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A B S T R A C T

3D point cloud panoptic segmentation is the combined task to (i) assign each point to a semantic class and
(ii) separate the points in each class into object instances. Recently there has been an increased interest in
such comprehensive 3D scene understanding, building on the rapid advances of semantic segmentation due
to the advent of deep 3D neural networks. Yet, to date there is very little work about panoptic segmentation
of outdoor mobile-mapping data, and no systematic comparisons. The present paper tries to close that gap. It
reviews the building blocks needed to assemble a panoptic segmentation pipeline and the related literature.
Moreover, a modular pipeline is set up to perform comprehensive, systematic experiments to assess the state
of panoptic segmentation in the context of street mapping. As a byproduct, we also provide the first public
dataset for that task, by extending the NPM3D dataset to include instance labels. That dataset and our source
code are publicly available.1We discuss which adaptations are need to adapt current panoptic segmentation
methods to outdoor scenes and large objects. Our study finds that for mobile mapping data, KPConv performs
best but is slower, while PointNet++ is fastest but performs significantly worse. Sparse CNNs are in between.
Regardless of the backbone, instance segmentation by clustering embedding features is better than using shifted
coordinates.
1. Introduction

Semantic segmentation and instance segmentation are two core
tasks of scene understanding. Given densely sampled observations
(e.g., pixels of an image, points of a point cloud), the goal of semantic
segmentation is to assign a semantic category label to each observation.
Instance segmentation aims to separate individual object instances,
which only makes sense for categories that form clearly delineated
objects. The joint task, to generate a complete, coherent scene in-
terpretation in terms of semantic categories and individual objects,
has been termed panoptic segmentation (Kirillov et al., 2019). In urban
mobile mapping, panoptic segmentation has the natural application
to structure raw 3D point clouds into semantically meaningful objects
and surfaces, which are useful for higher-level tasks such as building
inventories of street furniture, or enabling outdoor mobile robots. The
aim of this paper is to establish a state of the art for the panoptic
segmentation of mobile mapping point clouds, and to review the most
promising algorithmic building blocks for that purpose.

In panoptic segmentation, the compact, countable objects (such as
pedestrians and cars) are often called ‘‘things’’, whereas the amorphous
and uncountable regions (such as the road surface) are called ‘‘stuff’’.
For ‘‘stuff’’ categories panoptic segmentation is the same as semantic
segmentation, as they do not form instances: each point is assigned a
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1 https://github.com/bxiang233/PanopticSegForMobileMappingPointClouds

semantically defined category label. Whereas for ‘‘things’’ the model
must assign a semantic label and, additionally, a unique instance label
that distinguishes it from other instances, but does not have a semantic
meaning — instance IDs are arbitrary and all perturbations of the labels
are equally valid. Fig. 1 illustrates the difference between semantic,
instance, and panoptic segmentation.

As shown in Fig. 2, panoptic segmentation is nowadays usually
formulated as a combined classification and clustering task and solved
with deep neural networks. The general architecture is to first extract
a per-point feature encoding with a backbone network, then feed the
encoding into two parallel branches (heads), one that predicts semantic
class probabilities and another one that further transforms the points
such that points on the same instance form compact clusters, achiev-
ing both task simultaneously based on shared features. Historically,
instance segmentation has been developed in 2D image analysis, as an
add-on to semantic segmentation. Consequently, the focus has been on
the design of the instance branch, without questioning the backbone.
No systematic studies exist that investigate how different 3D backbones
support point cloud instance segmentation. Moreover, panoptic seg-
mentation of outdoor scenes has almost exclusively been studied for
sparse, sequential scan data from autonomous driving scenarios like
SemanticKITTI (Behley et al., 2019, 2021) or nuScenes (Caesar et al.,
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Fig. 1. An input point cloud (a), its semantic segmentation (b, per-point semantic labels), instance segmentation (c, per-point instance labels, each label is assigned a random
color), and panoptic segmentation (d, per-point semantic labels and, where applicable, instance labels). In the example, the categories ‘‘ground’’ and ‘‘building’’ are considered
‘‘stuff’’ and not separated into instances.
Fig. 2. Complete overview of the paper.
2020; Fong et al., 2022), often in a real-time scenario. It appears that
panoptic segmentation of dense, mapping-grade point clouds has not
been investigated much.

There are a number of review papers about deep learning for 3D
point clouds. Some review papers attempt a comprehensive overview
of different point cloud analysis tasks (Ioannidou et al., 2017; Liu
et al., 2019; Bello et al., 2020; Li et al., 2020; Lu and Shi, 2020;
Guo et al., 2021), predominantly scene-level classification, segmen-
tation, and object detection. Others concentrate on a single analysis
task (Griffiths and Boehm, 2019; Wu et al., 2021; He et al., 2021b;
Zamanakos et al., 2021; Zhao et al., 2021; Burume and Du, 2021;
Jhaldiyal and Chaudhary, 2022; Diab et al., 2022; Alaba and Ball,
2022). For example, several papers review 3D object detection methods
for autonomous driving (Wu et al., 2021; Zamanakos et al., 2021;
374
Alaba and Ball, 2022), and Burume and Du (2021) focus on instance
segmentation in that scenario. Zhao et al. (2021) did a survey to explore
the effects of different traditional point cloud clustering algorithms for
LiDAR panoptic segmentation task. To date, there has not been a review
that specifically addresses the panoptic segmentation task for dense,
mapping-grade 3D LiDAR point clouds. The present work aims to fill
that gap. Besides systematically introducing the task and discussing
important representative works, it also provides a unified experimental
test bed and comparative results for reference.

Following the literature about deep learning for point clouds (Grif-
fiths and Boehm, 2019; Li et al., 2020; Wu et al., 2021; He et al., 2021b;
Zamanakos et al., 2021; Diab et al., 2022; Alaba and Ball, 2022), 3D
backbone networks are classified into four classes: voxel-based, point-
based, 2D projection-based, and other presentations, which will be
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Fig. 3. Voxel-based representations. Three voxel-based data structures for point clouds are compared: dense grid, octree, and sparse tensor. For clarity, they are illustrated in 2D
pace. (a) Dense grids correspond to explicitly storing all voxels as a dense tensor (in 2D, a matrix). For the octree, like the one shown in (b), space is hierarchically subdivided,
plitting only voxels that contain points. The resulting tree can be efficiently represented by a bit-string. The sparse tensor uses the COO format as shown in (c), with one matrix
hat stores the coordinates of occupied voxels and another one storing the feature values only for those voxels (yellow areas). (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)
iscussed in Section 2. For the further investigation of dense outdoor
oint cloud panoptic segmentation, the paper focuses on three repre-
entative backbone networks: PointNet++ (Qi et al., 2017b), Sparse
NN (Choy et al., 2019), and KPConv (Thomas et al., 2019). The
hoice is motivated by the following considerations. First, PointNet++
nd Sparse CNN are currently the most widely used point cloud back-
ones (see Table 2). Second, KPConv and Sparse CNN are particularly
uccessful backbones for segmentation tasks, with KPConv achieving
tate-of-the-art performance for semantic segmentation on the NPM3D
ataset (Roynard et al., 2018), while Sparse CNN is the most widely
sed backbone for state-of-the-art instance segmentation of indoor
oint clouds (Jiang et al., 2020b; Chen et al., 2021; Vu et al., 2022).
he three types of backbones are described in detail in Section 2.

Section 3 of the paper distinguishes top-down and bottom-up strate-
ies, like other articles about 3D point cloud instance segmentation (He
t al., 2021b; Burume and Du, 2021). Additionally, the present paper
ntroduces and summarizes the two most commonly used strategies
or bottom-up methods (Table 2 and Section 5.1.3), and compares
heir performance in the context of outdoor panoptic segmentation
Section 5.3.2).

So far, there is no outdoor mobile mapping dataset tailored to
anoptic segmentation, as existing datasets lack instance labels. Ex-
sting outdoor datasets of LiDAR point clouds with instance labels
re dominated by the autonomous driving setting. I.e., the points are
omparatively sparse, moreover instance labels are typically limited to
edestrians and vehicles (see Section 4.2.1), whereas for mapping a
ider variety of object classes should be instantiated, such as trees,
oles, street lamps and so on. For the present work, this meant on
he one hand that a new dataset had to be generated, which we do
y adding instance labels to an existing benchmark, see Section 4.2.1.
n the other hand, the lack of a common dataset also meant that for

he review it was not possible to collect the results of different methods
rom the literature. Instead, a common code base for different methods
as implemented and applied on the new dataset to enable informative
nd fair comparisons. In summary, the main contributions of the present

paper are:

• A detailed literature review about 3D point cloud panoptic seg-
mentation, grouped into four sub-topics: datasets, 3D backbone
networks for semantic segmentation, strategies for instance seg-
mentation, and evaluation metrics. See also Fig. 2.

• An experimental evaluation and comparison in the outdoor mo-
bile mapping setting. The evaluation concentrates on the bottom-
up segmentation and grouping strategy (see Section 3), which so
far proved to be the most successful approach and dominates the
leaderboards for indoor datasets. To that end, a modular panoptic
segmentation pipeline (Section 5.1) was created that allows one to
combine different feature extraction and segmentation strategies.
Extensive experiments are run on the NPM3D dataset (Roynard
et al., 2018) with three different, representative backbones and
two representative instance clustering approaches (Section 5.3).
375
• The instance-annotated dataset and all source code will be pub-
lished, so as to expedite further research and promote the devel-
opment of 3D panoptic segmentation. So far, there do not seem to
be any other works that systematically investigate modern deep
learning methods for panoptic segmentation of mobile mapping
point clouds.

2. Backbone networks for 3D point cloud analysis

Traditionally, 3D point cloud analysis has relied on manually de-
signed features that capture the local point distribution (and thus,
the surface shape) around a point (Niemeyer et al., 2012; Li et al.,
2016; Zhu et al., 2017). This works well for categories with sufficiently
obvious, distinctive features, but much time and effort are required to
design features, select appropriate neighborhoods, etc. Such approaches
no longer reach state-of-the-art performance, mostly because it is not
clear how to manually design a good representation of contextual
relations over larger contexts. Furthermore, the handcrafted features
tuned for a point cloud with specific sensing characteristics typically
fail to handle other types of scenes or other sensor settings, meaning
that the tedious manual feature engineering must be repeated.

At present, deep learning is the standard technology to automat-
ically extract discriminative, robust feature representations from raw
data. Remarkable results have been achieved for 2D image classifica-
tion, semantic segmentation, object detection, and more (LeCun et al.,
2015). Motivated by those results and a growing number of public
3D point cloud datasets, researchers have developed powerful deep
learning algorithms to also extract features for 3D point cloud analy-
sis (Ioannidou et al., 2017). These existing 3D ‘‘backbone’’ networks can
be grouped into three main schools, namely voxel-based networks, 2D
projection-based networks, and point-based networks. Representative
examples are summarized in Table 1.

2.1. Voxel-based networks

The points in a point cloud are generally unstructured and have
irregular density. These characteristics are quite different from images,
where relationships between pixels can be captured with regular, dis-
crete convolution kernels. The simplest and most direct strategy to ap-
ply deep learning to 3D point clouds is to voxelise the underlying point
data and use 3D Convolutional Neural Networks (CNNs) (Maturana and
Scherer, 2015) (Figs. 3(a) and 4(a)). Perhaps the first attempt to use
CNNs for semantic segmentation of outdoor point clouds was Huang
and You (2016). However, when moving to a voxel representation
the computational cost and, more importantly, the memory demand
increases cubically with the resolution, thus limiting the practical
usability of 3D CNNs (Riegler et al., 2017). To bring down the memory
requirements, hierarchical and/or sparse voxel representations have
been developed. Hierarchical volumetric models (Riegler et al., 2017;
Wang et al., 2017) use data structures like octrees to focus memory

allocation and computation on the relevant regions where there are
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Fig. 4. Illustration of voxel-based convolutions in different formats. For clarity, they are shown in 2D space. Arrows indicate the direction in which the convolution kernel is
moved, numbers denote the kernels’ sequence order. (a) On a full, dense voxel grid standard discrete convolutions are applied in 3D. (b) The octree evaluates the kernel only
along the borders of large voxels, where the support changes due to adjacent voxels. (c) On sparse tensors convolutions are evaluated only at non-empty locations.
points (Figs. 3(b) and 4(b)). The same principle, to omit the vast
amount of empty 3D space, is also the basis of methods that employ
sparse tensors (Graham et al., 2018; Choy et al., 2019; Tang et al.,
2020) and associated functions that only perform calculations for non-
empty voxels (Figs. 3(c) and 4(c)). The Minkowski Engine (Choy et al.,
2019) and the SparseConvNet library (Graham et al., 2018) are two
popular software frameworks that support all standard neural network
layers like convolution, pooling and upsampling, for sparse tensors.
Figs. 3 and 4 illustrate how dense voxel grids, octrees and sparse
tensors, respectively, store point clouds and compute convolutions.

2.2. 2D projection-based networks

To avoid the complications of a 3D voxel space, another strategy
are 2D projection-based methods. Their basic idea is to convert the
original 3D point cloud into a regular 2D raster, which can then be
treated with standard 2D CNNs. Variants include single- or multi-view
perspective projections (Lawin et al., 2017; Kalogerakis et al., 2017),
parallel (Tatarchenko et al., 2018) as well as spherical projections (Wu
et al., 2018, 2019). This type of approach tends to work well when the
underlying assumptions are met, e.g., well-behaved surfaces with an
unambiguous normal/tangent (Tatarchenko et al., 2018) or individual
scans (respectively, range images) that, in actual fact, induce a 2D
parametrization.
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2.3. Point-based networks

To side-step the representation change altogether, point-based net-
works directly work on irregular point clouds (Qi et al., 2017a,b;
Hua et al., 2018; Wang et al., 2019a,c; Thomas et al., 2019). The
earliest such method was PointNet (Qi et al., 2017a), where a per-
point multiple-layer perceptron (MLP) is combined with max-pooling
to achieve a global feature invariant to permutations of the points
(Fig. 5(a)). PointNet++ (Qi et al., 2017b) builds upon PointNet and
adds a step-wise hierarchical aggregation to retain more of the spatial
layout (Fig. 5(b)). A different method, more in the spirit of CNNs, is
the kernel point convolution (KPConv, Thomas et al., 2019), which
approximates the 3D convolution in continuous space by interpolation
and also hierarchically aggregates multi-scale features to capture both
local and global information (Fig. 5(c)). It has shown excellent per-
formance on outdoor data, like NPM3D (Roynard et al., 2018) and
Semantic3D (Hackel et al., 2017).

2.4. Other representations

Besides the three main groups described so far, there have been
a few other attempts to process 3D data with reasonable memory
footprint. These include permutohedral lattices (Su et al., 2018; Rosu
et al., 2019), offline grouping into irregular patches, combined with
graph convolutional networks (Landrieu and Simonovsky, 2018), and
hybrid models (Dai and Nießner, 2018; Jaritz et al., 2019).



ISPRS Journal of Photogrammetry and Remote Sensing 203 (2023) 373–391B. Xiang et al.
Fig. 5. Illustration of three point-based backbones. For clarity, the 2D versions are depicted. (1) In PointNet, each input point is processed separately through a shared MLP. All
points are aggregated through global pooling. (2) PointNet++ improves upon PointNet with sampling and grouping operations to create local point sets and gradually aggregate
their features. As a result, PointNet++ generates subsampled point clouds with enhanced representations, enabling efficient processing of large-scale data while preserving important
details and global context. (3) KPConv extends traditional convolutions by defining the kernel weights at arbitrary support points, which additionally can be shifted locally to
adapt to the local point distribution. The computation involves aggregating information from neighboring points within a fixed receptive field, enabling KPConv to extract local
features. Additionally, KPConv incorporates subsampling methods to obtain multi-scale features.
2.5. Semantic segmentation of point clouds

Semantic segmentation assigns each point to a semantic class, with-
out distinguishing different instances within the class. This is accom-
plished by adding a segmentation ‘‘head’’ to the backbone, which
outputs a class distribution for each individual point. Overall, this
results in an encoder–decoder structure: the backbone encodes the
input into a latent representation optimized for classification, and
the classification head decodes that representation into class scores.
For voxel-based, projection-based and sparse tensor-based methods,
the decoder consists of a sequence of transposed convolutions. For
PointNet-style methods, the per-point features and the latent repre-
sentation over a larger spatial context are simply concatenated and
decoded with an MLP.

3. Strategies for instance segmentation

Once reliable backbones for 3D point cloud analysis were available,
a natural next step was to also look into instance segmentation. This
Section reviews the literature on that topic. At a conceptual level,
existing strategies for instance segmentation can be grouped into two
main types: top-down and bottom-up strategies. Fig. 6 illustrates the
difference between the two strategies.

3.1. Top-down strategies

Top-down methods (Yi et al., 2019; Yang et al., 2019; Zhang et al.,
2020b; Liu et al., 2020), sometimes also termed proposal-based meth-
ods, resemble the Mask R-CNN (He et al., 2017) approach to object
detection (Fig. 6(a)). Instance segmentation is implemented as a se-
quence of two steps. First, localize a 3D bounding box of each instance,
with a standard object detector that constructs candidate boxes and
classifies them. Then predict per-point binary instance masks within
each bounding box to obtain the final instance segmentation. Instead
of directly regressing 3D bounding boxes, (Yi et al., 2019) design a
generative model named Generated Shape Proposal Network (GSPN)
to produce 3D proposals with a high probability of being compact ob-
jects. GSPN is integrated into an instance segmentation pipeline called
Region-based PointNet (R-PointNet) that can flexibly refine proposals
generated with GSPN into segmentation masks. Unlike R-PointNet,
which needs two-stage training, 3D-BoNet (Yang et al., 2019) is an end-
to-end network where bounding box detection and instance masking
can be trained simultaneously. It also avoids intensive post-processing
(non-maximum suppression) to prune dense object proposals. For large-
scale outdoor point clouds, Zhang et al. (2020b) proposed a simple
top-down instance segmentation that encodes a 2D grid-level feature
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representation in a birds-eye view and predicts the planimetric object
center and the height limits for each foreground grid location. Then it
merges locations with similar object centers into instances.

Proposal-based methods are less prone to over-segmenting
instances, thanks to the explicit object detector. The flip-side is that
they cannot recover missed detections, and are challenged by over-
lapping detections. Typically their multi-stage inference and post-
processing also lead to comparatively slow runtimes.

3.2. Bottom-up strategies

Bottom-up instance segmentation strategies (also called proposal-
free or clustering-based methods, as shown in Fig. 6(b)) tend to outper-
form top-down methods, and have thus become popular (Wang et al.,
2018; Liu and Furukawa, 2019; Liang et al., 2019; Wang et al., 2019b;
Pham et al., 2019; Elich et al., 2019; Lahoud et al., 2019; Han et al.,
2020; Zhang et al., 2020a; Wang et al., 2020). Their basic principle is to
map points to a discriminative representation space where points from
the same instance have similar features, whereas points on different ob-
jects have dissimilar features. Instances are then retrieved by clustering
in that space (Comaniciu and Meer, 2002; Campello et al., 2013; Neven
et al., 2019; Hong et al., 2021), as illustrated in Fig. 6(b). In the perhaps
earliest attempt, SGPN (Wang et al., 2018) learns a similarity matrix
that indicates pairwise similarities between points, then merges points
with high similarity with a heuristic grouping algorithm. The size of the
similarity matrix grows quadratically with the number of input points,
which limits the size of point clouds that can be processed. In order
to simultaneously segment instances and semantic object categories,
several methods (Wang et al., 2019b; Pham et al., 2019; Elich et al.,
2019; Lahoud et al., 2019; Han et al., 2020; He et al., 2020; Zhang
and Wonka, 2021) employ parallel decoder branches for the point
classification and the discriminative instance embedding. There are
a number of variants of this general idea, e.g., Wang et al. (2019b)
introduce a linking module between the two decoder branches to
exploit synergies between semantic and instance segmentation. Pham
et al. (2019) employ a multi-value conditional random field model to
jointly optimize instance and semantic labels. Lahoud et al. (2019)
estimate vectors pointing to the potential instance centers, as in the
generalized Hough transform, to support the subsequent clustering step.
In addition to the 3D offset vector, OccuSeg (Han et al., 2020) also
learns occupancy signals, which can guide the subsequent graph-based
clustering towards better instance segmentation. Elich et al. (2019)
integrate 2D birds-eye-view information into a network for joint 3D
semantic and instance segmentation, in order to better exploit global
context. Zhang and Wonka (2021) introduce a probabilistic embedding
instead of a deterministic one, and also propose a new loss function
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Table 1
Summary of different types of representative backbone networks for 3D point clouds.

Representatives Methodology Advantages Disadvantages

Voxel-based

3D CNN
(Maturana and
Scherer, 2015;
Huang and You,
2016)

Encode 3D shapes by occupancy
voxels.

- Simplicity: Direct application of
3D CNNs to 3D point clouds in
voxel grids.
- Searching for neighboring points
takes only (1) operations.

- High computational cost due to
large number of voxels.
Requirements increase cubically
by (𝑛3) with resolution.
- Low efficiency due to high
sparsity of the voxel grid.
- Quantization errors due to
voxelization of the point cloud.

- OctNet (Riegler
et al., 2017)
- O-CNN (Wang
et al., 2017)

Octree instead of grid
representation. Hierarchically
divide 3D space into a set of
unbalanced octants based on
point cloud density.

- Much more efficient: Storage and
computational time reduces to
(𝑛2) compared to grid-based
methods.
- Improved performance for
high-resolution 3D data when
compared to dense voxel-based
(3D CNN) models.

- Slower search time compared to
voxel grids with (𝑙𝑜𝑔(𝑛)) due to
superimposed tree structure.
- Input size limitation. Due to the
restriction of the maximal depth
of an octree (i.e., three) (Xiang
et al., 2019), hindering proper
grid size for large-scale
applications.

Sparse tensor
CNN (Graham
et al., 2018;
Choy et al.,
2019)

An N-dimensional extension of a
sparse matrix that only saves
information on the non-empty
region of the space.

- Computational efficiency: Fast
computation due to reduced
computations on unoccupied
elements in the voxel grid.
- Memory efficiency: 3D sparse
tensors enable the representation
of large sparse arrays in a
compact format, reducing
memory requirements.
- Highly optimized frameworks.
Minkowski Engine (Choy et al.,
2019) and SparseConvNet, which
support all standard CNN
operations (Graham et al., 2018)

Quantization errors. All
voxel-based methods lose some
geometric properties of 3D
objects, particularly the intrinsic
characteristics of patterns and
surfaces.

2D
projection-
based

- Multi views
(Lawin et al.,
2017)
- Bird’s-eye view
(Zhang et al.,
2018)
- Spherical
projection (Wu
et al., 2018,
2019)

Projects 3D point clouds into
images and applies 2D CNNs to
them.

- 2D network utilization:. Fully
compatible with well-established
2D CNNs and pretrained networks
on image datasets.
- Efficiency: Same requirements as
2D CNNs with (𝑛2) time and
space complexity. Suitable for
real-time applications.

- Occlusions and Distortions: Many
projection-related errors appear,
including various types of
occlusions and projective
distortions.
- Hyperparameters: Adds additional
hyperparameters for camera and
poses.

Point-based PointNet (Qi
et al., 2017a)

Learns to project 3D points
together with point attributes
independently into a common
feature space; Features are then
aggregated using pooling for
further processing.

- No preprocessing required: Works
directly on point clouds and is
invariant to point ordering.
- Efficiency: Very low time and
space complexity of (𝑛), which
increases linear with the number
of points.

Inaccurate: PointNet cannot
capture fine-grained patterns and
local structure, especially in large
scenes. Independent feature
representation of entire point
cloud is aggregated into a single
vector, resulting in a loss of
information.

(continued on next page)
for the clustering step, with which they achieved good performance on
the PartNet dataset (Mo et al., 2019). In order to mitigate imbalances
in the data, which tend to harm the instance segmentation for rare
categories, He et al. (2020) propose a memory-augmented network to
memorize representative patterns.

Recently, a number of studies have applied the bottom-up approach
to outdoor dataset (Milioto et al., 2020; Hong et al., 2021; Zhou et al.,
2021; Zhao et al., 2021; Li et al., 2021). In general, these are variants
of the two-branch architecture described above. For instance, Milioto
et al. (2020) and Li et al. (2021) used spherical projection to implement
a real-time, panoptic segmentation algorithm for the autonomous driv-
ing setting, while Panoptic-PolarNet (Zhou et al., 2021) used a polar
bird’s eye view. Their instance branch directly regresses the instance’s
center. DS-Net (Hong et al., 2021) utilizes a dynamic shift module
that can automatically adjust the kernel function to different point
densities and instance sizes. All these works target autonomous driving
scenarios with sparse, vehicle-mounted panoramic LiDAR, in particular
the popular SemanticKITTI (Behley et al., 2019) and nuScenes (Caesar
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et al., 2020) datasets. To our knowledge, none of them has been tuned
to panoptic segmentation of dense, mobile-mapping type point clouds,
neither have they been evaluated on such datasets, most prominently
NPM3D (Roynard et al., 2018).

Compared to the 2D image case, 3D instance segmentation is not as
mature, and there is still ample room for improvement. Even though
discriminative per-point embedding features followed by clustering
have emerged as the mainstream approach, there still are a number
of open questions. One elementary issue is that object instances in 3D
scans vary greatly in size and point density, leading to over- and/or
under-segmentation when using fixed clustering parameters (e.g., the
bandwidth 𝐵𝑤 in the case of mean-shift Comaniciu and Meer, 2002).
Therefore, there recently have been attempts to improve the clustering
step (Engelmann et al., 2020; Jiang et al., 2020b,a; He et al., 2021a;
Chen et al., 2021; Liang et al., 2021). The process usually starts by
obtaining a sufficient number of instance candidates, which are then
subject to various merging, pruning and de-duplicating operations to
obtain the final instances. E.g., PointGroup (Jiang et al., 2020b) merges
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Table 1 (continued).
Representatives Methodology Advantages Disadvantages

Point-based

PointNet++ (Qi
et al., 2017b)

Hierarchical application of mini
PointNets on local 3D
neighborhoods. Every layer
applies PointNets on local 3D
regions, which are then
aggregated, grouped and passed
to the following layer.

Multi-scale features. It extracts
local features for points at
different scales, thus improving
the accuracy over PointNet.

- Information loss. Although it
treats points independently at
local scales in order to maintain
permutation invariance, this
independence ignores the
geometric relationships between
points and their neighbors,
resulting in the absence of local
features.
- Relative complexity. It is more
complex than PointNet and has
more parameters. It is 3 times (or
more) slower than PointNet.

KPConv (Thomas
et al., 2019)

KPconv is a point convolution in
3D. It first builds a radius graph
pyramid on the 3D input point
cloud by a combination of local
neighborhood search and regular
grid subsampling. Then the graph
is processed by applying spatial
convolution on the local 𝑘
neighbors of each 3D point. It
includes a version with a
deformable kernels.

- No preprocessing required: Works
directly on point clouds.
- Accuracy. Outperforms
traditional convolutional networks
in 3D object classification and
segmentation tasks.
- Density Robustness: It is more
robust to varying densities
because of a regular subsampling
strategy.

Computational complexity. KPConv
has a higher computational
complexity due to the local
neighborhood search.
Fig. 6. Illustration of top-down (first row) and bottom-up (second row) strategies for instance segmentation.
clusters based on both their original and embedded coordinates to
increase variety, scores the resulting instance candidates with a learned
ScoreNet, then runs non-maximum suppression to prune overlapping
candidates. 3D-MPA (Engelmann et al., 2020) and HAIS (Chen et al.,
2021) favor aggregating candidates over non-maxima suppression. 3D-
MPA generates multiple instance candidates by randomly sampling
from the predicted instance centers, then constructs a graph convo-
lutional network to allow for information exchange between adjacent
candidates and find the best aggregation. Like the previously discussed
methods, HAIS (Chen et al., 2021) clusters points into preliminary
instance candidates based on semantics and location, then each can-
didate attempts to absorb nearby ones with a dynamic bandwidth that
is proportional to its initial size. Finally, a neural network again acts
as a score function to select instances. DyCo3D (He et al., 2021a)
and SSTNet (Liang et al., 2021) also follow similar strategies. After
obtaining the preliminary instance candidates, DyCo3D dynamically
generates a filter to predict the binary instance mask for each candi-
date. Instead of directly clustering the points to generate preliminary
379
instance candidates, SSTNet first generates geometrically homogeneous
super-points, which are then linked into a tree. That tree serves as a
basis for divisive grouping to find instance candidates, which are again
refined by pruning and a scoring network. The SoftGroup network (Vu
et al., 2022) also made improvements based on HAIS. In the clustering
phase, each point is not first assigned one semantic class then clustered.
Instead, a point may be associated with multiple possible semantic
classes and, as a result, may belong to clusters in multiple classes. By
doing so, the effects of semantic classification errors on subsequent
instance segmentation will be mitigated. ASNet (Jiang et al., 2020a)
converts the point clustering problem into an assignment problem,
i.e., it samples 𝑘 instance candidates and predicts, for each point,
which of those candidates it belongs to. Note that at training time
this involves bipartite matching (Kuhn, 1955) between the predicted
and true instance centers, before one can compute their cross-entropy.
The method also features a suppression module that learns to remove
redundant candidates.
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3.3. Other strategies

Panoster (Gasperini et al., 2021) outputs instance IDs directly,
without having to sample or cluster points. The trick is to construct a
softmax-based confusion matrix between real and predicted instances,
and then use an impurity loss to boost the correlation between real
and predicted values, together with a fragmentation loss to discourage
instances with few points. ICM-3D (Chu et al., 2021) reformulates
the instance segmentation problem into a classification problem in-
spired by SOLO (Wang et al., 2022), an effective 2D instance seg-
mentation method. It eliminates additional clustering step to extract
candidates, and avoids using non-maximum suppression to remove
duplicate candidates. However, so far, this strategy is not competitive
with clustering-based approaches in terms of segmentation quality.

Recently, the success of transformers for 2D segmentation has in-
spired a few works that employ transformers for 3D instance seg-
mentation (Liu et al., 2022; Sun et al., 2022; Schult et al., 2023).
They establish a query decoder that directly generates semantic classes,
scores, and instance mask predictions. The predicted masks and ground
truth masks are automatically associated using bipartite matching,
enabling end-to-end training. Transformers achieve competitive perfor-
mance, but have high computational overhead due to the complexity
of the attention mechanism and the associated increase in the number
of trainable parameters. How to more efficiently use the attention
mechanism and find a good trade-off between efficiency and accuracy
may be an interesting further direction for 3D instance segmentation.

4. Evaluation metrics and datasets

4.1. Evaluation metrics

Depending on the application, it may be more important to retrieve
scene semantics or to correctly delineate instances. Different evaluation
metrics are suited for the two subtasks of semantic segmentation and
instance segmentation, and for the joint task of panoptic segmentation.
For a comprehensive evaluation, all performance metrics are computed
in the following experiments.

Evaluation of semantic segmentation: Common metrics for semantic
segmentation include overall accuracy (oAcc), which is however biased
towards classes with many points; and the mean Intersection-over-
Union (mIoU) over all categories. With 𝑁 the number of total points, 𝐶
the number of categories, TP𝑖 the number of points correctly assigned
o semantic category 𝑖, GT𝑖 the number of points with true semantic
abel 𝑖, and PRE𝑖 the number of points with predicted semantic label 𝑖,

the metrics are defined as:

oAcc =
∑𝐶

𝑖=1 TP𝑖

𝑁
, mIoU = 1

𝐶

𝐶
∑

𝑖=1

TP𝑖
GT𝑖 + PRE𝑖 − TP𝑖

. (1)

Evaluation of instance segmentation: To evaluate instance segmen-
tation, one first removes all points assigned to ‘‘stuff’’ classes that do
not have distinct instances. For the remaining ‘‘things’’ classes, common
metrics are mean coverage (mCov), mean weighted coverage (mWCov),
mean precision (mPrec), mean recall (mRec) and F1-score. First, one
collects all points that share the same predicted instance label into an
instance prediction. The semantic category of that instance is deter-
mined by majority voting and assigned to all its points. In each category
𝑖, a set of ground truth semantic instances {𝐼gt

𝑗 , 𝑗 ∈ {1,… , 𝑁 𝑖
gt}}, and a

set of predicted instances {𝐼pre
𝑘 , 𝑘 ∈ {1,… , 𝑁 𝑖

pre}} are given. Moreover,
an operator that compares an instance from one set with all instances
in the other and returns the highest intersection-over-union score is
defined as:

maxIoU(𝐼gt
𝑗 ) =

𝑁 𝑖
pre

max
𝑘=1

(

IoU(𝐼gt
𝑗 , 𝐼pre

𝑘 )
)

,

maxIoU(𝐼pre) =
𝑁 𝑖

gt
max

(

IoU(𝐼gt, 𝐼pre)
)

. (2)
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𝑘 𝑗=1 𝑗 𝑘
The coverage in category 𝑖 is then defined as:

Cov𝑖 =
1

𝑁 𝑖
gt

𝑁 𝑖
gt

∑

𝑗=1
maxIoU(𝐼gt

𝑗 ) , WCov𝑖 =
1

𝑁 𝑖
gt

𝑁 𝑖
gt

∑

𝑗=1
𝑤𝑗 ⋅ maxIoU(𝐼gt

𝑗 ) , (3)

where |𝐼gt
𝑗 | is the number of points in instance 𝐼gt

𝑗 , and the weight

𝑤𝑗 = |𝐼gt
𝑗 |∕

∑
𝑁 𝑖

gt
𝑚=1 |𝐼

gt
𝑚 |. For the further scores, one first discards all

predicted instances that have maxIoU(𝐼pre
𝑘 ) < 0.5, to obtain the set of

valid predictions {𝐼val
𝑙 , 𝑙 ∈ [1,… , 𝑁 𝑖

val]}. With the number 𝑁 𝑖
val of valid

predictions, the precision and recall in category 𝑖 are defined as

Prec𝑖 =
𝑁 𝑖

val
𝑁 𝑖

pre
, Rec𝑖 =

𝑁 𝑖
val

𝑁 𝑖
gt

. (4)

The overall metrics are then found by computing the means across all
categories:

mCov = 1
𝐶

𝐶
∑

𝑖=1
Cov𝑖 , mWCov = 1

𝐶

𝐶
∑

𝑖=1
WCov𝑖 , (5)

mPrec = 1
𝐶

𝐶
∑

𝑖=1
Prec𝑖 , mRec = 1

𝐶

𝐶
∑

𝑖=1
Rec𝑖 , (6)

and the F1-score is calculated in the usual manner as

F1 = 2 ⋅ mPrec ⋅ mRec
mPrec + mRec . (7)

Evaluation of panoptic segmentation: For panoptic segmentation, it
is natural to also adopt the metrics proposed for the 2D image version
of the task, namely panoptic quality (PQ), segmentation quality (SQ),
recognition quality (RQ), and PQ† (Kirillov et al., 2019; Porzi et al.,
2019). Again one first computes the scores separately per semantic
category 𝑖, regarding all points as a single, big instance for the ‘‘stuff’’
categories. For the segmentation quality, one accumulates the IoU of
all true positive instances:

SQ𝑖 =
1

𝑁 𝑖
val

𝑁 𝑖
val

∑

𝑙=1
maxIoU(𝐼val

𝑙 ) . (8)

The recognition quality is simply the per-category F1-score,

RQ𝑖 = F1𝑖 =
2 ⋅ Prec𝑖 ⋅ Rec𝑖
Prec𝑖 + Rec𝑖

, (9)

and the panoptic quality combines the two previous metrics into a
single number:

PQ𝑖 = SQ𝑖 ⋅ RQ𝑖 . (10)

Note that for each ‘‘stuff’’ class there can be at most 1 ground truth
instance and 1 predicted instance in a point cloud. Hence the SQ, RQ
and PQ metrics are not properly defined for ‘‘stuff’’ classes with IoU
below 0.5, or penalize them very harshly if set to 0. Porzi et al. (2019)
therefore proposed an improved metric PQ†, which uses PQ for ‘‘things’’
lasses, but replaces it with the simple IoU for ‘‘stuff’’ classes.

Q†𝑖 =

{

IoU(𝐼gt, 𝐼pre) if class 𝑖 is ‘‘stuff’’
PQ𝑖 otherwise .

(11)

n case the ‘‘stuff’’ classes have sufficient overlap to be valid, the
ifference between PQ and PQ† is small, which is always the case in
ur experiments. Nevertheless both are quoted for completeness.

As before, the final panoptic metrics are calculated by averaging the
espective per-category scores over all semantic categories:

Q = 1
𝐶

𝐶
∑

𝑖=1
SQ𝑖 , RQ = 1

𝐶

𝐶
∑

𝑖=1
RQ𝑖 , PQ = 1

𝐶

𝐶
∑

𝑖=1
PQ𝑖 ,

PQ† = 1
𝐶
∑

PQ†𝑖 . (12)

𝐶 𝑖=1
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4.2. Dataset

This section briefly introduces a number of popular, publicly avail-
able 3D point cloud datasets suitable for training and testing panop-
tic segmentation. A distinction is made between indoor and outdoor
datasets, which have rather different characteristics in terms of both
scene content and sensor parameters.

4.2.1. Outdoor datasets
NPM3D (Roynard et al., 2018) is a public benchmark for point cloud

semantic segmentation, with 10 classes including: ground, building,
pole (road sign and traffic light), bollard, trash can, barrier, pedestrian,
car, natural (vegetation) and unclassified. Results are evaluated only
w.r.t. 9 classes, disregarding the ‘‘unclassified’’ label. The data has
been captured with a mapping-grade mobile laser scanning system in
different cities in France. There are 4 regions designated for training,
all captured in Paris and Lille; and 3 regions for testing, captured in
Dijon and Ajaccio. The standard 10-class version described above has
actually been derived from a more fine-grained version of the dataset
by keeping only the most frequent labels. The original annotations
feature 50 different semantic classes (most of which are very rare),
and also individual object instance labels for the training regions. For
panoptic segmentation, a new version has been generated that still
uses the 10 semantic category labels listed above, but also includes in-
stance labels (available at https://doi.org/10.5281/zenodo.8188390).
The classes ground, building and barrier are considered ‘‘stuff’’ and are
not separated into instances. As no instance labels are available for the
3 test regions, our version for panoptic (or pure instance) segmentation
only contains 4 different regions from Paris and Lille. Instead of a fixed
training/test split all experiments therefore use 4-fold cross-validation.

Other outdoor datasets for panoptic segmentation exist, which tar-
get the rather specific situation of autonomous driving. They have a
very different sensing geometry, namely sequences of individual, sparse
32-beam panorama scans, and are thus not as suitable for our target
application of mobile mapping. SemanticKITTI (Behley et al., 2019,
021) provides annotations for 22 scenes with 28 semantic classes,
or a total of 23′201 scans for training, and 20′351 scans for testing.
uScenes (Caesar et al., 2020; Fong et al., 2022) is a similar dataset of
uch larger scale featuring 16 classes (10 ‘‘things’’ and 6 ‘‘stuff’’), with
000 scenes collected in Singapore and Boston, totaling 300k scans.

.2.2. Indoor datasets
S3DIS (Armeni et al., 2016), the ‘‘Stanford 3D Indoor Scene

ataset’’, contains 6 large-scale indoor areas with a total of 271 rooms.
ata were collected in three different office/university buildings using

he Matterport scanner.2 In total the colored 3D point clouds have
696M points. Each point is annotated with one out of 13 semantic
ategories and an instance ID. There are two common experimental
rotocols: one uses area 5 as a fixed test set, the other one employs
-fold cross-validation. S3DIS is perhaps the most widely used indoor
ataset for instance segmentation, and among the datasets that provide
nstance annotations arguably also the most relevant one for mobile
apping in terms of data quality. Hence, it is used for complementary

ndoor experiments, see the Appendix A.2.
Other indoor datasets for panoptic segmentation include Scan-

et (Dai et al., 2017), a collection of labeled voxels (rather than
oints). The current version, ScanNet v2, has 1513 scans, annotated
ith 20 semantic classes (18 ‘‘things’’ and 2 ‘‘stuff’’) and instance IDs.
here is a prescribed split into 1201 training scans, 312 validation scans
nd 100 test scans (with private labels). SceneNN (Hua et al., 2016)
s a smaller indoor RGB-D dataset of 100 scenes. Of those, 76 scenes
ave been annotated with 40 semantic categories, split into 56 training
cenes and 20 test scenes.

2 http://matterport.com/.
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A number of recent papers have studied panoptic point cloud seg-
mentation. Among those, the present review focuses on the most suc-
cessful school, namely bottom-up approaches that directly assign in-
stance labels to points and do not rely on dedicated bounding box
detectors. Table 2 presents a summary. According to the motivation
of the present paper (c.f. Section 1), the Table 2 looks at three funda-
mental attributes: (1) the 3D backbone architecture used for feature
extraction, (2) the type of feature representation used for instance
clustering, and (3) the dataset(s) used for evaluation. Methods based
on 2D projection and subsequent feature extraction with 2D backbones
have been omitted, as they have only been used for the autonomous
driving setting, where a natural projection exists from 3D points to 2.5D
scanner coordinates. One can readily see in Table 2 that PointNet++
and sparse voxel CNNs (Submanifold Sparse U-Net and Minkowski
Engine) are the two most popular backbones. Since panoptic segmen-
tation includes semantic segmentation, all methods extract a set of
features optimized for semantic classification, which serve as input
for the corresponding classifier. Additionally, most methods extract
some dedicated representation for instance segmentation, most often
either another set of features, optimized to discriminate instances, or an
offset vector from each point to its associated instance center. Indoor
panoptic segmentation is commonly trained and tested on S3DIS and/or
ScanNet, SceneNN and other (synthetic) datasets are less widespread.
Very few works have addressed outdoor settings, and those which
have are restricted to the sparse, panoramic scans of the autonomous
driving scenario. Instance segmentation of dense, full 3D mobile map-
ping data does not seem to have been attempted with modern, neural
network-based methods.

5. Experiments

5.1. Panoptic segmentation pipeline

For the experiments, our study adopts the bottom-up instance seg-
mentation strategy, due to its superior performance in recent experi-
mental studies (Engelmann et al., 2020; Jiang et al., 2020b,a; He et al.,
2021a; Chen et al., 2021; Liang et al., 2021). A detailed graphical illus-
tration is given in Fig. 7. Notations and descriptions of all parameters
appear in this paper can be found in Table 3.

5.1.1. Input
Mobile mapping point clouds of realistic extent and density are

far too large for processing on current graphics hardware. To reduce
the excessive point density in the near field of the scanner, the raw
data are preprocessed with voxel-grid downsampling, keeping only one
(randomly selected) point per 𝑑×𝑑×𝑑 voxel. Even after downsampling
it is not possible to process larger regions in one piece. Hence, one must
in practice work with local neighborhoods, potentially sacrificing some
long-range context. In this study spherical neighborhoods of a fixed
radius have been used. The set of points inside the sphere, denoted
as P, is transformed to relative coordinates w.r.t. the center point. If
other per-point information shall be used (e.g., RGB color values or
height in absolute scene coordinates), they are appended to the relative
coordinates to form a 𝐾-dimensional input vector 𝐹 per point. For
example, with 𝐾 = 6 the vector 𝐹 contains the relative location of a 3D
point and the RGB information. All possible feature combinations and
hyperparameters are listed in Table 3. The features of the point set P
are denoted 𝐅 =

{

𝐹𝑖
}

∈ R𝑁×𝐾 , with 𝑁 the number of points.
The training stage randomly samples the spheres’ center locations

in the point cloud. Additionally, data augmentation is performed by
random scaling and rotation around the vertical axis, as well as adding
Gaussian noise to the point coordinates. When working with the
PointNet++ backbone, which requires a fixed number of points per
input sphere, random duplication or removal of points are applied to
reach that number. At inference time a regular grid of overlapping
spheres is used, with fixed stride 𝑠 along the three coordinate axes.

https://doi.org/10.5281/zenodo.8188390
http://matterport.com/
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Table 2
Summary of existing work on bottom-up panoptic point cloud segmentation, underlying methods and datasets. Rows sorted in chronological order.

Methods Backbone Features extracted by semantic and
instance segmentation branch

Dataset

Semantic
features

Embedding
features

Offsets Others S3DIS Scan-
net

Se-
manticKITTI

nuScenes Others

ASIS (Wang
et al., 2019b)

PointNet (Qi et al.,
2017a)/PointNet++ (Qi
et al., 2017b)

✓ ✓ ✓ ShapeNet (Yi
et al., 2016)

JSIS3D
(Pham et al.,
2019)

PointNet (Qi et al., 2017a) ✓ ✓ ✓ SceneNN
(Hua et al.,
2016)

MTML
(Lahoud
et al., 2019)

3D convolution network
based on the SSCNet (Song
et al., 2017)

✓ ✓ Direction
embedding
features

✓

MPNet (He
et al., 2020)

PointNet++ (Qi et al.,
2017b)

✓ ✓ ✓ ✓ PartNet (Mo
et al., 2019)

3D-MPA
(Engelmann
et al., 2020)

Minkowski CNN (Choy
et al., 2019)

✓ ✓ ✓ ✓

PointGroup
(Jiang et al.,
2020b)

Submanifold sparse U-Net
(Graham et al., 2018)

✓ ✓ ✓ ✓

OccuSeg
(Han et al.,
2020)

Submanifold sparse U-Net
(Graham et al., 2018)

✓ ✓ ✓ Occupancy
features

✓ ✓ SceneNN
(Hua et al.,
2016)

ASNet (Jiang
et al., 2020a)

PointNet (Qi et al.,
2017a)/PointNet++ (Qi
et al., 2017b)

✓ ✓ 3D instance
centroid and
centroid
distance

✓ SceneNN
(Hua et al.,
2016)

DS-Net (Hong
et al., 2021)

Cylinder 3D (Zhou et al.,
2020)

✓ ✓ ✓ ✓

Panoster
(Gasperini
et al., 2021)

KPConv (Thomas et al.,
2019)/SalsaNext (Cortinhal
et al., 2020)

✓ ✓

DyCo3D (He
et al., 2021a)

Submanifold sparse U-Net
(Graham et al., 2018)

✓ ✓ ✓ ✓

Zhang and
Wonka
(2021)

PointNet++ (Qi et al.,
2017b)

✓ Probabilistic
embedding
features

✓ PartNet (Mo
et al., 2019)

HAIS (Chen
et al., 2021)

Submanifold sparse U-Net
(Graham et al., 2018)

✓ ✓ ✓ ✓

SSTNet
(Liang et al.,
2021)

Submanifold sparse U-Net
(Graham et al., 2018)

✓ ✓ ✓ ✓

SoftGroup
(Vu et al.,
2022)

Submanifold sparse U-Net
(Graham et al., 2018)

✓ ✓ ✓ ✓
5.1.2. Network architecture
Out of the numerous neural network architectures that are nowa-

days available to encode 3D point coordinates (and associated in-
put features) into a predictive latent representation, our study eval-
uates three representative ones as backbones for the experimental
pipeline, see Table 2: PointNet++, denoted as PN(𝑥), is a popular and
widely used architecture, and arguably the best-performing represen-
tative from the first generation of point cloud networks, based on
per-point multi-layer perceptrons (MLPs) with shared weights, rather
than convolutions. Sparse CNN (as implemented in the Minkowski
Engine), denoted as MC(𝑥), is a recent high-performance variant of
standard, discrete convolution on sparse 3D voxel grids. And KPConv,
denoted as KP(𝑥), is the perhaps most elaborate approximation of
convolution in continuous space, sparsified by only sampling the (con-
tinuous) output at the original point locations. In our pipeline the
backbones are interchangeable and operate as a black box module that
turns the input into a per-point feature representation of fixed size
(channel depth). That representation is further fed into two parallel
heads responsible for semantic segmentation and instance segmentation

1
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(Fig. 7). The semantic segmentation head 𝐻 (⋅) predicts, for every
point, the membership probabilities 𝐂𝐏 for all semantic categories. For
the instance segmentation head there are again two variants: 𝐻2(⋅)
transforms the input representation into an embedding feature space 𝐄𝐅
such that points on the same instance form compact clusters; whereas
𝐻3(⋅) instead estimates per-point 3D offset vectors 𝐎 pointing to the
center of its associated instance. All three heads are three-layer MLPs
with the same structure. Their first two layers are linear transforma-
tions with the same number of input and output channels, followed
by Batch Normalization (Ioffe and Szegedy, 2015) and LeakyReLU
activations (Maas et al., 2013). The output size of the third layer
differs between the three heads: for 𝐻1 it is the number 𝐶 of semantic
categories, for 𝐻2 it is the (tunable) dimension of the embedding space,
and for 𝐻3 it is a 3D displacement vector.

5.1.3. Loss functions

Semantic segmentation head: The output of this network branch are
class probabilities 𝐂𝐏 =

{

𝐶𝑃𝑖
}

∈ R𝑁×𝐶 for 𝑁 points and 𝐶 semantic
classes, with 𝑖 ∈ {1,… , 𝑁}. The corresponding loss function 𝐿𝑠 is the

standard cross-entropy between the rows of 𝐂𝐏 and the ground truth



ISPRS Journal of Photogrammetry and Remote Sensing 203 (2023) 373–391B. Xiang et al.
Fig. 7. Proposed panoptic segmentation pipeline for mobile mapping point clouds.
labels 𝑦:

𝐿𝑠 = − 1
𝑁

𝑁
∑

𝑖=1

𝐶
∑

𝑗=1
𝑦𝑖𝑗 𝑙𝑜𝑔(𝐶𝑃 𝑖𝑗 ). (13)

Instance embedding head: The output of this branch 𝐄𝐅 =
{

𝐸𝐹𝑖
}

∈
R𝑁×𝑇 is an embedding of the points in a 𝑇 -dimensional feature space,
optimized such that points on the same object are close to each other
whereas points on different objects are far apart. Following our own
preliminary experiments and recent literature (Wang et al., 2019b;
Engelmann et al., 2020; He et al., 2020), the dimension is set to 𝑇 = 5.
The associated loss 𝐿𝑒 is the discriminative loss function (De Braban-
dere et al., 2017) prevalent in bottom-up instance segmentation (see
383
Table 2):

𝐿𝑒 =𝐿𝑒_𝑣𝑎𝑟 + 𝐿𝑒_𝑑𝑖𝑠𝑡 + 0.001 ⋅ 𝐿𝑒_𝑟𝑒𝑔 , with

𝐿𝑒_𝑣𝑎𝑟 =
1

𝑁𝑔𝑡

𝑁𝑔𝑡
∑

𝑖=1

1
|𝐼𝑔𝑡𝑖 |

|𝐼𝑔𝑡𝑖 |

∑

𝑗=1
[‖𝜇𝑖 − 𝐸𝐹 𝑗‖1 − 𝛿𝑣]2+ ,

𝐿𝑒_𝑑𝑖𝑠𝑡 =
1

𝑁𝑔𝑡(𝑁𝑔𝑡 − 1)

𝑁𝑔𝑡
∑

𝑖𝐴=1

𝑁𝑔𝑡
∑

𝑖𝐵=1
𝑖𝐴≠𝑖𝐵

[2𝛿𝑑 − ‖𝜇𝑖𝐴 − 𝜇𝑖𝐵‖1]
2
+ ,

𝐿𝑒_𝑟𝑒𝑔 = 1
𝑁𝑔𝑡

𝑁𝑔𝑡
∑

𝑖=1
‖𝜇𝑖‖1 .

(14)

𝑁𝑔𝑡 denotes the total number of ground truth instances, |𝐼𝑔𝑡𝑖 | is the
number of points in the 𝑖th ground truth instance 𝐼𝑔𝑡, 𝜇 is the mean
𝑖 𝑖
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Table 3
Notation and description of parameters.

Category Parameter Description

Input

𝑑 Voxel grid size for down-sampling
𝑅 Radius of input spheres
𝑠 Sphere sampling stride during inference
𝑘 Fixed number of points/sphere if using

PointNet++
𝐾 Dimension of input features for vector 𝐹 :

K = 3 … input features are relative
(𝑋, 𝑌 ,𝑍) coordinates,
K = 4 … relative (𝑋, 𝑌 ,𝑍) and original 𝑍,
K = 6 … relative (𝑋, 𝑌 ,𝑍) and RGB,
K = 7 … relative (𝑋, 𝑌 ,𝑍) and original 𝑍
and RGB.

Training
𝑊𝑒 Weight of embedding loss
𝑊𝑜 Weight of offset loss
𝑊𝑟 Weight of regularizer

Thresholds

𝑇ℎ𝑑 Threshold for instance clustering
𝑇ℎ𝑛 Minimum point number for a valid instance
𝑇ℎ𝑏𝑚 Threshold for block merging
𝐵𝑤 Mean-shift kernel bandwidth

embedding of all points in instance 𝐼𝑔𝑡𝑖 , and 𝐸𝐹 𝑗 is the predicted
embedding of point 𝑗 in instance 𝐼𝑔𝑡𝑖 . The operators are ‖ ⋅‖1 for the 𝐿1

Manhattan) distance and [𝑥]+ = max(0, 𝑥). The hyper-parameters are
hosen as 𝛿𝑣 = 0.5 and 𝛿𝑑 = 1.5.

Instance offset head: Instead of a discriminative embedding, this
branch directly regresses offset vectors 𝐎 =

{

𝑂𝑖
}

∈ R𝑁×3 from each 3D
oint’s location to the centroid of the instance the point belongs to. As
oss function 𝐿𝑜 the one proposed by PointGroup (Jiang et al., 2020b)
s adopted. Besides a standard 𝐿1 regression loss (𝐿𝑜_𝑟𝑒𝑔) between the

predicted and ground truth offsets, the loss also utilizes the cosine
similarity (𝐿𝑜_𝑑𝑖𝑟) to better constrain the direction of the offset:

𝐿𝑜 =𝐿𝑜_𝑟𝑒𝑔 + 𝐿𝑜_𝑑𝑖𝑟 , with

𝐿𝑜_𝑟𝑒𝑔 = 1
∑𝑁𝑔𝑡

𝑖=1 |𝐼
𝑔𝑡
𝑖 |

𝑁𝑔𝑡
∑

𝑖=1

|𝐼𝑔𝑡𝑖 |

∑

𝑗=1
‖𝑂𝑗 − (𝐶𝑖 − 𝑃𝑗 )‖1 ,

𝐿𝑜_𝑑𝑖𝑟 = − 1
∑𝑁𝑔𝑡

𝑖=1 |𝐼
𝑔𝑡
𝑖 |

𝑁𝑔𝑡
∑

𝑖=1

|𝐼𝑔𝑡𝑖 |

∑

𝑗=1

𝑂𝑗

‖𝑂𝑗‖2
⋅

𝐶𝑖 − 𝑃𝑗

‖𝐶𝑖 − 𝑃𝑗‖2
.

(15)

Again, 𝑁𝑔𝑡 is the number of ground truth instances and |𝐼𝑔𝑡𝑖 | is the
number of points in instance 𝐼𝑔𝑡𝑖 . Furthermore, 𝑂𝑗 is the predicted offset
from point 𝑗 to the centroid of instance 𝐼𝑔𝑡𝑖 , 𝑃𝑗 are the original 3D
oordinates of point 𝑗, 𝐶𝑖 is the centroid of instance 𝐼𝑔𝑡𝑖 and ‖ ⋅ ‖2 is
he 𝐿2 (Euclidean) distance.

The entire neural network, including the backbone and the predic-
ion heads, is trained from scratch by minimizing a joint loss function

= 𝐿𝑠 +𝑊𝑒 ⋅ 𝐿𝑒 +𝑊𝑜 ⋅ 𝐿𝑜 +𝑊𝑟 ⋅ 𝐿𝑟 , (16)

here 𝐿𝑟 is a standard 𝐿2 regularizer on the network weights. 𝑊𝑒, 𝑊𝑜
nd 𝑊𝑟 denote the weight for each loss term, respectively.

.1.4. Post-processing
During inference, a sliding-window scheme is employed, with

egularly-spaced spheres with a stride 𝑠, chosen such that adjacent
pheres overlap and every point in the test set is processed at least
nce. The semantic class probabilities from overlapping spheres are
veraged, and the final semantic segmentation is obtained as the point-
ise argmax over those average scores. Points assigned to a ‘‘stuff’’

lass are removed before instance segmentation. All points assigned
o ‘‘things’’ classes are embedded according to the predictions of the
nstance segmentation head, i.e., either by reading out their feature
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mbedding, or by shifting them in 3D space according to the offset
Table 4
Best parameter settings for the NPM3D dataset.

Category Parameter Best values/default values (unit)

Input

𝑑 0.12 (m)
𝑅 8 (m)
𝑠 8 (m)
𝑘 17 500
𝐾 3 for PointNet++

4 for KPConv and sparse CNN

Training
𝑊𝑒 1
𝑊𝑜 0.1
𝑊𝑟 0

Thresholds

𝑇ℎ𝑑 1.5 ⋅ 𝑑
𝑇ℎ𝑛 10
𝑇ℎ𝑏𝑚 0.01
Bandwidth 0.6

vectors. The embedded points are then clustered into instances. In
line with other authors (Zhao et al., 2021) our results suggest that
conventional clustering as a post-process performs better than learned
clustering within an end-to-end architecture. Like several others (Wang
et al., 2019b; Lahoud et al., 2019; He et al., 2021a) our study finds
mean-shift to be an efficient and reliable clustering algorithm for
the learned instance embedding. On the contrary, and in line with
the literature, connected components search works better to cluster
points based on their shifted coordinates (offset predictions add original
coordinates). To that end, one defines two thresholds 𝑇ℎ𝑑 and 𝑇ℎ𝑛. A
et of points is considered an instance if (i) all points have the same
emantic label, (ii) the Euclidean distances between shifted coordinates
f those points are < 𝑇ℎ𝑑 , and (iii) the number of points in the instance
s > 𝑇ℎ𝑛.

Clusters with too few points are not assigned to any instance at this
tage, their instance labels will be determined later when moving back
rom the subsampled to the original point cloud (see below). The Block-
erging procedure of Wang et al. (2018) is used to reconcile instance

abels between overlapping spheres, except that a threshold 𝑇ℎ𝑏𝑚 on
he IoU turned out to be a better merging criterion than the absolute
umber of common points. The three thresholds (hyper-parameters) are
ixed, with the exception of an obvious (linear) dependency between
ℎ𝑑 and the voxel grid size, see Table 4.

Finally, to obtain a complete panoptic segmentation of the full,
aw point cloud (i.e., undo the voxel-grid sampling), the semantic
abels and instance labels are mapped back to the original points with
earest-neighbor assignment.

.2. Experiment details

The segmentation pipeline has been implemented based on the
orch-Points3D library (Chaton et al., 2020). 4-fold cross-validation
xperiments were conducted on the NPM3D dataset. For each back-
one, the hyper-parameters are tuned to yield the best performance, see
able 4. The corresponding ablation studies are available in Appendix
.1.

In all experiments, the network is trained on a single NVIDIA TITAN
TX GPU for 500 epochs, with SGD with momentum as the optimizer
nd a base learning rate of 0.01. Each epoch comprises 3000 randomly
ampled spheres, using mini-batches of 8 spheres.

.3. Experimental results

Following the pipeline described in Section 5.1 and the experi-
ental details in Section 5.2, this research averaged the results for 4

ross-validation experiments to obtain final results for each backbone.
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4

Table 5
Comparison of three backbones in terms of panoptic segmentation metrics and mIoU for semantic segmentation. For metrics PQ† and mIoU, also the standard deviation (std) over

cross-validation runs is given. Blue indicates which backbone performed best.
Backbone Panoptic segmentation Panoptic segmentation

(‘‘things’’)
Panoptic segmentation
(‘‘stuff’’)

Semantic
segmentation

PQ PQ † ± std RQ SQ PQ RQ SQ PQ RQ SQ mIoU ± std

KPConv 66.4 67.0 ± 2.3 74.4 86.7 60.4 65.8 90.9 78.4 91.6 78.4 74.3 ± 5.2
Sparse CNN 63.0 65.1 ± 2.2 69.9 84.7 57.9 63.2 90.4 73.3 83.3 73.3 73.2 ± 4.0
PointNet++ 40.1 43.3 ± 5.4 45.7 74.5 29.2 35.3 80.7 62.1 66.6 62.1 61.9 ± 6.9
5.3.1. Performance of different backbones
Table 5 shows the quantitative results of the cross-validation exper-

iments on NPM3D, mainly focusing on semantic segmentation mIoU
and panoptic segmentation metrics. The table also records the stan-
dard deviation (std) values of two main metrics: PQ† for panoptic
segmentation and mIoU for semantic segmentation. As illustrated in
Table 5, KPConv outperforms the other two backbones in all metrics.
Sparse CNN has the smallest standard deviations for PQ† and mIoU,
meaning that it is particularly stable across the four cross-validation
folds. The PointNet++ backbone, on the other hand, shows compar-
atively poor performance, in particular when it comes to separating
instances of ‘‘things’’. The experimental results validate the observation
from Table 1, that PointNet++ ignores the geometric relationships
between neighboring points (see Fig. 5), resulting in poor generaliza-
tion performance for large, complex scenes compared to the other two
methods.

Figs. 9(a) and 9(b) show the IoU and PQ† as well as the standard
deviation for each semantic class. Looking at the results, it is clear that
KPConv achieves the highest IoU and PQ† in most semantic classes.
Sparse CNN reached the highest IoU for the pole class and the highest
PQ† for the pedestrian class. This can be visually confirmed by the cor-
responding qualitative results for semantic and instance segmentation
shown in Figs. 8 and 10. In the third row of Fig. 8, the points inside
the black circle marker that should belong to a pole are accurately
segmented only by sparse CNN. A possible explanation is that KPConv
is able to capture more complex structures, while being more sensitive
to noise. For instance, in the example inside the black circle marker
in the third row of Fig. 8, when a street sign with a short pole is
close to the tree crown, KPConv might mistake the street sign for a
protruding part of the tree crown. On the other hand, sparse CNN is
regularized more strictly by the native voxel resolution and therefore
potentially less sensitive (Table 1), so it achieves a better segmentation
in this particular case. Moreover, for moving pedestrians, the collected
data often has motion artifacts (elongated ghosting or tail-like features
in the point cloud). Also these can lead to over-segmentation with
KPConv, due to its higher sensitivity. PointNet++ is relatively poor
for all classes. In the second and third rows, marked by red circles in
Fig. 8, the PointNet++ backbone fails to correctly classify pedestrians,
which is much worse than the other two backbones. In addition, the
PointNet++ backbone often confuses barriers with buildings, see Fig. 8.

The largest standard deviation was observed for the trash can class,
Fig. 9(a), which is due to the poor results of all three backbones for
area 4. It is noted that Area 4 was collected in the city of Paris, while
data for the other three areas was collected in Lille. This causes a larger
domain gap (e.g., differently sized and/or shaped street furniture), and
consequently poorer semantic segmentation in Area 4. As shown by
the black circle markers in the first row of Fig. 8, none of the three
backbones can correctly classify the points belonging to trash cans. The
black circle marker in the second line of Fig. 8 shows a case that can
only be segmented well by KPConv. The natural class gets satisfactory
IoU but very low PQ† values, for all backbones. This is because the
vegetation instances are poorly segmented, especially when trees are
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close to each other and overlap, see first and second lines of Fig. 10.
5.3.2. Comparison between offset and embedding-based clustering
Table 6 shows a comparison between instance (and panoptic) seg-

mentation obtained with either the offset or the embedding head. In
general, instance segmentation results based on embedding features
are significantly better than those based on shifted coordinates for the
KPConv and sparse CNN backbones. In the case of the PointNet++,
performance based on embedding features is only slightly better than
the one with shifted coordinates (2.4% higher PQ†).

Figs. 11(a) and 11(b) show the precision and recall per backbone
and instantiation head. Clustering based on embedding features gen-
erally achieves better instance segmentation precision than shifted
coordinates, except for the bollard class. For the KPConv and sparse
CNN backbones, instance segmentation recall based on embedding
features is also higher or approximately equal to the one based on
shifted coordinates. For the PointNet++ backbone its the opposite, here
the recall is higher if shifted coordinates are used. Fig. 12 compares
both clustering schemes on two example scenes based on the KPConv
backbone. In the first row (Area 1), black circle marker points out
two trash cans that are very close to each other. Here the learned
embedding features can better distinguish them, while the shifted
coordinates are not able to separate them (under-segmentation). The
second row (Area 2) shows a streetlight inside the black circle marker.
It can be seen that the embedding features belonging to this instance
are very compact, and thus the instance can be easily and completely
segmented from other instances. However, clustering based on shifted
coordinates splits the lamp head and the lamp pole into two instances
(over-segmentation). For more visual examples see Fig. 13.

5.3.3. Runtime analysis
Runtime was measured for training and testing to compare the

computational complexity of the different backbones. Table 7 shows
the time required to load the data and to perform the actual computa-
tion for one training epoch. The computation includes the following
operations: forward pass through the complete network, calculation
of losses and gradients, and update of network weights. Data loading
involves unpacking the input data from the data loader and performing
the necessary preprocessing steps. As shown in Table 7, the KPConv
backbone has a longer data loading time because, in addition to the
data augmentation, it requires time to down-sample the point cloud
and precompute neighborhoods on the CPU to speed up the forward
pass.

Table 8 shows the runtime for different inference stages. The
time for the forward pass depends on the backbone network, where
PointNet++ takes the shortest time and Sparse CNN takes the longest.
Instance clustering and block merging are independent of the backbone,
so the time for these two steps given in Table 8 is the average over the
4-fold cross-validation experiments for all three backbones. Clustering
time is measured for embedding features and shifted coordinates.
Clustering of embedding features is done with the mean-shift imple-
mentation of scikit-learn (Pedregosa et al., 2011) which runs on CPU.
Connected-components clustering of shifted coordinates employs the
Torch-Points3D (Chaton et al., 2020) implementation, which uses the
algorithm proposed in PointGroup (Jiang et al., 2020b). Neighborhood
search is done on the GPU, while cluster assignment is done on the CPU.
Overall the time required for clustering based on feature embedding is
almost five times longer than for shifted coordinates.
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Fig. 8. Close-up semantic segmentation results with different backbones, and ground truth. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Fig. 9. Per-class results with 3 different backbones (mean and standard deviation of 4 cross-validation folds).
Table 6
To compare 2 different kinds of features for instance clustering based on 3 backbones on NPM3D dataset by using panoptic segmentation metrics and instance segmentation
metrics. Blue indicates which instance strategy (embedding or offset prediction) performed better, bold font marks the best result per column.

Backbone Instance Instance segmentation Panoptic segmentation Panoptic segmentation (‘‘things’’)

mCov mWCov mPrec mRec F1 PQ PQ† RQ SQ PQ RQ SQ

KPConv Offset 70.5 73.2 48.8 72.6 58.2 60.0 60.7 67.7 85.9 50.9 55.8 89.7
Embed 72.8 76.1 60.3 76.2 67.2 66.4 67.0 74.4 86.7 60.4 65.8 90.9

Sparse CNN Offset 70.1 73.5 52.0 72.9 60.5 59.7 61.8 66.7 84.0 52.9 58.3 89.4
Embed 73.5 77.3 55.7 77.3 64.6 63.0 65.1 69.9 84.7 57.9 63.2 90.4

PointNet++ Offset 54.9 53.9 27.5 58.0 36.3 37.7 40.9 42.6 75.5 25.6 30.6 82.2
Embed 47.8 51.7 30.8 47.5 37.0 40.1 43.3 45.7 74.5 29.2 35.3 80.7
386
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Fig. 10. Some close-up instance segmentation qualitative results based on 3 backbones and ground truth on NPM3D dataset. Different colors represent different instance, and the
colors are randomly generated. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Comparison of instance segmentation precision and recall for each ‘‘things’’ class, based on 3 backbones and 2 types of clustering features.

Fig. 12. Take 2 close-ups of instance segmentation based on KPConv backbone as examples. Column (a) displays the embedding features in 2D space by PCA algorithm, where
the colors are randomly generated and the points of different instances have different colors. (b) Instance segmentation based on the clustering of embedding features, where the
colors of points keep correspondence with column (a). (c) The gray points are the original points, and the colored points indicate the shifted coordinates, where the colors are
randomly generated and the points of different instances have different colors. (d) Instance segmentation based on shifted coordinates clustering. (e) shows the ground truth of
instance segmentation, where the colors are randomly generated and the points of different instances have different colors. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 13. Qualitative results of instance segmentation based on 2 different features and 3 backbone networks. Different colors indicate different instances, and the colors are
randomly generated. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 7
Training time of main stages for three different backbones. All times were measured on the same hardware
(8-core CPU with 4GB of memory per processor core and a single Nvidia Titan RTX GPU). The table shows
the average duration of one epoch.
Backbone Training time (s/epoch)

Computation Data loading Total

KPConv 99.9 755.8 855.6
Sparse CNN 84.6 173.4 258.0
PointNet++ 83.8 142.7 226.5
Table 8
Inference time of main stages for three different backbones on NPM3D dataset. All times were measured with the same hardware (8-core CPU
with 4GB of memory per processor core and a single Nvidia Titan RTX GPU).
Backbone Inference times (s/million points)

Backbone fwd pass Instance clustering Block merging Total
(GPU) (GPU/CPU) (CPU)

Embed Offset Embed Offset

KPConv 5.0 39.1 8.2 1.2 45.3 14.4
Sparse CNN 9.8 39.1 8.2 1.2 50.1 19.2
PointNet++ 3.2 39.1 8.2 1.2 43.5 12.6
6. Conclusions

A comprehensive review has been presented for the task of 3D
panoptic segmentation, including suitable 3D backbone networks, in-
stance segmentation strategies, existing datasets and evaluation met-
rics. So far, a systematic comparison of panoptic segmentation methods
for outdoor mobile mapping point clouds has been lacking. There-
fore, instances have been annotated in the NPM3D dataset, and a
modular panoptic segmentation pipeline has been implemented for
such mobile mapping point clouds, with a choice of three different
backbones representative of different schools of point cloud processing,
and two representative instance segmentation strategies. In a com-
prehensive experimental evaluation, it was found that the KPConv
backbone achieved the highest panoptic segmentation performance,
but also has the highest runtime. PointNet++ has the lowest computa-
tional cost for training and inference, but yields relatively poor results
388
compared to the others. The sparse voxel CNN offers a good trade-off
between computation time and segmentation performance. Moreover,
our experiments showed that for our mobile mapping dataset instance
segmentation by clustering embedding features gives better results than
clustering with shifted coordinates, regardless of the backbone used.
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