∥∥∥∥∥
2

∞


≤ O(1)L ln1.5(m)

√√√√ T∑
t=1

γ2
t /N. (10.16)

We recall that ΩV (d∆m×∆Mn
) =

√
2. Let us now assume that we run Al-

gorithm 10.2 with constant step-sizes γ > 0 satisfying (10.9). Applying
Theorem 4.4 together with (10.12), (10.13), (10.15), and (10.16), we obtain:

EP2T

[
max
X∈∆Mn

φ(ȳ, X)

]
− φ∗ ≤ EP2T

[
max
X∈∆Mn

φ(ȳ, X)− min
y∈∆m

φ(y, X̄)

]
≤ ε̄,

where X̄ := (1/T )
∑T
t=1 exp(V̄t)/Tr[exp(V̄t)] and

ε̄ := O(1)

(
1

Tγ
+
L ln1.5(m)√

NT
+
L ln(m)

N
+
L2 ln2(m)γ

N
+
L2 ln2(m)γ

N2

)
≤ O(1)

(
1

Tγ
+
L ln1.5(m)√

NT
+
L ln(m)

N
+
L2 ln2(m)γ

N

)
.

Optimizing this last bound with respect to the step-size γ, we obtain:

γ∗(N) =
1

L ln(m)

√
N/T .

In practice, it is attractive to have step-sizes that are as long as possible.
Typically, the longer the step-sizes, the faster the algorithms in practice.
We thus choose N such that γ∗(N) is as large as possible while ensuring
Condition (10.9). That is, we set

N =

⌊
T ln(m)

8 ln(n)

⌋
and γ∗ =

1

2L
√

2 ln(m) ln(n)
. (10.17)

We conclude:

EP2T

[
max
X∈∆Mn

φ(ȳ, X)

]
− φ∗ ≤ O(1)

L
T

(
ln(m)

√
ln(n) + ln(n)

)
. (10.18)
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10.3.2.3 Arithmetic complexity

We are ready to give the arithmetic complexity of Algorithm 10.2. With Kt

and N chosen as in (10.10) and (10.17), the computations of ĝξ2t−1,Kt(Vt−1)
and ĝξ2t,Kt(V̄t) require

O
(
n2T 2

√
ln(m)/ ln(n) +mS

)
arithmetic operations; see (10.7) for the definitions of ĝξ2t−1,Kt(Vt−1) and
ĝξ2t,Kt(V̄t). The remaining operations that we are supposed to carry out at
iteration t of Algorithm 10.2 need in total O(n2 +mS) arithmetic operations.
Combining the iteration cost with (10.18), we observe that the following
result holds.

Theorem 10.2 Choose ε > 0. Randomized Mirror-Prox (RMP) methods need
on average

Complrand
RMP (DSP, ε) = O

(
L3n2 ln3.5(m) ln2.5(n)

ε3
+
LmS ln(m) ln(n)

ε

)
arithmetic operations to compute a point ȳ ∈ ∆m for which
maxX∈∆Mn

φ(ȳ, X)− φ∗ ≤ ε.

Comparison: We conclude by comparing Complrand
RMP (DSP, ε) with

the efficiency estimates ComplIP(PSP, ε) of Interior-Point meth-
ods, Complrand

RMD (DSP, ε) of randomized Mirror-Descent methods, and
ComplST(DSP, ε) of Smoothing Techniques. We refer to (8.12), Theo-
rem 8.2, and Theorem 9.1 for the complexity results of the competitors.
As usual, we suppose that n ≥ m, choose β ∈ [2, 3] such that nβ = mS,
and neglect all logarithmic terms in the complexity results. It holds that
Complrand

RMP (DSP, ε)� ComplIP(PSP, ε) if

max
{
L3/ε3, nβ−2L/ε

}
� mn1.5,

that is, if

L/ε� m1/3n1/2.

We have Complrand
RMP (DSP, ε)� Complrand

RMD (DSP, ε) if

L/ε� nβ−2.

Finally, the relation Complrand
RMP (DSP, ε)� ComplST(DSP, ε) is satisfied if

L/ε� n1/2 and 2 ≤ β � 3.
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We conclude that Complrand
RMP (DSP, ε) is much smaller than

min
{

ComplIP(PSP, ε),Complrand
RMD (DSP, ε),ComplST(DSP, ε)

}
if

L/ε� min
{
nβ−2, n1/2

}
and 2 ≤ β � 3.

Application to (SDP): Note that we cannot derive any result on the arith-
metic complexity of Algorithm 10.2 when used as basic method for solving
(SDP). Theorem 10.2 concerns a feasible ε-solution from the set ∆m and
not a feasible ε-solution from the set ∆M

n , which would be required by the
transformation strategies described in Chapter 8.





Chapter 11
Numerical results

In this chapter, we present numerical results for Interior-Point meth-
ods, randomized Mirror-Descent schemes, (accelerated) Smoothing Tech-

niques, and (randomized) Mirror-Prox methods when applied to randomly
generated instances of Problem (DSP). These numerical results do not only
reflect adequately our theoretical expectations concerning the performance
of the methods, but they also prove the practical usefulness of both accel-
erated Smoothing Techniques and randomized Mirror-Prox methods. In the
numerical experiments that we perform, these methods show the best perfor-
mance for problems involving matrices of size 400×400 or larger. We obtain
remarkably strong numerical results for accelerated Smoothing Techniques:
they are able to solve a randomly generated instance of (DSP) involving 100
matrices of size 12′800× 12′800 up to an absolute accuracy of 0.0012 in just
less than four hours.
Contributions: The numerical results presented in this chapter are original.
Relevant literature: Parts of this chapter are taken from [BBN11].

11.1 Construction of the problem instances

We consider randomly generated instances of the problem:

min
y∈∆m

λmax(A(y)), A(x) :=

m∑
j=1

Djyj , Dj := j3/2D̄j , (11.1)

where D̄j are sparse symmetric (n × n)-matrices for any 1 ≤ j ≤ m, that
is, we are confronted with instances of Problem (DSP). The matrices D̄j are

149
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constructed as follows. We first generate the random symmetric matrix D̄1

using the Matlab built-in function sprandsym(n,d), where n corresponds to
the matrix size and d to the targeted fraction of non-zero entries in D̄1. In
all our experiments, we set d = 0.1, that is, D̄1 is supposed to have about
S = n2/10 non-zero entries. Now, we construct matrices Uj that have the
same sparsity pattern as D̄1 and whose non-zeros entries are drawn from
the standard normal distribution using the Matlab built-in function randn(),
where 2 ≤ j ≤ m. In order to ensure symmetry of the matrices, we set
D̄j = (Uj + UTj )/2 for any 2 ≤ j ≤ m. We fix m as 100 in all numerical
experiments that we perform.
Recall that we write L for the maximal absolute eigenvalue of all symmetric
matrices Dj , where 1 ≤ j ≤ m. We approximate this parameter by applying
the Power method to the matrices Dj and taking the maximum of the com-
puted values afterwards. In order to indicate clearly that we use an estimate
of L, we denote this approximation by L′. We solve all instances of Problem
(11.1) up to an accuracy of δ := εL′. In the experiments that we perform,
the target accuracy ε is set to 0.002.
All numerical results that we present in this chapter are – if not specified
differently – averaged over ten runs and are obtained on a computer with 24
processors, each of them with 2.67 GHz, and with 96 GB of RAM.

11.2 Implementation details of the methods

We solve random instances of (11.1) by Interior-Point methods, by random-
ized Mirror-Descent schemes, by Smoothing Techniques (with and without
local L-estimation), and by Mirror-Prox methods (with and without ran-
domized matrix exponential computations). In this section, we discuss the
implementation of the different methods.
At every iteration, randomized Mirror-Descent schemes, Smoothing Tech-
niques, and Mirror-Prox methods require the constant L to compute the
next iterate. However, we do not have the exact value of L, but its approx-
imation L′. Typically, this approximation L′ given by the Power method
underestimates the true value L, which results in algorithms that are accel-
erated artificially and in a way that is theoretically forbidden. In order to be
on the safe side, we use L̄ := 1.1 · L′ for the computation of the next iterates
in the aforementioned algorithms.

11.2.1 Interior-Point methods and randomized Mirror-
Descent schemes

We utilize SeDuMi, an open-source Matlab implementation of an efficient
Interior-Point (IP) method; see [Sed, Stu99] for more details on SeDuMi
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and for a free download of it. According to our experience, it is performance-
wise much more favorable to apply SeDuMi to the dual problem of (11.1)
instead of running it on its primal form. We recall that the dual of (11.1)
takes the form

max
X∈∆Mn

min
1≤j≤m

〈Dj , X〉F ,

which can be rewritten in a linear form; see Section (8.11) for the details.
We apply SeDuMi with its standard accuracy, which is 10−8, and not with
the accuracy εL′ as for the other methods. When running SeDuMi with the
accuracy εL′, we end up surprisingly with numerical troubles.
The implementation of randomized Mirror-Descent (RMD) schemes is
due to Arkadi Nemirovski. All maximal eigenvalues and leading eigenvectors
of symmetric matrices that are needed in the course of the algorithm are
approximated by a randomized version of the Power method suggested (and
also implemented) by Arkadi Nemirovski.
We apply these methods in a black box manner and do not elaborate more
on their implementation.

11.2.2 (Accelerated) Smoothing Techniques

We use two versions of Smoothing Techniques, namely:

1. original Smoothing Techniques (ST), where we set Lt = Lµ for all
t ≥ 0 in Algorithm 4.1;

2. accelerated Smoothing Techniques (AST), where L0 := Lµ and

Lt :=
2

‖ut − xt‖21

(
φµ(ut)− φµ(xt)−

〈
∇φµ(xt), ut − xt

〉)
for any t ≥ 1 in Algorithm 4.1.

The smoothness parameter µ and the resulting Lipschitz constant Lµ are set
as described in Section 9.2, that is,

µ =
εL̄

2 ln(n)
and Lµ =

2L̄ ln(n)

ε
.

Given a pair (ȳ, X̄) ∈ ∆m ×∆M
n of a primal and a dual feasible solution, we

can compute the corresponding duality gap

λmax(A(ȳ))− min
1≤j≤m

〈
Dj , X̄

〉
F
, (11.2)

which we use as stopping criterion for both the original and the accelerated
implementation of Smoothing Techniques. The first term is approximated by
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CPU time [sec] # iterations CPU time per iteration
N mean std mean std [sec/iteration]

1 52 6 2′626 300 0.020
3 55 8 2′633 363 0.021
5 55 4 2′620 193 0.021
10 56 5 2′650 212 0.021
50 61 8 2′710 360 0.023
100 63 6 2′631 248 0.024
500 94 10 2′640 276 0.036
1000 117 11 2′635 256 0.044
5000 360 41 2′634 257 0.147

Table 11.1: CPU time (mean, standard deviation), number of iterations
(mean, standard deviation), and average CPU time per itera-
tion required by randomized Mirror-Prox methods with dif-
ferent samples sizes N for solving random instances of Problem
(11.1) involving a hundred matrices of size 100× 100.

a Arkadi Nemirovski’s randomized version of the Power method. When the
first approximation obtained by the randomized version of the Power method
yields to a value that is smaller than εL′, we recompute the duality gap using
the Matlab built-in functions max() and eig() and terminate only if this new
value fulfills the stopping condition. In both implementations of Smoothing
Techniques, we check the above stopping criterion at every 100-th iteration.
Additionally for accelerated Smoothing Techniques, we verify this condition
at every of the first hundred iterations.

11.2.3 (Randomized) Mirror-Prox methods

We run three different implementations of Mirror-Prox methods, which are:

1. original Mirror-Prox (MP) methods (Algorithm 10.1) with constant
step-sizes that are as long as possible, that is, with step-sizes

γt =
1

2L̄
√

ln(m) ln(n)
∀ t ≥ 1.

We use the same stopping criterion as for Smoothing Techniques and
verify it at every 100-th iteration;

2. decelerated Mirror-Prox (DMP) methods (Algorithm 10.1) with the
same step-sizes as in randomized Mirror-Prox methods, that is, with
step-sizes
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γt =
1

2L̄
√

2 ln(m) ln(n)
∀ t ≥ 1.

The stopping criterion and its checking procedure are as above;

3. randomized Mirror-Prox (RMP) methods with constant step-sizes

γt =
1

2L̄
√

2 ln(m) ln(n)
∀ t ≥ 1;

see Algorithm 10.2 and Equation (10.17). Given a matrix W ∈ Sn, we
choose the truncation level KW of the matrix exponential Taylor series
approximation in Algorithm 10.2 according to the following formula:

KW =
⌊
max

{
log(1/ρ), exp(1) ‖W‖(∞)

}⌋
, ρ := 10−3.

Note that this setting slightly deviates from the truncation level derived
in Proposition 10.2, where the second quantity in the max-expression
is multiplied by a factor of exp(1). The ∞-norm of W is computed
approximately using the Power method (and corrected in hindsight by
a factor of 1.2).

In accordance to (10.17) and (10.18), we need to choose the sample size
N as:

N =
O(1) ln2(m)

ε
√

ln(n)
. (11.3)

In Table 11.1, we give the CPU time (mean, standard deviation) and
the number of iterations (mean, standard deviation) needed to find a
solution with an accuracy of εL′, as well as the average CPU time per
iteration for different samples sizes N . We observe that the smaller the
sample size, the lower the CPU time that is required to approximately
solve the problem instances. Surprisingly, we can choose a very small
sample size without sacrificing any iterations. Let us illustrate this
observation with an example. According to (11.3) and with an absolute
constant of 1, we are supposed to choose N as about 5000. With this
parameter choice, we need an average CPU time of 360 seconds. Using
only one sample for each matrix exponential approximation, we can
reduce the average CPU time by 85.6%. For the subsequent tests,
we will thus choose one as sample size for every matrix exponential
approximation.
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mean std
n 100 200 400 800 100 200 400 800

S 953 3′813 15′244 60′925 10 17 32 64
L′ 4′910 6′463 8′680 12′031 194 216 119 112

Table 11.2: Number of non-zero entries in any Dj, 1 ≤ j ≤ m, and the
constant L′ for different matrix sizes n. We show both mean
and standard deviation.

Consider the stopping criterion defined in (11.2). At any iteration t ≥ 1
of randomized Mirror-Prox methods, the pair (ȳ, X̄) of this definition
corresponds to the average

1

t

t∑
τ=1

γτ (ȳτ , Êξ2τ,Kτ (V̄τ )),

where (ȳτ , V̄τ ) is defined in Algorithm 10.2 and Êξ2τ,Kτ (V̄τ ) is speci-
fied in Equation (10.8) for any 1 ≤ τ ≤ t. In principle, the criterion
(11.2) gives theoretically a desirable solution only if we use exact scaled
exponentials instead of Êξ2τ,Kτ (V̄τ ); see Theorem 4.4. Nevertheless,

Êξ2τ,Kτ (V̄τ ) is in the matrix simplex by construction, and the number
of terms we use in the Taylor exponential is large enough to justify a
very accurate approximation, so that X̄ can be considered as an ade-
quate approximate solution to our problem. We implement the same
duality gap checking procedure as for original Smoothing Techniques.

11.3 Comparison of the methods

In order to compare the performance of the different methods, we run them
on random instances of (11.1) for different matrix sizes, namely for sizes
n = 100, 200, 400, 800. For every problem size, we generate ten problem
instances and average the performance of each method on these instances
afterwards.

Table 11.2 shows the number of non-zero entries (mean, standard deviation)
of the matrices Dj and the constant L′ (mean, standard deviation) for each
problem size. Recall that L′ denotes the maximal absolute eigenvalue of all
matrices Dj computed approximately by the Power method.

Let us turn our attention now to Table 11.3, where we show the CPU time
(mean, standard deviation), the number of iterations needed in practice
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CPU time [sec]

mean std
n 100 200 400 800 100 200 400 800

IP 4 42 885 ∗ ∗ ∗ < 1 < 1 53 ∗ ∗ ∗
RMD 153 424 1′624 6′160 17 13 190 795
ST 75 265 1′258 5′511 2 4 81 225
AST 22 3 7 26 19 < 1 < 1 1
MP 46 130 541 2′507 5 7 20 251
DMP 65 183 760 3′469 6 10 29 319
RMP 53 149 529 2′000 4 9 25 55

# required iterations in practice
mean std

n 100 200 400 800 100 200 400 800

IP 29 28 28 ∗ ∗ ∗ 1 2 2 ∗ ∗ ∗
RMD 17′507 18′166 18′423 18′915 1′835 593 656 512
ST 6′060 6′640 7′010 7′430 151 52 74 48
AST 1′003 17 13 12 911 2 < 1 < 1
MP 1′840 1′724 1′760 1′810 171 87 52 32
DMP 2′600 2′410 2′470 2′540 236 129 68 70
RMP 2′648 2′460 2′470 2′414 200 143 106 64

# required iterations in theory
n 100 200 400 800

ST 10′131 10′867 11′556 12′206
MP 5′066 5′434 5′778 6′103
DMP 7′164 7′684 8′171 8′631

average CPU time / per iteration [sec/iterations]

n 100 200 400 800

RMD 0.009 0.023 0.088 0.326
ST 0.012 0.040 0.179 0.742
AST 0.022 0.149 0.540 2.146
MP 0.025 0.076 0.308 1.385
DMP 0.025 0.076 0.308 1.366
RMP 0.020 0.061 0.214 0.829

Table 11.3: CPU time (mean, standard deviation), number of iterations
needed in practice (mean, standard deviation), and the number
of iterations that is theoretically needed by the different methods
to find a solution to Problem (11.1) with accuracy εL′. In the
last table, we plot the average CPU time per iteration. The
notation ”∗ ∗ ∗ “ means that the method did not finish within
four hours.
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# terms in Taylor series approximation
average std

n 100 200 400 800 100 200 400 800

RMP 8.8 9.4 10.0 10.4 0.3 0.2 0.1 < 0.1

Acceleration of L in Algorithm 4.1
(ratios need to be multiplied with 10−6)

average std
n 100 200 400 800 100 200 400 800

AST 9.2 · 104 6.7 2.5 1.5 9.2 · 104 2.2 0.6 0.2

Table 11.4: Upper table: Number of terms (mean, standard deviation) of
the matrix exponential Taylor series approximation considered
in randomized Mirror-Prox methods. Lower table: Ratio
(11.4) for accelerated Smoothing Techniques.

(mean, standard deviation), and the number of iterations that is theoreti-
cally required by the different methods to find a solution to Problem (11.1)
with accuracy εL′. Note that the theoretical number of iterations is deter-
ministic due to the fact that the solution accuracy εL′ depends on L′. In
addition, we present in the same table the average CPU time that is needed
per iteration. When looking at the results presented in this table, we make
the following observations:

� For n = 100, Interior-Point (IP) methods require the least CPU time to
compute an approximate solution. However, the CPU time is growing
faster for these methods than for all other algorithms when we increase
n. For n = 800, Interior-Point methods did – as single algorithm -
– not manage to derive a solution within four hours. We terminated
the algorithm after this time span. These numerical results reflect our
theoretical expectations regarding the fast growth of the running time
for Interior-Point methods with respect to n.

� For n = 200, 400, 800, accelerated Smoothing Techniques (AST) show by
far the best performance. On average, they need only 3 (for n = 200),
7 (for n = 400), and 26 (n = 800) seconds to solve these problems
approximately. Randomized Mirror-Prox (RMD) methods constitute the
second best algorithm for both n = 400 and n = 800. They require
on average 529 and 2′000 seconds, respectively. These proves the prac-
tical relevance of accelerated Smoothing Techniques and randomized
Mirror-Prox methods when compared to the existing methods. Still,
note the dramatic difference between the performance of randomized
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Mirror-Prox methods and accelerated Smoothing Techniques. The later
procedure requires on average about 1.3% of the CPU time of random-
ized Mirror-Prox methods if n = 800.

� The strong performance of accelerated Smoothing Techniques (AST)
has its reason in the remarkably small numbers of iterations that are
required to find approximate solutions. For n = 800, they need on
average only twelve iterations, which corresponds to about 0.2% of
the number of iterations needed by original Smoothing Techniques.
Remarkably, the number of required iterations is even decaying when
we increase n.

� We recall that decelerated Mirror-Prox (DMP) methods use the same
step-sizes as randomized Mirror-Prox (RMP) schemes. When we com-
pare the average CPU time needed by these methods, we observe that
randomized Mirror-Prox schemes need only about 81.5%, 81.4%, 69.6%,
and 57.7% of the CPU time of the decelerated version (for n equal to
100, 200, 400, and 800, respectively). Remarkably enough, the number
of iterations required by these methods in practice is roughly the same.
The differences in the total running time are due to the lower iteration
cost of randomized Mirror-Prox methods.

� The theoretical number of iterations of original Mirror-Prox (MP) meth-
ods and of its decelerated version (DMP) deviates by factor of

√
2, that

is, of about 1.414, which is due to the different step-sizes. Interestingly,
we observe the same number for the deviation of the iteration numbers
that are required in practice: we obtain ratios that lie on average in
the interval [1.398, 1.413]. That is, the speed of a Mirror-Prox methods
scales proportionally with the length of the step-sizes: the longer the
step-sizes, the faster the method in practice.

� Smoothing Techniques (ST) have a lower iteration cost than original
Mirror-Prox (MP) methods, as they require the computation of only
one instead of two matrix exponentials at every step.

� Among all First-Order methods, randomized Mirror-Descent (RMD)
schemes show the weakest performance regarding the average CPU
time, because of the relatively high numbers of iterations that are
needed by them. They require about 2.5 to 10.5 times more iterations
than standard advanced First-order methods such Smoothing Tech-
niques and Mirror-Prox algorithms. From theory, we indeed estimate
this behavior as the iteration count in Mirror-Descent methods grows
one order of magnitude faster with respect to the accuracy than in ad-
vanced First-Order schemes. In addition, we observe that randomized
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Mirror-Descent methods require the least CPU time per iteration. We
recall that we need here to approximate only the largest eigenvalue
and the leading eigenvector. This is in contrast to all other First-Order
methods, where we are supposed to compute or to approximate the
exponential of at least one symmetric matrix.

In Table 11.4, we express the number of terms that we consider in the Taylor
series approximation (mean and standard deviation) in randomized Mirror-
Prox schemes. We observe that we need to take into account only a very
small number, namely about ten of them.
In the same table, we show for accelerated Smoothing Techniques the ratio∑T

t=1 Lt

L0T
, (11.4)

where we use the notation of Algorithm 4.1. We recognize that the local
estimates are significantly smaller than the global Lipschitz constant: on
average, the above ratio takes a value between 1.5 · 10−6 and 9.2 · 10−2.

11.4 Solving very large-scale problems

We apply now accelerated Smoothing Techniques to very large-scale instances
of Problem (11.1). The numerical results that we present in this section are
obtained by single runs.
As shown in Table 11.5, we need 22′300 seconds, that is, about six hours
and twelve minutes, to solve approximately a random instance of (11.1) with
matrices of size 12′800 × 12′800 and with about 15.6 · 106 non-zero entries.
Target accuracy and number of matrices Dj are chosen as in the previous
section. Interestingly, the number of iterations that are carried out is always
about twelve, independent of the problem size.
In the same table, we present some additional numerical results for acceler-
ated Smoothing Techniques when applied to (11.1), but where we use matri-
ces Dj = D̄j/

√
n instead of j3/2Dj for any 1 ≤ j ≤ m. In contrast to the

examples that we considered before, the parameter L′ is not increasing any
more with n, but stays more or less constant; see [Wig58] for a justification of
this effect. The number of matrices that we consider, the sparsity structure,
and the definition of the target solution accuracy remain unchanged. We
observe that we need just less than four hours for solving the randomly gen-
erated instance involving matrices of size 12′800× 12′800 up to an accuracy
of εL′ = 0.0012. As for the previous example, only a very small number of
iterations is required to find this approximate solution.
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Chapter 12
Conclusions and outlook

In this chapter, we give a review of the results presented in this dissertation
and perform an outlook of possible future work.

12.1 Conclusions

This thesis aimed at developing methods for solving (structured) large-scale
semidefinite optimization problems approximately. Theoretically, these prob-
lems can be solved by polynomial-time Interior-Point methods. These meth-
ods are an excellent tool for finding solutions with a low approximation error
to medium-scale semidefinite optimization problems, as this quantity enters
the complexity result through the logarithm. However, the worst-case com-
plexity estimate of Interior-Point methods grows with the power 3.5 in both
the matrix size and the number of constraints, which hampers the resolution
of large-scale problems in practice.

In this thesis, we presented alternative approaches to solve slightly structured
large-scale semidefinite optimization problems up to a moderate accuracy.
The algorithmic foundation of these approaches is formed by advanced First-
Order schemes such as Smoothing Techniques and Mirror-Prox methods.

These methods make very specific structural requirements on the problem.
However, semidefinite optimization problems do not fit in this framework,
given their general form. In a first step, we discussed two problem trans-
formations that allowed us to rewrite slightly structured semidefinite opti-
mization problems as matrix saddle-point problems to which the advanced
First-Order methods are applicable. The first transformation is – to the
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best of our knowledge – new and can be applied to problems whose linear
objective function is defined by a positive definite matrix. The second trans-
formation scheme is known and requires a scaling constraint. This problem
transformation is particularly favorable in the sense that the sparsity of the
input matrices is transferred to the matrix saddle-point problem.
Therefore, solving these structured semidefinite optimization problems re-
duces to the resolution of matrix saddle-point problems. It is known that
these matrix saddle-point problems can be approximately solved by Interior-
Point methods, by (randomized) Mirror-Descent methods, and by advanced
First-Order methods such as Smoothing Techniques and Mirror-Prox meth-
ods. In Table 12.1, we give an overview of the complexity results of
these methods. Interior-Point methods are particularly tailored for solving
medium-scale problems up to a high accuracy. Randomized Mirror-Descent
schemes are at the other end of the landscape and can be applied to very
large-scale problems, provided that we require only a very low solution accu-
racy. The iteration count of these methods grows with the order O(1/ε2) with
respect to the accuracy ε > 0. In between, we have advanced First-Order
methods such as Smoothing Techniques and Mirror-Prox methods, whose it-
eration count grows one order of magnitude slower than for Mirror-Descent
schemes.
By applying Smoothing Techniques or Mirror-Prox methods to these matrix
saddle-point problems, we developed a procedure for solving slightly struc-
tured large-scale semidefinite optimization problems. The iteration count of
the resulting schemes grows linearly in both the inverse of the accuracy and
in the number of constraints. Similar results were obtained independently
and simultaneously by Iyengar et al. [IPS05, IPS11].
At every iteration of these methods, the computation of one ore two matrix
exponentials is needed. Standardly, this operation is performed through an
eigendecomposition of the symmetric (n× n)-matrix, requiring O(n3) arith-
metic operations and representing the cost critical computation for large-scale
problems. In a joint project with Arkadi Nemirovski, we developed and in-
vestigated both theoretically and numerically an alternative computation of
matrix exponentials. Instead of the true value, we used a random approx-
imation of the matrix exponential in Mirror-Prox methods. This random
approximation is based on a vector sampling and on an appropriate trunca-
tion of the matrix exponential Taylor series. We verified that there exists a
reasonable range for the problem parameters where this method outperforms
all its competitors with respect to the worst-case complexity estimates. We
noted that sparsity of the symmetric matrix, whose exponential we need to
compute, is in full favor of this randomized method. While sparsity cannot
be exploited in the standard matrix exponentiation technique, we may reduce
the computation cost of the randomized approximation in accordance to the
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Solution method Complexity

Interior-Point methods Õ
(√
m+ n

[
mn3 +mS +m3

])
Smoothing Techniques Õ

(
L[n3 +mS]/ε

)
Mirror-Prox methods Õ

(
L[n3 +mS]/ε

)
Randomized Mirror-Descent methods Õ

(
L2.5n2/ε2.5 + L2mS/ε2

)
Randomized Mirror-Prox methods Õ

(
L3n2/ε3 +mS/ε

)
Table 12.1: Rough complexity estimates of different methods when applied

to matrix saddle-point problems; see (DSP) for the problem def-
inition. We use the Õ-notation to indicate that all logarithmic
terms are suppressed. We denote by m, n, L, S, and ε the
number of input matrices, the matrix size, the maximal ab-
solute eigenvalue of all input matrices, the maximal number of
non-zero entries in the input matrices, and the target accuracy.

degree of sparsity. Numerical results showed that the randomized Mirror-
Prox method requires only about 58% of the CPU time that was needed by
its deterministic counterpart for solving approximately randomly generated
instances of matrix saddle-point problems with a hundred matrices of size
800× 800. These matrices had the same sparsity pattern, each of them with
about 60′000 non-zero entries. The relevant theoretical results in this joint
project were mainly due to Arkadi Nemirovski. We were concerned mostly
with the design and the performance of numerical tests.

In this thesis, we presented a refinement of Smoothing Techniques, or, more
precisely, of one of the two ingredients of Smoothing Techniques. Smoothing
Techniques are a two-stage procedure. In a first step, a smooth approxi-
mation of the non-differentiable objective function is formed. In a second
step, an optimal First-Order method is applied to the auxiliary problem. At
every iteration of this optimal First-Order method, the Lipschitz constant of
the gradient of the objective function is used. We introduced a new version
of this optimal First-Order method where we replaced this global constant
by local estimates. The theoretical worst-case complexity estimate for the
refined First-Order method is of the same order as for the vanilla scheme.
More interestingly, we observed that this refined method requires significantly
less iterations than its original counterpart for finding approximate solutions
in practice. By integrating this refined version of the method in Smooth-
ing Techniques, we could solve a randomly generated instance of a matrix
saddle-point problem involving a hundred matrices of size 12′800×12′800 up
to an accuracy of 0.0012 in just less than four hours.
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ding of the Hedge algorithm in the context of Dual Averaging schemes. It
was known that the Hedge algorithm can be interpreted as a Mirror-Descent
scheme. However, this interpretation is – as we showed in this thesis – not
consistent with the setting of the Hedge algorithm. Interpreting the Hedge
algorithm as a Dual Averaging scheme, we were able to eliminate these in-
consistencies. Based on the insights gained from this new perspective on
the method, we developed three new versions of the Hedge algorithm with
convergence guarantees that are better or at least as good as the conver-
gence result for the vanilla scheme. Numerical results showed that all these
modified methods perform better than the vanilla algorithm in practice.

12.2 Outlook

As the numerical results showed, only a small number of iterations of the
refined optimal First-Order method in Smoothing Techniques is needed to
solve very large-scale matrix saddle-point problems approximately. At every
iteration of this method, an exponential of a symmetric matrix needs to be
computed. When using standard techniques to perform this operation, we
hamper the resolution of problems with a huge scale. As a next step, it
would be very natural to apply similar techniques as we did for Mirror-Prox
methods to Smoothing Techniques to accelerate this critical operation.
All the First-Order methods studied in this thesis rely on (a slightly weaker
version of) Assumption 2.1. That is, these methods are only effective if we
have access to a distance-generating function for which can easily compute
projections onto the feasible set. Unfortunately, we know such distance-
generating functions only for a very restricted family of feasible sets; for
instance, we can utilize the shifted negative matrix entropy function for the
matrix simplex. For a broader applicability of these methods, the discovery
of new distance-generating functions that allow us an efficient computation
of projections onto alternative feasible sets is crucial.
Finally, it is known that AdaBoost is based on the Hedge algorithm. However,
this algorithm is much more prominent than the method it is based on. In this
thesis, we showed that Hedge algorithm can be recast as a Dual Averaging
scheme. Having a similar result for AdaBoost would be of great interest.

As a side result of this thesis, we obtained a complete and consistent embed-



Appendix A
Regularity of norms

In this chapter, we review the notion of regular norms (and spaces) and
give some examples. Of particular interest for this thesis, regularity of

norms is used to install two results that are used in Section 10.3.2 and for the
proof of Proposition 10.1. This review follows the working paper [Nem04b].
Parts of this review chapter are taken from [BBN11].

Let us start with the first definition. We equip Rn with a norm ‖·‖ and
choose κ ≥ 1.

Definition A.1 (κ-smooth) We say that the space (Rn, ‖·‖) is κ-smooth if
the function h : Rn → R≥0 : x 7→ ‖x‖2 is continuously differentiable and if

h(x+ y) ≤ h(x) + 〈∇h(x), y〉+ κh(y) ∀ x, y ∈ Rn.

Example A.1 (Proof of Example 2.1 in [Nem04b]) If 2 ≤ p <∞ and
n ≥ 3, the space (Rn, ‖·‖p) is (p− 1)-smooth.

Of particular interest in this thesis is the space (Rn, ‖·‖∞), which is not
κ-smooth, but ”almost“ so. Let us clarify now what we mean by ”almost
κ-smooth“.

Definition A.2 (κ-regular) Both the space (Rn, ‖·‖) and the norm ‖·‖ are
called κ-regular, if there exist κ+ ∈ [1, κ] and a norm ‖·‖+ on Rn with the
following two characteristics:

1. the space (Rn, ‖·‖+) is κ+-smooth;
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2. we have
‖x‖2 ≤ ‖x‖2+ ≤

κ

κ+
‖x‖2 ∀ x ∈ Rn.

Definition A.3 (Regularity constant) The regularity constant
κ(Rn, ‖·‖) of (Rn, ‖·‖) is defined as:

κ(Rn, ‖·‖) := inf{κ ≥ 1 : (Rn, ‖·‖) is κ-regular}.

Example A.2 (Example 2.1 in [Nem04b]) For 2 ≤ p ≤ ∞ and n ≥ 3,
we have:

κ(Rn, ‖·‖p) ≤ min {p− 1, 2 ln(n)} .

From now on, assume that (Rn, ‖·‖) has a regularity constant of κ(Rn, ‖·‖). In
addition, let (Ξ,B,P) be a Borel probability space and T ∈ N. We consider
T random vectors ξt : Ξ → Rn and assume that they form a martingale
difference sequence, that is:

EP [ξ1] = 0 and EP
[
ξt|ξ[t−1]

]
= 0 ∀ 2 ≤ t ≤ T,

where we write ξ[t−1] for the subsequence ξt−1, . . . , ξ1.
The following result is used in Section 10.3.2.

Proposition A.1 (Proposition 3.1 in [Nem04b]) If there exist
σ1, . . . , σT such that

EP
[
‖ξt‖2

]
≤ σ2

t <∞ ∀ 1 ≤ t ≤ T,

we have:

EPT

∥∥∥∥∥
T∑
t=1

ξt

∥∥∥∥∥
2
 ≤ κ(Rn, ‖·‖)

T∑
t=1

σ2
t .

The proof of Proposition 10.1 is based on the following result on large devi-
ations of random sums.

Theorem A.1 (Theorem 3.5 in [Nem04b]) Choose χ ∈ (0, 2] and reals
σ1, . . . , σT > 0 such that:

EP
[
exp (‖ξt‖χ /σχt ) | ξ[t−1]

]
≤ exp(1) ∀ t = 1, . . . , T.

(a) For all c ≥ 0, we have:

P

∥∥∥∥∥
T∑
t=1

ξt

∥∥∥∥∥ > c

√√√√κ(Rn, ‖·‖)
T∑
t=1

σ2
t

 ≤ Cχ exp (−cχ/Cχ) ,

where Cχ ≥ 2 is a constant that only depends on χ and that is contin-
uous in χ.
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(b) With a properly chosen constant cχ > 0 that only depends on χ and
that is continuous in χ, we have:

EPT

exp


∥∥∥∑T

t=1 ξt

∥∥∥
cχ

√
κ(Rn, ‖·‖)

∑T
t=1 σ

2
t

χ ≤ exp(1).





Appendix B
Proofs

In this chapter, we give the proofs of Theorem 3.5, Theorem 7.2, and
Proposition 10.1. The proof of Proposition of 10.1 is taken from [BBN11].

B.1 Proof of Theorem 3.5

Choose T ∈ N0 and let the sequences (xt)
T+1
t=0 , (ut)

T+1
t=0 , (zt)

T
t=0, (x̂t)

T+1
t=1 ,

(γt)
T+1
t=0 , (Γt)

T+1
t=0 , (τt)

T
t=0, and (Lt)

T
t=0 be generated by Algorithm 3.4. Recall

that Inequality (It) holds for 0 ≤ t ≤ T if

Γtf(ut) +

t−1∑
k=0

(Lk+1 − Lk)

(
d(zk+1)− 1

2
‖zk − x̂k+1‖2

)
≤ ψt, (It)

where

ψt := min
x∈Q

{
t∑

k=0

γk (f(xk) + 〈∇f(xk), x− xk〉) + Ltd(x)

}
.

By its definition (see Algorithm 3.4), the element zt ∈ Q is the minimizer to
the above optimization problem, which allows us to rewrite ψt as:

ψt =

t∑
k=0

γk (f(xk) + 〈∇f(xk), zt − xk〉) + Ltd(zt).

We show by induction that Inequality (It) holds for any 0 ≤ t ≤ T .
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Lemma B.1 Inequality (I0) holds, that is, we have γ0f(u0) ≤ ψ0.

Proof: We apply the definition of u0 (see Algorithm 3.4), Inequality (2.12),
the condition on γ0 saying that γ0 ∈ (0, 1], and Theorem 2.10 in order to
justify the following relations:

ψ0 := min
x∈Q
{γ0 (f(x0) + 〈∇f(x0, x− x0〉) + L0d(x)}

= γ0 (f(x0) + 〈∇f(x0), u0 − x0〉) + L0d(u0)

≥ γ0 (f(x0) + 〈∇f(x0), u0 − x0〉) +
L0

2
‖u0 − x0‖2

≥ γ0

(
f(x0) + 〈∇f(x0), u0 − x0〉+

L0

2
‖u0 − x0‖2

)
≥ γ0f(u0).

Let us verify the inductive step.

Lemma B.2 Let 0 ≤ t ≤ T − 1. If Inequality (It) holds, also (It+1) is true.

Proof: Let 0 ≤ t ≤ T−1 and assume that (It) holds. We make the following
two definitions:

χt :=

t−1∑
k=0

(Lk+1 − Lk)

(
d(zk+1)− 1

2
‖zk − x̂k+1‖2

)
∈ R,

st :=
t∑

k=0

γk∇f(xk) ∈ Rn.

In addition, we define the linear function:

lt : Q→ R : x 7→ lt(x) =

t∑
k=0

γk (f(xk) + 〈∇f(xk), x− xk〉) .

Choose x ∈ Q. The definition of zt implies:

0 ≤

〈
Lt∇d(zt) +

t∑
k=0

γk∇f(xk), x− zt

〉
= 〈Lt∇d(zt) + st, x− zt〉 . (B.1)

As the Inequality (It) holds and as the function f is convex, we have:

ψt ≥ Γtf(ut) + χt ≥ Γt (f(xt+1) + 〈∇f(xt+1), ut − xt+1〉) + χt.

This implies:
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ψt + γt+1 (f(xt+1) + 〈∇f(xt+1), x− xt+1〉)
≥ Γt+1f(xt+1) + γt+1 〈∇f(xt+1), x− zt〉+ χt,

where we use the relations Γt+1 = Γt + γt+1 and

Γt(ut − xt+1) + γt+1(x− xt+1)
= Γtut − Γt+1xt+1 + γt+1x
= Γtut − Γt+1 (τtzt + (1− τt)ut) + γt+1x

= Γtut − Γt+1

(
γt+1

Γt+1
zt +

Γt
Γt+1

ut

)
+ γt+1x

= γt+1(x− zt).

Combining the above inequality with the fact that ψt = Ltd(zt) + lt(zt) and
with (B.1), we observe:

Ltd(x) + lt+1(x)
= Ltd(x) + lt(x) + γt+1 (f(xt+1) + 〈∇f(xt+1), x− xt+1〉)
= LtVzt(x) + ψt + 〈Lt∇d(zt) + st, x− zt〉

+γt+1 (〈∇f(xt+1), x− xt+1〉+ f(xt+1))
≥ LtVzt(x) + ψt + γt+1 (f(xt+1) + 〈∇f(xt+1), x− xt+1〉)
≥ LtVzt(x) + Γt+1f(xt+1) + γt+1 〈∇f(xt+1), x− zt〉+ χt.

With ϑ
(1)
t := (Lt+1 − Lt) d(zt+1), we thus get:

ψt+1

:= min
x∈Q
{Lt+1d(x) + lt+1(x)}

= Lt+1d(zt+1) + lt+1(zt+1)

= ϑ
(1)
t + Ltd(zt+1) + lt+1(zt+1)

≥ ϑ
(1)
t + min

x∈Q
{Ltd(x) + lt+1(x)}

≥ ϑ
(1)
t + min

x∈Q
{LtVzt(x) + Γt+1f(xt+1) + γt+1 〈∇f(xt+1), x− zt〉+ χt} .

Let ϑ
(2)
t := 1

2
(Lt − Lt+1) ‖zt − x̂t+1‖2. Using the construction rule for x̂t+1

and (2.13), we obtain:

ψt+1

≥ ϑ
(1)
t + LtVzt(x̂t+1) + Γt+1f(xt+1) + γt+1 〈∇f(xt+1), x̂t+1 − zt〉+ χt

≥ ϑ
(1)
t +

Lt
2
‖zt − x̂t+1‖2

+Γt+1f(xt+1) + γt+1 〈∇f(xt+1), x̂t+1 − zt〉+ χt

= ϑ
(1)
t + ϑ

(2)
t +

Lt+1

2
‖zt − x̂t+1‖2

+Γt+1f(xt+1) + γt+1 〈∇f(xt+1), x̂t+1 − zt〉+ χt
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= ϑ
(1)
t + ϑ

(2)
t + χt

+Γt+1

(
Lt+1

2Γt+1
‖zt − x̂t+1‖2 + f(xt+1) + τt 〈∇f(xt+1), x̂t+1 − zt〉

)
.

As τ2
t ≤ Γ−1

t+1 and as xt+1− τtzt = (1− τt)ut = ut+1− τtx̂t+1, this inequality
yields to:

ψt+1

≥ ϑ
(1)
t + ϑ

(2)
t + χt

+Γt+1

(
Lt+1τ

2
t

2
‖zt − x̂t+1‖2 + f(xt+1) + τt 〈∇f(xt+1), x̂t+1 − zt〉

)
= ϑ

(1)
t + ϑ

(2)
t + χt

+Γt+1

(
Lt+1

2
‖ut+1 − xt+1‖2 + f(xt+1) + 〈∇f(xt+1), ut+1 − xt+1〉

)
.

It remains to apply (3.10):

ψt+1 ≥ ϑ
(1)
t + ϑ

(2)
t + Γt+1f(ut+1) + χt

=

t∑
k=0

(Lk+1 − Lk)

(
d(zk+1)− 1

2
‖zk − x̂k+1‖2

)
+ Γt+1f(ut+1).

B.2 Proof of Theorem 7.2

The notation that we subsequently use refers to Algorithm 7.2. We claim:

εt := ut − lt ≤
(

5

6

)t( m∑
j=1

ȳj − Tr(C)/α

)
∀ 0 ≤ t ≤ T. (B.2)

Proof: We use induction to prove this claim. For t = 0, the above statement
holds due to the definitions of l0 = Tr(C)/α and u0 =

∑m
j=1 ȳj .

Assume now that Bound (B.2) is satisfied for a 0 ≤ t ≤ T − 1. We show
that this bound also holds for t + 1. Assume that we call the feasibility
oracle F with input (φt, δt). If the oracle returns a feasible point Xt+1 with
〈C,Xt+1〉F > φt, then:

εt+1 := ut+1 − lt+1 = ut − 〈C,Xt+1〉F < ut − φt

=
1

2
(ut − lt) <

5

6
(ut − lt) ≤

(
5

6

)t+1

(u0 − l0) ,

where the last inequality is due to the induction hypothesis.
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Otherwise, we have:

εt+1 := ut+1 − lt+1 = (1 + δt)φt − lt
=

1

2
(ut + lt) + δtφt − lt =

1

2
(ut − lt) + δtφt.

As δt = 2(ut−lt)
3(ut+lt)

, we obtain:

εt+1 =
1

2
(ut − lt) +

1

3
(ut − lt) =

5

6
(ut − lt) ≤

(
5

6

)t+1

(u0 − l0) ,

where the concluding inequality holds by the induction hypothesis.

B.3 Proof of Proposition 10.1

We use the same notation as in Chapter 10. For an easier reading, we quickly
recall the most important expressions. For V ∈ Sn, we define

g(V ) :=
A∗(exp(V ))

Tr(exp(V ))
∈ Rm.

Recall that ζ1, . . . , ζN : Ξζ → Rn are independent N (0, In)-distributed ran-
dom vectors and that we write ξ for (ζ1, . . . , ζN ) : Ξ → Rn×N . In addition,
we denote by χi the random vector exp(V/2)ζi, where 1 ≤ i ≤ N . The
random vector gξ(V ) is defined as:

gξ(V ) :=
A∗(Gξ(V ))

θξ(V )

with

Gξ(V ) :=

∑N
i=1 χiχ

T
i

N
and θξ(V ) :=

∑N
i=1 χ

T
i χi

N
.

We start with the observation:

Assumption B.1 As the standard multivariate normal distribution
N (0, In) is orthogonal invariant, and as both g(V ) and gξ(V ) are in-
variant under positive scaling, we can assume, without loss of generality,
that exp(V ) is diagonal (with positive diagonal entries) and of trace 1. This
assumption shall hold for the rest of this section.

For i = 1, . . . , N , we consider:

Dζi := χiχ
T
i − exp(V ), dζi := A∗(Dζi), dξ :=

1

N

N∑
i=1

dζi ,
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and:

fζi := χTi χi − 1, fξ :=
1

N

N∑
i=1

fζi .

Lemma B.3 For an appropriately chosen constant c > 0, we have for any
i = 1, . . . , N :

a) EPζ [Dζi ] = EPζ [dζi ] = EP [dξ] = EPζ [fζi ] = EP [fξ] = 0.

b) EPζ

[
exp

(
‖Dζi‖(1) /c

)]
≤ exp(1).

c) EPζ

[
exp

(
‖dζi‖∞
cL

)]
≤ exp(1).

d) EP

[
exp

(√
N‖dξ‖∞

cL
√

ln(m)

)]
≤ exp(1).

e) EPζ [exp (|fζi |/c)] ≤ exp(1).

f) EP

[
exp

(√
N |fξ|/c

)]
≤ exp(1).

Proof: Assume that the diagonal of exp(V ) is given by the vector v ∈ ∆n.
Let 1 ≤ i ≤ n.

a) We have:

EPζ [Dζi ] = exp(V/2)EPζ

[
ζiζ

T
i

]
exp(V/2)− exp(V ) = 0,

where the concluding equality holds as ζi ∼ N (0, In). In addition,

EPζ

[
ζTi exp(V )ζi

]
=

n∑
k=1

vk = 1,

which proves EPζ [fζi ] = 0. The remaining equations follow immedi-
ately.

b) It holds that:∥∥∥χiχTi ∥∥∥
(1)

=
∥∥∥[exp(V/2)ζi] [exp(V/2)ζi]

T
∥∥∥

(1)
=

n∑
k=1

vkζ
2
i,k. (B.3)

For any 0 < c1 ≤ 1−exp(−2)
2

(
< 1

2

)
, we obtain:

EPζ

[
exp

(
c1

∥∥∥χiχTi ∥∥∥
(1)

)]
=

n∏
k=1

EPζ
[
exp

(
c1vkζ

2
i,k

)]
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=
n∏
k=1

(1− 2c1vk)−1/2

= exp

(
−1

2

n∑
k=1

ln (1− 2c1vk)

)
≤ exp

(
−1

2
ln (1− 2c1)

)
≤ exp(1), (B.4)

where the first inequality holds as the maximum of
−
∑n
k=1 ln (1− 2c1vk) over the probability simplex is attained at

an extreme point (note that the function

v 7→ −
n∑
k=1

ln (1− 2c1vk)

is separable and each of its components is convex). In particular, it
holds that:

c1EPζ

[∥∥∥χiχTi ∥∥∥
(1)

]
≤ exp(1).

Using Jensen’s Inequality, it follows that:

EPζ

[
exp

(
c1

2 exp(1)

∥∥∥χiχTi − EPζ

[
χiχ

T
i

]∥∥∥
(1)

)]
≤ exp(1).

We conclude by recalling that EPζ
[
χiχ

T
i

]
= exp(V ), that is, it holds

that:
χiχ

T
i − EPζ

[
χiχ

T
i

]
= Dζi .

c) Let 0 < c2 ≤ c1
2 exp(1)

. We obtain by b):

EPζ
[
exp

(
c2 ‖dζi‖∞ /L

)]
= EPζ

[
exp

(
c2 ‖A∗(Dζi)‖∞ /L

)]
≤ EPζ

[
exp

(
c2 ‖Dζi‖(1)

)]
≤ exp(1).

d) According to Theorem A.1 (note that we apply Theorem A.1 with χ = 1
and σi = L/c2 for any i = 1, . . . , N) and due to Example A.2 (recall
that n ≥ 3), there exists c3 > 0 such that:

EP

[
exp

(
c2
√
N ‖dξ‖∞

c3L
√

ln(m)

)]
≤ exp(1).

e) Due to (B.3) and (B.4), we obtain:



176 B. Proofs

EPζ

[
exp

(
c1

∣∣∣χTi χi − 1
∣∣∣ /2)]

≤ exp (c1/2)

(
EPζ

[
exp

(
c1

n∑
k=1

vkζ
2
i,k

)])1/2

≤ exp (c1/2) exp (1/2) < exp (1/4) exp (1/2) = exp (3/4) ,

where 0 < c1 ≤ 1−exp(−2)
2

.

f) We observe that the space (R, ‖·‖1) has a regularity constant of 1. Due
to Theorem A.1 (we apply Theorem A.1 with χ = 1 and σi = 2/c1 for
any i = 1, . . . , N), there exists a constant c4 > 0 such that:

EP

[
exp

(
c1
√
N |fξ|
2c4

)]
= Eξ

exp

c1
∣∣∣∑N

k=1 fζk

∣∣∣
2c4
√
N

 ≤ exp(1).

It remains to choose c ≥ max {2 exp(1)/c1, c3/c2, 2c4/c1}.
We are ready to prove Proposition 10.1.
Proof of Proposition 10.1: Using the same notation as before, we consider
the random element:

βξ := dξ − fξg(V ).

Lemma B.3 implies EP [βξ] = 0. In addition, by the same lemma, there exists
a constant c1 > 0 such that:

EP

[
exp

( √
N ‖βξ‖∞

2c1L
√

ln(m)

)]

≤ EP

[
exp

( √
N ‖dξ‖∞

2c1L
√

ln(m)

)
exp

(√
N ‖fξg(V )‖∞
2c1L

√
ln(m)

)]

≤

{
EP

[
exp

( √
N ‖dξ‖∞

c1L
√

ln(m)

)]}1/2{
EP

[
exp

(√
N ‖fξg(V )‖∞
c1L
√

ln(m)

)]}1/2

≤ exp (1/2)

{
EP

[
exp

( √
N |fξ|

c1
√

ln(m)

)]}1/2

≤ exp(1), (B.5)

where we use Hölder’s Inequality and the facts ‖g(V )‖∞ ≤ L and ln(m) > 1.
Let

γξ := gξ(V )− βξ − g(V ).

As θξ(V ) = fξ + 1 and A∗ (Gξ(V )) = dξ + g(V ), it holds that:

gξ(V ) =
A∗ (Gξ(V ))

θξ(V )
=
dξ + g(V )

fξ + 1
.
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We obtain:

γξ =
dξ + g(V )

fξ + 1
− g(V )− dξ + fξg(V ) =

f2
ξ g(V )− dξfξ

1 + fξ
.

Consider now the sets:

Π := {ξ = (ζ1, . . . , ζN ) : |fξ| ≤ 1/2} and Π̂ := Rn×N \Π.

When ξ ∈ Π, we have:

‖γξ‖∞ =

∥∥f2
ξ g(V )− dξfξ

∥∥
∞

|1 + fξ|
≤ 2

∥∥f2
ξ g(V )− dξfξ

∥∥
∞

≤ 2
(
|fξ|2 L+ |fξ| ‖dξ‖∞

)
≤ |fξ| L+ ‖dξ‖∞ . (B.6)

More generally, it holds for any ξ ∈ Rn×N :

‖γξ‖∞ ≤ ‖gξ(V )‖∞ + ‖βξ‖∞ + ‖g(V )‖∞
≤ ‖gξ(V )‖∞ + ‖dξ‖∞ + ‖fξg(V )‖∞ + ‖g(V )‖∞
= ‖gξ(V )‖∞ + ‖dξ‖∞ + |fξ| ‖g(V )‖∞ + ‖g(V )‖∞
≤ (2 + |fξ|)L+ ‖dξ‖∞ , (B.7)

which is due to the inequalities ‖g(V )‖∞ ≤ L and ‖gξ(V )‖∞ ≤ L. Further-
more,

P
[
Π̂
]

= P [|fξ| > 1/2] = P
[
exp

(√
N |fξ|
c1

)
> exp

(√
N

2c1

)]
< exp

(
−
√
N

2c1

)
EP

[
exp

(√
N |fξ| /c1

)]
≤ exp

(
−
√
N

2c1

)
exp(1), (B.8)

where the inequalities follow from Markov’s inequality and from statement
e) of Lemma B.3, respectively. Choose c2 ≥ 4c1 and observe:

EP

[
exp

( √
N ‖γξ‖∞

3c2L
√

ln(m)

)]

=

∫
Π

exp

( √
N ‖γξ‖∞

3c2L
√

ln(m)

)
dP +

∫
Π̂

exp

( √
N ‖γξ‖∞

3c2L
√

ln(m)

)
dP.

By (B.6), Hölder’s Inequality, and Lemma B.3, we obtain:
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∫
Π

exp

( √
N ‖γξ‖∞

3c2L
√

ln(m)

)
dP

≤
∫

Π

exp

(√
N
(
|fξ| L+ ‖dξ‖∞

)
3c2L

√
ln(m)

)
dP

≤ 1 ·

{
EP

[
exp

( √
N |fξ|

c2
√

ln(m)

)]}1/3{
EP

[
exp

( √
N ‖dξ‖∞

c2L
√

ln(m)

)]}1/3

≤ exp (1/3) exp (1/3) = exp(2/3).

Additionally, by (B.7), we have:

∫
Π̂

exp

( √
N ‖γξ‖∞

3c2L
√

ln(m)

)
dP ≤

∫
Π̂

exp

(√
N
(
2L+ |fξ| L+ ‖dξ‖∞

)
3c2L

√
ln(m)

)
dP.

Hölder’s Inequality, the relation c2 ≥ 4c1, Jensen’s Inequality, Bound (B.8),
and Lemma B.3 imply:

∫
Π̂

exp

(√
N
(
|fξ| L+ ‖dξ‖∞

)
3c2L

√
ln(m)

)
dP

≤
{∫

Π̂

1dP
}1/3

{∫
Π̂

exp

( √
N |fξ|

c2
√

ln(m)

)
dP

}1/3

·

{∫
Π̂

exp

( √
N ‖dξ‖∞

c2L
√

ln(m)

)
dP

}1/3

≤
{
P
[
Π̂
]}1/3

{
EP

[
exp

( √
N |fξ|

c2
√

ln(m)

)]}1/3

·

{
EP

[
exp

( √
N ‖dξ‖∞

c2L
√

ln(m)

)]}1/3

≤
{
P
[
Π̂
]}1/3

{
EP

[
exp

(√
N |fξ|
c1

)]}1/12

·

{
EP

[
exp

( √
N ‖dξ‖∞

c1L
√

ln(m)

)]}1/12

≤ exp(1/3) exp(1/12) exp(1/12) exp

(
−
√
N

6c1

)
= exp (1/2) exp

(
−
√
N

6c1

)
.
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As c2 ≥ 4c1, we obtain:

EP

[
exp

( √
N ‖γξ‖∞

3c2L
√

ln(m)

)]

≤ exp(2/3) + exp(1/2) exp

(
2
√
N

3c2
√

ln(m)
−
√
N

6c1

)
≤ exp(2/3) + exp(1/2) exp

(
2
√
N

3c2
−
√
N

6c1

)
≤ 2 exp(2/3). (B.9)

Thus,

EP

[
exp

(√
N ‖gξ(V )− g(V )‖∞

6c2L
√

ln(m)

)]

= EP

[
exp

(√
N ‖βξ + γξ‖∞
6c2L

√
ln(m)

)]

≤

{
EP

[
exp

( √
N ‖βξ‖∞

3c2L
√

ln(m)

)]}1/2{
EP

[
exp

( √
N ‖γξ‖∞

3c2L
√

ln(m)

)]}1/2

≤

{
EP

[
exp

( √
N ‖βξ‖∞

2c1L
√

ln(m)

)]}1/2{
EP

[
exp

( √
N ‖γξ‖∞

3c2L
√

ln(m)

)]}1/2

≤
√

2 exp(1/2) exp(1/3)
=
√

2 exp(5/6), (B.10)

where the inequalities are due to Hölder’s Inequality, the fact that 3c2 ≥ 2c1,
Bound (B.5), and Inequality (B.9), respectively.
It remains to find an appropriate bound on the norm of g(V ) − EP [gξ(V )].
Recall that EP [βξ] = 0. Therefore,

‖EP [gξ(V )− g(V )]‖∞ = ‖EP [γξ]‖∞ ≤ EP
[
‖γξ‖∞

]
=

∫
Π

‖γξ‖∞ dP +

∫
Π̂

‖γξ‖∞ dP

≤ 2

∫
Π

|fξ|2 L+ |fξ| ‖dξ‖∞ dP +

∫
Π̂

‖γξ‖∞ dP,

where the concluding inequality follows from (B.6). As 2 exp(x) ≥ x2 for any
x ≥ 0, we obtain by Lemma B.3:

2L
∫

Π

|fξ|2 dP ≤ 2LEP
[
|fξ|2

]
=

2c21L
N

EP

[(√
N |fξ|
c1

)2
]
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≤ 4c21L
N

EP

[
exp

(√
N |fξ|
c1

)]
≤ 4 exp(1)c21L

N
.

Furthermore, the same arguments imply:

2

∫
Π

|fξ| ‖dξ‖∞ dP ≤
∫

Π

√
ln(m)L |fξ|2 dP +

∫
Π

‖dξ‖2∞√
ln(m)L

dP

≤ EP

[√
ln(m)L |fξ|2

]
+ EP

[
‖dξ‖2∞
L
√

ln(m)

]

≤
2c21L

√
ln(m)

N
EP

[
exp

(√
N |fξ|
c1

)]
+

2c21L
√

ln(m)

N
EP

[
exp

( √
N ‖dξ‖∞

c1L
√

ln(m)

)]

≤
4 exp(1)c21L

√
ln(m)

N
.

Finally,∫
Π̂

‖γξ‖∞ dP

≤
{
P
[
Π̂
]}1/2 {

EP
[
‖γξ‖2∞

]}1/2

≤ exp

(
1

2
−
√
N

4c1

){
EP
[
‖γξ‖2∞

]}1/2

≤ exp

(
1

2
−
√
N

4c1

){
18c22L2 ln(m)

N
EP

[
exp

( √
N ‖γξ‖∞

3c2L
√

ln(m)

)]}1/2

≤
6 exp (5/6) c2L

√
ln(m)√

N
exp

(
−
√
N

4c1

)
≤

6 exp(5/6)c2L
√

ln(m)√
N

exp

(
−
√
N

c2

)
≤

6 exp(5/6)c22L
√

ln(m)

N
,

where the inequalities hold due to Hölder’s Inequality, the fact that ‖γξ‖2∞
is nonnegative for any ξ ∈ Rn×N , Bound (B.8), the fact that 2 exp(x) ≥ x2

for any x ≥ 0, Inequality (B.9), the assumption c2 ≥ 4c1, and the relation
exp(−x) = [exp(x)]−1 ≤ x−1 for all x > 0, respectively. We obtain:
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‖EP [gξ(V )]− g(V )‖∞

≤ 4 exp(1)c21L
N

+
4 exp(1)c21L

√
ln(m)

N
+

6 exp(1)c22L
√

ln(m)

N

≤
8 exp(1)c21L

√
ln(m)

N
+

6 exp(1)c22L
√

ln(m)

N

≤
exp(1)c22L

√
ln(m)

2N
+

6 exp(1)c22L
√

ln(m)

N

=
13 exp(1)c22L

√
ln(m)

2N
,

which proves the first statement of Proposition 10.1. The above inequality
ensures together with Bound (B.10):

EP

[
exp

(√
N ‖gξ(V )− EP [gξ(V )]‖∞

6c2L
√

ln(m)

)]
≤
√

2 exp(5/6) exp

(
13 exp(1)c2

12
√
N

)
≤
√

2 exp

(
5

6
+

13 exp(1)c2
12

)
.

Let

c3 :=
5

6
+

ln(2)

2
+

13 exp(1)c2
12

.

By Jensen’s Inequality, we observe:

EP

[
exp

(√
N ‖gξ(V )− EP [gξ(V )]‖∞

6c2c3L
√

ln(m)

)]
≤ exp(1),

which implies, together with the relation x2 ≤ 2 exp(x) for all x ≥ 0, that

EP
[
‖gξ(V )− EP [gξ(V )]‖2∞

]
≤ 72 exp(1)c22c

2
3L2 ln(m)

N
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[CE05] F. Chudak and V. Eleutério, Improved approximation schemes
for linear programming relaxations of combinatorial optimization
problems, Proceedings of the 11th International Conference on
Integer Programming and Combinatorial Optimization, Berlin,
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[Ele09] V. Eleutério, Finding approximate solutions for large scale linear
programs, Ph.D. thesis, ETH Zurich, 2009.

[Fre99] R. M. Freund, Introduction to Semidefinite Pro-
gramming (SDP), Lecture notes, 1999, (available at
http://dspace.mit.edu/bitstream/handle/1721.1/35259/15-094
Spring-2002/NR/rdonlyres/Sloan-School-of-Management/15-
094Systems-Optimization–Models-and-ComputationSpring2002
/A849A5EB-FBF7-4631-8B52-CBBC667E74EB/0/sdpintro.pdf,
last accessed on March 1, 2012).

[FS97] Y. Freund and R. Schapire, A decision-theoretic generalization
of on-line learning and an application to boosting, Journal of
Computer and System Sciences 55 (1997), no. 1, 119–139.

[GW95] M. Goemans and D. Williamson, Improved approximation al-
gorithms for Maximum Cut and Satisfiability problems using
Semidefinite Programming, Journal of the Association for Com-
puting Machinery 42 (1995), no. 6, 1115–1145.

[HJ96] R. Horn and Ch. Johnson, Matrix analysis, Cambridge Univer-
sity Press, 1996.

[HNTW09] U.-U. Haus, K. Niermann, K. Truemper, and R. Weismantel,
Logic integer programming models for signaling networks, Jour-
nal of Computational Biology 16 (2009), no. 5, 725–743.

[HUL93] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and
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eds.), Lecture Notes in Computer Science, vol. 3509, Springer,
2005, pp. 152–166.



186 Bibliography

[IPS11] G. Iyengar, D. J. Phillips, and C. Stein, Approximating semidefi-
nite packing programs, SIAM Journal on Optimization 21 (2011),
no. 1, 231–268.

[JL84] W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz
mappings into a Hilbert space, Contemp. Math 26 (1984), 189–
206.

[JNT08] A. Juditsky, A. Nemirovski, and C. Tauvel, Solving variational
inequalities with stochastic Mirror-Prox algorithm, Tech. report,
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