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EDITORIAL

Editorial: Focus issue on machine learning for neuromorphic
engineering
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2 Peter Grünberg Institute, Forschungszentrum Jülich, Jülich, Germany
3 Electrical Engineering and Information Technology, RWTH Aachen, Aachen, Germany
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Spiking neural network (SNN) hardware is poised to reduce the energy for training and inference of neural
networks by leveraging sparsity and locality in computation and learning. Despite tremendous progress
in recent years, key challenges remain in translating scalable ideas from machine learning (ML) to
neuromorphic engineering. These challenges span SNN algorithms, hardware, and applications. On the
one hand, training algorithms SNNs need improvements. On the other hand, it is vital to exploit sparsity
more effectively on the available hardware and enhance efficiency on real-world tasks well-suited for SNN
processing.

This NCE Focus Issue is a collection of solutions for the above challenges. On the algorithmic side,
Rossbroich et al (2022) propose a new initialization method through fluctuating the neurons for improved
direct training of SNNs with backpropagation. Further, Moraitis et al (2022) introduce an unsupervised local
training algorithm based on a combination of Hebbian plasticity with a soft winner take all mechanism. On
the hardware side, two studies introduce new methods to exploit sparsity on current hardware (graphics
processing unit (GPU) and field programmable gate array (FPGA)) to improve inference efficiency through
Complementary Sparsity (Turner et al 2022) and Procedural connectivity (Hunter et al 2022). Finally, on the
application side, DeWolf et al (2023) introduce a welcome closed-loop benchmark control task based on a
robotic arm simulated in the popular Mojoco platform to showcase the inherent power efficiency and low
latency of event-based computation.

SNNs and neuromorphic hardware are particularly well-suited to closed-loop control tasks, where
latency and energy are paramount. In DeWolf et al (2023), the authors demonstrate an SNN-based controller
that can control a robot arm simulated in the popular Mujoco platform. Their approach utilizes a mature
set of tools to convert an adaptive controller into SNNs, leveraging deep neural networks and the neural
engineering framework (Nengo). The former is used to obtain a reduced representation of the high-
dimensional state space, and the latter is used to implement the algebraic equations of the adaptive
controller. The resulting problem is then converted into a network that can run on the Intel Loihi research
chip. This remarkable work showcases the inherent power efficiency and low latency of event-based
computation in close-loop tasks and establishes an important benchmark for neuromorphic computing.

Optimal weight initialization is critical for deep neural network performance. However, efficient weight
initialization strategies for deep spiking networks are largely missing. To fill this knowledge gap, Rossbroich
et al (2022) propose a simple initialization strategy inspired by the balanced state in neurobiology whereby
individual neurons receive fluctuation-driven input, which ensures unimpeded activity propagation in
spiking convolutional neural networks (CNNs) up to seven layers deep. They show empirically that
fluctuation-driven initialization results in better task performance on spatiotemporal problems and faster
training. For training deeper SNNs, the authors propose a set of homeostatic loss functions that restore and
maintain activity propagation and improve task performance.

Unlike traditional image classification, which relies on deep CNNs and requires millions of multiply-
accumulate operations, SNNs communicate through binary spikes, reducing the need for multiplicative
operations. Despite the popular solutions for directly training SNNs using, for example, the Surrogate
Gradient approach, training of SNNs for deeper networks remains challenging. Existing ML libraries for
SNNs based on PyTorch, JAX, and TensorFlow struggle with handling the sparsity of SNNs. To address this,
Turner et al (2022) introduce the mlGenn platform, which employs procedural connectivity for 2D
convolutions. In this technique,neurons’ outgoing sparse random connectivity is regenerated on the fly when

© 2023 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2634-4386/acee1a
https://crossmark.crossref.org/dialog/?doi=10.1088/2634-4386/acee1a&domain=pdf&date_stamp=2023-8-17
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-1883-644X


Neuromorph. Comput. Eng. 3 (2023) 030403 M Payvand et al

they spike rather than being stored in memory. This modification results in a 2.5× increase in simulation
speed compared to the state-of-the-art SNN simulation tools.

Although the sparse activity and connectivity of SNNs should result in a proportional reduction in
computing requirements, the irregular patterns of neuron interconnectivity and activity reduce the expected
gains on current hardware. Hunter et al (2022) address this problem by structuring the sparsity to match the
requirements of the target hardware for implementing sparse activation-sparse connectivity networks on
FPGA. This restructuring is achieved by overlaying multiple sparse matrices to form a single dense structure
if no two sparse matrices contain non-zero elements at the same location. This approach, which they call
Complementary Sparsity, yields 100× improvement in throughput and energy efficiency on FPGA compared
to optimized dense implementations.

Local unsupervised learning rules, which only require locally available information at the synapse, are
highly desirable for neuromorphic engineering thanks to their efficiency and online capability. Yet, most
local learning rules had limited success in achieving competitive task performance on real-world data.
Moraitis et al (2022) revisit the problem of local learning. They derive a SoftHebb, a local learning rule for
soft winner-take-all networks from a Bayesian generative framework and show empirically that for deep
neural networks with a suitable positive expansion ratio, the learning rule minimizes cross-entropy in
downstream supervised lazy learning settings in which only a linear readout head is trained.

The future for translating scalable ideas from machine to neuromorphic engineering looks bright and
vital advances follow one another at the algorithms, hardware, and application level. This collection of articles
highlights recent progress at all levels and showcases exciting advances in a dynamically expanding field.
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