
ETH Library

WebTigerJython 3
A Web-Based Python IDE Supporting Educational
Robotics

Master Thesis

Author(s):
Bachmann, Clemens

Publication date:
2023

Permanent link:
https://doi.org/10.3929/ethz-b-000632758

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000632758
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Department of Computer Science
Algorithms and Didactics

WebTigerJython 3
A Web-Based Python IDE Supporting

Educational Robotics

Clemens Bachmann

Master’s Thesis

2023

Prof. Dr. Dennis Komm
Alexandra Maximova

Supervisors:

Abstract

As the importance of computer science in education has increased, so has the signifi-
cance of high-quality teaching materials and programming tools. TigerJython and
WebTigerJython have been designed as integrated development environments (IDEs)
for programming in Python, with easy setup and usage. While WebTigerJython
can be accessed through a web browser, TigerJython requires installation. However,
TigerJython supports a wider range of features, including programming robotics,
which was not possible in WebTigerJython due to the limitations of web apps. With
advancements in web technology, we are confident that the entire functionality of
TigerJython can be ported to a web app. This is what we are trying to accomplish
with WebTigerJython 3.

In this thesis, we lay the groundwork for WebTigerJython 3, which is a rewrite of
the WebTigerJython IDE. As in its predecessors, Python syntax has been extended
with elements such as the repeat loop. Python can be executed directly in the
browser without the need of a backend server.

The focus of this thesis was making the IDE usable for programming robotics. We
began by providing support for programming the micro:bit, with plans to eventually
support additional robots in the future. The IDE offers the ability to export code for
the micro:bit and flash the robot directly from the browser. We have also included
libraries for programming micro:bit extension boards, such as the Maqueen robot
and an LED ring.

Additionally, we have included a reference containing a collection of frequently
used commands, along with code snippets that can be easily inserted into the the
code editor using drag and drop.

i

Acknowledgement

I would like to thank the following people, without whom I would not have been
able to complete this thesis. Prof. Dr. Dennis Komm for giving me the opportunity
to write my thesis in his group. My supervisor Alexandra Maximova for providing
feedback and guidance in our weekly meetings, implementing some of the features and
her administrative efforts such as organising a course and providing course material
for to test the IDE. Cédric Donner, who helped me with the technical aspects of the
project. Elizabeta Cavar and Edeltraud Falch, who let me test WebTigerJython 3
in their robotics course. Andreas Aeberli, who cooperated with me working on the
same code base for his thesis. Sara Steiner, for proofreading and providing feedback
to early draft versions of the thesis. Jarka Arnold, for providing the robotics wrapper
libraries. Tobias Antensteiner, for helping me implement some features and Nicole
Roth (formerly Trachsler) for providing usage data of WebTigerJython.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Research . 2

IDEs . 2
micro:bit . 3

1.3 Requirements . 3
Simplicity . 4
Cross-Plattform Compatibility . 4
Python . 4
Robotics . 5
Potential Support for Further Libraries 5
Localisation . 6
Modularity . 6

2 Design of the IDE 7
2.1 Design Decisions . 7

Application Type . 7
Frontend Framework . 8
TypeScript . 8
Deployment . 8

2.2 Components . 9
Code Editor . 9
Canvas & Output Console . 10
Reference . 10

2.3 Error Messages . 11
Syntax Errors . 11
Runtime Errors . 12

2.4 Graphical User Interface . 12
Top Bar . 13
Options Bar . 13
Icons & Tooltips . 14
Alerts and User Feedback . 14

3 Python Implementation 17
3.1 Python Packages . 18
3.2 Limitations . 18
3.3 Non blocking execution . 18

v

3.4 Interrupts, Input, and Sleep . 19
Interrupts . 19
Input . 19
Sleep . 19

3.5 TigerJython Syntax . 19

4 Robotics 23
4.1 micro:bit . 23
4.2 micro:bit Hex Files . 24
4.3 Flashing . 24
4.4 Extension Libraries . 25
4.5 Serial Connection . 26

5 Evaluation in Class 29
5.1 Setup . 29
5.2 Results . 29

Overall Programming Environment 29
Error Messages . 30
Single File vs. Multiple Files . 30
Robotics vs. Turtle Graphics . 30
Flashing . 30
Reference . 30
Other Observations . 31

5.3 Discussion . 31

6 Conclusion and Future Work 33
6.1 Conclusion . 33
6.2 Future Work . 33

Further TigerJython Functionality 34
Server-Side File Management . 34
Multi-file Projects . 34
Reference . 35
Runtime Errors in Robotics . 35

Chapter 1

Introduction

The Center for Computer Science Education at ETH Zurich (“Das Ausbildungs-
und Beratungszentrum für Informatikunterricht der ETH Zürich”, ABZ) supports
schools and teachers in elementary, secondary, and high schools who want to build up
or expand their computer science lessons accordingly. To support teachers holding
computer science courses, the ABZ developed their own IDE: TigerJython.

The TigerJython [28] IDE has been used for many years in educational settings.
One of the main goals was to design a programming environment that would be
easy to set up for educators and support a wealth of educational tools. In the 2010s,
TigerJython was perfectly suitable for this because it could run on all Windows,
Mac, and Linux computers. It used Jython [7], a Python implementation that was
written in Java, which runs on the JVM (Java Virtual Machine) that is already
installed on most devices. Another upside of TigerJython is that it supports not only
programming in Python, but also working with turtle graphics, robotics, GameGrid,
GPanel, and databases out of the box.

1.1 Motivation

During the last few years, some problems have surfaced. While Python is already at
version 3.11, Jython is still stuck at version 2.7. Due to Jython being developed by a
small group of people, the gap between the latest Jython and Python versions may
become even larger in the future. Additionally, there are many Python packages
that are implemented in C, such as NumPy or SciPy. As mentioned, Jython is
implemented in Java; thus these packages would need to be reimplemented in Java
to work in TigerJython. Also, with the rise of tablets, two new operating systems
(iOS and Android) have to be supported. Fortunately, a web app does work on all
platforms.

In 2018, the first version of WebTigerJython [36] was implemented by Nicole
Roth (formerly Trachsler). This was a first attempt to move some features to a web
application. As of now, the turtle, GPanel, and databases work in WebTigerJython.

However, since the implementation of WebTigerJython new standards like We-
bUSB have widened the range of functionality that can be offered by a web-based
application. Due to these new technologies, we feel confident that all the functionality
of TigerJython, such as robotics, can now be ported to a web app. Robotics was
actually one of the key missing features in WebTigerJython, therefore, we decided to

1

2 Chapter 1. Introduction

make it the focus of this work.
We decided not to continue developing the original version of WebTigerJython, but

to reimplement it from scratch. The main reason for this was that WebTigerJython
used Skulpt [30] as Python runtime written in JavaScript. Using Skulpt was a
good decision when WebTigerJython was developed; however, it is no longer state-
of-the-art. While Skulpt is only able to execute a 2.6-ish version of Python, with
Pyodide [35], an alternative web-based Python implementation, it is possible to run
the current Python version (3.11) in the browser. A more detailed comparison between
Pyodide and Skulpt can be found in Section 3. Because most of the functionality of
WebTigerJython was implemented on top of Skulpt, switching to another Python
implementation meant that most of it had to be reimplemented and could not be
reused.

1.2 Related Research

In our related research section we consider similar IDEs and have a look at the
research evaluating the usage of the micro:bit in classes.

IDEs

As a basis for our project, there were TigerJython [28] and WebTigerJython [36].
There are also other IDEs designed for educational purposes that are similar to our
project.

Thonny [21] is another IDE for programming Python, which provides a powerful
debugging tool to visualize code execution. Like TigerJython, Thonny is a desktop
application.

The Python Online Editor [31] is a web-based IDE that executes Python code on
a backend server. It is also capable of exporting robotics code in the backend.

A team at ETH has developed Code Expert [6], an online IDE for students to
work on exercises and exams. The code execution in code expert is also done on a
backend server. Besides Python, Code Expert can also execute code written in other
programming languages.

The Python tutor [24] is a tool for executing Python code and visualizing this
process. Same as the Python Online Editor, said execution is done on a backend
server.

With the introduction of Python implementations running in the browser, IDEs
that are able to run Python code in the frontend directly emerged. One of them is
the aforementioned WebTigerJython. WebTigerJython is based on Skulpt [30], a
Python implementation written in Javascript.

Here I also want to mention XLogoOnline [20, 26], an IDE with focus on pro-
gramming turtle graphics. Turtle graphics can be programmed with block-based
programming and also the TigerJython language. The TigerJython implementation
of XLogoOnline is also based on Skulpt.

There are also Python IDEs that are able to run Python in the frontend, similar
to WebTigerJython [36], such as Papyros [12], Basthon [2], and Futurecoder [25],
which are all based on Pyodide. Papyros is mainly an online Python editor, while
the Basthon project created a kernel that was then integrated into an editor and

1.3. Requirements 3

a Jupyter notebook. Futurecoder is also a Python editor extended with a Python
course to learn programming from scratch. However, all of those IDEs have their
main focus on executing Python in the browser, while we also want to program
robots with it.

To program the micro:bit, there are some existing tools. For block-based pro-
gramming, there is the web-based MakeCode editor [9] by Microsoft. The MakeCode
editor also supports functionality to program robots such as the Maqueen or Maqueen
Plus. The micro:bit can also be flashed with USB here.

The Scratch IDE [17] also supports block-based programming for the micro:bit.
In contrast to the other editors, the micro:bit is not flashed. The user can establish
a Bluetooth connection with the device. The code is then executed in the browser
and the micro:bit is controlled with a Bluetooth interface.

There is an editor called Strype [39] that implements a frame-based approach to
programming the micro:bit. Frame-based Programming is somewhere between the
block- and text-based approaches. The Strype editor transpiles the code to Python
to run it on the micro:bit.

There is also a web-based micro:bit Python editor [11] by the micro:bit Foundation.
However, neither Strype nor the micro:bit Python editor have an extension for
programming micro:bit extensions such as the Maqueen robot, which we implemented
in our IDE.

micro:bit

We decided to work with the micro:bit [33] which has been developed by the BBC
for computer science education. The first version of the single-board computer was
released in 2016, and it contained a wide range of sensors.

In surveys J. Austin et al. [22] conducted they found out that most students
said the micro:bit made computer science more interesting and also motivated girls
choosing computing as a school subject.

In the work of Markus Tyrén [37], they investigated which technical pitfalls
existed when designing teaching materials for the micro:bit. Some of the pitfalls
were related to the IDE they were using. For example, they identified the issue that
when running a course with iPads, one of the problems was that students without an
app store account were unable to download the app. This issue will not occur when
working with our web app, because no download is required. Students only need to
open the app in their web browser. Thanks to the introduction of Progressive Web
Apps, our app will be installable from the browser without the usage of an app store.
However, we identified another pitfall which is that browsers on the iPad cannot
flash the micro:bit.

1.3 Requirements

In this chapter, we take a closer look at the critical requirements for the base
implementation of WebTigerJython 3 and the features it needs to be able to be
extended to.

4 Chapter 1. Introduction

Figure 1.1. The number of WebTigerJython sessions by operating system in 2022

Simplicity

Many current IDEs are very powerful; however, they also have a very crowded user
interface. We don’t want to cause too much extraneous load on the student. So one
of the main goals is to show the desired functionality, no more and no less.

Cross-Plattform Compatibility

When TigerJython was first implemented, it ran on the Java Virtual Machine (JVM).
This decision was made due to the fact that the JVM was pre-installed on most
devices. Therefore, setting it up could be done with one simple installation, and
it worked on Linux, Mac, and Windows. With WebTigerJython, this was even
simpler due to only having to open a website. It also made the application accessible
for other operating systems (iOS, Android, etc.). In Figure 1.1, you can see the
usage by operating system in 2022. Tablet usage is hard to assess exactly due
to the fact that Windows tablets are not classified distinctly. Although even in a
conservative estimate, it is a noteworthy amount. With the increasing usage of “bring
your own device” initiatives in schools, this might increase even further. Therefore,
cross-platform compatibility should be preserved and increased if possible.

Python

The application should run on current Python versions with all of its features. The
standard Python syntax should be extended to the TigerJython language.

The TigerJython language is a superset of Python with some additional function-
ality. It specifically adds three features: the repeat loop, an improved input function,
and some additional accessor functions for arrays.

In my work, I only implemented the repeat loop., it can be used without an argu-
ment. In that case repeat: is equivalent to while True:. It can also be used with
an argument in which case it is equivalent to a for loop with the argument, specifying
the number of iterations, without a control variable. For example, repeat 4: is
equivalent to for _ in range(4):.

The improved input functionality replaces the regular Python input() function.
In contrast to the regular input function, this function parses the input. If it is a

1.3. Requirements 5

number, it casts it as such. The regular Python input functionality handles any
input as a string.

TigerJython also introduced additional accessors to access list elements. Addi-
tional to brackets, the first and last element of a list can be accessed as fields. For
example, the last element of a list x can be accessed with x.last.

Robotics

One of the missing features in WebTigerJython, which was supported in the regular
TigerJython, was robotics. The Python Online Editor has some limited robotics
support. It is not able to flash robotics devices via USB but it can create a code
export, which can then be manually loaded to the micro:bit. These code exports
are created on the server, therefore a steady internet connection is required. With
the new WebTigerJython 3, the goal is that robots can be flashed directly from the
browser without any server interactions. As a first goal, we want to support the
flashing of the micro:bit as a proof of concept. Further robots can be added in the
future.

Potential Support for Further Libraries

One of the downsides of WebTigerJython was that its functionality was not as
rich as that of the original TigerJython. The goal of WebTigerJython 3 is to be
able to support all the functionality that the original TigerJython could. With
WebTigerJython3 we lay the groundwork to allow adding this functionality in the
future. These features are part of the TigerJython functionality, and if we want to
have only one version of TigerJython in the long term, it is crucial to support these
features.

Turtle Graphics Turtle graphics is one of the most popular ways to introduce
programming to children. The simplicity and direct user feedback give the user
immediate information about the execution state. Turtle graphics was already
a part of TigerJython and WebTigerJython, and it should also be included in
WebTigerJython 3. The development of turtle graphics is already in progress and is
being implemented by Julia Bogdan as part of her Bachelor thesis.

GameGrid The first contact many children have with the computer is by playing
games. Giving students the ability to create simple games by themselves is fun and
can be used to introduce object-oriented programming. GameGrid was part of Tiger-
Jython and was built as a wrapper for JGameGrid, a Java library for programming
games. Adapting this is not trivial and makes it necessary to reimplement the library
in Python. Porting GameGrid is part of Andreas Aeberli’s Master’s thesis, and he
has already achieved promising results.

GPanel TigerJython and WebTigerJython support a Graphics library called
GPanel. It is used to draw shapes on a canvas, similar to turtle graphics. In
contrast to turtle graphics, you can draw shapes from any position and not only the
position of the turtle. Implementing GPanel might also be part of Julia Bogdan’s
thesis if time permits.

6 Chapter 1. Introduction

Figure 1.2. The number of WebTigerJython sessions by browser language in 2022

Database WebTigerJython should be able to be used to use databases. Python
libraries such as SQLite3 should be accessible and also TigerJython libraries such as
database1. Database1 is a library for teaching databases implemented for TigerJython.
The library was adapted for WebTigerJython by Selin Barash [34].

Localisation

An additional requirement is that the application should be multilingual and it
should be easy to add additional languages. As can be seen in Figure 1.2, the browser
language of most users is German. However, we still have a non-negligible amount of
users who use our tool in different languages.

Modularity

One further thing is that the application should be as modular as possible, due to
the fact that multiple students will be adding further features to it. If possible, single
modules should be replaceable and work independently of each other.

Chapter 2

Design of the IDE

In this chapter, we will be discussing the thoughts behind the decisions made for
programming WebTigerJython 3. We will give an overview of how the different
components are designed and how they interact with each other.

2.1 Design Decisions

In this section, we will talk about the design decisions made for the app infrastructure.

Application Type

As already mentioned, TigerJython was implemented as a native desktop app, while
WebTigerJython was implemented as a web app. In this section, we will talk about
the advantages and drawbacks of the two. We decided to implement WebTigerJython
3 as a web app, more specifically a Progressive Web App (PWA) [13].

Cross-Platform Compatibility One of the main drawbacks of native applications
is that they are implemented for a specific platform. This means that, if we want to
make a cross-platform native app, we’d have to implement the app for any platform.
This would need a lot of resources for development and maintenance. Native apps
have to be installed before usage with installation files or more and more commonly
through app stores. Installing applications from an app store was one of the technical
pitfalls mentioned in the work of of Markus Tyrén et al. [37] due to the user being
required to have an account.

In contrast, web apps run on any platform without any installation required,
besides a web browser of course. The introduction of PWAs made it possible to
install web apps from the browser. When visiting a website that is also a PWA,
most modern browsers (Chromium based browsers and Safari) give you the option of
installing them. Installing a PWA creates an icon on the launcher or home screen,
start menu, or launchpad. When opening the installed PWA, it is opened in a
separate window outside of the browser, without the address bar. If desired, a PWA
can still be exported to the respective app stores.

Performance Native apps were often praised as being more performant for two
reasons. The first one is that native apps can run more efficiently because they

7

8 Chapter 2. Design of the IDE

can be optimized for the particular device’s hardware. The second reason is that
responsiveness of web apps suffers because whenever new content is loaded, it has to
be retrieved from the web.

While the effect of the first drawback can lead to longer execution times, the
second is the more pressing one. A slow internet connection could make an app
basically unusable. Therefore this was also adressed with the introduction of PWAs.
PWAs add a layer between the application and the web in the form of a service
worker. When first visiting the website, the service worker loads all the files specified
in a manifest into the cache. When the user triggers a web request, the service
worker intercepts it and checks if the requested file is already cached. If it is, it can
be provided and does not have to be loaded from the web. So, we have the possibility
to load all files in advance and make the app usable in offline mode.

Native Features The biggest advantage of native apps is their ability to access
the whole paraphernalia of device-specific features. Some of these device-specific
features are accessible from the browser with APIs while others remain exclusive for
native apps such as the devices local file system.

In our application we need access to the USB ports. These are needed to flash
USB devices such as the micro:bit. This can be done using the WebUSB API [19].
Unfortunately the WebUSB API is only implemented in Chromium-based browsers.
Currently, iOS devices don’t support any browser based on Chromium, therefore
functionality that requires WebUSB will not be accessible on those devices. This is
specified in Apple’s App Store Review Guidelines [1].

Frontend Framework

While WebTigerJython was built with vanilla HTML/CSS/JavaScript, we built
WebTigerJython3 with a frontend framework. Frontend frameworks optimize render-
ing and therefore the performance of the app. They also help to better compartmen-
talize the code. Dividing up our code into smaller components makes it easier to
reuse single code objects, test, and maintain.

We looked into Angular, React, Vue.js, and Svelte. All of these frameworks are
suitable for the needs of this project. We decided on Vue.js as it is known as the
most beginner-friendly option. This lowers the barrier for future students to start
coding on the project and extend the app.

TypeScript

One additional difference from the original WebTigerJython is that we work with
TypeScript instead of JavaScript. Typescript is a strongly typed programming
language that builds on JavaScript. It helps the user understand the code better and
helps catch errors before they occur at runtime, making the application less prone to
typing errors.

Deployment

We decided to deploy the application on a regular basis to check if all the features
can be integrated well. For that, we automatically deploy our code. We have two

2.2. Components 9

Main thread

Output
Console

Python
Interface

Code
Editor

Device
InterfaceReference

WebWorker

Pyodide Instance

Python
Worker

Local Python
Files

Device Code
(hex for
microbit)

micro:bit
Custom
Python

Libraries

Load as Package

DAPLinkExport

Export

Import

ComSync

Figure 2.1. Abstract System Overview

branches in our Git repository, ’develop’ and ’main’, that are automatically deployed
on new commits. This makes it easier to try out new features and see if they work
in production.

2.2 Components

As seen in Figure 2.1, our system consists of two threads. The web worker thread loads
and executes Python in the background, while the main thread handles everything
else. How loading a Python runtime is done and how Python is executed is described
in more detail in Chapter 3, while everything related to robotics will be described
in Chapter 4. In this section, we will talk about all the other components and the
graphical user interface.

Code Editor

To allow the students to write their code, we decided to use an already-implemented
editor. The editor should help the students with programming without overwhelming
them. We decided to work with the CodeMirror editor since it is very lightweight,
powerful, and allows to write custom extensions easily.

Programming Language Support We added an extension to CodeMirror for
language support. This was a module that was already offered by CodeMirror. We
modified it by extending the language with further syntax, such as the repeat loop.

10 Chapter 2. Design of the IDE

This extension contains Python code highlighting, auto indentation, and automatic
closing of brackets. The language support also includes auto-complete for standard
libraries. We decided to deactivate that in order to not overwhelm students with
unnecessary information. In the future, this might be helpful as a toggleable feature.

Support for Drag and Drop Code Snippets In our reference component, we
use code snippets that the user can insert into their code with drag and drop. We
implemented an extension to the editor that allows to preview the content of the
code snippets on drag and insert it on drop. The Micro:bit Python editor, from
which we forked that feature, also used the CodeMirror editor. The reference is
described in more detail in Section 2.2.

Comparison to Alternative Editors

There are other editors with similar functionality, such as the Ace editor, which
was used in the first version of WebTigerJython, and the Monaco Editor. One big
advantage of CodeMirror is that it supports the native selection and editing features
of touch devices, which other editors do not. This is an issue that came up with the
original WebTigerJython because there are schools that work with iPads or have a
“bring your own device” policy, where parents often buy iPads or other tablets.

Canvas & Output Console

To display Python output, we created two areas. The lower right area in the IDE
displays text output and errors. The upper area is used for graphical output. The
layout is the same as it was in the original WebTigerJython. We did not implement
any graphical output as part of this thesis and therefore, it is a placeholder for now.
In the future, GameGrid, the turtle, and the graphical output of other libraries such
as Matplotlib can be displayed there.

Reference

When learning to program, students often have to learn a lot of commands. To
provide the students with an overview, we added a reference where commands can be
looked up. In the reference, we explain the commands and add example code snippets.
These code snippets can be dragged and directly inserted into the Python editor.
Inserting code snippets with drag and drop should be intuitive, and it resembles
working with code blocks. Many students start their programming journey with
block editors such as MakeCode [9] or Scratch [17] before having their first coding
experiences.

This idea is highly inspired by the micro:bit Python editor [11], from which we
also forked some parts of our code. The way this is implemented is that we compute
the position of the cursor when it is in the editor. According to that, we execute the
changes that would be necessary to insert the code snippet at the cursor position.
When the cursor position changes, we undo the previous changes and insert it in the
new position.

The reference is organized in a multilayered folder structure where the commands
are grouped by functionality.

2.3. Error Messages 11

Figure 2.2. A visualization inserting code snippets from the reference. The code
snippets can be inserted using drag and drop. The import is automatically inserted
on top.

2.3 Error Messages

To provide the user with effective feedback during coding and assist them in recovering
from errors, we have implemented multiple strategies.

Syntax Errors

To provide feedback for syntax errors, we use the TigerPythonParser [27], which was
already used in TigerJython and WebTigerJython. Before executing or exporting
the code, we check for syntax errors. If one is found, we prevent the code execution
and display the error message directly in the code.

12 Chapter 2. Design of the IDE

Figure 2.3. The location of the error message is directly displayed in the code.
The standard error message is displayed in the console output. In this example,
Friendly Traceback is also added, a library that provides the user with further
feedback.

Runtime Errors

For runtime errors, we give the user multiple levels of feedback. There is the
possibility to just use the regular Python error message. We additionally displayed
the error message within the code, as shown in Figure 2.3. They are sometimes
hard to understand, especially for novice programmers, so we added the possibility
to enhance the error message with a plain text explanation. This explanation is
provided by a library called Friendly Traceback [32]. Friendly Traceback is also able
to provide these explanations in multiple languages, which is helpful for many novice
programmers who may not speak English very well.

It was requested by some teachers to also include the possibility of only displaying
the location of the error message, which we have also done.

2.4 Graphical User Interface
The design of WebTigerJython 3 is inspired by TigerJython and the original WebTiger-
Jython. To some degree, TigerJython is an established brand, and large changes
would confuse the current user base. Therefore, we have decided not to make signifi-
cant changes. However, knowing that it would also be used on devices with touch
interaction in the future, We decided that some changes had to be made to ensure
the app’s usability. For the Graphical User Interface, we used a library called Vuetify.
Vuetify is based on Material Design, which is a design language developed by Google
and is used in many other sites and applications. This makes the app seem familiar to
users while also being consistent with established industry standards. The Material
Design language is flat and minimalistic, and the components behave like physical
objects. We have animations that communicate the interaction to the user, and
shadows help the user to focus on the interactive elements.

We have a top bar with the most-often-used functionality and an options drawer

2.4. Graphical User Interface 13

Figure 2.4. The top bar when a device is selected but not connected.

Figure 2.5. The old options bar compared to the new one.

on the right side with settings and less-often-used functionality. The main window is
divided into three parts: the code editor, an area for graphical output, and an area
for text output. Additionally, we added another drawer on the left side where you
can access the reference with instructions for coding, containing code snippets that
can be inserted into the editor using drag and drop.

Top Bar

The top bar normally just contains functionality to run and interrupt Python
code. Additionally, there is the possibility to open the options drawer on the right.
Further buttons can be displayed depending on the state of the application. If a
device is selected (e.g., the micro:bit), further functionality such as export code is
available. Depending on the connection status with the device, there is the ability to
connect/disconnect and flash the device.

Options Bar

To fit the new design, we moved the settings to a drawer. When you open the drawer,
the focus is set to it, and the rest of the application moves to the background and
has a light shadow over it to communicate that to the user. We kept the small icons
on the left side to make it easier for the user to find the right setting.

14 Chapter 2. Design of the IDE

Figure 2.6. Icons and tooltips, the tooltip is displayed on hover

Figure 2.7. While the blue alert informs the user about a process in the background,
the red alert communicates that something triggered by the user caused an error.
In this example the error communicated that the user cannot flash while flashing is
still in progress.

Icons & Tooltips

We decided to work a lot with icons due to the fact that they are easier to parse and
understand in any language. Sometimes, what icons mean might be unclear to the
user. If further information is needed, tooltips can be accessed by hovering over the
icon. On touch, the same is achievable by pressing and holding the button.

Alerts and User Feedback

To make the user aware of what is happening, we use multiple methods of communi-
cation. One way of communicating with the user is to use alerts. We have four types
of alerts, which are also color-coded. Error (red), success (green), info (blue), and
warning (yellow) messages. Normally, the messages just stay for a few seconds and
disappear. We also have messages with a loading bar to communicate to the user
that an action is still being executed and to show the amount of progress that has
been made.

Additionally, we use a circular loading icon to show the user that the code is still
running, as seen in Figure 2.8

2.4. Graphical User Interface 15

Figure 2.8. The circular loading icon communicates to the user that the code is
still running

16 Chapter 2. Design of the IDE

Chapter 3

Python Implementation

In the regular TigerJython, Jython is used to execute Python code. Jython is a
Python implementation written in Java. The reason why Jython was picked is that
the Java Virtual Machine was pre-installed on most desktop devices, and it could be
distributed with a single JAR file, requiring no installation. An additional reason was
that popular Java libraries used in teaching could still be used. The disadvantage of
Jython is that the reference implementation of Python is written in C and developed
by a large team, while the Java implementation is only developed by few and not
that actively. Therefore, the supported Python version of Jython always lags behind,
and this gap widens with time. At the time of publishing this thesis, the currently
supported Python version in Jython is 2.7, while the current Python version in
CPython is 3.11. Additionally, most Python packages are not supported in Jython
since they are written in C and would need to be re-implemented.

In WebTigerJython, Skulpt was used as a Python implementation. Skulpt [30]
is an in-browser implementation of Python written in JavaScript. Compared to
Jython, there is an advantage that no Java Virtual Machine is required. It runs in
any modern browser. Unfortunately, it has issues similar to those of Jython. The
current version of Python that Skulpt supports is 2.6, and only Python libraries
written entirely in Python are supported at all. Another drawback of Skulpt is that
it is no longer actively developed, making it unsuitable for WebTigerJython 3.

There is an alternative web-based Python implementation written in JavaScript
called Brython [18]. Brython is still receiving updates on a regular basis. However,
the same issue that Jython and Skulpt have is also present: only pure Python libraries
are supported.

There is also the approach of running the reference CPython implementation
in the browser. While browsers do not directly run C code, it can be compiled to
WebAssembly with the use of Emscripten [5]. WebAssembly is a binary code format
that works in any current browser. Emscripten is a compiler toolchain which is
able to compile C code to WebAssembly. Pyodide [35] is such a port of CPython to
WebAssembly extended with a JavaScript interface. In Pyodide, only pure Python
packages work by default. However, it is much easier to port CPython packages
because they can also be ported using Emscripten.

We compared all solutions and concluded that working with Pyodide is the best
strategy. The support for new Python versions and an overall better adaptability to
libraries is a big plus, giving us more possibilities for the future.

17

18 Chapter 3. Python Implementation

Python Version Basis Web Adapting CPython libraries

Jython 2.7 Java No Hard
Skulpt 2.6 JavaScript Yes Hard
Brython 3.11 JavaScript Yes Hard
Pyodide 3.11 C / WebAssembly Yes Easy

Figure 3.1. A comparison between different Python implementations

3.1 Python Packages

Pyodide provides micropip, a lightweight package installer. Micropip in turn provides
functionality to load Python packages directly from PyPI (Python Package Index).
However, we have the limitation that we can only load packages that are written
entirely in Python because the browser cannot run C code directly, in which many
packages are written. Some of the Python packages written in C are ported by the
Pyodide development team and can be loaded directly from Pyodide. There are
also a few standard libraries that don’t work in Pyodide and are therefore excluded.
For example, Tkinter and libraries that depend on it, such as the native Python
turtle [14].

In WebTigerJython 3, imports are checked and loaded before the execution.
There is also the possibility of writing our own local packages, which we can then
load into Pyodide.

3.2 Limitations

Pyodide still has some limitations. We run Pyodide in a web worker which runs in a
separate thread. The web worker itself is single-threaded, which makes multithreading
not possible at the moment. Running Python code in Pyodide is 3 to 5 times
slower than running it with CPython. Running C code (in which the reference
implementation is written) that is compiled to WebAssembly is only 2-2.5 times
slower. This shows that there is room for improvement.

3.3 Non blocking execution

JavaScript and TypeScript are executed in a single thread, where blocking behavior
can result in a frozen user interface. To prevent this, in the original WebTigerJython,
asynchronous execution was used. With asynchronous execution, the code is still
executed in the main thread, but not blocking it.

Another approach is the usage of web workers. A web worker is a separate,
single-threaded script that is executed in the background. The web worker and the
main thread do not share any memory.

The two communicate via messages. These messages take the form of JavaScript
objects with the limitation that they have to be structurally clonable. When sending
a message, the object sent is cloned and this clone of the object is sent to the
respective other thread. Being only able to send clonable objects to the respective
other thread brings the limitation that functions cannot be passed and therefore we
cannot trigger functions in the respective other thread directly. To overcome this

3.4. Interrupts, Input, and Sleep 19

difficulty, we used a library called Comlink [23]. Comlink creates remote procedure
call (RPC) proxys to expose functions to the respective other thread. This helps
us initialize, run, or interrupt Pyodide from our main thread and also update our
output console from the worker thread.

In our implementation, we always keep track of the state of the web worker in
our main thread. That way, we can prevent the main thread from triggering tasks
while the worker is still busy. An example of how this communication looks like can
be found in Figure ??.

3.4 Interrupts, Input, and Sleep
To implement interrupts, input, and sleep, we utilized the pyodide-worker-runner [15]
library, which simplifies the integration process. Details on how we implemented
specific features are described in their respective section.

Interrupts

WebAssembly does not support preemptive multitasking, which is the basis of
the Python interrupt system. So it is not possible to stop a running Python
instance with JavaScript functionality. Therefore, the Pyodide team suggests using a
SharedArrayBuffer that can be accessed from both inside and outside of Pyodide.
The execution of Python can be interrupted by writing to the SharedArrayBuffer.
We use pyodide-worker-runner to handle setting up the buffer and interrupts.

Input

Pyodide itself is not capable of handling Python’s input functionality. To support
input functionality, we override the Python input function with a callback function
in our web worker. The callback function communicates with the main thread, which
prompts the user for input. The input is then passed to the web worker, which then
passes it to Pyodide. Pyodide is then able to resume execution using the user input.

Sleep

WebAssembly, in which Pyodide runs, does not support pausing execution for a
specific duration of time. Here, we are overriding the Python sleep() function with
a JavaScript callback function in the web worker. The callback function in the web
worker is implemented by sending a request to a service worker, which then waits
for a specified amount of time before notifying the web worker to resume Python
execution.

3.5 TigerJython Syntax
As already mentioned the TigerJython language is a superset of Python with some
additional functionality. It specifically adds three features: the repeat loop, improved
input function, and some additional accessor functions for lists.

We implemented the repeat loop by parsing the code prior to execution or flashing.
The loops are replaced with their corresponding standard Python equivalents (see

20 Chapter 3. Python Implementation

Section 1.3). We use regular expressions to identify the location of loops. Regular
expressions (regex) are sequences of characters used to match patterns in text.
In our initial implementation, we used the lookbehind [4] expression to identify
sequences that were preceded by the “repeat” keyword. Unfortunately at time of
implementation, the lookbehind expression was not supported in Safari browsers and
caused the application to crash. It is a relatively new feature in regular expressions
that was not supported by most browsers until a few years ago. Chrome first added
it in 2017, while other browsers added it in the subsequent years. At the time
of publishing this thesis, Safari supports this feature too. Because this parsing
and replacement can also be performed without using this expression, we decided
implement this feature without it. This will ensure that our application remains
functional in older browsers that have not been updated yet.

The improved input functionality and the additional accessors are not yet part of
WebTigerJython 3.

3.5. TigerJython Syntax 21

Main
Thread WebWorker

Pyodide state:
Init

initPyodideRunner

process finished

runCode

process finished

Pyodide state:
running

updateOutput

handleInput

handleInput

Pyodide state:
idle

Pyodide state:
idle

Figure 3.2. A visualization of how communication between main thread and web
worker could look like.

22 Chapter 3. Python Implementation

Chapter 4

Robotics

One of the key features of TigerJython is to support programming for robotics.
TigerJython supports multiple robots such as the Calliope Mini [3], the micro:bit [33],
and the Lego Mindstorms EV3 [8].

The Lego Mindstorms EV3 is a programmable robot based on Lego blocks. It
can be connected to a variety of sensors and motors. The micro:bit and Calliope
Mini are very similar devices because the Calliope Mini was developed based on the
micro:bit. They are extendable single-board computers equipped with a few sensors
and methods to give feedback to the user.

We decided to focus on one of these and build WebTigerJython 3 in a way
that makes it simple to add further robots. We decided not to focus on the Lego
Mindstorms EV3 because the robot is already a few years old (released in 2013) and
is relatively hard to get since it is no longer produced. As the Calliope Mini ran into
multiple memory-related issues during the last few years we decided to go with the
safest option: the micro:bit.

The original WebTigerJython did not support robotics. When WebTigerJython
was developed, WebUSB had not yet been introduced. Therefore, flashing from the
browser was not possible due to technical limitations.

With the Python Online Editor, there was an attempt to make it possible to
program robots in the browser. The Python Online Editor, is able to convert Python
code into a HEX file readable by the micro:bit. The creation of this HEX file is
done on a server and not in the frontend, therefore an active internet connection is
required for programming. The HEX file can then be manually transferred to the
micro:bit.

In WebTigerJython 3, our goal is to create exportable code within the frontend
so that no request to a server is needed. This allows the application to be used in an
offline setting. Exporting files and then manually moving them to the micro:bit is
cumbersome. Therefore, we wanted to be able to flash the micro:bit directly from
the application by only clicking one button, like it is possible in TigerJython.

4.1 micro:bit

The micro:bit [33] is a single-board computer designed for educational purposes.
It contains a (5 × 5)-LED matrix and a speaker to give the user feedback. It also
contains some sensors such as buttons, a light sensor, a compass, a touch sensor, and

23

24 Chapter 4. Robotics

Figure 4.1. The micro:bit and its features 1

a temperature sensor. Additionally, there are many modules available to extend the
capabilities of the micro:bit, such as LED strips, wheels, and sensors like ultrasonic
sensors. The micro:bit can be bought for a moderate price of about $30. It can
be programmed with a large selection of programming languages. The micro:bit
Foundation recommends two editors: the MakeCode micro:bit editor by Microsoft
for programming the robot with blocks, or the micro:bit Python editor which they
developed themselves for programming the robot with a text-based editor.

4.2 micro:bit Hex Files

In WebTigerJython 3, Python code for the micro:bit can be written. It is not possible
to directly export Python code to the micro:bit because the micro:bit additionally
needs a runtime environment that executes the code. There are multiple runtime
environments supported by the micro:bit to run code written in different programming
languages. Due to storage limitations, only one runtime can be installed at a time.

The micro:bit Foundation introduced a file structure [10] that combines a runtime
with the given code, which can be loaded onto any micro:bit. This file is written in
the Intel HEX format, a format often used for programming microcontrollers.

4.3 Flashing

These files can then be flashed onto the micro:bit. When the micro:bit is connected
with USB it is displayed as a memory stick. When you drag and drop the HEX file
on the micro:bit, the micro:bit overwrites its flash memory with the transferred HEX
file. Flashing a file with drag and drop is cumbersome and also takes a lot of time, as
seen in Figure 4.2, due to the fact that the whole MicroPython runtime environment,
which is the majority of the code, has to be loaded onto the device every single time.

Another way of sending code to the micro:bit is by flashing it directly from the
application. For that, we first set up a connection to our device using WebUSB. With
DAPLink, we can establish a bridge between the browser and the micro:bit. Then,
we can directly send our code from WebTigerJython 3 to the micro:bit. The flashing
process compares the memory pages and only copies those that differ. If this fails, it

1https://microbit.org/get-started/user-guide/overview/

4.4. Extension Libraries 25

Partial Flashing with TigerJython 5s
Partial Flashing with WTJ3 2s
Full Flashing with TigerJython 60s
Full Flashing with WTJ3 30s
Copy hex-file using File Explorer on Windows 15s

Figure 4.2. A comparison between flashing times. We measured them on a
computer running Windows 10. Flashing was done with USB 2.0, the current
version supported by the micro:bit

falls back to a full flash, where the entire Python runtime environment is sent to the
device. As you can see in Figure 4.2, a full direct flash takes longer than flashing by
transferring a hex file. However, transferring a HEX file with drag and drop is more
cumbersome. While testing the device, full flashing only occurred when another
runtime was loaded, therefore, overall flashing was much faster. Another thing we
have to mention here is that flashing with WebTigerJython 3 is substantially faster
than with TigerJython. However, it should be noted that we did not implement the
flashing process ourselves, we forked it from the micro:bit Python editor [11].

While direct flashing is faster, we have to mention it is dependent on the support
of WebUSB. As of the publication of this thesis, only Chromium-based browsers
support WebUSB. Most devices are able to run Chromium-based browsers, with the
exception of iOS devices. There is a Chrome Browser app in the iOS App Store
which is actually based on WebKit and not Chromium. It is a web engine and the
only one that can be used on iOS devices. WebKit is the engine Safari is based
on. WebKit and Firefox have yet refused to implement WebUSB as of the time of
publication of this thesis due to privacy concerns [29,38].

There is also the possibility to flash the micro:bit using Bluetooth, and this is also
supported by the MakeCode Editor [9]. Unfortunately, the micro:bit does not have
enough memory to support both Bluetooth and the MicroPython runtime. Therefore,
Bluetooth is disabled when the MicroPython runtime is flashed.

4.4 Extension Libraries
The micro:bit is extendable with multiple modules. It has multiple pins that can be
connected to extension boards. We support the LED Ring, the Maqueen, and the
Maqueen Plus extension boards. Programming these is not trivial and not suited for
an educational setting, and therefore, wrappers have been implemented. We added
multiple of those wrapper libraries to our IDE, and they can be imported like normal
Python libraries. Before we export our code or flash it to the micro:bit, we check if
these wrapper libraries are needed and add them accordingly. All of these libraries
are provided by the TigerJython Group [16]. We support the following additional
libraries:

mbled The mbled library is a wrapper for an LED ring with multicolored LEDs
(Figure 4.3). The ring consists of 24 RGB LED lights, which can be accessed

2Image 1: Clemens Bachmann

26 Chapter 4. Robotics

Figure 4.3. Three extensions for the micro:bit. An LED ring, the Maqueen robot,
and the Maqueen Plus (left to right).2

Figure 4.4. Error messages are displayed on the micro:bit by scrolling through.
The ’li’ displayed on the micro:bit is part of the error message displayed in the IDE
on the right.

separately. The wrapper consists of two functions: one to set the color of a single
LED, and one to fill the entire LED ring.

mbrobot, mbrobotmot These libraries are implemented to control the Maqueen
robot, as seen in Figure 4.3. The Maqueen robot has two wheels, some LEDs, an
ultrasonic sensor to measure distances, and two line tracking sensors. The Maqueen
can also be equipped with two additional servos to add more functionality, such
as a shovel. The mbrobot library lets the user control the robot from a high level
of abstraction. Functions such as forward(), backward(), left(), and right()
can be directly used, and sensors can be read and servos can be controlled. The
library “mbrobotmot” allows the programmer to access the servo motors of the
wheels directly, enabling more complex steering maneuvers.

mbrobot_plus The mbrobot_plus library is similar to the regular mbrobot library.
It also supports the additional features of the Maqueen Plus, which include additional
LEDs and more line tracking sensors.

4.5 Serial Connection
Error messages are displayed on the micro:bit’s (5 × 5)-LED matrix by scrolling
through. This is done only once right after the error happens, and it is quite hard
to read without missing any letters. The error messages can also be read through

4.5. Serial Connection 27

a serial connection established over WebUSB. In WebTigerJython 3, we read the
errors from the serial connection and display them in the text output of the IDE.
This connection only works while the micro:bit is connected with WebUSB.

Images 2 & 3: TigerJython Group https://python-online.ch/mbrobot.php?inhalt_links=
mbrobot/navigation.inc.php&inhalt_mitte=mbrobot/mbrobot.inc.php

https://python-online.ch/mbrobot.php?inhalt_links=mbrobot/navigation.inc.php&inhalt_mitte=mbrobot/mbrobot.inc.php
https://python-online.ch/mbrobot.php?inhalt_links=mbrobot/navigation.inc.php&inhalt_mitte=mbrobot/mbrobot.inc.php

28 Chapter 4. Robotics

Chapter 5

Evaluation in Class

5.1 Setup

We tested our IDE during a semester course for primary school. The participants
of the course were nine students between the ages of 9 and 11. The course was
an optional module for high-performing pupils, and it comprised two consecutive
lessons every week. Before the course, the pupils had already taken a computer
science course for one semester, where they had learned to program with gturtle
using WebTigerJython. In this course, the students learned to program the micro:bit
with Python. The pupils used laptops provided by the school with Windows 10, and
they used Microsoft Edge (which is based on Chromium) to access WebTigerJython
3. To program, they used the keyboard and the trackpad. The laptops were also
equipped with a touchscreen, which some pupils used on a regular basis. I visited the
course from the second to the sixth week to field-test the IDE and provide necessary
help if any problems with the IDE occurred.

During the lessons, I watched the pupils and took notes. I also conducted
structured interviews with all of the pupils. The interviews were conducted during
the lessons, normally two every lesson, and took 5 to 10 minutes each. In one
week, we did not conduct any interviews and postponed them to the following week.
Furthermore, we tested the reference described in Section 2.2 in the final week during
two consecutive lessons. At the end of those lessons, the pupils provided feedback in
an online form consisting of five questions. During the the evaluation of the reference
only five of the nine pupils were present.

5.2 Results

In this section we will talk about the qualitative feedback we received from students.

Overall Programming Environment

The pupils overall liked the new programming environment. When asked if they
preferred WebTigerJython or WebTigerJython 3, most of them liked both IDEs
equally, with a slight tendency towards a preference for the new IDE. When asked
if they experienced bugs, pupils declined, except for a few pupils who experienced
the double flashing bug in the first week, which is described in more detail in the

29

30 Chapter 5. Evaluation in Class

Subsection about flashing.

Error Messages

When asked which error messages they most often encountered, it was mostly import
errors due to forgetting to import some functionality or typographical errors. Syntax
errors were easily fixable due to the specific feedback received from the TigerPython
Parser, and pupils stated that they were comfortable and confident in their ability to
recover from them. However, runtime errors were not that easy to understand. The
runtime errors with the micro:bit are displayed in the console. They are in English,
which most pupils were not able to understand, and standard Python messages were
hard to understand for the pupils as well.

Single File vs. Multiple Files

We asked the pupils how well they could manage their files. Currently, only one file
can be opened. Files can be loaded or exported. I asked pupils if they thought it
would help them if they could open multiple files at the same time. Most pupils did
not see the need to open multiple files at the same time.

Robotics vs. Turtle Graphics

I also asked the pupils if it was hard to switch from turtle graphics to robotics. The
pupils thought that, overall, the switch is not that hard. Having multiple libraries
that have to be dynamically imported was perceived as more difficult. Nonetheless,
the pupils reported being more enthusiastic about robotics due to the fact that there
are more possibilities.

Flashing

I also asked if the process of flashing worked smoothly and if connecting to the device
and then flashing was intuitive. This was mostly the case. At the beginning, we did
not account for the fact that pupils could press the flashing button multiple times.
If flashing is being executed while the IDE is still in the process of flashing, the file
system will get corrupted, and a new full flash has to be executed. We therefore
disabled flashing while being in the process of flashing and provided additional user
feedback that the process of flashing is still being executed.

Reference

We let the pupils work with the reference for two hours and then questioned them.
The pupils were enthusiastic about the reference. Usage varied a lot between pupils.
Some pupils mentioned that the reference was really helpful for longer commands
and that they did not have to search old worksheets to find the right commands. All
Pupils stated that the speed at which they program would either stay the same or
increase.

5.3. Discussion 31

Other Observations

Pupils often pressed the “run” button and thought this would flash the code.
An additional observation we made was that when pupils produced very long

text outputs, the text window would not scroll down automatically. Therefore, the
pupils could only see the first few lines and they would have to manually scroll down
to view the rest. This is rather annoying when you print out data, and you have to
scroll down to see the most recent data.

5.3 Discussion
The observation that pupils slightly preferred WebTigerJython 3 over the origi-
nal WebTigerJython could be attributed to the familiarity of the Material Design
user interface. It could also be attributed to the fact that most pupils perceived
programming robotics as more exciting.

Where most help was needed in recovering from error messages was when being
confronted with runtime errors. Here, some additional help could really assist the
students and improve independent learning. Specifically, with repect to translating
or helping to interpret the error message.

Being able to open multiple files at the same time was not requested by the pupils.
Possibly, this can be attributed to the exercises of the current course that could often
be solved with a few lines of code. When projects get larger, working with multiple
files becomes a necessity. Additionally, it has to be mentioned that most pupils did
not get any experience working with an IDE that could open multiple files at the
same time. If we add the feature of being able to open multiple files, we should make
this feature toggleable not to overwhelm novice programmers.

For most pupils the switch to robotics was seamless. Pupils were able to gain
abstract programming knowledge and apply it in a different context, which speaks in
favor of a spiral curriculum.

The fact that the reference was only introduced in one week and adopted quickly
was a positive surprise. Overall, the idea seems to be promising and should be further
developed. We should keep in mind that in our class evaluation, we only worked
with a small scope of functionality. If the scope of the reference increases, it should
still be manageable.

Another aspect we should keep in mind is how we communicate functionality to
the user. Many pupils used the “run” button, which executes the Python code locally
in Pyodide, instead of the “flash” button. We should improve the intuitiveness of
the user interface so that these mix-ups don’t happen anymore.

To address the issue that only the first few lines of output were displayed, and
students had to manually scroll down to see more recent text output, we made the
window automatically scroll down when new output appeared on the console. This
enhancement was tested by the pupils the following weeks and appreciated.

32 Chapter 5. Evaluation in Class

Chapter 6

Conclusion and Future Work

6.1 Conclusion
In our thesis we managed to create a Python Web IDE. The IDE is able to run the
latest Python Version and works in any modern browser.

The IDE also supports code highlighting, auto indentation, auto closing of
brackets. The TigerJython-specific repeat loop is also supported. Error messages are
enhanced with FriendlyTraceback [32] and the TigerPythonParser [27].

WebTigerJython is implemented as a Progressive Web App that can be installed
and used like a regular application.

Porting robotics to the web was possible thanks to WebUSB. With the introduction
of many WebAPIs almost all functionality of TigerJython can be ported to the web.
Here we have to keep an eye on support. Some of the APIs are not supported
by certain devices, e.g., iOS devices do not support WebUSB. We should look for
workarounds in the future to make all the functionality of WebTigerJython 3 usable
on as many platforms as possible. Specifically, it will be important to focus on iOS
devices due to their high market share in tablets.

During the implementation, we stayed confident that it should be technically pos-
sible to port all TigerJython features to WebTigerJython 3. Some of the educational
libraries used in TigerJython that are written in Java need to be rewritten and this
might not be trivial, but it should be feasible.

Being able to use a current CPython in the browser opens a lot of new opportu-
nities. Now that libraries like Numpy, Scipy, and Matplotlib are usable, we could
extend the scope of potential users to more advanced programmers.

While testing our tool in an educational setting we only experienced very few bugs
and the feedback we got from the pupils and the teacher was very positive. Still a lot
of further testing has to be done. However we feel confident that WebTigerJython 3
can replace the old WebTigerJython and potentially the regular TigerJython in the
future.

6.2 Future Work
As demonstrated in the thesis, the IDE has already been tested in an educational
setting and with some further refinement, it should be suitable for use in classrooms.
In this section, we will explore the features that need to be added to make it a

33

34 Chapter 6. Conclusion and Future Work

complete successor of the current TigerJython versions, as well as other features that
could be of interest.

Further TigerJython Functionality

If we want to cover the full TigerJython functionality, all of the following tools have
to be added.

Turtle Graphics The turtle is a tool often used to start programming. It is a
cornerstone of the spiral curiculum developed by the ABZ. Therefore this is one of
the most important features to be added to WebTigerJython 3 in the future. There
are other projects such as Basthon [2] that already have implemented turtle graphics,
so this should be feasible. The turtle will be implemented as part of the Bachelor
thesis of Julia Bogdan.

GPanel GPanel is a tool designed to give the user the ability to draw on a canvas
with simple commands. In contrast to turtle graphics, the user can draw shapes from
any position, while in turtle graphics, he is only able to draw at the turtles position.

GameGrid During the work on my thesis, another student, Andreas Aeberli, has
been working on an implementation of GameGrid that works on the web. GameGrid
in TigerJython heavily relies on JGameGrid, a Java library. Therefore it is not
trivial, but still feasible, at least to a large extent.

Debugger One of the most important things in an educational IDE is a good
debugger. A debugger is a feature implemented in WebTigerJython and critical for
WebTigerJython 3 to supersede the current version. Tobias Antensteiner is in the
progress of implementing a debugger that can be integrated in WebTigerJython 3.

More Devices While TigerJython supports programming the Lego Mindstorms
EV3, the micro:bit, the Calliope Mini, an ESP32, oxocards, and the Raspberry Pi,
WebTigerJython 3 so far only supports programming the micro:bit. Some but not
all of these devices will have to be supported by WebTigerJython 3. Additionally, we
should keep an eye on which Python-programmable robots are popular and support
them if possible.

Server-Side File Management

Files can be imported and exported. This is the same functionality provided as in
the regular WebTigerJython. Giving students the possibility to create an account
and store the files on a server would give them the possibility to continue working
on their project on any device. Otherwise they would always have to keep their files
with them. This could also make it easier to share code with their peers.

Multi-file Projects

When students work on more complex projects, organizing their code in multiple
files can be helpful. This feature will become critical for older and more experienced

6.2. Future Work 35

students.

Reference

The reference is still in a proof-of-concept state. There remain some things that have
to be implemented such as multi-language support. Additionally, if the reference
keeps growing, we should try to make it more concise and the desired functionality
easy to find.

Runtime Errors in Robotics

The runtime errors in robotics are hard to interpret, since they are only provided in
English, which constitutes a language barrier for many students. Additionally parsing
them is hard for novice programmers. Showing them in the editor, translating them
or parsing them in advance would surely help the students.

36 Chapter 6. Conclusion and Future Work

Bibliography

[1] Apple App Store Review Guidelines. https://developer.apple.com/
app-store/review/guidelines/. Last accessed: 09.05.2023.

[2] Basthon. https://basthon.sct.pf/. Last accessed: 23.04.2023.

[3] Calliope mini, A microcontroller with many possibilities! https://calliope.
cc/. Last accessed: 30.04.2023.

[4] Can I use? - Lookbehind in JS regular expressions. https://caniuse.com/
js-regexp-lookbehind. Last accessed: 28.08.2023.

[5] Emscripten. https://emscripten.org/. Last accessed: 28.08.2023.

[6] ETH Code Expert. https://expert.ethz.ch/. Last accessed: 13.05.2023.

[7] Jython. https://www.jython.org/. Last accessed: 08.05.2023.

[8] Lego Mindstorms EV3. https://education.lego.com/en-us/downloads/
mindstorms-ev3/. Last accessed: 09.05.2023.

[9] MakeCode. https://www.microsoft.com/en-us/makecode. Last accessed:
20.04.2023.

[10] micro:bit, .HEX file format. https://tech.microbit.org/software/
hex-format/. Last accessed: 30.04.2023.

[11] micro:bit Python Editor. https://python.microbit.org. Last accessed:
23.04.2023.

[12] papyros. https://github.com/dodona-edu/papyros. Last accessed:
23.04.2023.

[13] Progressive Web Apps, mdn web docs. https://developer.mozilla.org/
en-US/docs/Web/Progressive_web_apps. Last accessed: 28.04.2023.

[14] Pyodide Python compatibility. https://pyodide.org/en/stable/usage/
wasm-constraints.html. Last accessed: 09.05.2023.

[15] pyodide-worker-runner. https://github.com/alexmojaki/
pyodide-worker-runner. Last accessed: 15.05.2023.

[16] ROBOTIK und IoT mit MBROBOT und MAQUEEN PLUS.

37

https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/app-store/review/guidelines/
https://basthon.sct.pf/
https://calliope.cc/
https://calliope.cc/
https://caniuse.com/js-regexp-lookbehind
https://caniuse.com/js-regexp-lookbehind
https://emscripten.org/
https://expert.ethz.ch/
https://www.jython.org/
https://education.lego.com/en-us/downloads/mindstorms-ev3/
https://education.lego.com/en-us/downloads/mindstorms-ev3/
https://www.microsoft.com/en-us/makecode
https://tech.microbit.org/software/hex-format/
https://tech.microbit.org/software/hex-format/
https://python.microbit.org
https://github.com/dodona-edu/papyros
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://pyodide.org/en/stable/usage/wasm-constraints.html
https://pyodide.org/en/stable/usage/wasm-constraints.html
https://github.com/alexmojaki/pyodide-worker-runner
https://github.com/alexmojaki/pyodide-worker-runner

38 Bibliography

https://www.tigerjython4kids.ch/index.php?inhalt_links=robotik/
navigation.inc.php&inhalt_mitte=robotik/mbrobot/mbrobot.inc.php.
Last accessed: 09.05.2023.

[17] Scratch. https://scratch.mit.edu/. Last accessed: 20.04.2023.

[18] Skulpt, A Javascript implementation of Python in the browser for education.
https://skulpt.org/. Last accessed: 28.04.2023.

[19] WebUSB API. https://wicg.github.io/webusb/. Last accessed: 02.05.2023.

[20] XLogoOnline. https://xlogo.inf.ethz.ch/. Last accessed: 13.05.2023.

[21] Annamaa, A. Thonny, a Python IDE for learning programming. In Proceedings
of the 2015 ACM Conference on Innovation and Technology in Computer Science
Education (2015), pp. 343–343.

[22] Austin, J., Baker, H., Ball, T., Devine, J., Finney, J., De Halleux,
P., Hodges, S., Moskal, M., and Stockdale, G. The BBC micro:bit:
from the UK to the world. Communications of the ACM 63, 3 (2020), 62–69.

[23] East, D. Simplify Web Worker code with Comlink. https://davidea.st/
articles/comlink-simple-web-worker/. Last accessed: 02.05.2023.

[24] Guo, P. J. Online Python Tutor: Embeddable Web-Based Program Visualiza-
tion for Cs Education. In Proceeding of the 44th ACM Technical Symposium
on Computer Science Education (New York, NY, USA, 2013), SIGCSE ’13,
Association for Computing Machinery, p. 579–584.

[25] Hall, A. Futurecoder. https://futurecoder.io/. Last accessed: 23.04.2023.

[26] Hromkovič, J., Serafini, G., and Staub, J. XLogoOnline: a single-page,
browser-based programming environment for schools aiming at reducing cognitive
load on pupils. In Informatics in Schools: Focus on Learning Programming: 10th
International Conference on Informatics in Schools: Situation, Evolution, and
Perspectives, ISSEP 2017, Helsinki, Finland, November 13-15, 2017, Proceedings
10 (2017), Springer, pp. 219–231.

[27] Kohn, T. Tobias-Kohn/tigerpython-parser: Enhanced error recognition in
Python. https://github.com/Tobias-Kohn/TigerPython-Parser.

[28] Kohn, T., and Manaris, B. Tell Me What’s Wrong: A Python IDE with Error
Messages. In Proceedings of the 51st ACM Technical Symposium on Computer
Science Education (New York, NY, USA, 2020), SIGCSE ’20, Association for
Computing Machinery, p. 1054–1060.

[29] Mozilla. Specification positions. https://mozilla.github.io/
standards-positions/#webusb. Last accessed: 13.04.2023.

[30] Nijburg, A.-J. Skulpt, A Javascript implementation of Python in the browser
for education. https://skulpt.org/. Last accessed: 28.04.2023.

https://www.tigerjython4kids.ch/index.php?inhalt_links=robotik/navigation.inc.php&inhalt_mitte=robotik/mbrobot/mbrobot.inc.php
https://www.tigerjython4kids.ch/index.php?inhalt_links=robotik/navigation.inc.php&inhalt_mitte=robotik/mbrobot/mbrobot.inc.php
https://scratch.mit.edu/
https://skulpt.org/
https://wicg.github.io/webusb/
https://xlogo.inf.ethz.ch/
https://davidea.st/articles/comlink-simple-web-worker/
https://davidea.st/articles/comlink-simple-web-worker/
https://futurecoder.io/
https://github.com/Tobias-Kohn/TigerPython-Parser
https://mozilla.github.io/standards-positions/#webusb
https://mozilla.github.io/standards-positions/#webusb
https://skulpt.org/

Bibliography 39

[31] Plüss, A., and Arnold, J. Python Online Editor. https://python-online.
ch/pyonline/PyOnline.php.

[32] Roberge, A. Friendly Traceback. https://friendly-traceback.github.
io/docs/index.html. Last accessed: 20.04.2023.

[33] Schmidt, A. Increasing Computer Literacy with the BBC micro:bit. IEEE
Pervasive Computing 15, 2 (2016), 5–7.

[34] Selin Barash, Prof. Dr. Dennis Komm, A. M. A Database Library for
WebTigerJython, 2022.

[35] The Pyodide development team. pyodide/pyodide. https://doi.org/10.
5281/zenodo.7570138, Jan. 2023.

[36] Trachsler, N. WebTigerJython-a browser-based programming IDE for educa-
tion. Master’s thesis, ETH Zurich, 2018.

[37] Tyrén, M., Carlborg, N., Heath, C., and Eriksson, E. Considerations
and Technical Pitfalls for Teaching Computational Thinking with BBC Mi-
cro:Bit. In Proceedings of the Conference on Creativity and Making in Education
(New York, NY, USA, 2018), FabLearn Europe’18, Association for Computing
Machinery, p. 81–86.

[38] WebKit. Tracking Prevention in WebKit. https://webkit.org/
tracking-prevention/#anti-fingerprinting. Last accessed: 13.04.2023.

[39] Weill-Tessier, P., Kyfonidis, C., Brown, N., and Kölling, M. Strype:
Bridging from Blocks to Python, with Micro:Bit Support. In Proceedings of the
27th ACM Conference on on Innovation and Technology in Computer Science
Education Vol. 2 (New York, NY, USA, 2022), ITiCSE ’22, Association for
Computing Machinery, p. 585–586.

https://python-online.ch/pyonline/PyOnline.php
https://python-online.ch/pyonline/PyOnline.php
https://friendly-traceback.github.io/docs/index.html
https://friendly-traceback.github.io/docs/index.html
https://doi.org/10.5281/zenodo.7570138
https://doi.org/10.5281/zenodo.7570138
https://webkit.org/tracking-prevention/#anti-fingerprinting
https://webkit.org/tracking-prevention/#anti-fingerprinting

40 Bibliography

