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Abstract

In the realm of network security, machine learning has emerged as a
crucial instrument. Unfortunately, the amount of available training data
for network traffic-based models is very limited. This study aimed to
bridge this gap. A tool was developed to autonomously gather vast
amounts of website network traces. It did so by collecting a large
amount of website addresses. Upon accessing these sites, the tool
captured the resulting encrypted network traffic. This methodology en-
abled the collection of 900’000 distinct network traces spanning 220’000
unique website addresses. The data collection process was executed
across eight geographically dispersed virtual machines, underscoring
the comprehensive and diverse nature of the dataset. The effectiveness
of the generated dataset was established by evaluating different Deep
Fingerprinting attack scenarios.
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Chapter 1

Introduction

Machine learning has emerged as a pivotal instrument in the realm of network
security, for defensive measures such as detecting malicious traffic, and
offensive measures such as fingerprinting Tor traffic. Training these models
necessitates vast amounts of data. Yet, the volume of accessible network
traffic data remains scarce. Consequently, researchers often find themselves
forced to first construct systems for data collection, diverting their attention
from their primary objective: developing advanced network-based machine
learning models.

To address this challenge, our goal is to design a tool capable of autonomously
generating an extensive dataset centered on encrypted network traffic. This
would streamline the data collection process for researchers, enabling them
to easily train a variety of models. This study specifically focuses on website
traffic, recognizing that websites serve as principal interaction nodes for
users and are frequently exposed to a variety of attack vectors. By narrowing
the scope to website traffic, the resulting dataset ensures a comprehensive
analysis of dominant threats.

Furthermore, labeling the collected website network traces is a crucial step in
preparing this data for effective model training. The labeling process ensures
that the machine learning model can understand the differences between
varying website traffic. However, there are countless methods to label these
traces. One common approach is to use the website’s address as the label to
precisely identify the site being visited. While this method can offer accurate
labeling, it unfortunately strongly limits the scope of recognizable websites
as it only allows the model to detect those websites that were present in the
training set. Thus, exploring other labeling strategies is essential.
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Chapter 2

Background

In this chapter, we examine how HTML and HTTP interact together when
web browsers load web pages. We also discuss existing website address
datasets and clarify why they are not utilized in this study. Finally, we
introduce Deep Fingerprinting which will be used to evaluate the quality of
the network traffic dataset we produce.

2.1 Web Browsing

Web browsing today, a core function of the World Wide Web [1], is driven by
the interaction between HTML (HyperText Markup Language) [2] and HTTP
(HyperText Transfer Protocol) [3]. Central to this system, HTML outlines
the structural detail of web pages, specifying elements such as headings,
paragraphs, links, and multimedia through a uniform markup language.
Starting a web browsing session involves the browser sending an HTTP
request to a server. In turn, this server responds with the appropriate HTML
document. However, a modern webpage typically goes beyond just text; it
also includes images, videos, stylesheets, scripts, and various multimedia
components. These resources are typically referenced within the HTML
using tags like <img>,<link>, and <script>. When the browser encounters
such tags, it sends additional HTTP requests to fetch each resource. As these
are being retrieved, the browser integrates them into the page, rendering the
complete interface users interact with. The collaborative interaction between
HTML and HTTP ensures seamless access, presentation, and navigation of
all web content.
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2. Background

2.2 Related Work

2.2.1 Existing Network Traffic Datasets

The rise of machine learning has led to its growing application in the network
security domain. A crucial aspect of this process involves the collection of
extensive datasets for the training of these models. However, a significant
obstacle to progress in this field is the lack of data sharing among researchers.
The datasets generated during research are rarely shared with the broader
academic community, thereby hindering the ability of others to validate or
build upon existing work.

The emergence of several publicly available datasets, albeit limited, is a step
in the right direction. However, often these datasets are narrowly focused
on specific applications, such as IoT denial of service attacks [4], or TCP
FIN Flood Attacks [5]. While the availability of such specialized datasets
is undoubtedly beneficial for targeted research, their narrow scope restricts
their utility across a broader spectrum of applications. This underscores
the importance of developing comprehensive datasets and making them
available to facilitate a wide array of research inquiries, ultimately driving
more advancements in network security.

2.2.2 Existing URL Collections

Existing website collections like Common Crawl [6] have emerged as a
valuable resource for researchers from various fields. They span billions
of web pages and aim to offer a snapshot of the Internet’s vast expanse,
ensuring that information is available to all. Captured over diverse periods
and languages, the collection presents a valuable resource for data analysis.

Even though this thesis could leverage the URLs (Uniform Resource Locators)
from the Common Crawl dataset as a foundational stepping stone, it lacks
some data points on the websites that are required for this thesis such as the
server’s response time (Section 4.1). A potential solution could be to construct
an extension of the Common Crawl dataset, by requesting each website of
the collection to measure the required server response time. Nonetheless,
this solution has its drawbacks. Primarily, dealing with Common Crawl
would necessitate downloading an immense volume of data, far exceeding
the scale of the collection this thesis is aiming to construct. Further, the
organization of data in the Common Crawl dataset is sorted by hostname,
which can make the process of data retrieval and management convoluted
and time-consuming.

Other platforms like SimilarWeb [7] and Ahrefs [8] offer insights into websites,
detailing metrics such as traffic, engagement, demographics, and many more.
They aggregate data from diverse sources, including direct measurements
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2.2. Related Work

and web crawlers. However, they also lack some data points on the websites
such as the server response time, and information on pages, other than
the home page, hosted on the same domain. Moreover, these platforms
typically grant access to only a limited subset of their data, requiring paid
subscriptions for full access.

While platforms like Common Crawl, SimilarWeb, and Ahrefs offer valuable
insights, they also have their limitations. Rather than relying on these existing
datasets, designing and deploying a new, purpose-built web crawler stands
out as a more efficient strategy. The crawler can be specifically configured to
the unique needs of this work, thereby making it easier and faster to obtain,
manage, and analyze the desired website collection.

2.2.3 Deep Fingerprinting

Tor, with its vast user base for anonymous browsing, remains open to website
fingerprinting (WF) attacks [9], which can identify encrypted web pages
through unique network traffic patterns. Classic WF attacks, using classifiers
like SVM, k-NN, and random forests, have reported up to 90% accuracy.
To counter such threats, various strategies, including introducing dummy
traffic and delaying packet transmission, have been employed. Deep learning,
known for its dominance in fields like speech and visual recognition, offers
a fresh approach to WF. Deep Fingerprinting [9] harnesses Convolutional
Neural Network techniques to gain remarkable accuracy improvements
over traditional methods. Deep Fingerprinting, however, relies on having
an extensive training set. To address this limitation more effectively, Var-
CNN [10] takes a mixed approach. While both Deep Fingerprinting and
Var-CNN utilize the directions of network packets, distinguishing between
client-to-server and server-to-client communication, Var-CNN goes beyond by
integrating additional metrics. It leverages other vital parameters like timing
information and metadata. This strategy significantly enhances Var-CNN’s
efficiency in scenarios constrained by limited data availability.
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Chapter 3

Overview

There are numerous unresolved research questions related to the analysis of
website network traffic. These range from tracking user activities through
Tor networks to inferring information from user requests based solely on a
sequence of network packets. To address these questions effectively, a large
amount of training data specific to network traffic-based models is necessary.
As of now, the availability of such data is limited. Thus, the primary objective
of this thesis is to develop a tool capable of generating an extensive network
traffic dataset tailored to the requirements of researchers, focusing specifically
on website network traffic.

The intended dataset should be constructed using web browser automation
and by executing experiments that account for various network characteris-
tics. For instance, the goal is to capture website traffic from diverse global
regions while considering different bandwidth constraints. However, before
simulating user requests, it is essential to collect a set of active website ad-
dresses, as these will be the addresses being requested during the simulation.
To achieve this, a web crawler will be developed. Once the network traffic
from the identified websites is captured, the robustness and relevance of the
dataset will be tested. This process will involve using the captured data to
reproduce existing traffic-analysis attacks, such as Web Fingerprinting. In the
final stages, alternative data labeling strategies will be explored and tested,
going beyond merely using the website’s address, as this approach constrains
the attack’s scope to the size of the training set.
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3. Overview

Figure 3.1: A simplified overview of the framework of this study.
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Chapter 4

Collecting Website Addresses

To capture an extensive volume of website network traffic that represents
user activity on the web around the world, a comprehensive collection of
website addresses is necessary.

4.1 Requirements

To ensure efficient capturing of network traffic from hundreds of thousands
of websites, it’s vital that the sites within the collection respond within a
reasonable timeframe, ensuring the entire process does not take too long.
There are two primary reasons for delays when requesting websites. First,
the websites may no longer be hosted, causing browsers to attempt to retrieve
inaccessible sites. Second, some sites may be hosted on slow servers, leading
to lengthy response times when attempting to load the web page. Including
numerous such sites in the collection can considerably extend the duration
of the traffic-capturing process.

Additionally, the collection should include not only the addresses of the main
pages of a web domain (e.g. www.facebook.com/) but also various resources
hosted on the websites. This is essential because the primary content that
represents a website isn’t always located on its main page. For instance, when
accessing Facebook without logging in, users are directed to a login page,
which doesn’t truly capture the core content of the site. In contrast, access-
ing pages like MySwitzerland on Facebook (www.facebook.com/myswitzerland)
offers a perspective that better mirrors actual user requests and associated
network traffic. This underlines the importance of a well-curated collection
of website addresses.

9



4. Collecting Website Addresses

4.2 Collecting Website Addresses

The HTML structure of a website often incorporates various references to
other websites, serving as a resource for generating an extensive set of URLs.
The process initiates with the selection of an initial website, from which
the URL collection begins. Upon requesting this website, it is scanned for
references to external websites. This is accomplished by examining all href
tags within the HTML code. Subsequently, all identified URLs are extracted
and filtered. During this stage, references that are HTML IDs (e.g., #id) or
Uniform Resource Identifier (URI) schemes, such as ”mailto:”, are discarded.
The remaining valid addresses are subsequently inserted into the set of
discovered URLs. The process then advances by randomly selecting a website
from this collection, repeating the URL-gathering process from the newly
chosen website.

In most instances, a significant proportion of URLs extracted from a website
are addresses belonging to the same domain, with a minority linking to
external sites. When these addresses are incorporated into the collection,
during subsequent runs, there is a significantly higher probability of visiting a
webpage from a previously accessed domain compared to visiting a new one.
This scenario typically results in a collection of URLs that do not represent a
diverse range of domains.

To mitigate this issue, the collection is organized as a mapping, associating
the domain names of the discovered websites with their corresponding
subdomains, each of which maps to a list of website addresses specific to
that subdomain. This approach enables a balanced selection process among
different domain names and their respective subdomains when deciding on
the next website to be retrieved.

4.3 Website Collection Quality

The strategies previously discussed enable the generation of an extensive
dataset comprising various websites from around the globe. Nonetheless,
the quality of the gathered website addresses remains uncertain. There is
a possibility that the websites may no longer be responsive, the request
might respond with an error (e.g. page not found), or could be hosted on
slow-responding servers. These circumstances can significantly compromise
network data quality obtained from these websites and extend the web traffic
capturing process duration.

Given that website requests are already being made during the process of
collecting website addresses, information gained from the requests can be
leveraged to identify whether or not a particular URL should be included
in the network data-capturing process. If the server responds with just the
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4.3. Website Collection Quality

{

"google.com": {

"google.com": [

"google.com",

"google.com/maps",

"google.com/developers"

],

"store.google.com": [

"store.google.com/de"

]

},

"linkedin.com": {

"linkedin.com": [

"linkedin.com/15822",

"linkedin.com/65127",

"linkedin.com/15877",

"linkedin.com/36985",

"linkedin.com/11452"

]

},

"ethz.ch": {

"ethz.ch": [

"ethz.ch/en"

]

}

}

Figure 4.1: An example website dataset with 3 different domains

HTML code within a specific time frame without receiving an error code, the
website is then added to a secondary collection, signifying the websites that
remain hosted and responsive within that set period. This polished collection
will be utilized during the traffic-capturing process.

It’s crucial to acknowledge that there isn’t a ”perfect” timeframe that can be
universally applied. Some slower servers might still find their way into the
set, and conversely, some efficient websites may not be included. However,
such imperfections are tolerable. Incorporating a few slower servers into
the dataset is acceptable, provided the majority are filtered out. Similarly,
missing out on a few good websites isn’t detrimental given the vast number of
alternative websites available. Evaluating multiple timeframes, a specific span
of 5 seconds emerged as the most suitable choice. This period was selected
as it effectively detected non-responding and very slow servers, yet still
incorporated websites that loaded at a slower pace due to the geographical
distance between client and server.
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4. Collecting Website Addresses

Additionally, the process of gathering website addresses can be significantly
accelerated by implementing a multithreaded approach. This method allows
multiple threads to concurrently send requests and process responses, thereby
reducing the overall time required to compile the polished collection of
website addresses for the traffic-capturing process.
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Chapter 5

Collecting Network Traffic

In this chapter, we explore methods to automate the simulation of web page
loading on real-user devices and detail the process of capturing the resulting
network traffic.

5.1 Simulating Browsers

In order to accurately simulate the dynamic interaction between a client and
servers when browsing the web, it is crucial to replicate the process a web
browser employs to load a website. Selenium [11] is a powerful framework
that facilitates web browser automation. With the aid of a web driver, Sele-
nium not only reliably loads websites inclusive of all their dependencies but
also grants the ability to interact programmatically with the page, providing a
comprehensive and realistic approach to web interaction simulation. During
the course of this work, Chrome’s web driver was utilized, considering that
it is, by a significant margin, the most frequently used browser by users
worldwide [12, 13].

5.2 Capturing traffic

To capture encrypted web traffic during website visits, a packet analyzer is
employed. Tcpdump [14] was chosen as it is a command-line packet analyzer
renowned for its high performance. It allows for the capture of internet
packets which are filtered by IP address and then stored in a file for later
analysis.

The process to generate the network traffic dataset is as follows: a web-
site is sequentially selected at random from the website address collection.
Tcpdump is then initiated with the configuration to only store packets sent
towards or from the device running the process. The chosen website is then
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5. Collecting Network Traffic

requested and loaded via Selenium. When Selenium indicates that the page is
ready, it is important to note that this does not necessarily mean all resources,
such as images, have been fully loaded. Given this, Tcpdump continues
to capture for an additional five seconds. This duration was selected after
experimenting with multiple values. Five seconds provides sufficient time
for capturing traffic related to the lazy loading of the website’s resources or
ongoing video streaming, without excessively prolonging the total capture
time, particularly as thousands of websites will be processed sequentially.
After this period, the packet analyzer is halted, resulting in a pcap file that
captures the web traffic.

To analyze and label the collected website traces for various web traffic-based
models, we store additional metadata related to the request. This metadata
includes a website screenshot taken by Selenium, the HTML code, client
location details from which the request originated, any encountered errors,
and the request timestamp. After extraction, the next website is selected, and
the previously mentioned network-capturing process repeats.

Figure 5.1: The process of capturing the traffic of a single website with Tcpdump and Selenium.

5.2.1 Bandwidth Limitation

To simulate realistic user traffic effectively, it is essential that the bandwidth
size is adjustable. Running the collection from large data centers significantly
impacts traffic due to their capacity to support considerably larger band-
widths compared to typical user devices. As a solution, Wondershaper [15]
is employed to cap both upload and download rates.

To establish appropriate bandwidth constraints, data from major internet
service providers was studied. Broadband, one of the leading ISPs in the
US, reports an average national download speed of 185.04 Mbps [16]. They
also offer upload speeds reaching 20 Mbps. On the other hand, T-mobile
indicates average download rates ranging from 72 Mbps to 245 Mbps, and
upload rates between 15 Mbps and 31 Mbps [17]. Based on these findings,
the download bandwidth limit is set to 180 Mbps, and the upload bandwidth
is capped at 20 Mbps for the data collected during this work.
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Chapter 6

Labeling Websites

For the successful training of machine learning models utilizing the gathered
network traffic data, it is essential that this data is appropriately labeled.
While it may initially appear that the website’s URL could serve as a logical
label, this approach becomes less reliable when working with extensive
datasets. Machine learning models might struggle to accurately pinpoint a
specific website among thousands based solely on the network traffic data.
Moreover, it would not be possible to recognize websites that are not included
in the training set. Given these complexities, it becomes clear that alternative
labeling strategies should be considered.

6.1 Website Categorization

Websites can be classified into various categories, often sharing a common
purpose that may also reflect in their respective website structure and traffic.
Utilizing website categories as labels provides a more coarse-grained ap-
proach than utilizing the URL. This method broadens the scope, enabling the
classification of websites that may not have been part of the initial training
set.

A difficulty with this approach is categorizing training data, consisting
of thousands of never before seen websites. The immense volume and
diversity of these websites underscore the magnitude of the challenge, making
traditional manual classification methods impractical and time-consuming.
Employing Large Language Models(LLM) can help automate this as these
models possess the ability to understand the content and can classify wide
amounts of data in a relatively short time.

To achieve this, the HTML code, which is stored during the collection process,
is extracted to serve as input. Before feeding this data to the LLM, it is
crucial to cleanse the HTML content by removing all tags, scripts, CSS

15



6. Labeling Websites

styling, navigation, footer, and any other non-essential element that does not
represent the actual content of the website. This cleansing is crucial not only
to ensure the model can more accurately and efficiently classify the content
but also because these models typically accept a limited input size. Thus, it
is vital to maximize the relevance of the content within that constraint. Once
the HTML is cleaned, the resulting content is integrated into a prompt. This
prompt is designed to request the LLM to categorize the website based on its
content. Alongside the request, a set of categories is provided for the model
to select from. Once the prompt is presented to the model, the website can
be labeled with the determined category.

6.2 Structural labeling

Recognizing the category to which a website belongs based on its encrypted
network traffic remains challenging. This is because websites from different
categories can appear visually identical, leading to similarities in their traffic
behavior.

The patterns of network traffic when rendering websites are predominantly
influenced by the resources that browsers need to fetch. These resources
include media, CSS, and Javascript files. By utilizing the structural informa-
tion of websites as labels, machine learning models might find it easier to
predict them. Furthermore, this approach would still yield insights into the
website’s content and distinctive features. A practical metric for this would
be the number of images displayed on a website, since the quantity of images
directly corresponds to the website’s request count and, by extension, the
number of packets in its network traffic.

However, labeling the training data is not as straightforward as counting
the image tags in the HTML code. Such an approach might inflate the
total number of displayed images, especially if the website employs lazy
loading. This mechanism might withhold requests for images not currently
visible within the viewport. Moreover, relying solely on counting tags can be
misleading as images can be loaded via CSS and JavaScript. Hence, to obtain
the precise number of loaded images, one must access the browser developer
tools. Fortunately, Selenium offers a mechanism to do just that.
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Chapter 7

Dataset Evaluation

In this chapter, the dataset collected during the course of this research is
examined. The applicability of the data is assessed by replicating existing
traffic-analysis attacks. Additionally, the effectiveness of automating website
categorization with LLMs is evaluated. Finally, other potential applications
of the generated data are explored such as assessing how well Deep Finger-
printing can predict the number of images loaded from a website’s network
trace.

7.1 Website Fingerprinting

We aim to assess the performance of the Deep Fingerprinting model across
diverse website fingerprinting scenarios, leveraging our curated dataset. Ini-
tially, we replicate the scenario mentioned in the original paper to validate the
utility and reliability of our dataset. Subsequently, we extend our evaluation
to explore additional scenarios that may offer a more realistic representation
of website fingerprinting challenges.

7.1.1 Data Quality

To assess the quality of the dataset generated, we tested how well our data
could reproduce existing traffic-analysis attacks. In our case, we mainly
focused on the deep fingerprinting attack [9] and compared our results with
those presented by the original authors. Following the methodology outlined
in the paper, we collected 1000 network traces for 95 of the most popular
websites as listed by Alexa [18] utilizing one of our virtual machines for
the task. Employing the same model as the study, our data yielded a 97%
accuracy, slightly lower than the 98% reported by the authors. However, when
our data was applied to the Var-CNN model [10], it precisely mirrored the
98% accuracy cited in the paper, indicating our ability to largely replicate the
results of the WFP attack. The minor discrepancy in the initial comparison
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7. Dataset Evaluation

may be attributed to variations in our data collection approach compared to
that of the original authors. The paper indicates a more or less continuous
data collection process, whereas our approach involved gathering website
samples over multiple weeks. Web pages often change, which impacts the
network traffic generated when loading a page, thereby complicating the
model’s task of identifying patterns across identical website samples.

Having demonstrated that the data harvested using our tool is effectively
applicable to network-based machine-learning attacks, we can shift our focus
towards exploring potential applications of the vast amount of data we
collected.

7.1.2 Realistic Attacks

Upon examining the Deep Fingerprinting paper [9], it is clear that the dataset
collection (including training, test, and validation sets) was conducted using
machines located at a single geographical location (Figure 7.1a). This setup
may not properly reflect real-world attack conditions. Typically, attackers
would train a model using data from devices under their control, then apply
the trained model to data gained from a separate device not under their
possession, from which they do not have training set samples and possibly
positioned far away from the attacker’s devices. Such variations can introduce
discrepancies in the attack traces relative to the training dataset, potentially
impacting the model’s accuracy.

To investigate the impact of varying geographical locations on the Website
Fingerprinting (WFP) attack, we systematically gathered traces from the
previously mentioned 100 websites across our 8 globally distributed machines.
We then divided the gathered samples from each machine into training,
testing, and validation sets at an 8:1:1 ratio, as outlined in the paper (Figure
7.1b). After training the model using these sets, we achieved an accuracy
rate of 91%. While this confirms the viability of the attack across multiple
geographical points, it also suggests a potential decrease in the model’s
performance.

However, this experiment still does not fully simulate a realistic attack sce-
nario for WFP, as the same devices contributed to both training and testing
sets. For a closer approximation to a real-world scenario, we constructed the
training and validation sets using samples from 7 of the 8 machines. The
samples from the remaining machine were exclusively utilized for the test
set (Figure 7.1c). This machine represents the attacker’s target. Due to the
relative positioning of the target device to the attacker’s devices potentially
influencing the model’s performance, tests were performed for every combi-
nation, where one device served as the target and the other 7 as the attacker’s
training devices.
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7.1. Website Fingerprinting

After running the tests the following results could be observed: (Figure 7.2)
When the target device was in close proximity to one or more of the attacker’s
devices, the model’s accuracy remained relatively high, reaching up to 89%.
However, when the target device was situated at a greater distance, accuracy
declined to 78%. This indicates that while the location from which a web
page request is made can affect network traces, it does not render them
entirely unrecognizable to the model.

(a) The dataset was col-
lected from a single loca-
tion as described in the
Deep Fingerprinting paper.

(b) The dataset is equally distributed across 8 different machines
positioned in different locations. Each machine contributes 10%
of the entire dataset to the training set and 1.25% to the test and
validation sets each.

(c) Training and validation sets are constructed from 7 different
machines. The remaining machine contributes samples only to the
test set.

Figure 7.1: Distribution of datasets utilized for WFP attacks across one or more machines.
In all cases, the data split between training, validation, and test sets adheres to an 8:1:1 ratio.
Samples originating from the same website maintain this ratio equal across all machines.
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7. Dataset Evaluation

Figure 7.2: Geographical representation of model accuracy based on the position of the target
device (test set) relative to all other devices used by the attacker (training and validation sets).

20



7.2. Categorizing Websites with LLMs

7.2 Categorizing Websites with LLMs

To assess the ability of Large Language Models (LLMs) to categorize websites
using content extracted from the HTML code, OpenAI’s state-of-the-art lan-
guage model was evaluated [19]. Through their API [20], the categorization
process was automated. The model’s prediction accuracy was determined by
comparing its outputs with Similarweb’s [7] dataset, which contains manual
categorizations of popular websites. While Similarweb provides categories
for only the top 50 websites for free [21], this volume is sufficient to gauge
the model’s performance.

For each of the 50 websites, HTML code was obtained and processed as
outlined in section 6.1. The refined text was then structured into a coherent
prompt, accompanied by the list of website categories provided by Similar-
web. Before finalizing and submitting the prompt, its length was verified to
ensure compliance with the model’s input size limitations. If the content ex-
ceeded the allowable token count, it was truncated to fit within the specified
length. After submission, the model’s categorization was compared to that
of Similarweb. OpenAI’s ”text-davinci-003” model [22] correctly categorized
68% of the websites in alignment with Similarweb’s classification.

7.2.1 Limitations

The model’s performance may not meet certain expectations for several
reasons. A key limitation is the constraint on input size. Specifically, the
DaVinci model is restricted to accepting 4096 tokens. Each token is approxi-
mately equivalent to four characters, and both the prompt message listing
all categories and the response text count toward the 4096 token limit. This
limitation led to 24% of the websites exceeding this capacity, compelling
them to omit potentially significant data that could have helped to categorize
the website.

A further limitation arises when websites are concealed behind login pages.
Consequently, the data extracted from these pages will not accurately reflect
the website’s true content. As websites from all types of categories have login
pages, it makes it challenging for a language model to accurately determine
the category to which the website belongs.

Lastly, determining the exact category of a website can be challenging in
general, as many sites incorporate elements from multiple categories. For
instance, while Bing (bing.com) is primarily recognized as a search engine,
the language model categorized it under News & Media due to the multitude
of news articles on its homepage. Conversely, Naver and Yahoo (naver.com
and yahoo.com), both fundamentally News websites, were classified as search
engines because they feature a search engine interface at the top of their
pages.
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7. Dataset Evaluation

In essence, while Language Learning Models (LLMs) offer significant capa-
bilities, they might not match human proficiency in categorizing websites.
Humans not only process textual information but can also interpret and uti-
lize visual indicators on a website, providing a comprehensive understanding
that often aids in accurate categorization. On the other hand, LLMs, primar-
ily focusing on textual content, might miss these visual details. However,
it’s worth noting that LLMs can categorize websites at a much faster rate
compared to humans.

7.3 Predicting Website Images

In this study, our aim extends beyond merely fingerprinting a select group
of known websites. Instead, we aim to predict the characteristics of any
website based solely on its internet traffic patterns. We evaluated the success
of deep fingerprinting models in predicting the number of images displayed
on websites.

7.3.1 HTML Image Tags vs Loaded Images

It is imperative to note that during the data collection phase, the actual
number of loaded images was stored (Section 6.2). This is significant because
there can be a disparity between the number of images specified in the
HTML code and the number that is actually loaded, as illustrated in Figure
7.3. Documenting this disparity is essential, as addressing it may improve
the performance of the model. For 35.63% of the analyzed websites, there
was a negative delta between these numbers. This suggests that these sites
may use techniques such as ”lazy loading” for their images, by setting the
”loading” attribute to ”lazy” in their image tags [23]. On the other hand, the
remaining 64.37% of websites either displayed an equal number of images
as specified in the image tags or more. This behavior can be attributed to
images being loaded through CSS and/or JavaScript. While images can also
be lazy-loaded using JavaScript (loading an image as it becomes visible in the
viewport), it does not account for the observed variance between the number
of image tags and the actual loaded images.

7.3.2 Evaluating Deep Fingerprinting on Image Range Predictions

Given our speculation that the Deep Fingerprinting model might struggle
with predicting the exact number of loaded images on a webpage based
solely on packet directions, we opted to categorize the website traces based
on ranges of image numbers. To illustrate, if the range length is set to 16,
the model would attempt to predict whether the webpage has 0-15 images,
16-31 images, 32-47 images, or 48-63 images. This categorization aimed to
simplify the model’s prediction task. To understand the impact of image
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7.3. Predicting Website Images

Figure 7.3: Comparison between the count of HTML image tags and the actual images loaded.
Negative values signify more ’img’ tags than images effectively loaded.

range sizes on the model’s accuracy, various range lengths were evaluated
for websites with up to 64 loaded images. Considering that the distribution
of the number of loaded images declines exponentially (as seen in Figure
7.4), only a specific subset of the dataset was utilized for training to avoid
a strong bias toward lower image ranges. For each image range, an equal
number of samples were employed for model training.

In testing, the trained Deep Fingerprinting model outperformed the random
selection of an image range. However, it struggled to consistently determine
the appropriate image range for a website, especially when higher precision
was required for shorter image ranges. This suggests that while Deep Fin-
gerprinting can proficiently identify a visited website from a limited set of
options, it falls short in extracting additional request information, such as
the web page’s structural features.
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7. Dataset Evaluation

Figure 7.4: Distributation of number of images displayed on each website

Figure 7.5: Accuracy of the Deep Fingerprinting model in determining the image range for
websites, evaluated across various range lengths for web pages with up to 64 loaded images, in
comparison to random selection.

7.4 Website Network-Traffic Dataset

During this research, an exhaustive dataset was gathered over a span of 12
weeks. This 6 Terabyte dataset contains 900’000 network traces across 220,000
distinct websites, along with their associated metadata. This was achieved
by deploying eight virtual machines globally, positioned in data centers
provided by DigitalOcean [24]. These data centers are distributed across key
locations, namely New York, San Francisco, Toronto, Amsterdam, London,
Frankfurt, Singapore, and Bangalore. This geographic distribution was aimed
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7.4. Website Network-Traffic Dataset

at capturing a diverse range of network traffic patterns and potential regional
discrepancies. For efficient querying and extraction, the data is stored in an
Elasticsearch database [25].

Moreover, samples were collected from 100 of the most frequently visited
websites, as ranked by Alexa in February 2023 [18]. A minimum of 1,000
samples were uniformly gathered across the eight distinct locations for each
website. It’s important to note that the exact top 100 websites could not be
included in all cases. Legal restrictions in certain countries prevented access
to some of these sites, rendering it impossible to obtain traces from those
locations. Consequently, substitutions were made with other websites that
were accessible across all regions.
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Chapter 8

Conclusion

8.1 Conclusion

In this thesis, our primary objective was to generate a comprehensive dataset
focused on web traffic. To achieve this, we crafted a specialized tool to
capture encrypted traffic across a diverse range of websites. Our strategy
incorporated the design of a web crawler, resulting in a broad compilation of
website addresses. Following this, we simulated realistic user requests by em-
ploying an automated web browser that operated under average bandwidth
constraints. This simulation spanned multiple global locations. Using the
packet analyzer Tcpdump, we documented the traffic generated from these
page loads. A total of 900,000 distinct network traces were obtained, across
220,000 individual website addresses.

To validate the quality and usability of our dataset, we sought to replicate
the outcomes from the renowned Deep Fingerprinting traffic-analysis attack.
Our exploration spanned various scenarios, especially those focusing on
geographical locations. One significant discovery was that the model’s
accuracy can be notably impacted when both training and applying it across
diverse geographical locales.

A crucial element of our research was the labeling strategy. Recognizing
that limiting labels to website addresses might constrain the attack’s scope
to the training set’s websites, we ventured into alternative labeling method-
ologies. This led us to explore a range of strategies, from the categorization
of websites using LLMs to the adoption of loaded image counts as a viable
metric. However, the Deep Fingerprinting model encountered challenges in
precisely predicting the number of images on websites. Additionally, certain
complications arose when employing LLMs for website categorization.

In conclusion, this research not only delivers a robust web traffic dataset but
also sheds light on the efficacy of current analytical techniques in the domain.
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8. Conclusion

We anticipate that the findings and tools highlighted here will significantly
benefit future endeavors in web traffic analysis.

8.2 Future Work

In the course of this work, the emphasis was placed on generating encrypted
website traffic, however, the scope of network security is not limited to web-
site network traffic alone, thereby underlining the importance of broadening
the dataset and the tool developed in this study to include other types of
traffic. The goal should be to create a network traffic dataset that accurately
represents all types of network traffic. This completeness is crucial for the
training of models designed to handle a wide array of network traffic-based
applications. To broaden the dataset, it is imperative to devise diverse meth-
ods for generating authentic network traffic, ranging from traffic occurring
from file transfers and streaming to Voice over IP. It is essential to recog-
nize that each traffic type necessitates a unique approach for its generation.
Furthermore, different types of devices, such as mobile devices and Inter-
net of Things (IoT) devices, should be considered for traffic generation, as
they contribute significantly to the overall network traffic and pose unique
challenges and patterns that need to be accounted for in the dataset. As
the prevalence of IoT devices continues to grow, their impact on network
traffic and subsequently network security cannot be overlooked. Therefore,
future work should also focus on incorporating traffic from a diverse range
of devices to ensure a comprehensive and representative dataset.
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