
ETH Library

Single-cell phylogenies reveal
changes in the evolutionary rate
within cancer and healthy tissues

Journal Article

Author(s):
Borgsmüller, Nico; Valecha, Monica; Kuipers, Jack; Beerenwinkel, Niko ; Posada, David

Publication date:
2023-09-13

Permanent link:
https://doi.org/10.3929/ethz-b-000631625

Rights / license:
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Originally published in:
Cell Genomics 3(9), https://doi.org/10.1016/j.xgen.2023.100380

Funding acknowledgement:
766030 - Computational ONcology TRaining Alliance (EC)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-0573-6119
https://doi.org/10.3929/ethz-b-000631625
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.xgen.2023.100380
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Article
Single-cell phylogenies re
veal changes in the
evolutionary rate within cancer and healthy tissues
Graphical abstract
Highlights
d Phylogenetic test for varying evolutionary rates in scDNA-seq

data

d Constant rate rejection in most cancer and half of the healthy

datasets analyzed

d Mutation in driver genes in cancer datasets could explain the

rate acceleration
Borgsm€uller et al., 2023, Cell Genomics 3, 100380
September 13, 2023 ª 2023 The Author(s).
https://doi.org/10.1016/j.xgen.2023.100380
Authors

Nico Borgsm€uller, Monica Valecha,

Jack Kuipers, Niko Beerenwinkel,

David Posada

Correspondence
niko.beerenwinkel@bsse.ethz.ch (N.B.),
dposada@uvigo.es (D.P.)

In brief

Borgsm€uller et al. develop a phylogenetic

test of evolutionary rate variation among

cell lineages using scDNA-seq data. In

several normal and most cancer scDNA-

seq datasets analyzed, they reject a

constant evolutionary rate and identify

mutations in driver genes that could

explain the rate acceleration in tumor

tissues.
ll

mailto:niko.beerenwinkel@bsse.ethz.ch
mailto:dposada@uvigo.es
https://doi.org/10.1016/j.xgen.2023.100380
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xgen.2023.100380&domain=pdf


OPEN ACCESS

ll
Article

Single-cell phylogenies reveal
changes in the evolutionary rate
within cancer and healthy tissues
Nico Borgsm€uller,1,2,6 Monica Valecha,3,4,6 Jack Kuipers,1,2 Niko Beerenwinkel,1,2,* and David Posada3,4,5,7,*
1Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
2SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
3CINBIO, Universidade de Vigo, 36310 Vigo, Spain
4Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
5Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310 Vigo, Spain
6These authors contributed equally
7Lead contact

*Correspondence: niko.beerenwinkel@bsse.ethz.ch (N.B.), dposada@uvigo.es (D.P.)
https://doi.org/10.1016/j.xgen.2023.100380
SUMMARY
Cell lineages accumulate somaticmutations during organismal development, potentially leading to patholog-
ical states. The rate of somatic evolution within a cell population can vary due to multiple factors, including
selection, a change in the mutation rate, or differences in the microenvironment. Here, we developed a sta-
tistical test called the Poisson Tree (PT) test to detect varying evolutionary rates among cell lineages,
leveraging the phylogenetic signal of single-cell DNA sequencing (scDNA-seq) data. We applied the PT
test to 24 healthy and cancer samples, rejecting a constant evolutionary rate in 11 out of 15 cancer and
five out of nine healthy scDNA-seq datasets. In six cancer datasets, we identified subclonal mutations in
known driver genes that could explain the rate accelerations of particular cancer lineages. Our findings
demonstrate the efficacy of scDNA-seq for studying somatic evolution and suggest that cell lineages often
evolve at different rates within cancer and healthy tissues.
INTRODUCTION

Somatic evolution is the process by which cell populations accu-

mulate genetic and epigenetic mutations during the lifetime of a

multicellular organism. Recent technological advances have

enabled the study of individual cell lineages, providing a more

detailed picture of how this process unfolds, particularly in hu-

mans.1–3 Understanding somatic evolution has clear implica-

tions regarding development, aging, and disease.4–6

Cancer is one of themost prominent examples of somatic evo-

lution. It has long been recognized as a Darwinian process in

which different cell lineages compete for space and resources,

and only the fittest lineages survive, eventually leading to clonal

cell expansions and tumor progression.7–9 In recent years, ana-

lyses of genomic data from tumor cohorts have demonstrated

that cancer progression is driven primarily bymutations in partic-

ular genes (often referred to as ‘‘driver genes’’) that provide spe-

cific cell lineages with a selective advantage.10–16 However, the

predominant role of selection after malignant transformation is

under debate.17,18 Several authors have proposed that, once es-

tablished, some tumors might evolve neutrally, accumulating

mutations that do not alter cell fitness.19–21 Williams et al.22,23

proposed a test of neutral evolution for bulk tumor sequencing

data based on the observed distribution of the variant allele fre-
Cell
This is an open access article under the CC BY-N
quencies (VAFs) (see also Tung and Durrett24). When they

applied their test to genomic data from 14 tumor types, it failed

to reject neutral evolution in one-third of the 904 datasets

analyzed.22,25 Several studies have questioned these find-

ings,26–29 suggesting that the proportion of tumors that evolve

neutrally is smaller and that selection is the main driver of tumor

progression.

The somatic evolutionary rate is the number of mutations per

time unit acquired by a cell lineage and results from the mutation

rate per cell division times the cell division rate per time unit. If the

evolution of a cell population is neutral, different cell lineages will

evolve at the same rate, accumulating mutations at a constant

pace, as a ‘‘molecular clock.’’30,31 On the other hand, if selection

is acting on a cell population, then the evolutionary rates among

cell lineages will differ.32,33 Once the fittest lineage has outcom-

peted the other lineages, the evolutionary rate within the cell

population will be effectively neutral again until the next selective

event.

In organismal evolutionary biology, deviations from the molec-

ular clock are often interpreted as signals of selection,34–36 but

under the implicit assumption that the (germline) mutation rate

is constant. However, the mutation rate in cancer cells can in-

crease during tumor progression, for example, due to genetic al-

terations in DNA repair pathways.37–42 A change in the somatic
Genomics 3, 100380, September 13, 2023 ª 2023 The Author(s). 1
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mutation rate of particular cell lineages will lead to varying evolu-

tionary rates in the cell population, even under neutral evolution,

possibly leading to false rejections of neutrality by the VAF-

based tests.22,26 Still, the interplay between somatic mutation

rates and selection is complex, and changes in the mutation

rate might, in some cases, result from selection favoring higher

mutability in some genes.37,43

Identifying evolutionary rate changes in cell populations is

therefore critical to understand somatic evolution in cancer

and healthy tissues. However, assessing evolutionary rate varia-

tion from bulk tissue samples is challenging, as millions of cells

are sequenced simultaneously. Cell lineages are mixed in this

case, and their deconvolution is complex and error-prone.44 In

contrast, single-cell DNA sequencing (scDNA-seq) provides im-

mediate information on the genotypes of individual cells. From

scDNA-seq data, it is possible to infer cell phylogenies in which

branch lengths represent the evolutionary rates of the cell line-

ages.45–48 However, scDNA-seq data suffer from technical er-

rors like amplification errors and allele dropout that can result

in spurious mutation calls (false negatives and false positives),49

potentially biasing the estimation of the branch lengths in the cell

phylogeny.

Here, we introduce a test of evolutionary rate variation among

cell lineages based on scDNA-seq data. The Poisson Tree (PT)

test uses single-nucleotide variant (SNV) calls to implement a

phylogenetic likelihood ratio test that accounts for the technical

errors in scDNA-seq data. The null hypothesis of the PT test is

that the evolutionary rate of the sampled cell lineages is con-

stant. Therefore, rejecting the null hypothesis might point to

ongoing selection or changes in the mutation rate within the

sampled cell population.

Using simulated data, we show that the PT test can identify

rate variation among cell lineages while being robust to

scDNA-seq noise.We applied the PT test to 24 scDNA-seq data-

sets from 15 cancer and nine healthy tissue samples, identifying

rate variation among cell lineages in 11 cancer and five healthy

datasets. In six cancer datasets with significant evolutionary

rate variation, we identified mutations in known driver genes on

internal branches of the phylogenetic trees, suggesting that se-

lection could explain the acceleration of the evolutionary rate

of particular cell lineages.

RESULTS

A PT test of evolutionary rate variation
To carry out the PT test, it is necessary to specify as input a ma-

trix of SNVs, a phylogeny of contemporaneously sampled cells,

and scDNA-seq false positive and false negative genotype error

rates (Figures 1A–1C). We first map all SNVs to the branches of

the cell phylogeny and weigh the branches with the probability of

missing true SNVs due to scDNA-seq errors (Figure 1D).

Assuming that the number of SNVs per branch follows a Poisson

distribution, we estimate the likelihood of two competing

models, one with a constant evolutionary rate for all branches

(null hypothesis; Figure 1E) and the other with varying evolu-

tionary rates among branches (alternative hypothesis; Figure 1F).

Under the constant-rate model, branch lengths are constrained,

while they are independent under the varying-rate model.
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Finally, we compare the two models with a likelihood ratio test

(LRT) (Figure 1G). See the STAR Methods for details regarding

the PT test.

The PT test detects evolutionary rate variation reliably
To evaluate the performance of the PT test, we used CellCoal50

to simulate scDNA-seq data with constant or varying evolu-

tionary rates, with and without scDNA-seq errors. In the simula-

tions with scDNA-seq errors, we varied the false negative rate

from 2.5% to 30% while maintaining a fixed false positive rate

of 1% or varied the false positive rate from 0.1% to 2% (see

Huang et al.51) while maintaining a fixed false negative rate of

10%. All simulation runs generated samples of 30 cells and

were repeated 1,000 times. See the STAR Methods for details

regarding the simulation conditions.

In the absence of rate variation among cell lineages and

without scDNA-seq errors, the distribution of pvalues of the PT

test was uniform under the null hypothesis, as expected for an

unbiased test (Figure 2A, first panel). Without evolutionary rate

variation, but with scDNA-seq errors, p values were strongly

shifted toward 1, making the PT test conservative (Figure 2A,

second to fourth panels). With a false negative rate of 30%,

low p values became more common, indicating that the test

may not distinguish between high scDNA-seq error rates and

changes in the evolutionary rate (Figure S1). On the other

hand, even a high false positive rate of 2% did not bias the PT

test toward low p values (Figure S2A). In all cases, the difference

in the p value distributions between using the inferred cell phy-

logeny and scDNA-seq error rates by CellPhy47 (blue) or the

true phylogeny and scDNA-seq error rates (red) was marginal.

Likewise, p value distributions did not change when using in-

fSCITE52 instead of CellPhy to infer the cell tree and the

scDNA-seq error rates (Figure S1).

For comparison, we also applied the molecular clock LRT im-

plemented in PAUP*53,54 and the Poisson dispersion test.55 The

former is typically used in organismal phylogenetics to test for a

constant evolutionary rate among lineages and assumes error-

free data. The latter tests if the number of SNVs per cell is

sampled from a Poisson distribution, ignoring the underlying

cell phylogeny. In our simulations, the PAUP* LRTwas biased to-

ward low p values, even when using the true cell phylogeny and

without scDNA-seq errors (Figure 2B, orange). The p values of

the Poisson dispersion test were biased toward 1 in the absence

of scDNA-seq errors (Figure 2B, green) but became biased to-

ward 0 otherwise, resulting in a high number of false rejections

of the null hypothesis. We concluded that both tests are unsuited

for detecting changes in the evolutionary rate among cell line-

ages from scDNA-seq data.

To assess the power of the PT test, we simulated evolutionary

rate variation by introducing changes in the evolutionary rate of a

given cell lineage. We chose an internal branch with probability

proportional to its length and increased its length and that of all

descendant branches by 23, 53, or 103. To explore the effect

of the sample size, we simulated 100 cells and subsampled 10,

30, 50, 70, and 90 cells, excluding replicateswithout cells affected

by the rate change. As expected, the power of the PT test

increased with more drastic evolutionary rate changes and larger

sample sizes (Figures 2C, and S2B). Without scDNA-seq errors,
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Figure 1. Overview of the PT test of evolutionary rate variation

(A) Single cells are isolated from a tissue, and their genome is amplified and sequenced.

(B and C) Based on the sequencing reads, single-nucleotide variants (SNVs) are called (B) and used to infer a cell phylogeny (C).

(D) SNVs aremapped onto the branches of the cell phylogeny, specifying their length k, and branch weightsw are determined based on how likely an SNV on each

branch might be missed due to single-cell DNA sequencing errors. Branch lengths k are modeled by a Poisson distribution with rate parameter l, where l

represents the total (genome-wide) number of SNVs that occur in a branch.

(E) Under the null model, the evolutionary rate is constant, implying that the cumulative branch length from the root to any cell is expected to be similar, and the

rate parameters l are constrained accordingly.

(F) Under the alternative model, branch lengths are independent and, therefore, can be variable.

(G) The likelihood of the data under the null and the alternative model is computed and compared with a likelihood-ratio test (LRT).
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the power of the PT test was 92%–100% already for 23 rate

changes. With scDNA-seq errors, the power of the PT was above

90% for 53 and 103 rate changes and for sampleswithmore than

10 cells. For the 23 rate change, the power dropped below 50%,

especially for small sample sizes and high error rates. Overall, we

conclude that the PT test can reliably detect changes in the evolu-

tionary rates among cell lineages using scDNA-seq data.

VAF-based selection tests detect evolutionary rate
changes poorly
As selection is one of the main causes for changes in the evolu-

tionary rate among cell lineages, we also explored customized

bulk approaches for comparing neutral and adaptive evolution,

specifically the 1/f test22 and Mobster.23 Both approaches try

to identify lineages with a growth advantage based on the VAF

distribution.

We simulated bulk data at 1003 sequencing depth without

scDNA-seq errors using the same evolutionary rates as for the
single-cell data (250 repetitions each). Under a constant evolu-

tionary rate, the p value distribution of the 1/f test was biased to-

ward 0, resulting in wrong rejections of neutrality in 20% of the

simulations. With a 23–103 increase in the evolutionary rate,

the 1/f test rejected neutrality in nearly 35% of the cases

(Figures 2C, first panel, yellow, and S3A). Mobster wrongly in-

ferred subclonal selection in 73% of the simulations with a con-

stant evolutionary rate and reported subclonal selection in up to

83% of the cases with a rate increase (Figure S3B). A possible

explanation for this finding could be that the extent of rate varia-

tion we simulated, or the number of affected cells, was not large

enough for the VAF-based tests to reject neutrality.

The PT test infers evolutionary rate variation in scDNA-
seq data
We applied the PT test to 24 scDNA-seq datasets (12 whole

genome and 12 whole exome) from 16 patients containing be-

tween 7 and 71 cells (Table 1). Fifteen datasets were derived
Cell Genomics 3, 100380, September 13, 2023 3



Figure 2. The PT test detects evolutionary rate variation reliably

(A) p value distribution of the PT test under a constant evolutionary rate (null hypothesis) for different scDNA-seq false negative (FN) rates, using the true (red) or

inferred (blue) cell phylogeny and the scDNA-seq error rates. The rug plots above each panel display the p values for each replicate (n = 1,000).

(B) p value distribution of PAUP*’s LRT (orange) and the Poisson dispersion test (green) under a constant evolutionary rate for different scDNA-seq FN rates. The

rug plots above each panel display the p values for each replicate (n = 1,000).

(C) Statistical power of the PT test for detecting variable evolutionary rates. Rate changes are introduced by increasing the rate for a given lineage by 23, 53, or

103. Distinct line styles represent different sample sizes (total: 100 cells). In the left panel, the yellow line represents the proportion of bulk datasets in which the 1/f

test rejected neutrality.
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from cancer tissues (blood, bladder, lung, prostate, breast, colo-

rectal [CRC], and renal cancers), and nine were from normal,

healthy tissues. Additionally, all datasets contained a bulk

normal sample, and all but four cancer datasets contained a

bulk tumor sample. Tables S1 and S3 describe these datasets

in detail. We ran the PT test using the cell phylogenies and

scDNA-seq error rates inferred by CellPhy. Then, we mapped

the SNVs to specific branches (see the STARMethods for further

details) and identified cancer-specific driver SNVs using

IntOGen.15

Out of the 24 scDNA-seq datasets, we rejected a constant

evolutionary rate in 11 out of 15 cancer and five out of nine

normal datasets (Figure 3). We found no relationship between

the PT test results and the number of SNVs, cells, or inferred

scDNA-seq false negative rates (Figure S4). If changes in the

evolutionary rate are driven by selection, we might be able to

locate an SNV in a driver gene in one of the internal branches

of the cell phylogenies. Early driver events, i.e., those mapped

to the trunk of the phylogenetic tree (the branch representing

the ancestral lineage to all sampled cancer cells), will likely be

involved in tumor initiation or complete selective sweeps and

therefore do not result in rate changes. Later driver events, map-

ped to internal branches, will result in subclonal selection and,

therefore, in heterogeneous evolutionary rates. As known cancer

driver events also occur in healthy tissues,56–58 we explored their
4 Cell Genomics 3, 100380, September 13, 2023
existence in our normal datasets as a possible explanation for

changes in the evolutionary rate.

In four normal datasets (Lodato-P2-N, Wang-ER+-N, Wu-

CRC0827-N, and Wu-CRC0907-P), the PT test did not reject a

constant rate (Figure 3A). In Wang-ER+-N, we did not detect

driver mutations, while in Lodato-P2-N, all known driver muta-

tions were placed on the trunk. In the polyp dataset Wu-

CRC0907-P, we detected an activating SNV in the oncogene

BRAF, which was not reported in the original study. BRAF acti-

vation is a known early event in CRC tumor initiation,59 indicating

that the polyp might have been malignant already despite being

classified as normal based on histopathology. In Wu-CRC0827-

N, we inferred a PARP4 SNV on an internal branch. PARP4’s

mode of action is labeled as ‘‘ambiguous’’ in IntOGen, and it is

not listed as a driver gene in the Cancer Gene Census.60

The PT test rejected a constant rate in the remaining five

normal datasets (Figure 3B). In Kang-N, we found a known can-

cer driver SNV on an internal branch (present in 9/14 cells),

namely an activation of NCOR2. For Lodato-P1-N, Lodato-P3-

N, and Li-N, we inferred fully ladder-like trees with limited boot-

strap support. Therefore, these results should be interpreted

with caution. In Wang-TNBC-N, only 68 SNVs were called, out

of which 37 were mapped to the trunk. However, despite the

low number of SNVs at internal branches, the PT test did reject

a constant evolutionary rate for this dataset. In the four cancer



Table 1. Poisson Tree (PT) test results and called SNVs in cancer-specific driver genes for scDNA-seq datasets

Dataset Tissue Subset N cell N SNVs FN rate (%)

PT test

(pvalue) Driver SNVs

Trunk Internal br.

Li-C[56] bladder cancer 54 885 11 0.005a SF3B1 ATM

Li-N bladder healthy 8 644 17 <1 3 10�6a – –

Hou-C[57] blood cancer 71 1,387 9 0.082 ATM, PRKD2 –

Wang-ER+-C[58] breast cancer 46 355 4 0.999 PIK3CA, MAP3K1 –

Wang-ER+-N breast healthy 12 300 12 0.231 – –

Wang-TNBC-C[58] breast cancer 15 1,472 10 <1 3 10�6a SPEN, NOTCH2,

NTRK1, ZFHX3

ARID1B, SMAD4,

ERBB4, GNAS

Wang-TNBC-N breast healthy 15 68 3 <1 3 10�6a – –

Alves-L-C[59] colon cancer 22 5,089 2 <1 3 10�6a APC SOX9

Alves-LR-C[59] colon cancer 30 6,850 4 <1 3 10�6a APC, SOX9, MYH9 –

Kang-C[49] colon cancer 30 2,645 6 0.131 NCOR2, CARD11 –

Kang-N colon healthy 9 769 7 <4 3 10�5a – NCOR2

Kozlov-C[48] colon cancer 23 3,503 3 <1 3 10�6a NRAS –

Wu-CRC0827-C[60] colon cancer 50 652 9 <1 3 10�6a – PARP4, NBEA, TP53,

FAT4, TBX3

Wu-CRC0827-P colon cancer 19 379 10 <2 3 10�4a – PARP4

Wu-CRC0827-N colon healthy 15 298 10 0.491 – PARP4

Wu-CRC0907-C[60] colon cancer 49 574 10 <1 3 10�6a – SMARCA4, APC,

GNAS, ARID1A

Wu-CRC0907-P colon healthy 25 181 4 0.336 SMARCA4 BRAF

Xu-C[61] kidney cancer 20 747 4 0.158 – –

Ni-C[62] lung cancer 8 340 20 <1 3 10�6a PIK3CA, RB1, TP53 SETD2

Lodato-P1-N[63] neurons healthy 10 935 5 <4 3 10�4a – –

Lodato-P2-N[63] neurons healthy 15 747 4 0.128 ZNRF3 –

Lodato-P3-N[63] neurons healthy 8 928 9 <1 3 10�4a TET2 –

Su-P1-C[64] prostate cancer 7 23,130 14 <1 3 10�6a – –

Su-P2-C[64] prostate cancer 8 15,394 4 <1 3 10�6a – –

N, number of; SNVs, single-nucleotide variants; FN, false negative; br, branch.
ap values are below a significance level of 0.05 for the PT test.

Article
ll

OPEN ACCESS
datasets Hou-C, Wang-ER+-C, Kang-C, and Xu-C, a constant

rate was not rejected (Figure 3C). We did not identify driver

SNVs on internal branches in any of them. In three datasets

(Hou-C, Wang-ER+-C, and Kang-C), however, we identified

drivers on the trunk, possibly being involved in tumor initiation

or past selective sweeps. For the remaining 11 cancer datasets,

the PT test rejected a constant rate (Figure 3D). In seven of these,

we identified at least one known driver SNV on an internal branch

of the tree. In the remaining four, we identified either no driver

(Su-P1-C and Su-P2-C) or only drivers on the trunk (Alves-LR-

C and Kozlov-C).

Overall, the PT test rejected a constant rate in the majority of

normal datasets, although only a few of them harbored known

cancer driver mutations. In contrast, we identified SNVs in

known driver genes in all but three cancer datasets. In cancer da-

tasets where the PT test did not reject a constant rate, drivers

were absent or placed on the trunk, whereas in seven out of 11

datasets where the PT test reported variable rates, a driver

SNV was mapped to an internal branch, possibly explaining

the change in evolutionary rates.
Additionally, we merged all the SNVs detected for each cell

into a pseudo-bulk dataset and calculated the global non-synon-

ymous over synonymous substitution rate ratios (dN/dS) for 369

cancer driver genes and genome-wide dN/dS ratios for all

genes11 (Table S1). In 11 datasets, out of which seven were

derived from normal tissue, the dN/dS ratio for known drivers

could not be computed, as no or just one SNV was located in

a cancer driver gene. Where computable, the confidence inter-

vals of the dN/dS ratios included 1 or smaller values (Hou-C

and Su-P1-C). Genome-wide dN/dS values could be calculated

for all datasets except Lodato-P3-N. Their confidence intervals

included 1 or only values smaller than 1 (Li-N, Hou-C, Wang-

ER+-C, Wang-ER+-N, Kozlov-C, Xu-C, and Su-P1-C) in all data-

sets, showing no evidence for positive selection.

Bulk selection tests produce ambiguous results on
scDNA-seq data
To compare bulk and single-cell approaches on biological data,

we applied the 1/f test and Mobster to 16 matched tumor bulk

samples (Table S2). Here, we also calculated the global dN/dS
Cell Genomics 3, 100380, September 13, 2023 5
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Figure 3. The PT test infers evolutionary rate variations in scDNA-seq data

(A) In four healthy tissue datasets, we detected no deviation from a constant evolutionary rate. SNVs in known driver genes were absent, located on the trunk, or

present in four cells at most.

(B) In five healthy tissue datasets, we identified variable rates. Three of these showed a ladder-like pattern, meaning that each internal node is an ancestor to at

least one leaf node (Lodato-P1, Lodato P3, and Li-N), and in the Wang-TNBC-N dataset, we called only 68 SNVs and mapped most to the trunk.

(legend continued on next page)

6 Cell Genomics 3, 100380, September 13, 2023
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ratios for cancer driver genes and the genome-wide dN/dS ratios

for all genes. The 1/f test rejected neutrality in six cases, including

three datasets that the PT test did not (Kang-C, Wu-CRC0907-P,

and Xu-C). On the other hand, the 1/f test did not reject neutrality

in four datasetswhere the PT test found evidence for rate variation

(Wu-CRC0827-C, Wang-TNBC-C, Ni-C, and Kozlov-C). These

findings may be limited, as a sequencing depth above 1003 and

cellularity above 0.5, required for the 1/f test to be robust,23 were

only achieved in the Li-BC sample. Mobster only produced results

for three datasets. In the bladder cancer bulk sample correspond-

ing to Li-C, a clone with selective disadvantage (s = �1.1) was in-

ferred, and no clones were inferred in the bulk samples corre-

sponding to Wang-TNBC-C (PT test p value < 1 3 10�6) and

Xu-C (PT testp=0.16). TheglobaldN/dS ratio confidence intervals

forSNVs in the 369driver genes included1.0 inall cancer samples.

Whencalculated for all genes,only theLidataset showedevidence

of positive selection (dN/dS: 1.1–2.7). ThedN/dSconfidence inter-

val for all other datasets included 1.0 or only smaller values (Kang-

BC, Hou-BC1, and Hou-BC2).

DISCUSSION

Somatic evolution plays an important role in multiple aspects of

biology and medicine, including development, aging, and dis-

ease. Recent technological advances have enabled studying

somatic evolution at the single-cell level, where different cell lin-

eages might evolve at distinct rates due to various factors,

including genetic and epigenetic mutations or changes in the

microenvironment. In this work, we have introduced a phyloge-

netic test to detect evolutionary rate variation among cell line-

ages using scDNA-seq data. Our simulations suggest that the

PT test is conservative, even in the presence of scDNA-seq

noise, and that it is more powerful than existing tests assuming

error-free data or using bulk data. When we applied the PT test

to scDNA-seq data, we rejected a constant evolutionary rate in

both healthy and cancer cell populations. In the latter, we identi-

fied potential driver mutations that might be involved in the rate

acceleration of particular tumor lineages.

The observation of distinct tumor cell lineages evolving at

different rates is expected under the prevalent cancer progres-

sion model, in which selection drives the expansion of the fittest

clones.7–9 Househam et al.33 recently leveraged single-colo-

rectal-gland phylogenies to distinguish between neutral evolu-

tion (constant evolutionary rate) and subclonal selection (varying

evolutionary rates), finding putative driver mutations associated

with the latter. In the six scDNA-seq datasets analyzed here, we

also identified potential driver mutations that could explain the

acceleration of particular cell lineages. Some of the mutated

genes, like BRAF or GNAS, regulate cellular proliferation,61,62

while others, e.g., ATM and SETD2, are related to changes in

the mutation rate through their involvement in DNA damage
(C) In four cancer datasets, we did not reject a constant rate. We either identified n

and Wang-ER+-C).

(D) In 11 cancer datasets, we found evidence for variable evolutionary rates. In se

(Wu-CRC0827-C, Wu-CRC0827-P, Alves-L-C, Wu-CRC0907-C, Ni-C, Li-C, Wan

locations. Bootstrap values above 50 are indicated.
repair pathways.63,64 We also detected varying rates in half of

the healthy tissue samples tested. Recent studies have shown

that clonal expansions occur in many healthy tissues56–58 and

that some of these expansions might result from selective pres-

sures65,66 Therefore, finding evolutionary rate variation in some

healthy populations can be expected, although the underlying

mechanisms responsible for this variation are still largely un-

known. At the same time, we could not reject a constant evolu-

tionary rate in four healthy and four cancer datasets. There are

different possible explanations for this result. If the evolutionary

rate is truly constant, it might imply that these populations are

evolving neutrally. Otherwise, failure of the test to detect true

variation in the evolutionary rate might be due to minor differ-

ences in the evolutionary rates among the cell lineages or due

to a limited sample size in terms of cells or mutations.

In recent years, multiple models have been proposed to

explain the various evolutionary trajectories inferred from

genomic data in most cancer types (e.g., Davis et al.,17 Vendra-

min et al.,18 and Williams et al.67). For example, a two-phased

process has been proposed where rapid changes induced by

genome-level alterations alternate with phases of gradual evolu-

tion with changes occurring at the gene level.68,69 Clearly, large

structural events at the chromosomal and genome levels will

often affect the fitness and, therefore, modify the effective

growth rate of the affected cell lineage. Importantly, changes in

the growth rate, regardless of their origin, will also alter the rate

of accumulation of SNVs.

We want to stress that while the PT test assesses differences

in the evolutionary rates among cell lineages using single-cell

SNVs, different causes, despite SNVs themselves, can change

the rate of SNV accumulations. Any somatic events, like large

or small structural variations, epigenetic modifications, or

changes in the transcriptome,70–72 can also alter the cell division

or SNV mutation rate and, therefore, the evolutionary rate of

particular cell lineages. Likewise, changes in the evolutionary

rate can also result from environmental effects and do not neces-

sarily need to have a genetic origin.73 For example, spatial con-

straints,74 cell dormancy,75 or variations in the tumor microenvi-

ronment76 might result in heterogeneous evolutionary rates.

In summary, we introduced a test for the homogeneity of

evolutionary rates among cell lineages. Applying this test, we

found that cell lineages often evolve at different rates within can-

cer and healthy populations and that mutations in driver genes

could explain some of these differences in the case of cancer.

Apart from helping pinpoint cell lineages of particular interest,

testing rate homogeneity could validate tumor age estimates77

or developmental inferences based on a molecular clock.78–80

New methods combining concepts from evolutionary biology

with advances in single-cell technologies, as showcased in this

work, offer great potential to study the evolution of somatic

tissues and the underlying mechanisms.
o driver SNV (Xu-C) or mapped all known drivers to the trunk (Hou-C, Kang-C,

ven of these, we identified at least one known driver SNV on an internal branch

g-TNBC-C). The leaf node shapes correspond with different spatial sampling
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Table 2. CellCoal simulation parameters

Scenario

Constant rate Variable rates

No SNV

errors

Varying FN

errors

Varying FP

errors No SNV errors Varying FN errors

Number of cells 30 30 30 100 100

Genome length 10,000 10,000 10,000 10,000 10,000

Mutation rate 1 3 10�6 1 3 10�6 1 3 10�6 8 3 10�7, 5 3 10�7,

3 3 10�7

8 3 10�7, 5 3 10�7,

3 3 10�7

Rate change factor – – – 23, 53, 103 23, 53, 103

Number of cells subsampled – – – 10, 30, 50, 70, 90 10, 30, 50, 70, 90

Sequencing depth mean (3) 20 20 20 20 20

Sequencing depth dispersion (3) 0 5 5 0 5

Sequencing error (%) 0 1 1 0 1

ADO per cell (mean) (%) 0 5, 10, 20,

40, 60

20 0 5, 10, 20, 40, 60

ADO per cell (variance) (%) 0 10 10 0 10

Amplification error (%) 0 1 0.1, 1, 2 0 1

Number of replicates 1,000 1,000 1,000 3,000 3,000

SNV, single-nucleotide variant; FN, false negative; FP, false positive; ADO, allelic dropout.
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Limitations of the study
scDNA-seq is laborious and expensive, and the number of

cells sequenced tends to be limited accordingly. However, if

the sample size is small, cell lineages with different evolutionary

rates might be missed. While bulk approaches sequence more

cells than single-cell strategies, the analysis of bulk data relies

on summary statistics, potentially precluding the detection of

subtle changes in the evolutionary rate.44 The VAF distribution,

for example, depends highly on the number, type, and spatial

location of biopsies taken.81 Multiregional sampling should facil-

itate a more detailed exploration of the spatial rate heterogene-

ity, thus increasing the statistical power of the PT test. Neverthe-

less, despite the relatively small sample size of the scDNA-seq

datasets analyzed here, we detected changes in the evolutionary

rate in most of them, suggesting that changes in evolutionary

rates within tissues might be common ground. In addition,

although the PT test detects rate changes independent of their

origin, drawing reliable conclusions about their cause would

probably imply obtaining multiomic, spatial, and microenviron-

mental data.
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N., Alvariño, P., Geisel, D., Modest, D.P., Sauer, I.M., Pratschke, J.,

Raschzok, N., et al. (2022). Clonality and timing of relapsing colorectal

cancer metastasis revealed through whole-genome single-cell

sequencing. Cancer Lett. 543, 215767. https://doi.org/10.1016/j.canlet.

2022. 215767.

86. Wu, H., Zhang, X.Y., Hu, Z., Hou, Q., Zhang, H., Li, Y., Li, S., Yue, J.,

Jiang, Z., Weissman, S.M., et al. (2017). Evolution and heterogeneity of

non-hereditary colorectal cancer revealed by single-cell exome

sequencing. Oncogene 36, 2857–2867. https://doi.org/10.1038/onc.

2016.438.

87. Xu, X., Hou, Y., Yin, X., Bao, L., Tang, A., Song, L., Li, F., Tsang, S., Wu,

K., Wu, H., et al. (2012). Single-Cell Exome Sequencing Reveals Single-

Nucleotide Mutation Characteristics of a Kidney Tumor. Cell 148,

886–895. https://doi.org/10.1016/j.cell.2012.02.025.

88. Ni, X., Zhuo, M., Su, Z., Duan, J., Gao, Y., Wang, Z., Zong, C., Bai, H.,

Chapman, A.R., Zhao, J., et al. (2013). Reproducible copy number varia-

tion patterns among single circulating tumor cells of lung cancer patients.

Proc. Natl. Acad. Sci. USA 110, 21083–21088. https://doi.org/10.1073/

pnas.1320659110.

89. Lodato, M.A., Woodworth, M.B., Lee, S., Evrony, G.D., Mehta, B.K.,

Karger, A., Lee, S., Chittenden, T.W., D’Gama, A.M., Cai, X., et al.

(2015). Somatic mutation in single human neurons tracks developmental

and transcriptional history. Science (New York, N.Y.) 350, 94–98. https://

doi.org/10.1126/science.aab1785.

90. Su, F., Zhang, W., Zhang, D., Zhang, Y., Pang, C., Huang, Y., Wang, M.,

Cui, L., He, L., Zhang, J., et al. (2018). Spatial Intratumor Genomic Het-

erogeneity within Localized Prostate Cancer Revealed by Single-nucleus

Sequencing. Eur. Urol. 74, 551–559. https://doi.org/10.1016/j.eururo.

2018.06.005.

91. Caravagna, G., Heide, T., Williams, M.J., Zapata, L., Nichol, D.,

Chkhaidze, K., Cross, W., Cresswell, G.D., Werner, B., Acar, A., et al.

(2020). Subclonal reconstruction of tumors by using machine learning

and population genetics. Nat. Genet. 52, 898–907. https://doi.org/10.

1038/s41588-020-0675-5.

92. Martin, M. (2011). Cutadapt removes adapter sequences from high-

throughput sequencing reads. EMBnet. j. 17, 10–12. https://doi.org/10.

14806/ej.17.1.200.

93. Li, H., and Durbin, R. (2010). Fast and accurate long-read alignment with

Burrows–Wheeler transform. Bioinformatics 26, 589–595. https://doi.

org/10.1093/bioinformatics/btp698.

94. Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard,

M.O., Whitwham, A., Keane, T., McCarthy, S.A., Davies, R.M., and Li,

H. (2021). Twelve years of SAMtools and BCFtools. GigaScience 10,

giab008. https://doi.org/10.1093/gigascience/giab008.

95. Favero, F., Joshi, T., Marquard, A.M., Birkbak, N.J., Krzystanek, M., Li,

Q., Szallasi, Z., and Eklund, A.C. (2015). Sequenza: allele-specific copy
Cell Genomics 3, 100380, September 13, 2023 11

https://doi.org/10.1038/s41588-021-00957-1
https://doi.org/10.1038/s41588-021-00957-1
https://doi.org/10.1016/j.ccell.2020.11.002
https://doi.org/10.1146/annurev genom-083117-021712
https://doi.org/10.1038/nature19823
https://doi.org/10.1038/nature19823
https://doi.org/10.1016/j.semcancer.2020.11.003
https://doi.org/10.1038/s41586-020-2698-6
https://doi.org/10.1038/s41586-020-2698-6
https://doi.org/10.1038/s41576-019-0143-1
https://doi.org/10.1038/s41576-019-0143-1
https://doi.org/10.1016/j.stem.2018.04.014
https://doi.org/10.1016/j.stem.2018.04.014
https://doi.org/10.1093/molbev/msz242
https://doi.org/10.1038/s41559-021-01615-9
https://doi.org/10.1038/s41559-021-01615-9
https://doi.org/10.1038/s41568-020-0263-0
https://doi.org/10.1038/s41568-020-0263-0
https://doi.org/10.1038/nrc.2017.69
https://doi.org/10.1038/s41586-019-1907-7
https://doi.org/10.1038/s41586-019-1907-7
https://doi.org/10.1016/j.celrep.2018.11.014
https://doi.org/10.1038/s41586-021-03790-y
https://doi.org/10.1038/s41586-021-03790-y
https://doi.org/10.1038/s41586-022-04786-y
https://doi.org/10.1038/s41586-022-04786-y
https://doi.org/10.1371/journal.pcbi.1007243
https://doi.org/10.1371/journal.pcbi.1007243
https://doi.org/10.1186/2047-217X-1-12
https://doi.org/10.1186/2047-217X-1-12
https://doi.org/10.1016/j.cell.2012.02.028
https://doi.org/10.1038/nature13600
https://doi.org/10.1016/j.canlet.2022. 215767
https://doi.org/10.1016/j.canlet.2022. 215767
https://doi.org/10.1038/onc.2016.438
https://doi.org/10.1038/onc.2016.438
https://doi.org/10.1016/j.cell.2012.02.025
https://doi.org/10.1073/pnas.1320659110
https://doi.org/10.1073/pnas.1320659110
https://doi.org/10.1126/science.aab1785
https://doi.org/10.1126/science.aab1785
https://doi.org/10.1016/j.eururo.2018.06.005
https://doi.org/10.1016/j.eururo.2018.06.005
https://doi.org/10.1038/s41588-020-0675-5
https://doi.org/10.1038/s41588-020-0675-5
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1093/gigascience/giab008


Article
ll

OPEN ACCESS
number and mutation profiles from tumor sequencing data. Ann. Oncol.

26, 64–70. https://doi.org/10.1093/annonc/mdu479.

96. Dong, X., Zhang, L., Milholland, B., Lee, M., Maslov, A.Y., Wang, T., and

Vijg, J. (2017). Accurate identification of single-nucleotide variants in

whole-genome-amplified single cells. Nat. Methods 14, 491–493.

https://doi.org/10.1038/nmeth.4227.

97. Zafar, H., Wang, Y., Nakhleh, L., Navin, N., and Chen, K. (2016). Monovar:

single-nucleotide variant detection in single cells. Nat. Methods 13,

505–507. https://doi.org/10.1038/nmeth.3835.

98. Lalee, M., Nocedal, J., and Plantenga, T. (1998). On the Implementation

of an Algorithm for Large Scale Equality Constrained Optimization. SIAM

J. Optim. 8, 682–706. https://doi.org/10.1137/S1052623493262993.

99. Self, S.G., and Liang, K.-Y. (1987). Asymptotic Properties of Maximum

Likelihood Estimators and Likelihood Ratio Tests Under Nonstandard
12 Cell Genomics 3, 100380, September 13, 2023
Conditions. J. Am. Stat. Assoc. 82, 605–610. https://doi.org/10.2307/

2289471.

100. Sayers, E.W., Bolton, E.E., Brister, J.R., Canese, K., Chan, J., Comeau,

D.C., Connor, R., Funk, K., Kelly, C., Kim, S., et al. (2022). Database re-

sources of the national center for biotechnology information. Nucleic

Acids Res. 50, D20–D26. https://doi.org/10.1093/nar/gkab1112.

101. Broad Institute. Picard Tools. http://broadinstitute.github.io/picard/.

102. Van der, A., Geraldine, A., Connor, O.’, and Brian, D. (1920). Genomics in

the Cloud: Using Docker, GATK, and WDL in Terra (O’Reilly Media).

103. McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R.S., Thormann, A.,

Flicek, P., Cunningham, F., and Cunningham, F. (2016). The Ensembl

Variant Effect Predictor. Genome Biol. 17, 122. https://doi.org/10.1186/

s13059-016-0974-4.

https://doi.org/10.1093/annonc/mdu479
https://doi.org/10.1038/nmeth.4227
https://doi.org/10.1038/nmeth.3835
https://doi.org/10.1137/S1052623493262993
https://doi.org/10.2307/2289471
https://doi.org/10.2307/2289471
https://doi.org/10.1093/nar/gkab1112
http://broadinstitute.github.io/picard/
http://refhub.elsevier.com/S2666-979X(23)00177-5/sref103
http://refhub.elsevier.com/S2666-979X(23)00177-5/sref103
https://doi.org/10.1186/s13059-016-0974-4
https://doi.org/10.1186/s13059-016-0974-4


Article
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

1000G Reference Genome hs37d5, GRCh37 Genome Reference Consortium https://www.internationalgenome.

org/category/reference/

GATK Resource Bundle b37 Broad Institute https://console.cloud.google.com/storage/browser/

genomics-public-data/resources/broad/hg38/v0/

scDNA WES data Li Li et al.82 SRA: SRA051489

scDNA WES data Hou Hou et al.83 SRA: SRA050202

scDNA WES data Wang Wang et al.84 SRA: SRA053195

scDNA WGS data Kang Kang et al.48 SRA: SRP067815

scDNA WES data Wu Wu et al.85 SRA: SRP067815

scDNA WES data Xu Xu et al.86 SRA: SRA050201

scDNA WES data Ni Ni et al.87 SRA: SRP029757

scDNA WGS data Lodato Lodato et al.87 SRA: SRP041470, SRP061939

scDNA WGS data Su Su et al.88 SRA: SRP127755

scDNA WGS data Alves Alves et al.89 Mendeley Data: https://doi.org/10.17632/pbbx6gckck.1

scDNA WGS data Kozlov Kozlov et al.47 BioProject: PRJNA789841

Software and algorithms

PT test This paper https://doi.org/10.5281/zenodo.7998185

Python v3.7.6 with packages numpy v1.18.5,

pandas v1.0.5, scipy v1.5.1, and ete3 v3.1.2

Python Software Foundation https://www.python.org

CellCoal v1.3.1 Posada50 https://github.com/dapogon/cellcoal

Cellphy v0.9.2 Kozlov et al.47 https://github.com/amkozlov/cellphy

infSCITE Kuipers et al.52 https://github.com/cbg-ethz/infSCITE

neutralitytestr v0.0.3 Williams et al.22 https://CRAN.R-project.org/package=neutralitytestr

Mobster v1.0.0 Caravagna et al.90 https://caravagnalab.github.io/mobster

dndscv v0.1.0 Martincorena et al.11 https://github.com/im3sanger/dndscv

cutadapt v1.18 Martin et al.91 https://github.com/marcelm/cutadapt

bwa v0.7.17 Li et al.92 https://github.com/lh3/bwa

Picard SortSam v2.18.14 Broad Institute https://broadinstitute.github.io/picard/

Picard MarkDuplicates v2.18.14 Broad Institute https://broadinstitute.github.io/picard/

GATK IndelRealignement v3.7.0 Broad Institute https://gatk.broadinstitute.org/hc/en-us

GATK BaseRecalibrator v4.0.10 Broad Institute https://gatk.broadinstitute.org/hc/en-us

samtools v1.9 Danecek et al.93 https://www.htslib.org/

Sequenza, v3.0.0 Favero et al.94 https://github.com/oicr-gsi/sequenza

SCCcaller v2.0.0 Dong et al.95 https://github.com/NBMueller/SCcaller

Monovar Zafar et al.96 https://github.com/NBMueller/MonoVar

Ensembl Variant Effect Predictor,

release/100.0

McLaren et al.97 https://github.com/Ensembl/ensembl-vep
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, David

Posada (dposada@uvigo.es).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources

table.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Poisson tree test model and input data
The Poisson tree (PT) test requires as input a matrix of SNV genotypes X, false positive and false negative genotype error rates (a and

b, respectively), and a rooted tree topology t, representing the phylogeny of a sample of contemporaneous cells. The genotype ma-

trix X has dimensions m3 n, where m is the number of SNV loci and n is the number of cells. Each element of X ˛ f0; 1;�gm3n in-

dicates if an SNV is present (1), absent (0), or missing (�) in a given cell.

The false positive rate a is the probability that an unmutated genotype is wrongly identified as mutated (i.e., true 0’s called as 1’s),

the false negative rate b is the probability of a mutated genotype (1) to be wrongly identified as unmutated (0) (i.e., true 1’s called as

0’s). In scDNA-seq data, false positives arise mainly from DNA lesions occurring during cell isolation and manipulation, single-cell

whole-genome amplification (scWGA) errors, and sequencing errors. False negatives also arise from these errors, but most of

them result from allele dropout (ADO) during scWGA. Missing genotypes arise from ADO and insufficient sequencing coverage.

The fraction of missing genotypes in each cell j is gj = 1
m

Pm
p = 1

�
xp;j = � �, where ½$� is the indicator function.

The cell tree topology t consists of 2n� 1 nodes and 2n� 2 branches l. The n leaf nodes L correspond to sampled cells and the n�
1 internal nodes I represent unobserved ancestor cells. t can be represented by a binary matrix A˛ f0;1gl3n, where rows represent

branches and columns represent cells, and ai,j = 1 if branch i belongs to the path from the root to cell j, and 0 otherwise. The length of a

branch (l) represents the expected number of SNVs accumulated along that branch and is the product of the expected number of

SNVs taking place per time unit (i.e., the evolutionary rate q) and the time elapsed along the branch (t):

l = q$t (Equation 1)

The evolutionary rate is the product of the mutation rate per cell division times the number of cell divisions along the branch, but

these two quantities are indistinguishable.

To assess the constancy of q, wemust first infer the expected branch lengths l. To do so, wemodel the observed branch lengths k

(see STAR Methods section ‘Computation of the observed branch lengths’ for further details) as Poisson variables with mean l =

½l1;.; ll�˛ℝ> 0. The likelihood of the observed branch lengths k given the expected branch lengths l is

LðkjlÞ =
Yl
i = 1

PoissonðkijliÞwi =
Yl
i = 1

 
l
ki
i e

�li

ki!

!wi

(Equation 2)

where wi weighs the impact of branch length ki on the likelihood according to its probability of being affected by scDNA-seq errors

(see STAR Methods section ‘Branch weights’ for further details). The log likelihood is then:

LðkjlÞ = logðLðkjlÞÞf
Xl

i = 1

wiðki logðliÞ � liÞ (Equation 3)

where we have omitted the constant
Pl

i = 1logðki!Þ, which cancels out in the likelihood ratio below and, thus, does not affect the

maximum likelihood solution. The maximum likelihood estimate (MLE) of l can be obtained by solving the following equation:

min
l˛ℝl

>0

�
Xl

i = 1

wiðki logðliÞ � liÞ (Equation 4)
Null model: Constant evolutionary rate
The null model assumes a constant evolutionary rate q along the tree (i.e., amolecular clock). Consequently, the expected cumulative

branch length from any internal node to any cell should be similar. This imposes n � 1 constraints on the expected branch lengths l,

which can be written as a system of linear equations defined by a constraint matrixC˛ f � 1;0;1gðn�1Þ3l. Each row inC corresponds

to an internal node and each column to a branch:

ci;j =

8<
:

1 if Ej ˛PðIi;Lj/Þ
� 1 if Ej ˛PðIi;Lj)Þ
0 else

(Equation 5)
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where P
�
Ix; Ly

�
is the path between the internal node x and cell y, i.e., the set of all branches connecting the two nodes, and Li/ and

Li) are arbitrary cells from the left or right subtree succeeding node Ii, respectively. There are several equivalent parametrizations of

C, as both the left and right subtrees and the cells are chosen arbitrarily. A scheme of the constraint matrix is displayed in Figure S5A.

Given that the sum of Poisson variables is also a Poisson variable, we can write the constraints imposed by the null model as

C$l = 0 (Equation 6)

To find the MLE (Equation 4) subject to the rate constraints (Equation 6) and the boundary constraints l> 0, we used the Byrd-

Omojokun Trust-Region Sequential Quadratic Programming algorithm,98 a gradient-based numerical optimizer.

Alternative model: Constraint-free evolutionary rates
The alternative model allows the evolutionary rate q to change along the tree. In this scenario, there are no constraints on l, i.e., C =

0, and Equation 4 can be solved analytically. The likelihood of this model is maximal when setting the expected branch lengths equal

to the observed branch lengths (Data S1.1). For zero branch lengths (with no SNVs), we use the limit lim
k/0+

ki logðkiÞ = 0.

Likelihood ratio test
To test the constancy of the evolutionary rate, we compare the two competing models using a likelihood ratio test (LRT). The LRT test

statistic L is twice the negative log likelihood ratio:

L = � 2½Lðkjl0Þ � Lðkjl1Þ �
= � 2

"Xl

i = 1

wiðkiðlogðl0;iÞ � logðl1;iÞÞ � l0;i + l1;iÞ
#

(Equation 7)

As the null model is nested in the alternative model, L follows a X2 distribution with n � 1 degrees of freedom, except for the case

when optimized parameters are on the constraint boundary, i.e., zero. In that case, L is distributed as a mixture of X2 distributions

with n; n � 1;.n � k degrees of freedom, weighted by normalized binomial coefficients.99

Computation of the observed branch lengths
We compute the observed branch lengths by mapping the SNVs to specific branches of the input cell tree. We define the matrix

Mm31 ˛ ½0; 1�, where mp,i is the probability that SNV p is assigned to branch i. We assume SNVs are i.i.d. and follow an infinite sites

model (i.e., mutations can only occur once at a given site). Therefore, if an SNV is mapped to a branch, we expect to see it in all the

descendant cells unless there are false negative SNV calls or missing data. We can calculate the probability of assigning an SNV to a

given branch45 by considering the set of cells that harbor the SNV and the set of cells we would expect to harbor it if mapped to that

branch:

mp;i =

Qn
j = 1P

�
xp;j

���ai;j�Qn
j = 1P

�
xp;j

���0�+Pl
i0 = 1

Qn
j = 1P

�
xp;j

���ai0 ;j� (Equation 8)

The first product of the denominator is the probability of a false SNV call if the SNV is not present in any cell. Given a false positive

rate a and a false negative rate b, we can calculate the probability of the observed SNV x given the expected genotype y:

PðxjyÞ =

8>>>><
>>>>:

1 � a if x = 0^y = 0
b if x = 0^y = 1
a if x = 1^y = 0

1 � b if x = 1^y = 1
1 if x = �

(Equation 9)

The number of SNVs mapped to a branch j, required for solving Equation 4, is the column sum over M:

kj =
Xm
p = 1

mp;j (Equation 10)

The SNV mapping procedure is depicted in Figure S5B.

Branch weights
The estimated branch lengths k are subject to uncertainty due to scDNA-seq noise and the stochasticity of themutation process. The

soft assignment in Equation 8 accounts for uncertainty in the SNV placement, including false positive and false negative calls, if an

SNV is called in at least one cell. However, if a true SNV is unobserved due to false negative or missing data in all the cells harboring it,

this SNV is not reported. We call this event an SNV loss. The probability of an SNV loss differs for each branch and is proportional to
Cell Genomics 3, 100380, September 13, 2023 e3



Article
ll

OPEN ACCESS
the number of descendant cells. The more descendant cells harbor the SNV, the less likely it will be lost. Accordingly, branches with

many descendant cells are less prone to SNV losses than those with few, making the observed number of SNVs on these branches

more reliable. The probability for an SNV loss on a branch is:

PlossðEijA;a;b;gÞ =
Yn
j = 1

��
1� gj

�
b+gj

�ai;j$��1� gj

�ð1� aÞ+gj

�1�ai;j (Equation 11)

The first term in Equation 11 describes the probability of a false negative or missing genotype (e.g., due to a lack of sequencing

coverage) in all cells containing the SNV; the second term is the probability of no false positive or missing genotypes in any other

cell. Given the probability for an SNV loss and by assuming that it is Binomial-distributed, i.e., an SNV is either lost or not, we can

weigh the branches by their inverse-variance of their SNV loss probability by defining:

w
�
i = min

n
ðPlossðEijA;a; b;gÞð1� PlossðEijA;a;b;gÞ Þ Þ�1

;wmax

o
(Equation 12)

To ensure that the test statistic of the LRT can be approximated with a X2 distribution, we rescaled the weights to retain the original

degrees of freedom

wi = l$
w
�
iPl

i0 = 1w
�
i
0

(Equation 13)

such that
Pl

i = 1wi = l. The branch weighting is depicted in Figure S5C.

The inverse variance of a Bernoulli distribution is unbounded. Therefore, we need to define an upper limit wmax. Without this limit,

the weight for a single or few branches with a very low probability for SNV losses would be several magnitudes higher than for other

branches. A wmax value of 1000, for instance, caps the probability of an SNV loss at 0.001. As the weights are rescaled, wmax also

regulates their dispersion: lowwmax values lead to weights closer to 1, and largerwmax values lead to weights dispersed more widely.

We evaluated the impact of wmax on the accuracy of the PT test using simulations. We found that wmax = 1000 ensured a false

rejection rate of the null hypothesis close to zero (Data S1.2, Figure S1). Therefore, we used this value for all the calculations in

this study.

Implementation
The PT test is implemented in Python and requires called mutations in VCF format, a phylogenetic tree in Newick format, and esti-

mated false negative and false positive rates of the called mutations as input.

QUANTIFICATION AND STATISTICAL ANALYSIS

Simulation of scDNA-seq data with constant and variable evolutionary rates
We used CellCoal50 to evaluate the accuracy of the PT test. CellCoal simulates the phylogeny of a sample of cells together with SNV

genotypes subject to scDNA-seq errors. By default, CellCoal simulates phylogenies in which all lineages share a constant evolu-

tionary rate, resulting in ultrametric or clock-like cell trees in which the evolutionary distance from the root to any cell is equivalent.

To simulate scenarios with evolutionary rate variation, we implemented in CellCoal the possibility of introducing one or more

changes in the evolutionary rate along the tree. For each rate change, we chose a branch with probability proportional to its length

and multiplied its length, and that of its descendant branches, by a factor. In our simulations, we introduced single rate changes with

2x, 5x, and 10x factors.We only included samples where the fraction of cells affected by the rate changewas between 10%and 90%,

as rate variability would be hardly distinguishable in the excluded cases.22

We simulated samples of 30 and 100 cells for the constant and varying rate scenarios, respectively. From the latter scenario, we

obtained subsamples of 10, 30, 50, 70, and 90 cells to assess the effect of the sample size on the statistical power, i.e., on the ability of

the PT test to detect variable evolutionary rates. We filtered subsamples without cells affected by the rate change as the evolutionary

rate is constant in these. In all cases, we simulated a genome length of 10,000 sites and a mutation rate of 10�6, except for the sce-

narios with variable rates, in whichwe scaled themutation rate to obtain a similar number of SNVs across scenarios (Table 2).We kept

the expected sequencing depth constant across scenarios (20x) and explored multiple levels of scDNA-seq bias by considering

different combinations of ADO, sequencing depth overdispersion, and sequencing and amplification error rates (Table 2). For

each set of conditions, we simulated 1,000 (constant rate scenarios) or 3,000 (variable rates scenarios) replicates.

The SNV genotypes resulting from the CellCoal simulations have attached a particular sequencing depth (depending on the

expected sequencing depth, its overdispersion, and the ADO rate) and the relative likelihood of observing this genotype. In all

cases, we filtered out SNV sites with sequencing depth below 5x or conditional genotype quality (GQ) below one, where GQ is

the Phred-scaled likelihood difference between the most likely and the second most likely genotype.

The pipelines for simulating data and all subsequent analyses were implemented in Snakemake.
e4 Cell Genomics 3, 100380, September 13, 2023



Article
ll

OPEN ACCESS
Inference of cell phylogenies
Using the simulated data, we inferred the cell phylogenies with CellPhy47 (-o healthycell -l), which operates a constraint-freemodel for

the branch lengths, and with infSCITE52 (-r 1 -n 5e5 -d 0.01 -ad 0.2 -e 0.1 -z -a -transpose), which infers the tree topology but not the

branch lengths). Cellphy infers the amplification/sequencing error rate (ERR), corresponding to the probability of observing a wrong

allele and the ADO rate. To translate CellPhy’s estimates of ADO and ERR into false positive and false negative rates, we used half of

the estimated ADO rate plus one-third of the estimated ERR rate as false negative rate. Half of the ADO rate represents the chance

that the mutated allele is affected by an ADO, and one-third of the ERR rate represents the chance that the mutated allele appears as

the reference allele due to an error. As the false positive rate for the PT test, we used CellPhy’s estimate of the ERR rate, representing

the chance that an unmutated allele appears as amutated allele due to an error. To root the phylogenetic trees inferred byCellPhy, we

added a synthetic cell lacking SNVs and used it for outgroup rooting.

VAF-based tests of neutrality and subclonal selection for bulk data
For the benchmark of the 1/f test22 and Mobster,91 we simulated samples of 100 cells with a genome length of 10,000 sites, with 1x

sequencing depth and without scDNA-seq errors, imitating bulk data. To simulate evolutionary rate variation, we used the same rate

change factors as for the single-cells, 2x, 5x, and 10x, and the corresponding mutation rates. As before, we included only datasets

where the fraction of cells affected by the rate change was between 20% and 70%, as the 1/f test detects deviations from neutrality

only in that VAF range.23

We then calculated the VAF for each SNV by summing up the number of reads supporting themutated allele in all cells and dividing

it by the total number of reads in all cells at this SNV site. In total, we simulated 250 and 750 pseudo-bulk samples with a constant or

variable evolutionary rate, respectively (for the variable cases, 250 replicates for each rate change factor: 2x, 5x, and 10x).

We used the VAFs calculated from the pseudo-bulk samples as input for the 1/f test and Mobster. For the 1/f test, we set the

sequencing depth to 100x, the ploidy to 2, and the tumor purity to 1. For Mobster, we set the number of possible ‘‘subclones’’ to

1. For the datasets with a constant evolutionary rate, we expect zero subclones; for the datasets with rate variation, we expect

one subclone differing in its evolutionary rate.

dN/dS ratio estimation
We calculated dN/dS ratios with the R package dndscv11 and default parameters, once including only mutations in the 369 cancer

driver genes identified by Martincorena et al.11 and once for all genes. For the scDNA-seq data, we used pseudo-bulk data, as the

number of coding SNVs per cell was not enough to calculate dN/dS ratios for individual cells.

Biological data processing
We downloaded 24 scDNA-seq datasets in FASTQ format from the NCBI’s Sequence Read Archive (SRA) database.100 We trimmed

library adapters and amplification protocol-specific adapters with cutadapt,92 mapped the reads to the 1000G Reference Genome

hs37d5 with bwa,93 and sorted them with Picard101 SortSam. We marked read duplicates with Picard MarkDuplicates and realigned

around indels with GATK102 IndelRealignement using the 1000G Phase 1 and the Mills and 1000G gold standard databases. GATK

BaseRecalibrator was used to recalibrate base scores considering dbSNP (build 138) and indels from the 1000G Phase 1. We

calculated sequencing depth and breadth with samtools.94 The pipelines for processing scDNA-seq data were implemented as a

Snakemake workflow.

For eachcell,wecomputed theADOratesasdescribed inLodatoetal.89CellswithanextremelyhighADOrate (aboveQ3+1.5 IQRper

dataset), as well as cells with <40% coverage breadth, were excluded from the analyses (Table S3). To maximize statistical power, we

used all available SNVs. We applied stringent filters to all SNV calls, ensuring the same quality for on- and off-target sites. Similar pre-

processing was done for the normal and tumor bulk data, followed by the estimation of copy numbers using Sequenza.95 We called

SNVs in single cells using a modified version of SCCcaller96 with default parameters (https://github.com/NBMueller/SCcaller - modifi-

cations listed) and a modified version of Monovar97 with default parameters except for the consensus filtering step (https://github.

com/NBMueller/MonoVar - modifications listed). As input for Monovar, we generated read pileups with a minimum mapping quality

of 40 using samtools mpileup. When tumor bulk samples were available, we called SNVs with GATK Mutect2, following the GATK

best practice workflow for ‘‘Somatic short variant discovery (SNVs + Indels)’’. Finally, we generated a set of high-confidence SNVs for

each dataset by 1) excluding SNVs with a quality score below ten or a read depth below ten, and 2) excluding SNVs that were called

in only one cell and were not supported by both single-cell callers or by the bulk tumor sample. Additionally, we excluded SNVs with

missing data inmore than 50%of the cells. To identify potential phenotypic effects,weannotated the SNVcallswith the Ensembl Variant

Effect Predictor103

For the scDNA-seq data, we inferred cell phylogenies with CellPhy with the same settings as for the simulated data. For the bulk

data, we ran the 1/f test with ploidy and cellularity values inferred by Sequenza and Mobster with default parameters.
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